Чем обусловлены случайные ошибки

Поскольку
выборка охватывает , как правило,
весьма незначительную часть генеральной
совокупности, то следует предполагать,
что будут иметь место различия между
оценкой и характеристикой генеральной
совокупности, которую эта оценка
отображает. Эти различия получили
название ошибок отображения или ошибок
репрезентативности. Ошибки
репрезентативности подразделяются
на два типа : систематические и случайные.

Систематические
ошибки

это постоянное завышение или занижение
значения оценки по сравнению с
характеристикой генеральной совокупности
. Причиной появления систематической
ошибки является несоблюдение принципа
равновероятности попадания каждой
единицы генеральной совокупности в
выборку , то есть выборка формируется
из преимущественно «худших» ( или «
лучших») представителей генеральной
совокупности. Соблюдение принципа
равновозможности попадания каждой
единицы в выборку позволяет полностью
исключить этот тип ошибок .

Случайные
ошибки

это меняющиеся
от выборки к выборке по знаку и величине
различия между оценкой и оцениваемой
характеристикой генеральной совокупности
. Причина возникновения случайных
ошибок- игра случая при формировании
выборки, составляющей лишь часть
генеральной совокупности. Этот тип
ошибок органически присущ выборочному
методу. Исключить их полностью нельзя,
задача состоит в том , чтобы предсказать
их возможную величину и свести их к
минимуму. Порядок связанных в связи
с этим действий вытекает из рассмотрения
трех видов случайных ошибок : конкретной
, средней и предельной.

2.2 Конкретная, средняя и предельная ошибки выборки

2.2.1
Конкретная

ошибка – это ошибка одной проведенной
выборки. Если средняя по этой выборке
(
) является оценкой для генеральной
средней (0
) и, если
предположить, что эта генеральная
средняя нам известна , то разница
=0
и будет
конкретной ошибкой этой выборки. Если
из этой генеральной совокупности
выборку повторим многократно, то каждый
раз получим новую величину конкретной
ошибки :
…,
и так далее.
Относительно этих конкретных ошибок
можно сказать следующее: некоторые из
них будут совпадать между собой по
величине и знаку, то есть имеет место
распределение ошибок, часть из них
будет равна 0, наблюдается совпадение
оценки и параметра генеральной
совокупности;

2.2.2
Средняя ошибка

– это средняя квадратическая из всех
возможных по воле случая конкретных
ошибок оценки :
,
где— величина меняющихся конкретных
ошибок;частота
( вероятность ) встречаемости той или
иной конкретной ошибки. Средняя
ошибка выборки показывает насколько
в среднем можно ошибиться , если на
основе оценки делается суждение о
параметре генеральной совокупности.
Приведенная формула раскрывает
содержание средней ошибки, но она не
может быть использована для практических
расчетов, хотя бы потому, что предполагает
знание параметра генеральной совокупности
, что само по себе исключает необходимость
выборки.

Практические
расчеты средней ошибки оценки
основываются на той предпосылке, что
она ( средняя ошибка ) по сути является
средним квадратическим отклонением
всех возможных значений оценки. Эта
предпосылка позволяет получить алгоритмы
расчета средней ошибки, опирающиеся
на данные одной единственной выборки.
В частности средняя ошибка выборочной
средней может быть установлена на
основе следующих рассуждений. Имеется
выборка (
,) состоящая изединиц. По выборке в качестве оценки
генеральной средней определена
выборочная средняя. Каждое значение(,) , стоящее под знаком суммы, следует
рассматривать как независимую случайную
величину, поскольку при бесконечном
повторении выборки первая, вторая и
т.д. единицы могут принимать любые
значения из присутствующих в генеральной
совокупности. СледовательноПоскольку , как известно, дисперсия
суммы независимых случайных величин
равна сумме дисперсий , то.
Отсюда следует, что средняя ошибка для
выборочной средней будет равнаяи находится она в обратной зависимости
от численности выборки ( через корень
квадратный из нее ) и в прямой от среднего
квадратического отклонения признака
в генеральной совокупности. Это логично,
поскольку выборочная средняя является
состоятельной оценкой для генеральной
средней и по мере увеличения численности
выборки приближается по своему значению
к оцениваемому параметру генеральной
совокупности. Прямая зависимость
средней ошибки от колеблемости признака
обусловлена тем, что чем больше
изменчивость признака в генеральной
совокупности, тем сложнее на основе
выборки построить адекватную модель
генеральной совокупности. На практике
среднее квадратическое отклонение
признака по генеральной совокупности
заменяется его оценкой по выборке, и
тогда формула для расчета средней
ошибки выборочной средней приобретает
вид:,
при этом учитывая смещенность
выборочной дисперсии,
выборочное среднее квадратическое
отклонение рассчитывается по формуле=. Так как символомn
обозначена численность выборки. ,то
в знаменателе при расчете среднего
квадратического отклонения должна
использоваться не численность выборки
( n
), а так называемое число степеней
свободы (n-1).
Под числом степеней свободы понимается
число единиц в совокупности, которые
могут свободно варьировать ( изменяться
), если по совокупности определена
какая-либо характеристика. В нашем
случае , поскольку по выборке определена
ее средняя, свободно варьировать могут

единицы.

В
таблице 2.2 приведены формулы для
расчета средних ошибок различных
выборочных оценок . Как видно из этой
таблицы, величина средней ошибки по
всем оценкам находится в обратной связи
с численностью выборки и в прямой с
колеблемостью. Это можно сказать и
относительно средней ошибки выборочной
доли ( частости ). Под корнем стоит
дисперсия альтернативного признака,
установленная по выборке (
)

Приведенные
в таблице 2.2 формулы относятся к так
называемому случайному , повторному
отбору единиц в выборку. При других
способах отбора , о которых речь пойдет
ниже, формулы будут несколько
видоизменяться.

Таблица
2.2

Формулы для
расчета средних ошибок выборочных
оценок

Выборочные
оценки

Формулы
для расчета средней ошибки выборочной
оценки

Выборочная
средняя (
)

Выборочная
дисперсия
(
)

Выборочное
среднее квадратическое отклонение
( s
)

Выборочная
доля (w
)

2.2.3
Предельная ошибка выборки

Знание оценки и ее средней ошибки в
ряде случаев совершенно недостаточно
. Например , при использовании гормонов
при кормлении животных знать только
средний размер неразложившихся их
вредных остатков и среднюю ошибку,
значит подвергать потребителей продукции
серьезной опасности. Здесь настоятельно
напрашивается необходимость определения
максимальной ( предельной
ошибки
).
При использовании выборочного метода
предельная ошибка устанавливается не
в виде конкретной величины , а виде
равных границ

(
интервалов) в ту и другую сторону от
значения оценки.

Определение
границ предельной ошибки основывается
на особенностях распределения конкретных
ошибок . Для так называемых больших
выборок, численность которых более 30
единиц (
)
, конкретные ошибки распределяются в
соответствии с нормальным законом
распределения; при малых выборках () конкретные ошибки распределяются
в соответствии с законом распределения
Госсета

(
Стьюдента ). Применительно к конкретным
ошибкам выборочной средней функция
нормального распределения имеет
вид:
,
где— плотность вероятности появления тех
или иных значений,
при условии, что,
гдевыборочные средние;
генеральная средняя,— средняя ошибка для выборочной
средней. Поскольку средняя ошибка
()
является величиной постоянной, то в
соответствии с нормальным законом
распределяются конкретные ошибки,
выраженные в долях средней ошибки, или
так называемых нормированных отклонениях
.

Взяв
интеграл функции нормального
распределения, можно установить
вероятность того , что ошибка будет
заключена в некотором интервале
изменения t
и вероятность того, что ошибка выйдет
за пределы этого интервала ( обратное
событие ). Например , вероятность того,
что ошибка не превысит половину средней
ошибки ( в ту и другую сторону от
генеральной средней ) составляет
0,3829, что ошибка будет заключена в
пределах одной средней ошибки — 0,6827,
2-х средних ошибок -0,9545 и так далее.

Взаимосвязь
между уровнем вероятности и интервалом
изменения t
( а в конечном счете интервалом
изменения ошибки ) позволяет подойти
к определению интервала ( или границ )
предельной ошибки, увязав его величину
с вероятностью осуществления..
Вероятность осуществления -это
вероятность того, что ошибка будет
находится в некотором интервале.
Вероятность осуществления будет
«доверительной» в том случае, если
противоположное событие ( ошибка будет
находится вне интервала ) имеет такую
вероятность появления, которой можно
пренебречь. Поэтому доверительный
уровень вероятности устанавливают,
как правило, не ниже 0,90 (вероятность
противоположного события равна 0,10 ).
Чем больше негативных последствий
имеет появление ошибок вне установленного
интервала, тем выше должен быть
доверительный уровень вероятности (
0,95; 0,99 ; 0,999 и так далее ).

Выбрав
доверительный уровень вероятности
по таблице интеграла вероятности
нормального распределения, следует
найти соответствующее значение t,
а затем используя выражение
=определить интервал предельной ошибки.
Смысл полученной величины в следующем
– с принятым доверительным уровнем
вероятности предельная ошибка выборочной
средней не превысит величину.

Для
установления границ предельной ошибки
на основе больших выборок для других
оценок ( дисперсии, среднего квадратического
отклонения, доли и так далее ) используется
выше рассмотренный подход, с учетом
того, что для определения средней
ошибки для каждой оценки используется
свой алгоритм.

Что
касается малых выборок () то, как уже говорилось, распределение
ошибок оценок соответствует в этом
случае распределениюt
— Стьюдента. Особенность этого
распределения состоит в том, что в
качестве параметра в нем , наряду с
ошибкой, присутствует численность
выборки ,вернее не численность выборки,
а число степеней свободы
При увеличении численности выборки
распределениеt-Стьюдента
приближается к нормальному, а при
эти распределения практически совпадают.
Сопоставляя значения величиныt-Стьюдента
и t
— нормального распределения при одной
и той же доверительной вероятности
можно сказать , что величина t-Стьюдента
всегда больше t
— нормального распределения, причем,
различия возрастают с уменьшением
численности выборки и с повышением
доверительного уровня вероятности.
Следовательно, при использовании малых
выборок имеют место по сравнению с
выборками большими , более широкие
границы предельной ошибки, причем , эти
границы расширяются с уменьшением
численности выборки и повышением
доверительного уровня вероятности.

Вопросы для
повторения

6-1.Какова
природа конкретной, средней и предельной
ошибок ?

6-2.Как
соблюсти принцип равновероятности
каждой единицы попасть в выборку при
выборочном устном опросе студентов ?

6-3 Каков источник
систематической ошибки ?

6-4.Какова
вероятность появления ошибки в 2.5 раза
превышающей среднюю?

6-5.Какие
различия в знаках ( + , — ) имеют
систематические и случайные ошибки?

6-6.Каковы основные
пути уменьшения средней и предельной
ошибки ?

6-7.При какой
выборочной доле имеет место ее наибольшая
ошибка ?

6-8.При какой доле
признака имеет место ее наименьшая
ошибка 7

6-9.При
каких выборках ( больших или малых )
при прочих равных условиях имеет место
большая предельная ошибка ?

Резюме по
модульной единице 2

Использование
выборочного метода неизбежно сопряжено
с появлением ошибок. Случайный характер
этих ошибок, нормальный или t
— Стьюдента закон их распределения
позволяет определить их средний и
предельный размер и видеть пути их
снижения

Модульная
единица 3 Типовые задачи решаемые на
основе выборочного метода

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Разница между случайной ошибкой и систематической ошибкой

Ошибка определяется как разница между фактическим или истинным значением и измеренным значением. Измерение количества или стоимости основано на каком-то стандарте. Измерение любого количества осуществляется путем сравнения его с производным стандартом, который не является полностью точным. Чтобы понять ошибки в измерении, следует понимать два термина, которые определяют ошибку, и они являются истинным значением и измеренным значением. Истинное значение невозможно выяснить, оно может быть определено по среднему значению бесконечного числа. Измеренное значение определяется как оценочное значение истинного значения путем взятия нескольких измеренных значений. Ошибка не должна быть перепутана с ошибкой, ошибки можно избежать, но ошибки не избежать, но их можно минимизировать. Так что ошибка не является ошибкой его части измерительной обработки. Измерение — это разница между измеренным значением количества и его истинным значением. мы обсудим случайную ошибку и систематическую ошибку. Погрешности измерения делятся на два обширных класса ошибок.

  1. Случайная ошибка
  2. Систематическая ошибка

Случайная ошибка:

Случайная ошибка — это не что иное, как колебания в измерении, которые в основном наблюдаются путем проведения нескольких испытаний данного измерения. Как следует из названия, эта ошибка происходит совершенно случайно. Они непредсказуемы и не могут быть воспроизведены путем повторения эксперимента снова. Так что каждый раз это дает разные результаты. Случайная ошибка варьируется от наблюдения к другому. При случайной ошибке колебание может быть как отрицательным, так и положительным. Не всегда возможно определить источник случайной ошибки. Случайная ошибка происходит из-за фактора, который не может или не будет контролироваться. Случайная ошибка влияет на достоверность результатов. Некоторые из возможных источников или причин случайных ошибок перечислены ниже.

  • Наблюдение: ошибка в суждении наблюдателя.
  • Небольшие помехи: Небольшие помехи могут привести к ошибкам измерения, например
  • Колеблющиеся условия: Некоторое изменение температуры во времени или в окружающей среде может привести к ошибке в измерении.
  • Качество: Некоторое время, когда качество объекта, измерение которого должно быть выполнено, не определено должным образом, приводит к ошибке.

Ошибка может быть уменьшена, если взять число чтений, а затем найти среднее или среднее значение чтения.

Систематическая ошибка:

Систематическая ошибка — это когда одна и та же ошибка присутствует во всех показаниях. Систематическая ошибка предсказуема и обычно постоянна или пропорциональна истинному значению. Таким образом, систематическая ошибка повторяется каждый раз, и это приводит к ошибкам согласованности. Если мы повторим эксперимент, мы получим одну и ту же ошибку каждый раз. Систематические ошибки возникают из-за неправильной калибровки прибора. Систематическая ошибка влияет на точность результата. Систематическая ошибка также называется нулевой ошибкой, положительной или отрицательной ошибкой. Некоторые из возможных источников или причин систематической ошибки перечислены ниже.

  • Инструментальная ошибка: оборудование, используемое для измерения объекта, может быть не совсем точным.
  • Экологическая ошибка: ошибка возникает из-за изменений условий окружающей среды, таких как влажность, давление, температура и т. Д.
  • Наблюдательная ошибка: ошибка в записи данных, также называемая человеческими ошибками. После выявления систематической ошибки она может быть в некоторой степени уменьшена. Систематическая ошибка может быть сведена к минимуму путем регулярной калибровки оборудования, использования элементов управления и сравнения значений со стандартным значением.

Сравнение между случайными ошибками и значением систематической ошибки (инфографика)

Ниже приведено 8 основных различий между случайной ошибкой и систематической ошибкой

Ключевые различия между случайной ошибкой и систематической ошибкой

Давайте обсудим некоторые основные различия между случайной ошибкой и систематической ошибкой

  • Случайная ошибка непредсказуема и возникает из-за неизвестных источников, тогда как систематическая ошибка является предсказуемой и возникает из-за дефекта прибора, который используется для измерения.
  • Случайная ошибка возникает в обоих направлениях, тогда как систематическая ошибка возникает только в одном направлении.
  • Случайная ошибка не может быть устранена, но большинство систематических ошибок может быть уменьшено.
  • Случайная ошибка является уникальной и не имеет определенного типа, тогда как систематическая ошибка имеет 3 типа, как указано в таблице выше.
  • Систематическую ошибку трудно обнаружить, это происходит из-за одних и тех же результатов каждый раз и не осознает, что проблема вообще существует, тогда как случайную ошибку легко обнаружить из-за разных результатов каждый раз.

Сравнительная таблица случайных ошибок и систематических ошибок

Ниже приведено 8 лучших сравнений между случайной ошибкой и систематической ошибкой.

Основное сравнение между случайной ошибкой и систематической ошибкой Случайная ошибка Систематическая ошибка
Определение Это происходит из-за неопределенных изменений в окружающей среде и колеблется каждый раз при измерении. Это постоянная ошибка и остается неизменной для всех измерений.
Свести к минимуму Путем многократного взятия показаний и расчета среднего или среднего из повторных показаний. Сравнивая значение со стандартным значением и улучшая структуру оборудования.
Величина ошибки Каждый раз дают другой результат, который меняется каждый раз. Результат остается неизменным или постоянным каждый раз.
Направление ошибки Это происходит в обоих направлениях. Это происходит в том же направлении.

Подтип ошибки

Нет подтипов Подтипы Инструмент, Среда и Систематическая Ошибка.
воспроизводимый Невоспроизводимый. Воспроизводимые.
Значение Цена представляет собой сочетание стоимости. Затраты снижаются, когда они сравниваются со стоимостью в стоимостном выражении.
Пример ошибки Время реакции, погрешность измерения из-за недостаточной точности, погрешность параллакса (если каждый раз смотреть под случайным углом) Ошибка шкалы, ошибка нуля, ошибка параллакса (если диск виден под тем же углом)

Выводы

Таким образом, случайная ошибка в основном возникает из-за каких-либо возмущений в окружающей среде, таких как колебания или различия в давлении, температуре или из-за наблюдателя, который может принять неправильные показания, в то время как систематическая ошибка возникает из-за механической структуры прибора. Случайная ошибка не может быть предотвращена, в то время как систематическая ошибка может быть предотвращена. Полное устранение обеих ошибок невозможно. Основное различие между случайными ошибками и систематическими ошибками заключается в том, что случайная ошибка в основном приводит к колебаниям, тогда как систематические ошибки приводят к предсказуемому и последовательному результату. При работе с промышленными приборами важно, чтобы оператор тщательно следил за экспериментом, чтобы погрешность измерения могла быть уменьшена.

Рекомендуемые статьи

Это было руководство к разнице между случайной ошибкой и систематической ошибкой. Здесь мы также обсудим различия между случайной ошибкой и систематической ошибкой с помощью инфографики и сравнительной таблицы. Вы также можете взглянуть на следующие статьи, чтобы узнать больше.

  1. Экономический рост против экономического развития
  2. Бухгалтерский учет и финансовый менеджмент
  3. Покупка активов против покупки акций
  4. Ангел Инвестор против Венчурного Капитала

Случайные ошибки
проявляются в разбросе отсчетов при
повторении измерений в одних и тех же
доступных контролю условиях.

Величина случайных
ошибок различна даже для измерений,
выполненных одинаковым образом. Случайные
ошибки происходят вследствие меняющихся
от измерения к измерению неконтролируемых
причин, действие которых неодинаково
в каждом опыте и не всегда может быть
учтено. Даже при взвешивании одними и
теми же гирями мы, вообще говоря, будем
получать разные значения веса. Источниками
ошибок могут быть, например, колебания
воздуха, воздействующие неодинаково
на чашки весов; пылинка, осевшая на одну
из чашек; нагревание одной половины
коромысла от приближения руки
взвешивающего; разное трение в правом
и левом подвесах чашек и множество
других причин, которые практически
невозможно учесть. При измерениях
периода колебаний маятника с помощью
секундомера скажутся погрешности
моментов пуска и остановки секундомера,
ошибка в величине отсчета, небольшая
неравномерность движения маятника
вследствие трения. Случайные погрешности
вызываются также сотрясениями здания.
В опытах по измерению скорости
радиоактивного распада ядер сама
определяемая величина определена лишь
статистически, как некоторое среднее
значение, и флуктуации числа распадов
в равные промежутки времени будут
наблюдаться даже при идеально точной
аппаратуре.

Проделав измерения
и используя методы обработки, основанные
на теории ошибок, можно дать оценку
случайной ошибки и указать вероятность,
с которой истинное значение измеряемой
величины находится внутри некоторого
доверительного интервала.

Случайную ошибку
можно уменьшить путем многократного
повторения измерений.

6.5. Промах

Следует особо
выделить такой вид ошибок, как грубый
просчет, или промах. Под промахом
понимается ошибка, сделанная вследствие
неверной записи показаний прибора,
недосмотра экспериментатора, или
вызванная неисправностями аппаратуры.
Например, неправильно записанный отсчет,
замыкание электрической цепи являются
промахами, которых следует по возможности
избегать.

В качестве примера
промаха при взвешивании можно привести
запись веса 100.20 г вместо 1000.20 г.
При измерениях длины метровой линейкой
промах может появиться, если один из
концов измеряемого предмета окажется
совмещенным не с нулевым делением
линейки, а, скажем, с делением 10 см.

Если серия из
небольшого числа измерений содержит
грубую ошибку – промах, то наличие этого
промаха может сильно исказить как
среднее значение xизмеряемой величины, так и погрешность
измерения.x.
Поэтому такой промах необходимо исключить
из окончательного результата. Обычно
промах имеет значение, резко отличающееся
от других данных. Иногда промах удается
выявить, повторив измерение.

Для устранения
промахов нужно соблюдать аккуратность
и тщательность в работе и записи данных.
Как правило, грубые ошибки могут быть
обнаружены, поэтому результаты таких
измерений следует отбрасывать.

7. Погрешности измерительных приборов

До сих пор мы не
принимали во внимание ошибки прибора.
В то же время показания любого
измерительного прибора по ряду причин
отличаются от истинного значения
измеряемой величины; другими словами,
прибор обладает погрешностью. Погрешность
прибора разделяют на основную и
дополнительную.

Основная
погрешность

Основная погрешность
прибора обусловлена его устройством,
качеством изготовления и состоянием.
Эту погрешность образуют, в частности,
следующие факторы:

  • неточная
    градуировка шкалы у линейки, штангенциркуля,
    микрометра; неточная градуировка и
    установка шкалы у электроизмерительных
    приборов;

  • трение
    подвижных частей в весах, индукционных,
    емкостных и пьезо-датчиках, стрелочных
    электроизмерительных приборах;

  • остаточные
    деформации в различных узлах и в
    чувствительных элементах датчиков;

  • изменение
    электрических и магнитных свойств
    материалов – «старение» магнитов,
    изменение проводимости катушек, шунтов
    и добавочных сопротивлений, окисление
    контактов;

  • собственное
    потребление энергии электроизмерительными
    приборами.

Дополнительная
погрешность

Дополнительная
погрешность прибора обусловлена влиянием
таких внешних причин, как:

  • температура,
    влажность и давление окружающей среды;

  • внешние
    электрические и магнитные поля;

  • продолжительность
    прогрева прибора;

  • отклонение
    частоты и формы кривой питающего
    напряжения от стандартных зависимостей.

Соседние файлы в папке Все о погрешностях

  • #
  • #

    30.03.2015121.9 Кб10Коэффициенты Стьюдента (три знака после запятой).mht

  • #
  • #
  • #
  • #
  • #

Случайная погрешность — это ошибка в измерениях, которая носит неконтролируемый характер и очень труднопредсказуема. Так происходит из-за того, что существует огромное количество параметров, находящихся вне контроля экспериментатора, которые влияют на итоговые показатели. Случайные погрешности с абсолютной точностью вычислить невозможно. Они вызваны не сразу очевидными источниками и требуют много времени на выяснение причины их возникновения.

случайная погрешность это

Как определить наличие случайной погрешности

Непредсказуемые ошибки присутствует не во всех измерениях. Но для того чтобы полностью исключить ее возможное влияние на результаты измерений, необходимо повторить эту процедуру несколько раз. Если итог не меняется от эксперимента к эксперименту либо изменяется, но на определенное относительное число — величина этой случайной погрешности равна нулю, и о ней можно не думать. И, наоборот, если полученный результат измерений каждый раз другой (близкий к какому-то среднему значению, но отличный), и отличия носят неопределенный характер, следовательно, на него влияет непредсказуемая ошибка.

Пример возникновения

Случайная составляющая погрешности возникает вследствие действия различных факторов. Например, при измерении сопротивления проводника, необходимо собрать электрическую цепь, состоящую из вольтметра, амперметра и источника тока, которым служит выпрямитель, подключенный в осветительную сеть. Первым делом нужно измерить напряжение, записав показания с вольтметра. Затем перенести взгляд на амперметр, чтобы зафиксировать его данные о силе тока. После использовать формулу, где R = U / I.

случайная погрешность формула

Но может случиться так, что в момент снятия показаний с вольтметра в соседней комнате включили кондиционер. Это довольно мощный прибор. В результате этого напряжение сети немного уменьшилось. Если бы не пришлось отводить взгляд на амперметр, можно было заметить, что показания вольтметра изменились. Поэтому данные первого прибора уже не соответствуют записанным ранее значениям. Из-за непредсказуемого включения кондиционера в соседней комнате получается результат уже со случайной погрешностью. Сквозняки, трения в осях измерительных приборов — потенциальные источники ошибок в измерениях.

Как проявляется

Допустим, необходимо рассчитать сопротивление круглого проводника. Для этого нужно знать его длину и диаметр. Помимо этого, учитывается удельное сопротивление материала, из которого он изготовлен. При измерении длины проводника случайная погрешность себя проявлять не будет. Ведь этот параметр всегда один и тот же. Но вот при измерении диаметра штангенциркулем или микрометром окажется, что данные разняться. Так происходит потому, что идеально круглый проводник невозможно изготовить в принципе. Поэтому, если измерить диаметр в нескольких местах изделия, то он может оказаться разным вследствие действия непредсказуемых факторов в момент его изготовления. Это случайная погрешность.

Иногда она также называется статистической погрешностью, поскольку эту величину можно уменьшить, увеличив количество экспериментов при одинаковых условиях их проведения.

величина случайной погрешности

Природа возникновения

В отличие от систематической ошибки, простое усреднение нескольких итоговых показателей одной и той же величины компенсирует случайные погрешности результатов измерений. Природа их возникновения определяется очень редко, и поэтому никогда не фиксируется, как постоянная величина. Случайная погрешность — это отсутствие каких-либо природных закономерностей. Например, она не пропорциональна измеряемой величине или никогда не остается постоянной при проведении нескольких измерений.

Может существовать ряд возможных источников случайных ошибок в экспериментах, и он полностью зависит от типа эксперимента и используемых приборов.

Например, биолог, изучающий размножение конкретного штамма бактерии, может столкнуться с непредсказуемой ошибкой из-за небольшого изменения температуры или освещения в помещении. Однако когда эксперимент будет повторяться в течение определенного периода времени, он избавится от этих различий в результатах путем их усреднения.

случайные погрешности результатов измерений

Формула случайной погрешности

Допустим, нужно определить какую-то физическую величину x. Чтобы исключить случайную погрешность необходимо провести несколько измерений, итогом которых будет серия результатов N количества измерений — x1, x2,…, xn.

Чтобы обработать эти данные следует:

  1. За результат измерений х0 принять среднее арифметическое х̅. Иными словами, х0 = (x1 + x2 +… + xn) / N.
  2. Найти стандартное отклонение. Обозначается оно греческой буквой σ и вычисляется следующим образом: σ = √((х1 — х̅ )2 + (х2-х̅ )2 + … + (хn — х̅ )2 / N — 1). Физический смысл σ состоит в том, что если провести еще одно измерение (N+1), то оно с вероятностью 997 шансов из 1000 ляжет в интервал х̅ -3σ < хn+1 < с + 3σ.
  3. Найти границу абсолютной погрешности среднего арифметического х̅. Находится она по следующей формуле: Δх = 3σ / √N.
  4. Ответ: х = х̅ + (-Δх).

Относительная погрешность будет равна ε = Δх /х̅.

случайная составляющая погрешности

Пример вычисления

Формулы расчета случайной погрешности достаточно громоздкие, поэтому, чтобы не запутаться в вычислениях, лучше использовать табличный способ.

Пример:

При измерении длины l, были получены следующие значения: 250 см, 245 см, 262 см, 248 см, 260 см. Количество измерений N = 5.

N п/п

l, см

I ср. арифм., см

|l-l ср. арифм.|

(l-l ср. арифм.)2

σ, см

Δ l, см

1

250

253,0

3

9

7,55

10,13

2

245

8

64

3

262

9

81

4

248

5

25

5

260

7

49

Σ = 1265

Σ = 228

Относительная погрешность равна ε = 10,13 см / 253,0 см = 0,0400 см.

Ответ: l = (253 + (-10)) см, ε = 4 %.

Практическая польза высокой точности измерений

Следует учитывать, что достоверность результатов тем выше, чем большее количество измерений проводится. Чтобы повысить точность в 10 раз, необходимо провести в 100 раз больше измерений. Это достаточно трудоемкое занятие. Однако оно может привести к очень важным результатам. Иногда приходится иметь дело со слабыми сигналами.

абсолютная случайная погрешность

Например, в астрономических наблюдениях. Допустим, необходимо изучить звезду, блеск которой изменяется периодически. Но это небесное тело настолько далеко, что шум электронной аппаратуры или датчиков, принимающих излучения, может быть во много раз больше, чем сигнал, который необходимо обработать. Что же делать? Оказывается, если проводить миллионы измерений, то возможно среди этого шума выделить необходимый сигнал с очень большой достоверностью. Однако для этого потребуется совершать огромное количество измерений. Такая методика используется, чтобы различать слабые сигналы, которые едва заметны на фоне различных шумов.

Причина, по которой случайные погрешности могут быть решены путем усреднения, заключается в том, что они имеют нулевое ожидаемое значение. Они действительно непредсказуемы и разбросаны по среднему значению. Исходя из этого, среднее арифметическое ошибок ожидается равным нулю.

Случайная погрешность присутствуют в большинстве экспериментов. Поэтому исследователь должен быть подготовлен к ним. В отличие от систематических, случайные погрешности не предсказуемы. Это затрудняет их обнаружение, но от них легче избавиться, поскольку они являются статистическими и удаляются математическим методом, таким как усреднение.

  • 2023

Время и Стекло Так выпала Карта HD VKlipe Net

Время и Стекло Так выпала Карта HD VKlipe Net

Оглавление:

  • Ключевые вынос
  • Случайный пример ошибки и причины
  • Пример и причины систематической ошибки
  • Ключевые выводы: случайная ошибка против систематической ошибки
  • источники

Независимо от того, насколько вы осторожны, всегда есть ошибка в измерении. Ошибка не является «ошибкой» — это часть процесса измерения. В науке ошибка измерения называется экспериментальной ошибкой или наблюдательной ошибкой.

Существует два широких класса ошибок наблюдений: случайная ошибка а также систематическая ошибка, Случайная ошибка изменяется непредсказуемо от одного измерения к другому, в то время как систематическая ошибка имеет одинаковое значение или пропорцию для каждого измерения.

Ключевые вынос

  • Случайная ошибка приводит к тому, что одно измерение немного отличается от следующего. Это происходит из-за непредсказуемых изменений во время эксперимента.
  • Систематическая ошибка всегда влияет на результаты измерений в одинаковом или одинаковом соотношении, при условии, что показания проводятся каждый раз одинаково. Это предсказуемо.
  • Случайные ошибки не могут быть устранены из эксперимента, но большинство систематических ошибок могут быть уменьшены.

Случайный пример ошибки и причины

Если вы делаете несколько измерений, значения группируются вокруг истинного значения. Таким образом, случайная ошибка в первую очередь влияет на точность. Как правило, случайная ошибка влияет на последнюю значащую цифру измерения.

Основными причинами случайной ошибки являются ограничения инструментов, факторы окружающей среды и небольшие изменения в процедуре. Например:

  • При взвешивании на весах вы позиционируете себя немного по-разному каждый раз.
  • При измерении объема в колбе вы можете каждый раз читать значение под другим углом.
  • Измерение массы образца на аналитических весах может привести к различным значениям, когда воздушные потоки влияют на весы или когда вода входит в образец и покидает его.
  • Измерение вашего роста зависит от незначительных изменений осанки.
  • Измерение скорости ветра зависит от высоты и времени измерения. Многократные чтения должны быть взяты и усреднены, потому что порывы и изменения в направлении влияют на значение.
  • Показания должны оцениваться, когда они находятся между отметками на шкале или когда учитывается толщина измерительной отметки.

Поскольку случайная ошибка всегда возникает и не может быть предсказана, важно взять несколько точек данных и усреднить их, чтобы получить представление о величине отклонения и оценить истинное значение.

Пример и причины систематической ошибки

Систематическая ошибка предсказуема и либо постоянна, либо пропорциональна измерению. Систематические ошибки в первую очередь влияют на точность измерения.

Типичные причины систематической ошибки включают в себя ошибку наблюдений, несовершенную калибровку прибора и помехи окружающей среды. Например:

  • Если забыть о тарировании или обнулении баланса, получаются измерения массы, которые всегда «выключаются» на одну и ту же величину. Ошибка, вызванная не установкой прибора на ноль до его использования, называется ошибка смещения.
  • Не считывание мениска на уровне глаз для измерения объема всегда приводит к неточным показаниям. Значение будет постоянно низким или высоким, в зависимости от того, взяты ли показания сверху или ниже отметки.
  • Измерение длины с помощью металлической линейки даст другой результат при холодной температуре, чем при высокой температуре, из-за теплового расширения материала.
  • Неправильно откалиброванный термометр может дать точные показания в определенном температурном диапазоне, но стать неточным при более высоких или более низких температурах.
  • Измеренное расстояние отличается при использовании новой измерительной ленты от старой натянутой ленты. Пропорциональные ошибки этого типа называются ошибки масштабного коэффициента.
  • дрейф происходит, когда последовательные чтения становятся последовательно ниже или выше со временем. Электронное оборудование имеет тенденцию быть склонным к дрейфу. Многие другие инструменты подвержены (как правило, положительному) дрейфу, поскольку устройство нагревается.

Как только его причина установлена, систематическая ошибка может быть уменьшена до некоторой степени. Систематическая ошибка может быть сведена к минимуму путем регулярной калибровки оборудования, использования контрольных элементов в экспериментах, прогрева приборов до снятия показаний и сравнения значений со стандартами.

В то время как случайные ошибки могут быть минимизированы путем увеличения размера выборки и усреднения данных, сложнее компенсировать систематическую ошибку. Лучший способ избежать систематической ошибки — это знать ограничения инструментов и иметь опыт их правильного использования.

Ключевые выводы: случайная ошибка против систематической ошибки

  • Двумя основными типами ошибок измерения являются случайная ошибка и систематическая ошибка.
  • Случайная ошибка приводит к тому, что одно измерение немного отличается от следующего. Это происходит из-за непредсказуемых изменений во время эксперимента.
  • Систематическая ошибка всегда влияет на результаты измерений в одинаковом или одинаковом соотношении, при условии, что показания проводятся каждый раз одинаково. Это предсказуемо.
  • Случайные ошибки не могут быть устранены из эксперимента, но большинство систематических ошибок могут быть уменьшены.

источники

  • Блэнд, Дж. Мартин и Дуглас Г. Альтман (1996). «Статистические заметки: ошибка измерения». BMJ 313.7059: 744.
  • Cochran, W.G. (1968). «Ошибки измерения в статистике». Technometrics, Taylor & Francis, Ltd. от имени Американской статистической ассоциации и Американского общества качества. 10: 637–666. DOI: 10,2307 / 1267450
  • Додж Ю. (2003). Оксфордский словарь статистических терминов, ОУП. ISBN 0-19-920613-9.
  • Тейлор, Дж. Р. (1999). Введение в анализ ошибок: изучение неопределенностей в физических измерениях, Университетская Наука Книги. п. 94. ISBN 0-935702-75-X.

Независимо от того, насколько вы осторожны, всегда есть ошибка в измерении. Ошибка не является «ошибкой» — это часть процесса измерения. В науке ошибка измерения называется экспериментальной ошибкой или наблюдательной ошибкой.

Существует два широких класса ошибок наблюдений: случайная ошибка а также систематическая ошибка, Случайная ошибка изменяется непредсказуемо от одного измерения к другому, в то время как систематическая ошибка имеет одинаковое значение или пропорцию для каждого измерения.

Ключевые вынос

  • Случайная ошибка приводит к тому, что одно измерение немного отличается от следующего. Это происходит из-за непредсказуемых изменений во время эксперимента.
  • Систематическая ошибка всегда влияет на результаты измерений в одинаковом или одинаковом соотношении, при условии, что показания проводятся каждый раз одинаково. Это предсказуемо.
  • Случайные ошибки не могут быть устранены из эксперимента, но большинство систематических ошибок могут быть уменьшены.

Случайный пример ошибки и причины

Если вы делаете несколько измерений, значения группируются вокруг истинного значения. Таким образом, случайная ошибка в первую очередь влияет на точность. Как правило, случайная ошибка влияет на последнюю значащую цифру измерения.

Основными причинами случайной ошибки являются ограничения инструментов, факторы окружающей среды и небольшие изменения в процедуре. Например:

  • При взвешивании на весах вы позиционируете себя немного по-разному каждый раз.
  • При измерении объема в колбе вы можете каждый раз читать значение под другим углом.
  • Измерение массы образца на аналитических весах может привести к различным значениям, когда воздушные потоки влияют на весы или когда вода входит в образец и покидает его.
  • Измерение вашего роста зависит от незначительных изменений осанки.
  • Измерение скорости ветра зависит от высоты и времени измерения. Многократные чтения должны быть взяты и усреднены, потому что порывы и изменения в направлении влияют на значение.
  • Показания должны оцениваться, когда они находятся между отметками на шкале или когда учитывается толщина измерительной отметки.

Поскольку случайная ошибка всегда возникает и не может быть предсказана, важно взять несколько точек данных и усреднить их, чтобы получить представление о величине отклонения и оценить истинное значение.

Пример и причины систематической ошибки

Систематическая ошибка предсказуема и либо постоянна, либо пропорциональна измерению. Систематические ошибки в первую очередь влияют на точность измерения.

Типичные причины систематической ошибки включают в себя ошибку наблюдений, несовершенную калибровку прибора и помехи окружающей среды. Например:

  • Если забыть о тарировании или обнулении баланса, получаются измерения массы, которые всегда «выключаются» на одну и ту же величину. Ошибка, вызванная не установкой прибора на ноль до его использования, называется ошибка смещения.
  • Не считывание мениска на уровне глаз для измерения объема всегда приводит к неточным показаниям. Значение будет постоянно низким или высоким, в зависимости от того, взяты ли показания сверху или ниже отметки.
  • Измерение длины с помощью металлической линейки даст другой результат при холодной температуре, чем при высокой температуре, из-за теплового расширения материала.
  • Неправильно откалиброванный термометр может дать точные показания в определенном температурном диапазоне, но стать неточным при более высоких или более низких температурах.
  • Измеренное расстояние отличается при использовании новой измерительной ленты от старой натянутой ленты. Пропорциональные ошибки этого типа называются ошибки масштабного коэффициента.
  • дрейф происходит, когда последовательные чтения становятся последовательно ниже или выше со временем. Электронное оборудование имеет тенденцию быть склонным к дрейфу. Многие другие инструменты подвержены (как правило, положительному) дрейфу, поскольку устройство нагревается.

Как только его причина установлена, систематическая ошибка может быть уменьшена до некоторой степени. Систематическая ошибка может быть сведена к минимуму путем регулярной калибровки оборудования, использования контрольных элементов в экспериментах, прогрева приборов до снятия показаний и сравнения значений со стандартами.

В то время как случайные ошибки могут быть минимизированы путем увеличения размера выборки и усреднения данных, сложнее компенсировать систематическую ошибку. Лучший способ избежать систематической ошибки — это знать ограничения инструментов и иметь опыт их правильного использования.

Ключевые выводы: случайная ошибка против систематической ошибки

  • Двумя основными типами ошибок измерения являются случайная ошибка и систематическая ошибка.
  • Случайная ошибка приводит к тому, что одно измерение немного отличается от следующего. Это происходит из-за непредсказуемых изменений во время эксперимента.
  • Систематическая ошибка всегда влияет на результаты измерений в одинаковом или одинаковом соотношении, при условии, что показания проводятся каждый раз одинаково. Это предсказуемо.
  • Случайные ошибки не могут быть устранены из эксперимента, но большинство систематических ошибок могут быть уменьшены.

источники

  • Блэнд, Дж. Мартин и Дуглас Г. Альтман (1996). «Статистические заметки: ошибка измерения». BMJ 313.7059: 744.
  • Cochran, W.G. (1968). «Ошибки измерения в статистике». Technometrics, Taylor & Francis, Ltd. от имени Американской статистической ассоциации и Американского общества качества. 10: 637–666. DOI: 10,2307 / 1267450
  • Додж Ю. (2003). Оксфордский словарь статистических терминов, ОУП. ISBN 0-19-920613-9.
  • Тейлор, Дж. Р. (1999). Введение в анализ ошибок: изучение неопределенностей в физических измерениях, Университетская Наука Книги. п. 94. ISBN 0-935702-75-X.

Какие Ошибки Являются Случайными
Природа случайных ошибок и распределение выборочных статистик — Никто не любит ошибаться, но некоторые ошибки просто неизбежны! 0 Нажми, если пригодилось =ъ Дембицкий С. Природа случайных ошибок и распределение выборочных средних, — Режим доступа: http://www.soc-research.info/quantitative/3.html Отличия в характеристиках выборочной и генеральной совокупностей называются ошибками репрезентативности.

  1. Можно выделить два вида таких ошибок – систематические и случайные.
  2. Систематические ошибки — это определенные постоянные смещения, не уменьшающиеся при увеличении количества опрошенных.
  3. В свою очередь, случайные ошибки – это те, которые при увеличении выборки изменяются по вероятностным законам.
  4. Систематическую ошибку можно устранить, изменяя процедуру формирования выборки; случайная же ошибка будет всегда, при любом выборочном опросе.

Тем не менее, систематическая ошибка является значительно опаснее, поскольку: а) ее невозможно оценить; б) она не уменьшается с увеличением выборки. Классическим примером краха исследования по причине систематических ошибок является предвыборный опрос, проведеленный Литерири дайджест в 1936 году.

  1. По его результатам на выборах президента США должен был победить Альфред Лэндон.
  2. Показательно то, что для исследования проводимого Литерари Дайджест было отобрано более 2 млн.
  3. Респондентов.
  4. На самих же выборах победил Теодор Рузвельт, победу которого предсказывали Гэлап и Роупер на основе опроса всего 4000 человек.

Ошибка Литерари Дайджест заключалась в том, что основой выборки (часть генеральной совокупности из которой отбирались респонденты) выступили телефонные книги. Телефоны же в 1936 году имели преимущественно зажиточные слои населения США, большинство которых собиралось голосовать за Альфреда Лэндона.

  • Следовательно полученная выборка отражала не всех избирателей США, а лишь их специфическую группу.
  • Очевидно и то, что увеличении выборки получаемой таким способом никак бы не помогло, так как новые респонденты точно так же представляли бы зажиточных американцев.
  • Выборка же Гэлапа и Роупера носила случайный характер и отображала все населения США, что позволило им сделать правильный прогноз.

Но если систематические ошибки не уменьшаются с увеличением количества опрошенных и способ устранения таких ошибок следует искать прежде всего в особенностях построения самой выборки, то случайные ошибки подчиняются вероятностным законам и подлежат оценке.

Одно из главных их свойств заключается в том, что они уменьшаются с увеличением выборки. Рассмотрим соответствующий пример (отчасти фантастический). Рассмотрим следующий премер. Представим себе огромный лототрон на 100.000 шаров, в котором 10.000 шаров с №1, 10.000 — с №2, 10.000 — с №3, 10.000 — с №4, 10.000 — с №5, 10.000 — с №6, 10.000 — с №7, 10.000 — с №8, 10.000 — с №9 и 10.000 — с №10.

При условии правильной работы лототрона каждый шар имеет равную вероятность выпадения (по крайней мере в самом начале, а после того как шары начнут выпадать, вероятности будут очень близки).

Что такое случайная ошибка исследования?

СЛУЧАЙНАЯ ОШИБКА отклонение результата отдельного наблюдения в выборке от истинного значения в популяции, обусловленное исключительно случайностью.

Что такое случайная ошибка в физике?

Случайная погрешность — составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии повторных измерений одного и того же размера величины с одинаковой тщательностью. В появлении этого вида погрешности не наблюдается какой-либо закономерности.

Почему возникает случайная ошибка?

Случайные ошибки берут свое происхождение из множества одновременно действующих источников помех. Они проявляют- ся лишь при многократных измерениях. Это ошибки, которые поддаются обработке с помощью математической статистики, более точно, теории вероятностей. Их непредсказуемость, таким образом, сводится к минимуму.

Какие ошибки называются систематическими и случайными?

Природа случайных ошибок и распределение выборочных статистик — Никто не любит ошибаться, но некоторые ошибки просто неизбежны! 0 Нажми, если пригодилось =ъ Дембицкий С. Природа случайных ошибок и распределение выборочных средних, — Режим доступа: http://www.soc-research.info/quantitative/3.html Отличия в характеристиках выборочной и генеральной совокупностей называются ошибками репрезентативности.

  • Можно выделить два вида таких ошибок – систематические и случайные.
  • Систематические ошибки — это определенные постоянные смещения, не уменьшающиеся при увеличении количества опрошенных.
  • В свою очередь, случайные ошибки – это те, которые при увеличении выборки изменяются по вероятностным законам.
  • Систематическую ошибку можно устранить, изменяя процедуру формирования выборки; случайная же ошибка будет всегда, при любом выборочном опросе.

Тем не менее, систематическая ошибка является значительно опаснее, поскольку: а) ее невозможно оценить; б) она не уменьшается с увеличением выборки. Классическим примером краха исследования по причине систематических ошибок является предвыборный опрос, проведеленный Литерири дайджест в 1936 году.

По его результатам на выборах президента США должен был победить Альфред Лэндон. Показательно то, что для исследования проводимого Литерари Дайджест было отобрано более 2 млн. респондентов. На самих же выборах победил Теодор Рузвельт, победу которого предсказывали Гэлап и Роупер на основе опроса всего 4000 человек.

Ошибка Литерари Дайджест заключалась в том, что основой выборки (часть генеральной совокупности из которой отбирались респонденты) выступили телефонные книги. Телефоны же в 1936 году имели преимущественно зажиточные слои населения США, большинство которых собиралось голосовать за Альфреда Лэндона.

  • Следовательно полученная выборка отражала не всех избирателей США, а лишь их специфическую группу.
  • Очевидно и то, что увеличении выборки получаемой таким способом никак бы не помогло, так как новые респонденты точно так же представляли бы зажиточных американцев.
  • Выборка же Гэлапа и Роупера носила случайный характер и отображала все населения США, что позволило им сделать правильный прогноз.

Но если систематические ошибки не уменьшаются с увеличением количества опрошенных и способ устранения таких ошибок следует искать прежде всего в особенностях построения самой выборки, то случайные ошибки подчиняются вероятностным законам и подлежат оценке.

Одно из главных их свойств заключается в том, что они уменьшаются с увеличением выборки. Рассмотрим соответствующий пример (отчасти фантастический). Рассмотрим следующий премер. Представим себе огромный лототрон на 100.000 шаров, в котором 10.000 шаров с №1, 10.000 — с №2, 10.000 — с №3, 10.000 — с №4, 10.000 — с №5, 10.000 — с №6, 10.000 — с №7, 10.000 — с №8, 10.000 — с №9 и 10.000 — с №10.

При условии правильной работы лототрона каждый шар имеет равную вероятность выпадения (по крайней мере в самом начале, а после того как шары начнут выпадать, вероятности будут очень близки).

Как рассчитать ошибку эксперимента?

Для оценки истинности данных эксперимента следует рассмотреть возможные причины ошибок и степень их влияния на измеряемую величину. Приборные погрешности. Эта погрешность равна той доле шкалы прибора, до которой с уверенностью можно производить отсчет, что определяется конструкцией и ценой деления шкалы прибора.

Как считается случайная погрешность?

Случайная погрешность измерения равна разности погрешности измерения и систематической погрешности измерения.

Как оценить ошибку измерений?

1.1 Результат измерения — Рассмотрим простейший пример: измерение длины стержня с помощью линейки. Линейка проградуирована производителем с помощью некоторого эталона длины — таким образом, сравнивая длину стержня с ценой деления линейки, мы выполняем косвенное сравнение с общепринятым стандартным эталоном.

  • Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат x = x изм,
  • Можно ли утверждать, что x изм — это длина стержня? Во-первых, значение x не может быть задано точно, хотя бы потому, что оно обязательно округлено до некоторой значащей цифры: если линейка «обычная», то у неё есть цена деления ; а если линейка, к примеру, «лазерная» — у неё высвечивается конечное число значащих цифр на дисплее.

Во-вторых, мы никак не можем быть уверенны, что длина стержня на самом деле такова хотя бы с точностью до ошибки округления. Действительно, мы могли приложить линейку не вполне ровно; сама линейка могла быть изготовлена не вполне точно; стержень может быть не идеально цилиндрическим и т.п.

  1. И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной точности измерения, теряет смысл само понятие «длины стержня».
  2. Ведь на масштабах атомов у стержня нет чётких границ, а значит говорить о его геометрических размерах в таком случае крайне затруднительно! Итак, из нашего примера видно, что никакое физическое измерение не может быть произведено абсолютно точно, то есть у любого измерения есть погрешность,

Замечание. Также используют эквивалентный термин ошибка измерения (от англ. error). Подчеркнём, что смысл этого термина отличается от общеупотребительного бытового: если физик говорит «в измерении есть ошибка», — это не означает, что оно неправильно и его надо переделать.

  • Имеется ввиду лишь, что это измерение неточно, то есть имеет погрешность,
  • Количественно погрешность можно было бы определить как разность между измеренным и «истинным» значением длины стержня: δ ⁢ x = x изм — x ист,
  • Однако на практике такое определение использовать нельзя: во-первых, из-за неизбежного наличия погрешностей «истинное» значение измерить невозможно, и во-вторых, само «истинное» значение может отличаться в разных измерениях (например, стержень неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).

Поэтому говорят обычно об оценке погрешности. Об измеренной величине также часто говорят как об оценке, подчеркивая, что эта величина не точна и зависит не только от физических свойств исследуемого объекта, но и от процедуры измерения. Замечание. Термин оценка имеет и более формальное значение.

Что такое абсолютная ошибка?

Смотреть что такое «Ошибка Абсолютная» в других словарях: —

ОШИБКА, АБСОЛЮТНАЯ — абсолютная величина расхождения (разности) между величиной признака (показателя), установленной на основе статистического наблюдения, и действительной его величиной. Понятие А.о. используется, главным образом, при выборочном наблюдении Большой экономический словарь ОШИБКА, АБСОЛЮТНАЯ — Абсолютное значение (то есть безотносительно к знаку) различия между наблюдаемым значением и истинным значением измерения. Например, переоценка чьего то роста на два дюйма приводит к такой абсолютной ошибке, как переоценка на два дюйма Толковый словарь по психологии абсолютная ошибка — абсолютная погрешность — Тематики электросвязь, основные понятия Синонимы абсолютная погрешность EN absolute error Справочник технического переводчика абсолютная ошибка — absoliučioji paklaida statusas T sritis Kūno kultūra ir sportas apibrėžtis Matas, rodantis skirtumą tarp išmatuotos reikšmės ir matuojamojo dydžio tikrosios reikšmės. Absoliučioji paklaida nustatoma pagal vieno arba kelių bandymų rezultatų Sporto terminų žodynas АБСОЛЮТНАЯ ОШИБКА — См. ошибка, абсолютная Толковый словарь по психологии абсолютная погрешность — absoliučioji paklaida statusas T sritis Kūno kultūra ir sportas apibrėžtis Matas, rodantis skirtumą tarp išmatuotos reikšmės ir matuojamojo dydžio tikrosios reikšmės. Absoliučioji paklaida nustatoma pagal vieno arba kelių bandymų rezultatų Sporto terminų žodynas Абсолютная пустота — Doskonała próżnia Жанр: Сборник рассказов Автор: Станислав Лем Язык оригинала: польский Год написания: 1971 год Википедия Абсолютная ошибка (точность) прогноза метеорологической величины — Абсолютная ошибка (точность) прогноза метеорологической величины: разность между прогностическим значением метеорологической величины и фактически наблюдавшимся ее значением. Источник: РД 52.27.724 2009. Руководящий документ. Наставление по Официальная терминология абсолютная ошибка измерений — — Тематики релейная защита EN absolute error of measurement Справочник технического переводчика Ошибка измерения — Погрешность измерения оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Поскольку выяснить с абсолютной точностью истинное значение любой Википедия

Что такое грубая ошибка?

Грубая ошибка — Ошибка типа неверная команда или ‘случайно’ нажатая клавиша, обычно возникающая по вине обслуживающего персонала и приводящая к большой погрешности. [Л.

В чем выражают относительную ошибку?

Физические величины и погрешности их измерений — Задачей физического эксперимента является определение числового значения измеряемых физических величин с заданной точностью. Сразу оговоримся, что при выборе измерительного оборудования часто нужно также знать диапазон измерения и какое именно значение интересует: например, среднеквадратическое значение (СКЗ) измеряемой величины в определённом интервале времени, или требуется измерять среднеквадратическое отклонение (СКО) (для измерения переменной составляющей величины), или требуется измерять мгновенное (пиковое) значение.

При измерении переменных физических величин (например, напряжение переменного тока) требуется знать динамические характеристики измеряемой физической величины: диапазон частот или максимальную скорость изменения физической величины, Эти данные, необходимые при выборе измерительного оборудования, зависят от физического смысла задачи измерения в конкретном физическом эксперименте,

Итак, повторимся: задачей физического эксперимента является определение числового значения измеряемых физических величин с заданной точностью. Эта задача решается с помощью прямых или косвенных измерений, При прямом измерении осуществляется количественное сравнение физической величины с соответствующим эталоном при помощи измерительных приборов.

  1. Отсчет по шкале прибора указывает непосредственно измеряемое значение.
  2. Например, термометр дает значения измеряемой температуры, а вольтметр – значение напряжения.
  3. При косвенных измерениях интересующая нас физическая величина находится при помощи математических операций над непосредственно измеренными физическими величинами (непосредственно измеряя напряжение U на резисторе и ток I через него, вычисляем значение сопротивления R = U / I ).

Точность прямых измерений некоторой величины X оценивается величиной погрешности или ошибки, измерений относительно действительного значения физической величины X Д, Действительное значение величины X Д (согласно РМГ 29-99 ) – это значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Различают абсолютную (∆ X) и относительную (δ) погрешности измерений. Абсолютная погрешность измерения – это п огрешность средства измерений, выраженная в единицах измеряемой физической величины, характеризующая абсолютное отклонение измеряемой величины от действительного значения физической величины: ∆X = X – X Д,

Относительная погрешность измерения – это п огрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному значению измеряемой величины. Обычно относительную погрешность выражают в процентах: δ = (∆X / Xд) * 100%, При оценке точности косвенных измерений некоторой величины X 1, функционально связанной с физическими величинами X 2, X 3,, X 1 = F (X 2, X 3, ), учитывают погрешности прямых измерений каждой из величин X 2, X 3, и характер функциональной зависимости F (),

Какие виды погрешностей ошибок могут встречаться при работе лаборатории?

Внутрилабораторные ошибки — Надежность результатов исследования при проведении анализов в лаборатории зависит от целого ряда факторов. Погрешность в аналитическом процессе — это внутрилабораторные ошибки, появление и предупреждение которых зависит только от работников лабораторий.

Результаты анализов в большой мере зависят от индивидуальных способностей лабораторного персонала, важным фактором является и качество применяемых измерительных инструментов. Существенным источником ошибок является приготовление стандартных растворов, который может иметь иную концентрацию, чем должна быть по расчету.

Многочисленность применяемых методов, из которых большая часть уже устарела, также является частой причиной многих ненадежных результатов. Помочь этому может последовательное внедрение унифицированных методов. Наиболее распространена следующая классификация ошибок.

Различают три основных вида ошибок: грубые, случайные и систематические. Грубая ошибка — это одиночное значение исследуемого компонента, выходящее за пределы установленного для данного компонента области (за допустимые пределы погрешности). Причиной грубых ошибок является недостаточная тщательность в работе.

Случайная ошибка — одиночное значение, не выходящее за пределы установленной для данного компонента области. Случайными называются неопределенные по величине и знаку ошибки, в появлении каждой из которых не наблюдается какой-либо закономерности. Эти ошибки происходят при любом аналитическом определении.

  • Наличие их сказывается в том, что повторные определения того или иного компонента в данном образце, выполненные одним и тем же методом, дают как правило несколько различающиеся между собой результаты.
  • Случайные ошибки практически невозможно исключить совсем, они могут возникать из-за негомогенности пробы материала, недостаточно высокого качества оборудования, чаще случайные ошибки вызываются субъективными факторами.

Этот вид ошибок можно значительно ограничить после оценки их размера, величина ошибки (разброс данных) является мерилом воспроизводимости лабораторных результатов. Чем меньше величина случайных ошибок, тем лучше воспроизводимость исследований. Распространенным способом характеристики воспроизводимости результатов является величина среднеквадратического отклонения.

  • Для суждения о правильности анализа совпадение или расхождение результатов параллельных проб не имеет значения.
  • В этом случае на первый план выступают систематические ошибки.
  • Систематическими ошибками называют погрешности, одинаковые по знаку, имеющие определенную причину, влияющие на результат либо в сторону увеличения, либо в сторону уменьшения его.

Систематические ошибки можно обычно предусмотреть или же ввести соответствующие поправки (ошибки методического характера). Систематические ошибки повторяются при каждом измерении, так как они вызываются постоянными причинами, влияют они на всю серию определений.

Two Types of Experimental Error

Andrew Brookes / Getty Images

No matter how careful you are, there is always error in a measurement. Error is not a «mistake»—it’s part of the measuring process. In science, measurement error is called experimental error or observational error.

There are two broad classes of observational errors: random error and systematic error. Random error varies unpredictably from one measurement to another, while systematic error has the same value or proportion for every measurement. Random errors are unavoidable, but cluster around the true value. Systematic error can often be avoided by calibrating equipment, but if left uncorrected, can lead to measurements far from the true value.

Key Takeaways

  • Random error causes one measurement to differ slightly from the next. It comes from unpredictable changes during an experiment.
  • Systematic error always affects measurements the same amount or by the same proportion, provided that a reading is taken the same way each time. It is predictable.
  • Random errors cannot be eliminated from an experiment, but most systematic errors can be reduced.

Random Error Example and Causes

If you take multiple measurements, the values cluster around the true value. Thus, random error primarily affects precision. Typically, random error affects the last significant digit of a measurement.

The main reasons for random error are limitations of instruments, environmental factors, and slight variations in procedure. For example:

  • When weighing yourself on a scale, you position yourself slightly differently each time.
  • When taking a volume reading in a flask, you may read the value from a different angle each time.
  • Measuring the mass of a sample on an analytical balance may produce different values as air currents affect the balance or as water enters and leaves the specimen.
  • Measuring your height is affected by minor posture changes.
  • Measuring wind velocity depends on the height and time at which a measurement is taken. Multiple readings must be taken and averaged because gusts and changes in direction affect the value.
  • Readings must be estimated when they fall between marks on a scale or when the thickness of a measurement marking is taken into account.

Because random error always occurs and cannot be predicted, it’s important to take multiple data points and average them to get a sense of the amount of variation and estimate the true value.

Systematic Error Example and Causes

Systematic error is predictable and either constant or else proportional to the measurement. Systematic errors primarily influence a measurement’s accuracy.

Typical causes of systematic error include observational error, imperfect instrument calibration, and environmental interference. For example:

  • Forgetting to tare or zero a balance produces mass measurements that are always «off» by the same amount. An error caused by not setting an instrument to zero prior to its use is called an offset error.
  • Not reading the meniscus at eye level for a volume measurement will always result in an inaccurate reading. The value will be consistently low or high, depending on whether the reading is taken from above or below the mark.
  • Measuring length with a metal ruler will give a different result at a cold temperature than at a hot temperature, due to thermal expansion of the material.
  • An improperly calibrated thermometer may give accurate readings within a certain temperature range, but become inaccurate at higher or lower temperatures.
  • Measured distance is different using a new cloth measuring tape versus an older, stretched one. Proportional errors of this type are called scale factor errors.
  • Drift occurs when successive readings become consistently lower or higher over time. Electronic equipment tends to be susceptible to drift. Many other instruments are affected by (usually positive) drift, as the device warms up.

Once its cause is identified, systematic error may be reduced to an extent. Systematic error can be minimized by routinely calibrating equipment, using controls in experiments, warming up instruments prior to taking readings, and comparing values against standards.

While random errors can be minimized by increasing sample size and averaging data, it’s harder to compensate for systematic error. The best way to avoid systematic error is to be familiar with the limitations of instruments and experienced with their correct use.

Key Takeaways: Random Error vs. Systematic Error

  • The two main types of measurement error are random error and systematic error.
  • Random error causes one measurement to differ slightly from the next. It comes from unpredictable changes during an experiment.
  • Systematic error always affects measurements the same amount or by the same proportion, provided that a reading is taken the same way each time. It is predictable.
  • Random errors cannot be eliminated from an experiment, but most systematic errors may be reduced.

Sources

  • Bland, J. Martin, and Douglas G. Altman (1996). «Statistics Notes: Measurement Error.» BMJ 313.7059: 744.
  • Cochran, W. G. (1968). «Errors of Measurement in Statistics». Technometrics. Taylor & Francis, Ltd. on behalf of American Statistical Association and American Society for Quality. 10: 637–666. doi:10.2307/1267450
  • Dodge, Y. (2003). The Oxford Dictionary of Statistical Terms. OUP. ISBN 0-19-920613-9.
  • Taylor, J. R. (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. p. 94. ISBN 0-935702-75-X.

Понравилась статья? Поделить с друзьями:
  • Чем отличается средняя ошибка выборки от предельной
  • Чем обусловлены ошибки восприятия
  • Чем отличается ошибка от проступка
  • Чем нежели какая ошибка
  • Чем отличается ошибка от преступления преступление и наказание