Этап разработки программы на котором обнаруживают ошибки

Отладка
(debug, debugging) — этап разработки компьютерной
программы, на котором обнаруживают,
локализуют и устраняют ошибки. Чтобы
понять, где возникла ошибка, приходится:
узнавать текущие значения переменных;
выяснять, по какому пути выполнялась
программа.

Процесс
отладки

начинается с попытки воспроизвести
проблему, что может оказаться не простой
задачей при программировании параллельных
процессов или при некоторых необычных
ошибках, известных как гейзенбаги.

Технологии
отладки.

  1. Использование
    отладчиков
    — программ, которые включают в себя
    пользовательский интерфейс для
    пошагового выполнения программы:
    оператор за оператором, функция за
    функцией, с остановками на некоторых
    строках исходного кода или при достижении
    определённого условия.

  2. Вывод
    текущего состояния программы с помощью
    расположенных в критических
    точках

    программы операторов
    вывода

    — на экран, принтер, громкоговоритель
    или в файл. Вывод отладочных сведений
    в файл называется журналированием.

Инструменты
отладки.

  1. Отладчик
    – программный инструмент, позволяющий
    программисту наблюдать за выполнением
    исследуемой программы, останавливать
    и перезапускать её, прогонять в
    замедленном темпе, изменять значения
    в памяти и даже, в некоторых случаях,
    возвращать назад по времени.

  2. Профилировщики

    позволяют определить сколько времени
    выполняется тот или иной участок кода,
    а анализ покрытия позволит выявить
    неисполняемые участки кода.

  3. API
    логгеры

    позволяют программисту отследить
    взаимодействие программы и Windows API при
    помощи записи сообщений Windows в лог.

  4. Дизассемблеры
    позволят
    программисту посмотреть ассемблерный
    код исполняемого файла

  5. Сниферы
    помогут
    программисту проследить сетевой трафик
    генерируемой программой

  6. Сниферы
    аппаратных интерфейсов
    позволят
    увидеть данные которыми обменивается
    система и устройство.

  7. Логи
    системы
    .

Использование
языков
программирования высокого уровня
,
таких как Java, обычно упрощает отладку,
поскольку содержат такие средства как
обработка
исключений
,
сильно облегчающие поиск источника
проблемы. В некоторых низкоуровневых
языках, таких как Ассемблер,
ошибки могут приводить к незаметным
проблемам — например, повреждениям
памяти или утечкам памяти, и бывает
довольно трудно определить, что стало
первоначальной причиной ошибки. В этих
случаях, могут потребоваться изощрённые
приёмы и средства отладки.

Отладка
= Тестирование + Поиск ошибок + Редактирование

Виды
отладки
ПО,
включая тестирование (в нашей стране).

    1. Автономная
      отладка. Последовательное раздельное
      тестирование различных частей программ,
      входящих в ПО, с поиском и исправлением
      в них фиксируемых при тестировании
      ошибок. Она фактически включает отладку
      каждого программного модуля и отладку
      сопряжения модулей.

    2. Комплексная
      отладка.
      Тестирование ПО в целом с поиском и
      исправлением фиксируемых при тестировании
      ошибок во всех документах (включая
      тексты программ ПО), относящихся к ПО
      в целом. К таким доку-ментам относятся
      определение требований к ПО, спецификация
      качества ПО, функциональная спецификация
      ПО, описание архитектуры П.О. и тексты
      программ ПО.

    1. Синтаксическая
      отладка. Синтаксические ошибки выявляет
      компилятор, поэтому исправлять их
      достаточно легко.

    2. Семантическая
      (смысловая)
      отладка. Ее время наступает тогда,
      когда синтаксических ошибок не осталось,
      но результаты программа выдает неверные.
      Здесь компилятор сам ничего выявить
      не сможет, хотя в среде программирования
      обычно существуют вспомогательные
      средства отладки, о которых мы еще
      поговорим.

Взаимосвязь
процессов тестирования и отладки

через алгоритм отладки.

После
того как написан рабочий код производятся
тестовые запуски программы на различных
наборах тестовых данных.

При
этом тестер или программист заранее
должны получить контрольный результат
с которым будет идти сверка работы
проверяемого кода.

В
случае обнаружения расхождений между
контрольным и фактическим результатами,
начинается поиск проблемного участка
кода и выявление ошибок вышеуказанными
способами.

Средства
автоматического тестирования исходного
кода программ.

Основной
прием здесь это создание тестов исходного
текста, которые будут применены к
тестируемому участку кода, а система
тестирования сообщит об их результатах.

Примерами
таких систем могут быть: встроенный
модуль doctest в Python и мультиязыковая
библиотека тестирования xUnit, распространяемая
на условиях GNU/GPL и LGPL. Основа применения
всех этих средств и техник это разбиение
одной большой задачи на ряд четких и
более маленьких задач.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Отладка, или debugging, — это поиск (локализация), анализ и устранение ошибок в программном обеспечении, которые были найдены во время тестирования.

Виды ошибок

Ошибки компиляции

Это простые ошибки, которые в компилируемых языках программирования выявляет компилятор (программа, которая преобразует текст на языке программирования в набор машинных кодов). Если компилятор показывает несколько ошибок, отладку кода начинают с исправления самой первой, так как она может быть причиной других.

В интерпретируемых языках (например Python) текст программы команда за командой переводится в машинный код и сразу исполняется. К моменту обнаружения ошибки часть программы уже может исполниться.

Ошибки компоновки

Ошибки связаны с разрешением внешних ссылок. Выявляет компоновщик (редактор связей) при объединении модулей программы. Простой пример — ситуация, когда требуется обращение к подпрограмме другого модуля, но при компоновке она не найдена. Ошибки также просто найти и устранить.

Ошибки выполнения (RUNTIME Error)

Ошибки, которые обнаруживают операционная система, аппаратные средства или пользователи при выполнении программы. Они считаются непредсказуемыми и проявляются после успешной компиляции и компоновки. Можно выделить четыре вида проявления таких ошибок:

  • сообщение об ошибке, которую зафиксировали схемы контроля машинных команд. Это может быть переполнение разрядной сетки (когда старшие разряды результата операции не помещаются в выделенной области памяти), «деление на ноль», нарушение адресации и другие;
  • сообщение об ошибке, которую зафиксировала операционная система. Она же, как правило, и документирует ошибку. Это нарушение защиты памяти, отсутствие файла с заданным именем, попытка записи на устройство, защищенное от записи;
  • прекращение работы компьютера или зависание. Это и простые ошибки, которые не требуют перезагрузки компьютера, и более сложные, когда нужно выключать ПК;
  • получение результатов, которые отличаются от ожидаемых. Программа работает стабильно, но выдает некорректный результат, который пользователь воспринимает за истину.

Ошибки выполнения можно разделить на три большие группы.

Ошибки определения данных или неверное определение исходных данных. Они могут появиться во время выполнения операций ввода-вывода.

К ним относятся:

  • ошибки преобразования;
  • ошибки данных;
  • ошибки перезаписи.

Как правило, использование специальных технических средств для отладки (API-логгеров, логов операционной системы, профилировщиков и пр.) и программирование с защитой от ошибок помогает обнаружить и решить лишь часть из них.

Логические ошибки. Они могут возникать из ошибок, которые были допущены при выборе методов, разработке алгоритмов, определении структуры данных, кодировании модуля.

В эту группу входят:

  • ошибки некорректного использования переменных. Сюда относятся неправильный выбор типов данных, использование индексов, выходящих за пределы определения массивов, использование переменных до присвоения переменной начального значения, нарушения соответствия типов данных;
  • ошибки вычислений. Это некорректная работа с переменными, неправильное преобразование типов данных в процессе вычислений;
  • ошибки взаимодействия модулей или межмодульного интерфейса. Это нарушение типов и последовательности при передаче параметров, области действия локальных и глобальных переменных, несоблюдение единства единиц измерения формальных и фактических параметров;
  • неправильная реализация логики при программировании.

Ошибки накопления погрешностей. Могут возникать при неправильном округлении, игнорировании ограничений разрядной сетки, использовании приближенных методов вычислений и т.д. 

Методы отладки программного обеспечения

Метод ручного тестирования

Отладка программы заключается в тестировании вручную с помощью тестового набора, при работе с которым была допущена ошибка. Несмотря на эффективность, метод не получится использовать для больших программ или программ со сложными вычислениями. Ручное тестирование применяется как составная часть других методов отладки.

Метод индукции

В основе отладки системы — тщательный анализ проявлений ошибки. Это могут быть сообщения об ошибке или неверные результаты вычислений. Например, если во время выполнения программы завис компьютер, то, чтобы найти фрагмент проявления ошибки, нужно проанализировать последние действия пользователя. На этапе отладки программы строятся гипотезы, каждая из них проверяется. Если гипотеза подтвердилась, информация об ошибке детализируется, если нет — выдвигаются новые.

Вот как выглядит процесс:

Алгоритм отладки по методу индукции

Важно, чтобы выдвинутая гипотеза объясняла все проявления ошибки. Если объясняется только их часть, то либо гипотеза неверна, либо ошибок несколько.

Метод дедукции

Сначала специалисты предлагают множество причин, по которым могла возникнуть ошибка. Затем анализируют их, исключают противоречащие имеющимся данным. Если все причины были исключены, проводят дополнительное тестирование. В обратном случае наиболее вероятную причину пытаются доказать.

Отладка по методу дедукции

Метод обратного прослеживания

Эффективен для небольших программ. Начинается с точки вывода неправильного результата. Для точки выдвигается гипотеза о значениях основных переменных, которые могли привести к ошибке. Далее на основании этой гипотезы строятся предположения о значениях переменных в предыдущей точке. Процесс продолжается до момента, пока не найдут ошибку.

Как выполняется отладка в современных IDE

Ранние отладчики, например gdb, представляли собой отдельные программы с интерфейсами командной строки. Более поздние, например первые версии Turbo Debugger, были автономными, но имели собственный графический интерфейс для облегчения работы. Сейчас большинство IDE имеют встроенный отладчик. Он использует такой же интерфейс, как и редактор кода, поэтому можно выполнять отладку в той же среде, которая используется для написания кода.

Отладчик позволяет разработчику контролировать выполнение и проверять (или изменять) состояние программ. Например, можно использовать отладчик для построчного выполнения программы, проверяя по ходу значения переменных. Сравнение фактических и ожидаемых значений переменных или наблюдение за ходом выполнения кода может помочь в отслеживании логических (семантических) ошибок.

Пошаговое выполнение — это набор связанных функций отладчика, позволяющих поэтапно выполнять код.

Шаг с заходом (step into)

Команда выполняет очередную инструкцию, а потом приостанавливает процесс, чтобы с помощью отладчика было можно проверить состояние программы. Если в выполняемом операторе есть вызов функции, step into заставляет программу переходить в начало вызываемой функции, где она приостанавливается.

Шаг с обходом (step over)

Команда также выполняет очередную инструкцию. Однако когда step into будет входить в вызовы функций и выполнять их строка за строкой, step over выполнит всю функцию, не останавливаясь, и вернет управление после ее выполнения. Команда step over позволяет пропустить функции, если разработчик уверен, что они уже исправлены, или не заинтересован в их отладке в данный момент.

Шаг с выходом (step out)

В отличие от step into и step over, step out выполняет не следующую строку кода, а весь оставшийся код функции, исполняемой в настоящее время. После возврата из функции он возвращает управление разработчику. Эта команда полезна, когда специалист случайно вошел в функцию, которую не нужно отлаживать.

Как правило, при пошаговом выполнении можно идти только вперед. Поэтому легко перешагнуть место, которое нужно проверить. Если это произошло, необходимо перезапустить отладку.

У некоторых отладчиков (таких как GDB 7.0, Visual Studio Enterprise Edition 15.5 и более поздних версий) есть возможность вернуться на шаг назад. Это полезно, если пропущена цель либо нужно повторно проверить выполненную инструкцию. 

Отла́дка — этап разработки компьютерной программы, на котором обнаруживают, локализуют и устраняют ошибки. Чтобы понять, где возникла ошибка, приходится :

  • узнавать текущие значения переменных;
  • выяснять, по какому пути выполнялась программа.

Существуют две взаимодополняющие технологии отладки.

  • Использование отладчиков — программ, которые включают в себя пользовательский интерфейс для пошагового выполнения программы: оператор за оператором, функция за функцией, с остановками на некоторых строках исходного кода или при достижении определённого условия.
  • Вывод текущего состояния программы с помощью расположенных в критических точках программы операторов вывода — на экран, принтер, громкоговоритель или в файл. Вывод отладочных сведений в файл называется журналированием.

Содержание

  • 1 Место отладки в цикле разработки программы
  • 2 Инструменты
    • 2.1 Инструменты отладки
    • 2.2 Инструменты, снижающие потребность в отладке
  • 3 Безопасность программного кода и отладка
  • 4 Литература
  • 5 См. также
  • 6 Ссылки

Место отладки в цикле разработки программы

Типичный цикл разработки, за время жизни программы многократно повторяющийся, выглядит примерно так:

  1. Программирование — внесение в программу новой функциональности, исправление ошибок в имеющейся.
  2. Тестирование (ручное или автоматизированное; программистом, тестером или пользователем; «дымовое», в режиме чёрного ящика или модульное…) — обнаружение факта ошибки.
  3. Воспроизведение ошибки — выяснение условий, при которых ошибка случается. Это может оказаться непростой задачей при программировании параллельных процессов и при некоторых необычных ошибках, известных как гейзенбаги.
  4. Отладка — обнаружение причины ошибки.

Инструменты

Способности программиста к отладке — это, по-видимому, важнейший фактор в обнаружении источника проблемы, но сложность отладки сильно зависит от используемого языка программирования и инструментов, в частности, отладчиков.

Инструменты отладки

Отладчик представляет из себя программный инструмент, позволяющий программисту наблюдать за выполнением исследуемой программы, останавливать и перезапускать её, прогонять в замедленном темпе, изменять значения в памяти и даже, в некоторых случаях, возвращать назад по времени.

Также полезными инструментами в руках программиста могут оказаться:

  • Профилировщики. Они позволят определить сколько времени выполняется тот или иной участок кода, а анализ покрытия позволит выявить неисполняемые участки кода.
  • API логгеры позволяют программисту отследить взаимодействие программы и Windows API при помощи записи сообщений Windows в лог.
  • Дизассемблеры позволят программисту посмотреть ассемблерный код исполняемого файла
  • Снифферы помогут программисту проследить сетевой трафик генерируемой программой
  • Снифферы аппаратных интерфейсов позволят увидеть данные которыми обменивается система и устройство.
  • Логи системы.

Использование языков программирования высокого уровня, таких как Java, обычно упрощает отладку, поскольку содержат такие средства как обработка исключений, сильно облегчающие поиск источника проблемы. В некоторых низкоуровневых языках, таких как ассемблер, ошибки могут приводить к незаметным проблемам — например, повреждениям памяти или утечкам памяти, и бывает довольно трудно определить что стало первоначальной причиной ошибки. В этих случаях, могут потребоваться изощрённые приёмы и средства отладки.

«Наш личный выбор — стараться не использовать отладчики, кроме как для просмотра стека вызовов или же значений пары переменных. Одна из причин этого заключается в том, что очень легко потеряться в деталях сложных структур данных и путей исполнения программы. Мы считаем пошаговый проход по программе менее продуктивным, чем усиленные размышления и код, проверяющий сам себя в критических точках.

Щёлканье по операторам занимает больше времени, чем просмотр сообщений операторов выдачи отладочной информации, расставленных в критических точках. Быстрее решить, куда поместить оператор отладочной выдачи, чем проходить шаг за шагом критические участки кода, даже предполагая, что мы знаем, где находятся такие участки. Более важно то, что отладочные операторы сохраняются в программе, а сессии отладчика переходящи.

Слепое блуждание в отладчике, скорее всего, непродуктивно. Полезнее использовать отладчик, чтобы выяснить состояние программы, в котором она совершает ошибку, затем подумать о том, как такое состояние могло возникнуть. Отладчики могут быть сложными и запутанными программами, особенно для новичков, у которых они вызовут скорее недоумение, чем принесут какую либо пользу…»

«Отладка сложна и может занимать непредсказуемо долгое время, поэтому цель в том, чтобы миновать большую её часть. Технические приёмы, которые помогут уменьшить время отладки, включают хороший дизайн, хороший стиль, проверку граничных условий, проверку правильности исходных утверждений и разумности кода, защитное программирование, хорошо разработанные интерфейсы, ограниченное использование глобальных переменных, автоматические средства контроля и проверки. Грамм профилактики стоит тонны лечения.»

— Брайан Керниган и Роб Пайк

Инструменты, снижающие потребность в отладке

Другое направление — сделать, чтобы отладка нужна была как можно реже. Для этого применяются:

  • Контрактное программирование — чтобы программист подтверждал другим путём, что ему на выходе нужно именно такое поведение программы. В языках, в которых контрактного программирования нет, используется самопроверка программы в ключевых точках.
  • Модульное тестирование — проверка поведения программы по частям.
  • Статический анализ кода — проверка кода на стандартные ошибки «по недосмотру».
  • Высокая культура программирования, в частности, паттерны проектирования, соглашения об именовании и прозрачное поведение отдельных блоков кода — чтобы объявить себе и другим, каким образом должна вести себя та или иная функция.
  • Широкое использование проверенных внешних библиотек.

Безопасность программного кода и отладка

В программном коде может быть так называемое недокументированное поведение — серьёзные ошибки, которые не проявляются при нормальном ходе выполнения программы, однако весьма опасны для безопасности всей системы в случае целенаправленной атаки. Чаще всего это результат ошибок программиста. Наиболее известные примеры — это SQL-инъекция и переполнение буфера. В данном случае задача отладки это:

  • Выявление недокументированного поведения системы
  • Устранение небезопасного кода

Выделяют такие методы:

  • статический анализ кода. На этой фазе программа сканер ищет последовательности в исходном тексте, соответствующие небезопасным вызовам функций и т. д. Фактически идет сканирование исходного текста программы на основе специальной базы правил, которая содержит описание небезопасных образцов кода.
  • фаззинг. Это процесс подачи на вход программы случайных или некорректных данных и анализ реакции программы.
  • Reverse engineering (Обратная инженерия). Этот случай возникает, когда независимые исследователи ищут уязвимости и недокументированные возможности программы.

Литература

  • Стив Магьюир, «Создание надёжного кода» (Steve Maguire. Writing Solid Code. Microsoft Press, 1993)
  • Стив Мак-Коннел, «Совершенный код» (Steve McConnel. Code Complete. Microsoft Press, 1993)

См. также

  • Отладчик
  • Отладчик ядра
  • Стек вызовов
  • Утечка памяти
  • Точка останова
  • Тестирование программного обеспечения
  • Программирование
  • Отладочные символы

Ссылки

  • Отладка AMD64 на уровне машинного кода с помощью отладчика dbx  (рус.)

Отладка программ

otladkdddddd.jpgОтладка — этап разработки компьютерной программы, на котором обнаруживают, локализуют и устраняют ошибки.

Типы ошибок

  • ошибки компиляции

  • ошибки выполнения

  • логические ошибки


Ошибки компиляции

Ошибки компиляции или синтаксические ошибки встречаются, когда забывают объявить переменную, передают ошибочное количество параметров процедуры, при назначении действительного значения целочисленной переменной. Это означает, что записываются операторы, которые не согласуются с правилами языка.


Ошибки выполнения

Другой тип ошибок — ошибки выполнения программы или семантические ошибки. Они встречаются, когда пользователь компилирует синтаксически корректную программу, которая пытается сделать что-нибудь запрещенное во время ее выполнения, например, открывает несуществующий файл для ввода или производит деление на 0.


Логические ошибки

Программа пользователя может содержать и логические ошибки. Это означает, что программа делает то, что ей указали вместо того, что хотелось бы. Может отсутствовать инициализация переменной; могут оказаться ошибочными вычисления; рисунки, изображенные на экране, выглядят неправильно; программа может просто работать не так, как было задумано. Такие ошибки находятся с большим трудом, и интегрированный отладчик поможет вам в этом случае наилучшим образом.


Существуют две взаимодополняющие технологии отладки.

Вот что пишут об этих двух подходах к отладке программы Брайан Керниган и Роб Пайк:


«Наш личный выбор — стараться не использовать отладчики, кроме как для просмотра стека вызовов или же значений пары переменных. Одна из причин этого заключается в том, что очень легко потеряться в деталях сложных структур данных и путей исполнения программы. Мы считаем пошаговый проход по программе менее продуктивным, чем усиленные размышления и код, проверяющий сам себя в критических точках.

Щёлканье по операторам занимает больше времени, чем просмотр сообщений операторов выдачи отладочной информации, расставленных в критических точках. Быстрее решить, куда поместить оператор отладочной выдачи, чем проходить шаг за шагом критические участки кода, даже предполагая, что мы знаем, где находятся такие участки. Более важно то, что отладочные операторы сохраняются в программе, а сессии отладчика переходящи.

Слепое блуждание в отладчике, скорее всего, непродуктивно. Полезнее использовать отладчик, чтобы выяснить состояние программы, в котором она совершает ошибку, затем подумать о том, как такое состояние могло возникнуть. Отладчики могут быть сложными и запутанными программами, особенно для новичков, у которых они вызовут скорее недоумение, чем принесут какую либо пользу…»

«Отладка сложна и может занимать непредсказуемо долгое время, поэтому цель в том, чтобы миновать большую её часть. Технические приёмы, которые помогут уменьшить время отладки, включают хороший дизайн, хороший стиль, проверку граничных условий, проверку правильности исходных утверждений и разумности кода, защитное программирование, хорошо разработанные интерфейсы, ограниченное использование глобальных переменных, автоматические средства контроля и проверки. Грамм профилактики стоит тонны лечения.»

  • Использование отладчиков — программ, которые включают в себя пользовательский интерфейс для пошагового выполнения программы: оператор за оператором, функция за функцией, с остановками на некоторых строках исходного кода или при достижении определённого условия.


  • Вывод текущего состояния программы с помощью расположенных в критических точках программы операторов вывода — на экран, принтер, громкоговоритель или в файл. Вывод отладочных сведений в файл называется журналированием.

Отладка с использованием отладчика в программных средах:

Pascal

Интегрированный отладчик Turbo Pascal

Некоторые ошибки времени выполнения (логические ошибки) незаметны и трудны для прослеживания. Другие ошибки могут скрываться за неуловимым взаимодействием разделов большой программы. В этих случаях необходимо интерактивное выполнение программы, во время которого производится наблюдение за значениями определенных переменных или выражений. Вам хотелось бы, чтобы Ваша программа останавливалась при достижении определенного места так, чтобы просмотреть, как она проработала этот кусок. Вам хотелось бы остановиться и изменить значения некоторых переменных во время выполнения программы, изменить определенный режим или проследить за реакцией программы. И вам хотелось бы сделать это в режиме, когда возможно быстрое редактирование, перекомпилирование и повторное выполнение программы.

Интегрированный отладчик Turbo Pascal имеет все описанные выше возможности и даже более того. Он представляет собой встроенную часть интегрированной усовершенствованной среды Turbo Pascal (IDE): для использования предлагаются две основные функции меню (Run, Debug), а также некоторые клавиши для команд отладчика.

Более подробно об отладке программ в среде Pascal можно посмотреть здесь: http://www.realcoding.net/article/view/748


Visual Studio

Описание технологии отладки на примере Visual Studio C#

В данном разделе я попробую описать процесс отладки программы, написанной в среде «Visual Studio C# 2008 Express Edition». Все ошибки в коде программы, которые я сам же буду находить сделаны специально.

Цель: Разработать и отладить программу «АйСчитайка», которая будет производить поиск корней квадратного уравнения.

Разработка:

1)создаём новый проект

2)пишем пользовательский интерфейс

3)пишем сам код программы.

Спустя 10 минут я получил:

     {
          integer a, b, c;           
          X11.Visible = false;
          X22.Visible = false;
          XX.Visible = false;
          xx1.Visible = false;
          xx1.Visible = false;
          xx2.Visible = false;
          neet.Visible = false;
          primer.Visible = false;
          a = Convert.ToInt32(aa.Value);
          b = Convert.ToInt32(bb.Value);
          c = Convert.ToInt32(cc.Value)
          double d = b * b + 4 * a * c;
          if d > 0
          {
              X11.Visible = true;
              X22.Visible = true;
              double x1 = (b + Math.Sqrt(d)) / 2 * a;
              double x2 = (b - Math.Sqrt(d)) / 2 * a;
              xx1.Visible = true;
              xx2.Visible = true;
              xx1.Text = x1.ToString();
              xx2.Text = x2.ToString();
          }
          if (d < 0)
          {
              neet.Visible = true;
              neet.Text = "нет корней"
          }
          if (d == 0)
          {
              XX.Visible = true;
              neet.Visible = true;
              double x = (-b / 2 * a);
              neet.Text = x.ToString();
          }
          primer.Text = a + "X^2+" + b + "X+" + c + "=0";
          primer.Visible = true;
      }

Как мы видим на скриншоте. Компилятор даже не позволил запустить написанную нами программу. И заботливо подчеркнул все найденные ошибки.

ne_skampelit.....jpg

После щелчка по ошибке в «списке ошибок» курсор будет перенесен на строчку где предполагается синтаксическая ошибка.

oshibki......jpg

После исправлений всех синтаксических ошибок у нас получилось запустить программу.

ne_pravilno_poschitali.....jpg

При попытке расчёта, с входными данными 2, 4, -6 мы получаем ответ «нет корней». Это неправильный ответ. Придётся искать логические ошибки. В этом нам и поможет «отладчик».

Рассмотри наш проект. И заметим строчки где выполняются вычисления.
Это строчки:

  • 1)double d = b * b + 4 * a * c;

  • 2)double x1 = (b + Math.Sqrt(d)) / 2 * a;

  • 3)double x2 = (b — Math.Sqrt(d)) / 2 * a;

  • 4)double x = (-b / 2 * a);

Выделим СЛЕДУЮЩУЮ строчку после этих строчек, и нажмем клавишу F9. Это клавиша для создания «точки остановки компиляции». Если выполнение программы дойдёт до данной точки, то компиляция остановится, и вы уведите значения всех переменных, которые были в момент остановки компиляции. Снять «точку» можно просто выполнив щелчек левой кнопкой мыши.

Начнём процесс компиляции. Когда процесс дойдёт до «точки остановки», мы увидим значения переменных.

Если самому попробовать пересчитать. Мы получим ответ не 32, а ответ 64. Значит мы ищем ошибку в строчке «double d = b * b + 4 * a * c;».
Эта сточка должна выглядить так: «double d = b * b — 4 * a * c;»

После изменений. Мы заново запускаем программу. И получаем уже корректное значение переменной d. Затем с помощью кнопки f10, мы выполняем программу дальше, до следующих точек остановки.

Но наша программа по прежнему не корректно работает. Мы аналогичным способом находим еще 2 ошибки.

  • double x1 = (b + Math.Sqrt(d)) / 2 * a; заменяем на double x1 = (-b + Math.Sqrt(d)) / 2 * a;

  • double x2 = (b — Math.Sqrt(d)) / 2 * a; заменяем на double x2 = (-b — Math.Sqrt(d)) / 2 * a;

После исправления всех ошибок, программа выдаёт верный ответ.

Мы «прогоняем» через программу как можно больше тестов. Чтобы рассмотреть все возможные случаи.

ОТЛАДКА ОКОНЧЕНА! ПРОГРАММА РАБОТАЕТ!


Так должен выглядеть отлаженный код:

      {           
          int a, b, c;           
          X11.Visible = false;
          X22.Visible = false;
          XX.Visible = false;
          xx1.Visible = false;
          xx1.Visible = false;
          xx2.Visible = false;
          neet.Visible = false;
          primer.Visible = false;
          a = Convert.ToInt32(aa.Value);
          b = Convert.ToInt32(bb.Value);
          c = Convert.ToInt32(cc.Value);
          double d = b * b - 4 * a * c;
          if (d > 0)
          {
              X11.Visible = true;
              X22.Visible = true;
              double x1 = (-b + Math.Sqrt(d)) / 2 * a;
              double x2 = (-b - Math.Sqrt(d)) / 2 * a;
              xx1.Visible = true;
              xx2.Visible = true;
              xx1.Text = x1.ToString();
              xx2.Text = x2.ToString();
          }
          if (d < 0)
          {
              neet.Visible = true;
              neet.Text = "нет корней";
          }
          if (d == 0)
          {
              XX.Visible = true;
              neet.Visible = true;
              double x = (-b / 2 * a);
              neet.Text = x.ToString();
          }
          primer.Text = a + "X^2+" + b + "X+" + c + "=0";
          primer.Visible = true;
      }

Основные рекомендации написании программы и отладке

bsod.jpg

  1. Обязательно комментировать код. Возможно вам это покажется необязательным, но это всёже ОЧЕНЬ важная вещь. Возможно вы захотите улучшить свою программу через месяц, когда уже забыли как она работает. Или же вы работаете в команде, другой член команды не сможет понять ваш код, испортит его. Комментирование кода очень важно.

  2. Тщательнее тестировать ваш код. Необходимо делать как можно более сложные вычисления, нестандартные.

  3. Максимально упрощать пример. Если у вас не работает программа, которая читае данные, обрабатывает массив, записывает данные в файл, читает их снова, то разбейте программу на составляющие и выполняйте по очереди. Если у вас не работает сложная подпрограмма обрабатывающая данные из файла — напишите сначала тест в две строчки чтобы убедиться, что вы хотя бы можете считытавать введенные данные.

  4. Вывод отладочной информации. Проверяйте значение КАЖДОЙ переменной! Каждого значения, возвращаемого функцией! В файл записывается пустая строка? Проверяйте составляющие этой строки на каждом этапе ее создания и выводите на экран! Убедились, что на экран выводится? Тренируйтесь писать в файл, на тестовой строке! Забитой прямо в код! Уменьшайте количество неизвестных!

  5. Оптимизировать код. Не стоит заставлять компьютер пересчитывать 100 мл. элементов массива.

  6. Обращать внимания на все ошибки. Не стоит не обращать внимания на незначительную на первый взгляд ошибку. В дальнейшем это может привести к плачевным последствиям.

  7. Не волноваться, не торопится.

Заключение

Отладка — главное занятие программиста.

Отладка — единственный и самый мощный способ найти ошибку в программе.

Отладка программы

  • Отла́дка — этап разработки компьютерной программы, на котором обнаруживают, локализуют и устраняют ошибки. Чтобы понять, где возникла ошибка, приходится:

    * узнавать текущие значения переменных;

    выяснять, по какому пути выполнялась программа.Существуют две взаимодополняющие технологии отладки.

    * Использование отладчиков — программ, которые включают в себя пользовательский интерфейс для пошагового выполнения программы: оператор за оператором, функция за функцией, с остановками на некоторых строках исходного кода или при достижении определённого условия.

    * Вывод текущего состояния программы с помощью расположенных в критических точках программы операторов вывода — на экран, принтер, громкоговоритель или в файл. Вывод отладочных сведений в файл называется журналированием.

Источник: Википедия

Связанные понятия

Отла́дчик (деба́ггер, англ. debugger от bug) — компьютерная программа, предназначенная для поиска ошибок в других программах, ядрах операционных систем, SQL-запросах и других видах кода. Отладчик позволяет выполнять трассировку, отслеживать, устанавливать или изменять значения переменных в процессе выполнения кода, устанавливать и удалять контрольные точки или условия остановки и т.д.

Дизассе́мблер (от англ. disassembler ) — транслятор, преобразующий машинный код, объектный файл или библиотечные модули в текст программы на языке ассемблера.

Сценарный язык (язык сценариев, жарг. скриптовый язык; англ. scripting language) — высокоуровневый язык сценариев (англ. script) — кратких описаний действий, выполняемых системой. Разница между программами и сценариями довольно размыта. Сценарий — это программа, имеющая дело с готовыми программными компонентами.

Компоновщик (также редактор связей, от англ. link editor, linker) — инструментальная программа, которая производит компоновку («линковку»): принимает на вход один или несколько объектных модулей и собирает по ним исполнимый модуль.

Исполняемый файл (англ. executable file, также выполняемый, реже исполнимый, выполнимый) — файл, содержащий программу в виде, в котором она может быть исполнена компьютером. Перед исполнением программа загружается в память, и выполняются некоторые подготовительные операции (настройка окружения, загрузка библиотек).

Профилирование — сбор характеристик работы программы, таких как время выполнения отдельных фрагментов (обычно подпрограмм), число верно предсказанных условных переходов, число кэш-промахов и т. д. Инструмент, используемый для анализа работы, называют профилировщиком или профайлером (англ. profiler). Обычно выполняется совместно с оптимизацией программы.

Среда выполнения (англ. execution environment, иногда «ранта́йм» от англ. runtime — «время выполнения») в информатике — вычислительное окружение, необходимое для выполнения компьютерной программы и доступное во время выполнения компьютерной программы. В среде выполнения, как правило, невозможно изменение исходного текста программы, но может наличествовать доступ к переменным окружения операционной системы, таблицам объектов и модулей разделяемых библиотек.

Маши́нный код (платфо́рменно-ориенти́рованный код), маши́нный язы́к — система команд (набор кодов операций) конкретной вычислительной машины, которая интерпретируется непосредственно процессором или микропрограммами этой вычислительной машины.Компьютерная программа, записанная на машинном языке, состоит из машинных инструкций, каждая из которых представлена в машинном коде в виде т. н. опкода — двоичного кода отдельной операции из системы команд машины. Для удобства программирования вместо числовых…

Объе́ктный мо́дуль (также — объектный файл, англ. object file) — файл с промежуточным представлением отдельного модуля программы, полученный в результате обработки исходного кода компилятором. Объектный файл содержит в себе особым образом подготовленный код (часто называемый двоичным или бинарным), который может быть объединён с другими объектными файлами при помощи редактора связей (компоновщика) для получения готового исполнимого модуля либо библиотеки.

Компью́терная програ́мма — 1) комбинация компьютерных инструкций и данных, позволяющая аппаратному обеспечению вычислительной системы выполнять вычисления или функции управления (стандарт ISO/IEC/IEEE 24765:2010); 2) синтаксическая единица, которая соответствует правилам определённого языка программирования, состоящая из определений и операторов или инструкций, необходимых для определённой функции, задачи или решения проблемы (стандарт ISO/IEC 2382-1:1993).

Ввод-вывод (от англ. input/output, I/O) в информатике — взаимодействие между обработчиком информации (например, компьютер) и внешним миром, который может представлять как человек, так и любая другая система обработки информации. Ввод — сигнал или данные, полученные системой, а вывод — сигнал или данные, посланные ею (или из неё). Термин также может использоваться как обозначение (или дополнение к обозначению) определенного действия: «выполнять ввод-вывод» означает выполнение операций ввода или вывода…

Виртуальная машина (VM, от англ. virtual machine) — программная и/или аппаратная система, эмулирующая аппаратное обеспечение некоторой платформы (target — целевая, или гостевая платформа) и исполняющая программы для target-платформы на host-платформе (host — хост-платформа, платформа-хозяин) или виртуализирующая некоторую платформу и создающая на ней среды, изолирующие друг от друга программы и даже операционные системы (см.: песочница); также спецификация некоторой вычислительной среды (например…

Событи́йно-ориенти́рованное программи́рование (англ. event-driven programming; в дальнейшем СОП) — парадигма программирования, в которой выполнение программы определяется событиями — действиями пользователя (клавиатура, мышь), сообщениями других программ и потоков, событиями операционной системы (например, поступлением сетевого пакета).

Аварийный отказ (также катастрофический отказ, авария, фатальный сбой, разг. крах, падение, краш англ. crash) — это аварийное завершение программы или операционной системы, когда они перестают нормально функционировать.

Рефа́кторинг (англ. refactoring), или перепроектирование кода, переработка кода, равносильное преобразование алгоритмов — процесс изменения внутренней структуры программы, не затрагивающий её внешнего поведения и имеющий целью облегчить понимание её работы. В основе рефакторинга лежит последовательность небольших эквивалентных (то есть сохраняющих поведение) преобразований. Поскольку каждое преобразование маленькое, программисту легче проследить за его правильностью, и в то же время вся последовательность…

Автоматизация сборки — этап процесса разработки программного обеспечения, заключающийся в автоматизации широкого спектра задач, решаемых программистами в их повседневной деятельности.

Оптимизация — модификация системы для улучшения её эффективности. Система может быть одиночной компьютерной программой, цифровым устройством, набором компьютеров или даже целой сетью, такой как Интернет.

Документа́ция на программное обеспечение — печатные руководства пользователя, диалоговая (оперативная) документация и справочный текст, описывающие, как пользоваться программным продуктом.

Дамп памяти (англ. memory dump; в Unix — core dump) — содержимое рабочей памяти одного процесса, ядра или всей операционной системы. Также может включать дополнительную информацию о состоянии программы или системы, например значения регистров процессора и содержимое стека. Многие операционные системы позволяют сохранять дамп памяти для отладки программы. Как правило, дамп памяти процесса сохраняется автоматически, когда процесс завершается из-за критической ошибки (например, из-за ошибки сегментации…

Переполнение буфера (англ. Buffer Overflow) — явление, возникающее, когда компьютерная программа записывает данные за пределами выделенного в памяти буфера.

Интерпретируемый язык программирования — язык программирования, исходный код на котором выполняется методом интерпретации. Классифицируя языки программирования по способу исполнения, к группе интерпретируемых относят языки, в которых операторы программы друг за другом отдельно транслируются и сразу выполняются (интерпретируются) с помощью специальной программы-интерпретатора (что противопоставляется компилируемым языкам, в которых все операторы программы заранее оттранслированы в объектный код…

Подсве́тка си́нтаксиса — выделение синтаксических конструкций текста с использованием различных цветов, шрифтов и начертаний.

Тести́рование програ́ммного обеспе́че́ния — процесс исследования, испытания программного продукта, имеющий своей целью проверку соответствия между реальным поведением программы и её ожидаемым поведением на конечном наборе тестов, выбранных определенным образом (ISO/IEC TR 19759:2005).

Стати́ческий ана́лиз ко́да (англ. static code analysis) — анализ программного обеспечения, производимый (в отличие от динамического анализа) без реального выполнения исследуемых программ. В большинстве случаев анализ производится над какой-либо версией исходного кода, хотя иногда анализу подвергается какой-нибудь вид объектного кода, например P-код или код на MSIL. Термин обычно применяют к анализу, производимому специальным программным обеспечением (ПО), тогда как ручной анализ называют «program…

Байт-код (байтко́д; англ. bytecode, также иногда p-код, p-code от portable code) — стандартное промежуточное представление, в которое может быть переведена компьютерная программа автоматическими средствами. По сравнению с исходным кодом, удобным для создания и чтения человеком, байт-код — это компактное представление программы, уже прошедшей синтаксический и семантический анализ. В нём в явном виде закодированы типы, области видимости и другие конструкции. С технической точки зрения, байт-код представляет…

Модульное тестирование, или юнит-тестирование (англ. unit testing) — процесс в программировании, позволяющий проверить на корректность отдельные модули исходного кода программы, наборы из одного или более программных модулей вместе с соответствующими управляющими данными, процедурами использования и обработки.

Макрокоманда, макроопределение или мáкрос — программный алгоритм действий, записанный пользователем. Часто макросы применяют для выполнения рутинных действий. А также макрос — это символьное имя в шаблонах, заменяемое при обработке препроцессором на последовательность символов, например: фрагмент html-страницы в веб-шаблонах, или одно слово из словаря синонимов в синонимизаторах.

Многопото́чность — свойство платформы (например, операционной системы, виртуальной машины и т. д.) или приложения, состоящее в том, что процесс, порождённый в операционной системе, может состоять из нескольких потоков, выполняющихся «параллельно», то есть без предписанного порядка во времени. При выполнении некоторых задач такое разделение может достичь более эффективного использования ресурсов вычислительной машины.

Исхо́дный код (также исхо́дный текст) — текст компьютерной программы на каком-либо языке программирования или языке разметки, который может быть прочтён человеком. В обобщённом смысле — любые входные данные для транслятора. Исходный код транслируется в исполняемый код целиком до запуска программы при помощи компилятора или может исполняться сразу при помощи интерпретатора.

Сопрограммы (англ. coroutines) — методика связи программных модулей друг с другом по принципу кооперативной многозадачности: модуль приостанавливается в определённой точке, сохраняя полное состояние (включая стек вызовов и счётчик команд), и передаёт управление другому. Тот, в свою очередь, выполняет задачу и передаёт управление обратно, сохраняя свои стек и счётчик.

Подробнее: Сопрограмма

Интерпретатор (англ. interpreter ıntə:’prıtə, от лат. interpretator — толкователь) — программа (разновидность транслятора), выполняющая интерпретацию.

Кросс-компиля́тор (англ. cross compiler) — компилятор, производящий исполняемый код для платформы, отличной от той, на которой исполняется сам кросс-компилятор. Такой инструмент бывает полезен, когда нужно получить код для платформы, экземпляров которой нет в наличии, или в случаях когда компиляция на целевой платформе невозможна или нецелесообразна (например, это касается мобильных систем или микроконтроллеров с минимальным объёмом памяти).

DLL (англ. Dynamic Link Library — «библиотека динамической компоновки», «динамически подключаемая библиотека») в операционных системах Microsoft Windows и IBM OS/2 — динамическая библиотека, позволяющая многократное использование различными программными приложениями. Эти библиотеки обычно имеют расширение DLL, OCX (для библиотек содержащих ActiveX), или DRV (для ряда системных драйверов). Формат файлов для DLL такой же, как для EXE-файлов Windows, т. е. Portable Executable (PE) для 32-битных и 64-битных…

Визуальное программирование — способ создания программы для ЭВМ путём манипулирования графическими объектами вместо написания её текста. Визуальное программирование часто представляют как следующий этап развития текстовых языков программирования. Наглядным примером может служить утилита Визуальный Pascal или Microsoft Visual Studio, где редактируются графические объекты и одновременно отображается соответствующий текст программы. В последнее время визуальному программированию стали уделять больше…

Текстовый пользовательский интерфейс, ТПИ (англ. Text user interface, TUI; также Character User Interface, CUI) — разновидность интерфейса пользователя, использующая при вводе-выводе и представлении информации исключительно набор буквенно-цифровых символов и символов псевдографики. Характеризуется малой требовательностью к ресурсам аппаратуры ввода-вывода (в частности, памяти) и высокой скоростью отображения информации. Появился на одном из начальных этапов развития вычислительной техники, при развитии…

Библиоте́ка (от англ. library) в программировании — сборник подпрограмм или объектов, используемых для разработки программного обеспечения (ПО).

Ассе́мблер (от англ. assembler — сборщик) — транслятор исходного текста программы, написанной на языке ассемблера, в программу на машинном языке.

Интерфейс командной строки (англ. Command line interface, CLI) — разновидность текстового интерфейса (CUI) между человеком и компьютером, в котором инструкции компьютеру даются в основном путём ввода с клавиатуры текстовых строк (команд), в UNIX-системах возможно применение мыши. Также известен под названием консоль.

Стек вызовов (от англ. call stack; применительно к процессорам — просто «стек») — в теории вычислительных систем, LIFO-стек, хранящий информацию для возврата управления из подпрограмм (процедур, функций) в программу (или подпрограмму, при вложенных или рекурсивных вызовах) и/или для возврата в программу из обработчика прерывания (в том числе при переключении задач в многозадачной среде).

Безопасность доступа к памяти — концепция в разработке программного обеспечения, целью которой является избежание программных ошибок, которые ведут к уязвимостям, связанным с доступом к оперативной памяти компьютера, таким как переполнения буфера и висячие указатели.

Де́мон (daemon, dæmon, др.-греч. δαίμων божество) — компьютерная программа в системах класса UNIX, запускаемая самой системой и работающая в фоновом режиме без прямого взаимодействия с пользователем.

Установка программного обеспечения, инсталляция — процесс установки программного обеспечения на компьютер конечного пользователя. Выполняется особой программой (пакетным менеджером), присутствующей в операционной системе (например, RPM, APT или dpkg в Linux, Установщик Windows в Microsoft Windows), или же входящим в состав самого программного обеспечения средством установки. В операционной системе GNU очень распространено использование системы GNU toolchain и её аналогов для компиляции программного…

Песочница — специально выделенная (изолированная) среда для безопасного исполнения компьютерных программ. Обычно представляет собой жёстко контролируемый набор ресурсов для исполнения гостевой программы — например, место на диске или в памяти. Доступ к сети, возможность сообщаться с главной операционной системой или считывать информацию с устройств ввода обычно либо частично эмулируют, либо сильно ограничивают. Песочницы представляют собой пример виртуализации.

Межпроцессное взаимодействие (англ. inter-process communication, IPC) — обмен данными между потоками одного или разных процессов. Реализуется посредством механизмов, предоставляемых ядром ОС или процессом, использующим механизмы ОС и реализующим новые возможности IPC. Может осуществляться как на одном компьютере, так и между несколькими компьютерами сети.

Низкоуровневый язык программирования (язык программирования низкого уровня) — язык программирования, близкий к программированию непосредственно в машинных кодах используемого реального или виртуального (например, байт-код, Microsoft .NET) процессора. Для обозначения машинных команд обычно применяется мнемоническое обозначение. Это позволяет запоминать команды не в виде последовательности двоичных нулей и единиц, а в виде осмысленных сокращений слов человеческого языка (обычно английских).

Декомпиля́тор — это программа, транслирующая исполняемый модуль (полученный на выходе компилятора) в эквивалентный исходный код на языке программирования высокого уровня.

Конфигурация программного обеспечения — совокупность настроек программы, задаваемая пользователем, а также процесс изменения этих настроек в соответствии с нуждами пользователя.

Систе́мный вы́зов (англ. system call) в программировании и вычислительной технике — обращение прикладной программы к ядру операционной системы для выполнения какой-либо операции.

Кодогенерация — часть процесса компиляции, когда специальная часть компилятора, кодогенератор, конвертирует синтаксически корректную программу в последовательность инструкций, которые могут выполняться на машине. При этом могут применяться различные, в первую очередь машинно-зависимые оптимизации. Часто кодогенератор является общей частью для множества компиляторов. Каждый из них генерирует промежуточный код, который подаётся на вход кодогенератору.

Пакетный файл (англ. batch file) — текстовый файл в MS-DOS, OS/2 или Windows, содержащий последовательность команд, предназначенных для исполнения командным интерпретатором. После запуска пакетного файла программа-интерпретатор (как правило, COMMAND.COM или cmd.exe) читает его строка за строкой и последовательно исполняет команды. Пакетный файл — аналог скриптовых файлов командной строки (shell script) в Unix-подобных операционных системах.

Понравилась статья? Поделить с друзьями:
  • Эталоном для подражания речевая ошибка
  • Эрис 414 коды ошибок
  • Эталон для подражания речевая ошибка
  • Эриксон сплит система ошибка е5
  • Эта юбка длиньше какая ошибка