Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:
Скачиваний:
145
Добавлен:
04.06.2015
Размер:
1.84 Mб
Скачать
ЭЛЕМЕНТЫ ТЕОРИИ ОШИБОК ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ
Ошибки и их виды
Измерения в геодезии рассматриваются с двух точек зрения: количественной, выражающей числовое значение измеренной величины, и качественной, характеризующей ее точность.
Из практики известно, что даже при самой тщательной и аккуратной работе многократные (повторные) измерения не дают одинаковых результатов. Это указывает на то, что получаемые результаты не являются точным значением измеряемой величины, а несколько отклоняются от него. Значение отклонения характеризует точность измерений.
На практике не следует производить достижимой точностью, так как повышение удорожанию измерительных работ, поэтому соответствовать поставленной задаче.
измерения с наибольшей точности измерений ведет к точность измерений должна
2
Изучением основных свойств и закономерностей действия погрешностей измерений, разработкой методов получения наиболее точного
значения измеряемой величины и характеристик ее точности занимается теория ошибок измерений. Излагаемые в ней методы решения задач
позволяют рассчитать необходимую точность предстоящих измерений и на основании этого расчета выбрать соответствующие приборы и технологию измерений, а после производства измерений получить наилучшие их
результаты и оценить их точность. Математической основой теории погрешностей измерений являются теория вероятностей и математическая статистика.
В зависимости от условий измерения могут быть равноточными и
неравноточными.
Измерения называются равноточными, если в процессе измерений сохраняются неизменными следующие факторы:
1.объект измерения; 2.субъект измерения (наблюдатель); 3.мерный прибор; 4.метод измерения; 5.внешняя среда.
Если изменяется хотя бы одно из 5 условий, то производимые наблюдения будут неравноточными.
3
Каждый из перечисленных факторов порождает целый ряд элементарных ошибок. Суммарное действие элементарных ошибок образует ошибку результата измерений.
Различают тир основных вида ошибок:
1.грубые;
2.систематические;
3.случайные.
Грубые ошибки резко отклоняют результаты измерений от истинного значения измеряемой величины. Это в основном промахи и просчеты исполнителя. Грубые погрешности обнаруживают путем повторения измерения и сравнения их результатов. Если расхождения между результатами превосходят заданный допуск, то эти измерения выбраковывают и производят заново.
Систематические ошибки входят в каждый результат измерений по определенному закону, однообразно повторяются в многократных измерениях. Систематические погрешности удается исключить или свести их до минимума тщательной проверкой измерительных приборов, применением соответствующей методики измерений , а также введением поправок в результаты измерений.
4
Случайные ошибки – это ошибки, размер и влияние которых на каждый отдельный результат измерения остается неизвестным. Закономерности случайных ошибок проявляются в массе, то есть, при большом количестве измерений; такие закономерности называют статистическими. Случайные ошибки подчинены определенным вероятностным закономерностям, изучение которых дает возможность получить наиболее надежный результат и оценить его точность. Теория ошибок занимается в основном изучением случайных ошибок.
В дальнейшем будем считать, что результаты измерений свободны от
влияния грубых и систематических ошибок (они исключены из результатов измерений или ослаблены до минимума) и содержат только случайные ошибки.
Случайной (истинной) ошибкой называют разность между измеренным значением величины l и её истинным значением Х:
= l — Х
5
Свойства случайных ошибок
1. При определенных условиях измерений случайные ошибки по
абсолютной величине не могут превышать известного предела, называемого предельной ошибкой. Это свойство позволяет обнаруживать и исключать из
результатов измерений грубые погрешности.
2. Положительные и отрицательные случайные погрешности примерно одинаково часто встречаются в ряду измерений, что помогает выявлению систематических погрешностей.
3. Чем больше абсолютная величина погрешности, тем реже она встречается в ряду измерений.
4. Среднее арифметическое из случайных погрешностей измерений одной и той же величины, выполненных при одинаковых условиях, при
неограниченном возрастании числа измерений стремится к нулю. Это свойство, называемое свойством компенсации, можно математически
записать так:
где [ ] — знак суммы, т.е.
n — число измерений.
6
Последнее свойство случайных ошибок позволяет установить принцип получения из ряда измерений одной и той же величины результата наиболее близкого к её истинному значению. Таким результатом является среднее арифметическое из измеренных значений данной величины.
Арифметическая середина. Пусть имеется n измерений одной величины X, то есть,
(1)
Сложим эти равенства, суммарное уравнение разделим на n и получим:
(2)
Величина (3)
называется средним арифметическим или простой арифметической
серединой. Запишем (2) в виде
(4)
7
по четвертому свойству ошибок можно написать:
(5)
что означает, что при неограниченном возрастании количества измерений простая арифметическая середина стремится к истинному значению
измеряемой величины.
А при ограниченном количестве измерений арифметическая середина является наиболее надежным и достоверным значением измеряемой величины. Это позволяет при любом числе измерений, если n>1, принимать арифметическую средину за окончательное значение измеренной величины. Точность окончательного результата тем выше, чем больше n.
Средняя квадратическая , предельная и относительная ошибки
Средняя квадратическая ошибка m введена в теорию ошибок для характеристики точности отдельного измерения
(1)
где n — число измерений данной величины.
8
Формула (1), которую называют формулой Гаусса, применима для случаев, когда известно истинное значение измеряемой величины Х. Такие случаи в практике встречаются редко. В то же время из измерений можно получить результат, наиболее близкий к истинному значению, — арифметическую середину. Для этого случая средняя квадратическая погрешность одного измерения подсчитывается по формуле Бесселя:
(2)
где i= li – Xo
— отклонения отдельных значений измеренной величины от арифметической средины, называемые вероятнейшими ошибками,
причем [ ] = 0.
Точность арифметической средины, естественно, будет выше точности отдельного измерения. Средняя квадратическая ошибка арифметической середины определяется по формуле
(3)
где т — средняя квадратическая погрешность одного измерения, вычисляемая по формулам (1) или (2).
9
Предельная ошибка
В соответствии с первым свойством случайных ошибок для абсолютной величины случайной погрешности при данных условиях измерений существует допустимый предел, называемый предельной ошибкой. В строительных нормах предельная погрешность называется допускаемым
отклонением.
В качестве предельной ошибки пр
для данного вида измерений принимается утроенная средняя квадратическая ошибка
пр=3m.
При более ответственных измерениях для повышения требований точности измерений принимают
пр=2m.
Ошибки измерений величины которых превосходят пр считают грубыми.
10
Двойные измерения
Часто в практике для контроля и повышения точности определяемую величину измеряют дважды — в прямом и обратном направлениях, например, длину линий, превышения между точкам. Из двух полученных значений за окончательное принимается среднее из них. В этом случае средняя квадратическая погрешность одного измерения:
(4)
а среднего результата из двух измерений:
(5)
где d — разность двукратно измеренных величин; n — число разностей (двойных измерений).
11
Соседние файлы в папке геодезия. все лекции
- #
- #
- #
- #
- #
- #
- #
На чтение 9 мин Просмотров 1.5к. Опубликовано 03.10.2021
Теория ошибок измерений изучает свойства ошибок и законы их распределения, методы обработки измерений с учетом их ошибок, а также способы вычисления числовых характеристик точности измерений. При многократных измерениях одной и той же величины результаты измерений получаются неодинаковыми. Этот очевидный факт говорит о том, что измерения сопровождаются разными по величине и по знаку ошибками. Задача теории ошибок – нахождение наиболее надежного значения измеренной величины, оценка точности результатов измерений и их функций и установление допусков, ограничивающих использование результатов обработки измерений.
По своей природе ошибки бывают грубые, систематические и случайные.
Грубые ошибки являются результатом промахов и просчетов. Их можно избежать при внимательном и аккуратном отношении к работе и организации надежного полевого контроля измерений. В теории ошибок грубые ошибки не изучаются.
Систематические ошибки имеют определенный источник, направление и величину. Если источник систематической ошибки обнаружен и изучен, то можно получить формулу влияния этой ошибки на результат измерения и затем ввести в него поправку; это исключит влияние систематической ошибки. Пока источник какой-либо систематической ошибки не найден, приходится считать ее случайной ошибкой, ухудшающей качество измерений.
Случайные ошибки измерений обусловлены точностью способа измерений (строгостью теории), точностью измерительного прибора, квалификацией исполнителя и влиянием внешних условий. Закономерности случайных ошибок проявляются в массе, то-есть, при большом количестве измерений; такие закономерности называют статистическими. Освободить результат единичного измерения от случайных ошибок невозможно; невозможно также предсказать случайную ошибку единичного измерения. Теория ошибок занимается в основном изучением случайных ошибок.
Случайная истинная ошибка измерения Δ – это разность между измеренным значением величины l и ее истинным значением X:
(1.25)
Свойства случайных ошибок. Случайные ошибки подчиняются некоторым закономерностям:
1. при данных условиях измерений абсолютные значения случайных ошибок не превосходят некоторого предела; если какая-либо ошибка выходит за этот предел, она считается грубой,
2. положительные и отрицательные случайные ошибки равновозможны,
3. среднее арифметическое случайных ошибок стремится к нулю при неограниченном возрастании числа измерений. Третье свойство случайных ошибок записывается так:
(1.26)
4. малые по абсолютной величине случайные ошибки встречаются чаще, чем большие.
Кроме того, во всей массе случайных ошибок не должно быть явных закономерностей ни по знаку, ни по величине. Если закономерность обнаруживается, значит здесь сказывается влияние какой-то систематической ошибки.
Средняя квадратическая ошибка одного измерения. Для оценки точности измерений можно применять разные критерии; в геодезии таким критерием является средняя квадратическая ошибка. Это понятие было введено Гауссом; он же разработал основные положения теории ошибок. Средняя квадратическая ошибка одного измерения обозначается буквой m и вычисляется по формуле Гаусса:
(1.27)
где: ;
n – количество измерений одной величины.
Средняя квадратическая ошибка очень чувствительна к большим по абсолютной величине ошибкам, так как каждая ошибка возводится в квадрат. В то же время она является устойчивым критерием для оценки точности даже при небольшом количество измерений; начиная с некоторого n дальнейшее увеличение числа измерений почти не изменяет значения m; доказано, что уже при n = 8 значение m получается достаточно надежным.
Предельная ошибка ряда измерений обозначается Δпред; она обычно принимается равной 3*m при теоретических исследованиях и 2*m или 2.5*m при практических измерениях. Считается, что из тысячи измерений только три ошибки могут достигать или немного превосходить значение Δпред = 3*m.
Отношение mx/X называется средней квадратической относительной ошибкой; для некоторых видов измерений относительная ошибка более наглядна, чем m. Относительная ошибка выражается дробью с числителем, равным 1, например, mx/X = 1/10 000.
Средняя квадратическая ошибка функции измеренных величин. Выведем формулу средней квадратической ошибки функции нескольких аргументов произвольного вида:
F = f( X, Y, Z … ), (1.28)
здесь: X, Y, Z … – истинные значения аргументов,
F – истинное значение функции.
В результате измерений получены измеренные значения аргументов lX, lY, lZ, при этом:
(1.29)
где ΔX, ΔY, ΔZ – случайные истинные ошибки измерения аргументов.
Функцию F можно выразить через измеренные значения аргуметов и их истинные ошибки:
Разложим функцию F в ряд Тейлора, ограничившись первой степенью малых приращений ΔX, ΔY, ΔZ:
(1.30)
Разность является случайной истинной ошибкой функции с противоположным знаком, поэтому:
(1.31)
Если выполнить n измерений аргументов X, Y, Z, то можно записать n уравнений вида (1.31). Возведем все эти уравнения в квадрат и сложим их; суммарное уравнение разделим на n и получим
В силу третьего свойства случайных ошибок члены, содержащие произведения случайных ошибок, будут незначительными по величине, и их можно не учитывать; таким образом,
(1.32)
Как частные случаи формулы (1.32) можно написать выражения для средней квадратической ошибки некоторых функций:
Если функция имеет вид произведения нескольких аргументов,
F = x * y * z,
то для нее можно записать выражение относительной ошибки функции:
(1.33)
которое в некоторых случаях оказывается более удобным, чем формула (1.32).
Принцип равных влияний. В геодезии часто приходится определять средние квадратические ошибки аргументов по заданной средней квадратической ошибке функции. Если аргумент всего один, то решение задачи не представляет трудности. Если число аргументов t больше одного, то возникает задача нахождения t неизвестных из одного уравнения, которую можно решить, применяя принцип равных влияний. Согласно этому принципу все слагаемые правой части формулы (1.32) или (1.33) считаются равными между собой.
Арифметическая середина. Пусть имеется n измерений одной величины X, то-есть,
(1.34)
Сложим эти равенства, суммарное уравнение разделим на n и получим:
(1.35)
Величина (1.36)
называется средним арифметическим или простой арифметической серединой. Запишем (1.35) в виде
по третьему свойству ошибок (1.26) можно написать:
что означает, что при неограниченном возрастании количества измерений простая арифметическая середина стремится к истинному значению измеряемой величины. При ограниченном количестве измерений арифметическая середина является наиболее надежным и достоверным значением измеряемой величины.
Запишем формулу (1.36) в виде
и подсчитаем среднюю квадратическую ошибку арифметической середины, которая обозначается буквой M. Согласно формуле (1.32) напишем:
или
Но ml1 = ml2 = … = mln= m по условию задачи, так как величина X измеряется при одних и тех же условиях. Тогда в квадратных скобках будет n * m2, одно n сократится и в итоге получим:
M2 = m2/n
или
(1.37)
то-есть, средняя квадратическая ошибка арифметической середины в корень из n раз меньше ошибки одного измерения.
Вычисление средней квадратической ошибки по уклонениям от арифметической середины. Формулу Гаусса (1.27) применяют лишь в теоретических выкладках и при исследованиях приборов и методов измерений, когда известно истинное значение измеряемой величины. На практике оно, как правило, неизвестно, и оценку точности выполняют по уклонениям от арифметической середины.
Пусть имеется ряд равноточных измерений величины X:
l1, l2 , …, ln .
Вычислим арифметическую середину X0 = [1]/n и образуем разности:
(1.38)
Сложим все разности и получим [l] – n * X0 = [V]. По определению арифметической середины n * X0 = [l], поэтому:
[V] = 0. (1.39)
Величины V называют вероятнейшими ошибками измерений; именно по их значениям и вычисляют на практике среднюю квадратическую ошибку одного измерения, используя для этого формулу Бесселя:
(1.40)
Приведем вывод этой формулы. Образуем разности случайных истинных ошибок измерений Δ и вероятнейших ошибок V:
(1.41)
Разность (X0 – X) равна истинной ошибке арифметической середины; обозначим ее Δ0 и перепишем уравнения (1.41):
(1.42)
Возведем все уравнения (1.42) в квадрат, сложим их и получим:
.
Второе слагаемое в правой части этого выражения равно нулю по свойству (1.39), следовательно,
.
Разделим это уравнение на n и учтя, что [Δ2]/n =m2, получим:
(1.43)
Заменим истинную ошибку арифметической середины Δ0 ее средней квадратической ошибкой ; такая замена практически не изменит правой части формулы (1.43). Итак,
,
откуда ;
после перенесения (n-1) в правую часть и извлечения квадратного корня получается формула Бесселя (1.40).
Для вычисления средней квадратической ошибки арифметической середины на основании (1.37) получается формула:
(1.44)
Веса измерений. Измерения бывают равноточные и неравноточные. Например, один и тот же угол можно измерить точным или техническим теодолитом, и результаты таких измерений будут неравноточными. Или один и тот же угол можно измерить разным количеством приемов; результаты тоже будут неравноточными. Понятно, что средние квадратические ошибки неравноточных измерений будут неодинаковы. Из опыта известно, что измерение, выполненное с большей точностью (с меньшей ошибкой), заслуживает большего доверия.
Вес измерения – это условное число, характеризующее надежность измерения, степень его доверия; вес обозначается буквой p. Значение веса измерения получают по формуле:
p = C/m2 (1.45)
где C – в общем случае произвольное положительное число.
При неравноточных измерениях одной величины наиболее надежное ее значение получают по формуле средневесовой арифметической середины:
(1.46)
или X0 = [l*p] / [p] .
Ошибку измерения, вес которого равен 1, называют средней квадратической ошибкой единицы веса; она обозначается буквой m. Из формулы (1.45) получаем
откуда (1.47)
то-есть, за число C принимают квадрат ошибки единицы веса.
Подсчитаем вес P средневесовой арифметической середины. По определению веса имеем:
(1.48)
Согласно (1.46) и (1.32) напишем:
Подставим сюда вместо mli2 их выражения через вес m2 = C/p , тогда:
Подставим это выражение в формулу (1.48) и получим,
P = [p], (1.49)
то-есть, вес средневесовой арифметической середины равен сумме весов отдельных измерений.
В случае равноточных измерений, когда веса всех измерений одинаковы и равны единице, формула (1.49) принимает вид:
P = n. (1.50)
При обработке больших групп измерений (при уравнивании геодезических построений по МНК) вычисляются значение ошибки единицы веса, веса измерений и других элементов после уравнивания, а ошибка любого уравненного элемента подсчитывается по формуле:
(1.51)
где pi – вес i-того элемента.
Человеку свойственно ошибаться. Это касается не только общих вопросов и знаний жизни. Но и распространяется на любые сферы его деятельности, в том числе в области геодезии. В ней все проводимые измерения выполняются с ошибками. Значительная часть работ в геодезическом производстве основывается на измерениях. А измерения — своего рода сравнение с какой-то эталонной или истинной величиной. Если понимать, что истинного значения в идеале не существует, то все сравнения в измерениях сводятся к сравнению с конкретно полученным значением и принятому, как верное. Одним из наиболее приближенных к истинному значению, считается среднее арифметическое.
Понятие погрешности, её абсолютная и относительная величины
Если переходить на понятие погрешности, то отклонение отдельного замера от среднего арифметического из выполненных измерений и считается абсолютной его ошибкой. Числовая форма погрешности не дает представления о качестве произведенного измерения. Для этого существует понятие относительной погрешности. Под ним понимают отношение значения собственно ошибки к замеренной величине. Применяется этот параметр в определении точности работ при линейных замерах в полигонометрических и теодолитных ходах.
В нивелирных ходах для его оценки точности существует так называемая приведенная погрешность. Это тоже своего рода относительный показатель. Только он подразумевает под собой отношение абсолютного значения ошибки к конкретному принятому значению определяемой величины (для нивелировок на 1 км хода).
Погрешности по источникам возникновения
При производстве геодезических работ после окончания каждой выполненной операции в полевых условиях можно говорить об ошибках. Присутствуют они и при проведении камеральных работ. Так при установке приборов в рабочее положение возникают отклонения в центрировании инструмента над центром знака. Также возникают неточности при выставлении прибора в отвесное состояние, когда выводим его цилиндрический уровень в верхнее горизонтальное положение и круглый уровень на середину. Следующими причинами возникновения погрешностей считаются визирование и снятие отсчетов в момент исполнения наблюдений. Влияние внешних условий окружающей среды: рефракция воздуха, дымка, туман, осадки, формирует еще одну группу ошибок. Помимо человеческого фактора и влияния внешней среды существуют конструктивные особенности приборов, с заложенными в них вероятностными составляющими точности измерений. Еще одной из причин возникновения погрешностей считается несовершенство методик их определений. Резюмируя выше сказанное, можно выделить следующий перечень ошибок по источникам их возникновения:
- инструментальные;
- индивидуальные;
- из-за условий окружающей среды;
- методические.
Погрешности по характеру действий
По данному признаку все ошибки можно разделить на следующие отклонения:
- грубые, то есть значительно превышающие ожидаемые ошибки, возникающие в результате просчетов, неверных действий и обнаруженные при дополнительном контроле;
- систематические отклонения, отличающиеся постоянством возникновения и закономерностями изменений при повторных операциях; к ним можно отнести периодические и функциональные погрешности;
- случайные, значения величин, которых не значительны, большая часть их мала, чем велика, встречаются как с положительными, так и с отрицательными значениями, в каждом конкретном случае они возникают отдельно случайным образом и в своей массе подчинены определенным вероятностным закономерностям;
Именно изучение случайных погрешностей в геодезии дает возможность производить оценки точности и получать наиболее надежные результаты.
Предельные и допустимые отклонения
При определенных факторах случайные ошибки по абсолютному значению своей величины не могут превышать определенного предела. Этот предел в геодезической и маркшейдерской практике имеет название предельной погрешности.
В строительном производстве нормативными документами введен термин предельного отклонения, который может иметь как положительное, так и отрицательное значения. Алгебраическая сумма этих параметров (предельных отклонений) имеет название допуска.
В геодезии крайние предельные значения отклонений, допускаемые нормативной документацией, называются допустимыми.
Средние, вероятные и средне квадратические погрешности
При различных оценках точности выполненных замеров применяются некоторые критерии случайных ошибок. К таким мерилам оценки относятся понятия:
- средне арифметического отклонения от всех случайных ошибок, имеющее название среднего уклонения;
- срединного отклонения, то есть находящегося в середине измеренного ряда по абсолютным значениям с учетом убывания и возрастания, именуемое вероятной ошибкой;
- средне квадратическое отклонение (СКО) – это параметр функции дисперсии (рассеивания) случайных величин результатов измерений. Он равен математическому ожиданию (среднему арифметическому значению) квадратов отклонений в измерениях от математического ожидания (среднего арифметического значения) результатов замеров.
Случайные погрешности подчиняются нормальному закону распределения и находятся в интервале от нуля до трех СКО. Большинство из них в пределах шестидесяти восьми процентов находятся в интервале до одного СКО. Девяносто пять процентов случайных величин попадает в интервал от нуля до двух СКО. Девяносто девять процентов случайных ошибок находится в интервале от нуля до трех СКО.
На основании этого в теоретических расчетах при предварительных оценках точности выполнения работ за предельные принимаются три средне квадратические ошибки. При геодезических и маркшейдерских работах на практике к расчетам принимаются двойные величины средне квадратических отклонений.