Теория
ошибок.
В лабораторном
практикуме студенты при выполнении
работ должны производить измерения, но
при использовании даже очень точных и
чувствительных приборов и наилучших
условий проведения эксперимента во
всяком измерении содержится ошибка
(погрешность) характер и причины которой
могут быть различными. Существуют методы
анализа и учета влияния различных
погрешностей на результаты измерений.
Все погрешности (ошибки) измерений
принято подразделять на систематические
и случайные.
Систематические
ошибки
обусловлены постоянными, но односторонними
внешними воздействиями. Например,
измерение температуры термометром, у
которого нулевая точка смешена, будет
систематически неправильным, пока в
результаты измерений не будет внесена
соответствующая поправка.
Так как
систематическая ошибка имеет одно и
тоже значение, ее нельзя устранить
увеличением числа повторных измерений.
Но можно уменьшить систематическую
ошибку, критически анализируя факторы,
которые могут повлиять на результаты,
проверяя используемые приборы по
соответствующим эталонам, внося поправки
в показания приборов, используя более
точные приборы и инструменты.
Случайные
ошибки
при измерениях обусловлены влиянием
большого числа факторов, случайным
образом изменяющихся в процессе
эксперимента. Например, источником
случайных ошибок при взвешивании на
аналитических весах может явиться
неоднородность в распределении
температуры в различных частях весов,
влияние колебаний стола из-за проезжающего
мимо здания грузовика и т.п.
При повторных
измерениях случайные ошибки с одинаковой
вероятностью приводят к отклонениям
значений измеряемых величин от истинного
значения как в сторону увеличения, так
и в сторону уменьшения, т.е. случайные
ошибки имеют разные численные значения
и знаки.
Полностью
исключить случайные ошибки нельзя, но
их можно уменьшить за счет увеличения
числа измерений при одних и тех же
условиях эксперимента.
Итак, при измерениях
неизбежно возникают погрешности. Теория
погрешностей указывает на то, как следует
вести измерения и их обработку, чтобы
допущенные ошибки были минимальными.
Кроме того, устанавливаются пределы,
внутри которых заключается точное
значение определяемой величины.
Теория погрешностей
I. Погрешности при прямых измерениях
Прямыми измерениями
называются такие, при которых измерение
величины производится непосредственно
по шкале прибора. Например,
2
измерение длины
штангенциркулем, измерение веса тела
на весах, определение промежутков
времени с помощью секундомера. Если
отклонение результатов измерений от
истинного значения измеряемой величины
происходит как в сторону увеличения,
так и в сторону уменьшения результатов
измерений, то наиболее вероятным
значением измеряемой величины будет
среднее арифметическое всех сделанных
измерений:
,
(1)
где
результаты отдельных измерений, n
число измерений.
Для
характеристики степени приближения к
истинному значению измеряемой
величины вводится понятие абсолютной
погрешности
величины, показывающей насколько
найденное (среднее арифметическое)
значение может отличаться от истинного
значения измеряемой величины.
Для
определения абсолютной погрешности
сначала нужно найти отклонения каждого
отдельного измерения от среднего
арифметического:
,
где
отклонение данного измерения, равное
разности между средним значением
измеряемой величины
и результатом этого измерения.
Случайная погрешность
вычисляется по формуле:
,
(2)
где
модули отклонений каждого отдельного
измерения от среднего арифметического
значения.
Из
формулы (2) и теории вероятностей следует,
что с увеличением числа измерений n
случайная погрешность будет уменьшаться.
В
качестве систематической погрешности
берется приборная погрешность, равная
половине цены деления шкалы прибора.
Ценой деления прибора называется
минимальная величина, измеряемая
прибором.
В
общем случае необходимо принимать во
внимание как случайные, так и систематические
погрешности прямых измерений. Поэтому
абсолютная погрешность
при прямых измерениях рассчитывается
по формуле:
(3)
где
случайная погрешностей, определяемых
по формуле (2),
3
систематическая
погрешность прибора, инструмента.
Примечание:
Если случайная погрешность много меньше
систематической, то для повышения
точности результата измерений нет
смысла увеличивать число измерений, а
нужно принять меры к уменьшению
систематической погрешности (например,
использовать более точные приборы).
Пример.
Пусть
измеряется диаметр цилиндрического
стержня с помощью штангенциркуля и
делается 5 измерений: 34.50
мм,
34.65
мм,
34.30
мм,
34.70
мм,
34.55
мм.
Среднее арифметическое
всех сделанных измерений:
Полученное
значение
даёт наиболее вероятное значение
измеряемой величиныD.
Для
нахождения случайной погрешности
нужно найти абсолютное значение
отклонения каждого из 5-ти измерений от
среднего арифметическогои затем определить среднее значение
этих отклонений:
Цена
деления штангенциркуля равна 0.05 мм,
следовательно, систематическая
погрешность равна
.
Абсолютная
погрешность при измерении диаметра
стержня:
Результат
измерений принято записывать следующим
образом:
.
(Результат измерений
34,54 мм и абсолютная погрешность 0,12 мм
должны заканчиваться в одинаковом
разряде)
Для характеристики
точности измерения вводится понятие
относительной погрешности:
Относительная
погрешность ε представляет собой
отношение абсолютной погрешности
к среднему значению измеряемой величины.
В нашем примере относительная погрешность
при измерении диаметра:
4
Относительная
погрешность является безразмерной
величиной. Она показывает, какую часть
измеряемой величины составляет абсолютная
погрешность.
Соседние файлы в папке Отчеты_Погрешность
- #
- #
- #
- #
- #
Свойства физического объекта (явления, процесса) определяются набором
количественных характеристик — физических величин.
Как правило, результат измерения представляет
собой число, задающее отношение измеряемой величины к некоторому эталону.
Сравнение с эталоном может быть как
прямым (проводится непосредственно
экспериментатором), так и косвенным (проводится с помощью некоторого
прибора, которому экспериментатор доверяет).
Полученные таким образом величины имеют размерность, определяемую выбором эталона.
Замечание. Результатом измерения может также служить количество отсчётов некоторого
события, логическое утверждение (да/нет) или даже качественная оценка
(сильно/слабо/умеренно). Мы ограничимся наиболее типичным для физики случаем,
когда результат измерения может быть представлен в виде числа или набора чисел.
Взаимосвязь между различными физическими величинами может быть описана
физическими законами, представляющими собой идеализированную
модель действительности. Конечной целью любого физического
эксперимента (в том числе и учебного) является проверка адекватности или
уточнение параметров таких моделей.
1.1 Результат измерения
Рассмотрим простейший пример: измерение длины стержня
с помощью линейки. Линейка проградуирована производителем с помощью
некоторого эталона длины — таким образом, сравнивая длину
стержня с ценой деления линейки, мы выполняем косвенное сравнение с
общепринятым стандартным эталоном.
Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат
x=xизм. Можно ли утверждать, что xизм — это длина
стержня?
Во-первых, значение x не может быть задано точно, хотя бы
потому, что оно обязательно округлено до некоторой значащей
цифры: если линейка «обычная», то у неё
есть цена деления; а если линейка, к примеру, «лазерная»
— у неё высвечивается конечное число значащих цифр
на дисплее.
Во-вторых, мы никак не можем быть уверенны, что длина стержня на
самом деле такова хотя бы с точностью до ошибки округления. Действительно,
мы могли приложить линейку не вполне ровно; сама линейка могла быть
изготовлена не вполне точно; стержень может быть не идеально цилиндрическим
и т.п.
И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной
точности измерения, теряет смысл само понятие «длины стержня». Ведь
на масштабах атомов у стержня нет чётких границ, а значит говорить о его
геометрических размерах в таком случае крайне затруднительно!
Итак, из нашего примера видно, что никакое физическое измерение не может быть
произведено абсолютно точно, то есть
у любого измерения есть погрешность.
Замечание. Также используют эквивалентный термин ошибка измерения
(от англ. error). Подчеркнём, что смысл этого термина отличается от
общеупотребительного бытового: если физик говорит «в измерении есть ошибка»,
— это не означает, что оно неправильно и его надо переделать.
Имеется ввиду лишь, что это измерение неточно, то есть имеет
погрешность.
Количественно погрешность можно было бы определить как разность между
измеренным и «истинным» значением длины стержня:
δx=xизм-xист. Однако на практике такое определение
использовать нельзя: во-первых, из-за неизбежного наличия
погрешностей «истинное» значение измерить невозможно, и во-вторых, само
«истинное» значение может отличаться в разных измерениях (например, стержень
неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).
Поэтому говорят обычно об оценке погрешности.
Об измеренной величине также часто говорят как об оценке, подчеркивая,
что эта величина не точна и зависит не только от физических свойств
исследуемого объекта, но и от процедуры измерения.
Замечание.
Термин оценка имеет и более формальное значение. Оценкой называют результат процедуры получения значения параметра или параметров физической модели, а также иногда саму процедуру. Теория оценок является подразделом математической статистики. Некоторые ее положения изложены в главе 3, но для более серьезного понимания следует обратиться к [5].
Для оценки значения физической величины корректно использовать
не просто некоторое фиксированное число xизм, а интервал (или
диапазон) значений, в пределах которого может лежать её
«истинное» значение. В простейшем случае этот интервал
может быть записан как
где δx — абсолютная величина погрешности.
Эта запись означает, что исследуемая величина лежит в интервале
x∈(xизм-δx;xизм+δx)
с некоторой достаточно большой долей вероятности (более подробно о
вероятностном содержании интервалов см. п. 2.2).
Для наглядной оценки точности измерения удобно также использовать
относительную величину погрешности:
Она показывает, насколько погрешность мала по сравнению с
самой измеряемой величиной (её также можно выразить в процентах:
ε=δxx⋅100%).
Пример. Штангенциркуль —
прибор для измерения длин с ценой деления 0,1мм. Пусть
диаметр некоторой проволоки равен 0,37 мм. Считая, что абсолютная
ошибка составляет половину цены деления прибора, результат измерения
можно будет записать как d=0,40±0,05мм (или
d=(40±5)⋅10-5м).
Относительная погрешность составляет ε≈13%, то
есть точность измерения весьма посредственная — поскольку
размер объекта близок к пределу точности прибора.
О необходимости оценки погрешностей.
Измерим длины двух стержней x1 и x2 и сравним результаты.
Можно ли сказать, что стержни одинаковы или различны?
Казалось бы,
достаточно проверить, справедливо ли x1=x2. Но никакие
два результата измерения не равны друг другу с абсолютной точностью! Таким
образом, без указания погрешности измерения ответ на этот вопрос дать
невозможно.
С другой стороны, если погрешность δx известна, то можно
утверждать, что если измеренные длины одинаковы
в пределах погрешности опыта, если |x2-x1|<δx
(и различны в противоположном случае).
Итак, без знания погрешностей невозможно сравнить между собой никакие
два измерения, и, следовательно, невозможно сделать никаких
значимых выводов по результатам эксперимента: ни о наличии зависимостей
между величинами, ни о практической применимости какой-либо теории,
и т. п. В связи с этим задача правильной оценки погрешностей является крайне
важной, поскольку существенное занижение или завышение значения погрешности
(по сравнению с реальной точностью измерений) ведёт к неправильным выводам.
В физическом эксперименте (в том числе лабораторном практикуме) оценка
погрешностей должна проводиться всегда
(даже когда составители задания забыли упомянуть об этом).
1.2 Многократные измерения
Проведём серию из n одинаковых (однотипных) измерений одной
и той же физической величины (например, многократно приложим линейку к стержню) и получим
ряд значений
Что можно сказать о данном наборе чисел и о длине стержня?
И можно ли увеличивая число измерений улучшить конечный результат?
Если цена деления самой линейки достаточно мала, то как нетрудно убедиться
на практике, величины {xi} почти наверняка окажутся
различными. Причиной тому могут быть
самые разные обстоятельства, например: у нас недостаточно остроты
зрения и точности рук, чтобы каждый раз прикладывать линейку одинаково;
стенки стержня могут быть слегка неровными; у стержня может и не быть
определённой длины, например, если в нём возбуждены звуковые волны,
из-за чего его торцы колеблются, и т. д.
В такой ситуации результат измерения интерпретируется как
случайная величина, описываемая некоторым вероятностным законом
(распределением).
Подробнее о случайных величинах и методах работы с ними см. гл. 2.
По набору результатов 𝐱 можно вычислить их среднее арифметическое:
⟨x⟩=x1+x2+…+xnn≡1n∑i=1nxi. | (1.1) |
Это значение, вычисленное по результатам конечного числа n измерений,
принято называть выборочным средним. Здесь и далее для обозначения
выборочных средних будем использовать угловые скобки.
Кроме среднего представляет интерес и то, насколько сильно варьируются
результаты от опыта к опыту. Определим отклонение каждого измерения от среднего как
Разброс данных относительно среднего принято характеризовать
среднеквадратичным отклонением:
s=Δx12+Δx22+…+Δxn2n=1n∑i=1nΔxi2 | (1.2) |
или кратко
Значение среднего квадрата отклонения s2 называют
выборочной дисперсией.
Будем увеличивать число измерений n (n→∞). Если объект измерения и методика
достаточно стабильны, то отклонения от среднего Δxi будут, во-первых,
относительно малы, а во-вторых, положительные и отрицательные отклонения будут
встречаться примерно одинаково часто. Тогда при вычислении (1.1)
почти все отклонения Δxi скомпенсируются и можно ожидать,
что выборочное среднее при n≫1 будет стремиться к некоторому пределу:
Тогда предельное значение x¯ можно отождествить с «истинным» средним
для исследуемой величины.
Предельную величину среднеквадратичного отклонения при n→∞
обозначим как
Замечание. В общем случае указанные пределы могут и не существовать. Например, если измеряемый параметр
меняется во времени или в результате самого измерения, либо испытывает слишком большие
случайные скачки и т. п. Такие ситуации требуют особого рассмотрения и мы на них не
останавливаемся.
Замечание. Если n мало (n<10), для оценки среднеквадратичного отклонения
математическая статистика рекомендует вместо формулы (1.3) использовать
исправленную формулу (подробнее см. п. 5.2):
sn-12=1n-1∑i=1nΔxi2,
(1.4)
где произведена замена n→n-1. Величину sn-1
часто называют стандартным отклонением.
Итак, можно по крайней мере надеяться на то, что результаты небольшого числа
измерений имеют не слишком большой разброс, так что величина ⟨x⟩
может быть использована как приближенное значение (оценка) истинного значения
⟨x⟩≈x¯,
а увеличение числа измерений позволит уточнить результат.
Многие случайные величины подчиняются так называемому нормальному закону
распределения (подробнее см. Главу 2). Для таких величин
могут быть строго доказаны следующие свойства:
- •
при многократном повторении эксперимента бо́льшая часть измерений
(∼68%) попадает в интервал x¯-σ<x<x¯+σ
(см. п. 2.2). - •
выборочное среднее значение ⟨x⟩ оказывается с большей
вероятностью ближе к истинному значению x¯, чем каждое из измерений
{xi} в отдельности. При этом ошибка вычисления среднего
убывает пропорционально корню из числа опытов n
(см. п. 2.4).
Упражнение. Показать, что
s2=⟨x2⟩-⟨x⟩2.
(1.5)
то есть дисперсия равна разности среднего значения квадрата
⟨x2⟩=1n∑i=1nxi2
и квадрата среднего ⟨x⟩2=(1n∑i=1nxi)2.
1.3 Классификация погрешностей
Чтобы лучше разобраться в том, нужно ли многократно повторять измерения,
и в каком случае это позволит улучшить результаты опыта,
проанализируем источники и виды погрешностей.
В первую очередь, многократные измерения позволяют проверить
воспроизводимость результатов: повторные измерения в одинаковых
условиях, должны давать близкие результаты. В противном случае
исследование будет существенно затруднено, если вообще возможно.
Таким образом, многократные измерения необходимы для того,
чтобы убедиться как в надёжности методики, так и в существовании измеряемой
величины как таковой.
При любых измерениях возможны грубые ошибки — промахи
(англ. miss). Это «ошибки» в стандартном
понимании этого слова — возникающие по вине экспериментатора
или в силу других непредвиденных обстоятельств (например, из-за сбоя
аппаратуры). Промахов, конечно, нужно избегать, а результаты таких
измерений должны быть по возможности исключены из рассмотрения.
Как понять, является ли «аномальный» результат промахом? Вопрос этот весьма
непрост. В литературе существуют статистические
критерии отбора промахов, которыми мы, однако, настоятельно не рекомендуем
пользоваться (по крайней мере, без серьезного понимания последствий
такого отбора). Отбрасывание аномальных данных может, во-первых, привести
к тенденциозному искажению результата исследований, а во-вторых, так
можно упустить открытие неизвестного эффекта. Поэтому при научных
исследованиях необходимо максимально тщательно проанализировать причину
каждого промаха, в частности, многократно повторив эксперимент. Лишь
только если факт и причина промаха установлены вполне достоверно,
соответствующий результат можно отбросить.
Замечание. Часто причины аномальных отклонений невозможно установить на этапе
обработки данных, поскольку часть информации о проведении измерений к этому моменту
утеряна. Единственным способ борьбы с этим — это максимально подробное описание всего
процесса измерений в лабораторном журнале. Подробнее об этом
см. п. 4.1.1.
При многократном повторении измерении одной и той же физической величины
погрешности могут иметь систематический либо случайный
характер. Назовём погрешность систематической, если она повторяется
от опыта к опыту, сохраняя свой знак и величину, либо закономерно
меняется в процессе измерений. Случайные (или статистические)
погрешности меняются хаотично при повторении измерений как по величине,
так и по знаку, и в изменениях не прослеживается какой-либо закономерности.
Кроме того, удобно разделять погрешности по их происхождению. Можно
выделить
- •
инструментальные (или приборные) погрешности,
связанные с несовершенством конструкции (неточности, допущенные при
изготовлении или вследствие старения), ошибками калибровки или ненормативными
условиями эксплуатации измерительных приборов; - •
методические погрешности, связанные с несовершенством
теоретической модели явления (использование приближенных формул и
моделей явления) или с несовершенством методики измерения (например,
влиянием взаимодействия прибора и объекта измерения на результат измерения); - •
естественные погрешности, связанные со случайным
характером
измеряемой физической величины — они являются не столько
«ошибками» измерения, сколько характеризуют
природу изучаемого объекта или явления.
Замечание. Разделение погрешностей на систематические и случайные
не является однозначным и зависит от постановки опыта. Например, производя
измерения не одним, а несколькими однотипными приборами, мы переводим
систематическую приборную ошибку, связанную с неточностью шкалы и
калибровки, в случайную. Разделение по происхождению также условно,
поскольку любой прибор подвержен воздействию «естественных»
случайных и систематических ошибок (шумы и наводки, тряска, атмосферные
условия и т. п.), а в основе работы прибора всегда лежит некоторое
физическое явление, описываемое не вполне совершенной теорией.
1.3.1 Случайные погрешности
Случайный характер присущ большому количеству различных физических
явлений, и в той или иной степени проявляется в работе всех без исключения
приборов. Случайные погрешности обнаруживаются просто при многократном
повторении опыта — в виде хаотичных изменений (флуктуаций)
значений {xi}.
Если случайные отклонения от среднего в большую или меньшую стороны
примерно равновероятны, можно рассчитывать, что при вычислении среднего
арифметического (1.1) эти отклонения скомпенсируются,
и погрешность результирующего значения ⟨x⟩ будем меньше,
чем погрешность отдельного измерения.
Случайные погрешности бывают связаны, например,
- •
с особенностями используемых приборов: техническими
недостатками
(люфт в механических приспособлениях, сухое трение в креплении стрелки
прибора), с естественными (тепловой и дробовой шумы в электрических
цепях, тепловые флуктуации и колебания измерительных устройств из-за
хаотического движения молекул, космическое излучение) или техногенными
факторами (тряска, электромагнитные помехи и наводки); - •
с особенностями и несовершенством методики измерения (ошибка
при отсчёте по шкале, ошибка времени реакции при измерениях с секундомером); - •
с несовершенством объекта измерений (неровная поверхность,
неоднородность состава); - •
со случайным характером исследуемого явления (радиоактивный
распад, броуновское движение).
Остановимся несколько подробнее на двух последних случаях. Они отличаются
тем, что случайный разброс данных в них порождён непосредственно объектом
измерения. Если при этом приборные погрешности малы, то «ошибка»
эксперимента возникает лишь в тот момент, когда мы по своей
воле совершаем замену ряда измеренных значений на некоторое среднее
{xi}→⟨x⟩. Разброс данных при этом
характеризует не точность измерения, а сам исследуемый объект или
явление. Однако с математической точки зрения приборные и
«естественные»
погрешности неразличимы — глядя на одни только
экспериментальные данные невозможно выяснить, что именно явилось причиной
их флуктуаций: сам объект исследования или иные, внешние причины.
Таким образом, для исследования естественных случайных процессов необходимо
сперва отдельно исследовать и оценить случайные инструментальные погрешности
и убедиться, что они достаточно малы.
1.3.2 Систематические погрешности
Систематические погрешности, в отличие от случайных, невозможно обнаружить,
исключить или уменьшить просто многократным повторением измерений.
Они могут быть обусловлены, во-первых, неправильной работой приборов
(инструментальная погрешность), например, сдвигом нуля отсчёта
по шкале, деформацией шкалы, неправильной калибровкой, искажениями
из-за не нормативных условий эксплуатации, искажениями из-за износа
или деформации деталей прибора, изменением параметров прибора во времени
из-за нагрева и т.п. Во-вторых, их причиной может быть ошибка в интерпретации
результатов (методическая погрешность), например, из-за использования
слишком идеализированной физической модели явления, которая не учитывает
некоторые значимые факторы (так, при взвешивании тел малой плотности
в атмосфере необходимо учитывать силу Архимеда; при измерениях в электрических
цепях может быть необходим учет неидеальности амперметров и вольтметров
и т. д.).
Систематические погрешности условно можно разделить на следующие категории.
- 1.
Известные погрешности, которые могут быть достаточно точно вычислены
или измерены. При необходимости они могут быть учтены непосредственно:
внесением поправок в расчётные формулы или в результаты измерений.
Если они малы, их можно отбросить, чтобы упростить вычисления. - 2.
Погрешности известной природы, конкретная величина которых неизвестна,
но максимальное значение вносимой ошибки может быть оценено теоретически
или экспериментально. Такие погрешности неизбежно присутствуют в любом
опыте, и задача экспериментатора — свести их к минимуму,
совершенствуя методики измерения и выбирая более совершенные приборы.Чтобы оценить величину систематических погрешностей опыта, необходимо
учесть паспортную точность приборов (производитель, как правило, гарантирует,
что погрешность прибора не превосходит некоторой величины), проанализировать
особенности методики измерения, и по возможности, провести контрольные
опыты. - 3.
Погрешности известной природы, оценка величины которых по каким-либо
причинам затруднена (например, сопротивление контактов при подключении
электронных приборов). Такие погрешности должны быть обязательно исключены
посредством модификации методики измерения или замены приборов. - 4.
Наконец, нельзя забывать о возможности существования ошибок, о
которых мы не подозреваем, но которые могут существенно искажать результаты
измерений. Такие погрешности самые опасные, а исключить их можно только
многократной независимой проверкой измерений, разными методами
и в разных условиях.
В учебном практикуме учёт систематических погрешностей ограничивается,
как правило, паспортными погрешностями приборов и теоретическими поправками
к упрощенной модели исследуемого явления.
Точный учет систематической ошибки возможен только при учете специфики конкретного эксперимента. Особенное внимание надо обратить на зависимость (корреляцию) систематических смещений при повторных измерениях. Одна и та же погрешность в разных случаях может быть интерпретирована и как случайная, и как систематическая.
Пример.
Калибровка электромагнита производится при помощи внесения в него датчика Холла или другого измерителя магнитного потока. При последовательных измерениях с разными токами (и соотственно полями в зазоре) калибровку можно учитыать двумя различными способами:
•
Измерить значение поля для разных токов, построить линейную калибровочную кривую и потом использовать значения, восстановленные по этой кривой для вычисления поля по току, используемому в измерениях.
•
Для каждого измерения проводить допольнительное измерения поля и вообще не испльзовать значения тока.
В первом случае погрешность полученного значения будет меньше, поскльку при проведении прямой, отдельные отклонения усреднятся. При этом погрешность измерения поля будет носить систематический харрактер и при обработке данных ее надо будет учитывать в последний момент. Во втором случае погрешность будет носить статистический (случайный) харрактер и ее надо будет добавить к погрешности каждой измеряемой точки. При этом сама погрешность будет больше. Выбор той или иной методики зависит от конретной ситуации. При большом количестве измерений, второй способ более надежный, поскольку статистическая ошибка при усреднении уменьшается пропорционально корню из количества измерений. Кроме того, такой способ повзоляет избежать методической ошибки, связанной с тем, что зависимость поля от тока не является линейной.
Пример.
Рассмотрим измерение напряжения по стрелочному вольтметру. В показаниях прибора будет присутствовать три типа погрешности:
1.
Статистическая погрешность, связанная с дрожанием стрелки и ошибкой визуального наблюдения, примерно равная половине цены деления.
2.
Систематическая погрешность, связанная с неправильной установкой нуля.
3.
Систематическая погрешность, связанная с неправильным коэффициентом пропорциональности между напряжением и отклонением стрелки. Как правило приборы сконструированы таким образом, чтобы максимальное значение этой погрешности было так же равно половине цены деления (хотя это и не гарантируется).
Неотъемлемой частью любого измерения является погрешность измерений. С развитием приборостроения и методик измерений человечество стремиться снизить влияние данного явления на конечный результат измерений. Предлагаю более детально разобраться в вопросе, что же это такое погрешность измерений.
Погрешность измерения – это отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерений представляет собой сумму погрешностей, каждая из которых имеет свою причину.
По форме числового выражения погрешности измерений подразделяются на абсолютные и относительные
Абсолютная погрешность – это погрешность, выраженная в единицах измеряемой величины. Она определяется выражением.
(1.2), где X — результат измерения; Х0 — истинное значение этой величины.
Поскольку истинное значение измеряемой величины остается неизвестным, на практике пользуются лишь приближенной оценкой абсолютной погрешности измерения, определяемой выражением
(1.3), где Хд — действительное значение этой измеряемой величины, которое с погрешностью ее определения принимают за истинное значение.
Относительная погрешность – это отношение абсолютной погрешности измерения к действительному значению измеряемой величины:
(1.4)
По закономерности появления погрешности измерения подразделяются на систематические, прогрессирующие, и случайные.
Систематическая погрешность – это погрешность измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины.
Прогрессирующая погрешность – это непредсказуемая погрешность, медленно меняющаяся во времени.
Систематические и прогрессирующие погрешности средств измерений вызываются:
- первые — погрешностью градуировки шкалы или ее небольшим сдвигом;
- вторые — старением элементов средства измерения.
Систематическая погрешность остается постоянной или закономерно изменяющейся при многократных измерениях одной и той же величины. Особенность систематической погрешности состоит в том, что она может быть полностью устранена введением поправок. Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы только в данный момент времени. Они требуют непрерывной коррекции.
Случайная погрешность – это погрешность измерения изменяется случайным образом. При повторных измерениях одной и той же величины. Случайные погрешности можно обнаружить только при многократных измерениях. В отличии от систематических погрешностей случайные нельзя устранить из результатов измерений.
По происхождению различают инструментальные и методические погрешности средств измерений.
Инструментальные погрешности — это погрешности, вызываемые особенностями свойств средств измерений. Они возникают вследствие недостаточно высокого качества элементов средств измерений. К данным погрешностям можно отнести изготовление и сборку элементов средств измерений; погрешности из-за трения в механизме прибора, недостаточной жесткости его элементов и деталей и др. Подчеркнем, что инструментальная погрешность индивидуальна для каждого средства измерений.
Методическая погрешность — это погрешность средства измерения, возникающая из-за несовершенства метода измерения, неточности соотношения, используемого для оценки измеряемой величины.
Погрешности средств измерений.
Абсолютная погрешность меры – это разность между номинальным ее значением и истинным (действительным) значением воспроизводимой ею величины:
(1.5), где Xн – номинальное значение меры; Хд – действительное значение меры
Абсолютная погрешность измерительного прибора – это разность между показанием прибора и истинным (действительным) значением измеряемой величины:
(1.6), где Xп – показания прибора; Хд – действительное значение измеряемой величины.
Относительная погрешность меры или измерительного прибора – это отношение абсолютной погрешности меры или измерительного прибора к истинному
(действительному) значению воспроизводимой или измеряемой величины. Относительная погрешность меры или измерительного прибора может быть выражена в ( % ).
(1.7)
Приведенная погрешность измерительного прибора – отношение погрешности измерительного прибора к нормирующему значению. Нормирующие значение XN – это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы. Приведенная погрешность обычно выражается в ( % ).
(1.8)
Предел допускаемой погрешности средств измерений – наибольшая без учета знака погрешность средства измерений, при которой оно может быть признано и допущено к применению. Данное определение применяют к основной и дополнительной погрешности, а также к вариации показаний. Поскольку свойства средств измерений зависят от внешних условий, их погрешности также зависят от этих условий, поэтому погрешности средств измерений принято делить на основные и дополнительные.
Основная – это погрешность средства измерений, используемого в нормальных условиях, которые обычно определены в нормативно-технических документах на данное средство измерений.
Дополнительная – это изменение погрешности средства измерений вследствии отклонения влияющих величин от нормальных значений.
Погрешности средств измерений подразделяются также на статические и динамические.
Статическая – это погрешность средства измерений, используемого для измерения постоянной величины. Если измеряемая величина является функцией времени, то вследствие инерционности средств измерений возникает составляющая общей погрешности, называется динамической погрешностью средств измерений.
Также существуют систематические и случайные погрешности средств измерений они аналогичны с такими же погрешностями измерений.
Факторы влияющие на погрешность измерений.
Погрешности возникают по разным причинам: это могут быть ошибки экспериментатора или ошибки из-за применения прибора не по назначению и т.д. Существует ряд понятий которые определяют факторы влияющие на погрешность измерений
Вариация показаний прибора – это наибольшая разность показаний полученных при прямом и обратном ходе при одном и том же действительном значении измеряемой величины и неизменных внешних условиях.
Класс точности прибора – это обобщенная характеристика средств измерений (прибора), определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на точность, значение которой устанавливаются на отдельные виды средств измерений.
Классы точности прибора устанавливают при выпуске, градуируя его по образцовому прибору в нормальных условиях.
Прецизионность — показывает, как точно или отчетливо можно произвести отсчет. Она определяется, тем насколько близки друг к другу результаты двух идентичных измерений.
Разрешение прибора — это наименьшее изменение измеряемого значения, на которое прибор будет реагировать.
Диапазон прибора — определяется минимальным и максимальным значением входного сигнала, для которого он предназначен.
Полоса пропускания прибора — это разность между минимальной и максимальной частотой, для которых он предназначен.
Чувствительность прибора — определяется, как отношение выходного сигнала или показания прибора к входному сигналу или измеряемой величине.
Шумы — любой сигнал не несущий полезной информации.
Напечатано:: | Гость |
Дата: | вторник, 31 января 2023, 17:02 |
Описание
1. Понятие о погрешности измерения.
2. Классификация погрешностей измерения.
3. Систематические погрешности
Оглавление
- 1. Понятие о погрешности измерения
- 2. Классификация погрешностей измерения
- 3. Систематические погрешности
1. Понятие о погрешности измерения
Всякий процесс измерения независимо от условий, в которых его проводят, сопряжен с погрешностями, которые искажают представление о действительном значении измеряемой величины.
Погрешностью называют отличие между объективно существующим истинным значением физической величины и найденным в результате измерения действительным значением физической величины.
Истинное значение физической величины идеальным образом отражает соответствующее свойство объекта. Практически получено быть не может.
Действительное значение физической величины находится как результат измерения и приближается к истинному значению настолько, что для данной цели может применяться вместо него.
Источниками появления погрешностей при измерениях могут служить различные факторы, основными из которых являются: несовершенство конструкции средств измерений или принципиальной схемы метода измерения; неточность изготовления средств измерений; несоблюдение внешних условий при измерениях; субъективные погрешности и др.
2. Классификация погрешностей измерения
В зависимости от обстоятельств, при которых проводились измерения, а также в зависимости от целей измерения, выбирается та или иная классификация погрешностей. Иногда используют одновременно несколько взаимно пересекающихся классификаций, желая по нескольким признакам точно охарактеризовать влияющие на результат измерения физические величины. В таком случае рассматривают, например, инструментальную составляющую неисключённой систематической погрешности. При выборе классификаций важно учитывать наиболее весомые или динамично меняющиеся или поддающиеся регулировке влияющие величины. Ниже приведены общепринятые классификации согласно типовым признакам и влияющим величинам.
По виду представления, различают абсолютную, относительную и приведённую погрешности.
Абсолютная погрешность это разница между результатом измерения X и истинным значением Q измеряемой величины. Абсолютная погрешность находится как D = X — Q и выражается в единицах измеряемой величины.
Относительная погрешность это отношение абсолютной погрешности измерения к истинному значению измеряемой величины: d = D / Q = (X – Q) / Q .
Приведённая погрешность это относительная погрешность, в которой абсолютная погрешность средства измерения отнесена к условно принятому нормирующему значению QN , постоянному во всём диапазоне измерений или его части. Относительная и приведённая погрешности – безразмерные величины.
В зависимости от источника возникновения, различают субъективную, инструментальную и методическую погрешности.
Субъективная погрешность обусловлена погрешностью отсчёта оператором показаний средства измерения.
Инструментальная погрешность обусловлена несовершенством применяемого средства измерения. Иногда эту погрешность называют аппаратурной. Метрологические характеристики средств измерений нормируются согласно ГОСТ 8.009 – 84, при этом различают четыре составляющие инструментальной погрешности: основная, дополнительная, динамическая, интегральная. Согласно этой классификации, инструментальная погрешность зависит от условий и режима работы, а также от параметров сигнала и объекта измерения.
Методическая погрешность обусловлена следующими основными причинами:
– отличие принятой модели объекта измерения от модели, адекватно описывающей его метрологические свойства;
– влияние средства измерения на объект измерения;
– неточность применяемых при вычислениях физических констант и математических соотношений.
В зависимости от измеряемой величины, различают погрешность аддитивную и мультипликативную. Аддитивная погрешность не зависит от измеряемой величины. Мультипликативная погрешность меняется пропорционально измеряемой величине.
В зависимости от режима работы средства измерений, различают статическую и динамическую погрешности.
Динамическая погрешность обусловлена реакцией средства измерения на изменение параметров измеряемого сигнала (динамический режим).
Статическая погрешность средства измерения определяется при параметрах измеряемого сигнала, принимаемых за неизменные на протяжении времени измерения (статический режим).
По характеру проявления во времени, различают случайную и систематическую погрешности.
Систематической погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях остаётся постоянной или закономерно меняется.
Случайной погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях изменяется случайным образом.
3. Систематические погрешности
Систематические погрешности при повторных измерениях остаются постоянными или изменяются по определенному закону.
Когда судят о погрешности, подразумевают не значение, а интервал значений, в котором с заданной вероятностью находится истинное значение. Поэтому говорят об оценке погрешности. Если бы погрешность оказалась измеренной, т.е. стали бы известны её знак и значение, то её можно было бы исключить из действительного значения измеряемой физической величины и получить истинное значение.
Для получения результатов, минимально отличающихся от истинного значения измеряемой физической величины, проводят многократные наблюдения и проводят математическую обработку полученного массива с целью определения и минимизации случайной составляющей погрешности.
Минимизация систематической погрешности в процессе наблюдений выполняется следующими методами: метод замещения (состоит в замещении измеряемой величины мерой), метод противопоставления (состоит в двух поочерёдных измерениях при замене местами меры и измеряемого объекта), метод компенсации погрешности по знаку (состоит в двух поочерёдных измерениях, при которых влияющая величина становится противоположной).
При многократных наблюдениях возможно апостериорное (после выполнения наблюдений) исключение систематической погрешности в результате анализа рядов наблюдений. Рассмотрим графический анализ. При этом результаты последовательных наблюдений представляются функцией времени либо ранжируются в порядке возрастания погрешности.
Рассмотрим временную зависимость. Будем проводить наблюдения через одинаковые интервалы времени. Результаты последовательных наблюдений являются случайной функцией времени. В серии экспериментов, состоящих из ряда последовательных наблюдений, получаем одну реализацию этой функции. При повторении серии получаем новую реализацию, отличающуюся от первой.
Реализации отличаются преимущественно из-за влияния факторов, определяющих случайную погрешность, а факторы, определяющие систематическую погрешность, одинаково проявляются для соответствующих моментов времени в каждой реализации. Значение, соответствующее каждому моменту времени, называется сечением случайной функции времени. Для каждого сечения можно найти среднее по всем реализациям значение. Очевидно, что эта составляющая и определяет систематическую погрешность. Если через значения систематической погрешности для всех моментов времени провести плавную кривую, то она будет характеризовать временную закономерность изменения погрешности. Зная закономерность изменения, можем определить поправку для исключения систематической погрешности. После исключения систематической погрешности получаем «исправленный ряд результатов наблюдений».
Известен ряд способов исключения систематических погрешностей, которые условно можно разделить па 4 основные группы:
- устранение источников погрешностей до начала измерений;
- исключение почетностей в процессе измерения способами замещения, компенсации погрешностей по знаку, противопоставления, симметричных наблюдений;
- внесение известных поправок в результат измерения (исключение погрешностей начислением);
- оценка границ систематических погрешностей, если их нельзя исключить.
По характеру проявления систематические погрешности подразделяют на постоянные, прогрессивные и периодические.
Постоянные систематические погрешности сохраняют свое значение в течение всего времени измерений (например, погрешность в градуировке шкалы прибора переносится на все результаты измерений).
Прогрессивные погрешности – погрешности, которые в процессе измерении подрастают или убывают (например, погрешности, возникающие вследствие износа контактирующих деталей средств измерения).
И группу систематических погрешностей можно отнести: инструментальные погрешности; погрешности из-за неправильной установки измерительного устройства; погрешности, возникающие вследствие внешних влияний; погрешности метода измерения (теоретические погрешности); субъективные погрешности.
3.4 Погрешности измерений
Основные понятия и определения.
При анализе измерений следует четко разграничивать два понятия: истинные значения физических величин и их эмпирические проявления – результаты измерений.
Истинные значения физических величин – это значения, идеальным образом отражающие свойства данного объекта как в количественном, так и в качественном отношении. Они не зависят от средств нашего познания и являются абсолютной истиной.
Результаты измерений, напротив, являются продуктами нашего познания. Представляя собой приближенные оценки значений величин, найденные путем измерения, они зависят не только от них, но еще и от метода измерения, от технических средств, с помощью которых проводятся измерения, и от свойств органов чувств наблюдателя, осуществляющего измерения.
Разница между результатами измерения X’ и истинным значением Q измеряемой величины называется погрешностью измерения :
(3.13) |
Но поскольку истинное значение Q измеряемой величины неизвестно, то неизвестны и погрешности измерения, поэтому для получения хотя бы приближенных сведений о них приходится в формулу (3.13) вместо истинного значения подставлять так называемое действительное значение.
Под действительным значением физической величины мы будем понимать ее значение, найденное экспериментально и настолько приближающееся к истинному, что для данной цели оно может быть использовано вместо него.
Причинами возникновения погрешностей являются: несовершенство методов измерений, технических средств, применяемых при измерениях, и органов чувств наблюдателя. В отдельную группу следует объединить причины, связанные с влиянием условий проведения измерений. Последние проявляются двояко. С одной стороны, все физические величины, играющие какую-либо роль при проведении измерений, в той или иной степени зависят друг от друга. Поэтому с изменением внешних условий изменяются истинные значения измеряемых величин. С другой стороны, условия проведения измерений влияют и на характеристики средств измерений и физиологические свойства органов чувств наблюдателя и через их посредство становятся источником погрешностей измерения.
Описанные причины возникновения погрешностей определяются совокупностью большого числа факторов, под влиянием которых складывается суммарная погрешность измерения – см. формулу (3.13). Их можно объединить в две основные группы.
1. Факторы, проявляющиеся весьма нерегулярно и столь же неожиданно исчезающие или проявляющиеся с интенсивностью, которую трудно предвидеть. К ним относятся, например, перекосы элементов приборов в их направляющих, нерегулярные изменения моментов трения в опорах, малые флюктуации влияющих величин, изменения внимания операторов и др.
Доля, или составляющая, суммарной погрешности измерения (3.13), определяемая действием факторов этой группы, называется случайной погрешностью измерения. Ее основная особенность в том, что она случайно изменяется при повторных измерениях одной и той же величины.
При создании измерительной аппаратуры и организации процесса измерения в целом интенсивность проявления большинства факторов данной группы удается свести к общему уровню, так что все они влияют более или менее одинаково на формирование случайной погрешности. Однако некоторые из них, например внезапное падение напряжения в сети электропитания, могут проявиться неожиданно сильно, в результате чего погрешность примет размеры, явно выходящие за границы, обусловленные ходом эксперимента в целом. Такие погрешности в составе случайной погрешности называютсягрубыми. К ним тесно примыкают промахи – погрешности, зависящие от наблюдателя и связанные с неправильным обращением со средствами измерений, неверным отсчетом показаний или ошибками при записи результатов.
2. Факторы, постоянные или закономерно изменяющиеся в процессе измерительного эксперимента, например плавные изменения влияющих величин или погрешности применяемых при измерениях образцовых мер. Составляющие суммарной погрешности (1), определяемые действием факторов этой группы, называютсясистематическими погрешностями измерения . Их отличительная особенность в том, что они остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины. До тех пор, пока систематические погрешности больше случайных, их зачастую можно вычислить или исключить из результатов измерений надлежащей постановкой опыта.
Таким образом, мы имеем два типа погрешностей измерения:
- случайные (в том числе грубые погрешности и промахи), изменяющиеся случайным образом при повторных измерениях одной и той же величины;
- систематические погрешности, остающиеся постоянными или закономерно изменяющиеся при повторных измерениях.
В процессе измерения оба вида погрешностей проявляются одновременно, и погрешность измерения можно представить в виде суммы:
(3.14) |
где – случайная, а – систематическая погрешности.
Для получения результатов, минимально отличающихся от истинных значений величин, проводят многократные наблюдения за измеряемой величиной с последующей математической обработкой опытных данных. Поэтому наибольшее значение имеет изучение погрешности как функции номера наблюдения, т. е. времени . Тогда отдельные значения погрешностей можно будет трактовать как набор значений этой функции:
В общем случае погрешность является случайной функцией времени, которая отличается от классических функций математического анализа тем, что нельзя сказать, какое значение она примет в момент времениt . Можно указать лишь вероятности появления ее значений в том или ином интервале. В серии экспериментов, состоящих из ряда многократных наблюдений, мы получаем одну реализацию этой функции. При повторении серии при тех же значениях величин, характеризующих факторы второй группы, неизбежно получаем новую реализацию, отличающуюся от первой.
Реализации отличаются друг от друга из-за влияния факторов первой группы, а факторы второй группы, одинаково проявляющиеся при получении каждой реализации, придают им некоторые общие черты (рис.3.2).
Погрешность измерений, соответствующая каждому моменту времени , называется сечением случайной функции . В каждом сечении в большинстве случаев можно найти среднее значение погрешности , относительно которого группируются погрешности в различных реализациях. Если через полученные таким образом точки провести плавную кривую, то она будет характеризовать общую тенденцию изменения погрешности во времени. Нетрудно заметить, что средние значения определяются действием факторов второй группы и представляют собой систематическую погрешность измерения в момент времени , а отклонения от среднего в сечении , соответствующие -й реализации, дают нам значения случайной погрешности. Последние являются уже представителями случайных величин – объектов изучения классической теории вероятностей.
Предположим, что , т.е. систематические погрешности тем или иным способом исключены из результатов наблюдений, и будем рассматривать только случайные погрешности, средние значения которых равны нулю в каждом сечении. Предположим далее, что случайные погрешности в различных сечениях не зависят друг от друга, т.е. знание случайной погрешности в одном сечении как ординаты одной реализации не дает нам никакой дополнительной информации о значении, принимаемом этой реализацией в любом другом сечении. Тогда случайную погрешность можно рассматривать как случайную величину, а ее значения при каждом из многократных наблюдений одной и той же физической величины – как ее эмпирические проявления, т.е. как результаты независимых наблюдений над ней.
В этих условиях случайная погрешность измерений определяется как разность между исправленным результатом Х измерения и истинным значением Q измеряемой величины:
(3.15) |
причем исправленным будем называть результат измерений, из которого исключены систематические погрешности.
При проведении измерений целью является оценка истинного значения измеряемой величины, которое до опыта неизвестно. Результат измерения включает в себя помимо истинного значения еще и случайную погрешность, следовательно, сам является случайной величиной. В этих условиях фактическое значение случайной погрешности, полученное при поверке, еще не характеризует точности измерений, поэтому не ясно, какое же значение принять за окончательный результат измерения и как охарактеризовать его точность.
Ответ на эти вопросы можно получить, используя при метрологической обработке результатов измерения методы математической статистики, имеющей дело именно со случайными величинами.
Классификация систематических погрешностей
Систематической погрешностью называется составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же величины . При этом предполагается, что систематические погрешности представляют собой определенную функцию неслучайных факторов, состав которых зависит от физических, конструкционных и технологических особенностей средств измерений, условий их применения, а также индивидуальных качеств наблюдателя. Сложные детерминированные закономерности, которым подчиняются систематические погрешности, определяются либо при создании средств измерений и комплектации измерительной аппаратуры, либо непосредственно при подготовке измерительного эксперимента и в процессе его проведения. Совершенствование методов измерения, использование высококачественных материалов, прогрессивная технология – все это позволяет на практике устранить систематические погрешности настолько, что при обработке результатов наблюдений с их наличием зачастую не приходится считаться.
В предыдущих параграфах, посвященных случайным погрешностям, было показано, что единственно правильным методом их анализа является математическая статистика. Случайные погрешности измерения изучались только в совокупности, без рассмотрения их фактических значений в каждом опыте. Систематические погрешности приходится изучать в каждом случае отдельно.
Систематические погрешности принято классифицировать в зависимости от причин их возникновения и по характеру их проявления при измерениях.
В зависимости от причин возникновения рассматриваются четыре вида систематических погрешностей:
1. Погрешности метода, или теоретические погрешности, проистекающие от ошибочности или недостаточной разработки принятой теории метода измерений в целом или от допущенных упрощений при проведении измерений.
Погрешности метода возникают также при экстраполяции свойства, измеренного на ограниченной части некоторого объекта, на весь объект, если последний не обладает однородностью измеряемого свойства. Так, считая диаметр цилиндрического вала равным результату, полученному при измерении в одном сечении и в одном направлении, мы допускаем систематическую погрешность, полностью определяемую отклонениями формы исследуемого вала. При определении плотности вещества по измерениям массы и объема некоторой пробы возникает систематическая погрешность, если проба содержала некоторое количество примесей, а результат измерения принимается за характеристику данного вещества вообще.
К погрешностям метода следует отнести также те погрешности, которые возникают вследствие влияния измерительной аппаратуры на измеряемые свойства объекта. Подобные явления возникают, например, при измерении длин, когда измерительное усилие используемых приборов достаточно велико, при регистрации быстропротекающих процессов недостаточно быстродействующей аппаратурой, при измерениях температур жидкостными или газовыми термометрами и так далее.
2. Инструментальные погрешности, зависящие от погрешностей применяемых средств измерений. Среди инструментальных погрешностей в отдельную группу выделяются погрешности схемы, не связанные с неточностью изготовления средств измерения и обязанные своим происхождением самой структурной схеме средств измерений. Исследование инструментальных погрешностей является предметом специальной дисциплины – теории точности измерительных устройств.
3. Погрешности, обусловленные неправильной установкой и взаимным расположением средств измерения, являющихся частью единого комплекса, несогласованностью их характеристик, влиянием внешних температурных, гравитационных, радиационных и других полей, нестабильностью источников питания, несогласованностью входных и выходных параметров электрических цепей приборов и так далее.
4. Личные погрешности, обусловленные индивидуальными особенностями наблюдателя. Такого рода погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией, возникающей при установке штриха посередине между двумя рисками.
По характеру своего поведения в процессе измерения систематические погрешности подразделяются на постоянные и переменные.
Постоянные систематические погрешности возникают, например, при неправильной установке начала отсчета, неправильной градуировке и юстировке средств измерения и остаются постоянными при всех повторных наблюдениях. Поэтому, если уж они возникли, их очень трудно обнаружить в результатах наблюдений.
Среди переменных систематических погрешностей принято выделять прогрессивные и периодические.
Прогрессивная погрешность возникает, например, при взвешивании, когда одно из коромысел весов находится ближе к источнику тепла, чем другое, поэтому быстрее нагревается и удлиняется. Это приводит к систематическому сдвигу начала отсчета и к монотонному изменению показаний весов.
Периодическая погрешность присуща измерительным приборам с круговой шкалой, если ось вращения указателя не совпадает с осью шкалы.
Все остальные виды систематических погрешностей принято называть погрешностями, изменяющимися по сложному закону.
В тех случаях, когда при создании средств измерений, необходимых для данной измерительной установки, не удается устранить влияние систематических погрешностей, приходится специально организовывать измерительный процесс и осуществлять математическую обработку результатов. Методы борьбы с систематическими погрешностями заключаются в их обнаружении и последующем исключении путем полной или частичной компенсации. Основные трудности, часто непреодолимые, состоят именно в обнаружении систематических погрешностей, поэтому иногда приходится довольствоваться приближенным их анализом.
Способы обнаружения систематических погрешностей
Результаты наблюдений, полученные при наличии систематических погрешностей, будем называть неисправленными и в отличие от исправленных снабжать штрихами их обозначения (например и т.д.). Вычисленные в этих условиях средние арифметические значения и отклонения от результатов наблюдений будем также называть неисправленными и ставить штрихи у символов этих величин. Таким образом,
. |
(3.16) |
Поскольку неисправленные результаты наблюдений включают в себя систематические погрешности, сумму которых для каждого -го наблюдения будем обозначать через , то их математическое ожидание не совпадает с истинным значением измеряемой величины и отличается от него на некоторую величину , называемую систематической погрешностью неисправленного среднего арифметического. Действительно,
.
Если систематические погрешности постоянны, т.е. то неисправленные отклонения могут быть непосредственно использованы для оценки рассеивания ряда наблюдений. В противном случае необходимо предварительно исправить отдельные результаты измерений, введя в них так называемые поправки, равные систематическим погрешностям по величине и обратные им по знаку:
.
Таким образом, для нахождения исправленного среднего арифметического и оценки его рассеивания относительно истинного значения измеряемой величины необходимо обнаружить систематические погрешности и исключить их путем введения поправок или соответствующей каждому конкретному случаю организации самoгo измерения. Остановимся подробнее на некоторых способах обнаружения систематических погрешностей.
Постоянные систематические погрешности не влияют на значения случайных отклонений результатов наблюдений от средних арифметических, поэтому никакая математическая обработка результатов наблюдений не может привести к их обнаружению. Анализ таких погрешностей возможен только на основании некоторых априорных знаний об этих погрешностях, получаемых, например, при поверке средств измерений. Измеряемая величина при поверке обычно воспроизводится образцовой мерой, действительное значение которой известно. Поэтому разность между средним арифметическим результатов наблюдения и значением меры с точностью, определяемой погрешностью аттестации меры и случайными погрешностями измерения, равна искомой систематической погрешности.
Ценность полученных при поверке результатов определяется их постоянством в течение некоторого промежутка времени и независимостью от тех изменений внешних условий, которые допустимы при эксплуатации средств измерений с заданной точностью. Тогда полученные при поверке данные могут быть использованы для вычисления поправок, необходимых для исправления результатов наблюдений.
Одним из наиболее действенных способов обнаружения систематических погрешностей в ряде результатов наблюдений является построение графика последовательности неисправленных значений случайных отклонений результатов наблюдений от средних арифметических.
Вначале рассмотрим случай, когда в ряде результатов наблюдений предполагается наличие постоянной систематической погрешности. Для того чтобы удостовериться в этом, исследователь, сделав несколько измерений, заменяет некоторые меры или измерительные приборы, включенные в установку и являющиеся предполагаемыми источниками постоянных систематических погрешностей, другими мерами и измерительными приборами и проводит еще несколько измерений.
Рассматриваемый способ обнаружения постоянных систематических погрешностей можно сформулировать следующим образом: если неисправленные отклонения результатов наблюдений резко изменяются при изменении условий наблюдений, то данные результаты содержат постоянную систематическую погрешность, зависящую от условий наблюдений.
При прогрессивной систематической погрешности последовательность неисправленных отклонений результатов наблюдений обнаруживает тенденцию к возрастанию или убыванию. На рис.3.3 изображена зависимость погрешности измерения от длины измеряемой детали.
Несмотря на большие случайные изменения погрешности тенденция к увеличению ее в отрицательном направлении с ростом измеряемой величины явно обнаруживается. Если бы случайные погрешности были невелики, то значения неисправленных отклонений меняли бы свой знак при некотором среднем значении измеряемой величины. Случайные погрешности несколько искажают эту картину, однако, если они даже одного порядка малости с систематическими погрешностями, в последовательности знаков можно заметить некоторую неравномерность: неисправленные отклонения результатов одного знака чаще встречаются в отрицательной полуплоскости, чем в положительной.
Если же в ряде результатов наблюдений присутствует периодическая систематическая погрешность, то группы знаков плюс и минус в последовательности неисправленных отклонений результатов наблюдений могут периодически сменять друг друга, если, конечно, случайные погрешности не особенно велики.
Обобщая два рассмотренных случая, можно сказать: если последовательность знаков плюс сменяется последовательностью знаков минус или наоборот, то данный ряд результатов наблюдений обнаруживает прогрессивную погрешность, если группы знаков плюс и минус чередуются – периодическую погрешность.
Введение поправок. Неисключенная систематическая погрешность
Систематические погрешности являются детерминированными величинами, поэтому в принципе всегда могут быть вычислены и исключены из результатов измерений. После исключения систематических погрешностей получаем исправленные средние арифметические и исправленные отклонения результатов наблюдении, которые позволяют оценить степень рассеивания результатов.
Для исправления результатов наблюдений их складывают с поправками, равными систематическим погрешностям по величине и обратными им по знаку. Поправку определяют экспериментально при поверке приборов или в результате специальных исследований, обыкновенно с некоторой ограниченной точностью. Для исправления результата наблюдения его складывают только со средним арифметическим значением поправки:
, |
(3.17) |
где и – соответственно исправленный и неисправленный результаты наблюдений, – среднее арифметическое значение поправки, определяемые экспериментально.
Поправки могут задаваться также в виде формул, по которым они вычисляются для каждого конкретного случая. Например, при измерениях и поверках с помощью образцовых манометров следует вводить поправки к их показаниям на местное значение ускорения свободного падения
,
где – измеряемое давление.
Введением поправки устраняется влияние только одной вполне определенной систематической погрешности, поэтому в результаты измерения зачастую приходится вводить очень большое число поправок. При этом вследствие ограниченной точности определения поправок накапливаются случайные погрешности и дисперсия результата измерения увеличивается.
Действительно, при исправлении неисправленного результата путем введения поправок по формуле
, |
(3.18) |
дисперсия становится равной
, |
(3.19) |
где – оценка дисперсии неисправленных результатов; – оценка дисперсии -й поправки.
Поправку имеет смысл вводить до тех пор, пока она уменьшает доверительные границы погрешности, т.е. пока выполняется неравенство
. |
(3.20) |
При малой дисперсии поправки на основании формулы (62) может показаться, что введение любой поправки повышает достоверность результата. Однако следует помнить, что погрешность результата выражается не более чем двумя значащими цифрами, поэтому поправка, если она меньше пяти единиц разряда, следующего за последним десятичным знаком погрешности результата, будет все равно потеряна при округлении, и вводить ее не имеет смысла.
Систематическая погрешность, остающаяся после введения поправок на ее наиболее существенные составляющие включает в себя ряд элементарных составляющих, называемыхнеисключенными остатками систематической погрешности. К их числу относятся:
- погрешности определения поправок;
- погрешности, зависящие от точности измерения влияющих величин, входящих в формулы для определения поправок;
- погрешности, связанные с колебаниями влияющих величин (температуры окружающей среды, напряжения питания и т.д.).
Перечисленные погрешности малы и поправки на них не вводятся.
Для каждого данного измерения элементарные составляющие систематической погрешности имеют вполне определенные значения, но эти значения нам неизвестны. Известно лишь, что в массе однотипных измерений эти составляющие лежат в определенных границах или имеют определенные средние квадратические отклонения . В первом случае для неисключенных остатков следует принять равномерное распределение, во втором – нормальное. Дисперсия суммы неисключенных остатков систематической погрешности определяется как сумма их дисперсий и поэтому
, |
(3.21) |
где m1– число равномерно распределенных и m2 – число нормально распределенных элементарных составляющих.
Обработка результатов прямых равнорассеянных наблюдений
Прямыми называются измерения, в результате которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения осуществляются путем многократных наблюдений. Результаты наблюдений называются равнорассеянными, если они являются независимыми, одинаково распределенными случайными величинами. Равнорассеянные результаты получают при измерениях, проводимых одним наблюдателем или группой наблюдателей с помощью одних и тех же методов и средств измерений в неизменных условиях внешней среды.
Обработка результатов наблюдений в соответствии с методикой прямых измерений с многократными наблюдениями производится в следующем порядке:
1. Путем введения поправок исключают известные систематические погрешности из результатов наблюдений.
2. Вычисляют среднее арифметическое исправленных результатов наблюдений, принимая его за оценку истинного значения измеряемой величины.
3. Вычисляют оценку среднеквадратического отклонения результатов наблюдения и оценку среднеквадратического отклонения среднего арифметического.
4. Проверяют гипотезу о нормальности распределения результатов наблюдения. Если число результатов , используют критерий Пирсона , при – составной критерий. Уровень значимости выбирается из интервала 0.02 – 0.10. При нормальность распределения не проверяется.
5. Если результаты наблюдений распределены нормально, то определяют наличие грубых погрешностей и промахов и если последние обнаружены, соответствующие результаты отбраковывают и повторяют вычисления.
6. Вычисляют доверительные границы случайной погрешности при доверительной вероятности , а также при , если измерения в дальнейшем повторить нельзя.
7. Определяют границы неисключенной систематической погрешности результата измерений. В качестве составляющих неисключенной систематической погрешности рассматривают погрешности метода, погрешности средств измерений (например пределы допускаемой основной и дополнительных погрешностей, если их случайные составляющие пренебрежимо малы) и погрешности, вызванные другими источниками. При суммировании составляющих неисключенные систематические погрешности средств измерений рассматриваются как случайные величины. Если их распределение неизвестно, то принимается равномерное распределение и тогда границы неисключенной систематической погрешности результата при числе составляющих определяют как
, |
(3.21) |
где – границы отдельных составляющих общим числом ; – коэффициент, равный 1.1 при доверительной вероятности и 1.4 при .
8. Вычисляют доверительные границы погрешности результата. Если выполняется условие , то систематической погрешностью можно пренебречь и определить доверительные границы погрешности результата как доверительные границы случайной погрешности при (и при ); если же выполняется условие , то можно пренебречь случайной погрешностью и тогда при (и ).
Если эти условия не выполняются, то доверительные границы погрешности результата определяют по формуле , где коэффициент находят из выражения
(3.22) |
а среднеквадратическое общей погрешности результата находят квадратическим суммированием дисперсии случайной и систематической погрешности результата, определяемой формулой (63). Границы случайной и систематической погрешности, входящие в формулу (65), необходимо выбирать при одной и той же доверительной вероятности ( или ).
9. Результат измерения записывают в виде , а при отсутствии сведений о виде функции распределения составляющих погрешности и необходимости дальнейшей обработки результатов и анализа погрешностей– в виде .
Если полученный при измерениях результат в дальнейшем используется для анализа и сопоставления с другими результатами или является промежуточным для нахождения других величин, то необходимо указать раздельно границы систематической погрешности и среднеквадратическое отклонение случайной погрешности: .
В некоторых случаях нас может интересовать не сама измеряемая величина, а связанная с ней функциональной зависимостью. Требуется найти интервальную или точечную оценку ее истинного значения. Решается такая задача следующим образом.
Пусть и f – непрерывная дифференцируемая функция в окрестности точки .
При проведении точных измерений . Тогда
. |
(3.23) |
2.1. Погрешности измерений, их классификация
Истинное значение
физической величины
– значение физической величины, которое
идеальным образом отражало бы в
количественном и качественном отношениях
соответствующее свойство объекта.
Результат любого
измерения отличается от истинного
значения физической величины на некоторое
значение, зависящее от точности средств
и методов измерения, квалификации
оператора, условий, в которых проводилось
измерение, и т. д. Отклонение результата
измерения от истинного значения
физической величины называется
погрешностью
измерения.
Поскольку определить
истинное значение физической величины
в принципе невозможно, так как это
потребовало бы применения идеально
точного средства измерений, то на
практике вместо понятия истинного
значения физической величины применяют
понятие действительного
значения измеряемой величины,
которое настолько точно приближается
к истинному значению, что может быть
использовано вместо него. Это может
быть, например, результат измерения
физической величины образцовым средством
измерения.
Абсолютная
погрешность измерения
(Δ) – это разность между результатом
измерения х
и действительным (истинным) значением
физической величины хи:
Δ
= х –
хи.
(2.1)
Относительная
погрешность измерения
(δ) – это отношение абсолютной погрешности
к действительному (истинному) значению
измеряемой величины (часто выраженное
в процентах):
δ
= (Δ / хи)·100 %
(2.2)
Приведенная
погрешность (γ)
– это выраженное в процентах отношение
абсолютной погрешности к нормирующему
значению ХN
– условно принятому значению физической
величины, постоянному во всем диапазоне
измерений:
γ =
(Δ /ХN)·100 %
(2.3)
Для приборов с
нулевой отметкой на краю шкалы нормирующее
значение ХN
равно конечному значению диапазона
измерений. Для приборов с двухсторонней
шкалой, т. е. с отметками шкалы,
расположенными по обе стороны от нуля
значение ХN
равно арифметической сумме модулей
конечных значений диапазона измерения.
Погрешность
измерения (результирующая
погрешность)
является суммой двух составляющих:
систематической
и случайной
погрешностей.
Систематическая
погрешность
– это составляющая погрешности измерения,
остающаяся постоянной или закономерно
изменяющаяся при повторных измерениях
одной и той же величины. Причинами
появления систематической погрешности
могут являться неисправности средств
измерений, несовершенство метода
измерений, неправильная установка
измерительных приборов, отступление
от нормальных условий их работы,
особенности самого оператора.
Систематические погрешности в принципе
могут быть выявлены и устранены. Для
этого требуется проведение тщательного
анализа возможных источников погрешностей
в каждом конкретном случае.
Систематические
погрешности подразделяются на:
-
методические;
-
инструментальные;
-
субъективные.
Методические
погрешности
происходят от несовершенства метода
измерения, использования упрощающих
предположений и допущений при выводе
применяемых формул, влияния измерительного
прибора на объект измерения. Например,
измерение температуры с помощью термопары
может содержать методическую погрешность,
вызванную нарушением температурного
режима объекта измерения вследствие
внесения термопары.
Инструментальные
погрешности
зависят от погрешностей применяемых
средств измерения. Неточность градуировки,
конструктивные несовершенства, изменения
характеристик прибора в процессе
эксплуатации и т. д. являются причинами
основных погрешностей инструмента
измерения.
Субъективные
погрешности
вызываются неправильными отсчетами
показаний прибора человеком (оператором).
Например, погрешность от параллакса,
вызванная неправильным направлением
взгляда при наблюдении за показаниями
стрелочного прибора. Использование
цифровых приборов и автоматических
методов измерения позволяет исключить
такого рода погрешности.
Во многих случаях
систематическую погрешность в целом
можно представить как сумму двух
составляющих: аддитивной
(∆а)
и
мультипликативной
(∆м).
Если реальная
характеристика средства измерения
смещена относительно номинальной так,
что при всех значениях преобразуемой
величины Х
выходная величина Y
оказывается больше (или меньше) на одну
и ту же величину Δ, то такая погрешность
называется аддитивной
погрешностью нуля (рис.
2.1).
Мультипликативная
погрешность
– это погрешность чувствительности
средства измерения.
Такой подход
позволяет легко скомпенсировать влияние
систематической погрешности на результат
измерения путем введения раздельных
поправочных коэффициентов для каждой
из этих двух составляющих.
Рис.
2.1. К пояснению понятий аддитивной
и
мультипликативной погрешностей
Случайная
погрешность (∆с)
– это составляющая погрешности измерения,
изменяющаяся случайным образом при
повторных измерениях одной и той же
величины. Наличие случайных погрешностей
выявляется при проведении ряда измерений
постоянной физической величины, когда
оказывается, что результаты измерений
не совпадают друг с другом. Часто
случайные погрешности возникают из-за
одновременного действия многих
независимых причин, каждая из которых
в отдельности слабо влияет на результат
измерения.
Во многих случаях
влияние случайных погрешностей можно
уменьшить путем выполнения многократных
измерений с последующей статистической
обработкой полученных результатов.
В некоторых случаях
оказывается, что результат одного
измерения резко отличается от результатов
других измерений, выполненных при тех
же контролируемых условиях. В этом
случае говорят о грубой погрешности
(промахе измерения). Причиной могут
послужить ошибка оператора, возникновение
сильной кратковременной помехи, толчок,
нарушение электрического контакта и
т. д. Такой результат, содержащий
грубую
погрешность
необходимо выявить, исключить и не
учитывать при дальнейшей статистической
обработке результатов измерений.
Причины
возникновения погрешностей измерений
Имеется ряд
слагаемых погрешностей, которые являются
доминирующими в общей погрешности
измерений. К ним относятся:
-
Погрешности,
зависящие от средств измерений.
Нормируемую допустимую погрешность
средства измерения следует рассматривать
как погрешность измерения при одном
из возможных вариантов использования
этого средства
измерения. -
Погрешности,
зависящие от установочных мер.
Установочные меры могут быть универсальными
(концевые меры) и специальными
(изготовленными по виду измеряемой
детали). Погрешность измерения будет
меньшее, если установочная мера будет
максимально подобна измеряемой детали
о конструкции, массе, материалу, его
физическим свойствам, способу базирования
и т. д. Погрешности от концевых мер длины
возникают из-за погрешности изготовления
или погрешности аттестации, а также
из-за погрешности их притирки. -
Погрешности,
зависящие от измерительного усилия.
При оценке влияния измерительного
усилия на погрешность измерения
необходимо выделить упругие деформации
установочного узла и деформации в зоне
контакта измерительного наконечника
с деталью. -
Погрешности,
происходящие от температурных деформаций.
Погрешности возникают из-за разности
температур объекта измерения и
измерительного средства. Существует
два основных источника, обуславливающих
погрешность от температурных деформаций:
отклонение температуры воздуха от
20 °С и кратковременные колебания
температуры воздуха в процессе измерения. -
Погрешности,
зависящие от оператора
(субъективные погрешности). Возможны
четыре вида субъективных погрешностей:
-
погрешность
отсчитывания
(особенно важна, когда обеспечивается
погрешность измерения, не превышающая
цену деления); -
погрешность
присутствия
(проявляется в виде влияния теплоизлучения
оператора на температуру окружающей
среды, а тем самым и на измерительное
средство); -
погрешность
действия
(вносится оператором при настройке
прибора); -
профессиональные
погрешности
(связаны с квалификацией оператора, с
отношением его к процессу измерения).
-
Погрешности при
отклонениях от правильной геометрической
формы. -
Дополнительные
погрешности при измерении внутренних
размеров.
При характеристике
погрешностей средств измерений часто
пользуются
понятием
предела допускаемой погрешности средств
измерений.
Предел допускаемой
погрешности средства измерений
– это наибольшая, без учета знака,
погрешность средства измерений, при
котором оно может быть признано и
допущено к применению. Определение
применимо к основной и дополнительной
погрешности средств измерений.
Учет всех нормируемых
метрологических характеристик средств
измерений является сложной и трудоемкой
процедурой. На практике такая точность
не нужна. Поэтому для средств измерений,
используемых в повседневной практике,
принято деление на классы
точности,
которые дают их обобщенную метрологическую
характеристику.
Требования к
метрологическим характеристикам
устанавливаются в стандартах на средства
измерений конкретного типа.
Классы точности
присваиваются средствам измерений с
учетом результатов государственных
приемочных испытаний.
Класс точности
средства измерений
– обобщенная характеристика средства
измерений, определяемая пределами
допускаемых основных и дополнительных
погрешностей. Класс точности может
выражаться одним числом или дробью
(если аддитивная и мультипликативная
погрешности сопоставимы – например,
0,2/0,05 – адд./мульт.).
Обозначения классов
точности наносятся на циферблаты, щитки
и корпуса средств измерений, приводятся
в нормативно-технических документах.
Классы точности могут обозначаться
буквами (например, М, С и т. д.) или
римскими цифрами (I,
II,
III
и т. д.). Обозначение классов точности
по ГОСТу 8.401-80 может сопровождаться
дополнительными условными знаками:
-
0,5;
1,6; 2,5 и т. д. – для приборов, приведенная
погрешность которых составляет 0,5; 1,6;
2,5 % от нормирующего значения XN.
При этом XN
принимается равным большему из модулей
пределов измерений, если нулевое
значение входного (выходного) сигнала
находится на краю или вне диапазона
измерений;
-
0,1,
0,4, 1,0 и т. д. – для приборов, у которых
относительная
погрешность
составляет 0,1; 0,4; 1,0 % непосредственно
от полученного значения измеряемой
величины x; -
0,02/0,01 – для
приборов, у которых измеряемая величина
не может отличаться от значения x,
показанного указателем, больше, чем на
[С+d(|XN/x|-1)]%,
где C
и d
– числитель и знаменатель соответственно
в обозначении класса точности; XN
– больший
(по модулю) из пределов измерений
прибора.
Примеры обозначения
классов точности приведены на рис. 2.2.
Рис.
2.2. Лицевые панели приборов:
а
– вольтметра
класса точности 0,5; б
– амперметра
класса точности 1,5;
в
– амперметра
класса точности 0,02/0,01;
г
– мегомметра класса точности 2,5 с
неравномерной шкалой
Метрологическая
надежность средств измерения
В процессе
эксплуатации любого средства измерения
может возникнуть неисправность или
поломка, называемые отказом.
Метрологическая
надежность
средств
измерения
– это свойство средств измерений
сохранять установленные значения
метрологических характеристик в течение
определенного времени при нормальных
режимах и рабочих условиях эксплуатации.
Она характеризуется интенсивностью
отказов, вероятностью безотказной
работы и наработкой на отказ.
Интенсивность
отказов
определяется выражением:
,
(2.1)
где
L
– число отказов; N
– число однотипных элементов; ∆t
– промежуток времени.
Для средств
измерения, состоящего из
n
типов элементов, интенсивность
отказов
рассчитывается как
(2.2)
где
mi
–
количество элементов i-го
типа.
Вероятность
безотказной работы:
(2.3)
Наработка на
отказ:
(2.4)
Для внезапного
отказа, интенсивность отказов которого
не зависит от времени работы средства
измерения:
(2.5)
Межповерочный
интервал, в
течение которого обеспечивается заданная
вероятность безотказной работы,
определяется по формуле:
,
(2.6)
где
Pмо
– вероятность метрологического отказа
за время между поверками; P(t)
– вероятность безотказной работы.
В процессе
эксплуатации может производиться
корректировка межповерочного интервала.
Поверка средств
измерения
В основе обеспечения
единообразия средств измерений лежит
система передачи размера единицы
измеряемой величины. Технической формой
надзора за единообразием средств
измерений является государственная
(ведомственная) поверка средств измерений,
устанавливающая их метрологическую
исправность.
Поверка
– определение метрологическим органом
погрешностей средства измерений и
установление его пригодности к применению.
Пригодным к
применению в течение определенного
межповерочного
интервала
времени признают те СИ, поверка которых
подтверждает их соответствие
метрологическим и техническим требованиям
к данному СИ.
Средства измерений
подвергают первичной, периодической,
внеочередной, инспекционной и экспертной
поверкам.
Первичной поверке
подвергаются
СИ при выпуске из производства или
ремонта, а также СИ, поступающие по
импорту.
Периодической
поверке подлежат
СИ, находящиеся в эксплуатации или на
хранении через определенные межповерочные
интервалы, установленные с расчетом
обеспечения пригодности к применению
СИ на период между поверками.
Инспекционную
поверку производят
для выявления пригодности к применению
СИ при осуществлении госнадзора и
ведомственного метрологического
контроля за состоянием и применением
СИ.
Экспертную
поверку выполняют
при возникновении спорных вопросов по
метрологическим характеристикам (MX),
исправности СИ и пригодности их к
применению.
Достоверная
передача размера единиц во всех звеньях
метрологической цепи от эталонов или
от исходного образцового средства
измерений к рабочим средствам измерений
производится в определенном порядке,
приведенном в поверочных схемах.
Поверочная схема
– это утвержденный в установленном
порядке документ, регламентирующий
средства, методы и точность передачи
размера единицы физической величины
от государственного эталона или исходного
образцового средства измерений рабочим
средствам.
Различают
государственные, ведомственные и
локальные поверочные схемы органов
государственной или ведомственных
метрологических служб.
Государственная
поверочная схема
распространяется на все средства
измерений данной ФВ, имеющиеся в стране.
Устанавливая многоступенчатый порядок
передачи размера единицы ФВ от
государственного эталона, требования
к средствам и методам поверки,
государственная поверочная схема
представляет собой структуру
метрологического обеспечения определённого
вида измерений в стране. Эти схемы
разрабатываются главными центрами
эталонов и оформляются одним ГОСТом
ГСИ.
Локальные
поверочные схемы
распространяются на средства измерений,
подлежащие поверке в данном метрологическом
подразделении на предприятии, имеющем
право поверки средств измерений, и
оформляются в виде стандарта предприятия.
Ведомственные и локальные поверочные
схемы не должны противоречить
государственным и должны учитывать их
требования применительно к специфике
конкретного предприятия.
Ведомственная
поверочная схема
разрабатывается органом ведомственной
метрологической службы, согласовывается
с главным центром эталонов – разработчиком
государственной поверочной схемы
средств измерений данной ФВ и
распространяется только на средства
измерений, подлежащие внутриведомственной
поверке.
Поверочная схема
устанавливает передачу размера единиц
одной или нескольких взаимосвязанных
величин. Она должна включать не менее
двух ступеней передачи размера. Поверочную
схему для СИ одной и той же величины,
существенно отличающихся по диапазонам
измерений, условиям применения и методам
поверки, а также для СИ нескольких ФВ
допускается подразделять на части. На
чертежах поверочной схемы должны быть
указаны:
-
наименования СИ
и методов поверки; -
номинальные
значения ФВ или их диапазоны; -
допускаемые
значения погрешностей СИ; -
допускаемые
значения погрешностей методов поверки.
Правила расчета параметров поверочных
схем и оформления чертежей поверочных
схем приведены в ГОСТ 8.061-80 «ГСИ.
Поверочные схемы. Содержание и построение»
и в рекомендациях МИ 83-76 «Методика
определения параметров поверочных
схем».
Калибровка
средств измерения
Калибровка
средства измерений
– это
совокупность операций, выполняемых
калибровочной лабораторией с целью
определения и подтверждения действительных
значений метрологических характеристик
и (или) пригодности средства измерений
к применению в сферах, не подлежащих
государственному метрологическому
контролю и надзору в соответствии с
установленными требованиями.
Результаты
калибровки средств измерений удостоверяются
калибровочным
знаком,
наносимым на средства измерений, или
сертификатом
о калибровке,
а также записью
в эксплуатационных документах.
Поверку (обязательная
госповерка) может выполнять, как правило,
орган государственной метрологической
службы, а калибровку –
любая
аккредитованная и неаккредитованная
организация.
Поверка обязательна
для средств измерений, применяемых в
сферах, подлежащих государственному
метрологическому контролю (ГМК),
калибровка же –
процедура
добровольная, поскольку относится к
средствам измерений, не подлежащим ГМК.
Предприятие вправе самостоятельно
решать вопрос о выборе форм и режимов
контроля состояния средств измерений,
за исключением тех областей применения
средств измерений, за которыми государства
всего мира устанавливают свой контроль
– это
здравоохранение, безопасность труда,
экология и др.
Освободившись от
государственного контроля, предприятия
попадают под не менее жёсткий контроль
рынка. Это означает, что свобода выбора
предприятия по «метрологическому
поведению» является относительной, все
равно необходимо соблюдать метрологические
правила.
В развитых странах
устанавливает и контролирует исполнение
этих правил негосударственная организация,
именуемая «национальной калибровочной
службой». Эта служба берёт на себя
функции регулирования и разрешения
вопросов, связанных со средствами
измерений, не подпадающими под контроль
государственных метрологических служб.
Желание иметь
конкурентоспособную продукцию побуждает
предприятия иметь измерительные
средства, дающие достоверные результаты.
Внедрение системы
сертификации продукции дополнительно
стимулирует поддержание измерительных
средств на соответствующем уровне. Это
согласуется с требованиями систем
качества, регламентируемыми стандартами
ИСО серии 9000.
Построение
Российской системы калибровки (РСК)
основывается на следующих принципах:
-
добровольность
вступления; -
обязательность
получения размеров единиц от
государственных эталонов; -
профессионализм
и компетентность персонала; -
самоокупаемость
и самофинансирование.
Основное звено
РСК –
калибровочная
лаборатория. Она представляет собой
самостоятельное предприятие или
подразделение в составе метрологической
службы предприятия, которое может
осуществлять калибровку средств
измерений для собственных нужд или для
сторонних организаций. Если калибровка
проводится для сторонних организаций,
то калибровочная лаборатория должна
быть аккредитована органом РСК.
Аккредитацию осуществляют государственные
научные метрологические центры или
органы Государственной метрологической
службы в соответствии со своей компетенцией
и требованиями, установленными в ГОСТе
51000.2-95 «Общие требования к аккредитующему
органу».
Порядок аккредитации
метрологической службы утвержден
постановлением Госстандарта РФ от 28
декабря 1995 г. № 95 «Порядок аккредитации
метрологических служб юридических лиц
на право проведения калибровочных
работ».
Методы поверки
(калибровки) средств измерения
Допускается
применение четырех методов
поверки
(калибровки) средств измерений:
-
непосредственное
сличение с эталоном; -
сличение с помощью
компаратора; -
прямые измерения
величины; -
косвенные измерения
величины.
Метод
непосредственного сличения
поверяемого (калибруемого) средства
измерения с эталоном соответствующего
разряда широко применяется для различных
средств измерений в таких областях, как
электрические и магнитные измерения,
для определения напряжения, частоты и
силы тока. В основе метода лежит проведение
одновременных измерений одной и той же
физической величины поверяемым
(калибруемым) и эталонным приборами.
При этом определяют погрешность как
разницу показаний поверяемого и
эталонного средств измерений, принимая
показания эталона за действительное
значение величины. Достоинства этого
метода в его простоте, наглядности,
возможности применения автоматической
поверки (калибровки), отсутствии
потребности в сложном оборудовании.
Метод сличения
с помощью компаратора
основан на использовании прибора
сравнения, с помощью которого сличаются
поверяемое (калибруемое) и эталонное
средства измерения. Потребность в
компараторе возникает при невозможности
сравнения показаний приборов, измеряющих
одну и ту же величину, например, двух
вольтметров, один из которых пригоден
для постоянного тока, а другой –
переменного.
В подобных ситуациях в схему поверки
(калибровки) вводится промежуточное
звено –
компаратор.
Для приведенного примера потребуется
потенциометр, который и будет компаратором.
На практике компаратором может служить
любое средство измерения, если оно
одинаково реагирует на сигналы как
поверяемого (калибруемого), так и
эталонного измерительного прибора.
Достоинством данного метода специалисты
считают последовательное во времени
сравнение двух величин.
Метод прямых
измерений
применяется, когда имеется возможность
сличить испытуемый прибор с эталонным
в определенных пределах измерений. В
целом этот метод аналогичен методу
непосредственного сличения, но методом
прямых измерений производится сличение
на всех числовых отметках каждого
диапазона (и поддиапазонов, если они
имеются в приборе). Метод прямых измерений
применяют, например, для поверки или
калибровки вольтметров постоянного
электрического тока.
Метод косвенных
измерений
используется, когда действительные
значения измеряемых величин невозможно
определить прямыми измерениями либо
когда косвенные измерения оказываются
более точными, чем прямые. Этим методом
определяют вначале не искомую
характеристику, а другие, связанные с
ней определенной зависимостью. Искомая
характеристика определяется расчетным
путем. Например, при поверке (калибровке)
вольтметра постоянного тока эталонным
амперметром устанавливают силу тока,
одновременно измеряя сопротивление.
Расчетное значение напряжения сравнивают
с показателями калибруемого (поверяемого)
вольтметра. Метод косвенных измерений
обычно применяют в установках
автоматизированной поверки (калибровки).
Погрешности измерений, представление результатов эксперимента
- Шкала измерительного прибора
- Цена деления
- Виды измерений
- Погрешность измерений, абсолютная и относительная погрешность
- Абсолютная погрешность серии измерений
- Представление результатов эксперимента
- Задачи
п.1. Шкала измерительного прибора
Шкала – это показывающая часть измерительного прибора, состоящая из упорядоченного ряда отметок со связанной с ними нумерацией. Шкала может располагаться по окружности, дуге или прямой линии.
Примеры шкал различных приборов:
п.2. Цена деления
Цена деления измерительного прибора равна числу единиц измеряемой величины между двумя ближайшими делениями шкалы. Как правило, цена деления указана на маркировке прибора.
Алгоритм определения цены деления
Шаг 1. Найти два ближайшие пронумерованные крупные деления шкалы. Пусть первое значение равно a, второе равно b, b > a.
Шаг 2. Посчитать количество мелких делений шкалы между ними. Пусть это количество равно n.
Шаг 3. Разделить разницу значений крупных делений шкалы на количество отрезков, которые образуются мелкими делениями: $$ triangle=frac{b-a}{n+1} $$ Найденное значение (triangle) и есть цена деления данного прибора.
Пример определения цены деления:
Определим цену деления основной шкалы секундомера. Два ближайших пронумерованных деления на основной шкале:a = 5 c b = 10 cМежду ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления. Цена деления: begin{gather*} triangle=frac{b-a}{n+1}\ triangle=frac{10-5}{24+1}=frac15=0,2 c end{gather*} |
п.3. Виды измерений
Вид измерений
Определение
Пример
Прямое измерение
Физическую величину измеряют с помощью прибора
Измерение длины бруска линейкой
Косвенное измерение
Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений
Определение площади столешницы при измеренной длине и ширине
п.4. Погрешность измерений, абсолютная и относительная погрешность
Погрешность измерений – это отклонение измеренного значения величины от её истинного значения.
Составляющие погрешности измерений
Причины
Инструментальная погрешность
Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)
Погрешность метода
Определяется несовершенством методов и допущениями в методике.
Погрешность теории (модели)
Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.
Погрешность оператора
Определяется субъективным фактором, ошибками экспериментатора.
Инструментальная погрешность измерений принимается равной половине цены деления прибора: $$ d=frac{triangle}{2} $$
Если величина (a_0) — это истинное значение, а (triangle a) — погрешность измерения, результат измерений физической величины записывают в виде (a=a_0pmtriangle a).
Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины: $$ triangle a=|a-a_0| $$
Отношение абсолютной погрешности измерения к истинному значению, выраженное в процентах, называют относительной погрешностью измерения: $$ delta=frac{triangle a}{a_0}cdot 100text{%} $$
Относительная погрешность является мерой точности измерения: чем меньше относительная погрешность, тем измерение точнее. По абсолютной погрешности о точности измерения судить нельзя.
На практике абсолютную и относительную погрешности округляют до двух значащих цифр с избытком, т.е. всегда в сторону увеличения.
Значащие цифры – это все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.
Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.
В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:
- определение длины с помощью линейки или мерной ленты;
- определение объема с помощью мензурки.
Пример получения результатов прямых измерений с помощью линейки:
Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями. Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{1+1}=0,5 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,5}{2}=0,25 text{см} end{gather*} Истинное значение: (L_0=4 text{см}) Результат измерений: $$ L=L_0pm d=(4,00pm 0,25) text{см} $$ Относительная погрешность: $$ delta=frac{0,25}{4,00}cdot 100text{%}=6,25text{%}approx 6,3text{%} $$ |
|
Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями. Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{9+1}=0,1 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,1}{2}=0,05 text{см} end{gather*} Истинное значение: (L_0=4,15 text{см}) Результат измерений: $$ L=L_0pm d=(4,15pm 0,05) text{см} $$ Относительная погрешность: $$ delta=frac{0,05}{4,15}cdot 100text{%}approx 1,2text{%} $$ |
Второе измерение точнее, т.к. его относительная погрешность меньше.
п.5. Абсолютная погрешность серии измерений
Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).
Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.
Алгоритм определения истинного значения и абсолютной погрешности в серии измерений
Шаг 1. Проводим серию из (N) измерений, в каждом из которых получаем значение величины (x_1,x_2,…,x_N)
Шаг 2. Истинное значение величины принимаем равным среднему арифметическому всех измерений: $$ x_0=x_{cp}=frac{x_1+x_2+…+x_N}{N} $$ Шаг 3. Находим абсолютные отклонения от истинного значения для каждого измерения: $$ triangle_1=|x_0-x_1|, triangle_2=|x_0-x_2|, …, triangle_N=|x_0-x_N| $$ Шаг 4. Находим среднее арифметическое всех абсолютных отклонений: $$ triangle_{cp}=frac{triangle_1+triangle_2+…+triangle_N}{N} $$ Шаг 5. Сравниваем полученную величину (triangle_{cp}) c инструментальной погрешностью прибора d (половина цены деления). Большую из этих двух величин принимаем за абсолютную погрешность: $$ triangle x=maxleft{triangle_{cp}; dright} $$ Шаг 6. Записываем результат серии измерений: (x=x_0pmtriangle x).
Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.
Составим расчетную таблицу:
№ опыта | 1 | 2 | 3 | Сумма |
Масса, г | 99,8 | 101,2 | 100,3 | 301,3 |
Абсолютное отклонение, г | 0,6 | 0,8 | 0,1 | 1,5 |
Сначала находим среднее значение всех измерений: begin{gather*} m_0=frac{99,8+101,2+100,3}{3}=frac{301,3}{3}approx 100,4 text{г} end{gather*} Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности (m_0) и измерения. begin{gather*} triangle_1=|100,4-99,8|=0,6\ triangle_2=|100,4-101,2|=0,8\ triangle_3=|100,4-100,3|=0,1 end{gather*} Находим среднее абсолютное отклонение: begin{gather*} triangle_{cp}=frac{0,6+0,8+0,1}{3}=frac{1,5}{3}=0,5 text{(г)} end{gather*} Мы видим, что полученное значение (triangle_{cp}) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: begin{gather*} triangle m=maxleft{triangle_{cp}; dright}=maxleft{0,5; 0,05right} text{(г)} end{gather*} Записываем результат: begin{gather*} m=m_0pmtriangle m\ m=(100,4pm 0,5) text{(г)} end{gather*} Относительная погрешность (с двумя значащими цифрами): begin{gather*} delta_m=frac{0,5}{100,4}cdot 100text{%}approx 0,050text{%} end{gather*}
п.6. Представление результатов эксперимента
Результат измерения представляется в виде $$ a=a_0pmtriangle a $$ где (a_0) – истинное значение, (triangle a) – абсолютная погрешность измерения.
Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.
Погрешность суммы и разности
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, то
- абсолютная погрешность их суммы равна сумме абсолютных погрешностей
$$ triangle (a+b)=triangle a+triangle b $$
- абсолютная погрешность их разности также равна сумме абсолютных погрешностей
$$ triangle (a-b)=triangle a+triangle b $$
Погрешность произведения и частного
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, с относительными погрешностями (delta_a=frac{triangle a}{a_0}cdot 100text{%}) и (delta_b=frac{triangle b}{b_0}cdot 100text{%}) соответственно, то:
- относительная погрешность их произведения равна сумме относительных погрешностей
$$ delta_{acdot b}=delta_a+delta_b $$
- относительная погрешность их частного также равна сумме относительных погрешностей
$$ delta_{a/b}=delta_a+delta_b $$
Погрешность степени
Если (a=a_0+triangle a) результат прямого измерения, с относительной погрешностью (delta_a=frac{triangle a}{a_0}cdot 100text{%}), то:
- относительная погрешность квадрата (a^2) равна удвоенной относительной погрешности
$$ delta_{a^2}=2delta_a $$
- относительная погрешность куба (a^3) равна утроенной относительной погрешности
$$ delta_{a^3}=3delta_a $$
- относительная погрешность произвольной натуральной степени (a^n) равна
$$ delta_{a^n}=ndelta_a $$
Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.
п.7. Задачи
Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?
Составим таблицу для расчета цены деления:
№ мензурки | a, мл | b, мл | n | (triangle=frac{b-a}{n+1}), мл |
1 | 20 | 40 | 4 | (frac{40-20}{4+1}=4) |
2 | 100 | 200 | 4 | (frac{200-100}{4+1}=20) |
3 | 15 | 30 | 4 | (frac{30-15}{4+1}=3) |
4 | 200 | 400 | 4 | (frac{400-200}{4+1}=40) |
Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):
№ мензурки | Объем (V_0), мл | Абсолютная погрешность (triangle V=frac{triangle}{2}), мл |
Относительная погрешность (delta_V=frac{triangle V}{V_0}cdot 100text{%}) |
1 | 68 | 2 | 3,0% |
2 | 280 | 10 | 3,6% |
3 | 27 | 1,5 | 5,6% |
4 | 480 | 20 | 4,2% |
Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.
Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка
Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0pm 0,1) text{м}, x_2=(4,0pm 0,03) text{м} $$ Какое из этих измерений точней и почему?
Мерой точности является относительная погрешность измерений. Получаем: begin{gather*} delta_1=frac{0,1}{4,0}cdot 100text{%}=2,5text{%}\ delta_2=frac{0,03}{4,0}cdot 100text{%}=0,75text{%} end{gather*} Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: (delta_2lt delta_1), второе измерение точней.
Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.
Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ triangle v_1=frac{10}{2}=5 (text{км/ч}), triangle v_2=frac{1}{2}=0,5 (text{км/ч}) $$ Показания каждого из спидометров: $$ v_1=(54pm 5) text{км/ч}, v_2=(72pm 0,5) text{км/ч} $$ Скорость сближения равна сумме скоростей: $$ v_0=v_{10}+v_{20}, v_0=54+72=125 text{км/ч} $$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ triangle v=triangle v_1+triangle v_2, triangle v=5+0,5=5,5 text{км/ч} $$ Скорость сближения с учетом погрешности равна: $$ v=(126,0pm 5,5) text{км/ч} $$ Относительная погрешность: $$ delta_v=frac{5,5}{126,0}cdot 100text{%}approx 4,4text{%} $$ Ответ: (v=(126,0pm 5,5) text{км/ч}, delta_vapprox 4,4text{%})
Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.
Инструментальная погрешность линейки (d=frac{0,1}{2}=0,05 text{см})
Результаты прямых измерений длины и ширины: $$ a=(90,20pm 0,05) text{см}, b=(60,10pm 0,05) text{см} $$ Относительные погрешности (не забываем про правила округления): begin{gather*} delta_1=frac{0,05}{90,20}cdot 100text{%}approx 0,0554text{%}approx uparrow 0,056text{%}\ delta_2=frac{0,05}{60,10}cdot 100text{%}approx 0,0832text{%}approx uparrow 0,084text{%} end{gather*} Площадь столешницы: $$ S=ab, S=90,2cdot 60,1 = 5421,01 text{см}^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ delta_S=delta_a+delta_b=0,056text{%}+0,084text{%}=0,140text{%}=0,14text{%} $$ Абсолютная погрешность: begin{gather*} triangle S=Scdot delta_S=5421,01cdot 0,0014=7,59approx 7,6 text{см}^2\ S=(5421,0pm 7,6) text{см}^2 end{gather*} Ответ: (S=(5421,0pm 7,6) text{см}^2, delta_Sapprox 0,14text{%})
Погре́шность измере́ния — оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.
Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в БСЭ, термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).
В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».
Содержание
- 1 Определение погрешности
- 2 Классификация погрешностей
- 2.1 По форме представления
- 2.2 По причине возникновения
- 2.3 По характеру проявления
- 2.4 По способу измерения
- 3 См. также
- 4 Литература
Определение погрешности
В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.
- Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
- Средняя квадратическая погрешность:
- Средняя квадратическая погрешность среднего арифметического:
Классификация погрешностей
По форме представления
- Абсолютная погрешность — ΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины Xmeas. При этом равенство:
ΔX = | Xtrue − Xmeas | ,
где Xtrue — истинное значение, а Xmeas — измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.
- Относительная погрешность — отношение абсолютной погрешности к тому значению, которое принимается за истинное:
.
Относительная погрешность является безразмерной величиной, либо измеряется в процентах.
- Приведенная погрешность — относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле
,
где Xn — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:
— если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений;
— если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.
Приведенная погрешность — безразмерная величина (может измеряться в процентах).
По причине возникновения
- Инструментальные / приборные погрешности — погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
- Методические погрешности — погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
- Субъективные / операторные / личные погрешности — погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.
В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.
Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.
Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведенных основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где n = 1; 0; -1; -2 и т.д.
По характеру проявления
- Случайная погрешность — погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т.п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).
- Систематическая погрешность — погрешность, изменяющаяся во времени по определенному закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т.п.), неучтёнными экспериментатором.
- Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
- Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора, если произошло замыкание в электрической цепи).
По способу измерения
- Погрешность прямых измерений
- Погрешность косвенных измерений — погрешность вычисляемой (не измеряемой непосредственно) величины:
Если F = F(x1,x2…xn), где xi — непосредственно измеряемые независимые величины, имеющие погрешность Δxi, тогда:
См. также
- Измерение физических величин
- Класс точности
- Метрология
- Система автоматизированного сбора данных со счетчиков по радиоканалу
- Методы электроаналитической химии
Литература
- Назаров Н. Г. Метрология. Основные понятия и математические модели. М.: Высшая школа, 2002. 348 с.
- Лабораторные занятия по физике. Учебное пособие/Гольдин Л. Л., Игошин Ф. Ф., Козел С. М. и др.; под ред. Гольдина Л. Л. — М.: Наука. Главная редакция физико-математичекой литературы, 1983. — 704 с.
Wikimedia Foundation.
2010.
Погрешности измерений и их
классификация .
При
измерении физических величии с помощью даже самых точных и совершенных средств
и методов их результат всегда отличается от истинного
значения измеряемой физической величины, т.е. определяется с некоторой
погрешностью. Источниками погрешностей измерения являются следующие
причины: несовершенство используемых методов и средств измерений,
нестабильность измеряемых физических величин, непостоянство климатических
условий, внешние и внутренние помехи, а также различные субъективные факторы
экспериментатора.
Определение
«погрешность» является одним из центральных в метрологии, в котором
используются понятия «погрешность результата измерения» и «погрешность
средства измерения».
Погрешностью результата измерения (погрешностью измерения) называется отклонение
результата измерения от истинного значения измеряемой физической величины. Так
как истинное значение измеряемой величины неизвестно, то при количественной
оценке погрешности пользуются действительным значением физической
величины.
Это
значение находится экспериментальным путем и настолько близко к истинному
значению, что для поставленной измерительной задачи может быть использовано
вместо него.
Погрешность средства измерения (СИ) — разность между показаниями СИ
и истинным (действительным) значением измеряемой физической величины. Она
характеризует точность результатов измерений, проводимых данным средством
Существует пять основных
признаков, по
которым классифицируются погрешности измерения.
По
способу количественного выражения погрешности измерения делятся на абсолютные,
относительные и приведенные.
Абсолютной погрешностью △, выражаемой в единицах
измеряемой величины, называется отклонение результата измерения х от истинного значения хн: (1.1)
и знак полученной
погрешности, но не определяет качество самого проведенного измерения.
Понятие
погрешности характеризует как бы несовершенство измерения.
Характеристикой качества измерения является используемое в метрологии понятие точности измерений, отражающее меру близости результатов измерений к истинному
значению измеряемой физической величины. Точность и погрешность связаны
обратной зависимостью. Иначе говоря, высокой точности измерений соответствует
малая погрешность. Так, например, измерение силы тока в 10 А и 100 А может быть
выполнено с идентичной абсолютной погрешностью ∆ = ±1 А. Однако качество
(точность) первого измерения ниже второго. Поэтому, чтобы иметь возможность
сравнивать качество измерений, введено понятие относительной погрешности.
Относительной погрешностью δ называется отношение
абсолютной погрешности измерения к истинному значению измеряемой величины:
(1.2)
Мерой
точности измерений служит величина,
обратная модулю относительной погрешности, т.е. 1/|δ|. Погрешность δ часто выражают в
процентах:
δ
= 100△/хн (%). Поскольку обычно △⋍хн, то относительная погрешность
может быть определена как δ ⋍ △/х или δ = 100△/х (%).
Если
измерение выполнено однократно и за
абсолютную погрешность результата измерения △ принята разность между
показанием прибора и истинным значением измеряемой величины хН то из соотношения (1.2)
следует, что значение относительной погрешности δ уменьшается с ростом величины
хн (здесь предполагается
независимость △ от хн). Поэтому для измерений
целесообразно выбирать такой прибор, показания которого были бы в последней
части его шкалы (диапазона измерений), а для сравнения различных приборов
использовать понятие приведенной погрешности.
Приведенной погрешностью δпр, выражающей
потенциальную точность измерений, называется отношение абсолютной погрешности △ к некоторому нормирующему
значению XN (например, к конечному
значению шкалы прибора или сумме конечных значений шкал при двусторонней шкале).
По
характеру (закономерности) изменения погрешности измерений подразделяются на
систематические, случайные и грубые (промахи).
Систематические погрешности △с — составляющие погрешности измерений,
остающиеся постоянными или закономерно изменяющиеся , при многократных (повторных)
измерениях одной и той же величины в одних и тех же условиях. Такие погрешности
могут быть выявлены путем детального анализа возможных их источников и
уменьшены (применением более точных приборов, калибровкой приборов с помощью
рабочих мер и пр.). Однако полностью их устранить нельзя.
По
характеру изменения во времени систематические погрешности подразделяются на постоянные (сохраняющие величину и
знак), прогрессирующие (возрастающие или убывающие во времени), периодические, а также изменяющиеся во
времени по сложному непериодическому закону. Основные из этих погрешностей —
прогрессирующие.
Прогрессирующая (дрейфовая) погрешность — это непредсказуемая погрешность,
медленно меняющаяся во времени. Прогрессирующие погрешности характеризуются
следующими особенностями:
•
возможна
их коррекция поправками только в данный момент времени, а далее эти погрешности
вновь непредсказуемо изменяются;
•
изменения
прогрессирующих погрешностей во времени представляют собой нестационарный
случайный процесс (характеристики которого изменяются во времени), и поэтому в
рамках достаточно полно разработанной теории стационарных случайных процессов
они могут быть описаны лишь с некоторыми ограничениями.
Случайные погрешности
— составляющие погрешности измерений, изменяющиеся случайным образом при
повторных (многократных) измерениях одной и той же величины в одних и тех же
условиях. В появлении таких погрешностей нет каких-либо закономерностей, они
проявляются при повторных измерениях одной и той же величины в виде некоторого
разброса получаемых результатов. Практически случайные погрешности неизбежны,
неустранимы и всегда имеют место в результатах измерений. Описание случайных
погрешностей возможно только на основе теории случайных процессов и
математической статистики. В отличие от систематических случайные погрешности
нельзя исключить из результатов измерений путем введения поправки, однако их
можно существенно уменьшить путем многократного измерения этой величины и
последующей статистической обработкой полученных результатов.
Грубые погрешности (промахи) —
погрешности, существенно превышающие ожидаемые при данных условиях измерения.
Такие погрешности возникают из-за ошибок оператора или неучтенных внешних
воздействий. Их выявляют при обработке результатов измерений и исключают из рассмотрения,
пользуясь определенными правилами.
По причинам возникновения погрешности измерения подразделяются
на методические, инструментальные, внешние и субъективные.
Методические
погрешности возникают обычно из-за
несовершенства метода измерений, использования неверных теоретических
предпосылок (допущений) при измерениях, а также из-за влияния выбранного
средства измерения на измеряемые физические величины. При подключении
электроизмерительного прибора от источника сигнала потребляется некоторая
мощность. Это приводит к искажению режима работы источника сигнала и вызывает
погрешность метода измерения (методическую погрешность).
Так,
например, если вольтметр обладает недостаточно высоким входным сопротивлением,
то его подключение к исследуемой схеме способно изменить в ней распределение
токов и напряжений. При этом результат измерения может существенно отличаться
от действительного. Для расчета методической погрешности при измерении токов и
напряжений необходимо знать внутренние сопротивления амперметров RA
и вольтметров Rv. Методическую
погрешность можно уменьшить путем применения более точного метода измерения.
Инструментальные
(аппаратурные, приборные) погрешности
возникают из-за несовершенства средств измерения» т.е. из-за погрешностей
средств измерений. Источниками инструментальных погрешностей могут быть,
например, неточная градуировка прибора и смещение нуля, вариация показаний
прибора в процессе эксплуатации и т.д. Уменьшают инструментальные погрешности
применением более точного прибора.
Внешняя
погрешность — важная составляющая погрешности
измерения, связанная с отклонением одной или
нескольких влияющих величин от нормальных значений или выходом их за пределы нормальной области (например,
влияние влажности, температуры, внешних электрических и
магнитных полей, нестабильности источников питания, механических воздействий и
т.д.). В большинстве случаев внешние погрешности являются систематическими и
определяются дополнительными погрешностями применяемых средств измерений. .
Субъективные
погрешности вызываются ошибками оператора при отсчете
показаний средств измерения (погрешности от небрежности и невнимания
оператора, от параллакса, т.е. от неправильного направления взгляда при отсчете
показаний стрелочного прибора и пр.). Подобные погрешности устраняются
применением современных цифровых приборов или автоматических методов
измерения.
По характеру поведения измеряемой физической величины в процессе
измерений различают статические и динамические погрешности.
Статические
погрешности возникают при измерении
установившегося значения измеряемой величины, т.е. когда эта величина
перестает изменяться во времени.
Динамические
погрешности имеют место при динамических
измерениях, когда измеряемая величина
изменяется во времени и требуется установить закон ее изменения. Причина
появления динамических погрешностей состоит в несоответствии скоростных
(временных) характеристик прибора и скорости изменения измеряемой величины.
Средства измерений
могут применяться в нормальных и рабочих условиях.
Эти
условия для
конкретных видов СИ (средств измерения) установлены в
стандартах или технических условиях.
Нормальным
условиям применения средств измерений должен
удовлетворять ряд следующих (основных) требований:
температура
окружающего воздуха (20±5) °С;
относительная
влажность (65±15) %;
атмосферное
давление (100±4) кПа;
напряжение
питающей сети (220±4) В и (115±2,5) В;
частота
сети (50±1) Гц и (400±12) Гц.
Как
следует из перечисленных требований, нормальные условия применения СИ
характеризуются диапазоном значений влияющих на них величин типа климатических
факторов и параметров электропитания.
Рабочие
условия применения СИ определяются диапазоном
значений влияющих величин не только климатического характера и параметров
электропитания, но и типа механических воздействий. В частности, диапазон климатических
воздействий делится на ряд групп, охватывающих широкий диапазон изменения
окружающей температуры.