Boc amps unbal ошибка

  • Page 1
    Emotron TSA Softstarter Instruction manual English Valid from Software version 1.27…
  • Page 3
    Date of release: 28-01-2017 © Copyright CG Drives & Automation Sweden AB 2013-2017 CG Drives & Automation Sweden AB retains the right to change specifications and illustrations in the text, without prior notification. The contents of this document may not be copied without the explicit…
  • Page 5: Safety Instructions

    Safety instructions Phase compensation capacitor Congratulations for choosing a product from CG Drives & Automation! If a phase compensation capacitor is to be used, it must be Before you begin with the installation, commissioning or connected at the inlet of the softstarter, not between the powering up the unit for the first time it is very important motor and the softstarter.

  • Page 6
    CG Drives & Automation 01-5980-01r2…
  • Page 7: Table Of Contents

    4.4.13 Other control voltage ……….37 8.1.1 1st Line [110]…………69 8.1.2 2nd Line [120] …………69 Getting started……….39 Main Setup [200]………… 69 Check list …………..39 8.2.1 Operation setup [210] ……….69 Mains and motor connection ……… 39 CG Drives & Automation 01-5980-01r2…

  • Page 8
    Process value …………140 Description of the EInt formats ……141 Softstarter theory ……..143 10.1 Background theory……….143 10.2 Reduced voltage starting……..145 10.3 Other starting methods……… 147 10.4 Use of softstarters with torque control ….148 CG Drives & Automation 01-5980-01r2…
  • Page 9: Introduction

    The Quick Start Guide can be put in a cabinet so that it is always easy to access in case of an emergency. — =Standard (Grounded Supply type net) I=IT-net (EMC not fulfilled) Brand label A=Standard Software A=Standard software — =CE approved Standard U=UL/cUL approved CG Drives & Automation 01-5980-01r2 Introduction…

  • Page 10: Standards

    The recycling of materials will help to conserve natural resources. For more detailed information about recycling this product, please contact the local distributor of the product. Introduction CG Drives & Automation 01-5980-01r2…

  • Page 11: Glossary

    ——————————————— — lb ft UInt Communication format (Unsigned Integer) n mot Communication format (Integer) Long Communication format (Integer Long) SELV Safety Extra Low Voltage The function cannot be changed in run mode CG Drives & Automation 01-5980-01r2 Introduction…

  • Page 12
    Introduction CG Drives & Automation 01-5980-01r2…
  • Page 13: Mounting

    Minimum free space WARNING! Never operate the softstarter with the front Minimum free space cover removed. mm (in) Frame size above* below at side (3.9) (3.9) *) Above: Cabinet roof to softstarter or softstarter to softstarter CG Drives & Automation 01-5980-01r2 Mounting…

  • Page 14: Mechanical Specifications And Drawings

    H3 = Total height including Cable covers. Emotron TSA frame size 1 — 2 Fig. 3 Dimensions for Emotron TSA frame size 1 and 2, bottom view. Fig. 2 Dimensions for Emotron TSA frame size 1 and 2. Mounting CG Drives & Automation 01-5980-01r2…

  • Page 15
    Emotron TSA frame size 3 196 (7.7) 235 (9.3) Fig. 4 Dimensions for Emotron TSA frame size 3. Fig. 5 Dimensions for Emotron TSA frame size 3, bottom view. CG Drives & Automation 01-5980-01r2 Mounting…
  • Page 16
    Emotron TSA frame size 4 254 (10) 260 (10.3) Fig. 6 Dimensions for Emotron TSA frame size 4 . Fig. 7 Dimensions for Emotron TSA frame size 4, bottom view. Mounting CG Drives & Automation 01-5980-01r2…
  • Page 17: Mounting Schemes

    On our websites www.cgglobal.com and www.emotron.com Ø 13 it is possible to download a full-size template for positioning of the fixing holes. Ø 7 (x 4) Fig. 9 Hole pattern for Emotron TSA frame size 3. CG Drives & Automation 01-5980-01r2 Mounting…

  • Page 18
    Mounting CG Drives & Automation 01-5980-01r2…
  • Page 19: Connections

    Fig. 11 Mains, motor and control supply voltage connection NOTE: The Emotron TSA control-board is equipped with a ground plane to which shielded cables can be connected (see Fig. 17 on page 21). NOTE: For UL-approval use 75°C copper wire only. CG Drives & Automation 01-5980-01r2 Connections…

  • Page 20
    Full voltage can be detected if no motor is connected. Table 7 Tightening torque for bolts [Nm (Lb-in)]. Tightening torque for bolts [Nm (Lb-in)] Frame size Motor or mains PE cable cables 8 (70) 5 (44) 8 (70) 5(44) Connections CG Drives & Automation 01-5980-01r2…
  • Page 21
    Full voltage can be detected if no motor is connected. Table 8 Tightening torque for bolts [Nm (Lb-in)]. Tightening torque for bolts [Nm (Lb-in)] Frame size Motor or mains PE cable cables 20 (177) 12 (106) CG Drives & Automation 01-5980-01r2 Connections…
  • Page 22
    Full voltage can be detected if no motor is connected. Table 9 Tightening torque for bolts [[Nm (Lb-in)]. Tightening torque for bolts [Nm (Lb-in)] Frame size Motor or mains PE cable cables 50 (442) 12 (106) Connections CG Drives & Automation 01-5980-01r2…
  • Page 23: Busbar Distances On Emotron Tsa Softatarter

    44 (0.9) 83 (3.27) 83 (3.27) 3.1.2 Cable covers When the Mains and motor cables are connected, mount the cable covers according to Fig. 16. Fig. 16 How to mount the cable covers general drawing. CG Drives & Automation 01-5980-01r2 Connections…

  • Page 24: Board Layout And Connectors

    WARNING! For softstarters rated higher than 525 VAC, it is mandatory to have at least basic insulation from the temperature sensor towards live voltage. Connections CG Drives & Automation 01-5980-01r2…

  • Page 25
    Solid: 2.5 (27) 8. Terminals for DigIn/AnIn/AnOut signals (control board) * When using Ferrules, suitable Ferrule length is 10-12 mm/ 0.39 — 0.47 in. 9. Terminals for relay output signals and PTC connection (power board) CG Drives & Automation 01-5980-01r2 Connections…
  • Page 26: Control Signal Connections

    Analogue output. Factory setting is “Current”. 0-20 mA and 4-20 mA; max load impedance 500 Ω +24 VDC ±5%. Max. current from +24 VDC = 50 mA. Control signal supply 2, voltage to digital input. Short circuit-proof and overload-proof. Connections CG Drives & Automation 01-5980-01r2…

  • Page 27: Wiring Examples

    • If required, connect relay R1 (terminals 21 and 22) to the contactor – the softstarter then controls the mains contactor (for factory configuration of R1 see menu [551]). Always ensure the installation complies with the appropriate local regulations. CG Drives & Automation 01-5980-01r2 Connections…

  • Page 28
    Relay 2 Relay 3 Run FWD Stop DigIn 1 DigIn 2 +10 V AnIn DigIn 3 DigIn 4 +24 V AnOut +24 V Fig. 20 Separate Start- Stop-signals ( 3-wire connection) wir- ing example. Connections CG Drives & Automation 01-5980-01r2…
  • Page 29
    Relay 2 Relay 3 Stop Run FWD DigIn 1 DigIn 2 +10 V AnIn DigIn 3 DigIn 4 +24 V AnOut +24 V Fig. 21 Common Start- Stop-signals ( 2-wire connection) wir- ing example. CG Drives & Automation 01-5980-01r2 Connections…
  • Page 30
    Relay 2 Relay 3 Run FWD DigIn 1 DigIn 2 +10 V AnIn DigIn 3 DigIn 4 +24 V AnOut +24 V Fig. 22 Common Start- Stop-signals ( 2-wire connection) wir- ing example, Level control. Connections CG Drives & Automation 01-5980-01r2…
  • Page 31
    +24 V Reset Run FWD Pressure 0 — 10 bar Current 0 — I 4 — 20 mA 4 — 20 mA Fig. 23 Extended wiring example, using digital and analogue inputs and outputs. CG Drives & Automation 01-5980-01r2 Connections…
  • Page 32
    Relay 1 Relay 2 Relay 3 DigIn 1 DigIn 2 +10 V AnIn DigIn 3 DigIn 4 +24 V AnOut +24 V Run FWD Stop Fig. 24 Reverse current brake wiring example. Connections CG Drives & Automation 01-5980-01r2…
  • Page 33
    Relay 2 OperationREV avoided. Relay 1 Relay 2 DigIn 1 DigIn 2 +10 V AnIn DigIn 3 DigIn 4 +24 V AnOut +24 V Run FWD Stop Run REV Fig. 25 Connection for start forward/reverse. CG Drives & Automation 01-5980-01r2 Connections…
  • Page 34
    If both DigIn 1 “RunFWD” and DigIn 3 “RunREV” are closed at the same time, a stop is performed according to the stop settings in menu group [340]. In this case no start will be allowed. Connections CG Drives & Automation 01-5980-01r2…
  • Page 35: Application Guidelines

    70 A with a start current ratio of 3.0 x FLC (210 A) for 30 seconds, and with a 330 seconds (5.5 minutes) interval between starts (current via bypass contactors). CG Drives & Automation 01-5980-01r2 Application guidelines…

  • Page 36
    Bandsaw Chipper Circular saw Lumber & Wood Debarker Planer Sander Ball mill Centrifuge Petrochemical Extruder Screw conveyor Ball mill Grinder Material conveyor Palletiser Transport & Machine Press Roller mill Rotary table Trolley Escalator Application guidelines CG Drives & Automation 01-5980-01r2…
  • Page 37: The Application Functions List

    This column guides you to the menu, menu group, or manual section where you find a description of the settings for the function. For instance «331=Sqr Torq Ctr», means: set menu [331] to “Sqr Torq Ctr.” CG Drives & Automation 01-5980-01r2 Application guidelines…

  • Page 38
    344=Rev Curr Brk Conveyor speed set from planer shaft High speed lines power analogue output. Worn out tool Use load monitor maximum alarm Broken coupling Use load monitor minimum alarm Application guidelines CG Drives & Automation 01-5980-01r2…
  • Page 39
    Torque boost in beginning of ramp. Jamming Use load monitor maximum alarm HAMMER MILL Reverse current brake with reversing 341=Brake Fast stop contactor for heavy loads. 344=Rev Curr Brk Motor blocked Locked rotor function CG Drives & Automation 01-5980-01r2 Application guidelines…
  • Page 40: Special Conditions

    For instance, the start ramp can only be set for an average starting ramp for all the connected motors. This means that the start time may differ from motor to motor. Similarly, the load monitor alarm levels/margins are applied for the Application guidelines CG Drives & Automation 01-5980-01r2…

  • Page 41: Earthing System

    Emotron TSA should be configured for IT-net supply type. The unit will then not fulfil the EMC requirements. If you have a softstarter without IT net supply type, the softstarter can be rebuilt. Contact your local CG Drives & Automation service partner. 4.4.12 Earth fault relay It is possible to use an earth fault relay to protect motor and cables.

  • Page 42
    Application guidelines CG Drives & Automation 01-5980-01r2…
  • Page 43: Getting Started

    73). • Check / Set real time clock (menu [740], section 8.7.4, page 134) • Select keyboard control (menu [2151], section 7.1.1, page 49). • Perform a test run from the control panel. CG Drives & Automation 01-5980-01r2 Getting started…

  • Page 44: Default Toggle Loop

    Chapter 6. page 43. Menu [100], “Preferred View” is displayed at start. 1. Press to display menu [211] “Language”. NQE1 Select Language using the keys. Confirm with Getting started CG Drives & Automation 01-5980-01r2…

  • Page 45: Control Panel Operation

    To stop the motor, press the key on the control panel. NOTE: For selection of other stop method than the default “Coast”, see section 7.1.2, page 35 and menu [341]. CG Drives & Automation 01-5980-01r2 Getting started…

  • Page 46
    Getting started CG Drives & Automation 01-5980-01r2…
  • Page 47: Operation Via The Control Panel

    Shows the setting or selection in the active Area F: menu (empty at 1st level and 2nd level menus). Shows warnings and alarm messages. CG Drives & Automation, 01-5980-01r2 Operation via the control panel…

  • Page 48: Led Indicators

    Table 18 Control key commands. Start with reversed (left) rotation. START REVERSE RUN (Requires reversing contactor). Stop motor. STOP/RESET Reset softstarter (after a trip). Start with forward START FORWARD RUN (right) rotation. Operation via the control panel CG Drives & Automation, 01-5980-01r2…

  • Page 49: Function Keys

    To activate the jog key function, see instructions in “Jog functions” on page 50. To deactivate the jog key function, unlock the keyboard in menu [218]. CG Drives & Automation, 01-5980-01r2 Operation via the control panel…

  • Page 50: Toggle And Loc/Rem Key

    1. Press the Toggle key and keep it pressed while pressing the ESC key. 2. The message “Clear Loop?” is shown. 3. Confirm with ENTER to delete the menus in the loop. Operation via the control panel CG Drives & Automation, 01-5980-01r2…

  • Page 51: Loc/Rem Function

    Relays [550]. When the softstarter is set to “LOCAL”, the signal on the relay will be active/high. In “REMOTE” the signal will be inactive/low. 3rd level 4th level Fig. 33 Menu structure CG Drives & Automation, 01-5980-01r2 Operation via the control panel…

  • Page 52: The Main Menu

    View Trip Log Here you can see the last 9 trips in the trip memory. System Data This menu contains information on softstarter model and software version. Operation via the control panel CG Drives & Automation, 01-5980-01r2…

  • Page 53: Main Features

    [520], see section 8.5.2, page 108. Spinbrake can only be activated when the TSA is non-operational, i.e that Stp is shown in the display. Fig. 35 Run/Stop decision tree CG Drives & Automation, 01-5980-01r2 Main features…

  • Page 54: Jog Functions

    Jog speed level in menu “[353] Jog Ramp Rate” to achieve smooth Jog start. There are also a couple of examples on how to apply time settings for jog by using logic functions, see page 63. Main features CG Drives & Automation, 01-5980-01r2…

  • Page 55: Working With Parameter Sets

    DigIn running in automatic control mode (i.e. control signals from 3 [523] is set to “Set Ctrl 1” and DigIn 4 [524] is set to “Set PLC, e.g. via fieldbus). Ctrl 2”. CG Drives & Automation, 01-5980-01r2 Main features…

  • Page 56: Configuration Of Parameter Sets

    2. Select motor M1 in menu [212]. 3. Enter motor data and settings for other parameters. 4. Select parameter set B in menu [241]. 5. Select M2 in menu [212]. 6. Enter motor data and settings for other parameters. Main features CG Drives & Automation, 01-5980-01r2…

  • Page 57
    1 to the internal control board of TSA unit 2, using menu [245]. Fig. 38 Copy and load parameters between two Emotron TSA units via the control panel. WARNING! Switch off all power connections before opening the front cover. CG Drives & Automation, 01-5980-01r2 Main features…
  • Page 58
    Fig. 39 Copy and load parameters between two Emotron TSA units using an external control panel (optional). NOTE: Another solution for copying settings and data between different softstarter units is via PC, using the EmoSoftCom PC tool (option). See section 12.2, page 155. Main features CG Drives & Automation, 01-5980-01r2…
  • Page 59: Applying Limitations, Alarms And Autoreset

    • The Trip LED indicator (red triangle) is lit. • The “TRP” status indication is displayed (area D of the display). • The Trip relay or output is active (if selected function in menu [551], [552] or [553]). CG Drives & Automation, 01-5980-01r2 Main features…

  • Page 60: Load Monitor Function

    [223] (being 100%). However, the way to set the levels differs between the two methods: NOTE: When using the load monitor, check that the nominal motor power is set properly in menu [223]. Main features CG Drives & Automation, 01-5980-01r2…

  • Page 61
    (menu [223]). The actual shaft 4112 MaxAlarmLev power is displayed in brackets together with the Alarm Level (104%) 116% value to facilitate setting. See example on the right. Fig. 40 Manually set load monitor alarm levels. CG Drives & Automation, 01-5980-01r2 Main features…
  • Page 62
    Every time a new “Autoset Alarm” command is executed, the actual shaft power value will be updated as the “Normal Load” value, with the alarm levels following this. Fig. 41 Autoset load monitor alarm margins. Main features CG Drives & Automation, 01-5980-01r2…
  • Page 63
    C. The maximum alarm level is exceeded. D. When the set maximum alarm delay time (3 seconds) has passed, the set maximum alarm action is executed, in this case a Hard trip, as set in menu [4111]. CG Drives & Automation, 01-5980-01r2 Main features…
  • Page 64: Reset And Autoreset

    “Autoreset Attempts [251]” on page 83. activated by selecting one of the keyboard alternatives (enabled as default). If controlled by digital input [520], or by virtual I/O [560], this is set by selecting “Reset” signal. Main features CG Drives & Automation, 01-5980-01r2…

  • Page 65: Programmable I/O

    • No digital outputs are available. • 3 relays [550], with the possibility for up to 6 extra relays if extended I/O option boards (max 2) are fitted. • There are also 8 virtual I/Os [560] CG Drives & Automation, 01-5980-01r2 Main features…

  • Page 66: Enable And Stop Functions

    Fig. 44, page 61. Fig. 45 gives an example of a possible RunFWD and RunREV inputs are active, then the sequence. softstarter stops according to the selected stop method in menu [341]. Fig. 46 gives an example of a possible sequence. Main features CG Drives & Automation, 01-5980-01r2…

  • Page 67: Logical Functions

    WARNING! Fig. 46 Input and output status for level control Motor may start instantly! Please verify that parameter settings and I/O connections are according to desired function before switching on mains supply. CG Drives & Automation, 01-5980-01r2 Main features…

  • Page 68
    Number of pulses with Jog speed before run 6521 C2 trig DigIn 2 Pulse input 6522 C2 Reset Counter 2 is blocked until end of deceleration. 6523 C2 Trip Val Number of pulses with Jog speed after run Main features CG Drives & Automation, 01-5980-01r2…
  • Page 69
    Reset Flip Flop 1 and stop the motor 6323 Timer2 Dly 5,0 s Jog time before stop 6411 F1 mode Edge 6412 F1 set Negative flank of “Dec” 6413 F1 reset Reset when “Jog speed after run” has ended CG Drives & Automation, 01-5980-01r2 Main features…
  • Page 70
    Main features CG Drives & Automation, 01-5980-01r2…
  • Page 71: Functionality

    Emotron TSA model, software and hardware version. Service System data 8.9, page 136 information. WARNING! Motor may start instantly! Please verify that parameter settings and I/O connections are according to desired function before switching on mains supply. CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 72
    For bus communication, the integer value 0 is used to select “Off ” in the example. Integer 1 represents “REV”. To change selection by bus communication refer to the description in Chapter 9. page 139. Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 73: Preferred View [100]

    Sets the content of the lower row in the menu [100] “Preferred View”. Same selection as in menu [110]. Default: 120 2nd Line Motor Data [220] is connected to Current selected motor. Default: Current CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 74
    Jog command via digital input or Virtual I/O. Int+Ext Jog command via internal or external keyb control panel. Jog command via serial communication. Int keyb Jog command via internal control panel. Ext keyb Jog command via external control panel. Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 75
    Local start/stop command via serial keyboard and the keys are activated. (it is possible to select communication. e.g. Start REV to be Off or REV in menu [2175] above). 218 Lock Code? Default: Range: 0–9999 CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 76: Remote Signal Level/Edge [21A]

    NOTE: Edge controlled inputs can comply with the Machine Directive (see Chapter 1.5.1 page 6) if the inputs are directly used to start and stop the machine. Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 77: Motor Data [220]

    For explanation of the different abbreviations used in this 1 US-units chapter, see Chapter 1.7.2 page 7 WARNING! When the “Units” setting is changed, this will also affect the factory settings of the motor. CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 78
    . It must be set within the range 25 — 400% of n_soft the softstarter power Pn_soft. If parallel motors, set the sum 221 Motor Volts of the motor power. See nominal data for CG motors in Ta- 400V ble 27. 400 V for SI-units…
  • Page 79
    226 Motor Poles Default: Range: 2-144 Nominal Motor Cos φ [227] Set the nominal Motor cosphi (power factor). 227 Motor Cosφ 0.86 0.86 Default: (see Note 2, page 73) Range: 0.50 — 1.00 CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 80: Motor Protection [230]

    [2311] is performed. The alarm remains active until the I²t value is below 95% before allowing a reset or an autoreset (see more detailed description in menu [2521]). Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 81
    Using motor overload trip class 10 Current: 5 x In_mot Overload trip time (max start time): 20 sec 60 s 20 s Current (x I n_mot 500% x I 300% x I n_mot n_mot Fig. 50 The thermal curve CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 82
    PTC Alarm Action [2331] B 120 ° F 140 F Nema 2331 PTC AA ° No action H 165°C Default: No action No action Hard Trip For a definition, see Table 23, page 55. Soft Trip Warning Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 83
    Counts down from set value in menu [2343]. 2341 StartLim AA No action 2344 TimTNxtStrt Read only Default: No action No action Unit minutes Hard Trip For a definition, see Table 23, page 55 Resolution: 1 min Warning CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 84: Parameter Set Handling [240]

    NOTE: The parameter set cannot be changed No action during run if the parameter set includes change of the motor set (M1-M4). Hard Trip For a definition, see Table 23, page 55. Soft Trip Warning Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 85
    NOTE: The control panel will be temporarily locked while copying or loading data to the internal control panel. If the on-board RS-232 port is connected to a PC or to an external control panel this will also be temporarily locked. CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 86
    Data from motor 4 is loaded. M1M2M3 Data from motor 1, 2, 3 and 4 are loaded. All data is loaded from the control panel. NOTE: Loading or copying will not affect the value in menus for viewing. Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 87: Autoreset [250]

    • Number of allowed autoreset attempts [2511]= 5. • Within 10 minutes 6 trips occur. 1–3600 1–3600 1–3,600 s • At the 6th trip there is no autoreset, because the autoreset counter allows only 5 attempts to autoreset a trip. CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 88
    When the delay time has [2541] elapsed, the alarm will be reset. The delay counter starts counting immediately. 2524 LockedRotor 2541 MaxAlarm Default: Default: 1–3600 1–3600 1–3,600 s 1–3600 1–3600 1–3,600 s Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 89
    External Alarm 1 autoreset [2549] Default: The delay counter starts counting as soon as the relevant external alarm input is inactive. 1–3600 1–3600 1–3,600 s 2549 Ext Alarm 1 Default: 1–3600 1–3600 1–3,600 s CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 90: Serial Communication [260]

    In this menu the delay time for an autoreset of an Fieldbus module. undervoltage alarm [433] is set. The delay time starts counting when the fault is removed. The undervoltage *) EtherCAT and Bluetooth are future options. Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 91
    Select “RW” in normal Set up the parameters for fieldbus communication. cases to control inverter. 263 Fieldbus Additional Process Values [2634] Define the number of additional process values sent in cyclic messages. 2634 AddPrValues Default: Range: CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 92
    Communication Fault Time [2642] Gateway [2654] Defines the delay time for the trip/warning. 2654 Gateway 2642 ComFlt Time 0.000.000.000 0.5s Default: 0.0.0.0 Default: 0.5 s Range: 0.1-15 s DHCP [2655] 2655 DHCP Default: Selection: On/Off Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 93: Process [300]

    321 Proc Source Default: No process source selected. F(AnIn) Function of analogue input. F(Bus) Function of communication value. NOTE: If F (Bus) is chosen in menu [321], see section 9.5 Process value, page 140. CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 94
    Confirm the character by moving the cursor to the next position by pressing the NEXT key. No. for serial No. for serial Character Character comm. comm. ° í Space 0–9 1–10 ñ ó ô ü Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 95: Start Setting [330]

    Voltage control is selected when a linear voltage ramp is desired. The thyristor switch on time will be ramped up linearly, from “Initial Voltage”, menu [334], up to full mains voltage. See Fig. 52. CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 96
    The motor voltage is controlled according torque ramp reactivated. The ramp slope will increase above Voltage Ctr to a linear voltage ramp, menu [334]. Direct online Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 97
    As “Voltage ramp with Current limit” but with fixed ramp 336 Start Time time of 6 seconds. Default: 10 s Range: 1 — 60 s Current limit Ramp time (6 seconds) Fig. 55 Direct on-line start in combination with current limit at start. CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 98: Stop Setting [340]

    Braking may be used in applications where the motor needs to be stopped quickly. When this selection is made, the braking method (“Dynamic Vector Brake” or “Reverse Current Brake”) can be activated in menu [344]. Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 99
    The DC brake will automatically be deactivated when the Stop time motor has stopped or when the stop time has expired. Time Optionally an external rotation sensor can be connected via Fig. 58 Step down voltage at stop. CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 100
    The strength of the DC brake is set here, the value expressed Range: 0 – 120s as a percentage of the maximum available DC braking power. 348 DCB Strength Default: 30 % Range: 20 – 80% Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 101: Jog [350]

    [rpm] Jog speed t [s] t [s] Jog command Fig. 59 Jog command Jog Speed Forward [351] 351 JogSpd FWD Default: Range: 1- 30% of nominal motor speed [225] CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 102: Load Monitor And Process Protection [400]

    Setting of the wanted alarm behaviour when a “Maximum Alarm” has been detected. 4111 MaxAlarmAct No Action Default: No Action No Action Hard Trip For a definition, see Table 23, page 55. Soft Trip Warning Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 103
    0.5 s period longer than the set “Max Pre-Alarm Delay” time, the Range: 0.1 — 90 s selected “Maximum Pre-Alarm Action” in menu [4121] is activated. 4123 MaxPreAlDel 0.5s Default: 0.5 s Range: 0.1–90 s CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 104
    “Autoset”. See nominal motor power, the alarm delay timer starts counting further information in Fig. 40, page 57. down. 4142 MinAlarmLev shaft Default: Range: 0 — 200% of nominal motor power [223] Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 105
    [4142] MinAlarmLev [4174] MinAlarmMar nominal motor power [223]. NOTE: Changing any alarm margin without performing 4172 MaxPreAlMar Autoset will NOT affect the alarm levels. Default: Range: 0 — of nominal motor power [223] CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 106
    [417] Autoset. A new autoset command will overwrite previously used alarm levels. Autoset can also be triggered by a remote signal, setting the function of any digital input to “Autoset”. Note that this signal is edge-triggered. Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 107: Process Protection [420]

    Hard Trip 4223 LockRotCurr For a definition, see Table 23, page 55. 480% Soft Trip Warning Default: 480% (4.8 x I n_mot Range: 100% — 1000% (1.0 x I — 10.0 x I n_mot n_mot CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 108: Mains Protection [430]

    Voltage Unbalance Alarm Delay [4313] Default: In this menu the response delay for the voltage unbalance Range: 1 — 90 s alarm, as set in [4311] and [4312], is selected. 4313 VoltUnbDel Default: Range: 1 — 90 s Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 109
    L123 and L321 Under-Voltage Alarm Delay [4333] In this menu the response delay for the voltage unbalance alarm, as set in [4431] and [4432], is selected 4333 UnderV Del Default: Range: 1 — 90 s CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 110: I/O [500]

    S1. When the jumper is in voltage mode only the voltage menu items are selectable. With the jumper in Default: Min (0 V/4.00 mA) current mode only the current menu items are 0.00–20.00 mA selectable. Range: 0–10.00 V Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 111
    With “AnIn Function Max” the physical maximum value is scaled to selected process unit. The default scaling is dependent of the selected function of AnIn [511]. 5136 AnIn FcMax Default: Min value Max value User-defined 2 Define user value in menu [5137] CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 112: Digital Inputs [520]

    Activates other parameter set. See Table Set Ctrl 1 29 for selection possibilities. Activates other parameter set. See Table Set Ctrl 2 29 for selection possibilities. Loc/Rem 10 Activates local mode defined in [2173]. Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 113: Analogue Output [530]

    AnIn Mirror of received signal value on AnIn. Line Voltage 14 Mains supply NOTE: To activate the parameter set selection, menu 241 must be set to DigIn. Used Th Cap 15 Used thermal capacity CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 114
    [531]. Table 30 AnOut Min Value Max Value Function Process Value Process Min [324] Process Max [325] Shaft Power Motor Power [223] Current Motor Current [224] Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 115
    Min value Max value User defined 2 Define user value in menu [5337 ] NOTE: It is possible to set AnOut up as an inverted output signal by setting “AnOut Min” > “AnOut Max”. CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 116: Relays [550]

    Max pre-alarm condition active (trip or Flip-flop output 4. Max PreAlarm warning). Flip-flop output 4 inverted. Min alarm condition active (trip or Min Alarm CTR1 Counter output 1. warning). !CTR1 Counter output 1 inverted. Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 117
    Fig. 63 Relay function example for start and braking cycle. is active (trip) PTC Alarm 103 PTC alarm active (trip or warning) PT100 Alarm 104 PT100 alarm active (trip or warning) 105 I t alarm active (trip or warning) CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 118
    I/O option board on the option mounting plate. The functions and selections are the same as for “Relay 1” [551]. Default settings are “Off ”. NOTE: Visible only if optional board is detected or if any input/output is activated. Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 119: Virtual I/Os [560]

    “OR logic”. See section 8.5.2, page 108 (Digital Input) for descriptions of the different selections. 561 VIO 1 Dest Default: Same selections as in menu Digital Input 1 Selection: [521], page 108. CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 120: Logical Functions And Timers [600]

    CA1 Level LO [6113] Digital Comparator Setup [615] — [618] There are also 4 digital comparators that compare any Fig. 65 Analogue comparator type “Window” available digital signals. Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 121
    CA1 Value AnIn 6112 CA1 Level HI 60% (12 mA/20 mA x 100%) 6113 CA1 Level LO 40% (8 mA/20 mA x 100%) 6114 CA1 Type Hysteresis VIO 1 Dest Run FWD VIO 1 Source CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 122
    The reference signal passes the Level LO Hysteresis/ value from above (negative edge), the window band 40°C comparator CA1 is reset, output is set low. CA1 Level LO CA1 output Hysteresis High Window High Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 123
    The reference signal passes the Level LO value from above (signal outside Window band), the comparator CA1 is reset, output is set low. Set delay Reset delay Fig. 68 Set/reset delay of output signal. CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 124
    “Trip”, and for CD4 [6181] the default is “Ready”. Operation Default: Operation Same selection as in menu Relay 1 Selection: [551], page 112. Input signal for CD1 [6151] Digital comparator 1 Fig. 69 Digital comparator. Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 125: Logic Outputs [620]

    Default: ((1.2).3).4 ((1&1)+1)&0 Default execution order, see which is equal to 0. ((1.2).3).4 explanation below. With the alternative execution order for the L1 Expression Alternative execution order, see (1.2).(3.4) explanation below. this is representing: CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 126
    Logic output 1 inverted. +=OR Not used for Logic 1. ^=EXOR Logic output 2. Not used for Logic 2. Logic output 2 inverted. Not used for Logic 2. Logic output 3. Not used for Logic 3. Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 127
    The reset of the output signal for the Logic 1 function is delayed with the set value in this menu. Compare to Fig. 68, page 119. 621A L1 Res Dly 0:00:00.0 Default: 0:00:00.0 (hours:minutes:seconds) Range: 0:00:00.0–9:59:59.9 CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 128: Timers [630]

    The function of the “On-time” mode is to extend an Prolongs the activation of the output On-time activated (high) timer output signal in comparison to the signal according to menu [6314]. trigger signal. See Fig. 72. Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 129: Sr Flip-Flops [640]

    RESET This menu shows the actual value of the timer. 6316 Timer1 Val Read-only 0:00:00.0 Fig. 73 Programmable flip-flop modes. Timer 2 — 4 [632] — [634] Refer to the descriptions for Timer 1. CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 130
    Table 35 Truth table for Edge control without priority 6414 F1 Set Dly 0:00:00.0 RESET Default: 0:00:00.0 (hours:minutes:seconds) — (no change)  Range: 0:00:00.0–9:59:59.9 1 (set)  0 (reset)   No change Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 131: Counters [650]

    Counter 1 is incremented by 1 on every positive edge of the trigger signal. NOTE: Maximum counting frequency is 8 Hz. 6511 C1 Trig Default: Same selections as in menu Relay 1 [551], Selection: page 112. CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 132: Clock Logic [660]

    Date when the clock output signal (CLK1) is deactivated. Note that if “Clk1DateOff ” is set to an earlier date than “Clk1DateOn”, the result will be that the clock is not deactivated at the set date. Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 133: Operation/Status [700]

    6615 Clk1Weekday — — — — — SS VIO 1 Dest Run FWD 716 Shaft Power Read-only VIO 1 Source Clk1 Clock 2 [662] Unit: Resolution: Refer to the description for Clock 1 [661]. CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 134
    3. See menu PT100 Inputs [2323], page 78. Used Thermal Capacity [71K] 71B PT100B1 123 This menu displays the used thermal capacity. Read-only Unit: °C 71K Used Th Cap Read-only Resolution: 1°C Unit: Resolution: Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 135: Status [720]

    4 — 2 1=Thyristor driven motor 2=Bypass driven motor Source of Run/Stop command, where: 0=Rem, 1=Keyboard (internal + external), 2=Com, 7 — 5 3=Spare, 4=VIO, 5=Internal keyboard, 6=External keyboard. 15 — 8 Reserved for future use. CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 136
    Fig. 78 indicates that AnIn is active and has a 65% input Volt Unbal (voltage unbalance) value. NOTE: The shown percentage is an absolute value based on the maximum value of the in- or output; so related to either to 10 V or 20 mA. Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 137
    This menu indicates the active digital comparators (CD1 — CD4). 72B CD1-4 Read-only 0000 Logic function status 1 — 4 [72C] This menu indicates the active logic outputs (L1 — L4). 72C Logic 1-4 Read-only 0000 CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 138: Stored Values [730]

    00: 00: 00–262143: 59: 59 Energy [733] This menu displays the total energy consumption since the last energy reset [7331] took place. 733 Energy Read-only Unit: Wh (shows Wh, kWh, MWh or GWh) Range: 0 Wh–999,999 GWh Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 139: View Trip Log [800]

    Analogue comparator 1 — 4 132 (menu [722]). 812A Digital comparator 1 — 4 812B Logic function status 1-4 812C Timer status 1-4 812D Flip-flop status 1-4 812E Counter status 1-2 812F Time to next start CG Drives & Automation, 01-5980-01r2 Functionality…

  • Page 140: Trip Messages [820] — [890]

    0: V, release version 15–14 1: P, pre-release version β , Beta version α , Alpha version Table 39 Information for Modbus and Profibus number, option version Example Description 7–0 Minor option version 15–8 Major option version Functionality CG Drives & Automation, 01-5980-01r2…

  • Page 141
    12 characters. Press the + / — keys to enter graphic symbols from the same list as for User-defined Unit [323], page 90. See also «Editing parameter values», page 45. 923 Unit Name Default: No characters shown CG Drives & Automation, 01-5980-01r2 Functionality…
  • Page 142
    Functionality CG Drives & Automation, 01-5980-01r2…
  • Page 143: Serial Communication

    The on-board RS232 connection is not galvanically option boards. isolated. Modbus RTU The RS485 and USB option boards from CG Drives & Automation are galvanically isolated. There is an asynchronous unisolated RS232 serial communication interface on top of the Emotron TSA unit.

  • Page 144: Motor Data

    Requires that menu [2151] Run/Stop Control is set to “Com”. Modbus/DeviceNet Function Instance number 42901 Reset Run, active together with either 42902 Run FWD or Run REV to perform start. (1=Run, 0=Stop) 42903 Run FWD (1=Active) 42904 Run REV (1=Active) Serial communication CG Drives & Automation 0-5980-01r2…

  • Page 145: Description Of The Eint Formats

    4-bit signed exponent. Gives a value range: -8..+7 (binary 1000 .. 0111) Where bit 15 indicates that we are using the fixed point m10-m0 11-bit signed mantissa. Gives a format (F=0). value range: -1024..+1023 (binary 10000000000..01111111111) CG Drives & Automation 01-5980-01r2 Serial communication…

  • Page 146
    // make signed Rreturn (*(unsigned short int *)&etmp); //————————————————————————— float eint16_to_float(unsigned short int value) float f; eint16 evalue; evalue=*(eint16 *)&value; if (evalue.f) if (evalue.e>=0) f=(int)evalue.m*pow10(evalue.e); else f=(int)evalue.m/pow10(abs(evalue.e)); else f=value; return f; //————————————————————————— Serial communication CG Drives & Automation 0-5980-01r2…
  • Page 147: Softstarter Theory

    The dashed line indicates the nominal motors’ torque characteristic is added to the diagram. values. Torque Torque Fig. 85 Typical load torque characteristics Fig. 83 Typical torque characteristics for the DOL start CG Drives & Automation 01-5980-01r2 Softstarter theory…

  • Page 148
    This means when the motor current is decreased by a factor of two by means of reducing the supply voltage, the torque delivered by the motor will be decreased by a factor of four (approximately). Softstarter theory CG Drives & Automation 01-5980-01r2…
  • Page 149: Reduced Voltage Starting

    On the other hand for low load applications further savings of starting current are impossible even though a big torque reserve is available. Moreover, the resulting abrupt rise of torque first at start and CG Drives & Automation 01-5980-01r2 Softstarter theory…

  • Page 150
    This means, the lowest possible starting current is determined by the combination of motor and load characteristics. Softstarter theory CG Drives & Automation 01-5980-01r2…
  • Page 151: Other Starting Methods

    However, it is always possible to use a frequency inverter instead. The following illustration shows how the torque and current characteristics are affected when the stator frequency is changed. CG Drives & Automation 01-5980-01r2 Softstarter theory…

  • Page 152: Use Of Softstarters With Torque Control

    (linear, square or constant load, need of initial release torque) must be known. In this case a proper torque control method (linear or square) can be chosen and torque boost can be enabled if needed. Softstarter theory CG Drives & Automation 01-5980-01r2…

  • Page 153: Troubleshooting, Diagnoses And Maintenance

    For more information on maintenance, please contact your this instruction manual, it is absolutely necessary to CG Drives & Automation service partner. read and follow the safety instructions in the manual. Precautions to take with a connected motor…

  • Page 154: Troubleshooting List

    Change the Motor I t Current setting in menu [2312]. (Area D: I Soft trip to the prog-rammed I t settings. Check setting of menu [228] Motor Vent, which affects I Warning behaviour. Troubleshooting, Diagnoses and Maintenance CG Drives & Automation 01-5980-01r2…

  • Page 155
    Mains voltage dip due to starting Soft trip limits set in menu group [433]. other major power consuming Warning Use other mains supply lines if dip is caused by other machines on the same line. machinery. CG Drives & Automation 01-5980-01r2 Troubleshooting, Diagnoses and Maintenance…
  • Page 156
    Possible cause Remedy /Menu (and indicator) No action Hard trip Check 3-phase mains supply. Volt unbalance 4311 Mains supply voltage unbalance. Soft trip Check settings in menu [4312] and [4313]. Warning Troubleshooting, Diagnoses and Maintenance CG Drives & Automation 01-5980-01r2…
  • Page 157
    The alarm can only be reset if the The alarm can not alarm condition is removed. be reset. E.g. PTC, PT100 or over temperature alarm can only be reset after the temperature is decreased. CG Drives & Automation 01-5980-01r2 Troubleshooting, Diagnoses and Maintenance…
  • Page 158
    Troubleshooting, Diagnoses and Maintenance CG Drives & Automation 01-5980-01r2…
  • Page 159: Options

    PC for backup and printing. options are described in a separate manual. Recording can be made in oscilloscope mode. Please contact CG Drives & Automation sales for further information. CG Drives & Automation 01-5980-01r2 Options…

  • Page 160
    Options CG Drives & Automation 01-5980-01r2…
  • Page 161: Technical Data

    Heavy duty: Start current = 5 x I , Start time = 15 s (Size 1) or 30 s (Size 2- 4), 10 starts/hour. n_soft Fuse data for Semi-conductor fuses, see Table 48. H1=Height of enclosure, H2= Total height. CG Drives & Automation 01-5980-01r2 Technical data…

  • Page 162
    Heavy duty: Start current = 5 x I , Start time = 15 s (Size 1) or 30 s (Size 2-4), 10 starts/hour. n_soft Fuse data for Semi-conductor fuses, see Table 48. H1=Height of enclosure, H2= Total height. Technical data CG Drives & Automation 01-5980-01r2…
  • Page 163
    Heavy duty: Start current = 5 x I , Start time = 15 s (Size 1) or 30 s (Size 2-4), 10 starts/hour. n_soft Fuse data for Semi-conductor fuses, see Table 48. H1=Height of enclosure, H2= Total height. CG Drives & Automation 01-5980-01r2 Technical data…
  • Page 164: General Electrical Specifications

    42 000 -085 55 000 -100 99 000 -140 160 000 -170 222 000 -200 332 000 -240 433 000 -300 1000 950 000 -360 1200 1 470 000 -450 1400 1 890 000 Technical data CG Drives & Automation 01-5980-01r2…

  • Page 165: Environmental Conditions

    85 A nominal current: 85 A — (20% x 85 A) = 68 A, which is lower than the required 70 A. An even higher rated model is checked, TSA52-100, rated for 100 A nominal current: CG Drives & Automation 01-5980-01r2 Technical data…

  • Page 166: Derating At High Altitude

    56 A — (11% x 56 A) = 49.8 A, which is well above the required 42 A, and therefore TSA52-056 could be selected in this case. Technical data CG Drives & Automation 01-5980-01r2…

  • Page 167: Control Power- And I/O Signal Connectors

    24 VDC or max 250 VAC) must be used for all three output relays (terminals 21-33). Do not mix AC and DC voltage. Make sure to use the same voltage level within this terminal section, otherwise the softstarter may be damaged. CG Drives & Automation 01-5980-01r2 Technical data…

  • Page 168
    Technical data CG Drives & Automation 01-5980-01r2…
  • Page 169: Index

    LOC/REM key ……. 46 Emergency ………1 Clock settings ……..134 Local control ……..71 EN60204-1 ……..6 Coast ……….94 Logic ……..116, 121 EN61800-3 ……..6 Com Type ……..86 Status ……..133 EN61800-5-1 ……..6 Comparator Low Voltage Directive ……. 6 CG Drives & Automation 01-5980-01r2…

  • Page 170
    Phase compensation capacitor ….1 Status ……….131 Phase loss ………79 Status indications ……43 Phase reversal ………105 Step-up transformer for high Phase sequence …….105, 130 voltage motor ……..36 Planer ……….34 Stop command …….108 Power- and signal connectors ..163 CG Drives & Automation 01-5980-01r2…
  • Page 171: Appendix 1: Menu List

    Appendix 1: Menu List This is a list of the Emotron TSA menu parameters and their factory settings, along with communication settings for the most important bus formats. Complete lists with communication data and parameter set information could be downloaded from www. cgglobal.com or www.emotron.com. Customer settings Modbus Inst.

  • Page 172
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format Motor Power [Motor] W 43043 Long, 1=1W EInt Motor Curr [Motor] A 43044 Long, 1=0.1A EInt Motor Speed [Motor] rpm 43045 UInt, 1=1rpm UInt Motor Poles [Motor] 43046 Long, 1=1…
  • Page 173
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format Copy Set A>B 43021 UInt UInt Default>Set 43023 UInt UInt Copy to CP No Copy 43024 UInt UInt Load from CP No Copy 43025 UInt UInt Autoreset page 83…
  • Page 174
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 2563 OverVolt 43077 Long, 1=1s EInt 2564 Undervolt 43088 Long, 1=1s EInt Serial Com page 86 Com Type RS232 43031 UInt UInt Modbus RTU 2621 Baudrate 9600 43032 UInt…
  • Page 175
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 2653 Subnet Mask 0.0.0.0 42711 UInt, 1=1 UInt 0.0.0.0 42712 UInt, 1=1 UInt 0.0.0.0 42713 UInt, 1=1 UInt 0.0.0.0 42714 UInt, 1=1 UInt 2654 Gateway 0.0.0.0 42715 UInt, 1=1…
  • Page 176
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format FB Status page 89 2691 Board Type 31081 UInt, 1=1 UInt 2692 SUP-bit 31082 UInt, 1=1 UInt 2693 State FB 31083 UInt, 1=1 UInt 2694 Serial Nbr 31084 UInt, 1=1 UInt…
  • Page 177
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format StartSetting page 91 Start Method Lin Torq Ctr 43701 UInt, 1=1 UInt Init Torque 43702 UInt, 1=1% UInt EndTorqueSt 150% 43703 UInt, 1=1% UInt Init Volt 43704 UInt, 1=1% UInt…
  • Page 178
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 4111 MaxAlarmAct No action 43775 UInt UInt 4112 MaxAlarmLev 116% 43776 Long, 1=1% EInt 4113 MaxAlarmDel 0,5s 43330 Long, 1=0.1s EInt MaxPreAlarm page 99 4121 MaxPreAlAct No action 43777 UInt…
  • Page 179
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 4221 LockRot AA No action 43362 UInt UInt 4222 LockRotTime 5,0s 43757 UInt, 1=0.1s UInt 4223 LockRotCurr 480% 43759 UInt, 1=1% UInt Mains Prot page 104 Volt Unbal 4311 VoltUnbalAA No action…
  • Page 180
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format AnIn Advan 5131 AnIn Min 43203 Long, 1=0.01 EInt 5132 AnIn Max 20mA 43204 Long, 1=0.01 EInt 5134 AnIn FcMin 43206 UInt UInt Long, 1= see 1=0.001, 1rpm, 1%, 1°C, 0.001 5135 AnIn VaMin 43541…
  • Page 181
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 5334 AnOutFcMin 43256 UInt UInt Long, 1= see 1W, 0.1Hz, 0.1A, 0.1V, 1rpm, 1% 5335 AnOutVaMin 43545 EInt Notes or 0.001 as set in [322] 5336 AnOutFcMax 43257 UInt…
  • Page 182
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format VIO 2 Dest 43283 UInt UInt VIO 2 Source 43284 UInt UInt VIO 3 Dest 43285 UInt UInt VIO 3 Source 43286 UInt UInt VIO 4 Dest 43287 UInt UInt…
  • Page 183
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 6117 CA1 Res Dly 00:00:00 43408 UInt, 1=1h UInt 43409 UInt, 1=1m UInt 43410 UInt, 1=0.1s UInt 6118 CA1 Tmr Val 00:00:00 42600 UInt, 1=1h UInt 42601 UInt, 1=1m…
  • Page 184
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 1W, 0.1Hz, 0.1A, 0.1V, 1rpm, 1%, Long, 1= see 6133 CA3 LevelLO 43424 EInt 0.1°C, 1kWh, 1h or 0.001 as set Notes in [322] 6134 CA3 Type Hysteresis 43425 UInt…
  • Page 185
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 42611 UInt, 1=0.1s UInt CD1 Setup page 120 6151 CD1 Operation 43444 UInt UInt 6152 CD1 Set Dly 00:00:00 43445 UInt, 1=1h UInt 43446 UInt, 1=1m UInt 43447 UInt, 1=0.1s…
  • Page 186
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 6173 CD3 Res Dly 00:00:00 43462 UInt, 1=1h UInt 43463 UInt, 1=1m UInt 43464 UInt, 1=0.1s UInt 6174 CD3 Tmr Val 00:00:00 42618 UInt, 1=1h UInt 42619 UInt, 1=1m…
  • Page 187
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 6219 L1 Set Dly 00:00:00 43480 UInt, 1=1h UInt 00:00:00 43481 UInt, 1=1m UInt 00:00:00 43482 UInt, 1=0.1s UInt 621A L1 Res Dly 43483 UInt, 1=1h UInt 43484 UInt, 1=1m…
  • Page 188
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format Logic 3 page 124 6231 L3 Expr ((1.2).3).4 43780 UInt UInt 6232 L3 Input 1 43781 UInt UInt 6233 L3 Op 1 & 43782 UInt UInt 6234 L3 Input 2 43783…
  • Page 189
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 6249 L4 Set Dly 00:00:00 43802 UInt, 1=1h UInt 43803 UInt, 1=1m UInt 43804 UInt, 1=0.1s UInt 624A L4 Res Dly 00:00:00 43805 UInt, 1=1h UInt 43806 UInt, 1=1m…
  • Page 190
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 6323 Timer2 Dly 00:00:00 43821 UInt, 1=1h UInt 43822 UInt, 1=1m UInt 43823 UInt, 1=0.1s UInt 6324 Timer2 T1 00:00:00 43824 UInt, 1=1h UInt 43825 UInt, 1=1m UInt 43826…
  • Page 191
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format Timer4 page 125 6341 Timer4 Trig 43841 UInt UInt 6342 Timer4 Mode Delay 43842 UInt UInt 6343 Timer4 Dly 00:00:00 43843 UInt, 1=1h UInt 43844 UInt, 1=1m UInt 43845…
  • Page 192
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 6416 F1 Tmr Val 00:00:00 42648 UInt, 1=1h UInt 42649 UInt, 1=1m UInt 42650 UInt, 1=0.1s UInt Flip flop 2 page 127 6421 F2 mode Reset 43861 UInt…
  • Page 193
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 6436 F3 Tmr Val 00:00:00 42654 UInt, 1=1h UInt 42655 UInt, 1=1m UInt 42656 UInt, 1=0.1s UInt Flip flop 4 page 127 6441 F4 mode Edge 43879 UInt…
  • Page 194
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format Clock logic page 128 Clock 1 6611 Clk1TimeON 00:00:00 43600 Long, 1=1h EInt 43601 Long, 1=1m EInt 43602 Long, 1=1s EInt 6612 Clk1TimeOff 00:00:00 43603 Long, 1=1h EInt 43604…
  • Page 195
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format Shaft Power 31006 UInt, 1=1% UInt El Power 31007 Long, 1=1W EInt RMS Current 31008 Long, 1=0.1A EInt L main volt 31009 Long, 1=0.1V EInt Heatsnk Tmp 31010 Long, 1=0.1°C EInt…
  • Page 196
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format CA1-4 31050 UInt, 1=1 UInt CD1-4 31051 UInt, 1=1 UInt Logic 1-4 31052 UInt, 1=1 UInt Timer 1-4 31053 UInt, 1=1 UInt FlipFlop1-4 31072 UInt, 1=1 UInt Counter 1-2 31073…
  • Page 197
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format Long, 1= see 1rpm, 1%, 1°C, 0.001 as set in 8111 Process Val 31102 EInt Notes [322] 8113 Torque 31104 Long, 1=0.1Nm EInt 8114 Torque 31105 Long, 1=1% EInt…
  • Page 198
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 8124 AnalogueIn 31129 Long, 1=1% EInt 8125 AnalogueOut 31130 Long, 1=1% EInt 8126 IO StatusB1 31131 UInt, 1=1 UInt 8127 IO StatusB2 31132 UInt, 1=1 UInt 8129 CA1-4 31134…
  • Page 199
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format (Trip log list 2) page 136 (Trip log list 3) (Trip log list 4) Same parameters as for menu group 810 (Trip (Trip log list 5) log list 1).
  • Page 200
    Customer settings Modbus Inst. Fieldbus Modbus Menu Parameters Default settings Notes DeviceNet no. format format 42307 UInt UInt 42308 UInt UInt 42309 UInt UInt 42310 UInt UInt 42311 UInt UInt 42312 UInt UInt…
  • Page 201: Appendix 2: Trip Message Communication Data

    Appendix 2: Trip message communication data Trip log list 31101-31154 31201-31254 31301-31354 Modbus Instance no/ 31401-31454 DeviceNet no: 31501-31554 31601-31654 31701-31754 31801-31854 31901-31954 Trip log list 121/245-122/43 122/90-122/143 122/190-122/243 123/35-123/88 Profibus slot/index 123/135—123/188 123/235-124/33 124/80-124/133 124/180-124/233 125/25-125/78 Trip log list 1101-1154 1201-1254 1301-1354…

  • Page 204
    CG Drives & Automation Sweden AB Mörsaregatan 12 Box 222 25 SE-250 24 Helsingborg Sweden T +46 42 16 99 00 F +46 42 16 99 49 www.emotron.com/www.cgglobal.com…

10

EURORACK UB1222FX-PRO Руководство пользователя

2-TRACK OUTPUT
Данные соединительные элементы выведены перед графической EQ и 

XPQ Surround-функцией. Они поставляют стереосумму в асимметричной 

форме в распоряжение эффект-микширования. Подключите сюда входы 

Вашего записывающего устройства. Если Вы используете микшерный 

пульт исключительно в целях записи, тогда, конечно, альтернативой могут 

послужить Main-выходы.

2.3.5  Main mix, main out-втулки и 

подключение наушников 

10

10

15

20

25

30

40
60

0

PHONES

MAIN MIX

MAIN MIX

LEFT

RIGHT

MA X

Рис. 2.11: Фейдеры main mix

MAIN MIX
При помощи высокоточных качественных фейдеров Вы регулируете 

выходной уровень Main микшера.

LEFT

RIGHT

BAL OR UNBAL

MAIN OUT

Рис. 2.12: Main out-втулки

MAIN OUT
MAIN OUT
-выходы проводят MAIN MIX-сигнал и сконструированы как 

симметричные XLR-втулки с номинальным уровнем в +4 дБ. В зависимости 

от того, как Вы хотите использовать микшерный пульт и каким 

оборудованием Вы владеете, Вы можете подключать следующие приборы: 

Live-озвучивание:
Динамический стереопроцессор (по заказу), стереоэквалайзер (по заказу) 

и затем выходная ступень стереоусилителя для широкодиапазонных 

динамиков с пассивными частотными разделительными фильтрами.
Если Вы хотите использовать многоканальные системы динамиков без 

встроенных частотных разделительных фильтров, Вы должны использовать 

один активный разделительный частотный фильтр и несколько выходных 

ступеней усилителя. Часто там уже встроен динамический ограничитель 

(Limiter) (например, в BEHRINGER SUPER-X PRO CX2310 и ULTRADRIVE PRO 

DCX2496). Активные разделительные частотные фильтры устанавливаются 

непосредственно перед выходными ступенями и разделяют полосу частот 

на несколько частей, которые затем через выходные ступени подводятся к 

соответствующим системам динамиков.

Запись:
Для Mastering рекомендуется использовать стереокомпрессор, 

как например COMPOSER PRO-XL MDX2600, при помощи которого Вы можете 

собственноручно проектировать динамику Ваших музыкальных сигналов 

в динамическом объеме используемого Вами записывающего устройства. 

От компрессора сигнал поступает в записывающее устройство.

PHONES
PHONES-потенциометр регулирует уровень громкости подключенных 

к PHONS/CTRL-втулке наушников. Если здесь Вы подключили активные 

динамики монитора или же выходные ступени усилителя, тогда при 

помощи данного регулятора Вы можете регулировать выходной уровень.

ВНИМАНИЕ!

◊ 

Мы хотим обратить Ваше внимание на то, что высокий уровень 
громкости может причинить вред органам слуха и/или вывести 
из строя наушники и динамики. Поэтому, прежде чем включить 
прибор, установите фейдер MAIN MIX в Main-Sektion в самое 
нижнее положение и поверните PHONES-регулятор влево до 
упора. Постоянно следите за тем, чтобы уровень громкости 
был умеренным.

PHONS

/

CTRL

Рис. 2.13: PHONS/CTRL-втулка

PHONS/CTRL-втулка
К этой 6,3-мм-стереохраповой втулке вы можете подключить Ваши 

наушники. Данная втулка может также использоваться в качестве 

соединительного элемента для активных динамиков монитора  

(или выходной ступени усилителя) в радиоаппаратной. Для данной цели 

сигнал отводится непосредственно перед фейдерами Main Mix.

2.3.6  Индикатор уровня и модуляция

POWER
POWER
-светодиод сообщает о том, что прибор включен.

Events specification

BOC Gen Lx <V

(where x=1,2,3)

BOC Gen V Unbal

BOC Gen >, <Freq

Gen CCW Rot

BOC Amps Unbal

BOC Amps IDMT

BOC Overload

BOC Short Crct

Sd Earth Fault

Sd Overspeed

Sd Underspeed

Mains Lx >V

Mains Lx <V

(where x=1,2,3)

Mains V Unbal

Mains >, <Freq

Mains CCW Rot

Wrn MainsV Det

EmergencyStop

Sd Override

GCB Fail

MCB Fail

Sd RPMMeasFail

NT

– AMF20/25, SW version 2.2, ©ComAp – September 2014

InteliLite

IL-NT-AMF-2.2-Reference Guide.pdf

Information on binary

Protection

output available (See

type

list of

Binary

BOC

BOC

YES

BOC

YES

WRN

NO

BOC

NO

BOC

NO

BOC

YES

BOC

YES

SD

YES

SD

YES

SD

YES

MF

YES

MF

YES

MF

YES

WRN

NO

NONE

NO

SD

NO

WRN

NO

SD

NO

MF

NO

SD

NO

Description

outputs)

given by Gen <V BOC and Gen >V Sd

setpoints.

The generator voltage is unbalanced

more than the value of Volt Unbal

BOC setpoint.

The generator frequency is out of

limits given by Gen >Freq BOC and

Gen <Freq BOC setpoints.

Genset voltage phases are not wired

correctly. MCB closing is prohibited by

controller.

The generator current is unbalanced.

Generator current exceeds the limit

for IDMT protection given by Nominal

current and Amps IDMT Del setpoints.

The load is greater than the value

given by Overload BOC setpoint.

Generator current is higher than the

value given by Short Crct BOC

setpoint.

This alarm is activated when Earth

Fault value exceeds Earth Fault Sd

limit for at least Earth Fault Del period.

The protection comes active if the

speed is greater than Overspeed

setpoint.

During starting of the engine when the

RPM reach the value of Starting RPM

setpoint the starter is switched off and

the speed of the engine can drop

under Starting RPM again. Then the

Underspeed protection becomes

active. Protection evaluation starts 5

seconds after reaching StartingRPM.

The mains voltage is out of limits

given by Mains <V and Mains >V

setpoints.

The mains voltage is unbalanced

more than the value of Mains VUnbal

setpoint.

The mains frequency is out of limits

given by Mains >Freq and Mains

<Freq setpoints.

Mains voltage phases are not wired

correctly. MCB closing is prohibited by

controller.

AMF controller in MRS mode detects

a voltage on mains connector.

If the input Emergency Stop is opened

shutdown is immediately activated.

The protection is active if the output

Sd Override is closed.

Failure of generator circuit breaker.

Failure of mains circuit breaker.

Failure of magnetic pick-up sensor for

111

Page 1: IL NT MRS 2.0 Reference Guide

Copyright © 2012 ComAp s.r.o. Written by Petr Novák Prague, Czech Republic

ComAp, spol. s r.o. Kundratka 2359/17, 180 00 Praha 8, Czech Republic Tel: +420 246 012 111, Fax: +420 2 66316647 E-mail: [email protected], www.comap.cz

Reference Guide

InteliLiteNT

InteliLite NT MRS

Modular Gen-set Controller

Compact Controller for Single Operating Gen-sets

(IL-NT MRS10/11/15/16 unit)

SW version 2.0, June 2012

Page 2: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 2 IL-NT-MRS-2.0-Reference Guide.pdf

Table of Contents

Table of Contents …………………………………………………………………………………………………………………… 2 General Guidelines …………………………………………………………………………………………………………………. 5

What describes this manual? ……………………………………………………………………………………………….. 5 !! Warnings !! ……………………………………………………………………………………………………………………… 5 Symbols …………………………………………………………………………………………………………………………….. 5 Text ………………………………………………………………………………………………………………………………….. 6 Dangerous voltage ……………………………………………………………………………………………………………… 6 Adjust set points …………………………………………………………………………………………………………………. 6

General Description ………………………………………………………………………………………………………………… 7 Description of the controller system (with all options) ………………………………………………………………. 7 What is in the package? ………………………………………………………………………………………………………. 7 IL-NT RS232 Communication plug-in card …………………………………………………………………………….. 7 IL-NT RS232-485 Communication plug-in card …………………………………………………………………….. 11 IL-NT S-USB Service USB communication plug-in card ………………………………………………………… 12 IB-Lite Ethernet communication plug-in card ………………………………………………………………………… 12 IL-NT-GPRS GSM and GPRS plug-in modem ……………………………………………………………………… 13 IL-NT AOUT8 Gauge driver module…………………………………………………………………………………….. 14 IL-NT BIO8 Hybrid binary input/output module ……………………………………………………………………… 16 IL-NT-EFCPM…………………………………………………………………………………………………………………… 17 IC-NT CT-BIO7…………………………………………………………………………………………………………………. 17 IL-NT RD Remote display software……………………………………………………………………………………… 18 Remote announciator IGL — RA15 ……………………………………………………………………………………….. 18 IG IOM/PTM module …………………………………………………………………………………………………………. 19 IG-IB Internet bridge ………………………………………………………………………………………………………….. 20

IL-NT Terminals ……………………………………………………………………………………………………………………. 21 IL-NT terminals and face ……………………………………………………………………………………………………. 21

Installation……………………………………………………………………………………………………………………………. 22 Mounting ………………………………………………………………………………………………………………………….. 22

Recommended Wiring …………………………………………………………………………………………………………… 23 MRS – Wiring Diagram ……………………………………………………………………………………………………… 23

Getting Started …………………………………………………………………………………………………………………….. 24 How to install ……………………………………………………………………………………………………………………. 24 Current measurement ……………………………………………………………………………………………………….. 27 Earth Fault measurement (module) …………………………………………………………………………………….. 29 Voltage measurement and generator connection types …………………………………………………………. 31 Analog inputs……………………………………………………………………………………………………………………. 34 Binary inputs and outputs …………………………………………………………………………………………………… 41 Recommended CAN/RS485 connection ………………………………………………………………………………. 41 Extension modules (CAN bus) connection …………………………………………………………………………… 43

Inputs and Outputs ……………………………………………………………………………………………………………….. 45 Binary inputs IL-NT — default ……………………………………………………………………………………………… 45 Binary inputs – list …………………………………………………………………………………………………………….. 45 Binary outputs IL-NT MRS16 — default ………………………………………………………………………………… 48 Binary outputs — list ……………………………………………………………………………………………………………. 48 Analog inputs……………………………………………………………………………………………………………………. 57 Analog outputs …………………………………………………………………………………………………………………. 58

Setpoints ……………………………………………………………………………………………………………………………… 59 Password …………………………………………………………………………………………………………………………. 59 Basic Settings…………………………………………………………………………………………………………………… 59 Comms Settings ……………………………………………………………………………………………………………….. 63 Engine Params …………………………………………………………………………………………………………………. 66 Engine Protect ………………………………………………………………………………………………………………….. 70 Gener Protect …………………………………………………………………………………………………………………… 71 *Extension I/O ………………………………………………………………………………………………………………….. 74 Date/Time ………………………………………………………………………………………………………………………… 75

Page 3: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 3 IL-NT-MRS-2.0-Reference Guide.pdf

Sensors spec……………………………………………………………………………………………………………………. 76 SMS/E-Mail ……………………………………………………………………………………………………………………… 76 Alternate Cfg ……………………………………………………………………………………………………………………. 78 *EarthFaultProt …………………………………………………………………………………………………………………. 79

*ECU-controlled engine support ……………………………………………………………………………………………… 81 Identifying configured ECU ………………………………………………………………………………………………… 82 Values read from ECU ………………………………………………………………………………………………………. 83 Diagnostic messages read from ECU ………………………………………………………………………………….. 83 Analog inputs……………………………………………………………………………………………………………………. 83 Connection description ………………………………………………………………………………………………………. 84

Sensor Specification ……………………………………………………………………………………………………………… 87 Background of the sensor calibration …………………………………………………………………………………… 87 Default sensor curves ……………………………………………………………………………………………………….. 87

Function Description ……………………………………………………………………………………………………………… 88 OFF Mode ……………………………………………………………………………………………………………………….. 88 MAN Mode ………………………………………………………………………………………………………………………. 88 AUT mode ……………………………………………………………………………………………………………………….. 89

Alarm Management ………………………………………………………………………………………………………………. 90 Sensor Fail (FLS) …………………………………………………………………………………………………………….. 90 Warning (WRN) ………………………………………………………………………………………………………………… 90 Breaker open and cooling (BOC) ………………………………………………………………………………………… 90 Shut down (SD) ………………………………………………………………………………………………………………… 91 Voltage phase sequence detection ……………………………………………………………………………………… 91

Gen-set Operation States ………………………………………………………………………………………………………. 93 List of possible events ……………………………………………………………………………………………………….. 95 History file ………………………………………………………………………………………………………………………… 96

Init Screens ………………………………………………………………………………………………………………………….. 99 Customer Logo screen ………………………………………………………………………………………………………. 99 Firmware Init screen ………………………………………………………………………………………………………….. 99 Language screen ……………………………………………………………………………………………………………… 99 User Interface screen ………………………………………………………………………………………………………… 99

Remote Control and Data Logging ………………………………………………………………………………………… 100 Direct connection to the PC ……………………………………………………………………………………………… 100 PC software — LiteEdit ……………………………………………………………………………………………………… 101 Modbus protocol ……………………………………………………………………………………………………………… 101

Remote Communication ………………………………………………………………………………………………………. 107 Internet connection ………………………………………………………………………………………………………….. 107 SNMP connection …………………………………………………………………………………………………………… 107 Recommended ISDN modem …………………………………………………………………………………………… 107 Recommended GSM modem ……………………………………………………………………………………………. 107 Mobile SIM card setting ……………………………………………………………………………………………………. 108 Short guide how to start using IL-NT-GPRS module ……………………………………………………………. 108

IL-NT-RD Remote display software ……………………………………………………………………………………….. 111 General description …………………………………………………………………………………………………………. 111 Warning ! ……………………………………………………………………………………………………………………….. 111 IL-NT-RD Software installation ………………………………………………………………………………………….. 111 IL-NT-RD Wiring ……………………………………………………………………………………………………………… 112 Function description ………………………………………………………………………………………………………… 115 SW compatibility ……………………………………………………………………………………………………………… 115

Maintenance ………………………………………………………………………………………………………………………. 116 Backup battery replacement …………………………………………………………………………………………….. 116

Technical Data ……………………………………………………………………………………………………………………. 118 Inputs/Outputs overview …………………………………………………………………………………………………… 118 Generator protections ……………………………………………………………………………………………………… 118 Language support …………………………………………………………………………………………………………… 119 Power supply ………………………………………………………………………………………………………………….. 119 Operating conditions ……………………………………………………………………………………………………….. 119 #Low Temperature modification ………………………………………………………………………………………… 119

Dimensions and weight ……………………………………………………………………………………………………. 120 Generator ………………………………………………………………………………………………………………………. 120

Page 4: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 4 IL-NT-MRS-2.0-Reference Guide.pdf

Binary inputs and outputs …………………………………………………………………………………………………. 120 Analog inputs………………………………………………………………………………………………………………….. 121 Speed pick-up input ………………………………………………………………………………………………………… 121 D+ Terminal ……………………………………………………………………………………………………………………. 121 *CAN bus interface ………………………………………………………………………………………………………….. 121 IL-NT RS232 interface (optional card) ……………………………………………………………………………….. 122 IL-NT RS232-485 interface (optional card) …………………………………………………………………………. 122 IL-NT S-USB interface (optional card) ……………………………………………………………………………….. 122 IL-NT AOUT8 interface (optional card) ………………………………………………………………………………. 123 IL-NT-EFCPM interface (optional card) ……………………………………………………………………………… 123 IC-NT CT-BIO7 interface (optional card) ……………………………………………………………………………. 123 IL-NT BIO8 interface (optional card) ………………………………………………………………………………….. 124 IGS-PTM ……………………………………………………………………………………………………………………….. 124 IGL-RA15 ………………………………………………………………………………………………………………………. 124 IG-IB ……………………………………………………………………………………………………………………………… 125

Page 5: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 5 IL-NT-MRS-2.0-Reference Guide.pdf

General Guidelines

What describes this manual?

IMPORTANT SAFETY INSTRUCTIONS

SAVE THESE INSTRUCTION — This manual contains important instructions for IL-NT

controllers family that shall be followed during installation and maintenance of the Inteli NT genset controllers. It is intended for use by gen-set control panel builders and for everybody who is concerned with installation, operation and maintenance of the gen-set. This manual describes „MRS 10/11/15/16“ software, which is designed for single set applications. What is the purpose of the manual? This manual provides general information how to install and operate InteliLite-NT MRS controller. This manual is dedicated for

Operators of gen-sets Gen-set control panel builders For everybody who is concerned with installation, operation and maintenance of the gen-set

!! Warnings !!

Remote control

InteliLiteNT

controller can be remotely controlled. In case of the work on the gen-set check, that nobody can remotely start the engine. To be sure:

Disconnect remote control via RS232 line Disconnect input REM START/STOP

or Disconnect output STARTER and outputs GCB CLOSE/OPEN

Because of large variety of InteliLite

NT parameters settings, it is not possible to describe any

combination. Some of InteliLiteNT

functions are subject of changes depend on SW version. The data in this manual only describes the product and are not warranty of performance or characteristic.

InteliLite controller SW and HW versions compatibility

Be aware that IL-NT SW version 1.2.1 and older is not possible to use with IL-NT HW version 1.3 and newer!!! Software IL-NT 1.3 is compatible with IL-NT hardware version 1.3 and older.

Symbols

Symbols used in this manual:

Grounding point symbol

AC voltage symbol

DC voltage symbol

Page 6: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 6 IL-NT-MRS-2.0-Reference Guide.pdf

Text

PAGE (Capital letters in the frame) buttons on the front panel

Break Return (Italic) set points Generator protections (Bold) Set point group REMOTE START/STOP (Capital letters) binary inputs and outputs *Something (Symbol * before text) valid only for IL-NT MRS15/16 ^Something (Symbol ^ before text) valid only for IL-NT MRS11/16

Note: ComAp believes that all information provided herein is correct and reliable and reserves the right to update at any time. ComAp does not assume any responsibility for its use unless otherwise expressly undertaken.

Note:

SW and HW must be compatible (e.g. IL-NT-MRS10 firmware and IL-NT MRS10 HW) otherwise the function wil be disabled. If wrong software is downloaded, message HARDWARE INCOMPATIBLE appears on controller screen. In this case download correct software and use Boot jumper programming – close Boot jumper and follow instructions in LiteEdit or follow video guide “Boot Jumper Programming“ at http://www.comap.cz/support/training/training-videos/.

!!! CAUTION !!!

Dangerous voltage

In no case touch the terminals for voltage and current measurement! Always connect grounding terminals! In any case do not disconnect InteliLite

NT CT terminals !

Adjust set points

All parameters are preadjusted to their typical values. But the set points in the “Basic Settings” settings group !!must!! be adjusted before the first startup of the gen-set.

!!! WRONG ADJUSTMENT OF BASIC PARAMETERS CAN DESTROY THE GEN-SET !!!

The following instructions are for qualified personnel only. To avoid personal injury do

not perform any action not specified in this User guide !!!

Page 7: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 7 IL-NT-MRS-2.0-Reference Guide.pdf

General Description

Description of the controller system (with all options)

InteliLiteNT

-MRS is a comprehensive controller for single generating sets. IL-NT MRS 15/16 features extended support of electronic engines and extension modules. InteliLite

NT controllers are equipped with a powerful graphic display showing icons, symbols and bar-

graphs for intuitive operation, which sets, together with high functionality, new standards in Gen-set controls. InteliLite automatically starts the Gen-set, closes the Gen-set C.B. when all conditions are met, then stops the engine on external signal or by pressing push buttons. InteliLite

NT provides gas engine support without ventilation.

The key feature of InteliLiteNT

is its easy-to-use operation and installation. Predefined configurations for typical applications are available as well as user-defined configurations for special applications.

What is in the package?

*Remote display for IL-NT controllers uses standard IL-NT controller with Remote display software Hint: For detailed information about extension modules used with IL-NT controllers, please see the IL-NT-Accessory Modules manual.

IL-NT RS232 Communication plug-in card

IL-NT RS232 is optional plug-in card to enable InteliLite

NT for RS232 communication. This is required

for computer or Modbus connectin. Card inserts into expansion slot back on the controller. To insert the module, you must open the cover first (use screwdriver to open) and then insert the module into slot. Once you have insert it, the module will snap under plastic teeth. It is supposed to be

Accessories Description Optional / Obligatory

IL-NT MRS InteliLiteNT

central unit Obligatory

IL-NT-RS232 RS232 communication card Optional for MRS

IL-NT-RS232-485 RS232 and RS485 communication card Optional for MRS

IL-NT-S-USB Service USB communication card Optional for MRS

IB-Lite Ethernet communication card Optional for MRS

IL-NT-GPRS GSM/GPRS modem card Optional for MRS

IL-NT-AOUT8 Gauge driver plug-in card Optional for MRS

IL-NT-BIO8 Configurable I/O plug-in card Optional for MRS

IC-NT-CT-BIO7 Configurable I/O plug-in card with earth fault current measurement

Optional for MRS 15/16

IL-NT-EFCPM Earth fault current protection module Optional for MRS 15/16

**IL-NT RD Remote display software Optional for MRS

IGL-RA15 Remote annunciator Optional for MRS 15/16

IG-IOM/PTM I/O extension module Optional for MRS 15/16

IG-IB Internet communication bridge Optional for MRS

AT-LINK-CONV Service programming RS232 interface Optional for MRS

AT-LINK-CABLE Serial RS232 communication cable 1,8m Optional for MRS

Page 8: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 8 IL-NT-MRS-2.0-Reference Guide.pdf

installed permanently. Should you need to remove it, the safest way is to remove whole back cover and than remove module manually. How to install RS232 communication module:

1. Insert a screwdriver into the slot of the cover.

2. Move the screwdriver to set apart the small cover. Be careful!

3. Remove the small cover.

Page 9: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 9 IL-NT-MRS-2.0-Reference Guide.pdf

4. Break apart the small cover into two pieces. Do not throw away the smaller part!

5. Take RS 232 communication module.

Page 10: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 10 IL-NT-MRS-2.0-Reference Guide.pdf

6. Plug RS 232 communication module into the slot of the controller. 7. Put back the small cover.

Hint: When you insert RS 232 communication module, the boot jumper is hidden. For that reason we recommend to use RS 232 communication module with the boot jumper placed on it. See pictures below:

RS 232 communication module with the boot jumper.

Page 11: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 11 IL-NT-MRS-2.0-Reference Guide.pdf

Hint: Boot jumper programming – In case of interrupted programming or other software failure is possible to use the boot jumper programing to restore controller to working order. Connect controller to PC, run LiteEdit and wait until connection bar at bottom turns red. Than run programming process via menu Controller -> Programming and cloning – Programming. Select correct firmware and confirm dialog. Than follow instructions in LiteEdit. Or follow video guide “Boot Jumper Programming“ at http://www.comap.cz/support/training/training-videos/. — Please see chapter IL-NT RS232 interface (optional card) for technical details.

IL-NT RS232-485 Communication plug-in card

IL-NT RS232-485 is optional plug-in card to enable InteliLite

NT the RS232 and RS485 communication.

This is required for computer or Modbus connection. Card inserts into expansion slot back on the controller. The IL-NT RS232-485 is a dual port module with RS232 and RS485 interfaces at independent COM channels. The RS232 is connected to COM1 and RS485 to COM2. To insert the module, please follow the instructions for IL-NT RS232 module, procedure is analogous. You must open the cover first (use screwdriver to open) and then insert the module into slot. Once you have insert it, the module will snap under plastic teeth. It is supposed to be installed permanently. Should you need to remove it, the safest way is to remove whole back cover and than remove module manually.

Hint: — Boot jumper programming – In case of interrupted programming or other software failure is possible to use the boot jumper programing to restore controller to working order. Connect controller to PC, run LiteEdit and wait until connection bar at bottom turns red. Than run programming process via menu Controller -> Programming and cloning – Programming. Select correct firmware and confirm dialog. Than follow instructions in LiteEdit. Or follow video guide “Boot Jumper Programming“ at http://www.comap.cz/support/training/training-videos/. — Please see chapter IL-NT RS232-485 interface (optional card) for technical details.

RS485 RS232

Boot jumper RS485 Terminator jumper

Page 12: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 12 IL-NT-MRS-2.0-Reference Guide.pdf

IL-NT S-USB Service USB communication plug-in card

IL-NT S-USB is optional plug-in card to enable InteliLite

NT for communication via USB port. This is

required for computer or Modbus connecting. Card inserts into expansion slot back on the controller. To insert the module, you must open the cover first (use screwdriver to open) and then insert the module into slot. Once you have inserted it, part of the module will remain over plastic box. It is supposed to be used as a service tool. When you need to remove it, grab module in cutouts and pull it up manually.

Hint:

— Use the shielded USB A-B cable with this module! Recommended is ComAp cable – Order code: “USB-LINK CABLE 1.8M”.

— Please see chapter IL-NT S-USB interface (optional card) for technical details. Hint: Boot jumper programming – In case of interrupted programming or other software failure is possible to use the boot jumper programing to restore controller to working order. Connect controller to PC, run LiteEdit and wait until connection bar at bottom turns red. Than run programming process via menu Controller -> Programming and cloning – Programming. Select correct firmware and confirm dialog. Than follow instructions in LiteEdit. Or follow video guide “Boot Jumper Programming“ at http://www.comap.cz/support/training/training-videos/.

IB-Lite Ethernet communication plug-in card

IB-Lite is a plug-in card with Ethernet 10/100 Mbit interface in RJ45 connector. The card is internally connected to both COM1 and COM2 serial channels and provides an interface for connecting a PC with LiteEdit or InteliMonitor through ethernet/internet network, for sending active e-mails and for integration of the controller into a building management (Modbus TCP protocol). This card also enables to monitor and control the genset over web browser from any location with internet access using appropriate security measures. Card inserts into expansion slot back on the controller. To insert the module, please follow the instructions for IL-NT RS232 module, procedure is analogous.

Page 13: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 13 IL-NT-MRS-2.0-Reference Guide.pdf

Use Ethernet UTP cable with RJ45 connector for connection of the module into your ethernet network. The module can be also connected directly to a PC using cross-wired UTP cable.

Hint:

— Modbus TCP protocol using IB-Lite communication module requires setting COM1 Mode = DIRECT and COM2 Mode = MODBUS.

— Connection to LiteEdit via IP address is not possible if AirGate function is enabled. In this case use Airgate connection. If you require connection using IP address, kindly disable setpoint “Airgate [ENABLE, DISABLE]”.

— For details see newest version of IB-Lite Reference Guide.

IL-NT-GPRS GSM and GPRS plug-in modem

CAUTION!: Any manipulation with plug-in module shall be done with disconnected power supply to both controller and module. Power supply shall be switched on also is same time to both module and controller. Fail to follow these instructions (power supply active only in controller or only in module) can lead to module or controller failure!

Page 14: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 14 IL-NT-MRS-2.0-Reference Guide.pdf

IL-NT-GPRS is a modem plug-in module which support GPRS internet connection and also dial up connection. This module incorporates support of AirGate technology for plug and play connection via GPRS. Module is usually used for connection to remote monitoring and controlling system WebSupervisor (http://websupervisor.comap.cz) or to LiteEdit PC software. Module is capable of sending alarm SMS based on settings in SMS/Email setpoint group. Hint: Quick guide how to start using this module is in chapter Remote Communication — Short guide how to start using IL-NT-GPRS module or on ComAp webpage http://www.comap.cz/products/detail/IL-NT-GPRS.

IL-NT AOUT8 Gauge driver module

IL-NT AOUT8 is optional plug-in card. Through this card controller can drive up to 8 VDO style industrial/automotive gauges. Noncompensated gauges like 0-10V or 0-20mA are not supported. Gauge type and value are configured in LiteEdit software. Any analog value from controller may be shown in that way. To insert the module, you must open the cover first (use screwdriver to open) and then insert the module into slot. Once you have insert it, the module will snap under plastic teeth. It is supposed to be installed permanently. Should you need to remove it, the safest way is to remove whole back cover and than remove module manually. Installing IL-NT AOUT8 module is similar to installing RS 232 module. The difference is that module fits to “extension module” slot and after installing IL-NT AOUT8 you do not put back the small cover. PC Installation Suite consist a set of prepared converting curves for basic usage of PWM outputs with automotove gauges.

Page 15: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 15 IL-NT-MRS-2.0-Reference Guide.pdf

Installing IL-NT AOUT8 module is similar to installing RS 232 module. The difference is that module fits to “extension module” slot and after installing IL-NT AOUT8 you do not put back the small cover. IL-NT AOUT8 module:

Typical wiring

Hint: Please see chapter IL-NT AOUT8 interface (optional card) for technical details.

Page 16: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 16 IL-NT-MRS-2.0-Reference Guide.pdf

IL-NT BIO8 Hybrid binary input/output module

IL-NT BIO8 is optional plug-in card. Through this card controller can accommodate up to 8 binary inputs or outputs. In LiteEdit configuration is possible to easily choose if particular I/O will be binary input or output. To insert the module, you must open the cover first (use screwdriver to open) and then insert the module into slot. Once you have insert it, the module will snap under plastic teeth. It is supposed to be installed permanently. Should you need to remove it, the safest way is to remove whole back cover and than remove module manually. Installing IL-NT BIO8 module is similar to installing RS 232 module. The difference is that module fits to “extension module” slot and after installing IL-NT AOUT8 you do not put back the small cover.

Page 17: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 17 IL-NT-MRS-2.0-Reference Guide.pdf

Hint: Please see chapter IL-NT BIO8 interface (optional card) for technical details.

IL-NT-EFCPM

The IL-NT-EFCPM (Earth Fault Current Protection Module) is designed as extension unit for IL-NT controller, connected in EXTENSION MODULE slot. This unit checks any leakage of current towards earth (Earth Fault protection). To insert the module, you must open the cover first (use screwdriver to open) and then insert the module into slot. Once you have insert it, the module will snap under plastic teeth. It is supposed to be installed permanently. Should you need to remove it, the safest way is to remove whole back cover and than remove module manually. Installing IL-NT-EFCPM module is similar to installing RS 232 module. The difference is that module fits to “extension module” slot and after installing IL-NT-EFCPM you do not put back the small cover.

Hint: See more details in Earth Fault measurement or in IL-NT EFCPM interface chapter.

IC-NT CT-BIO7

Hybrid current input and binary input/output module

IC-NT CT-BIO7 is optional plug-in card. Through this card controller can accommodate one AC current (CT) measuring input and up to 7 binary inputs or outputs. In LiteEdit PC configuration tool (version 4.4 and higher) it is possible to easily choose if particular I/O will be binary input or output.

Page 18: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 18 IL-NT-MRS-2.0-Reference Guide.pdf

To insert the module, you must open the cover first (use screwdriver to open) and then insert the module into slot. Once you have inserted it, the module will snap under plastic teeth. It is supposed to be installed permanently. Should you need to remove it, the safest way is to remove whole back cover and than remove module manually. Installing IC-NT CT-BIO7 module is similar to installing RS 232 module. The difference is that module fits to “extension module” slot and after installing IC-NT CT-BIO7 you do not put back the small cover.

Hint: See more details in Earth Fault measurement or in IC-NT CT-BIO7 interface chapter.

IL-NT RD Remote display software

IL-NT RD is remote display software for a controller. Remote display provides the same control and monitoring functions as controller itself. Remote display for IL-NT controllers uses standard IL-NT controller with Remote display software. No further programing of the display is required – unit is self configurable from the main controller. It is connected with the controller via IL-NT-RS232 communication modules using RS232 line. Longer distances (up to 1200m) are possible using IL-NT-RS232-485 communication module or when RS232/RS485 converters are used. The IL-NT RD hardware type should fit to the master IL-NT. Hint: Please see the IL-NT-RD Remote display software chapter for more details.

Remote announciator IGL — RA15

The remote announciator IGL-RA15 can be connected to the IL-NT unit via CAN bus. Any of the binary outputs can be configured (using LiteEdit software) to each LED diode on the RA15. The module can be also enabled or disabled using LiteEdit software. If IGL-RA15 remote announciator is not communicating with a controller via CAN bus, it activates a warning. See the documentation of RA15 for the technical and function description. Hint:

For connection details please refer to chapter Extension modules (CAN bus) connection. Please see the documentation of RA15 for the technical and function description.

Page 19: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 19 IL-NT-MRS-2.0-Reference Guide.pdf

165 (6,5”)

38

(1

,5”)

40

(1

,6”)~7

5 (

3,0

”)

~3

5 (

1,4

”)

180 (7,1”)

185 (7,3”)1

06

(4

,2”)

44 (1,7”)

54 (2,1”)

~2

5 (

1,0

”)

12

0 (

4,7

”)

12

5 (

4,9

”)

Cutoutfor Remote Announciator

167 x 108 mm(6,6 x 4,3 )”

IG IOM/PTM module

IG-IOM and IGS-PTM modules are I/O extension modules equipped with 8 binary inputs, 8 binary outputs, 4 analogue inputs and one analogue output. The module can be used for AMF25, MRS15, 16, 19 only.

Binary inputs and outputs are configurable the same way like inputs and outputs on iL. Analogue inputs are configurable like iL with the limitation that the binary and tristate mode

can not be used on PTM module. The protection of analogue IOM/PTM inputs is activated by overcrossing the limits, active only

when the engine is running.

IG-IOM analogue inputs are resistive (the same parameters like IL-NT) 0 -2,4 k. The module IOM is designed for especially VDO resistive sensors.

IGS-PTM analogue inputs are configurable by jumpers to ranges 0-250, 0-100mV, 0-20mA. The module can be used especially for Pt100 sensors and current sensors. The module PTM is not suitable for VDO temperature sensor.

Hint: — For connection details please refer to chapter Extension modules (CAN bus) connection. — For a description of setting IGS-PTM module with current/voltage sensors please see the Extension modules manual. — When module is not configured by LiteEdit SW, controller does not show related values and setpoints — If IGS-PTM is not communicating to a controller, ShutDown protection on controller is activated.

Page 20: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 20 IL-NT-MRS-2.0-Reference Guide.pdf

Hint: If IGS-PTM is not communicating to a controller, ShutDown protection on controller is activated.

See the documentation of IGS-PTM for the technical and function description.

IG-IB Internet bridge

IG-IB Internet bridge enables InteliLite

NT for Ethernet/Internet communicatons. It is connected to

controlle via RS232 line. See the InteliCommunication guide for further details.

Page 21: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 21 IL-NT-MRS-2.0-Reference Guide.pdf

IL-NT Terminals

IL-NT terminals and face

Page 22: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 22 IL-NT-MRS-2.0-Reference Guide.pdf

Installation

Mounting

The controller is to be mounted onto the switchboard door. Requested cutout size is 175x115mm. Use the screw holders delivered with the controller to fix the controller into the door as described on pictures below.

Page 23: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 23 IL-NT-MRS-2.0-Reference Guide.pdf

Recommended Wiring

MRS – Wiring Diagram

Hint: It is possible to start Volvo and Scania engines via CAN bus. See Engines started via CAN bus

Page 24: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 24 IL-NT-MRS-2.0-Reference Guide.pdf

Getting Started

How to install

During the configuration of controller or setpoints changes is required a password to the controller. The default password from ComAp is “0”.

General

To ensure proper function:

Use grounding terminals. Wiring for binary inputs and analog inputs must not be run with power cables. Analog and binary inputs should use shielded cables, especially when length >3m. Hint: Beware of heavy harnesses hanging down from controller terminals. Harnesses must be tightened to panel doors or other suitable place as close to controller as possible.

Wiring

Tightening torque, allowable wire size and type, for the Field-Wiring Terminals: Based on terminal type: PA256:

Specified tightening torque 0,5Nm (4,4 In-lb) 2EDGK:

Specified tightening torque 0,4Nm (3,5 In-lb)

For field type terminals: Use only diameter 2,0-0,5mm (12-26AWG) conductor, rated for 75°C minimum.

For Generator Voltage terminals Use only diameter 2,0-0,5mm (12-26AWG) conductor, rated for 90°C minimum.

Use copper conductors only.

Grounding

The shortest possible piece of wire should be used for controller grounding. Use cable min. 2,5mm

2

Brass M4x10 screw with star washer securing ring type grounding terminal shall be used. The negative “-“ battery terminal has to be properly grounded. Switchboard and engine has to be grounded in common spot. Use as short as possible cable to the grounding point.

Power supply

To ensure proper function: Use min. power supply cable of 1.5mm

2

Page 25: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 25 IL-NT-MRS-2.0-Reference Guide.pdf

Maximum continuous DC power supply voltage is 36VDC. Maximum allowable power supply voltage is 39VDC. The InteliLite’s power supply terminals are protected against large pulse power disturbances. When there is a potential risk of the controller being subjected to conditions outside its capabilities, an outside protection devise should be used. It is necessary to ensure that potencial difference between generator current COM terminal and battery “-” terminal is maximally ± 2V. Therefore is strongly recommended to interconnect these two terminals together. Hint: The InteliLite

NT controller should be grounded properly in order to protect against lighting strikes!!

The maximum allowable current through the controller’s negative terminal is 4A (this is dependent on binary output load). For the connections with 12VDC power supply, the InteliLite

NT includes internal capacitors that allow

the controller to continue operation during cranking if the battery voltage dip occurs. If the voltage before dip is 10V, after 100ms the voltage recovers to 7 V, the controller continues operating. During this voltage dip the controller screen backlight can turn off and on but the controller keeps operating. It is possible to further support the controller by connecting the external capacitor and separating diode or I-LBA module.

The capacitor size depends on required time. It shall be approximately thousands of microFarads. The capacitor size should be 5 000 microFarad to withstand 150ms voltage dip under following conditions: Voltage before dip is 12V, after 150ms the voltage recovers to min. allowed voltage, i.e. 8V Hint: Before the battery is discharged the message «Low BackupBatt» appears. Or by connecting special I-LBA Low Battery Adaptor module:

The I-LBA module ensures min. 350ms voltage dip under following conditions: RS232 and other plug-in module is connected. Voltage before dip is 12V and after 350ms the voltage recovers to min. allowed voltage 5V. The I-LBA enables controller operation from 5VDC (for 10 to 30 sec). The wiring resistance from battery should be up to 0.1 Ohm for I-LBA proper function. Hint: I-LBA may not eliminate voltage drop when used with low temperature (-40°C) version of controller and display heating element is on (below 5°C). Current drain of heating element exhausts LBA capacitors very fast .

Page 26: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 26 IL-NT-MRS-2.0-Reference Guide.pdf

Power supply fusing

A one-amp fuse should be connected in-line with the battery positive terminal to the controller and modules. These items should never be connected directly to the starting battery. Fuse value and type depends on number of connected devices and wire length. Recommended fuse (not fast) type — T1A. Not fast due to internal capacitors charging during power up.

Binary output protections

Hint Do not connect binary outputs directly to DC relays without protection diodes, even if they are not connected directly to controller outputs.

Page 27: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 27 IL-NT-MRS-2.0-Reference Guide.pdf

Magnetic pick-up

To ensure proper function: Use a shielded cable

Be aware of interference signal from Speed governor when one speed pick-up is used. If engine will not start:

— Check ground connection from pick-up to controllers, eventually disconnect ground connection to one of them

— Galvanically separate InteliLite RPM input using ComAp separation transformer RPM-ISO (1:1)

— Use separate pick-up for Speed governor and InteliLiteNT

Hint: In some cases the controller will measure a RPM value even though the gen-set is not running: RPM is measured from the generator voltage (Gear teeth = 0) IL-NT is measuring some voltage value on input terminals due to open fusing. If RPM > 0 the controller will be put into a Not ready state and the engine will not be allowed to start.

Current measurement

The number of CT’s is automaticaly selected based on selected value of setpoint ConnectionType [3Ph4Wire / 3Ph3Wire / Split Ph / Mono Ph]. Hint:

— Further informations about measurement limits are at setpoint CT Ratio [/5A] description in chapter Setpoints — Basic Settings.

— Generator currents and power measurement is suppressed if current level is bellow <1% of CT range.

To ensure proper function: Use cables of 2,5mm

2

Use transformers to 5A Connect CT according to following drawings:

+

Battery

iL

GACSpeed Control Unit

ESD 5500

MAGNETICPICK-UP

CD

a

b

Signal

Signal

+

+-

PowerSupply

PowerSupply

Page 28: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 28 IL-NT-MRS-2.0-Reference Guide.pdf

Three phase application:

It is necessary to ensure that potencial difference between generator current COM terminal and battery “-” terminal is maximally ± 2V. Therefore is strongly recommended to interconnect these two terminals together.

Single phase application:

Connect CT according to following drawings. Terminals L2l and L3l are opened.

CT location

There are two options of CT location. a) Load b) Gen-Set

New setpoint CT Location for AMF20 and AMF25 controllers is placed in group Basic Setting. According to the connection it is possible to set CT location: Load or Gen-Set. When CT Location is set to Load and MCB is closed the controller will display on Mains screen current value. The statistics now contain Mains kWh, Mains kVArh, Genset kWh, Genset kVArh.

Hint: The protections related to the current measurement are active only when Genset is running.

Page 29: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 29 IL-NT-MRS-2.0-Reference Guide.pdf

Earth Fault measurement (module)

The Earth Fault protection is done by extension module IL-NT EFCPM or IC-NT CT-BIO7.

Technical characteristics

— Input current range up to 8,32 mA (IL-NT-EFCPM) — Input current range up to 5 A (IC-NT CT-BIO7) — Measurement range from 0,03 to 5A — Operating frequency 50 or 60 Hz — Tripping current software programmable from 0,03 to 5 A or DISABLED — Tripping delay software programmable from 0,03 to 5 seconds — Included two binary outputs and one binary input (in case of IL-NT-EFCPM) — Included seven binary inputs or seven binary outputs (in case of IL-NT-CT-BIO7) Hint:

For more technical details see IL-NT-EFCPM interface or IC-NT CT-BIO7 interface.

Operating principle

The IL-NT-EFCPM uses toroidal transformer connected to the earth wire (Figure 2). When the measured current exceeds the set value, this indicates that part of the current is dispersed to earth and after the set Earth Fault Del then Earth Fault Sd protection and AL EarthFault output are activated. Earth Fault protection is not active when gen-set does not run and also when EF Protection: DISABLED.

Page 30: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 30 IL-NT-MRS-2.0-Reference Guide.pdf

IL-NT-EFCPM wiring

Figure 2: Wiring IL-NT-EFCPM

IL-NT-EFCPM

Input Description

0 Input range up to 8,32 mA (earth fault protection input)

1 Common (earth fault protection input)

2 NC

3 NC

4 NC

5 NC

6 Binary input 1

7 Binary output 1

8 Binary output 2

9 Power supply – Minus

Page 31: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 31 IL-NT-MRS-2.0-Reference Guide.pdf

IC-NT CT-BIO7 wiring

Voltage measurement and generator connection types

There are 4 voltage measurement ConnectionType (setpoint ConnectionType [3Ph4Wire / 3Ph3Wire / Split Ph / Mono Ph]) options, every type matches to corresponding generator connection type. The generator protections are evaluated from different voltages based on ConnectionType setting:

3W 4Ph – Ph-Ph voltage

3W 3Ph – Ph-Ph voltage

Split Ph – Ph-N voltage

Mono Ph – Ph-N voltage

Page 32: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 32 IL-NT-MRS-2.0-Reference Guide.pdf

ConnectionType: 3 Phase 4 Wires

Three phase “wye” measurement – 3PY 3 Phase 4 Wires — STAR Connection

ConnectionType: 3 Phase 3 Wires

Three phase “delta” measurement – 3PD 3 Phase 3 Wires

– DELTA Connection – HI-LEG (WILD-LEG, RED-LEG) DELTA Connection

Page 33: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 33 IL-NT-MRS-2.0-Reference Guide.pdf

Hint: Only L1, L2 and L3 wires should be connected. In case of HI-LEG (WILD-LEG, RED-LEG) DELTA connection the N (neutral) wire (in the diagram connected between T6 and T9) has to be disconnected. No separation transformers for three wires voltage connection (without N) are needed.

ConnectionType: Split Phase

Single-phase measurement – 1PH Split Phase – DOUBLE DELTA Connection – ZIG ZAG (DOG LEG) Connection

Page 34: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 34 IL-NT-MRS-2.0-Reference Guide.pdf

ConnectionType: Mono Phase

Single-phase measurement – 1PH Hint: There has been a change in wiring of monophase at voltage terminals between firmwares IL-NT1.4 and IL-NT1.5! Picture above shows connection for IL-NT 1.5. Wiring for older firmwares is described in older IL-NT manuals, line L1 was connected to all three terminals L1,L2 and L3. Mono Phase – MONOPHASE Connection

Hint: Switchboard lighting strike protection according standard regulation is expected for all 4 connection types!!!

Hint: Phase sequence check is not possible to evaluate under voltage 50V what causes that if measured voltage 50V is within the allowed range, controller will not allow to close the GCB, even if relevant LED diod on front panel of IL-NT lits.

Analog inputs

Three analog inputs are available on the IL-NT. First analog input is fixed to be used for engine Oil Pressure.

Configuration

Each analog input can be configured by LiteEdit software following way. (First analog input is dedicated to engine Oil pressure).

Page 35: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 35 IL-NT-MRS-2.0-Reference Guide.pdf

Analog input item LiteEdit Possibility

Type Type Not used Alarm Monitoring

Analog input isn’t used Analog is measured and used for protection Analog is only measured and not used for protection

Analog input name Name Up to 14 ASCII characters

Config of input Config Analog Binary (not supp. by PTM) Tri-state (not supp. by PTM)

Analog measuring in specified range. Binary: open/close — threshold

750 . Three-state: open/close —

threshold 750 ,

Failure <10 or > 2400

Physical dimension Dim bar,%,°C, … Up to 4 ASCII characters (Valid only for analog inputs)

Polarity Contact type

NC NO

Valid only for binary and three-state inputs Valid only for binary and three-state inputs

Protection direction Protection Over Overstep. Sensor Fail does not activate protection.

Over+Fls Overstep and Sensor Fail activates protection.

Under Under step. Sensor Fail does not activate protection.

Under+Fls Under step and Sensor Fail activates protection.

Sensor characteristic Sensor Predefined user curves User changeable and configurable

Resolution Resolution 0 – 0,00001 Sensor resolution (Valid only for analog inputs)

Each Analog input has separate set points for two level alarm setting. Analog input alarm levels and delay adjust in Extension I/O and Engine Protect group. Hint: Description of Sensor fail evaluation can be found in chapter Alarm Management, article Sensor Fail (FLS).

Connection of IL-NT analog inputs

AI1

AI2

3 x RESISTIVESENSOR

AI3

CO

M

-P

OW

ER

Standard connection of three resistive sensors to analog inputs.

Page 36: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 36 IL-NT-MRS-2.0-Reference Guide.pdf

2x

470

CO

M-

PO

WE

R

AI1

AI2

AI3

Mixed connection of InteliLite analog inputs: AI1 – binary input AI2 – three state input AI3 – analog resistive input

Hint: Description of analog inputs with COM terminal and 4 pins relates to units with HW version 1.3. Older HW versions do not have “COM” terminal and use only 3 pins AI1, AI2 and AI3.

Wiring

Wiring diagrams of analog inputs for IL-NT HW 1.3:

WIRING OF ANALOG INPUTS-GROUNDED SENSORS

WIRING OF ANALOG INPUTS-ISOLATED SENSORS

Wiring diagrams of analog inputs for IL-NT HW 1.1 and older:

Page 37: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 37 IL-NT-MRS-2.0-Reference Guide.pdf

Analog inputs are designed for resistive sensors with resistance in range of 0 to 2,4k. To ensure a proper function use shielded cables, especially for length over >3m. COM terminal is dedicated to measure ground voltage potential difference between engine and controller.

As binary input

Open, close state are detected, threshold level is 750 .

Page 38: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 38 IL-NT-MRS-2.0-Reference Guide.pdf

As three state input

Open, close and failure state are detected. Threshold level is 750 , failure is detected when circuit

resistance is <10 or > 2400 . Hint: Protections on binary and three state inputs are following: IL-NT: AI1 Shutdown IG-IOM: AI1 Shutdown AI2 Shutdown AI2 Shutdown AI3 Warning AI3 Shutdown AI4 Shutdown

Unused analog inputs

Configure Type = Not used

Example of analog input configuration

Configure Engine Temp input for measuring in °C, VDO 40-120°C sensor, range -16 to 120 °C. Alarm protection level set to 90 °C, shut down level 110 °C. Start LiteEdit and select – Controller — Configuration – Modify – Engine Temp. Set configuration for Engine temp analog input: Type: Selection between Not used and Alarm “Not used” – analog input isn’t used ”Alarm” – analog input is used Set to: Alarm Name: Name of the analog input. Maximally 14 letters. Set to: Engine Temp Config: Selection between Analog, Binary Tri-state input. “Analog” – resistor sensor is connected to Analog input. “Binary” – open/close contact is connected between Analog input and COM terminal of Analog inputs. Analog input detects only open/close state. “Tri-state” – open/close contact is connected parallel to one of two serial resistors between Analog input and COM terminal of Analog inputs. Set to: Analog Alarm Properties: Selection between different direction of protection – Under Limit, Over Limit or combination with Fail sensor. “Engine running only” – check this setting if you wish to active protection on analog input only while engine is running, not, when it stops. Set to: Over Limit Contact type: selection of polarity only when analog input is configured as Binary or Tri-state. When is analog input configured as analog this setting has no sense. „NC“ – polarity of binary or tri-state input „NO“ – polarity of binary or tri-state input Sensor: selection of sensor characteristic „Unused input“ — when Analog input is not used. On the InteliLite screen is displayed „####“ value, no alarm is detected. Default user curves predefined on AI1 – AI3: „VDO 10 Bar“ – VDO pressure sensor „VDO 40-120 °C“ – VDO temperature sensor „VDO level %“ – VDO level sensor Set to: VDO 40-120 °C When you choose the predefined or user curve the Sensor Name, Dim and Resolution are setted automaticly according to curve, user modification is possible.

Page 39: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 39 IL-NT-MRS-2.0-Reference Guide.pdf

Sensor Name: Name of used sensor, up to 14 letters can be used. Dim: Name of measured unit (Bar, °C, %, …), up to 4 letters can be used. Resolution: setting of resolution of measured value.

„0“ — e.g. 360 kPa, 100%, 50 C „1“ – e.g. 360.0 kPa „2“- e.g. 360.00 kPa „3“ — e.g. 360.000 kPa Set to: 1 When Analog input configuration is finished set the setpoints AI1 Wrn, AI1 Sd, AI1 Del in Engine Protect group. Each Analog input has separate triplet of setpoints: Wrn level, Sd level, AI del. Names of these setpoints are fix defined Number of decimal points of Wrn level and Sd level is the same as the configured number of decimal points of measured value.

Analog input extension measurement (0 — 70V, 4 — 20mA)

On each analog input there is a possibility to connect voltage or current output sensor instead of resistive one. Recommended wiring connection for these measurements are bellow. Voltage output sensor — connection

Current output sensor – connection

Page 40: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 40 IL-NT-MRS-2.0-Reference Guide.pdf

Table with recommended values

Analog input R1 R2 Curve

0 — 10V 150Ω [1%,0,5W] 100Ω [1%,0,5W] AI 0-10V.CRV

0 — 30V 680Ω [5%,2W] 100Ω [1%,0,5W] AI 0-30V.CRV

0 — 65V 1500Ω [5%,3W] 100Ω [1%,0,5W] AI 0-65V.CRV

4 – 20mA R = 160Ω [1%,0,5W] AI 4-20mA.CRV Hint: Please note that external resistors disconnection, connection incorrect resistors or input voltage value during operation may cause an analog input destruction. Practical example: VDO pressure sensor 0 – 6bar with linear voltage output 0 – 10V Conversion table

Vout [V] 0 1 2 3 4 5 6 7 8 9 10

P [bar] 0 0,6 1,2 1,8 2,4 3 3,6 4,2 4,8 5,4 6 Modify one of analog input in LiteEdit configuration and load curve AI 0-10V.CRV Than you can change resolution and measured value name witch is default displayed at V (volts). For example if you have connected pressure sensor and his output voltage is 5V for pressure 3bar you can change value ‘V’ in column “Dim:” to ‘Bar’ and by sensor specification adjust all corresponding values in this column. In this case you can change the value at row 6. from 5 to 3.

When you finish with adjusting the values click OK and Write to controller.

Page 41: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 41 IL-NT-MRS-2.0-Reference Guide.pdf

+

Battery

iL

4k7

+ —

PowerSupply

Binary inputs and outputs

Recommended CAN/RS485 connection

CAN bus connection

The bus has to be terminated by 120 Ohm resistors at both ends. External units can be connected on the CAN bus line in any order, but keeping line arrangement (no tails, no star) is necessary. Standard maximum bus length is 200m Shielded cable has to be used, shielding has to be connected to PE on one side (controller side).

A) For shorter distances (all network components within one room) – picture 1 Interconnect H and L; shielding connect to PE on controller side B) For longer distances (connection between rooms within one building) – picture 2 Interconnect H, L, COM; shielding connect to PE in one point C) In case of surge hazard (connection out of building in case of storm etc.) – picture 3 We recommend to use following protections:

+

Battery

iL

LOAD

+ —

PowerSupply

Page 42: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 42 IL-NT-MRS-2.0-Reference Guide.pdf

— Phoenix Contact (http://www.phoenixcontact.com): PT 5-HF-12DC-ST with PT2x2-BE (base element) — Saltek (http://www.saltek.cz): DM-012/2 R DJ

Recommended data cables: BELDEN (http://www.belden.com) A) For shorter distances: 3105A Paired — EIA Industrial RS-485 PLTC/CM (1×2 conductors) B) For longer distances: 3106A Paired — EIA Industrial RS-485 PLTC/CM (1×2+1 conductors) C) In case of surge hazard: 3106A Paired — EIA Industrial RS-485 PLTC/CM (1×2+1 conductors)

RS485 connection

The line has to be terminated by 120 Ohm resistors at both ends. External units can be connected on the RS485 line in any order, but keeping line arrangement (no tails, no star) is necessary. Standard maximum link length is 1000m. Shielded cable has to be used, shielding has to be connected to PE on one side (controller side).

A) For shorter distances (all network components within one room) – picture 1 interconnect A and B; shielding connect to PE on controller side B) For longer distances (connection between rooms within one building) – picture 2 interconnect A, B, COM; shielding connect to PE in one point C) In case of surge hazard (connection out of building in case of storm etc.) – picture 3 We recommend to use following protections:

— Phoenix Contact (http://www.phoenixcontact.com): PT 5-HF-5DC-ST with PT2x2-BE (base element) (or MT-RS485-TTL) — Saltek (http://www.saltek.cz): DM-006/2 R DJ

Recommended data cables: BELDEN (http://www.belden.com) A) For shorter distances: 3105A Paired — EIA Industrial RS-485 PLTC/CM (1×2 conductors) B) For longer distances: 3106A Paired — EIA Industrial RS-485 PLTC/CM (1×2+1 conductors) C) In case of surge hazard: 3106A Paired — EIA Industrial RS-485 PLTC/CM (1×2+1 conductors) Picture 1 — shorter distances (all network components within one room)

Page 43: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 43 IL-NT-MRS-2.0-Reference Guide.pdf

Picture 2 — longer distances (connection between rooms within one building)

CA

N1 H

COML

CA

N2

120

1.iS-CU

Addr.: 1Addr.: 1

CA

N1

CA

N1

8.iS-AIN

Addr.: 8

7.iS-BINAddr.: in13

out7

CA

N1

CA

N1

1.iS-AIN

Addr.: 1

120

1.iS-BINAddr.: in1

out1

CA

N1

CA

N22.iS-CU

120

HCOM

L

HCOM

L

HCOM

L

HCOM

L

HCOM

L

HCOM

L

HCOM

L

Picture 3 — surge hazard (connection out of building in case of storm etc.) 120 Ω 120 Ω

PT5-HF-12DC-ST (CAN) PT5-HF-5DC-ST (RS485)

Extension modules (CAN bus) connection

CAN H

CAN L

IGL-RA15 (optional)

CAN H

CAN L

or

CA

NL

CA

NH

CO

M

IGS-PTM (optional)

CA

NL

CA

NH

CO

M

IG-IOM (optional)

59 CA

NL

CAN

H

120 ohm

EXTENSION

MODULES

H

L

120

ohm

10 ohm

15nF

COM

IL-NT

H/A L/B COM

H/A L/B COM

Page 44: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 44 IL-NT-MRS-2.0-Reference Guide.pdf

EXTENSION

MODULESCOM

CAN H

CAN L

IGL-RA15

(optional)

Engine

Electronic Control Unit

CAN H

CAN L

CAN H

CAN L

H

L

or

120

ohm

CA

NL

CA

NH

CO

M

IGS-PTM (optional)

CA

NL

CA

NH

CO

M

IG-IOM (optional)

59 CA

NL

CA

NH

120 ohm

CAN HICAN LO

120

ohm

10 ohm

15nF

COM

IL-NT

Connection rules

CAN bus line must be connected in series, from one unit to the next (no star, no cable stubs, no branches) both ends must be by the 120-ohm (internal or external) resistor terminated. Maximal CAN bus length is up to 200 meters. For CAN data cables details see chapter Technical data – Communication interface. CAN cable shielding connect to IL-NT COM terminal. IL-NT contains internal fix 120-ohm resistor and must be located on the CAN bus end. New units with HW version 1.3 have terminating resistor jumper located at CAN terminal. New IG-IOM and IGS-PTM units contain internal jumper removable 120-ohm resistor (in older IOM types are fix resistors). To be sure check resistor presence by ohmmeter. Unit with internal resistor connect to the end of CAN line. Following connections are supported (IOM, PTM, ECU order is not important).

IL- NT – IG-IOM IL- NT – IGS-PTM IL- NT – IGL-RA15 IL- NT – IG-IOM – IGL-RA15 IL- NT – IGS-PTM – IGL-RA15

It is possible to connect only one IG-IOM or IGS-PTM and one IGL-RA15 to IL-NT.

Use button in LiteEdit configuration window to activate CAN (J1939) interface with ECU.

Page 45: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 45 IL-NT-MRS-2.0-Reference Guide.pdf

Inputs and Outputs For Inputs/Outputs overview table see chapter Technical Data. Hint: Any Binary input or output can be configured to any IL-NT controller terminal or changed to different function by LiteEdit software. There is fix 1 sec delay when any binary input is configured as protection.

Binary inputs IL-NT — default

BI1 Rem Start/Stop

BI2 Access Lock

BI3 Emergency Stop

BI4 Remote OFF

BI5 Sd Override

BI6 RemControlLock

Binary inputs – list

Not Used

Binary input has no function. Use this configuration when Binary input is not connected.

Alarm

If the input is closed (or opened) selected alarm is activated. Binary Alarm configuration items

Name 14 characters ASCII string

Contact type NC Normally closed

NO Normally opened

Alarm type Warning

BOC

Shut down

Alarm active All the time Valid if checkbox “Engine running only” is not checked

Engine running only Valid if checkbox “Engine running only” is checked

GCB Feedback

Use this input for indication, whether the generator circuit breaker is open or closed. Hint: IL-NT controller can work even without breaker feedbacks, in this case do not configure the feedback to binary inputs. For more details see chapter GCB fail detection.

Page 46: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 46 IL-NT-MRS-2.0-Reference Guide.pdf

Rem Start/Stop

External request for engine run. AUT mode only.

Emergency Stop

If the input is opened, shut down is immediately activated. Input is inverted (normally closed) in default configuration. Hint: In case of controller hardware or software fail, safe stop of the engine doesn’t have to be ensured. To back-up the Emergency Stop function it is recommended to connect separate circuit for disconnection of Fuel Solenoid and Starter signals.

Sd Override

If the input is closed all alarms are disabled except the binary input EMERGENCY STOP and «engine overspeed protection».

all IL alarms are detected,

IL front panel gen-set RED LED blinks or lights,

alarm is recorded on the IL alarm list screen,

BUT gen-set remains running. Hint: Alarm Sd Override is indicated in the AlarmList if Sd Override mode active to inform the operator that the engine is not protected.

Access Lock

If the input is closed, no setpoints can be adjusted from controller front panel and gen-set mode (OFF-MAN-AUT) cannot be changed. Hint: Access lock does not protect setpoints and mode changing from LiteEdit. To avoid unqualified changes the selected setpoints can be password protected. Also the buttons Fault reset, Horn reset are not blocked at all and buttons Start and Stop in MAN mode are not blocked.

Remote OFF

If closed, iL is switched to OFF mode (there are four modes OFF-MAN-AUT-TEST). When opens controller is switched back to previous mode. Hint: This binary input should be connected to schedule timer switch, to avoid start of engine.

Remote MAN

If the input is active, MAN mode is forced to the controller independently on the position of the MODE selector.

Remote AUT

If the input is active, AUT mode is forced to the controller independently on the position of the MODE selector. If another of „remote“ inputs is active, then the REMOTE AUT input has the lowest priority.

RemControlLock

If the input is active, setpoints writing or command sending from the external terminal is disabled.

Emergency MAN

If the input is activated the controller behaves like when switched to OFF Mode. Opens all binary outputs. There is one exception – STOP SOLENOID doesn’t activate on this transition.

Page 47: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 47 IL-NT-MRS-2.0-Reference Guide.pdf

Detection of «running» engine and subsequent alarm message «Wrn Stop Fail» is blocked. The controller shows “Emerg Man” state and the engine can not be started. Generator current and power measurement is active in this mode, regardless of the actual state of the engine. After the input is open again, the controller recovers to previous state and behaves according to the actual situation . Function is active in any controller mode.

Start Button

Binary input has the same function as Start button on the InteliLite front panel. It is active in MAN

mode only.

Stop Button

Binary input has the same function as Stop button on the InteliLite front panel. It is active in MAN

Mode only. Hint: Changed function of Stop Button. After the first pressing from running state, there is a standard delay and controller change state to cooling. After holding the button down for 2 seconds controller goes to stop state. The same holds true for BI “Stop Button”.

FaultResButton

Binary input has the same function as Fault reset button on the InteliLite front panel.

HornResButton

Binary input has the same function as Horn reset button on the InteliLite front panel.

^GCB button

Binary input has the same function as GCB button on the InteliLite front panel. It is active in MAN

mode only.

Lang Selection Not configured

Language selection is done only through the controller display. Pressing ENTER and PAGE buttons

concurrently and then only PAGE button separately.

Configured on any binary input If the output is opened the first (default) language is active and if the input is closed then the second language is active. In case there is more languages available in the controller it is not possible to select any other language even through the controller display.

Alt. Config.

This BI can switch between basic controller settings in Alternate Cfg setpoint group.

Page 48: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 48 IL-NT-MRS-2.0-Reference Guide.pdf

Binary outputs IL-NT MRS16 — default

BO1 Starter

BO2 Fuel Solenoid

BO3 GCB Close/Open

BO4 Prestart

BO5 Ready To Load

BO6 Alarm

Hint: The description of binary outputs of a controller relates also to IOM/PTM modules.

Binary outputs — list

Not used

Output has no function.

Starter

The closed relay energizes the starter motor. The relay opens if:

the “firing” speed is reached or

maximum time of cranking is exceeded or

request to stop comes up

Fuel Solenoid

Closed output opens the fuel solenoid and enables the engine start. The output opens if:

EMERGENCY STOP comes or

Cooled gen-set is stopped or

in pause between repeated starts

Stop Solenoid The closed output energizes stop solenoid to stop the engine. This output is deactivate 10s after the still engine conditions are evaluated. Hint: For more detail see chapter “Stop engine” conditions in chapter Gen-set Operation States Hint: The engine can be started anytime, if all symptoms say the engine is steady regardless of the fact the Stop Solenoid can still be active (in that case it is deactivated before cranking).

Stop Pulse Output is active for 1 second after Stop Solenoid output activation. This signal is sent to ECU in case of engine stop request.

Ignition

The output closes after reaching value of CrankRPM, fixed 30RPM. Opens after stopping of the engine or in pause during repeated start.

Page 49: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 49 IL-NT-MRS-2.0-Reference Guide.pdf

Prestart The output closes prior to the engine start (Prestart) and opens when Starting RPM speed is reached. During crank attempts the output is closed too. The output could be used for pre-glow, pre-heat or prelubrication.

Cooling Pump

The output closes when gen-set starts and opens after stop of the engine.

Idle/Nominal The output Idle/Nominal closes after the timer Idle Time elapses. The Idle Time counter starts to countdown when Starting RPM reached. The Underspeed protection is not evaluated during fixed 5 seconds period after reaching Starting RPM. A Start Fail protection occurs if the RPM drop below 2RPM during idle. Hint: Connect binary output “Idle/Nominal” to speed governor to switch the speed: opened = IDLE, closed=NOMINAL.

Air Valves Closes together with Prestart. Opens after the engine is stopped. Stopped engine conditions: RPM = 0, Engine Params: Starting Oil P, D+ (when enabled).

Alarm

The output closes if :

any warning or shutdown comes up or

the gen-set malfunctions The output opens if

FAULT RESET is pressed

The output closes again if a new fault comes up.

Horn The output closes if:

any warning or shutdown comes up or

the gen-set malfunctions The output opens if:

FAULT RESET is pressed or

HORN RESET is pressed or

Max time of HORN is exceeded (Horn Timeout) The output closes again if a new fault comes up.

GCB Close/Open

MRS11, 16: The output controls the generator circuit breaker. MRS10, 15 (GCB no GCB button):

The output closes automatically (in MAN or AUT mode) after engine is started, Min Stab Time elapsed, and generator voltage and frequency is in limits.

Hint: Supposed time to close (reaction time) of GCB is 0,1 sec. IL-NT controller can work even without breakers feedback, in this case do not configure the feedback to binary inputs. For more details see chapter GCB fail detection.

GCB ON Coil

The output activates Generator Circuit Breaker coil.

GCB OFF Coil The output deactivates Generator Circuit Breaker coil.

Page 50: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 50 IL-NT-MRS-2.0-Reference Guide.pdf

GCB UV Coil

The output controls Generator Circuit Breaker coil after voltage drop-out.

Ready

The output is closed if following conditions are fulfilled:

Gen-set is not running and

No Shut down is active

Controller is not in OFF Mode

Ready To Load

The output is closed if genset is running and all electric values are in limits no alarm is active — it is possible to close GCB or it is already closed. The output opens during cooling state.

Running

Output closes if the engine is in Running state.

Cooling The output closes when gen-set is in Cooling state.

Supplying Load

Closed when the generator current is > 0,5% of the CT ratio. Exact formulas: Output is closed when the current at least in one phase is for 1 sec over CT ratio/200+2 Output is opened when the current in all three phases is for 1 sec below CT ratio/200+2 Hint: Values are truncated after division, not rounded.

Fault Reset The output is a copy of Fault Reset button on controller and binary input FaultResButton.

Gen Healthy

The output is copy of generator status LED on iL front panel. The output is closed if genset is running and all genset electric values are in limits.

Exerc Timer 1

Output activates when Timer 1 is active. Simultaneously, gen-set is started when it is in AUT mode. See setpoint Timer1..2Function [No Func/Auto Run/Mode OFF] for details.

Exerc Timer 2

Output activates when Timer 2 is active. See setpoint Timer1..2Function [No Func/Auto Run/Mode OFF] for details.

Glow Plugs

The output closes prior to the engine start (by Prestart Time) and opens at the beginning of cranking time. In case of repeated crank attempts the output closes always prior to the other engine start attempts (by Prestart Time) and is opened during crank attempts.

Page 51: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 51 IL-NT-MRS-2.0-Reference Guide.pdf

Fuel Pump

Output closes when the value of Fuel Level lies under the value of Fuel Pump ON setpoint and opens when value of Fuel Pump OFF is reached. Hint: Fuel pump function is internaly connected to analog input 3 to monitor the actual fuel level in tank. It is a prerequisite for this function to use a fuel level sensor at this analog input.

Temp Switch

This switch is assigned to the controller’s analog input 2 – commonly used for water temperature sensing. The setpoints TempSwitch ON and TempSwitchOFF for on and off level adjustment are located in the setpoint group Engine Params. Typical usage for this binary output can be activation of fans or heaters. The output behaves based on the setpoint adjustment as described on picture lower:

Page 52: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 52 IL-NT-MRS-2.0-Reference Guide.pdf

Power Switch

This switch is assigned to the gen-set active power. The setpoints PowerSwitch ON [kW] and PowerSwitch OFF [kW] for on and off level adjustment are located in the setpoint group Engine Params. Typical usage for this binary output can be switching of dummy load. The output behaves based on the setpoint adjustment as described on picture lower: Hint: Power switch function and corresponding binary output is activated 30s after the engine is running.

Maintenance

Output closes if the Maintenance alarm activates, i.e. the gen-set has been running for more than Engine Protect:WrnMaintenance. The output opens, if

alarm is not active and

FAULT RESET is pressed

Ctrl HeartBeat

Output signalizes Watchdog Reset. In a healthy state it blinks at 500ms : 500ms rate. When Watchdog Reset occurs, it stops blinking.

Mode OFF

The output is closed, if OFF Mode is selected.

Mode MAN

The output is closed, if MAN Mode is selected.

Page 53: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 53 IL-NT-MRS-2.0-Reference Guide.pdf

Mode AUT

The output is closed, if AUT Mode is selected.

AL D+ Fail

Output closes if gen-set is running and D+ input not energized. The output opens, if

alarm is not active and

FAULT RESET is pressed

Hint: Treshhold level for D+ input is 80% supply voltage.

AL Gen >V

The output closes if the generator overvoltage shutdown alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL Gen <V

The output closes if the generator undervoltage shutdown alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL Gen Volts

The output closes if the generator over/under voltage shutdown alarm or voltage asymmetry shutdown alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL Gen Freq

Output closes if the generator over/under frequency shutdown alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL Gen >Freq Output closes if the generator over frequency alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL Gen <Freq

Output closes if the generator under frequency alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL OverloadBOC

Output closes if the generator overload alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

Page 54: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 54 IL-NT-MRS-2.0-Reference Guide.pdf

AL Stop Fail

Output closes when the engine has to be stopped, but speed or frequency or voltage or oil pressure is detected (“Still Engine” conditions). This protection goes active when Stop Time setpoint value exceed and any Running engine conditions are detected after stop command or under conditions for activating Wrn Stop Fail alarm on Still engine: — for generator voltage < 50% of nominal voltage, Sd Stop Fail has delay 1s — for generator voltage > 50% of nominal voltage, Sd Stop Fail has delay 200ms — for oil pressure > starting oil pressure, Sd Stop Fail has delay 1s

For detected RPM, there is no delay. Hint: For more details see chapter „Stop engine“ conditiones in chapter Gen-set Operation states With start goes this protection inactive. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL Overspeed

Output closes if the gen-set over speed alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL Underspeed

Output closes if the gen-set under speed alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL Start Fail

Output closes after the gen-set start-up fails. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL Overcurrent

Output closes if the generator *IDMT over current or current unbalance or short current alarm activates.

The output opens, if Alarm is not active and FAULT RESET is pressed

AL BatteryFail

Output closes when IL-NT performs reset during start procedure (probably due to weak battery) or when battery under/over voltage warning appears. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL EarthFault

Output closes when Earth Fault Current is detected (extension module is needed). The output opens, if

alarm is not active and

Page 55: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 55 IL-NT-MRS-2.0-Reference Guide.pdf

FAULT RESET is pressed

Hint: For more details see chapter Earth Fault Measurement

AL Common Wrn

Output closes when any warning alarm appears. The output opens, if

No warning alarm is active and

FAULT RESET is pressed

AL Common Sd Output closes when any shut-down alarm appears. The output opens, if

No sd alarm is active and

FAULT RESET is pressed

AL Common BOC

The output closes when any BOC alarm appears. The output opens, if:

No BOC alarm is active and

FAULT RESET is pressed

AL Common Fls

Output closes when any Sensor Fail alarm appears. The output opens, if

No warning alarm is active and

FAULT RESET is pressed

AL AI1 Sd

Output closes if the engine oil pressure (configured to the first analog input) shutdown alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL AI1 Wrn

Output closes if the engine oil pressure (configured to the first analog input) warning alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL AI2 Sd

Output closes if the engine water temperature (configured to the second analog input) shutdown alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

AL AI2 Wrn

Output closes if the engine water temperature (configured to the second analog input) warning alarm activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

Page 56: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 56 IL-NT-MRS-2.0-Reference Guide.pdf

AL AI3 Sd

Output closes if the engine Fuel Level (configured to the third analog input) shutdown alarm activates.

AL AI3 Wrn

Output closes if the engine Fuel Level (configured to the third analog input) warning alarm activates.

BI1..6 Status

* IOM BI1..7 Status The outputs give an information about the assigned binary input. In case the assigned binary input is configured to alarm type, then the output closes when the alarm activates. It opens if

alarm is not active and

FAULT RESET is pressed

In case the assigned binary input is configured to any control function, the output propagates the state of the input.

* AL IOM AI1..4 Sd

Output closes if shutdown alarm on the appropriate IOM/PTM analog input activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

* AL IOM AI1..4 Wrn

Output closes if warning alarm on the appropriate IOM/PTM analog input activates. The output opens, if

alarm is not active and

FAULT RESET is pressed

* ExtBI1..7 Status The outputs give an information about the assigned binary input. In case the assigned binary input is configured to alarm type, then the output closes when the alarm activates. It opens if

alarm is not active and

FAULT RESET is pressed

In case the assigned binary input is configured to any control function, the output propagates the state of the input. Hint: Valid when extension module IL-NT BIO8 or IL-NT CT-BIO7 is configured.

ECU Comm OK

If the ECU is not communicating and all values from ECU show #### the output is not active. If the ECU communicates the output is active.

ECU Comm Error The output is an inversion of binary output ECU Comm OK, i.e. the output is closed when ECU is not communicating and all values from ECU show #####. Communication error causes stop of the engine.

ECU YellowLamp

The output copies warning information from ECU.

ECU Red Lamp

The output copies shutdown information from ECU.

Page 57: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 57 IL-NT-MRS-2.0-Reference Guide.pdf

ECU PowerRelay

The output closes at the beginning of prestart and opens if the engine shall be stopped. This output can be used to indicate when the ECU should be powered up i.e. only while the engine is running. This output also influences evaluation of communication failure with ECU and related FLS alarms from analog inputs read from the ECU. If the output is configured (which means configured on physical binary output or VPIO output), the issuing of communication error is blocked during Prestart and Stopping procedure as shown in the picture.

Analog inputs

It is possible to configure on each Analog input:

Reading from IL Analog inputs or from Engine Control Unit via CAN bus (J1939)

Sensor characteristics – from the list, or custom sensor curve

Value dimension (e.g. psi — bars, F — C, % — l)

Sensor resolution Warning and shut-down limits are adjusted in Engine Protect group. The analog inputs are configurable. Use LiteEdit software to modify configuration. Default configuration is:

Oil Pressure

Oil pressure analog input. Default VDO sensor in range 0 to 10.0 bars.

Water Temp

Water temperature analog input. Default VDO sensor in range 40 to 120 C.

Fuel Level

Fuel Level analog input. Default VDO sensor 0-180R = 0-100% Hint: For further information about analog inputs configuration see Analog inputs.

CAN J1939 interface

Following values can be received from Engine Control Unit via CAN bus instead of measuring on IL-NT terminals when J1939 interface is enabled.

Value Value is received from

J1939 enabled J1939 disabled

Beginning of Prestart

Fuel solenoid deactivation

ECU communication failure alarm blocked

End of Prestart

Engine stopped

t

ECU PwrRelay

Page 58: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 58 IL-NT-MRS-2.0-Reference Guide.pdf

RPM ECU IL-NT – RPM terminals

Oil pressure ECU or IL-NT AI1 IL-NT AI1 terminals

Water temperature ECU or IL-NT AI2 IL-NT AI2 terminals

Fuel Level ECU or IL-NT AI3 IL-NT AI3 terminals

ECU State ECU

Fuel Rate ECU

Manifold temp ECU

Boost Pressure ECU

Percent Load ECU

Use LiteEdit to enable/disable J1939 interface and to configure IL-NT analog inputs. Hint: RPM reading is automatically switched to pickup or generator voltage measuring (depends on Basic setting: Gear Teeth value) if J1939 fails.

Analog outputs

Optional plug in card IL-NT AOUT8 provides eigth Pulse-With-Modulation (PWM) outputs. These are intended to drive VDO style analog gauges. This is to provide visual indication of typically ECU values without installing aditional sensors on the engine. PWM signal emulates sensor which would be typically mounted on the engine. Any value from controler may be configured to the outputs. Use LiteEdit PC SW to configure coresponding sensor/gauge curve and value selection.

Page 59: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 59 IL-NT-MRS-2.0-Reference Guide.pdf

Setpoints

Password

EnterPassword

Password is a four-digit number. Password enables change of relevant protected setpoints.

Use or keys to set and ENTER key to enter the password.

Hint: There is only 1 level of a password.

ChangePassword

Use or keys to set and ENTER key to change the password.

Hint: At first the password has to be entered before the new password can be changed. During the configuration of controller or setpoints changes is required a password to the controller. The default password from manufacturer is “0”. Maximum value of password is “9999”. Controller has following functions:

Automatic checking of password during change to be maximally 9999, if it is bigger value it will be automatically changed to 0. LiteEdit (LE) will prevent to write bigger value than 9999.

Cyclic rotation of value of password in case of using arrows on controller

Basic Settings

Gen-set Name

User defined name, used for InteliLite identification at remote phone or mobile connection. Gen-set Name is max 14 characters long and have to be entered using LiteEdit software.

Nomin Power [kW]

Nominal power of the generator Step: 1kW Range: 1 – 5000 kW

Nomin Current [ A ]

It is current limit for generator *IDMT over current and short current protection and means maximal continuous generator current. See Gener Protect: *Amps IDMT Del, Short Crct Sd setpoints. Nominal Current can be different from generator rated current value. Step: 1 A Range: 1 — 10000 A

CT Ratio [/5A]

Gen-set phases current transformers ratio. Step: 1 A Range: 1 – 5000 A / 5A Hint: Generator currents and power measurement is suppressed if current level is bellow <1% of CT range.

Page 60: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 60 IL-NT-MRS-2.0-Reference Guide.pdf

For firmware versions <= 1.4: For CT Ratio <= 250 the values of power and current are displayed in a controller with one decimal. For CT Ratio > 250 the values of power and current are displayed in a controller with integral numbers. If you change CT Ratio in LiteEdit or directly in the controller, decimal numbers will not be changed immediately. The change will be executed only by reconfiguring in LiteEdit. The statistics of power will be recounted at this time with regards to decimal numbers of power. WARNING! When you change the firmware, statistics can be invalid! Check the statistical values. If necessary value change is possible by LiteEdit software (password is required). WARNING! Change of CT ratio over value 250 without reconfiguring in LiteEdit can cause overflow of current measurement and improper function of controller! WARNING! For CT Ratio <= 250 the measured current on generator or mains shall not be bigger than:

6500A or equivalent of 3200kVA on any phase or total kVA or equivalent of 3200kW on any phase or in total kW.

For CT Ratio > 250 are the same conditions with limits of 65000A,32000kVA and 32000kW. For firmware version >1.5: Decimal switching is not done via value of “CT ratio” setpoint, but in configuration window of LiteEdit software via icon „Units/Formats“. WARNING! In case of one decimal displayed at power values the measured current on generator or mains shall not be bigger than:

6500A or equivalent of 3200kVA on any phase or total kVA or equivalent of 3200kW on any phase or in total kW.

For no decimal displayed are the same conditions with limits of 65000A,32000kVA and 32000kW.

Page 61: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 61 IL-NT-MRS-2.0-Reference Guide.pdf

PT Ratio [/1] Gen-set potential transformers ratio. Step: 0,1 V / V Range: 0,1 – 500,0 V / V

NomVolts Ph-N [V]

Nominal generator voltage (phase to neutral) Step: 1V Range: 80 – 20000 V Hint: Phase sequence check is not possible to evaluate under voltage 50V what causes that if measured voltage 50V is within the allowed range, controller will not allow to close the GCB, even if relevant LED diod on front panel of IL-NT lits.

NomVolts Ph-Ph [V]

Nominal generator voltage (phase to phase)

Page 62: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 62 IL-NT-MRS-2.0-Reference Guide.pdf

Step: 1V Range: 138 – 35000 V

Nominal Freq [Hz]

Nominal generator frequency (usually 50 or 60 Hz ) Step: 1Hz Range: 45 – 65 Hz

Gear Teeth [-]

Number of teeth on the engine gear for the pick-up. Set to zero, if no pick-up is used. Engine speed is counted from the generator frequency. Step: 1 Range: 0 – 500 Hint: Generator frequency can be used only when generator voltage (min 10Vef) is present before reaching of the firing speed (Starting RPM) after start.

Nominal RPM [RPM]

Nominal engine speed. Step: 1RPM Range: 100 – 4000 RPM

ControllerMode [ OFF, MAN, AUT]

Equivalent to Controller mode changes by MODE or MODE buttons.

Hint: Controller Mode change can be separately password protected.

Reset To MAN [ENABLED/DISABLED] DISABLED: Controller stays in AUT mode after Fault reset . ENABLED: Automatic switch from AUT (or TEST) to MAN Mode after Fault reset to avoid

automatic engine start. This function is active for Shut down protection only.

BacklightTime [min]

When this timer exceed than the display backlight is switched off. Step: 1 Range: 0 – 241min

ConnectionType [3Ph4Wire / 3Ph3Wire / Split Ph / Mono Ph]

3Ph4Wire: STAR Connection, 3 phases and neutral — 4 wires, Three phase “wye” measurement – 3PY, 3x CT‘s

3Ph3Wire: DELTA Connection, 3 Phase without neutral — 3 Wires, Three phase “delta” measurement – 3PD, 3x CT‘s

Split Phase: DOUBLE DELTA Connection, Split Phase, Single-phase measurement – 1PH, 1xCT

Mono Phase: MONOPHASE, Single-phase measurement – 1PH, 1x CT

Hint: For more details about connection types see Voltage measurement and generator connection types chapter. For details about influence of Connection type setting on voltage values in history check History file chapter.

CT Location [Load/GenSet]

Load: Controller stays in AUT Mode after Fault Reset . GenSet: Automatic switch from AUT (or TEST) to MAN Mode after Fault Reset to avoid

Page 63: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 63 IL-NT-MRS-2.0-Reference Guide.pdf

automatic engine start. This function is active for Shut down protection only. Hint: More details about this function is introduced in chapter CT Location.

Comms Settings

ControllerAddr (1 .. 32) [-]

Controller identification number. It is possible to set controller address different from the default value (1) so that more IL controllers can be interconnected (via RS485) and accessed e.g. from Modbus terminal. Hint: When opening connection to the controller it’s address has to correspond with the setting in PC tool. From LiteEdit it is only possible to connect to controllers with address 1.

COM1 Mode [DIRECT/MODEM/MODBUS/ECU LINK]

Communication protocol switch for the COM1 channel. DIRECT: LiteEdit communication protocol via direct cable. MODEM: LiteEdit communication protocol via modem. MODBUS: Modbus protocol. See detailed description in InteliCommunication guide. ECU LINK: Protocol for communication with Cummins engines via Modbus. Hint: For details on communication speed and other technical parameters please see chapter Technical Data. For detail description see chapter Modbus protocol. Since IL-NT version 1.3 controller supports register oriented modbus.

COM2 Mode [DIRECT/MODBUS/ECU LINK]

Communication protocol switch for the COM2 channel, if dual communication module is pluged in. DIRECT: LiteEdit communication protocol via direct cable. MODBUS: Modbus protocol. See detailed description in InteliCommunication guide. ECU LINK: Protocol for communication with Cummins engines via Modbus. Hint: For details on communication speed and other technical parameters please see chapter Technical Data. For detail description see chapter Modbus protocol. Since IL-NT version 1.3 controller supports register oriented modbus. Hint: Modbus TCP protocol using IB-Lite communication module requires setting COM1 Mode = DIRECT and COM2 Mode = MODBUS.

ModemIniString

If your modem needs some additional initialization AT commands (i.e. because of national telephony network differencies), it can be entered here. Otherwise leave this setpoint blank.

ModbusComSpeed [9600,19200, 38400, 57600]

If the Modbus mode is selected on COM1 or COM2 channels, the Modbus communication speed in bps can be adjusted here.

IBLite IP Addr [-]

If DHCP is DISABLED this setpoint is used to adjust the IP address of the ethernet interface of the controller. Ask your IT specialist for help with this setting.

Page 64: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 64 IL-NT-MRS-2.0-Reference Guide.pdf

If DHCP is ENABLED this setpoint is used to display the IP address, which has been assigned by the DHCP server.

IBLite NetMask [-]

If DHCP is DISABLED this setpoint is used to adjust the IP address of the ethernet interface of the controller. Ask your IT specialist for help with this setting. If DHCP is ENABLED this setpoint is used to display the IP address, which has been assigned by the DHCP server.

IBLite GateIP [-] If DHCP is DISABLED this setpoint is used to adjust the IP address of the gateway of the network segment where the controller is connected. If DHCP is ENABLED this setpoint is used to display the gateway IP address which has been assigned by the DHCP server. A gateway is a device which connects the respective segment with the other segments and/or Internet.

IBLite DHCP [ENABLED/DISABLED]

The setpoint is used to select the method how the ethernet connection is adjusted. DISABLED: The ethernet connection is adjusted fixedly according to the setpoints IP Addr, NetMask, GateIP, DNS IP Address. This method should be used for classic ethernet or Internet connection. When this type of connection is opening the controller is specified by it’s IP address. That means it would be inconvenient if the IP address were not fixed (static). ENABLED: The ethernet connection settings is obtained automatically from the DHCP server. The obtained settings is then copied to the related setpoints. If the process of obtaining the settings from DHCP server is not successful the value 000.000.000.000 is copied to the setpoint IP address and the module continues trying to obtain the settings.

ComAp Port [0 — 65535]

This setpoint is used to adjust the port number, which is used for ethernet connection to a PC with any of ComAp PC program (i.e. InteliLIte, InteliMonitor). This setpoint should be adjusted to 23, which is the default port used by all ComAp PC programs. A different value should be used only in special situations as e.g. sharing one public IP address among many controllers or to overcome a firewall restrictions.

APN Name [-]

Name of APN access point for GPRS network provided by GSM/GPRS operator.

APN User Name [-]

User name for APN access point provided by GSM/GPRS operator.

APN User Pass [-]

User password for APN access point provided by GSM/GPRS operator.

AirGate [ENABLED/DISABLED] This setpoint selects the ethernet connection mode.

DISABLED:

Page 65: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 65 IL-NT-MRS-2.0-Reference Guide.pdf

This is a standard mode, in which the controller listens to the incoming traffic and answers the TCP/IP queries addressed to him. This mode requires the controller to be accessible from the remote device (PC), i.e. it must be accessible at a public and static IP address if you want to connect to it from the Internet. ENABLED: This mode uses the «AirGate» service, which hides all the issues with static/public address into a black box and you do not need to take care about it. You just need only a connection to the Internet. The AirGate server address is adjusted by the setpoint AirGate IP.

AirGate IP [-]

This setpoint is used for entering the domain name or IP address of the AirGate server. Use the free AirGate server provided by ComAp at address airgate.comap.cz if your company does not operate it’s own AirGate server.

SMTP User Name [-]

Use this setpoint to enter the user name for the SMTP server.

SMTP User Pass [-]

Use this setpoint to enter the password for the SMTP server.

SMTP Server IP [-]

This setpoint is used for entering the domain name (e.g. smtp.yourprovider.com) or IP address (e.g. 74.125.39.109) of the SMTP server. Please ask your internet provider or IT manager for this information. Hint: You may also use one of free SMTP servers, e.g. smtp.gmail.com. However, please note that some free SMTP servers may cause delays (in hours..) when sending e-mails. If you do not want to send active e-mails, you may leave this setpoint blank, as well as other setpoints related to SMTP server and e-mail settings. Proper setting of SMTP-related setpoints as well as controller mailbox are essential for sending alerts via e-mails.

Contr Mail Box [-]

Enter an existing e-mail address into this setpoint. This address will be used as sender address in active e-mails that will be sent from the controller.

Time Zone [-]

This setpoint is used to select the time zone where the controller is located. See your computer time zone setting (click on the time indicator located in the rightmost position of the the windows task bar) if you are not sure about your time zone. Hint: If the time zone is not selected properly the active e-mails may contain incorrect information about sending time, which may result in confusion when the respective problem actually occured.

DNS IP Address [-]

If DHCP is DISABLED this setpoint is used to adjust the domain name server (DNS), which is needed to traslate domain names in e-mail addresses and server names into correct IP addresses. If DHCP is ENABLED this setpoint is used to display DNS server, which has been assigned by the DHCP server.

Page 66: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 66 IL-NT-MRS-2.0-Reference Guide.pdf

Engine Params

Starting RPM [%]

“Firing” speed when IL controller stops cranking (starter goes OFF). Step: 1% of nominal RPM Range: 5 – 50 %

Starting Oil P [Bar]

When reached controller stops cranking (starter goes OFF). Step: 0,1 bar Range: 0,0 – 10,0 Hint: There are three conditions for stop cranking: RPM > Starting RPM, Oil Pressure > Starting Oil P and D+ (when enabled) => 80% of battery voltage. Starter goes off when any of these conditions is vaid.

Prestart Time [s] Time of closing of the PRE-START output prior to the engine start. Set to zero if you want to leave the output PRE-START open. Step: 1s Range: 0 – 600 s

MaxCrank Time [s]

Maximum time limit of cranking. Step: 1s Range: 1 – 255 s

CrnkFail Pause [s]

Pause between crank attempts. Step: 1s Range: 5 – 60 s

Crank Attempts [-] Max number of crank attempts. Step: 1 Range: 1 – 10

Idle Time [s] Idle time delay starts when RPM exceeds Starting RPM. Start fail is detected when during Idle state RPM decreases below 2. During the Idle time timer running the binary output Idle/Nominal is opened when it elapses the Idle/Nominal output closes. Binary output Idle/Nominal opens during Cooling period again. Step: 1 s Range: 0 – 600 s

Page 67: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 67 IL-NT-MRS-2.0-Reference Guide.pdf

Starting

RPM

RPM

BO Starter

BO IDLE/RATED

RPM = 2

RPM

Start Fail

Idle Time Min Stab TimeElectric protections

active

Min Stab Time [s]

Minimum time after reaching of defined level of RPM to the closing GCB. Step: 1s Range: 1 – 300 (Max Stab Time) s

Max Stab Time [s]

Maximum time after start to get proper voltage level of the generator. Step: 1s Range: 1 (Min stab time) – 300 s Hint: When generator voltage within Max Stab Time does not reach defined limits (Generator protection group) , an alarm occurs and the genset will shut down

Cooling Speed [IDLE/NOMINAL]

Selects the function of the Binary output IDLE/NOMINAL during engine Cooling state. NOMINAL : Cooling is executed at Nominal speed and generator protections are active. IDLE: Cooling is executed at Idle speed and generator protections are switched off. Hint: When ECU is connected the predefined value 900 RPM for IDLE speed is requested. Hint: Binary output IDLE/NOMINAL must be configured and connected to speed governor. Engine Idle speed must be adjusted on speed governor

Cooling Time [s]

Runtime of the unloaded gen-set to cool the engine before stop. Step: 1s Range: 0 – 3600 s Hint: Cooling is executed at nominal speed and generator protections are active.

Stop Time [s]

Under normal conditions the engine must certainly stop 10s before this period will exceed. The period starts by issuing stop command. Step: 1s Range: 0 – 600 s Hint: For more details see chapter „Stop engine“ conditions in chapter Gen-set Operation states

Page 68: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 68 IL-NT-MRS-2.0-Reference Guide.pdf

Fuel Solenoid [ DIESEL / GAS ]

Determines behavior of the Binary output FUEL SOLENOID. DIESEL: Output closes 1 sec before Binary output STARTER.

The output opens if Emergency stop comes or Cooled gen-set is stopped and in pause between repeated starts.

GAS: Output closes together with Binary output IGNITION if RPM is over the 30 RPM (fix value). Output opens after stop command or in pause between repeated start.

D+ Function [ENABLED/CHRGFAIL/DISABLED]

ENABLED: The D+ terminal is used for both functions – “running engine” detection and charge fail detection. CHRGFAIL: The D+ terminal is used for charge fail detection only DISABLED: The D+ terminal is not used. Hint: The magnetization current is provided independently on this setpoint value. The D+ charge fail protection becomes active after Engine Params:Idle Time reaches zero.

ECU FreqSelect [PRIMARY/SECONDARY/DEFAULT]

This setpoint should be used only for Volvo and Scania engines. Volvo – “Volvo Aux” is selected in ECU configuration: Primary or secondary engine speed is set by Frequency select bits in VP Status frame. Scania – “Scania S6 Singlespeed” is selected in ECU configuration: Nominal engine speed is chosen by Nominal speed switch 1 and 2 from DLN1 frame when the engine is running on nominal speed, i.e. binary output Idle/Nominal is active. When the output is not active (engine is running on Idle speed), the setpoint ECU FreqSelect is not taken into account.

Frequency change for Volvo Penta engines with EMS2

This description refers to the Volvo Penta Application bulletin 30-0-003. The procedure for changing engine speed on the D9 and D16 engines is different from the D12 engine. There is no system reset on the EMS2 unit; therefore the procedure is changed. Procedure if ECU not energized:

1. Switch the IL controller to MAN Mode. 2. Power up the ECU. 3. Change the setpoint ECU FreqSelect and confirm it by pressing Enter 4. Press the Stop button on the IL controller.

The whole procedure (step 2 to 4) must not exceed 10 seconds. Procedure with ECU powered on:

1. Switch the IL controller to MAN Mode. 2. Press the Stop button on the IL controller. 3. Change the setpoint ECU FreqSelect and confirm it by pressing Enter 4. Press the Stop button on the IL controller.

The whole procedure (step 2 to 4) must not exceed 10 seconds.

ECU SpeedAdj [ % ]

Enables to adjust engine speed in ECU via CAN bus. Nominal speed corresponds to 50%. Step: 1% Range: 0 – 100% Hint:

Page 69: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 69 IL-NT-MRS-2.0-Reference Guide.pdf

The minimum value 0% is equal to 90% of nominal speed. Maximum value 100% is equal to 110% of nominal speed.

Fuel Pump ON [%]

When the actual value of Fuel Level is lower or equals to this value then the binary output Fuel Pump is activated. Step: 1 Range: 0 – 100 %

Fuel Pump OFF [%] When the actual value of Fuel Level is higher or equals to this value then the binary output Fuel Pump is deactivated. Step: 1 Range: 0 – 100 % Hint: The two setpoints above are compared to Analog Input 3 (usually used for Fuel Level) It is a prerequisite for this function to use a fuel level sensor at this analog input.

TempSwitch ON [-]

Threshhold level for switching on the binary output TempSwitch. This function is connected with controller’s analog input 2. Step: 1 Range: -100 .. 10000 [-]

TempSwitchOFF [-]

Threshhold level for switching off the binary output TempSwitch. This function is connected with controller’s analog input 2. Step: 1 Range: -100 .. 10000 [-] Hint: The description of Power Switch function is in chapter Binary outputs — list at Temp Switch.

PowerSwitch ON [kW]

Threshold level for switching the binary output “Power Switch” on. Step: 1 Range: 0 – 32000 kW

PowerSwitchOFF [kW]

Threshold level for switching the binary output “Power Switch” off. Step: 1 Range: 0 – 32000 kW Hint: The description of Power Switch function is in chapter Binary outputs — list at Power Switch.

FuelTankVolume [l] Define a capacity of Genset fuel tank. Step: 1 Range: 1 – 10000l Hint: This setpoint have to be set properly to correct evaluation of Fuel Theft.

MaxFuelDrop [%/h]

Setpoint indicates the maximum allowable drop of fuel in fuel tank per running hour. Protection works also with still engine.

Page 70: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 70 IL-NT-MRS-2.0-Reference Guide.pdf

In case of detection of theft/leak the alarm «Wrn FuelTheft» is raised and same alarm is send via SMS and displayed by WebSupervisor (if used). Step: 1 Range: 0 – 50% Hint: Set 0 to disable Fuel Theft Protection function into MaxFuelDrop setpoint.

Engine Protect

ProtectHoldOff [s]

During the start of the gen-set, some Engine Protections have to be blocked (e.g. Oil pressure). The protections are unblocked after the ProtectHoldOff time. The time starts after reaching Starting RPM. Step: 1s Range: 0 – 300 s Hint: The protections sequence diagram can be found in Alarm time chart in chapter Alarm Management. It displayes when and what protections are active.

Horn Timeout [s]

Max time limit of horn sounding. Set to zero if you want to leave the output HORN open. Horn timeout starts again from the beginning if a new alarm appears before previous Horn timeout has elapsed. Step: 1s Range: 0 – 600 s

Overspeed Sd [%]

Threshold for over speed protection Step: 1% of nominal RPM Range: 100 – 150% Hint: The Overspeed protection value is increasing by 10% of “Overspeed Sd” setpoint, e.g. from default 115 % to 125% of nominal RPM for the duration of 5sec (ProtectHoldOff delay). ProtectHoldOff delay takes place during the start of the gen-set when some engine protections have to be blocked. This delay starts after reaching 25% of nominal RPM. It holds true if the value Gear Teeth = 0.

AI1 Wrn [ Bar]

Warning threshold level for ANALOG INPUT 1 Step: 0,1 bar Range: -10 – 1000

AI1 Sd [ Bar] Shutdown threshold level for ANALOG INPUT 1 Step: 0,1 bar Range: -10 – 1000

AI1 Del [s]

Delay for ANALOG INPUT 1 Step: 1 s Range: 0 – 900 s Hint: First analog input is dedicated to Oil Pressure measurement. It is not supposed to be used for measurement of other values.

Page 71: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 71 IL-NT-MRS-2.0-Reference Guide.pdf

AI2 Wrn [ ]

Warning threshold level for ANALOG INPUT 2

Step: 1 C Range: -100 – 10000

AI2 Sd [ ]

Shutdown threshold level for ANALOG INPUT 2

Step: 1 C Range: -100 – 10000

AI2 Del [s]

Delay for ANALOG INPUT 2 alarm. Step: 1 s Range: 0 – 900 s

AI3 Wrn [ ]

Warning threshold level for ANALOG INPUT 3 Step: 1 % Range: -100 – 10000

AI3 Sd [ ] Shutdown threshold level for ANALOG INPUT 3 Step: 1 % Range: -100 – 10000

AI3 Del [s]

Delay for ANALOG INPUT 3 Step: 1 s Range: 0 – 900 s

Batt Undervolt [V]

Warning threshold for low battery voltage. Step: 0,1 V Range: 8V – 40 (Battery >Volts)

Batt Overvolt [V]

Warning threshold for hi battery voltage. Step: 0,1 V Range: 8V – 40 (Battery <Volts)

Batt Volt Del [s]

Delay for low battery voltage alarm. Step: 1s Range: 0 – 600 s

WrnMaintenance [h]

Counts down when engine running. If reaches zero, an alarm appears. When the value 10000 is set, than the Maintanance function is disabled and counter does not count. Counter value disappear in controllers statictics. Maximum value for running countdown is 9999. Step: 1h Range: 0 – 10000 h

Gener Protect

Hint:

Page 72: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 72 IL-NT-MRS-2.0-Reference Guide.pdf

All electric protections when activated result in shutdown or BOC. The generator protections are evaluated from different voltages based on ConnectionType setting:

3W 4Ph – Ph-Ph voltage

3W 3Ph – Ph-Ph voltage

Split Ph – Ph-N voltage

Mono Ph – Ph-N voltage

Overload BOC [%]

Threshold for generator overload (in % of Nominal power) protection. Protection is BOC (Breaker Open and genset Cooldown). Step: 1% of Nominal power Range: 0 – 200%

Overload Del [s]

Delay for generator overload alarm. Step: 0.1s Range: 0 – 600.0 s

Short Crct BOC [ % ] BOC (Breaker Open and genset Cooldown) occurs when generator current reaches Short Crct BOC limit. Step: 1 % of Nominal current Range: 100 — 500 %

Short Crct Del [s]

Delay for generator shortcurrent alarm. Step: 0.04s Range: 0.00 – 10.00 s

*Amps IDMT Del [ s ] IDMT curve shape selection. Amps IDMT Del is Reaction time of IDMT protection for 200% overcurrent Igen = 2* Nomin Current. Step: 0,1 s Range: 0,1 — 60,0 s IDMT is “very inverse” generator over current protection. Reaction time is not constant but depends on generator over current level according following formula.

Hint: Reaction time is limited up to 3600 sec = 1 hour. IDMT protection is not active for Reaction time values longer than 1 hour. Igen is maximal value of all measured phases of generator current. EXAMPLE of Reaction time for different over current levels. Values in column 200% are IDMT Curr Del.

Amps IDMT Del * Nomin Current Reaction time =

Igen — Nomin Current

Page 73: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 73 IL-NT-MRS-2.0-Reference Guide.pdf

Igen

Nominal Current Short Crct Sd

Amps IDMT Del

Maximal Reaction time

Reacti

on

tim

e

Amps Unbal BOC [%]

Threshold for generator current asymmetry (unbalance). Protection is BOC (Breaker Open and genset Cooldown). Step: 1% of Nominal current Range: 1 – 200% of Nominal current

Amps Unbal Del [s]

Delay for generator current unbalance Step: 0.1 s Range: 0.0 – 600.0 s

Gen >V Sd [%]

Threshold for generator overvoltage. All three phases are checked. Maximum out of three is used. Step: 1% of Nominal voltage Range: 0(Gen <V BOC) – 200%

Gen <V BOC [%]

Threshold for generator undervoltage. All three phases are checked. Minimum out of three is used. Step: 1% of Nominal voltage Range: 0% – 200 (Gen >V Sd)% Hint:

Overcurrent

200 % = IDMT Curr

Del

≤ 100 % 101 % 110 %

Reaction time

0,2 s No action 20 s 2 s

2 s No action 200 s 20 s

20 s No action 2000 s 200 s

40 s No action No action (Reaction

time ≥ 1 hour)

400 s

Page 74: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 74 IL-NT-MRS-2.0-Reference Guide.pdf

Over- and undervoltage protection is evaluated according to Basic Settings: ConnectionType setting. 3Ph4Wire and 3Ph3Wire connections are evaluated according to Ph-Ph nominal voltage (NomVolts Ph-Ph) and Split Phase and Mono Phase connections are evaluated according to Ph-N nominal voltage (NomVolts Ph-N).

Gen V Del [s]

Delay for generator undervoltage and overvoltage alarm Step: 0.1s Range: 0.0 – 600.0 s

Volt Unbal BOC [%] Threshold for generator voltage unbalance alarm. Step: 1% of Nominal voltage Range: 0 – 200% of Nominal voltage

Volt Unbal Del [s]

Delay for generator voltage unbalance alarm. Step: 0.1s Range: 0.0 – 600.0 s

Gen >Freq BOC [%]

Threshold for generator phase L1 overfrequency. Step: 0.1% of Nominal frequency Range: 0 (Gen <Freq BOC) – 200.0% of Nominal frequency

Gen <Freq BOC [%]

Threshold for generator phase L1 underfrequency. Step: 0.1% of Nominal frequency Range: 0.0 – 200 (Gen >Freq BOC ) % of Nominal frequency

Gen Freq Del [s]

Delay for generator underfrequency and overfrequency alarm. Step: 0.1s Range: 0.0 – 600.0 s

*Extension I/O

IOM AI1..4 Wrn [ ]

The warning level for IOM ANALOG INPUT 1..4 alarm detection. Step: 1 Range: -100 — +10000

IOM AI1..4 Sd [ ]

The shutdown level for IOM ANALOG INPUT 1..4 alarm detection. Step: 1 Range: -100 — +10000

IOM AI1..4 Del [s]

Delay for IOM ANALOG INPUT 1..4 alarm. Step: 1 s Range: 0 — 900 s Hint: IG-IOM/IGS-PTM analog inputs protection alarms can be configured following way

Page 75: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 75 IL-NT-MRS-2.0-Reference Guide.pdf

Configuration Protection

Under Protection is activated only when measured value is under measured level.

Over Protection is activated only when measured value is over measured level.

Under+fls Level 2 protection is activated by Sensor Fail as well.

Over+fls Level 2 protection is activated by Sensor Fail as well.

IOM AI1..4 Calibr […]

Calibrating constant to adjust the measured value of IOM/PTM analog inputs. Physical dimension of calibrating constant is corresponding to Analog input. Step: 1 Range: -1000 – +1000

Date/Time

Some of parameters in this group are only available at specific models of IL-NT.

*Time Stamp Per [min]

Time interval for periodic history records. Step: 1 min Range: 0 – 200min Hint: Time stamps are only recorded into history while gen-set is running. When is engine stopped there are no time stamps records made.

*#SummerTimeMod [ DISABLED / WINTER / SUMMER,WINTER- S, SUMMER-S ]

DISABLED: Automatic switching between summer and wintertime is disabled. WINTER (SUMMER) : Automatic switching between summer and wintertime is enabled and it is set to winter (summer) season. WINTER-S (SUMMER-S) : Modification for southern hemisphere.

*#Time [HHMMSS]

Actual real time

*#Date [DDMMYYYY]

Actual date.

*Timer1..2Function [No Func/Auto Run/Mode OFF]

It is possible to choose out of 3 following Timer functions. Binary output Exerc Timer X is always activated when Timer is active regardless of chosen Timer function. Timer functions require controller running in AUT mode. No Func: There is no any other function, but binary output Timer1..2 activation. Auto Run: When this option is chosen then the Timer output is also internally connected to the

Remote start binary input. Mode OFF: When this option is chosen then the Timer output is also internally connected to the

Remote OFF binary input.

Page 76: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 76 IL-NT-MRS-2.0-Reference Guide.pdf

*Timer 1..2 Repeat [NONE/MONDAY/TUESDAY/WEDNESDAY/THURSDAY/WEDNESDAY/FRIDAY/SATURDAY/SUNDAY/MON-FRI/MON-SAT/MON-SUN/SAT-SUN]

Defines TIMER 1,2 activation. Binary output TIMER 1,2 is internally linked with Rem Start/Stop binary input. Refer to binary outputs Exerc Timer X and particular binary inputs related to setpoint Timer1..2Function for details. NONE: Timer function is disabled MONDAY, TUESDAY, WEDNESDAY, THURSDAY, WEDNESDAY, FRIDAY, SATURDAY, SUNDAY: Timer is activated on daily basis. MON-FRI, MON-SAT, SAT-SUN: Timer is activated on selected day interval.

*Timer1..2 ON Time

Day time when Timer output activates.

*Timer1..2Duration

Duration of Timer output is active. Step: 1 min Range: 1 – 1440 s

Test Period

Duration of testing run timer. This timer will run the engine with specified period for specified time duration.Timer starts at time of restarting the controller, or during start of engine with transition from Idle to Running state. This setpoint is only available at models IL-NT MRS10 and MRS11. Step: 1 day Range: 1 – 240 days

Test Duration

Duration of testing run of engine. This setpoint is only available at models IL-NT MRS10 and MRS11. Step: 1 min Range: 1 – 240 min

Sensors spec

AI1, AI2, AI3 Calibration […]

Calibrating constant to adjust the measured value of IL analog inputs. Physical dimension of calibrating constant is corresponding to Analog input. Step: 1 Range: -1000 – +1000 Hint: Calibration constants have to be adjusted when measured value is near the alarm level. User curves can be defined by LiteEdit software.

SMS/E-Mail

Remote alarm messaging

If a GSM modem and/or Internet bridge is connected to the controller, the controller can send SMS messages and/or emails in the moment when a new alarm appears in the Alarm list. The message will contain a copy of the Alarm list.

Page 77: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 77 IL-NT-MRS-2.0-Reference Guide.pdf

To enable this function, you should select with setpoints Yel Alarm Msg and Red Alarm Msg, which levels of alarms shall be announced (red/yellow/both) and also enter valid GSM phone number and/or e-mail address to the setpoints TelNo/Addr Ch1 and TelNo/Addr Ch2. It is possible to put either a GSM number or e-mail to both setpoints.

NOTE: An internet module must be available for sending of e-mails. Similarly, a GSM modem is necessary for sending of SMS. Hint: There are 5 attempts for any active call (SMS/E-Mail). Timeout for connection is 90 sec and after 120 sec controller starts the next attempt. During the time the IL-NT is trying to send an active call type, incoming calls are blocked.

Yel Alarm Msg [ON/OFF] Set this setpoint to ON if you want to get messages when a yellow (warning) alarm occurs.

Hint:

The target address (GSM phone number or e-mail address) must be set correctly to the setpoint(s) TelNo/Addr Ch1 resp. TelNo/Addr Ch2.

Red Alarm Msg [ON/OFF] Set this setpoint to ON if you want to get messages when a red (shutdown or BOC) alarm occurs.

Hint: The target address (GSM phone number or e-mail address) must be set correctly to the setpoint(s) TelNo/Addr Ch1 resp. TelNo/Addr Ch2.

Event Msg [ON/OFF]

Set this setpoint to ON if you want to get messages when a new event occur .

Hint: The target address (GSM phone number or e-mail address) must be set correctly to the setpoint(s) TelNo/Addr Ch1 resp. TelNo/Addr Ch2.

TelNo/Addr Ch1, 2

Enter either a valid GSM phone number or e-mail address to this setpoint, where the alarm messages shall be sent. Type of active call is considered from the value of this parameter. If it consist „@“ it is supposed to be e-mail address and active e-mail is sent. If the value is number, without „@“, it is supposed to be the telephone number and active SMS is sent.

Hint: For GSM numbers use either national format (i.e. like number you will dial if you want to make a local call) or full international format with «+» character followed by international prefix in the begin.

Phone numbers and emails can be modified from controller display or from PC. Following buttons are used for phone number modification

— ENTER for — opening the modification

— confirmation of particular number change and jump to the next position — confirmation of the last number and closing of the modification

— MODE for — while adjusting character press Mode button to jump between character groups to

fasten the process.

— and for — particular number/character change

Particular numbers/character can take values: from “0” to “9”, “a” to “z”, various symbols and empty space.

Page 78: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 78 IL-NT-MRS-2.0-Reference Guide.pdf

SMS Language [1/2]

Select 1 to receive a messages in primary controller language or 2 for secondary one.

Alternate Cfg

Based on the value on BI Alt. Config is selected controller configuration 1 or configuration 2 (all related setpoints are placed in Alternate Cfg group). Hint: Controller will react on change of binary input only while engine is stopped. On successful change of input the new record in history («Nominal1Active», «Nominal2Active») is added. Hint: If the configuration 1 will contain setting for 50Hz and configuration 2 for 60Hz it is possible to use this feature for 50/60 Hz switch.

Nominal RPM 1..2 [RPM]

Nominal engine speed. Step: 1RPM Range: 100 – 4000 RPM

Nominal Freq 1..2 [Hz] Nominal generator frequency (usually 50 or 60 Hz ) Step: 1Hz Range: 45 – 65 Hz

NomVolts Ph-N 1..2 [V]

Nominal generator voltage (phase to neutral) Step: 1V Range: 80 – 20000 V Hint:

Phase sequence check is not possible to evaluate under voltage 50V what causes that if measured voltage 50V is within the allowed range, controller will not allow to close the GCB, even if relevant LED diod on front panel of IL-NT lits.

NomVolts Ph-Ph1..2 [V]

Nominal generator voltage (phase to phase) Step: 1V Range: 138 – 35000 V

Nomin Current 1..2 [A]

It is current limit for generator *IDMT over current and short current protection and means maximal continuous generator current. See Gener Protect: *Amps IDMT Del, Short Crct Sd setpoints. Nominal Current can be different from generator rated current value. Step: 1 A Range: 1 — 10000 A

ConnectionType 1..2 [3Ph4Wire / 3Ph3Wire / Split Ph / Mono Ph]

Generator winding connection. 3Ph4Wire: STAR Connection, 3 phases and neutral — 4 wires,

Three phase “wye” measurement – 3PY, 3x CT‘s 3Ph3Wire: DELTA Connection, 3 Phase without neutral — 3 Wires,

Three phase “delta” measurement – 3PD, 3x CT‘s Split Phase: DOUBLE DELTA Connection, Split Phase,

Single-phase measurement – 1PH, 1xCT Mono Phase: MONOPHASE,

Page 79: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 79 IL-NT-MRS-2.0-Reference Guide.pdf

Single-phase measurement – 1PH, 1x CT Hint: For more details about connection types see Voltage measurement and generator connection types chapter. For details about influence of Connection type setting on voltage values in history check History file chapter.

ECU FreqSelect1..2 [PRIMARY/SECONDARY/DEFAULT]

This setpoint should be used only for Volvo and Scania engines. Volvo – “Volvo Aux” is selected in ECU configuration: Primary or secondary engine speed is set by Frequency select bits in VP Status frame. Scania – “Scania S6 Singlespeed” is selected in ECU configuration: Nominal engine speed is chosen by Nominal speed switch 1 and 2 from DLN1 frame when the engine is running on nominal speed, i.e. binary output Idle/Nominal is active. When the output is not active (engine is running on Idle speed), the setpoint ECU FreqSelect is not taken into account.

Frequency change for Volvo Penta engines with EMS2

This description refers to the Volvo Penta Application bulletin 30-0-003. The procedure for changing engine speed on the D9 and D16 engines is different from the D12 engine. There is no system reset on the EMS2 unit; therefore the procedure is changed. Procedure if ECU not energized:

5. Switch the IL controller to MAN Mode. 6. Power up the ECU. 7. Change the setpoint ECU FreqSelect and confirm it by pressing Enter 8. Press the Stop button on the IL controller.

The whole procedure (step 2 to 4) must not exceed 10 seconds. Procedure with ECU powered on:

5. Switch the IL controller to MAN Mode. 6. Press the Stop button on the IL controller. 7. Change the setpoint ECU FreqSelect and confirm it by pressing Enter 8. Press the Stop button on the IL controller.

The whole procedure (step 2 to 4) must not exceed 10 seconds.

ECU SpeedAdj 1..2 [ % ]

Enables to adjust engine speed in ECU via CAN bus. Nominal speed corresponds to 50%. Step: 1% Range: 0 – 100% Hint: The minimum value 0% is equal to 90% of nominal speed. Maximum value 100% is equal to 110% of nominal speed.

*EarthFaultProt

Hint: More information are availible in Earth fault Measurement chapter.

EF Protection [ENABLED/DISABLED]

This setpoint can block or allow Earth fault Current protection.

Page 80: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 80 IL-NT-MRS-2.0-Reference Guide.pdf

EF CT Ratio [/1A]

Earth Fault current transformer ratio. Step: 1 A Range: 1 – 2000 A / 1A

EarthFault Sd [A]

Shutdown threshold level for Earth Fault current. Step: 0,01A Range: 0,03 – 5 A

EarthFault Del [s]

Earth Fault current measurement delay. Step: 0,01s Range: 1 – 5s

Page 81: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 81 IL-NT-MRS-2.0-Reference Guide.pdf

*ECU-controlled engine support

There exists only one firmware branch for both standard and electronic controlled (monitored) engines. Presence of the ECU on the CAN bus/RS232 is configured via LiteEdit like other peripheries (IG-IOM,

IGL-RA15). Pressing the button in Configuration window of LiteEdit opens ECU dialog window where the appropriate engine/ECU type should be selected. The actual list of ECU types is available on ComAp website in «ECU list — x.y.iwe» package. Download this package and import it into LiteEdit in the same way as standard firmware IWE package. More information about ECU list packages, configuration and wiring recommendations can be found in Comap Electronic Engines Support manual.

If the connected engine is Cummins with GCS engine control unit communicating via Modbus it is

Page 82: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 82 IL-NT-MRS-2.0-Reference Guide.pdf

necessary to set the setpoint Basic settings: COM1 Mode = ECU LINK or COM2 Mode = ECU LINK. Loss of communication causes a warning alarm. On the contrary the ECU can be switched off at quiescent engine that means not-communicating ECU is in that moment normal situation. All values from ECU shall show ####, but no alarm is displayed. The output ECU Comm OK follows the real situation which means it is not active anytime when the ECU does not communicate.

The output ECU PowerRelay closes at the beginning of prestart and opens if the engine shall be stopped. It can be used to switch the ECU on and off. If the putput is configured but not active the ECU communication alarm is blocked.

The engine is started via standard contact output or via CAN bus depending on ECU capabilities.

Identifying configured ECU

It is possible to identify what ECU is currently configured in IL-NT (FW version ≥1.5) controller on init

screens. Navigate to default screen with gauge and press buttons PAGE and ENTER at the same

time. Than browse through inits screen by button PAGE until you find value «ESF:xx.y — (zzz)», where

xx.y = ESF version number, zzz= Motor ID. Explanation of Motor ID is in table below:

Motor ID ESF — Electronic Engine

1 Volvo EMSI Singlespeed / EMSII

3 Scania S6 Singlespeed

4 Cummins CM570

5 Cummins MODBUS

7 John Deere

8 Deutz EMR2

9 DDC DDEC IV/V

10 Caterpillar J1939

12 Perkins ECM

14 Iveco NEF&Cursor

16 Scania S6 Singlespeed from ver.1794335

18 SISU EEM3 Gen-set

20 MTU ADEC J1939

23 JCB Delphi DCM

24 Daimler Chrysler ADM2

25 Deutz EMR3

26 Cummins CM850

28 Iveco Vector

29 MAN MFR

31 VM Marine

32 VM Industrial

35 GM SECM

36 ISUZU ECM

43 Cummins CM850/CM2150/CM2250

44 GM e-control ECU

58 GM e-control LCI

60 MTU SMART Connect

68 Scania S8 Singlespeed

71 GM MEFI6

255 Standard J1939 engine

Page 83: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 83 IL-NT-MRS-2.0-Reference Guide.pdf

Values read from ECU

There is fixed set of values read from J1939 ECU by IL-NT controller: Engine speed (frame EEC1) Engine oil pressure (frame Engine Fluid Level/Pressure) Engine coolant temperature (frame Engine Temperature) Total engine hours (frame Engine Hours, Revolutions) Fuel rate (frame Fuel Economy) Boost pressure (frame Inlet/Exhaust Conditions) Intake manifold 1 temperature (frame Inlet/Exhaust Conditions) Engine oil temperature 1 (frame Engine Temperature 1)

When “ECU LINK”-Modbus option is selected, following values are read from Modbus Register Data (for QSX15,QSK45, QSK60):

Engine Speed (Register Address:30001) Oil Pressure (Register Address:30003) Coolant Temperature (Register Address:30002) Engine Running Time (Register Address:30008-30009) Fuel Consumption Rate (Register Address:30018) Intake Manifold Absolute Pressure (Register Address:30530 (QSK45, QSK60 only)) Intake Manifold Temperature (Register Address:30531 (QSK45, QSK60 only))

Hint: Values read from ECU are not written to history besides the fault codes.

Diagnostic messages read from ECU

Diagnostic messages are read and displayed in extra ECU Alarm list. For Standard J1939 SPN (Suspect Parameter Number), FMI (Failure Mode Identifier) and OC (Occurrence Counter) are shown together with text description if available. One SPN (Suspect Parameter Number) / FMI (Failure Mode Identify) couple describes one fail information. If FMI is equal to 0 or 1, WRN is displayed in the ECU Alarm list. For any other FMI values, FLS is displayed. Detail SPN/FMI code specification see in:

SAE Truck and Bus Control and Communications Network Standards Manual, SAE HS-1939 Publication

Or refer to corresponding engine manufacturer’s ECU error codes list. Complete list of text diagnostic messages for each ECU can be found in Comap Electronic Engines Support manual. Hint: InteliLite controller doesn’t support J1587 diagnostic line on Volvo engines. This can cause in some cases a J1939 alarm message FC:000608 due to missing J1587 bus. Contact your Volvo distributor to update ECU firmware. For Scania engines the fault codes are displayed in hexadecimal format.

Analog inputs

Reading of mentioned values from ECU enables to use analog inputs of the unit for other purposes, e.g. measuring, displaying and alarm activation related to various quantities. The configuration thus allows to use three analog inputs on the central unit and four analog inputs on IG-IOM/IGS-PTM module if connected.

Page 84: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 84 IL-NT-MRS-2.0-Reference Guide.pdf

Connection description

The following diagrams show how to connect the engine control unit to the InteliLite controller:

Engines with J1939 support started via CAN bus VOLVO PENTA engines (EMS II, EDC III units)

LO

AD

DIE

SE

L/G

AS

EN

GIN

E

RPM

GE

NE

RA

TO

R

G

+24

V

Genera

tor

C.B

.

RS

-23

2C

Inte

rfa

ce

Mod

em

orP

C

ALARM

BIN

AR

YO

UT

PU

TS

GEN C.B.

PRESTART

READY TO LOAD

FUEL LEVEL

EC

U

8-p

ole

De

uts

ch

con

nect

or

8

7

6 5

4 3

2 1

BO ECU PwrRelayBO ECU CommOK ( EDCIII) / ECU CommError ( EMSII)

EMERGENCY STOP

CONTROLSIGNALS

REMOTE S/S

ACCESS LOCK

NOT USED

REMOTE OFF

SPRINKLER

L1

L2

L3 N

Page 85: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 85 IL-NT-MRS-2.0-Reference Guide.pdf

SCANIA S6 L

OA

D

DIE

SE

L/G

AS

EN

GIN

E

RPM

GE

NE

RA

TO

R

+24

V

Genera

tor

C.B

.

RS

-23

2C

Inte

rfa

ce

Mod

em

orP

C

FUEL LEVEL

EC

U

10

-pin

EM

S B

1con

nect

or

3

4

56

7 8

9 1

02

1 + 24 V DC

GND

ALARM

BIN

AR

YO

UT

PU

TS

GEN C.B.

PRESTART

READY TO LOAD

L1

L2

L3 N

G

EMERGENCY STOP

CONTROLSIGNALS

REMOTE S/S

ACCESS LOCK

NOT USED

REMOTE OFF

SPRINKLER

Page 86: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 86 IL-NT-MRS-2.0-Reference Guide.pdf

Cummins engines with MODBUS communication InteliLite set up: Basic settings: COM1 Mode = ECU LINK or COM2 Mode = ECU LINK Software configuration: ECU → ECU engine is connected → Type: Cummins MODBUS RS232/RS485 converter (see following diagram) set up: Data format settings (SW1) 11 bits (1 start bit, 8 data bits, 2 stop bits) Baud rate settings (SW2) 9600 bps (more info available on http://www.advantech.com/products/Model_Detail.asp?model_id=1-D6FLH)

LO

AD

DIE

SE

L/G

AS

EN

GIN

E

RPM

GE

NE

RA

TO

R

G

+24

V

Genera

tor

C.B

.

ALARM

BIN

AR

YO

UT

PU

TS

.

GEN C.B.

PRESTART

READY TO LOAD

STARTER

BATTERY

— +

FUEL SOLENOID

D+

FUEL SOLENOID

STARTER

EC

U

10-30

VDC

GND

RxDTxD

ADAM 4520 RS232/485

CONVERTER

DATA1+

DATA1-RS232

RS485

D-S

UB

06

CO

NN

EC

TO

R RS 485 — ( PIN 18)

GND ( PIN 20)

RS 485 + ( PIN 21)

TERM2 ( PIN 19)

TERM1 ( PIN 22)

L1

L2

L3 N

EMERGENCY STOP

CONTROLSIGNALS

REMOTE S/S

ACCESS LOCK

NOT USED

REMOTE OFF

SPRINKLER

Page 87: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 87 IL-NT-MRS-2.0-Reference Guide.pdf

Sensor Specification

Background of the sensor calibration

To correct measuring error of each analog input (pressure, temperature, level) calibrating constants within 10 % of measure range should be set. Two calibrating constants are set in physical units — bar,

oC, % .Calibration is made by adding the value of setpoint AIxCalibration directly to the calculated

value at analog input. Hint: The calibration must be done at the operational point of the analog input (e.g. 80°C, 4.0Bar etc..)

Default sensor curves

There are 20 default resistive curves available. The following table provides information on minimum/maximum values of respective sensors. Actual values especially of temperature curves may differ. Meaning is to prolong curve to the lower temperature values, so the cold engine will not raise alarm fail sensor.

Curve Min Value Max Value Unit

Datcon 5 Bar 0 5 Bar

Datcon 7 Bar 0 7 Bar

Datcon 10 Bar 0 10 Bar

Datcon 80 Psi 0 80 Psi

Datcon 100 Psi 0 100 Psi

Datcon 150 Psi 0 150 Psi

Datcon Low °C 25 150 °C

Datcon High °C 25 160 °C

Datcon Low °F 80 300 °F

Datcon High °F 80 320 °F

Datcon Fuel % 0 100 %

VDO 5 Bar 0 5 Bar

VDO 10 Bar 0 10 Bar

VDO 72 Psi 0 72 Psi

VDO 145 Psi 0 145 Psi

VDO 40-120 °C 40 120 °C

VDO 50-150 °C 50 150 °C

VDO 100-250 °F 100 250 °F

VDO 120-300°F 120 300 °F

VDO Fuel % 0 100 %

Hint: You can find detail information on sensors in LiteEdit Reference Guide and details about sensor fails in this manual in chapter Alarm Management — Sensor Fail (FLS).

Page 88: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 88 IL-NT-MRS-2.0-Reference Guide.pdf

Function Description

OFF Mode

No start of the gen-set is possible. Outputs STARTER, GCB CLOSE/OPEN and FUEL SOLENOID are not energized.

No reaction if buttons START,STOP,^GCB ON/OFF are pressed.

MAN Mode

START. — starts the gen-set.

^GCB ON/OFF

The controller closes GCB.

The controller opens GCB when closed.

If the generator voltage is out of the limits, the controller does not to respond to the GCB

ON/OFF

STOP stops the gen-set.

Hint: The engine can run without load unlimited time. The controller does not automatically stop the running gen-set in MAN Mode. The controller does not start the gen-set when binary input REM START/STOP is closed.

Start-stop sequence (simplified)

MODE = MAN (Engine start/stop request is given by pressing buttons START and STOP )

MODE = AUT (Engine start/stop request is evaluated form Mains failure/return)

State Condition of the transition Action Next state

Ready Start request PRESTART on Prestart Time counter started

Prestart

RPM > 2 or Oil pressure > Starting OilP detected or Gen voltage > 10V

Stop (Stop fail)

OFF Mode selected or Shut down alarm active

Not Ready

Not Ready RPM < 2, Oil pressure not detected, Vgen < 10V, D+ not Active no shutdown alarm active, other than OFF Mode selected

Ready

Prestart 3

Prestart time elapsed STARTER on FUEL SOLENOID on

4

MaxCrank Time counter started

Cranking

Cranking 3 RPM> Starting RPM STARTER off

PRESTART off

Starting

D+ input activated or oil pressure detected or Gen voltage > 25% Vgnom or D+ active for 1s

STARTER off PRESTART off

Cranking

Page 89: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 89 IL-NT-MRS-2.0-Reference Guide.pdf

State Condition of the transition Action Next state

MaxCrank Time elapsed, 1st attempt STARTER off FUEL SOLENOID off STOP SOLENOID on CrankFail Pause timer started

Crank pause

MaxCrank Time elapsed, last attempt STARTER off PRESTART off

Shutdown (Start fail)

Crank pause

3

CrankFail Pause elapsed STARTER on FUEL SOLENOID on

4

STOP SOLENOID off MaxCrank Time counter started

Cranking

Starting 3 80% Nominal RPM reached READY TO LOAD on

1

Min, Max Stab Time counter started

Running

RPM = 0 or any other shutdown condition FUEL SOLENOID off STOP SOLENOID on

Shutdown

60 sec. Elapsed FUEL SOLENOID off STOP SOLENOID on

Shutdown (Start fail)

Running Stop request READY TO LOAD off Cooling Time timer started

Cooling

RPM = 0 or any other shutdown condition READY TO LOAD off 2

FUEL SOLENOID off Shutdown

GCB CLOSE/OPEN closed Loaded

Loaded GCB CLOSE/OPEN opened Running

RPM = 0 or any other shutdown condition FUEL SOLENOID off STOP SOLENOID on READY TO LOAD off

Shutdown

Cooling

Cooling Time elapsed FUEL SOLENOID off STOP SOLENOID on

Stop

RPM = 0 or any other shutdown condition FUEL SOLENOID off STOP SOLENOID on

Shutdown

Start request READY TO LOAD on 1

Running

Stop RPM = 0, Oil pressure not detected, Vgen < 10V, D+ not active

Ready

If at least one of engine running indication is detected when Setpoint Stop Time elapsed. See more details in chapter Gen-Set Operation state – Stop engine conditions

Stop (Stop fail)

1 if all generator parameters OK and Min Stab Time elapsed, indicates that GCB is possible to close.

In AUTO Mode closes in this moment GCB automatically. 2 If GCB output used GCB opens automatically

3 The start-up sequence can be interrupted in any time by comming stop request

4 Fuel solenoid is switched on with time advance of 1s fixed before starter motor is switched on.

Hint: Threshold level for D+ input is 80% supply voltage, activation delay is 1s (to override short firings during cranking – for example in cold conditions).

AUT mode

The controller does not respond to buttons START, STOP, GCB ON/OFF. Engine start/stop request

is given by binary input REM START/STOP.

Page 90: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 90 IL-NT-MRS-2.0-Reference Guide.pdf

Alarm Management

Following alarms are available:

Sensor Fail

Warning

Breakers open and cooling (BOC)

Shut down

Mains failure

Sensor Fail (FLS)

Sensor Fail of analog inputs is detected in three ways. First when measured resistance value is lower than half of the lowest point of sensor characteristics. Second when measured resistance value is higher than 112,5% of highest point of sensor characteristics. Or when data from ECU are missing. Sensor Fail is indicated by ##### symbol instead measured value. Sensor Fail is only evaluated for values of sensor curve within range 1..14999Ohm. When the sensor characteristic curve consists values “0” or “15000”, the sensor fault for shortcircuit/sensor fail is not evaluated. Maximum allowable resistance value for sensor characteristics is 15000 Ohms.

Warning (WRN)

When warning comes up, only alarm outputs and common warning output are closed.

Possible warnings:

See List of possible events

Breaker open and cooling (BOC)

When the BOC alarm comes up, IL-NT opens first output GCB CLOSE/ to unload the gen-set and then after cooling time it also stops the gen-set. Alarm outputs and common shutdown output are activated. Active or not acknowledged protection disables gen-set start.

Possible BOC alarms:

See List of possible events

R1

R2

R3

R4 R5

Range of sensor

Page 91: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 91 IL-NT-MRS-2.0-Reference Guide.pdf

Shut down (SD)

When the shut-down alarm comes up, InteliLite opens outputs GCB CLOSE/OPEN, FUEL SOLENOID, STARTER and PRESTART to stop the engine immediately. Alarm outputs and common shutdown output are closed. Active or not reset protection disables start.

Possible shut-down alarms:

See List of possible events

Alarm time chart

«All the time» configured protections, I >, I >>, RPM >>, mains failure detection

GC

B o

pened

«Engine running only» protections, engine

water temperature luboil pressure

Underspeed

Sto

p

Sta

rt

Sta

rte

r O

FF

ProtectHoldoff

Sw

itched

to

nom

ina

l spe

ed

Min

Sta

b T

ime

GC

B c

lose

d

Max S

tab T

ime

Gen >V, <V,

>Freq, <FreqIdle Time

5 sec

Voltage phase sequence detection

InteliLite controller detects phase sequence on generator voltage terminals. This protection is important after controller installation to avoid wrong voltage phases phase connection. Following alarms can be detected:

Wrong phase sequence

There is fix defined phase sequence in InteliLite controller L1, L2, L3. When the phases are connected in different order (e.g. L1,L3,L2 or L2,L1,L3) following alarms are detected:

Gen CCW Rot = wrong generator phase sequence

GCB fail detection

GCB fail detection is based on binary output GCB close/open comparing with binary input GCB FEEDBACK. There are three different time delays for GCB fail detection – see following diagrams. When is BO GCB close/open in steady state and GCB feedback is changed the GCB fail is detected immediately (no delay).

Page 92: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 92 IL-NT-MRS-2.0-Reference Guide.pdf

Alarm: GCB fail

BO GCB close/open

BI GCB feedback

Alarm detection:

immediatelly

active

closed

opened

Alarm: GCB fail

BI GCB feedback

BO GCB close/open

Alarm detection:

immediatelly

active

opened

closed

When BO GCB close/open opens there is 5 sec delay for GCB fail detection.

Alarm: GCB fail

BO GCB close/open

BI GCB feedback

active

opened

opened

Time delay

5 sec

When BO GCB close/open closes, there is 5sec delay for GCB fail detection:

Alarm: GCB fail

BO GCB close/open

BI GCB feedback

active

closed

closed

Time delay

5 or 2 sec

Hint: You can solve state of GCB fail by pressing Fault Reset button. Generally it is possible to use IL-NT controller without feedback inputs (not configured). Controller will work with breakers anyway.

Page 93: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 93 IL-NT-MRS-2.0-Reference Guide.pdf

Gen-set Operation States

Engine state machine

Init Autotest during controller power on.

Not ready Gen-set is not ready to start. For example when shutdown alarm is active or unit is in OFF mode.

Prestart Prestart sequence in process, Prestart output is closed. Usually used for preheating or processes executed prior gen-set start.

Cranking Engine is cranking. Starter output is closed

Pause Pause between start attempts.

Starting Starting speed is reached and the Idle timer is running.

Running Gen-set is running at nominal speed.

Loaded Gen-set is running at nominal speed and GCB OPEN/CLOSE is closed.

Stop Stop. Automatic or manual stop command was issued, engine is stopping.

Shutdowns Shut-down alarm activated.

Ready Gen-set is ready to run.

Cooling Gen-set is cooling before stop.

EmergMan Emergency Manual gen-set operation. Used for bypass the controller and engine manual start.

“Engine started” conditions Engine speed (RPM) > Starting RPM or AI: Oil press > Starting POil or D+ terminal active (reached 80% of supply voltage) for minimum 1s or Generator voltage > 25% of NomVolts Ph-N or NomVolts Ph-Ph (any phase) Any of these condition will disconnect starter of the engine, however for transition to next state RPM needs to be higher than Starting RPM.

“Engine running” conditions RPM > 2 RPM or Analog input Oil pressure > Engine params: Starting POil or Vgen > 10 V (any phase).

Page 94: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 94 IL-NT-MRS-2.0-Reference Guide.pdf

“Still engine” conditions

Engine speed (RPM) <= 1 RPM AI: Oil press < Starting POil Generator voltage < 10V (all phases) When the engine was running before and all above conditions are fulfilled, additional 2s delay is necessary to confirm “still engine”. When any engine running conditiones are appeared on still engine than the Wrn Stop Fail is activated with following delay: — for generator voltage < 50% of nominal voltage, Wrn Stop Fail has delay 1s — for generator voltage > 50% of nominal voltage, Wrn Stop Fail has delay 200ms — for oil pressure > starting oil pressure, Wrn Stop Fail has delay 1s — for detected RPM, there is no delay.

“Stop engine”conditions

If no engine running conditions are validated than the controller will wait extra 10s before leaving the Machine state Stop and than it will release the Binary output Stop solenoid.

Fuel Solenoid is opened

Gen-set stoped

On

Off

TimeStop

Engine run 10 s

Oil Pressure

Stop SolenoidOutput

Generator voltage

Cooling Time

D+

RPM / Frequency

Stop Time

When the total time of stopping will exceed setpoint Stop time (in Engine Params) than the Stop fail warning and related binary outputs are activated. The controller will continuously try to stop the engine.

Fuel Solenoid is opened

Gen-set stoped

On

Off

TimeStop

Engine run 10 s

Oil Pressure

Stop SolenoidOutput

Generator voltage

Cooling Time

D+

RPM / Frequency

Stop Time

Stop Fail Warning

Page 95: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 95 IL-NT-MRS-2.0-Reference Guide.pdf

Electric state machine

MinStabTO Minimal Stabilization Timeout

MaxStabTO Maximal Stabilization Timeout

Trans Del Forward return break delay. Delay between GCB opening and MCB closing

List of possible events

Events specification Protection

type

Information on binary output available (See list of Binary outputs)

Description

AI1 Wrn WRN YES Value measured on analog input 1 is lower than AI1 Wrn setpoint.

AI1 Sd SD YES Value measured on analog input 1 is lower than AI1 Sd setpoint.

AI2 Wrn WRN YES Value measured on analog input 2 is greater than AI2 Wrn setpoint.

AI2 Sd SD YES Value measured on analog input 2 is greater than AI2 Sd setpoint.

AI3 Wrn WRN YES Value measured on analog input 3 is greater than AI3 Wrn setpoint.

AI3 Sd SD YES Value measured on analog input 3 is greater than AI3 Sd setpoint.

Wrn Batt Volt WRN YES Battery voltage is out of limits given by Batt Undervolt/Batt OverVolt setpoints.

IOM AIx Wrn WRN YES Warning alarm configurable on the input of IG-IOM/IGS-PTM.

IOM AIx Sd SD YES Shutdown alarm configurable on the input of IG-IOM/IGS-PTM.

Binary input Configurable YES Configurable Warning/BOC/Shutdown alarms on the inputs of IL-NT.

Sd BatteryFlat SD YES If the controller switches off during starting sequence due to bad battery condition it doesn’t try to start again and activates this protection.

Sd Start Fail SD YES Gen-set start failed. All crank attempts were tried without success.

ParamFail NONE NO Wrong checksum of parameters. Happends typically after downloading new firmware or changing of the parameter. The controller stays in INIT mode. Check all parameters, write at least one new parameter.

Sd Gen Lx >V BOC Gen Lx <V (where x=1,2,3)

SD BOC

YES The generator voltage is out of limits given by Gen <V BOC and Gen >V Sd setpoints.

BOC Gen V Unbal BOC YES The generator voltage is unbalanced more than the value of Volt Unbal BOC setpoint.

BOC Gen >, <Freq BOC YES The generator frequency is out of limits given by Gen >Freq BOC and Gen <Freq BOC setpoints.

BOC Amps Unbal BOC NO The generator current is unbalanced.

BOC Amps IDMT BOC NO Generator current exceeds the limit for IDMT protection given by Nominal current and Amps IDMT Del setpoints.

BOC Overload BOC YES The load is greater than the value

Page 96: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 96 IL-NT-MRS-2.0-Reference Guide.pdf

Events specification Protection

type

Information on binary output available (See list of Binary outputs)

Description

given by Overload setpoint.

Sd Earth Fault SD YES This alarm is activated when Eart Fault value exceeds Earth Fault Sd limit for at least Earth Fault Del period.

Sd Overspeed SD YES The protection comes active if the speed is greater than Overspeed setpoint.

Sd Underspeed SD YES During starting of the engine when the RPM reach the value of Starting RPM setpoint the starter is switched off and the speed of the engine can drop under Starting RPM again. Then the Underspeed protection becomes active. Protection evaluation starts 5 seconds after reaching StartingRPM.

EmergencyStop SD NO If the input Emergency Stop is opened shutdown is immediately activated.

GCB Fail SD NO Failure of generator circuit breaker.

Sd RPMMeasFail SD NO Failure of magnetic pick-up sensor for speed measurement. This alarm appears, if starter was disengaged for other reason than overcrossing starting speed (like oil pressure or D+) and at the end of timer Max Crank Time there are no RPMs > Starting speed detected.

Wrn Stop Fail WRN YES Gen-set stop failed. See descrition at Gen-set Operation States chapter.

WrnMaintenance WRN NO The period for servicing is set by the WrnMaintenance setpoint. The protection comes active if the running hours of the engine reach this value.

Wrn FuelThef WRN Fuel theft indication alarm.

ChargeAlt Fail WRN YES Failure of alternator for charging the battery.

Sd Override

WRN NO The protection is active if the output Sd Override is closed.

*Wrn RA15 Fail WRN NO Warning alarm in case of lost connection to IGL-RA15 module.

*Sd IOM Fail SD NO Shutdown alarm in case of lost connection to IG-IOM/IGS-PTM module.

Wrn ECU Alarm WRN NO ECU alarm list is not empty

Low BackupBatt WRN NO RTC backup battery is flat

Gen CCW Rot WRN NO Genset voltage phases are not wired correctly. MCB closing is prohibited by chontroller.

History file

InteliLite NT stores a record of each important event into the history file. The history file seats 100+ records. When the history file is full, the oldest records are removed. Number of history records varies with number of configured modules.

Page 97: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 97 IL-NT-MRS-2.0-Reference Guide.pdf

For different ConnectionType [3Ph4Wire / 3Ph3Wire / Split Ph / Mono Ph] different voltages are shown in history file. In fact always Ph-Ph voltage is shown, but due to different connections the result is following:

1. For 3Ph4Wire: a. Vg1 = Gen. Ph-Ph voltage L1-L2 b. Vg2 = Gen. Ph-Ph voltage L2-L3 c. Vg3 = Gen. Ph-Ph voltage L3-L1

2. For 3Ph3Wire: a. Vg1 = Gen. Ph-Ph voltage L1-L2 b. Vg2 = Gen. Ph-Ph voltage L2-L3 c. Vg3 = Gen. Ph-Ph voltage L3-L1

3. For Split Ph: a. Vg1 = Gen. Ph-Ph voltage L1-L2 b. Vg2 = Gen. Ph-N voltage L2 c. Vg3 = Gen. Ph-N voltage L1

4. For Mono Ph: a. Vg1 = Gen. Ph-N voltage L1 b. Vg2 = 0 c. Vg3 = 0

The mains voltages are displayed in history analogously. Hint: To force history download in LiteEdit (direct, modem or Internet) open History window and select History | Read history command. Hint: The first history record after the controller is switched on, programmed or watchdog reset occurs contains diagnostic values instead of operational. Some fields in these records seem to have nonsense values. Do not take these values into account. Hint: Some of the controller models doesn´t have RTC. In this case there is no Date column and the Time column contains information about running hours.

Record structure

Abbreviation Historical value

Num Number of historical event

Reason Event specification

Date Date of historical event in format DD/MM/YY

Time Time of historical event in format HH:MM:SS

Mode Controller’s mode

RPM Engine speed

Pwr Generator active power

PF Generator PF

LChr Character of the load

Gfrq Generator frequency

Vg1 Generator voltage L1-L2 or *see description above

Vg2 Generator voltage L2-L3 or *see description above

Vg3 Generator voltage L3-L1 or *see description above

Ig1 Generator current L1

Ig2 Generator current L2

Ig3 Generator current L3

UBat Battery voltage

OilP IL-NT Analog input 1 value ( default Oil pressure)

EngT IL-NT Analog input 2 value ( default Water temperature)

FLvl IL-NT Analog input 3 value ( default Fuel Level)

BIN Binary inputs IL-NT

BOUT Binary outputs IL-NT

Page 98: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 98 IL-NT-MRS-2.0-Reference Guide.pdf

BIOE* Binary inputs/outputs plug-in module (when IL-NT-BIO8 module is configured)

FC* ECU alarm FailureCode (when ECU is configured)

FMI* ECUalarm Failure Mode Identifier (when ECU is configured)

AIM1* IG-IOM, IGS-PTM Analog input 1 value (when configured IG-IOM, IGS-PTM)

AIM2* IG-IOM, IGS-PTM Analog input 2 value (when configured IG-IOM, IGS-PTM)

AIM3* IG-IOM, IGS-PTM Analog input 3 value (when configured IG-IOM, IGS-PTM)

AIM4* IG-IOM, IGS-PTM Analog input 4 value (when configured IG-IOM, IGS-PTM)

BIM* IG-IOM, IGS-PTM Binary inputs (when configured IG-IOM, IGS-PTM)

BOM* IG-IOM, IGS-PTM Binary outputs (when configured IG-IOM, IGS-PTM)

EF Earth fault current

*Depends if enabled in configuration (see more details in LiteEdit-4.4-Reference Guide.pdf)

Page 99: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 99 IL-NT-MRS-2.0-Reference Guide.pdf

Init Screens

Each InteliLite NT controller holds informations about serial number, uploaded firmware version and others. These informations are displayed on so called “Init Screens”. It is possible to call this screens

from any measurement screen by pressing ENTER and PAGE buttons concurrently and then only

PAGE button separately.

Inits screens consists of:

Customer Logo screen

This is a first screen which is dedicated for informations provided by customers such as contact numbers, service technician contact and customer message for end users of gen-set. Configuration of this screen is only done by LiteEdit PC software.

Firmware Init screen

This screen consists informations about type of controller, controller manufacturer ComAp, uploaded firmware branch, used application and version of firmware. There is also information about currently configured electronic engine, respectively used ESF file. Details on recognition of configured electronic engine are in chapter Identifying configured ECU.

Language screen

IL-NT controller offers configurable language support. On this screen si possible to switch between languages configured in controller. Other way to change language is by binary input Lang Selection.

User Interface screen

InteliLite NT controller since IL-NT 1.3 SW enables to choose the user interface as customer prefers. There are two choices available: USER or ENGINEER interface. USER interface is ment for customers, who prefer simple and easy menu and don’t wish to list in complex menu or change the settings of controller. In USER interface controller displayes measuring, alarm and init screens. ENGINEER interface is dedicated for engineers and allow changing the settings of controller, reviewing the history, measurement, alarms and grant the full access to all controllers screens with are available. This mode is default. This screen also consists information about controller’s Serial number and Password decode number which can be useful in case of lost password to controller. For this situations please contact your distributor for help and these two numbers will be needed to recover the password. Last value displeyed on screen is DiagData, which is internal ComAp information is case of FW or unit problems, which helps ComAp to analyze the root cause and find a proper solution. Please see latest IL-NT Operator Guide for detailed description.

Page 100: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 100 IL-NT-MRS-2.0-Reference Guide.pdf

Remote Control and Data Logging

Direct connection to the PC

InteliLite can be connected directly with PC via optional IL-NT RS232 interface. Use the recommended ComAp AT-LINK CABLE 1.8M or cross-wired serial communication cable with DB9 female connectors and signals Rx, Tx, GND for RS232 connection. Hint: Make sure the grounding system on controller and PC – COM port (negative of the PC DC supply) are identical – before the first direct connection. There must not be any voltage between these two points otherwise the internal reversible fuse in controller burns out. The simple solution is to assure, that the PC supply 240/20V is ground free (GND terminal is not connected).

RS232, USB or RS485 interface can be used for direct cable connection to a PC. The setpoint COM1 Mode or COM2 Mode (according to the interface used) must be set to DIRECT position for this kind of connection.

Page 101: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 101 IL-NT-MRS-2.0-Reference Guide.pdf

DIRECT CABLE CONNECTION TYPES

Following modules are available for direct connection to a PC:

1. IL-NT-232

2. IL-NT-RS232-485

3. IL-NT-S-USB (USB easy removable service module)

The RS232 or USB interface uses COM1 port of the controller. The RS485 uses COM2.

PC software — LiteEdit

On the PC (for direct or modem connection) has to be installed the ComAp’s software package LiteEdit. (based on Windows 95 or newer platform) LiteEdit enables: read the quantities adjust all set points control the engine configure the controller select software configuration modify alarm inputs and outputs modify password, commands protections direct, modem or Internet communication

Modbus protocol

The selection of the function of IL serial port is done via the setpoint COMx Mode in Basic settings

57600 bps, 8 data bits, 1 stop bit, no parity

Page 102: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 102 IL-NT-MRS-2.0-Reference Guide.pdf

Transfer mode RTU

Function 3 (Read Multiply Registers)

Function 6 (Write Single Register)

Function 16 (Write Multiply Registers)

The response to an incoming message is sent with minimum 4.096 ms delay after message reception

The complete description of Modbus communication protocol can be found in Modbus Protocol Reference Guide PI-MBUS-300 and Open Modbus Specification Release 1.0. Both documents are available from web site at http://www.modicon.com/openmbus/ . Communication object vs. Register All the data intended for communication has its representation as communication objects in the controller. The communication object is represented by the n-byte array in the controller memory and identified by the unique 16-bit communication object number. The register, according to Modbus communication protocol, represents a two-byte data and in communication functions is referenced by 16-bit register address. Further in the description of communication functions the communication object number will always be used as a register address and length of the communication object will be expressed by number of registers. Just one communication object can be read or written by one communication function. Hint: To obtain communication object numbers it is possible to download the actual controller description on-line from controller or from (ail) archive and use “export data” function from LiteEdit software. Communication object list (exported from default IL-NT-MRS16 archive) Setpoints of MRS16:

Name Firmware ver. Application Date App. ver. Ser. num. Filename

IL-NT IL-NT-2.0

R:18.05.2012 MRS16 7.6.2012 2,0 12345678 IL-NT-MRS16-2.0.AIL

Group Name Value Dimension

Com. obj. Low limit High limit Data type

Basic Settings Gen-set Name IL-NT 8637

Short string

Basic Settings Nominal Power 200 kW 8276 1 5000 Unsigned 16

Basic Settings Nomin Current 350 A 8275 1 10000 Unsigned 16

Basic Settings CT Ratio 2000 /5A 8274 1 5000 Unsigned 16

Basic Settings PT Ratio 1 /1 9579 0,1 500 Unsigned 16

Basic Settings NomVolts Ph-N 231 V 8277 80 20000 Unsigned 16

Basic Settings NomVolts Ph-Ph 400 V 11657 80 40000 Unsigned 16

Basic Settings Nominal Freq 50 Hz 8278 45 65 Unsigned 16

Basic Settings Gear Teeth 120 8252 0 500 Unsigned 16

Basic Settings Nominal RPM 1500 RPM 8253 100 4000 Unsigned 16

Basic Settings ControllerMode OFF 8315

String list

Basic Settings Reset To MAN DISABLED 9983

String list

Basic Settings Backlight Time 15 min 10121 0 241 Unsigned 8

Basic Settings ConnectionType 3Ph4Wire 11628

String list

Comms Settings ControllerAddr 1 24537 1 32 Unsigned 8

Comms Settings COM1 Mode DIRECT 24522

String list

Comms Settings COM2 Mode DIRECT 24451

String list

Comms Settings ModemIniString

24436

Long string

Page 103: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 103 IL-NT-MRS-2.0-Reference Guide.pdf

Comms Settings ModbusComSpeed 9600 bps 24477

String list

Comms Settings IBLite IP Addr 192.168.1.254 24376

Short string

Comms Settings IBLite NetMask 255.255.255.0 24375

Short string

Comms Settings IBLite GateIP 192.168.1.1 24373

Short string

Comms Settings IBLite DHCP ENABLED 24259

String list

Comms Settings ComAp Port 23 24374 0 65535 Unsigned 16

Comms Settings APN Name

24363

Long string

Comms Settings APN User Name

24361

Long string

Comms Settings APN User Pass

24360

Short string

Comms Settings AirGate ENABLED 24365

String list

Comms Settings AirGate IP airgate.comap.cz 24364

Long string

Comms Settings SMTP User Name

24370

Long string

Comms Settings SMTP User Pass

24369

Short string

Comms Settings SMTP Server IP

24368

Long string

Comms Settings Contr MailBox

24367

Long string

Comms Settings Time Zone GMT+1:00 24366

String list

Comms Settings DNS IP Address 8.8.8.8 24362

Short string

Engine Params Starting RPM 25 % 8254 5 50 Unsigned 8

Engine Params Starting Oil P 4,5 Bar 9681 0 10 Integer 16

Engine Params Prestart Time 2 s 8394 0 600 Unsigned 16

Engine Params MaxCrank Time 5 s 8256 1 255 Unsigned 8

Engine Params CrnkFail Pause 8 s 8257 5 60 Unsigned 8

Engine Params Crank Attempts 3 8255 1 10 Unsigned 8

Engine Params Idle Time 12 s 9097 0 600 Unsigned 16

Engine Params Min Stab Time 2 s 8259 1 10 Unsigned 16

Engine Params Max Stab Time 10 s 8313 2 300 Unsigned 16

Engine Params Cooling Speed NOMINAL 10046

String list

Engine Params Cooling Time 30 s 8258 0 3600 Unsigned 16

Engine Params Stop Time 60 s 9815 0 600 Unsigned 16

Engine Params Fuel Solenoid DIESEL 9100

String list

Engine Params D+ Function DISABLED 9683

String list

Engine Params Fuel Pump ON 20 % 10100 -100 90 Integer 16

Engine Params Fuel Pump OFF 90 % 10101 20 10000 Integer 16

Engine Params TempSwitch ON 90 — 8688 -100 10000 Integer 16

Engine Params TempSwitch OFF 75 — 8689 -100 10000 Integer 16

Engine Params PowerSwitch ON 100 kW 11658 0 32000 Integer 16

Engine Params PowerSwitchOFF 50 kW 11659 0 32000 Integer 16

Engine Params FuelTankVolume 200 L 11103 0 10000 Unsigned 16

Engine Params MaxFuelDrop 25 %/h 12373 0 50 Unsigned 8

Engine Protect ProtectHoldOff 5 s 8262 0 300 Unsigned 16

Engine Protect Horn Timeout 10 s 8264 0 600 Unsigned 16

Engine Protect Overspeed Sd 115 % 8263 50 150 Unsigned 16

Engine Protect AI1 Wrn 2 Bar 8369 -10 1000 Integer 16

Engine Protect AI1 Sd 1 Bar 8370 -10 1000 Integer 16

Page 104: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 104 IL-NT-MRS-2.0-Reference Guide.pdf

Engine Protect AI1 Del 3 s 8365 0 900 Unsigned 16

Engine Protect AI2 Wrn 80 °C 8375 -100 10000 Integer 16

Engine Protect AI2 Sd 90 °C 8376 -100 10000 Integer 16

Engine Protect AI2 Del 5 s 8371 0 900 Unsigned 16

Engine Protect AI3 Wrn 20 % 8381 -100 10000 Integer 16

Engine Protect AI3 Sd 10 % 8382 -100 10000 Integer 16

Engine Protect AI3 Del 10 s 8377 0 900 Unsigned 16

Engine Protect Batt Overvolt 36 V 9587 18 40 Integer 16

Engine Protect Batt Undervolt 18 V 8387 8 40 Integer 16

Engine Protect Batt Volt Del 5 s 8383 0 600 Unsigned 16

Engine Protect WrnMaintenance 9999 h 9648 0 10000 Unsigned 16

Gener Protect Overload BOC 120 % 8280 0 200 Unsigned 16

Gener Protect Overload Del 5 s 8281 0 600 Unsigned 16

Gener Protect Short Crct BOC 250 % 8282 100 500 Unsigned 16

Gener Protect Short Crct Del 0,04 s 9991 0 10 Unsigned 16

Gener Protect Amps IDMT Del 4 s 8283 1 60 Unsigned 16

Gener Protect Amps Unbal BOC 50 % 8284 1 200 Unsigned 16

Gener Protect Amps Unbal Del 5 s 8285 0 600 Unsigned 16

Gener Protect Gen >V Sd 110 % 8291 70 200 Unsigned 16

Gener Protect Gen <V BOC 70 % 8293 0 110 Unsigned 16

Gener Protect Gen V Del 3 s 8292 0 600 Unsigned 16

Gener Protect Volt Unbal BOC 10 % 8288 1 200 Unsigned 16

Gener Protect Volt Unbal Del 3 s 8289 0 600 Unsigned 16

Gener Protect Gen >Freq BOC 110 % 8296 85 200 Unsigned 16

Gener Protect Gen <Freq BOC 85 % 8298 0 110 Unsigned 16

Gener Protect Gen Freq Del 3 s 8297 0 600 Unsigned 16

Date/Time Time Stamp Per 60 min 8979 0 240 Unsigned 8

Date/Time SummerTimeMod DISABLED 8727

String list

Date/Time Time 0:00:00 24554

Time

Date/Time Date 1.1.2006 24553

Date

Date/Time Timer1Function No Func 11660

String list

Date/Time Timer1 Repeat NONE 10045

String list

Date/Time Timer1 ON Time 5:00:00 10042

Time

Date/Time Timer1Duration 5 min 10044 1 1440 Unsigned 16

Date/Time Timer2Function No Func 11661

String list

Date/Time Timer2 Repeat NONE 10202

String list

Date/Time Timer2 ON Time 5:00:00 10199

Time

Date/Time Timer2Duration 5 min 10201 1 1440 Unsigned 16

Sensors Spec AI1Calibration 0 Bar 8431 -100 100 Integer 16

Sensors Spec AI2Calibration 0 °C 8407 -1000 1000 Integer 16

Sensors Spec AI3Calibration 0 % 8467 -1000 1000 Integer 16

SMS/E-Mail Yel Alarm Msg OFF 8482

String list

Page 105: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 105 IL-NT-MRS-2.0-Reference Guide.pdf

SMS/E-Mail Red Alarm Msg OFF 8484

String list

SMS/E-Mail Event Msg OFF 10926

String list

SMS/E-Mail TelNo/Addr Ch1

9597

Long string

SMS/E-Mail TelNo/Addr Ch2

9598

Long string

SMS/E-Mail SMS Language 1 11394 1 2 Unsigned 8

Alternate Cfg Nominal RPM 1 1500 RPM 9915 100 4000 Unsigned 16

Alternate Cfg Nominal Freq 1 50 Hz 9913 45 65 Unsigned 16

Alternate Cfg NomVoltsPh-N 1 230 V 12052 80 20000 Unsigned 16

Alternate Cfg NomVoltsPh-Ph1 400 V 12055 80 40000 Unsigned 16

Alternate Cfg Nomin Current1 350 A 12049 1 10000 Unsigned 16

Alternate Cfg Connect Type 1 3Ph4Wire 12058

String list

Alternate Cfg Nominal RPM 2 1800 RPM 9916 100 4000 Unsigned 16

Alternate Cfg Nominal Freq 2 60 Hz 9914 45 65 Unsigned 16

Alternate Cfg NomVoltsPh-N 2 120 V 12053 80 20000 Unsigned 16

Alternate Cfg NomVoltsPh-Ph2 208 V 12056 80 40000 Unsigned 16

Alternate Cfg Nomin Current2 350 A 12050 1 10000 Unsigned 16

Alternate Cfg Connect Type 2 3Ph4Wire 12059

String list

Values of MRS16:

Name Firmware ver. Application Date App. ver. Ser. num. Filename

IL-NT IL-NT-2.0

R:18.05.2012 MRS16 7.6.2012 2,0 12345678 IL-NT-MRS16-

2.0.AIL

Group Name Value Dimension Com. obj. Data type

Engine RPM 0 RPM 8209 Unsigned 16

Generator Gen kW 0 kW 8202 Integer 16 Generator Gen kW L1 0 kW 8524 Integer 16 Generator Gen kW L2 0 kW 8525 Integer 16 Generator Gen kW L3 0 kW 8526 Integer 16 Generator Gen kVAr 0 kVAr 8203 Integer 16 Generator Gen kVAr L1 0 kVAr 8527 Integer 16 Generator Gen kVAr L2 0 kVAr 8528 Integer 16 Generator Gen kVAr L3 0 kVAr 8529 Integer 16 Generator Gen kVA 0 kVA 8565 Integer 16 Generator Gen kVA L1 0 kVA 8530 Integer 16 Generator Gen kVA L2 0 kVA 8531 Integer 16 Generator Gen kVA L3 0 kVA 8532 Integer 16 Generator Gen PF 0 8204 Integer 8 Generator Gen Char 8395 Char Generator Gen PF L1 0 8533 Integer 8 Generator Gen Char L1 8626 Char Generator Gen PF L2 0 8534 Integer 8 Generator Gen Char L2 8627 Char Generator Gen PF L3 0 8535 Integer 8 Generator Gen Char L3 8628 Char Generator Gen Freq 0 Hz 8210 Unsigned 16 Generator Gen V L1-N 0 V 8192 Unsigned 16 Generator Gen V L2-N 0 V 8193 Unsigned 16 Generator Gen V L3-N 0 V 8194 Unsigned 16 Generator Gen V L1-L2 0 V 9628 Unsigned 16 Generator Gen V L2-L3 0 V 9629 Unsigned 16 Generator Gen V L3-L1 0 V 9630 Unsigned 16

Page 106: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 106 IL-NT-MRS-2.0-Reference Guide.pdf

Generator Gen A L1 0 A 8198 Unsigned 16 Generator Gen A L2 0 A 8199 Unsigned 16 Generator Gen A L3 0 A 8200 Unsigned 16

Controller I/O Battery Volts 0 V 8213 Integer 16 Controller I/O D+ 0 V 10603 Integer 16 Controller I/O Oil Pressure 0 Bar 8227 Integer 16 Controller I/O Engine Temp 0 °C 8228 Integer 16 Controller I/O Fuel Level 0 % 8229 Integer 16 Controller I/O Bin Inputs [000000] 8235 Binary 16 Controller I/O Bin Outputs [000000] 8239 Binary 16 Controller I/O GSM SignalLvl 0 % 11895 Unsigned 16 Controller I/O GSM ErrorRate 0 12199 Unsigned 8 Controller I/O GSM Diag Code: 0 11270 Unsigned 8 Controller I/O AirGate Diag: 0 11271 Unsigned 8

Controller I/O AirGate ID: No Connection 12385 Long string

Controller I/O Modem Status:

No Connection 12485 Short string

Statistics Genset kWh 0 8205 Integer 32 Statistics Genset kVArh 0 8539 Integer 32 Statistics Run Hours 0 h 8206 Integer 32 Statistics Num Starts 0 8207 Unsigned 16 Statistics Maintenance 9999 h 9648 Unsigned 16 Statistics Num E-Stops 0 11195 Unsigned 32 Statistics Shutdowns 0 11196 Unsigned 32 Statistics TotFuelConsum 0 L 9040 Unsigned 32

IL Info Engine State ##### 8330 Unsigned 16 IL Info Breaker State ##### 8455 Unsigned 16 IL Info Timer Text ##### 8954 Unsigned 16 IL Info Timer Value 0 s 8955 Unsigned 16 IL Info FW Version 2 8393 Unsigned 8 IL Info Application 4 8480 Unsigned 8 IL Info FW Branch 1 8707 Unsigned 8 IL Info PasswordDecode ##### 9090 Unsigned 32 IL Info DiagData ##### 10050 Unsigned 32

Date/Time Time ##### 24554 Time Date/Time Date ##### 24553 Date

Page 107: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 107 IL-NT-MRS-2.0-Reference Guide.pdf

Remote Communication

Hint: Refer to InteliCommunication guide for all additional information.

Internet connection

IL-NT controllers can be monitored from LiteEdit over the Internet using Internet Bridge (IG-IB) connected to the controller RS232 port. Or via plug-in card IB-Lite directly plugged in communication slot on back side of the controller.

SNMP connection

For SNMP protocol support it is possible to use converter Modbus RTU — SNMP with ComAp order code “GNOME SNMP CONVERTER IL-NT”.

For connection of 1-32 IL-NT controllers to a SNMP supervision system

Supports GET, SET, TRAP transactions

For more details see IL-NT, IA-NT, IC-NT Communication Guide available here:

http://www.comap.cz/products/detail/intelilite-nt-amf-25/downloads/#tabs

Recommended ISDN modem

Askey TAS-200E

ASUScom TA-220ST

Develo Microlink ISDN i

Recommended GSM modem

Siemens M20, TC35, TC35i, ES75, MC39 (Cinterion MC55i is NOT recommended)

Wavecom M1200/WMOD2

Wavecom — Maestro 20, dual 900/1800MHz.

Wavecom – Fastrack M1306B, dual 900/1800 MHz (Fastrack M1206B is NOT recommended)

FALCOM A2D, dual 900/1800MHz.

GSM Modem setup

Prior to start work with GSM modem run following program for GSM proper setup. Program writes all the necessary AT commands to configure the GSM modem properly for use with IL-NT. This program runs independent on LiteEdit:

Start MS Windows-Start-Program files — LiteEdit –Gm_setup.exe.

Select COM port

Select iG-CU (=IS-CU) or iG-MU unit

Press Setup button

Follow commands in GSM Modem Setup window Typical real baud rate for GSM data communication is 80 to 90 Bps. Hint: It is strongly recommended to use the same type of modem on the both sides (IL and PC) of connection.

Page 108: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 108 IL-NT-MRS-2.0-Reference Guide.pdf

Mobile SIM card setting

Adjust SIM card in GSM modem following way:

enable data connection (when required)

no PIN code

Short guide how to start using IL-NT-GPRS module

CAUTION! Any manipulation with plug-in module shall be done with disconnected power supply to both controller and module. Power supply shall be switched on also is same time to both module and controller. Fail to follow these instructions (power supply active only in controller or only in module) can lead to module or controller failure!

1. You will need one of supported ComAp controllers (IL-NT/IC-NT/ID-Lite), IL-NT-GPRS, antenna, SIM card with GPRS service and optionally IL-NT-RS232 or IL-NT-S-USB module. Firmware supporting IL-NT-GPRS module is IL-NT-WSUP 1.0 or selected customer branches (contact [email protected] for details). It is available here: http://www.comap.cz/products/detail/IL-NT-GPRS/support/software/

2. Contact SIM card operator for getting GPRS APN (APN = Access Point Name) name, username and password. Some operator’s APNs are listed here: http://www.quickim.com/support/gprs-settings.html#Australia or here: http://www.flexispy.com/Mobile%20APN%20Setting%20to%20use%20GPRS.htm Example: APN Name = internet.t-mobile.cz, UserName = [blank], Password = [blank].

3. Make sure SIM card does not require PIN code. If it does, it is possible to disable it in any common network unlocked mobile telephone.

4. Power up the ComAp controller. 5. Enter correct APN Name, APN UserName and APN UserPass in controller’s setpoint group

Comms Settings. Set COM1 Mode = DIRECT. Comms settings as every sepoint group are

Analog modem

Analog modem

GSM modem

GSM modem or

Page 109: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 109 IL-NT-MRS-2.0-Reference Guide.pdf

accessible by PAGE button from any measurement screen on controller. Setpoints can be set on controller’s front panel keyboard or by LiteEdit 4.5 and higher.

6. Switch off ComAp controller. 7. Place the SIM card into slot on IL-NT-GPRS card, plug in the IL-NT-GPRS card into

communication slot on back side of ComAp controller. 8. Connect the antenna to designated SMA connector. 9. Connect power supply to IL-NT-GPRS module. It supports 8-36V DC voltage. 10. Power up the system. 11. Wait for approx 2 — 4 minutes for first connection of the system to AirGate. AirGate will

generate automatically the AirGate ID value. Then navigate to last of measurement screens where you will find signal strength bar and AirGate ID identifier.

Once this AirGate ID is displayed, connection via AirGate was succesfull. This value will be needed for LiteEdit or WebSupervisor connection. Kindly make a note for future reference. AirGate Connection dialog in LiteEdit:

Add new gen-set dialog in WebSupervisor:

Should you encounter any troubles with connection, check the faultcodes on the same screen and find detailed description in Diagnostic codes listed lower.

12. Open LiteEdit PC software or enter your WebSupervisor account at http://websupervisor.comap.cz.

Hint: For opening a new WebSupervisor account kindly send e-mail to [email protected] your Name, Login name, E-mail address and Timezone. We will create free account for you. Details at: http://www.comap.cz/products/detail/WebSupervisor .

Page 110: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 110 IL-NT-MRS-2.0-Reference Guide.pdf

Communication is now ready for use. Hint: To reduce the data traffic over GPRS network you can set in setpoint group „Comms Settings“ the parameter „AirGate IP“ = 80.95.108.26. This will save significant data amount needed for translation of Airgate server IP address. In case of changing the server IP address this settings has to be updated or returned to default „airgate.comap.cz“. Hint: From it’s nature the GPRS connection can from time to time drop for a short time due to a number of reasons affecting the cellular network. However the system is designed in the way that controller will automaticaly reconnect back.

GSM Diag Code – Diagnostic code for IL-NT-GPRS modem

Table of Diagnostic Codes:

Code Description

0 OK. No error.

1 Not possible to hang up.

2 IL-NT-GPRS is switched off

3 IL-NT-GPRS is switched on

4 IL-NT-GPRS – error in initialization

5 IL-NT-GPRS – not possible to set the APN

6 IL-NT-GPRS – not possible to connect to GPRS network

7 IL-NT-GPRS – not possible to retrieve IP address

8 IL-NT-GPRS – not accepted DNS IP address

9 Error in modem detection

10 Error in initialization of analog modem

11 SIM card is locked (Possibly PIN code required, PIN needs to be deactivated) or unknown

status of SIM locking

12 No GSM signal

13 Not possible to read the SIM card parameters

14 GSM modem did not accepted particular initialization command, possibly caused by

locked SIM card

15 Unknown modem

16 Bad answer to complement initialization string

17 Not possible to read GSM signal strength

18 CDMA modem not detected

19 No CDMA network

20 Unsuccesful registration to CDMA network

255 Only running communication is needed to indicate

AirGate Diag – Diagnostic Code for AirGate connection Table of Diagnostic Codes:

Code Description

0 Waiting for connection to AirGate Server

1 Controller registered, waiting for authorization

2 Not possible to register, controller blacklisted

3 Not possible to register, server has no more capacity

4 Not possible to register, other reason

5 Controller registered and authorized

Page 111: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 111 IL-NT-MRS-2.0-Reference Guide.pdf

IL-NT-RD Remote display software

This chapter describes Remote display software IL-NT-RD, which is designed as an remote signalling and control software for InteliLite-NT and InteliDrive Lite controllers. It is the optional software which is possible to upload into controller instead of standard controller’s firmware.

General description

Remote display software works as “remote display and control” for the master InteliLite-NT or InteliDrive Lite controller. Genset/Engines can be controlled from remote display as well as from master controller. All remote display screens (Measure, Setpoints and History) displays the same data like master controller. Front panel buttons on both controllers work the same way. All remote display LED’s shows the same state as corresponding LED’s on master controller.

Warning !

It is highly recommended to use the same type and model of controller for master and remote display. Only in such case is assured the proper function of all buttons, LED diods and display. Another combinations of HW types and models from Master controller and remote display are not supported nor tested!

IL-NT-RD Software installation

The IL-NT-RD remote display firmware is installed in the same way as any other IL-NT firmware using LiteEdit software. Please see LiteEdit Reference guide for details about upgrading firmware. IL-NT-RD consists only firmware, not an archive. However when there is IL-NT-RD firmware installed in the controller the procedure to install back the original standard firmware is following:

Open any type of online connection.

DDE server will try to open the connection, but it will fail and write red error message in the status bar.

In this moment go to CONTROLLER -> PROGRAMMING AND CLONING -> PROGRAMMING and select proper! firmware you want program to the controller. Choosing the wrong type of firmware

Page 112: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 112 IL-NT-MRS-2.0-Reference Guide.pdf

may result in non-functional controller.

Press «OK» button to programm the firmware to the controller.

It may be required to switch off power supply of controller, close the boot jumper and switch on controller again. Follow the information windows accordingly.

After programming is finished (it may be required to power off controller, open the boot jumper and power it on again) open configuration window and perform the configuration process manually. There is no compatibility of the configuration between different firmware versions.

In some cases the «wrong setpoints» message can occur in the DDE server status line and the controller is blocked showing «Init» state. Use CONTROLLER -> RESET FROM INIT STATE menu item to put the controller to normal operation. Be sure you have checked all setpoints before.

CAUTION! Check the statistic value «Engine hours» after firmware upgrade. Change of statistical values if necessary is possible only by LiteEdit software (password is required).

IL-NT-RD Wiring

IL-NT-RD can be connected to InteliLite-NT or InteliDrive Lite controller via RS232 or RS485 communication line. It is possible to connect only up to two remote displays to one master controller, if they are using different communication COMs. It is not supported to connect two or more remote displays to one communication line, eg. RS485. It is possible to monitor only one master controller from one remote display at the time.

Connection process

Remote display after power on automaticaly starts to search for any master controller connected. It starts to search on COM1 from master controllers address 1 to 32 and later on COM2 from address 1 to 32. Remote display tries two communication speeds 38400 bps and 56000bps. During this process is displayed text “Detecting…” on screen and progress bar below counts from 0 to 100%. This process takes approx. 10-15 seconds. Than is 5 seconds pause and process continues again until compatible master controller is found. Not supported types of controllers, not supported application, or controllers that are not properly comunicating are skipped during the search.

Controller type selection

IL-NT-RD automatically detects controller type.

Troubles with connection There are few reasons why remote display can not connect with master controller:

1. Not supported type of controller connected (Eg. IGS-NT, ID-DCU, IC-NT, IGS-CU, etc.)

Page 113: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 113 IL-NT-MRS-2.0-Reference Guide.pdf

2. Not supported firmware in master controller 3. Configuration table error in master controller 4. Wrong settings of setpoint COMx Mode in master controller 5. Wrong connection, wiring, communication fail

Direct RS232 connection

HW module: IL-NT-RS232 Master controller settings: ControllerAddr = 1..32 COM1 Mode = DIRECT Up to 2 meters: It is recommended to use our standard AT-LINK cable.

IL-NT

ID-Lite

IL-NT-

RS232

IL-NT-

RS232

IL-NT

ID-Lite

Remote Display Master controller

RS 232 (COM1)

Up to 10 meters: It is recommended to use standard Null-modem cable for local connection between controller and remote display, although the three wires (TxD, RxD, GND) RS 232 connection is enough for direct communication:

IL-NT/ID-Lite connector D-SUB9 female

IL-NT-RD connector D-SUB9 female

RxD 2 3 TxD TxD 3 2 RxD GND 5 5 GND

Remote RS485 and/or direct RS232 connection

HW module: IL-NT-RS232-485 Up to 1000 meters (only with RS485):

Page 114: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 114 IL-NT-MRS-2.0-Reference Guide.pdf

IL-NT

ID-Lite

IL-NT-

RS232-485

IL-NT-

RS232-485

IL-NT

ID-Lite

Remote Display Master controller

RS 232 (COM1)

OR

IL-NT

ID-Lite

IL-NT-

RS232-485

IL-NT-

RS232-485

IL-NT

ID-Lite

Remote Display Master controller

RS 485 (COM2)

OR

IL-NT

ID-Lite

IL-NT-

RS232-485

IL-NT-

RS232-485

IL-NT

ID-Lite

Remote Display 1 Master controller

RS 485 (COM2)

IL-NT

ID-Lite

IL-NT-

RS232-485

Remote Display 2

RS 232 (COM1)

Case 1) RS232 Master controller settings: ControllerAddr = 1..32 COM1 Mode = DIRECT Case 2) RS485 Master controller settings: ControllerAddr = 1..32 COM2 Mode = DIRECT Case 3) RS232 +RS485 Master controller settings: ControllerAddr = 1..32 COM1 Mode = DIRECT COM2 Mode = DIRECT It is possible to make a RS232 direct connection with IL-NT-RS232 module on one side and IL-NT-RS232-485 module on the other side.

Alternative connection using external RS232-RS422/485 converter:

Recommend external converter:

Page 115: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 115 IL-NT-MRS-2.0-Reference Guide.pdf

ADVANTECH – ADAM 4520: RS232 to RS422/485 converter, DIN rail, automatic RS485 bus supervision, no external data flow control signals, galvanic isolated, baud rate 38400 or 56000 bps. Any connected RS 232 to RS 422/485 converter has to be set to passive DSR signal (when DSR connected) after switch on.

Function description

Remote display IL-NT-RD works as remote display and control of the master InteliLite-NT or InteliDrive Lite controller. It is supposed and highly recommended that both, remote display and master are using the same HW type and model of controller. Another types and models of master and remote display are not supported nor tested. All remote display’s LEDs shows the same state as corresponding LEDs on master controller. Front panel buttons on both controllers work in the same way. Genset/Engine can be controlled from remote display as well as from master controller. User can switch screens, set password, change setpoints and view history records. All IL-NT-RD screens Init, Measure, Setpoints and History display the same data like in the master controller. Master device is always able to work without connected Remote display. Interruption of the serial line between master device and Remote display has no effect to the master controller. If the serial line between master device and remote display is interrupted, or communication cannot be established, remote display shows it’s Init screen and message “Trying” and all LED’s are off. Once remote display finds compatible master it shows “Preparing” and downloads configuration table from master controller. After the configuration from master is downloaded remote display jump to master controllers Init screen and all LEDs and blinking. It is possible to switch to remote displays Init screen to check it’s version and serial number of used controller and communication status by pressing PAGE button for 3 seconds.

SW compatibility

IL-NT-RD sw. version 1.1 is compatible with masters SW:

All InteliLite-NT standard software from ver. 1.1

All ID-Lite standard software from ver. 1.0

Chosen IL-NT and ID-Lite customer branches Some of the future IL-NT, ID-Lite versions may require upgrade of the IL-NT-RD software.

Page 116: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 116 IL-NT-MRS-2.0-Reference Guide.pdf

Maintenance

Backup battery replacement

The internal backup battery should be replaced approx. every 5-7 years. Replace the battery, if the alarm Low BackupBatt occurs. Follow these instructions:

1. Disconnect all terminals from the controller and remove the controller from the switchboard. 2. Release the rear cover using a flat screwdriver or another suitable tool.

3. Remove all plug-in modules. 4. The battery is located in a holder on the circuit board. Remove the old battery with a small

sharp screwdriver and push with a finger the new battery into the holder. Use only CR1225 lithium battery.

Page 117: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 117 IL-NT-MRS-2.0-Reference Guide.pdf

5. Put the rear cover back. Use slight pressure to lock the snaps into the housing. Pay attention that the cover is in correct position and not upside down!

6. Plug the modules back into the slots. 7. Power the controller on, adjust date and time and check all setpoints.

Hint: When internal RTC battery becomes flat, controller function (e.g. Ready for stand by) does not change until controller power supply is switched off. Some time before the battery is completely exhausted, a warning message appears in Alarmlist: «RTCbatteryFlat». After the next power switch on (with flat battery already) controller:

Genset is still possible to run

All new history records will have not valid date and time stamp.

Time and Date values are set not valid value

Statistics values are random

Timers (Timer1..2 Function) will not be executed

Fuel theft protection may not work

Page 118: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 118 IL-NT-MRS-2.0-Reference Guide.pdf

Technical Data

Inputs/Outputs overview

Model BIN BOUT AI AOUT COM1 COM2 CAN RPM Gen. Voltage

Mains Voltage

Gen. Current

IL-NT MRS10 6+8*+8** 6+8*+8** 3 8* Y* Y* N Y Y N Y

IL-NT MRS11 6+8*+8** 6+8*+8** 3 8* Y* Y* N Y Y N Y

IL-NT MRS15 6+8*+8** 6+8*+8** 3+4* 8* Y* Y* Y Y Y N Y

IL-NT MRS16 6+8*+8** 6+8*+8** 3+4* 8* Y* Y* Y Y Y N Y

Note: * With optional extension module IGS-PTM or IG-IOM ** With optional plug-in module

Y -Available

N -Not available

Generator protections

ComAp gen-set controllers provide following range of generator protections. For each protection adjustable limit and time delay are available. Comparison table with ANSI codes:

ANSI code Protection

IL-NT MRS10

IL-NT MRS11

IL-NT MRS15

IL-NT MRS16

59 Overvoltage • • • •

27 Undervoltage • • • •

47 Voltage Assymetry • • • •

81H Overfrequency • • • •

81L Underfrequency • • • •

50+51 Overcurrent *** *** • •

46 Current Unbalance • • • •

32 Overload • • • •

51N+64 Earth Fault — — • •

32R Reverse Power — — — —

25 Synchronism Check — — — —

47 Phase Rotation ** ** ** **

37 Undercurrent — — — —

55 Power Factor — — — —

71 Gas (Fuel) Level • • • •

Note:

— Not available

• Available

** Fixed setting

*** Shortcurrent only

Page 119: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 119 IL-NT-MRS-2.0-Reference Guide.pdf

Language support

IL-NT in firmware version 1.5 supports following language code pages:

Code page Language Windows code

0 West European languages Windows 1252

134 Chinese GB 2312

162 Turkish Windows 1254

177 Hebrew Windows 1255

204 Russian Windows 1251

238 East European languages Windows 1250

Power supply

Voltage supply 8-36V DC Consumption 40-430mA depend on supply voltage and temperature Consumption depends on supply voltage 0,104A at 8VDC 0,080A at 12VDC 0,051A at 24VDC 0,044A at 30VDC

0,040A at 36VDC Allowed supply voltage drop-out: 100ms from min. 10V, return to min. 8V Battery voltage measurement tolerance 2 % at 24V Hint: For the supply voltage less than 7V the backlight of the display is switched off. Short-term voltage drops (e.g. during the engine cranking) do not affect the operation at all.

Operating conditions

Operating temperature IL-NT -20..+70

oC

Operating temperature IL-NT LT# -40..+70

oC

Storage temperature -30..+80oC

Protection front panel IP65 Humidity 95% without condensation Standard conformity Low Voltage Directive EN 61010-1:95 +A1:97 Electromagnetic Compatibility EN 50081-1:94, EN 50081-2:96 EN 50082-1:99, EN 50082-2:97 Vibration 5 — 25 Hz, ±1,6mm

25 — 100 Hz, a = 4 g Shocks a = 200 m/s

2

#Low Temperature modification

LCD display limits controller operating temperature range to –20

oC — + 70

oC even if the other

electronic components work in wider temperature range. Internal preheating foil is mounted in InteliLite

NT LT to extend display operational temperature range.

Preheating starts at temperature below 5 oC and preheating power depends on temperature and

power supply voltage.

Page 120: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 120 IL-NT-MRS-2.0-Reference Guide.pdf

Technical data

IL-NT Standard Order code:IL-NT-xxxxx LT

Operating temperature -20 oC..+70

oC -40

oC..+70

oC

Storage temperature -30 oC..+80

oC -30

oC..+80

oC

Preheating foil increases controller current consumption

Controller consumption at

No preheating Preheating at ambient temperature

0 oC -20

oC -40

oC

12VDC 80 mA +75 mA +210 mA +325 mA

24VDC 51 mA +31 mA +100 mA +175 mA

InteliLite LT works immediately after switch on at -30 o

C and display becomes visible after a few minutes.

Dimensions and weight

Dimensions 180x120x55mm Weight 450g

Generator

Nominal frequency 50-60Hz Frequency measurement tolerance 0,2Hz

Current inputs

Nominal input current (from CT) 5 A

Load (CT output impedance) < 0,1 CT input burden < 0,2 VA per phase (In=5A) Max. measured current from CT 10 A Current measurement tolerance 2% from the Nominal current Max. peak current from CT 150 A / 1s Max. continuous current 12 A

Voltage inputs Measuring voltage range 0 – 277 VAC phase to neutral 0 – 480 VAC phase to phase Maximal measured voltage 340 VAC phase to neutral 600 VAC phase to phase

Input resistance 0.6 M phase to phase

0.3 M phase to neutral Voltage measurement tolerance 2 % from the Nominal voltage Overvoltage class III / 2 (EN61010)

Binary inputs and outputs

Binary inputs Number of inputs 6

Input resistance 4,2 k Input range 0-36 VDC Voltage level for close contact indication (Logical 1) <0,8 VDC Voltage level for open contact indication (Logical 0) >2 VDC Max voltage level for open contact indication 8-36 VDC

Binary open collector outputs Number of outputs 6 Maximum current 0,5 A

Page 121: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 121 IL-NT-MRS-2.0-Reference Guide.pdf

Maximum switching voltage 36 VDC

Analog inputs

Not electrically separated Number of inputs 3 Resolution 10 bits

Maximal resistance range 2500

Resistance measurement tolerance 2 % 2 out of measured value

Speed pick-up input

Type of sensor magnetic pick-up (connection by shielded

cable is recommended) Minimum input voltage 2 Vpk-pk (from 4 Hz to 4 kHz) Maximum input voltage 50 Veff Minimum measured frequency 4 Hz Maximum measured frequency 10 kHz (min. input voltage 6Vpk-pk) Frequency measurement tolerance 0,2 %

D+ Terminal

CHARGE ALT D+ Function: Max. CHARGE ALT D+ output current 300 mA Guaranteed level for signal Charging OK 80% of supply voltage

*CAN bus interface

Galvanically separated Maximal CAN bus length 200m Speed 250kBd

Nominal impedance 120 Cable type twisted pair (shielded) Following dynamic cable parameters are important especially for maximal 200 meters CAN bus length and 32 iS-COM units connected: Nominal Velocity of Propagation min. 75% (max. 4,4 ns/m) Wire crosscut min.0,25 mm

2

Maximal attenuation (at 1 MHz) 2 dB / 100m Recommended Industrial Automation & Process Control Cables: BELDEN (see http://www.belden.com):

3082A DeviceBus for Allen-Bradley DeviceNet

3083A DeviceBus for Allen-Bradley DeviceNet

3086A DeviceBus for Honeywell SDS

3087A DeviceBus for Honeywell SDS

3084A DeviceBus for Allen-Bradley DeviceNet

3085A DeviceBus for Allen-Bradley DeviceNet

3105A Paired EIA Industrial RS485 cable LAPP CABLE

Unitronic BUS DeviceNet Trunk Cable

Unitronic BUS DeviceNet Drop Cable

Unitronic BUS CAN

Page 122: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 122 IL-NT-MRS-2.0-Reference Guide.pdf

Unitronic-FD BUS P CAN UL/CSA

IL-NT RS232 interface (optional card)

Plugs into IL-NT controller COMMUNICATION MODULE port. Maximal distance 10m Maximum Speed Up to 57.6 kBd (DIRECT), 38.4kBd Analog modem, 9.6 kBd digital modem, 57.6 kBd (MODBUS) Recommend external converter: ADVANTECH – ADAM 4520: RS232 to RS422/485 converter, DIN rail, automatic RS485 bus supervision, no external data flow control signals, galvanic isolated. Recommended internal converter: ADVANTECH – PCL-745B or PCL745S : Dual port RS422/485 Interface card, automatic RS485 bus supervision, no external data flow control signals, galvanic isolated Hint: For details on all IL-NT extension and communication modules see IL-NT, IC-NT-Accessory Modules manual. With SW version IL-NT 1.2 and older, the communication speeds are 19.2kBd (STD/DIRECT), 19.2kBd Analog modem, 9.6 kBd digital modem, 9.6kBd (MODBUS)

IL-NT RS232-485 interface (optional card)

Plugs into IL-NT controller COMMUNICATION MODULE port. Maximal distance 10m (RS232), 1200m (RS485) Maximum Speed Up to 57.6 kBd (DIRECT), 38.4kBd Analog modem, 9.6 kBd digital modem, 57.6 kBd (MODBUS) Hint: This module is supported with SW version IL-NT 1.3 and newer.

IL-NT S-USB interface (optional card)

Plugs into IL-NT controller COMMUNICATION MODULE port. Maximal distance 5m Maximum Speed Up to 57.6 kBd (DIRECT), 38.4kBd Analog modem, 9.6 kBd digital modem, 57.6 kBd (MODBUS) Use only shielded A-B USB cables up to 5m length. Recommend USB cable: USB-LINK CABLE 1.8M – ComAp A-B USB cable. Hint: With SW version IL-NT 1.2 and older, the communication speeds are 19.2kBd (STD/DIRECT), 19.2kBd Analog modem, 9.6 kBd digital modem, 9.6kBd (MODBUS)

Page 123: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 123 IL-NT-MRS-2.0-Reference Guide.pdf

IL-NT AOUT8 interface (optional card)

Plugs into IL-NT controller EXTENSION MODULE port. Number of PWM outputs 8 PWM frequency 250Hz Maximum current 0.5 A Maximum switching voltage 36 VDC Output resistance 1Ω Resolution 10 bits

IL-NT-EFCPM interface (optional card)

Dimension (WxHxD) 66x37x10 mm (2,6’x1,45’x0,4’) Weight 124g Interface to controller Direct mounted Earth fault current protection input Not galvanic separated

Input range up to 8,32 mA Binary Input Not galvanic separated

Input resistance – 4,2kohm Input range – 0 VDC to 36 VDC

Binary outputs (open collector) Not galvanic separated Maximum current – 1,0 ADC Maximum switching voltage – 36 VDC Voltage drop 1 VDC

Storage temperature — 40°C to + 80°C Operating temperature — 40°C to + 70°C

IC-NT CT-BIO7 interface (optional card)

7 dedicated pins of the plug-in card’s terminal can be configured as binary inputs or outputs. CURRENT MEASURING INPUT Number of inputs 1

Nominal input current (from CT) 5A Load (CT output impedance) < 0.1 Max measured current from CT 10A Current measurement tolerance 2% from Nominal current Max peak current from CT 150A / 1s Max continuous current 10A (All values in RMS)

BINARY INPUTS Number of inputs 7 Input resistance 4.7k Input range 0-36 VDC Voltage level for close contact indication (Logical 1) <0.8 VDC Voltage level for open contact indication (Logical 0) >2 VDC Max voltage level for open contact indication 8-36 VDC

BINARY OPEN COLLECTOR OUTPUTS

Number of outputs 7 Maximum current per pin 0.5 A Maximum switching common current 2A Maximum switching voltage 36 VDC

Hint: Binary inputs are not galvanically isolated.

Page 124: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 124 IL-NT-MRS-2.0-Reference Guide.pdf

IL-NT BIO8 interface (optional card)

Plugs into IL-NT controller EXTENSION MODULE port. 8 dedicated pins of the plug-in card’s terminal can be configured as binary inputs or outputs.

Binary inputs Number of inputs 8 Input resistance 4,7kΩ Input range 0-36 VDC Voltage level for close contact indication (Logical 1) <0,8 VDC Voltage level for open contact indication (Logical 0) >2 VDC Max voltage level for open contact indication 8-36 VDC

Binary open collector outputs

Number of outputs 8 Maximum current per pin 0,5 A Maximum switching common current 2 A Maximum switching voltage 36V Hint: Binary inputs are not galvanicaly isolated. Please see detail about wiring and description at chapter IL-NT BIO8 Hybrid binary input/output module.

IGS-PTM

Voltage supply 8-36V DC Consumption 0,1A depend on supply voltage Mechanical dimensions: 40 x 95 x 45 mm , DIN rail (35 mm) mounted Interface to controller CAN Binary inputs and outputs see IG-IOM Analog output see IG-IOM

Analog inputs

Not electrically separated Number of inputs 4 Resolution 10 bits

Maximal resistance range 0 – 250 Maximal voltage range 0 – 100 mV Maximal current range 0 – 20 mA

Resistance measurement tolerance 1 % 2 out of measured value

Voltage measurement tolerance 1,5 % 1mV out of measured value

Current measurement tolerance 2,5 % 0,5mA out of measured value

IGL-RA15

Power supply

Voltage supply 8-36V DC Consumption 0,35-0,1A (+1A max horn output)

Depend on supply voltage

Operating conditions

Operating temperature -20..+70oC

Storage temperature -40..+80oC

Page 125: IL NT MRS 2.0 Reference Guide

InteliLiteNT

– MRS10/11/15/16, SW version 2.0, ©ComAp – June 2012 125 IL-NT-MRS-2.0-Reference Guide.pdf

Protection front panel IP65

Dimensions and weight

Dimensions 180x120x55mm Weight 950g

Horn output

Maximum current 1 A Maximum switching voltage 36 VDC

IG-IB

Voltage supply 8-36V DC Consumption 0,1A depend on supply voltage Mechanical dimensions: 95 x 96 x 43 mm , DIN rail (35 mm) mounted Interface to controller RS232 Interface to modem RS232 Interface to Ethernet RJ45 (10baseT) Operating temperature -30..+70

oC

Storage temperature -30..+70oC

ComAp InteliCompact NT Reference Manual

  • Contents

  • Table of Contents

  • Troubleshooting

  • Bookmarks

Quick Links

 



Paralleling gen-set controller

SW version 2.1, May 2016

Reference Guide

Copyright ©2015 ComAp a.s.

ComAp a.s.

Kundratka 17, 180 00 Praha 8, Czech Republic

Tel: +420 246 012 111, Fax: +420 266 316 647

E-mail:info@comap.cz, www.comap.cz

loading

Related Manuals for ComAp InteliCompact NT

Summary of Contents for ComAp InteliCompact NT

  • Page 1
       Paralleling gen-set controller SW version 2.1, May 2016 Reference Guide Copyright ©2015 ComAp a.s. ComAp a.s. Kundratka 17, 180 00 Praha 8, Czech Republic Tel: +420 246 012 111, Fax: +420 266 316 647 E-mail:info@comap.cz, www.comap.cz…
  • Page 2: Table Of Contents

    IL-NT BIO8 ……………………55 3.19.5 IC-NT CT-BIO7 …………………… 57 3.20 Communication modules ………………….59 3.20.1 IL-NT RS232 ……………………59 3.20.2 IL-NT RS232-485 ………………….60 3.20.3 IL-NT S-USB ……………………60 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 3
    Load control modes ………………….. 102 6.8.3 Power factor control ………………….. 102 6.8.4 Ramping the power down ………………..102 Island operation – SPtM ………………….102 6.9.1 Island to PtM transfers ………………..103 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 4
    Setpoints – Volt/PF Control ………………. 131 7.3.10 Setpoints – ExtI/O Protect ………………… 131 7.3.11 Setpoints – SMS/E-Mail ………………..131 7.3.12 Setpoints – AnalogSwitches ………………132 7.3.13 Setpoints – Date/Time ………………..132 7.3.14 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 5
    14.6 Binary outputs ……………………. 155 14.7 Analog inputs …………………….. 155 14.8 Generator/Mains measurements ……………….. 155 14.9 Pickup input ……………………..156 14.10 Charging alternator pre-excitation circuit …………….156 14.11 AVR output ……………………..156 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 6
    Common functions ………………….252 16.4.2 ECU info ……………………. 260 16.4.3 Alarm mirrors ……………………. 262 16.4.4 MINT specific ……………………. 272 16.4.5 SPtM specific ……………………. 273 16.5 Table of internal alarms ………………….274 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 7: Document Information

    Pressing F1 in the LiteEdit setpoint, values or configuration window will open the help with the context of currently selected setpoint, value and binary input or output function. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 8: Clarification Of Notation

    EC Low Voltage Directive No: 73/23 / EEC and EC Electromagnetic Compatibility Directive 89/336 / EEC based on its design and type, as brought into circulation by us. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 9: System Overview

    One of the key features of the controller is the system’s high level of adaptability to the needs of each individual application and wide possibilities for monitoring. This can be achieved by configuring and using the powerful ComAp PC/mobile tools. Supported configuration and monitoring tools: –…

  • Page 10: Liteedit

    Offline or online controller configuration Controller firmware upgrade Reading/writing/adjustment of setpoints Reading of measured values Browsing of controller history records Exporting data into a XLS file Controller language translation InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 11: Intelimonitor

    View of actual/historic trends in controller On-line change of controllers’ parameters for easy regulator setup 2.2.4 WebSupervisor Web-based system for monitoring and controlling ComAp controllers. See more at the WebSupervisor webpage. This tool provides the following functions: Site and fleet monitoring…

  • Page 12: Applications Overview

    MINT SPEED GOVERNOR CAN2 CAN1 SYS START/STOP GCB FEEDBACK IG-AVRi AVRi InteliCompact GCB CLOSE/OPEN MINT SPEED GOVERNOR CAN2 CAN1 SYS START/STOP START/STOP GCB FEEDBACK SLAND PARALLEL OPERATION WITHOUT MAINS InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 13: True Rms Measurement

    PF 1.00. The higher the deformation, the wider the power factor dead range. If the requested power factor is adjusted inside the dead range, the controller cannot reach the requested value because of this fact. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 14: Installation

    Recommended tightening torque is 0,15 – 0,2 Nm. Package contents The package contains:  Controller  Mounting holders  Terminal blocks The package does not contain a communication module. The required module should be ordered separately. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 15: Dimensions

    Dimensions InteliCompact Mounting cutout size: 175 x 115 mm The dimensions are in millimetres and are the same for both versions – SPTM and MINT. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 16: Terminal Diagram

    Wiring for binary inputs and analog inputs must not be run with power cables.  Analog and binary inputs should use shielded cables, especially when the length is more than 3 m. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 17: Wiring

    The maximum allowable current through the controller’s negative terminal is 4A (this is dependent on binary output load). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 18
    I-LBA may not eliminate voltage drop when used with the low temperature (-40 °C) version of the controller and the display heating element is on (below 5 °C). The current drain of the heating element exhausts LBA capacitors very fast. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 19: Power Supply Fusing

    Adjust nominal voltage, nominal current, CT ratio and PT ratio by appropriate setpoints in the Basic Settings group. Learn about how to view and change setpoints in the User interface chapter. OLTAGE MEASUREMENT WIRING GENERATOR MAINS / BUS InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 20
    MAINS / BUS GENERATOR MAINS / BUS Wiring to be used with IC-NT- MINT-MonoPhase or IC-NT- SPTM-MonoPhase archive for Mono or Single Phase applications. GENERATOR MAINS / BUS URRENT MEASUREMENT WIRING InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 21: Speed Measurement

    Pickup D+ (L) Charging alternator RPM measurement from the pickup. D+ terminal from the charging alternator can be used as additional signal for detection of running engine. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 22: Generator Frequency

    If you do not know the charging alternator nominal frequency, follow this procedure: 1) Make sure that the starting accumulator is fully charged. 2) Close a fuel valve manually to disable the engine from being started. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 23: Binary Inputs

    (signalization etc…). The function of each output has to be assigned during configuration. AUTION Use suppression diodes on all relays and other inductive loads! InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 24: Analog Inputs

    Protection of Oil Pressure and the relevant condition of a running engine is joined with AI01 only if: the ECU is not configured the ECU is configured and the AI01 is set to Alarm + ECU. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 25: Tristate Inputs

    100R – IRING OF ANALOG INPUTS USED AS BINARY OR TRI STATE The name, sensor characteristic and alarm types for each analog input have to be assigned during configuration. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 26: Circuit Breakers

    2 seconds in the moment the breaker has to be switched off. The output is intended for control of undervoltage coils of circuit breakers. CLOSE/OPEN ON COIL OFF COIL UV COIL FEEDBACK REAKER OUTPUTS TIMING InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 27: Mcb Special Requirements

    IG-AVRi TRANS/LV is a power supply unit for IG-AVRi; it is not included with the IG-AVRi package. OUT1 Output terminals for alternator AVR Output OUT2 Power supply from IG-AVRi TRANS/LV Output level Set output voltage bias AVRI Input signals from the Input controller AO GND InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 28
    GENERATOR VOLTAGE ADJUST VOLTAGE IG-AVR I MODULE WIRING InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 29
    AVRi output OUT2 — GND 10 V AVRi trim turned in max. position (clockwise) 100 [%] AVR output AVRi trim turned in min. position (counterclockwise) SYMMETRIC I OUTPUT CHARACTERISTIC InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 30: Avr List

    AVRI OCOM AVRI AVR Bias = 50% AO GND OUT1 AVRi output is connected instead of Remote voltage trimmer 470 Ω to terminal J2. Module R726 is not required. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 31
    LeRoy-Somer: R 250 AVRi trim to minimum counter From 230/400VAC generator 18VAC clockwise. AVRi 0VAC TRANS AO GND Volt/PF ctrl: AVRI OCOM AVRI AVR Bias = 50% AO GND OUT1 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 32
    AVRi 0 VAC TRANS AO GND AVRI AVRI OUT2 AO GND OUT1 Module R726 is not required. AVRi trim to minimum counter clockwise. Volt/PF ctrl: AVR Bias = 50% InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 33
    Volt/PF ctrl: 18VAC generator AVRi 0VAC AVR Bias = 30% TRANS AO GND OUT2 AVRI AVRI AO GND OCOM AVRi output is connected instead of external resistor for voltage adjusting. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 34
    Caterpillar CDVR AVRi trim to 50% From 230/400VAC generator 18VAC AVRi 0VAC TRANS Volt/PF ctrl: AO GND AVR Bias = 50% OUT2 AVRI AVRI 12-3 AO GND 12-6 OUT1 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 35
    AVRi 0VAC TRANS AO GND Volt/PF ctrl: OUT2 AVRI AVRI AVR Bias = 50% AO GND OUT1 AVRi output is connected instead of external resistor for voltage adjusting. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 36
    OUT2 AVRI AVRI AO GND OUT1 MarelliMotori (M40FA610A) Volt/PF ctrl: From 230/400VAC AVR Bias = 50% generator 18VAC AVRi 0VAC TRANS AO GND OUT2 AVRI AVRI AO GND OUT1 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 37
    AVRi trim to maximum From 230/400VAC generator clockwise. 18VAC AVRi 0VAC TRANS AO GND Volt/PF ctrl: OUT2 AVRI AVRI AVR Bias = 50% AO GND OUT1 Mecc Alte DER1 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 38
    Changing the DSR parameters requires a PC with dedicated software and a DI1-DSR unit! DSR automatically detects the presence of a transformer for parallel operation (if used it works with droop, if not used then it works isochronous). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 39
    OUT1 Marathon PM100, 200 Volt/PF ctrl: From 230/400VAC generator AVR Bias = 50% 18VAC AVRi 0VAC TRANS AO GND OUT2 AVRI AVRI AO GND OUT1 KATO KATO KCR 360 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 40
    AVRI AVRI AO GND OUT1 ENGGA WT-3 Volt/PF ctrl: From 230/400VAC IG- AVRi generator 18VAC AVR Bias = 50% 0VAC TRANS AO GND AVRI OUT2 AVRI AO GND OUT1 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 41
    Volt/PF ctrl: AVRI AVRI AVR Bias = 50% AO GND OUT1 AVRi output is connected instead of Remote voltage trimmer 470Ω to terminals ST4. Module R726 is not required. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 42: Speed Governor Interface

    The active range of the output can be adapted to the governor input range by setpoints SpeedGovLowLim and SpeedGovHiLim. Some governors may evaluate input voltage out of the allowed range as a faulty condition and their functioning may be blocked. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 43: Speed Governor List

    SpeedGovLowLim = 0 V SpeedGovHiLim = 2 V From 230/400VAC generator AVRi 0VAC TRANS Sync/Load Ctrl: Speed Gov Bias = 5.00 V OUT2 SpeedGovChar = POSITIVE OUT1 AO COM InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 44
    Sync/Load Ctrl: SG + Speed Gov Bias = 0.00 V AO COM VoutR Cummins Sync/Load Ctrl: SG + Speed Gov Bias = 5.00 V AO COM VoutR SpeedGovChar = POSITIVE InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 45
    SpeedGovHiLim = 5 V Sync/Load Ctrl: Speed Gov Bias = 5.00 V 03-11 SG + SpeedGovChar = 03-12 AO COM VoutR POSITIVE SpeedGovLowLim = 2.5 V SpeedGovHiLim = 7.5 V InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 46
    Speed Gov Bias = 2.50 V Vout AO COM SpeedGovChar = POSITIVE SpeedGovLowLim = 0.5 V Opened for 0% droop SpeedGovHiLim = 4.5 V Pay attention to the connector and jumper orientation. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 47
    AO COM SpeedGovChar = NEGATIVE Sync/Load Ctrl: Speed Gov Bias = 5.00 V SG + SpeedGovChar = VoutR AO COM NEGATIVE SpeedGovLowLim = 4 V SpeedGovHiLim = 6 V InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 48
    SG + Speed Gov Bias = 0.00 V VoutR AO COM SpeedGovChar = POSITIVE Sync/Load Ctrl: SG + Speed Gov Bias = 0.00 V VoutR AO COM SpeedGovChar = POSITIVE InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 49
    VoutR SpeedGovChar = POSITIVE ComAp Sync/Load Ctrl: Speed Gov Bias = 5.1 V SG + SpeedGovChar = Vout AO COM POSITIVE SpeedGovLowLim = 0 V SpeedGovHiLim = 10 V InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 50: Can Bus Wiring

    ≥ 75% (delay ≤ 4.4 ns/m) Propagation velocity ≥ 0.25 mm Wire crosscut ≤ 2dB/100 m Attenuation (@1MHz) 120R 120R BUS TOPOLOGY See the website www.can-cia.org for information about the CAN bus, specifications, etc. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 51: Recommended Can/Rs485 Connection

    1. For shorter distances: 3105A Paired – EIA Industrial RS-485 PLTC/CM (1×2 conductors) 2. For shorter distances: 3105A Paired – EIA Industrial RS-485 PLTC/CM (1×2 conductors) 3. In case of surge hazard: 3106A Paired – EIA Industrial RS-485 PLTC/CM (1×2+1 conductors) InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 52
    LONGER DISTANCES CONNECTION BETWEEN ROOMS WITHIN ONE BUILDING 120 Ω 120 Ω PT5-HF-12DC-ST (CAN) PT5HF-5DC-ST (RS485) 3 – ICTURE SURGE HAZARD CONNECTION OUT OF BUILDING IN CASE OF STORM ETC InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 53: Extension Modules

    The controller selection jumper (iS/iG) must be in the iG position for using the module with the InteliCompact A separate manual for the IGS-PTM module is available for download on the ComAp web site InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 54: Igl-Ra15 Remote Annunciator

    HE ADDRESS SELECTION JUMPERS MUST BE IN THE I POSITION FOR USING THE MODULE WITH THE NTELI OMPACT A separate manual for the IGL-RA15 module is available for download on the ComAp website InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 55: Il-Nt-Aout8

    In the LiteEdit PC configuration tool (version 4.4 and higher) it is possible to easily choose if a particular I/O will be binary input or output. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 56
    INARY OPEN COLLECTOR OUTPUTS Number of outputs Maximum current per pin 0.5 A Maximum switching common current Maximum switching voltage 36 V DC Binary inputs are not galvanically isolated. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 57: Ic-Nt Ct-Bio7

    Max measured current from CT 10 A Current measurement tolerance 2% from Nominal current Max peak current from CT 150 A / 1 s Max continuous current 10 A (All values in RMS) InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 58
    Im/EF input Earth Fault Sd Time [s] AL Earth Fault Time [s] Earth Fault Del AUTION Earth fault current measurement is not intended to protect human health, but the machines! InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 59: Communication Modules

    This module contains a RS232 port with all modem signals connected internally to the COM1 of the controller. DB9M connector is used on the RS232 side. SERIAL “CROSS-WIRED” CABLE To controller To PC COM RS232 port port RS232 P INOUT AND CABLE WIRING InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 60: Il-Nt Rs232-485

    USB hubs, it may be recognized as new hardware and the drivers will be installed again with a different number of the virtual serial port. AUTION Use a shielded USB cable only! InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 61: Ib-Lite

    Use an Ethernet UTP cable with a RJ45 connector for linking the module with your Ethernet network. The module can also be connected directly to a PC using cross-wired UTP cable. RJ45 RJ45 CROSS-WIRED UTP 10/100Mbit CABLE ROSS WIRED CABLE InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 62: Il-Nt Gprs

    CONNECTION SHOULD NOT BE USED FOR THE FIRMWARE UPDATE PROCESS RS232, USB, RS485 IB-L INSTEAD A WIRED CONNECTION LIKE THERNET VIA It is necessary to power the controller and individually the IL-NT GPRS module as well. ARNING InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 63
    Event SMS The InteliCompact controller equipped with the IL-NT GPRS communication module is able to send Event SMS according to the setting in the SMS/Email setpoint group: InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 64: Internetbridge-Nt

    Local Area Network. The internet connection can be enabled via the built-in cellular modem supporting 2G and 3G networks or via Ethernet cable. For InteliCompact the following functions are available: Direct Ethernet connection to ComAp configuration and monitoring tools (LiteEdit, InteliMonitor or WebSupervisor) AirGate support…

  • Page 65: Efi Engines

    Percentage of load at current speed Analog None Fuel rate Analog None Fuel level Analog Configurable Engine hours Analog None Yellow lamp Binary Warning Red lamp Binary Shutdown Engine hours Analog None InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 66
    Scania S6 Singlespeed Scania S8 Singlespeed Volvo EMSI Singlespeed / EMSII Deutz EMR2 Deutz EMR3 Deutz EMR4 Cummins CM570 Cummins CM850/CM2150/CM2250 Cummins MODBUS MTU ADEC MTU SMART Connect Waukesha ESM InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 67
    IC-NT 2.0 Installation Suite. Support of new ECU types is continuously added to the new firmware releases. If you cannot find your ECU type in the list, please download the latest release of the document ComAp Electronic Engines Support from http://www.comap.cz or contact technical support for more information.
  • Page 68: Typical Wiring — Efi Engine

    3.22 Typical wiring – EFI engine Extension module AO GND AVR+ AI COM RPM GND Communication module YPICAL WIRING OF AN ENGINE IN APPLICATION InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 69: Typical Wiring — Classic Engine

    3.23 Typical wiring – classic engine Extension module AO GND AVR+ AI COM RPM GND Communication module HIS WIRING CORRESPONDS TO FACTORY DEFAULT CONFIGURATION InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 70
    Extension module AO GND AVR+ AI COM RPM GND Communication module MINT HIS WIRING CORRESPONDS TO FACTORY DEFAULT CONFIGURATION InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 71: Emergency Stop

    A hard-wired solution, where the button also disconnects the power supply from the controller outputs. — BATT + BATT OUTPUTS SUPPRESION DIODES ARE NOT INDICATED, BUT REQUIRED! WIRED EMERGENCY STOP InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 72: Putting It Into Operation

    Release versions and branches are distributed as import packages that need to be imported into LiteEdit. 2. The latest installation and/or import packages are available for download at www.comap.cz. Please register to get access to the download page. Registration is free.

  • Page 73: Programming A Non-Responsive Controller

    5. Follow the instructions in the message that appears and finally press the OK button. 6. Another message will appear when programming is finished. Follow the instructions given there. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 74: Factory Default Configuration

    Sensor VDO 180 Ohm, warning alarm A wiring diagram that corresponds to the factory default SPtM configuration is available in a separate in the “Installation” section of this manual. chapter InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 75: Mint

    ONFIGURED SENSOR Oil pressure Sensor VDO 10 Bar, warning + shutdown alarm Water temperature Sensor VDO 120 deg, warning + shutdown alarm Fuel level Sensor VDO 180 Ohm, warning alarm InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 76: Step-By-Step Guide

    It supposes that the switchboard wiring has been already checked. This guide is not a handbook for a beginner, but it is focused on things specific for ComAp controllers and expects sufficient knowledge and skills in the field of generating sets!

  • Page 77
    14. Adjust the setpoints for power, power factor, load-sharing and VARsharing loops. 15. Check the rest of the setpoints and then save the archive to disk for backup purposes. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 78: Operator Guide

    Learn more about alarms in the Alarm management chapter in the Reference Guide. HORN RESET button. Use this button to deactivate the horn output without acknowledging the alarms. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 79
    Mains failure. This red indicator starts blinking when mains failure is detected. After the gen-set has started and is about to take the load, it lights up permanently until the mains failure disappears. ISPLAY AND DISPLAY CONTROL BUTTONS OSITION ESCRIPTION InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 80: User Interface Modes

    3. The History log page shows the history log in order with the last record displayed first. The picture below shows the structure of displayed data. The contents of each particular screen may be slightly different according to the firmware branch and version. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 81
    ENGINEER MODE ONLY MEASUREMENT SETPOINTS HISTORY LOG Time Date 16:00:00 16/11/2011 >15:00:00 16/11/2011 14:35:00 16/11/2011 19:20:00 14/11/2011 -1 Time Stamp TRUCTURE OF THE DISPLAYED DATA InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 82: View Measured Values

    5. Continue by changing another setpoint or press to return to the list of groups. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 83: Browsing The History Log

    3. Use the buttons to move over the records. 4. Press the button to select another display page. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 84: Browsing Alarms

    EngOil Press Selected alarm indicator 000225 (00E1h) 000225 (00E1h) Active confirmed alarm, *000600 (00258h) DTC numeric form ________________________ Inactive unconfirmed alarm, DTC numeric form Selected alarm details ECU A LARM InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 85: Entering The Password

    6. Pressing the button next switches back to the information screen. 7. Press the button to get back to the controller main screen. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 86
    The information screen contains the following information:  Controller Name  Firmware identification string  Serial number of the controller  Firmware version, application version  Application type  Branch name InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 87: Controller Language Selection

    2. Hold down the button and simultaneously press repeatedly to increase or decrease the contrast. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 88: Function Description

    GCB button in MAN (opening GCB) mode stop sequence Stop command? Gen-set not ready Stop not successful Cooling and stop Fault reset StopFail alarm sequence Stop sequence continues InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 89: Parallel Operation Flowchart

    Soft unloading stop in AUT mode Disconnecting load Gen-set not (opening GCB) ready Fault reset Stop command? Cooling and stop StopFail alarm sequence Stop sequence Stop not successful continues InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 90: Operating Modes

    AUTION The MCB can be opened manually in MAN mode. Accidental opening of the MCB will cause the object (load) to remain without power!!! InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 91: Aut

    Ramp) for unloading and opening of the MCB. The MCB opens when the Import/Export goes below 0 ± 5% of the Nominal Power. If the Load Ramp time elapsed and InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 92: Engine Start

    (as it was during the start). The idle period duration is adjusted by the setpoint Idle Time. 7. After the idle period has finished, the output Idle/Nominal is activated and the start-up sequence is finished. The stabilization phase follows. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 93
    D+ input activated MaxCrank time elapsed? Last attempt? Start fail alarm Start pause Starting RPM Engine is started reached? MaxCrank time Fuel solenoid RPM Meas Fail alarm elapsed? deactivated InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 94: Gas Engine

    (as it was during the start). The idle period duration is adjusted by the setpoint Idle Time. 7. After the idle period has finished, the output Idle/Nominal is activated and the start-up sequence is finished. The stabilization phase follows. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 95
    30 RPM reached? and Ignition activated Starting RPM Starter Engine is started reached? deactivated MaxCrank time elapsed? Starter, Fuel solenoid, Ingition deactivated Last attempt? Start fail alarm Start pause InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 96: Stabilization

    GCB button. The following conditions must be valid:  The gen-set is running and the Min Stab Time timer has elapsed.  The gen-set voltage and frequency are within limits. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 97: Connecting To Dead Bus

    Synchroscope screen for the entire duration of synchronization. After synchronization the Synchroscope screen is automatically changed back to the Main Measuring screen. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 98: Parallel To Mains Operation — Sptm

    The power factor is regulated to a constant value given by the setpoint Base PF. PF regulation loop is active. Regulation adjustment setpoints are available in the Volt/PF control group. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 99: Object Load Dependent Auto Start

    E.g. if 100 kW has to be covered always by mains the Export kW parameter is set to -100 kW. The rest, all peaks, are then covered by gen-set or by group of gen-sets. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 100
    Mains cannot be maintained on the constant level and it is starting to lower as well Power imported from Mains – I RINCIPLE OF THE EXPORT LIMIT FUNCTION MPORT InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 101
    Required Power from gen-set Gen-set is only exporting below this level Power exported to Mains Negative value of Import is Export – E RINCIPLE OF THE EXPORT LIMIT FUNCTION XPORT InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 102: Parallel To Mains Operation — Mint

    This situation will occur in the following cases: 1. The GCB has been closed to a dead bus bar, or 2. The gen-set was running parallel to the mains and the MCB has been opened. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 103: Island To Ptm Transfers

    When a stop command is received, e.g. from the power management or binary input Sys Start/Stop deactivated or the STOP button is pressed, the GCB will be opened and the gen-set will go to cool down phase. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 104: Power Management

    The setpoint Pwr Management enables and disables the gen-set to be active within the power management of the group and make automatic load demand start/stop or swap. If the power InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 105: Reserves, Minimal Running Power

    The priority of the gen-set within the group is determined by the setpoint Priority. A lower number represents “higher” priority, i.e. a gen-set with a lower number will start before another one with higher number. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 106: Load Demand Start/Stop

    When evaluating the stop condition, the controller computes actual reserve without taking in account its own nominal power, i.e. it evaluates how the reserve will be if the respective gen-set stops. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 107
    < #NextStrt Del Sys Start/Stop #SysAMFstopDel Gen-set 1 #SysAMFstrtDel running Gen-set 2 #NextStrt Del running #NextStop Del Gen-set 3 running #NextStrt Del #NextStop Del OWER MANAGEMENT WITH ABSOLUTE RESERVES InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 108: Reaction To Alarms

    The alarm will not be suppressed if there is no other available gen-set that can start. 6.11.7 Related binary inputs Sys Start/Stop Load Reserve 2 Top Priority Min Run Power InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 109: Related Binary Outputs

    If load demand is higher than nominal power of the biggest gen-set, this one is fixed and the whole process repeats from c). e) For gen-sets with the same nominal power also run hour equalization will be performed. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 110: Related Binary Inputs

    #PriorAutoSwap = EFFICIENT  select appropriate load reserve for start (#LoadResStrt 1)  select appropriate reserve for stop (#LoadResStop 1)  set suitable delay for power band change (PwrBnChngDlUp / PwrBnChngDlDn) InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 111: Related Setpoints And Values

    This change can be measured as a jump of the vector of the generator voltage and evaluated as a symptom of mains failure. The vector shift limit for evaluation of a mains failure is adjustable by the setpoint VectorShiftLim. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 112: Healthy Mains Detection

    The cool down phase follows after the stop command has been issued and the GCB has been opened.  Duration of the cool down phase is determined by the setpoint Cooling Time. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 113: Stopped Gen-Set Evaluation

    Each alarm causes a record to be written into the history log.  Each alarm activates the Alarm and Horn output.  Each alarm can cause sending of a SMS message or an e-mail. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 114: Alarm Handling

    – e.g. if the gen-set drives pumps for fire extinguishers (sprinklers). 6.14.2 Alarm states An alarm can have following states: InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 115: Alarm Types — Yellow Level

    Alarmlist. The valid range is defined by the most-left (R ) and most-right (R ) points of the sensor characteristic ±12.5% from R InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 116: Remote Alarm Messaging

    Controller is capable to detect which communication terminal is connected to the network and send the email/SMS via the active one. InternetBridge-NT is preferred terminal if more possibilities are detected. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 117: Alarmlist

    The most common fault codes are translated into text form. Other fault codes are displayed as a numeric code and the engine fault codes list must be used to determine the reason. The ECU AlarmList is visible only if an ECU is configured. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 118: Built-In Alarms

    The event which caused the record (e.g. “Overspeed alarm” or “GCB closed”)  The date and time when it was recorded  All important data values like RPM, kW, voltages, etc. from the moment that the event occurred. ASIC VALUES InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 119
    Voltage Regulator Output VRO Voltage regulator output (see chapter Interface) ECU values VALUES BBREVIATION ECU Fuel rate ECU Coolant Temperature ECU Intake temperature ECU Oil pressure ECU Oil temperature InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 120
    TRPA Overall power from gen-set with its GCB closed Overall reactive power from gen-set with its GCB Running Q-Pwr TRQA closed Running Nominal Power TRPN Total running nominal power InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 121: Exercise Timers

    There are two exercise timers available in the controller, which are based on the RTC clock. They are both identical. Each timer has the following settings (in the Date/Time setpoint group). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 122: Mint

    Associated setpoints are located in the setpoint group Analog switches.  binary output is associated with each switch The behaviour of the switch depends on the adjustment of the setpoints. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 123: Power Switch

    PEED REGULATOR OUTPUT FOR SINGLE GEN SET APPLICATION OADED IN ARALLEL SLAND OADED ISLAND ARALLEL TO AINS AINS Running GCB closed GCB closed Synchronizing GCB opened MCB opened MCB closed InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 124: Mint

    Since IC-NT SW v. 1.4.1 only the first controller (with the lowest address at the CAN has) active voltage control loop. Other controllers are adapting voltage according to bus to the first one. All controllers have active VAr Share regulation loop. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 125: Regulation Control Loops Overview

     Increase the gain slightly until the controlled quantity starts to oscillate. Then put it back to approx. one half of the value where the oscillations started. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 126
    0 to disable it. Adjust the setpoint back to its original value after the adjustment is finished. AUTION Be ready to press the emergency stop button in the event that the regulation loop starts to behave unacceptably. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 127: Setpoints

    Modbus) The setpoints are stored in EEPROM memory, which can be overwritten up to times without risk of damage or data loss, but it may become damaged, when the allowed number of writing cycles is exceeded! InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 128: Setpoints — Process Control

    CAN Bus Mode IBLite IP Addr IBLite NetMask IBLite GateIP IBLite DHCP ComAp Port APN Name APN UserName APN UserPass AirGate AirGate IP SMTP UserName SMTP UserPass SMTP Server IP InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 129: Setpoints — Engine Params

    AI3 Del WrnMaintenance Setpoints – Gener Protect 7.3.6 Overload BOC Overload Del Amps IDMT Del Short Crct BOC Short Crct Del Amps Unbal BOC Amps Unbal Del EarthFault Sd InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 130: Setpoints — Pwr Management

    EmergStart Del MainsReturnDel Mains >V Mains <V Mains V Del Mains >Freq Mains <Freq Mains Freq Del VectorShiftLim Transfer Del MCB Close Del MCB Opens On RetFromIsland BreakerOverlap ReturnFromTEST InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 131: Setpoints — Sync/Load Ctrl

    IOM AI3 Yel IOM AI3 Red IOM AI3 Del IOM AI4 Yel IOM AI4 Red IOM AI4 Del 7.3.12 Setpoints – SMS/E-Mail Yel Alarm Msg Red Alarm Msg Event Msg InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 132: Setpoints — Analogswitches

    Timer1 Function Timer2 Repeat Timer2 ON Time Timer2Duration Timer2 Function 7.3.15 Setpoints – Sensors Spec AI1Calibration AI2Calibration AI3Calibration IOM AI1 Calibr IOM AI2 Calibr IOM AI3 Calibr IOM AI4 Calibr InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 133: Values

    Info Values – Engine 8.2.1 W-TerminalFreq ECU State Fuel Rate ECU Cool Temp ECU IntakeTemp ECU Oil Press ECU Oil Temp ECU BoostPress ECU Perc Load ECU FuelLevel ECU InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 134: Values — Generator

    Mains V L3-N Mains V L1-L2 Mains V L2-L3 Mains V L3-L1 Mains A L3/EF Mains kW I Mains kVAr I Mains PF Mains LChr Load kW Load kVAr InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 135: Values — Bus

    Speed Gov Out AVRi Output GSM SignalLvl GSM ErrorRate GSM Diag Code AirGate Diag AirGate ID Modem Status Values – Extension I/O 8.2.7 IOM AI1 IOM AI2 IOM AI3 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 136: Values — Statistics

    TotFuelConsum PerTotFuelCons Values – Date/Time 8.2.9 Time Date 8.2.10 Values – Info Engine State Breaker State Timer Text Timer Value FW Version FW Branch PasswordDecode CAN16 CAN32 GensLoaded16 GensLoaded32 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 137: Binary Input Functions

    MINT only Sys Start/Stop Load Reserve 2 Min Run Power Top Priority SPtM specific SPtM only Rem Start/Stop Remote TEST Rem TEST OnLd RevSyncDisable MCB Button Ext MF Relay MainsFailBlock InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 138: Binary Output Functions

    Exerc Timer 1 Exerc Timer 2 Power Switch Neutral CB C/O Breaker Trip kWh pulse 10.2 ECU info ECU Comm OK ECU Comm Error ECU YellowLamp ECU RedLamp ECU PowerRelay InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 139: Alarm Mirrors

    AL IOM AI2 Red AL IOM AI3 Red AL IOM AI4 Red AL Common Wrn AL Common Sd AL Common Stp AL Common BOC AL Common Fls AL Exct Loss InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 140: Mint Specific

    System Ready SystReserve OK EnginesSwapped 10.5 SPtM specific SPtM only MCB Close/Open MCB ON Coil MCB OFF Coil MCB UV Coil Ready To AMF Mains Healthy Mains Fail Mode TEST InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 141: Communication

    The RS232 or USB interface uses COM1 port of the controller. The RS485 uses COM2. Use a cross-wired serial communication cable with DB9 female connectors and signals Rx, Tx, GND for a RS232 connection. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 142: Modem Connection

    Siemens/Cinterion M20, TC35, TC35i, ES75, MC39 (baud rate 9600 bps)  Wavecom M1200/WMOD2 (baud rate 9600 bps)  Wavecom Maestro 20  Wavecom Fastrack M1306B (Fastrack M1206B is not recommended)  Falcom A2D InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 143: Modem Setup Procedure

    (controller nickname) RJ45 LAN / WAN / IL-NT GPRS INTERNET Non-static non-public IP BTS / Mobile Ethernet Only AirGate ID provider RJ45 (controller nickname) NTERNET CONNECTION FOR SINGLE CONTROLLER InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 144: Mint

    Non-static non-public IP provider Only AirGate ID IB-NT BTS / Mobile LAN / WAN / provider Non-static non-public IP INTERNET Only AirGate ID Ethernet RJ45 NTERNET CONNECTION FOR MULTIPLE CONTROLLERS InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 145: Using A Web Browser

    The default settings of the module are IP = 192.168.1.254, Netmask = 255.255.255.0 and Gateway = 192.168.1.1. The default password for service webpages is “comap” (or “0”). To restore the default settings, close the “restore default setting” jumper located on the module before switching the controller on and remove it few seconds after the controller has been switched on.

  • Page 146: System Integration

    SIM card (fixed and public IP), firewalls and difficult communication settings. http://www.comap.cz/news-room/news-and-events/detail/AirGate http://www.comap.cz/news-room/news-and-events/detail/The-Rainbow-rises-for-remotemonitoring- applications/ 11.3.10 Locate The controller supports the technology for GSM localization using an IL-NT-GPRS communication module. It is possible to view the localization in WebSupervisor. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 147: Modbus Protocol

    Modbus) The setpoints are stored in EEPROM memory, which can be overwritten up to times without risk of damage or data loss, but it may become damaged, when the allowed number of writing cycles is exceeded! InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 148: Ic-Nt-Rd Remote Display Software

    The other IL-NT hardware types have other limitations according to HW variations from IC-NT HW. IC-NT RD SW works analogically to IL-NT RD SW. See IC-NT RD SW website to find out more information about installation and configuration. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 149: Maintenance

    5. The battery is located in a holder on the circuit board. Remove the old battery with a small sharp screwdriver and push the new battery into the holder with your finger. Use only a CR1225 lithium battery. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 150
    Stay in the INIT state (not possible to run gen-set) All History records disappear except for the “System log: SetpointCS err” record Time and Date values are set to zero Statistics values are random InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 151: Troubleshooting

    The RTC backup battery is empty. An alternative way is checking all setpoints from the front panel. Change at least one of them and then switch the controller off and on. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 152
    L1 voltage terminal is not the same generator voltage to their CTs. phase as the CT connected to L1 current terminal or the same situation for L2 or L3. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 153
    AUSE OLUTION The wiring of the CAN bus network is not Correct the wiring as described in the chapter provided as linear bus without nodes. CAN bus wiring. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 154: Technical Data

    185x125x60 mm (WxHxD) Weight Mounting cutout size 175×115 mm (WxH) 14.4 Standard conformity Electromagnetic EN 61000-6-1, EN 61000-6-2, EN 61000-6-3, EN 61000-6-4 compatibility Low voltage directive EN 61010-1:95 +A1:97 InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 155: Binary Inputs

    Max. measured voltage 340 V Ph-N Voltage accuracy 1% from the range Current range Max. measured current Max. allowed current 12 A continuous, 50 A/1 Current accuracy 2% from the range InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 156: Pickup Input

    400–480 V AC 400 V AC – 20% Absolute low limit 2 Absolute high limit 2 480 V AC + 20% Frequency 50–60 Hz Secondary voltage 18 V AC, 5 VA InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 157: Ig-Avri Trans/100

    Termination resistor 14.15 Interface to other controllers Type CAN bus, available in MINT type only Galvanic insulation Insulated, 500 V Baud rate 250 kbps Bus length max. 200 m InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 158: Recommended Can Cables

    Lapp Cable Unitronic Bus DeviceNet Trunk Cable  Lapp Cable Unitronic Bus DeviceNet Drop Cable  Lapp Cable Unitronic Bus CAN  Lapp Cable Unitronic-FD Bus P CAN UL/CSA InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 159: Language Support

    Win 1252 – Western Europe, America  Win 1254 – Turkish  GB2312 – Chinese See the Operator guide for information on how to select the controller front panel language. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 160: Appendix

    Description Tells controller to activate protection against power export to the Mains. The function limits gen-set requested power to hold export power lower or equal to the setpoint Export InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 161
    Range [units] 0 … 4000 [kW] Related MINT applications Description Required total load of the gen-set group in parallel to mains operation in baseload mode (setpoint #SysLdCtrl PtM = BASELOAD). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 162
    The actual setpoint units and range depend on setting of the Power format (see the LiteEdit manual). It is necessary to use IC-NT CT-BIO7 module and measure 1Ph Mains current. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 163
    Adjusting to “0” causes stop of the gen-set (if there is no other demand for running) and disables the automatic peak shaving start. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 164: Group: Basic Settings

    User-defined name, used for controller identification at remote connections. The name can be max. 15 characters long and must be entered using LiteEdit. The setpoint can’t be changed from the front panel of the controller. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 165
    Group Basic Settings Range [units] 1 … 10000 [A/5A] Related SPtM applications Description Defines mains current transformer ratio for current measuring input of IC-NT CT-BIO7 extension module if used. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 166
    Setpoint: Vb PT Ratio Group Basic Settings Range [units] 0.1 … 500 [V/V] Related MINT applications Description Bus voltage potential transformers ratio. If no PTs are used, adjust the setpoint to 1. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 167
    Modbus. Use the mode selector on the main screen for changing the mode from the front panel. Use mode selector in the control window for changing the mode from LiteEdit. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 168: Group: Comms Settings

    Do not use the same address for multiple controllers in the same group! Use the proper address when connecting to the controller from LiteEdit. Changing the address remotely (e.g. from LiteEdit) will cause connection loss! InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 169
    DIRECT, MODEM, MODBUS, ECU LINK [-] Related applications Description Communication protocol switch for the COM1 channel.  DIRECT: ComAp PC SW communication protocol via direct cable.  MODEM: ComAp PC SW communication protocol via modem.  MODBUS: Modbus protocol. Find a detailed description in a separate chapter.
  • Page 170
    Range [units] Related applications Description If DHCP is DISABLED this setpoint is used to adjust the IP address of the gateway of the network segment where the controller is connected. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 171
    PC with any of ComAp PC program (i.e. LiteEdit, InteliMonitor). This setpoint should be adjusted to 23, which is the default port used by all ComAp PC programs. A different value should be used only in special situations such as sharing a single public IP address among many controllers or to overcome firewall restrictions.
  • Page 172
    Description This setpoint is used for entering the domain name or IP address of the AirGate server. Use the free AirGate server provided by ComAp at airgate.comap.cz if your company does not operate its own AirGate server. InteliCompact , SW version 2.1…
  • Page 173
    Description Enter an existing e-mail address in this setpoint. This address will be used as the sender address in active e-mails that will be sent from the controller. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 174: Group: Engine Params

    This setpoint defines the “firing” speed level as percent value of the nominal Description speed. If this level is exceeded the engine is considered as started. More information is available in the Engine start chapter. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 175
    Set it to zero to disable this function. Setpoint: MaxCrank Time Group Engine Params Range [units] 1 … 255 [s] Related applications Description Maximum duration the starter motor is energized. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 176
    When the gen-set has been started and the idle timer has elapsed, the controller will wait for a period adjusted by this setpoint before closing GCB or starting synchronizing, even if the generator voltage and frequency are already in limits. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 177
    The stop solenoid remains energized for the entire stop time period. See the chapter Cool down and stop for details about the stop procedure. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 178
    The nominal speed is selected via the VP Status proprietary frame, parameter “Frequency select”. SCANIA EMS/S6 The nominal speed is selected via parameters “Nominal speed switch 1” and “Nominal speed switch 2” in the DLN1 proprietary frame. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 179: Group: Engine Protect

    Use this setpoint to adjust the delay starting evaluation of engine running only alarms. The delay starts to count down in the moment of transition from starting phase to the idle phase. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 180
    Setpoint: AI1 Yel Group Engine Protect Range [units] Limits and units depend on analog input configuration Related applications Description Threshold for the yellow alarm configured to the analog input 1. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 181
    Threshold for the red alarm configured to the analog input 2. Setpoint: AI2 Del Group Engine Protect Range [units] 0 … 180 [s] Related applications Description Delay of the alarms configured to the analog input 2. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 182
    This timer is also available in the value group Statistics, but it cannot be modified there. In the event that WrnMaintenance is set to 10000 h the timer is disabled and not visible on the controller display. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 183: Group: Gener Protect

    200% are IDMT Curr Del. Overcurrent ≤ 100% 200% = 101% 110% IDMT Curr 0.2s No action Reaction time No action 200s No action No action 200s (time > 3600s) InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 184
    Setpoint: Amps Unbal BOC Group Gener Protect Range [units] 1 … 200 [%] Related applications Description Threshold for generator current unbalance alarm, relative to the nominal current (setpoint Nomin Current). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 185
    Setpoint: Gen <V BOC Group Gener Protect Range [units] 0 … Gen >V Sd Related applications Description Threshold for generator undervoltage alarm, relative to the nominal voltage (setpoint Nominal Volts). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 186
    Setpoint: Gen <Freq BOC Group Gener Protect Range [units] 50 … Gen >Freq BOC Related applications Description Threshold for generator underfrequency alarm, relative to the nominal frequency (setpoint Nominal Freq). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 187
    Gener Protect Range [units] 0 … 600.0 [s] Related applications Description Delay for generator reverse power alarm. Setpoint: ExcitationLoss Group Gener Protect Range [units] 0 … 150 [%] Related applications InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 188: Group: Pwr Management

    Start/Stop will force all gen-sets to start and run for 6 minutes despite of the power management setting. By setting “0” the Power Management function is enabled immediately. Setpoint: #PowerMgmtMode Group Power Management InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 189
    ABS(kW), REL(%) … [-] Related MINT applications Description Use this setpoint to select whether the power management has to be based on absolute reserve (in kW) or relative (in %). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 190
    Run Hours and requested Load reserve. For gen- sets with the same nominal power also run hour equalization is being performed. Binary input Top Priority can be used only if #PriorAutoSwap = DISABLED InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 191
    This setpoint adjusts the reserve for start if the set 1 of reserves is selected, i.e. binary input Load Reserve 2 is not active. See the power management description to learn more about reserves. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 192
    Range [units] 0 … 3600 [s] Related MINT applications Description This setpoint adjusts the delay for starting the next gen-set after the reserve has dropped below the reserve for start. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 193
    Gen-set 2 actual Running hours = 2000 h. Adjust RunHourBase for Gen-set 1 = 1000 h and RunHourBase for Gen-set 2 = 2000 h to be on the same base for Running Hours Equalization. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 194
    Power Band Change Delay Down — this setpoint is used for adjusting the delay of changing the power band if the load demand drops below the lower limit of the InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 195: Group: Amf Settings

    Threshold for detection of mains failure due to undervoltage. The setpoint is adjusted relative to the generator nominal voltage (setpoint Nominal Volts). Setpoint: Mains V Del Group AMF Settings InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 196
    Vector shift. A mains failure is detected immediately when the vector surge has occurred without any delay. Setpoint: Transfer Del Group AMF Settings Range [units] 0 … 600 [s] InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 197
    AUTO: No automatic mode change is performed. Select RetFromIsland = MANUAL in case you need to manually control the moment when the load is transferred back to the mains. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 198
    For safety reasons it is recommended to use negative logic (CLOSE-OFF). Using positive logic could cause the mains to be disconnected accidentally when the controller is switched off or a wire is broken. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 199: Group: Sync/Load Ctrl

    SpeedGovLowLim … 10.00 [V] Range [units] Related applications Description Upper limit of the speed governor output. Use this setpoint to adjust the governor output range according to your governor type. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 200
    To disable issuing the breaker close command (i.e. for test purpose) adjust this setpoint to 0. Synchronizing will continue until a timeout occurs or the breaker is closed externally. Allowed range of phase angle X = PhaseWindow difference InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 201
    During synchronization, first the frequency loop is started to match the generator frequency with the mains or bus and after that the phase angle loop is started to match the phase angle. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 202
    GCB will open. Use this setpoint to adjust the end-point of the ramp, e.g. the load level (in % of Nominal Power) where the GCB will be opened. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 203
    Gain of the load sharing control PI loop. Setpoint: LoadShare Int Group Sync/Load Ctrl Range [units] 0 … 100 [%] Related MINT applications Description Relative integration factor of load sharing control loop. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 204: Group: Volt/Pf Ctrl

    Relative integration factor of the voltage control loop. Setpoint: PF Gain Group Volt/PF Ctrl Range [units] 0 … 200.0 [%] Related applications Description Gain of power factor control PI loop. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 205: Group: Exti/O Protect

    Limits and units depend on analog input configuration Related applications Description Threshold for the red alarm configured to the analog input 1 of the extension module IG-IOM or IGS-PTM. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 206
    Limits and units depend on analog input configuration Related applications Description Threshold for the yellow alarm configured to the analog input 3 of the extension module IG-IOM or IGS-PTM. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 207
    Group ExtI/O Protect Range [units] 0 … 180 [s] Related applications Description Delay of the alarms configured to the analog input 4 of the extension module IG-IOM or IGS-PTM. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 208: Group: Sms/E-Mail

    Set this setpoint to ON if you want to get messages when a new event occurs. For target address (GSM phone number or e-mail address) must be set correctly to the setpoint(s) TelNo/Addr Ch1 TelNo/Addr Ch2. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 209: Group: Analogswitches

    Range [units] Limits and units depend on analog input configuration Related applications Description Threshold level for switching ON the analog switch assigned to the analog input 1 of the controller. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 210
    Range [units] Limits and units depend on analog input configuration Related applications Description Threshold level for switching OFF the analog switch assigned to the analog input 3 of the controller. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 211: Group: Date/Time

     WINTER-S: southern hemisphere winter time is valid for the current time period.  SUMMER-S: southern hemisphere summer (daylight saving) time is valid for the current time period. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 212
    NONE, MONDAY, TUESDAY, … SUNDAY, MON-FRI, MON-SAT, MON- SUN, SAT-SUN [-] Related applications Description This setpoint adjusts the repetition period of the Timer 1. Learn more about exercise timers in a separate chapter. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 213
    TEST connected to the Remote TEST binary input. TEST When this option is chosen the Timer output is also internally OnLd connected to the Rem TEST OnLd binary input. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 214
    1 … 1440 [min] Range [units] Related applications Description This setpoint adjusts the duration that Timer 2 will be active within one cycle. Learn more about exercise timers in a separate chapter. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 215: Group: Sensors Spec

    (constant) is always added to the measured analog value. It is recommended to perform the calibration under operating conditions, i.e. perform a coolant temperature sensor calibration when the engine is warm, not cold. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 216
    The setpoint (constant) is always added to the measured analog value. It is recommended to perform the calibration under operating conditions, i.e. perform a coolant temperature sensor calibration when the engine is warm, not cold. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 217
    The setpoint (constant) is always added to the measured analog value. It is recommended to perform the calibration under operating conditions, i.e. perform a coolant temperature sensor calibration when the engine is warm, not cold. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 218: Table Of Values

    L/h or G/h – selectable in configuration (LiteEdit) Units Related applications Description Current fuel consumption obtained from the ECU. Contains invalid flag ECU is not configured or if the particular ECU does not provide this value. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 219
    Units Related applications Description Engine boost pressure obtained from the ECU. Contains invalid flag if ECU is not configured or if the particular ECU does not provide this value. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 220
    100% 1650 RPM 100% This function (speed adjust via CAN bus) has to be supported by the engine ECU. Without the support, ComAp controllers can not adjust the engine speed. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 221: Group: Generator

    Units Related applications Description Generator active power. Value: Gen kW L1 Group Generator Units Related applications Description Generator active power in phase L1. Value: Gen kW L2 Group Generator InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 222
    Generator Units kVAr Related applications Description Generator reactive power in phase L2. Value: Gen kVAr L3 Group Generator Units kVAr Related applications Description Generator reactive power in phase L3. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 223
    Generator apparent power in phase L2. Value: Gen kVA L3 Group Generator Units Related applications Description Generator apparent power in phase L3. Value: Gen PF Group Generator Units Related applications Description Generator power factor. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 224
    Units Related applications Character of the generator load in the L2 phase. “L” means inductive load, Description “C” is capacitive and “R” is resistive load (power factor = 1). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 225
    Generator frequency taken from phase L3. Value: Gen V L1-N Group Generator Units Related applications Description Generator phase L1 voltage. Value: Gen V L2-N Group Generator Units Related applications Description Generator phase L2 voltage. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 226
    Value: Gen V L3-L1 Group Generator Units Related applications Description Generator phase L3 to phase L1 voltage. Value: Gen A L1 Group Generator Units Related applications Description Generator current phase L1. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 227: Group: Mains

    Value: Mains Freq Group Mains Units Related SPtM applications Description Mains frequency taken from phase L3. Value: Mains V L1-N Group Mains Units Related SPtM applications Description Mains phase L1 voltage. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 228
    Related SPtM applications Description Mains phase L2 to phase L3 voltage. Value: Mains V L3-L1 Group Mains Units Related SPtM applications Description Mains phase L3 to phase L1 voltage. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 229
    Value: Mains LChr Group Mains Units Related SPtM applications Character of the mains. “L” means inductive load, “C” is capacitive and “R” is Description resistive load (power factor = 1). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 230
    Character of the load. “L” means inductive load, “C” is capacitive and “R” is Description resistive load (power factor = 1). Value: Slip Group Mains Units Related applications Description Differential frequency between the gen-set and the mains. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 231: Group: Bus

    Bus frequency taken from phase L3. Value: Bus V L1-N Group Units Related MINT applications Description Bus phase L1 voltage. Value: Bus V L2-N Group Units Related MINT applications Description Bus phase L2 voltage. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 232
    Units Related MINT applications Description Bus phase L3 to phase L1 voltage. Value: Slip Group Mains Units Related MINT applications Description Differential frequency between the gen-set and the mains. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 233: Group: Pwr Management

    Sum of active power of all gen-sets within the group that are connected to Description the bus and are performing the power management, i.e. that are in AUT mode and have power management enabled. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 234
    Value: Act Pwr Band Group Power management Range [units] Related MINT applications Description The values show which gen-sets (controller CAN addresses) are running in current active power band. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 235: Group: Controller I/O

    This is the value of the analog input 2 of the controller. It will contain an invalid flag if the input is not used or sensor fail is detected on it. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 236
    In the event that the output is switched to PWM mode, the relation is 10V ~ 100% PWM. Value: AVRi Output Group Controller I/O Units InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 237
    SIM card is locked (Possibly PIN code required, PIN needs to be deactivated) or unknown status of SIM locking No GSM signal Not possible to read the SIM card parameters InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 238
    Related applications Description Status of the modem.  “———“ After controller initialization  “Trying” Modem active. Trying to establish connection.  “Ready” Modem ready. Communication with modem is OK. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 239: Group: Extension I/O

    This is the value of the analog input 4 of the IOM/PTM extension module. It will contain an invalid flag if the input or module is not used or sensor fail is detected on it. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 240
    Bit0 represents the top left LED, bit14 represents the bottom right LED. and on the controller screen this value is displayed in “normal LiteEdit order”, i.e. bit0 in the leftmost position. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 241: Group: Statistics

    ECU. If the value is not available from the ECU or if an ECU is not configured, the engine hours are incremented in the controller while the engine is running. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 242
    Shutdown alarms counter. This counter counts all occurrences of a shutdown alarm, not only real shutdowns of the gen-set, i.e. the counter is increased by 2 if two shutdown alarms appear simultaneously. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 243: Group: Date/Time

    16.2.9 Group: Date/Time Value: Time Group Info Units hh:mm:ss Related applications Description Shows setup time. Value: Date Group Info Units dd.mm.yyyy Related applications Description Shows setup date. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 244: Group: Info

    (also offline with a previously saved archive) and go to the menu Controller -> Generate CFG image. The resulting file will contain the assignment of texts to the codes. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 245
    Units Related MINT applications Description Each bit of this value shows if a controller with the corresponding address is found on the bus. Bit 0 represents address 1 etc. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 246: Table Of Binary Input Functions

    If the input is active, the controller will consider the GCB as closed and vice versa. If the GCB is not in the expected position, the alarm Fail will occur. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 247
    Active access lock is indicated by an “L” letter in the upper right corner of the controller main screen. This input does not disable remote changes of setpoints i.e. from LiteEdit. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 248
    If the input is active, the controller will not accept any actions regarding the gen-set control – e.g. writing of commands and setpoint changes – from remote communication interfaces (RS232, Modem, Modbus, iG-IB, i-LB). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 249
    Binary input: HornResButton Related applications Description This input is to be used as an external horn reset button. It works the same way as the horn reset button on the panel. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 250: Mint Specific

    AUT mode. If the power management is disabled by the Pwr Management setpoint, the gen-set is started and stopped only according to this input. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 251: Sptm Specific

    SPtM applications This input switches the controller into TEST mode like Remote TEST, but Description forces the controller to take the load, i.e. perform the test on load procedure. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 252: Table Of Binary Output Functions

    16.4 Table of binary output functions 16.4.1 Common functions Binary output: Starter Related applications Description This output is dedicated for starter motor control. Learn more about starting procedure in the chapter Engine start. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 253
    Binary output: Stop Pulse Related applications Description This output will give a 1 pulse whenever a stop command is issued to the gen-set, i.e. when the binary output Stop Solenoid is activated. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 254
    The output is designed to be used as external alarm indication such as a red bulb in the control room etc. The output is active when at least one unconfirmed alarm is present in the alarmlist. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 255
    This output is to be used for opening the generator circuit breaker via the undervoltage coil. See the chapter Circuit breakers for details about all outputs available for generator/mains power switches. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 256
    AVR does not support analog control. Droop function is required when these outputs are used for power factor control. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 257
    Binary output: AnalogSwitch 1 Related applications Description This is an output from the Analog switch Binary output: AnalogSwitch 2 Related applications Description This is an output from the Analog switch InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 258
    Red Alarm is active when either AL Common Sd or AL Common Stp or AL Common BOC is active. Binary output: Mode OFF Related applications Description This output is active whenever the controller is in OFF mode. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 259
    Neutral Circuit Breaker Close/Open output controls the generator Neutral circuit breaker. It is intended for contactors – provides a continual active signal if Neutral CB should be closed. See also setpoint #Neutral cont. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 260: Ecu Info

    This flag is taken from the DM1 frame on standard J1939 ECUs. Some ECUs provide this flag in their own proprietary frames and some do not provide the flag at all. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 261
    Evaluated Maximum Cranking Time Cranking Fail Pause Engine RPM Starter Starter Prestart Prestart Prestart Time Cranking Fail Pause Engine is running Start Starting RPM Time ECU COMMUNICATION ERROR EVALUATION InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 262: Alarm Mirrors

    This output is active when the underspeed alarm is present in the alarmlist. Binary output: AL Overload Related applications Description This output is active when the overload alarm is present in the alarmlist. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 263
     If the related binary input is configured as functional, the output copies directly the status of the input. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 264
     If the related binary input is configured as functional, the output copies directly the status of the input. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 265
    Binary output: IOM BI1 Status Related applications Description This output gives information about the status of binary input 1 of the extension IOM/PTM module. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 266
     If the related binary input is configured as functional, the output copies directly the status of the input. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 267
     If the related binary input is configured as functional, the output copies directly the status of the input. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 268
     If the related binary input is configured as functional, the output copies directly the status of the input. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 269
    Binary output: AL AI2 Yel Related applications Description The output is closed when there is the yellow alarm from the analog input 2 of the controller present in the alarmlist. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 270
    Binary output: AL IOM AI3 Yel Related applications Description The output is closed when there is the yellow alarm from the analog input 3 of the extension IOM/PTM module present in the alarmlist. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 271
    Binary output: AL Common Sd Related applications Description The output is closed when there is any shutdown type alarm present in the alarmlist. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 272: Mint Specific

    If the output is open, it means the whole gen-set group is overloaded. It will open i.e. if a red alarm occurs on one gen-set and there is no other gen-set available to start instead of the stopped one. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 273: Sptm Specific

    This output is to be used for control of the OFF coil of the mains circuit breaker. See the chapter Circuit breakers for details about all outputs available for generator/mains power switches. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 274: Table Of Internal Alarms

    This output is active whenever the controller is in TEST mode. 16.5 Table of internal alarms Alarm: Emergency Stop Alarm type Shutdown Emergency Stop Alarmlist message Alarm evaluated All the time Related applications InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

  • Page 275
    This alarm will be issued after all attempts to start the gen-set (setpoint Crank Attempts) have run out but the gen-set did not start. See also Engine start chapter. The gen-set cannot be started again until this alarm is reset. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 276
    InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 277
    The alarm is issued if the engine speed has not exceeded the Starting RPM within the MaxCrank Time, although some of additional running engine indication sources indicate that the engine has started. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 278
    Closing of GCB is blocked until this alarm becomes inactive.  If reverse synchronizing is disabled (binary input RevSyncDisable active) the maximal allowed reaction time is increased to 5. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 279
     Overload Del adjusts the delay. The alarm is issued when the gen-set power is over the limit for time period longer than the delay. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 280
     Volt Unbal BOC adjusts the maximum allowed difference between the highest and lowest phase voltage at any given time.  Volt Unbal Del adjusts the alarm delay. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 281
    The nominal current level, where the alarm starts to be evaluated, is given Nomin Current. The reaction time is infinite at this point. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 282
     Amps Unbal BOC adjusts the maximum allowed difference between the highest and lowest phase current at any given time.  Amps Unbal Del adjusts the alarm delay. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 283
    80% of the controller supply voltage. This alarm works similar to the red “battery” alarm indicator on a vehicle dashboard. The setpoint D+ Function has to be in CHRGFAIL or ENABLED position to enable this alarm. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 284
    2 . This situation can occur, for example, if the connection of the AVRi output to the AVR is not correct. Alarm: Battery flat Alarm type Shutdown Sd BatteryFlat Alarmlist message Alarm evaluated During cranking Related applications InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 285
    Alarmlist message Alarm evaluated All the time Related applications Description This alarm indicates that the water temperature is higher than the set yellow alarm of relevant AI (Water Temp). InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 286
    InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 287
    “still engine” state within Engine params: Stop time. “Still engine” conditions: – Engine speed (RPM) = 0 and – AI: Oil press < Starting POil and – D+ terminal is not active and InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 288
    All the time Related applications Description This alarm occurs when the fuel level value measured at relevant AI (Fuel Level) drops faster than is the limit adjusted by setpoint MaxFuelDrop. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 289
    Sd IOM Fail Alarmlist message Alarm evaluated All the time Related applications Description Communication error between the controller and extension module IG-IOM or IGS-PTM. Alarm: RA Fail Alarm type Warning InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 290
    This alarm occurs when an ECU is configured, but the communication with the ECU is not established or has dropped out. Alarm: Active Call Fail Alarm type Warning ActiveCallCH1Fail, CH2Fail, CH3Fail Alarmlist message Alarm evaluated All the time Related applications InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…
  • Page 291
    Alarmlist message Alarm evaluated All the time Related SPtM applications The alarm occurs if there is a non-zero mains current if the Load Ramp time Description elapsed during unloading. InteliCompact , SW version 2.1 InteliCompact-NT-2.1-Reference Guide.pdf, ©ComAp – May 2015…

Понравилась статья? Поделить с друзьями:
  • Bobcat ошибка м0514 что делать
  • Bobcat ошибка м 2503
  • Bobcat ошибка m0613
  • Bobcat ошибка 2403
  • Bobcat s300 коды ошибок