Exception как вывести ошибку

One has pretty much control on which information from the traceback to be displayed/logged when catching exceptions.

The code

with open("not_existing_file.txt", 'r') as text:
    pass

would produce the following traceback:

Traceback (most recent call last):
  File "exception_checks.py", line 19, in <module>
    with open("not_existing_file.txt", 'r') as text:
FileNotFoundError: [Errno 2] No such file or directory: 'not_existing_file.txt'

Print/Log the full traceback

As others already mentioned, you can catch the whole traceback by using the traceback module:

import traceback
try:
    with open("not_existing_file.txt", 'r') as text:
        pass
except Exception as exception:
    traceback.print_exc()

This will produce the following output:

Traceback (most recent call last):
  File "exception_checks.py", line 19, in <module>
    with open("not_existing_file.txt", 'r') as text:
FileNotFoundError: [Errno 2] No such file or directory: 'not_existing_file.txt'

You can achieve the same by using logging:

try:
    with open("not_existing_file.txt", 'r') as text:
        pass
except Exception as exception:
    logger.error(exception, exc_info=True)

Output:

__main__: 2020-05-27 12:10:47-ERROR- [Errno 2] No such file or directory: 'not_existing_file.txt'
Traceback (most recent call last):
  File "exception_checks.py", line 27, in <module>
    with open("not_existing_file.txt", 'r') as text:
FileNotFoundError: [Errno 2] No such file or directory: 'not_existing_file.txt'

Print/log error name/message only

You might not be interested in the whole traceback, but only in the most important information, such as Exception name and Exception message, use:

try:
    with open("not_existing_file.txt", 'r') as text:
        pass
except Exception as exception:
    print("Exception: {}".format(type(exception).__name__))
    print("Exception message: {}".format(exception))

Output:

Exception: FileNotFoundError
Exception message: [Errno 2] No such file or directory: 'not_existing_file.txt'

Время на прочтение
10 мин

Количество просмотров 37K

Одним из недостатков гибких языков, таких как Python, является предположение, что если что-то работает, то скорее всего оно сделано правильно. Я хочу написать скромное руководство по эффективному использованию исключений в Python, правильной их обработке и логировании.

Эффективная обработка исключений

Введение

Давайте рассмотрим следующую систему. У нас есть микросервис, который отвечает за:

·  Прослушивание событий о новом заказе;

·  Получение заказа из базы данных;

·  Проверку состояния принтера;

·  Печать квитанции;

·  Отправка квитанции в налоговую систему (IRS).

В любой момент может сломаться что угодно. У вас могут возникнуть проблемы с объектом заказа, в котором может не быть нужной информации, или в принтере может закончиться бумага, или же сервис налоговой не будет работать, и вы не сможете синхронизировать с ними квитанцию об оплате, а может быть ваша база данных окажется недоступна.

Ваша задача правильно и проактивно реагировать на любую ситуацию, чтобы избежать ошибок при обработке новых заказов.

И примерно вот такой код на этот случай пишут люди (он, конечно, работает, но плохо и неэффективно):

class OrderService:
    def emit(self, order_id: str) -> dict:

        try:
            order_status = status_service.get_order_status(order_id)
        except Exception as e:
            logger.exception(
                f"Order {order_id} was not found in db "
                f"to emit. Error: {e}."
            )
            raise e

        (
            is_order_locked_in_emission,
            seconds_in_emission,
        ) = status_service.is_order_locked_in_emission(order_id)
        if is_order_locked_in_emission:
            logger.info(
                "Redoing emission because "
                "it was locked in that state after a long time! "
                f"Time spent in that state: {seconds_in_emission} seconds "
                f"Order: {order_id}, "
                f"order_status: {order_status.value}"
            )

        elif order_status == OrderStatus.EMISSION_IN_PROGRESS:
            logger.info("Aborting emission request because it is already in progress!")
            return {"order_id": order_id, "order_status": order_status.value}

        elif order_status == OrderStatus.EMISSION_SUCCESSFUL:
            logger.info(
                "Aborting emission because it already happened! "
                f"Order: {order_id}, "
                f"order_status: {order_status.value}"
            )
            return {"order_id": order_id, "order_status": order_status.value}

        try:
            receipt_note = receipt_service.create(order_id)
        except Exception as e:
            logger.exception(
                "Error found during emission! "
                f"Order: {order_id}, "
                f"exception: {e}"
            )
            raise e

        try:
            broker.emit_receipt_note(receipt_note)
        except Exception as e:
            logger.exception(
                "Emission failed! "
                f"Order: {order_id}, "
                f"exception: {e}"
            )
            raise e

        order_status = status_service.get_order_status(order_id)
        return {"order_id": order_id, "order_status": order_status.value}

Сначала я сосредоточусь на том, что OrderService слишком много знает, и все эти данные делают его чем-то вроде blob, а чуть позже расскажу о правильной обработке и правильном логировании исключений.

Почему этот сервис — blob?

Этот сервис знает слишком много. Кто-то может сказать, что он знает только то, что ему нужно (то есть все шаги, связанные с формированием чека), но на самом деле он знает куда больше.

Он сосредоточен на создании ошибок (например, база данных, печать, статус заказа), а не на том, что он делает (например, извлекает, проверяет статус, генерирует, отправляет) и на том, как следует реагировать в случае сбоев.

 В этом смысле мне кажется, что клиент учит сервис тому, какие исключения он может выдать. Если мы решим переиспользовать его на любом другом этапе (например, клиент захочет получить еще одну печатную копию более старого чека по заказу), мы скопируем большую часть этого кода.

Несмотря на то, что сервис работает нормально, поддерживать его трудно, и неясно, как один шаг соотносится с другим из-за повторяющихся блоков except между шагами, которые отвлекают наше внимание на вопрос «как» вместо того, чтобы думать о «когда».

Первое улучшение: делайте исключения конкретными

Давайте сначала сделаем исключения более точными и конкретными. Преимущества не видны сразу, поэтому я не буду тратить слишком много времени на объяснение этого прямо сейчас. Однако обратите внимание на то, как изменяется код.

Я выделю только то, что мы поменяли:

try:
    order_status = status_service.get_order_status(order_id)
except Exception as e:
    logger.exception(...)
    raise OrderNotFound(order_id) from e

...

try:
    ...
except Exception as e:
    logger.exception(...)
    raise ReceiptGenerationFailed(order_id) from e

try:
    broker.emit_receipt_note(receipt_note)
except Exception as e:
    logger.exception(...)
    raise ReceiptEmissionFailed(order_id) from e

Обратите внимание, что на этот раз я пользуюсь from e, что является правильным способом создания одного исключения из другого и сохраняет полную трассировку стека.

Второе улучшение: не лезьте не в свое дело

Теперь, когда у нас есть кастомные исключения, мы можем перейти к мысли «не учите классы тому, что может пойти не так» — они сами скажут, если это случится!

# Services

class StatusService:
    def get_order_status(order_id):
        try:
            ...
        except Exception as e:
            raise OrderNotFound(order_id) from e


class ReceiptService:
    def create(order_id):
        try:
            ...
        except Exception as e:
            raise ReceiptGenerationFailed(order_id) from e


class Broker:
    def emit_receipt_note(receipt_note):
        try:
            ...
        except Exception as e:
            raise ReceiptEmissionFailed(order_id) from e

# Main class

class OrderService:
    def emit(self, order_id: str) -> dict:
        try:
            order_status = status_service.get_order_status(order_id)

            (
                is_order_locked_in_emission,
                seconds_in_emission,
            ) = status_service.is_order_locked_in_emission(order_id)
            if is_order_locked_in_emission:
                logger.info(
                    "Redoing emission because "
                    "it was locked in that state after a long time! "
                    f"Time spent in that state: {seconds_in_emission} seconds "
                    f"Order: {order_id}, "
                    f"order_status: {order_status.value}"
                )

            elif order_status == OrderStatus.EMISSION_IN_PROGRESS:
                logger.info("Aborting emission request because it is already in progress!")
                return {"order_id": order_id, "order_status": order_status.value}

            elif order_status == OrderStatus.EMISSION_SUCCESSFUL:
                logger.info(
                    "Aborting emission because it already happened! "
                    f"Order: {order_id}, "
                    f"order_status: {order_status.value}"
                )
                return {"order_id": order_id, "order_status": order_status.value}

            receipt_note = receipt_service.create(order_id)
            broker.emit_receipt_note(receipt_note)
            order_status = status_service.get_order_status(order_id)
        except OrderNotFound as e:
            logger.exception(
                f"Order {order_id} was not found in db "
                f"to emit. Error: {e}."
            )
            raise
        except ReceiptGenerationFailed as e:
            logger.exception(
                "Error found during emission! "
                f"Order: {order_id}, "
                f"exception: {e}"
            )
            raise
        except ReceiptEmissionFailed as e:
            logger.exception(
                "Emission failed! "
                f"Order: {order_id}, "
                f"exception: {e}"
            )
            raise
        else:
            return {"order_id": order_id, "order_status": order_status.value}

Как вам? Намного лучше, правда? У нас есть один блок try, который построен достаточно логично, чтобы понять, что произойдет дальше. Вы сгруппировали конкретные блоки, за исключением тех, которые помогают вам понять «когда» и крайние случаи. И, наконец, у вас есть блок else, в котором описано, что произойдет, если все отработает как надо.

Кроме того, пожалуйста, обратите внимание на то, что я сохранил инструкции raise без объявления объекта исключения. Это не опечатка. На самом деле, это правильный способ повторного вызова исключения: простой и немногословный.

Но это еще не все. Логирование продолжает меня раздражать.

Третье улучшение: улучшение логирования

Этот шаг напоминает мне принцип «говори, а не спрашивай», хотя это все же не совсем он. Вместо того, чтобы запрашивать подробности исключения и на их основе выдавать полезные сообщения, исключения должны выдавать их сами – в конце концов, я их конкретизировал!

### Exceptions

class OrderCreationException(Exception):
    pass


class OrderNotFound(OrderCreationException):
    def __init__(self, order_id):
        self.order_id = order_id
        super().__init__(
            f"Order {order_id} was not found in db "
            "to emit."
        )


class ReceiptGenerationFailed(OrderCreationException):
    def __init__(self, order_id):
        self.order_id = order_id
        super().__init__(
            "Error found during emission! "
            f"Order: {order_id}"
        )


class ReceiptEmissionFailed(OrderCreationException):
    def __init__(self, order_id):
        self.order_id = order_id
        super().__init__(
            "Emission failed! "
            f"Order: {order_id} "
        )

### Main class

class OrderService:
    def emit(self, order_id: str) -> dict:
        try:
            ...
        except OrderNotFound:
            logger.exception("We got a database exception")
            raise
        except ReceiptGenerationFailed:
            logger.exception("We got a problem generating the receipt")
            raise
        except ReceiptEmissionFailed:
            logger.exception("Unable to emit the receipt")
            raise
        else:
            return {"order_id": order_id, "order_status": order_status.value}

Наконец-то мои глаза чувствуют облегчение. Поменьше повторений, пожалуйста! Примите к сведению, что рекомендуемый способ выглядит так, как я написал его выше: logger.exception(«ЛЮБОЕ СООБЩЕНИЕ»). Вам даже не нужно передавать исключение, поскольку его наличие уже подразумевается. Кроме того, кастомное сообщение, которое мы определили в каждом исключении с идентификатором order_id, будет отображаться в логах, поэтому вам не нужно повторяться и не нужно оперировать внутренними данными об исключениях.

Вот пример вывода ваших логов:

❯ python3 testme.py
Unable to emit the receipt # <<-- My log message
Traceback (most recent call last):
  File "/path/testme.py", line 19, in <module>
    tryme()
  File "/path/testme.py", line 14, in tryme
    raise ReceiptEmissionFailed(order_id)
ReceiptEmissionFailed: Emission failed! Order: 10 # <<-- My exception message

Теперь всякий раз, когда я получаю это исключение, сообщение уже ясно и понятно, и мне не нужно помнить о логировании order_id, который я сгенерировал.

Последнее улучшение: упрощение

После более детального рассмотрения нашего окончательного кода, он кажется лучше, теперь его легко читать и поддерживать.

Но управляет ли OrderService бизнес-логикой? Я не думаю, что это сервис в общем смысле. Он больше похож на координацию вызовов настоящих сервисов обеспечивающих бизнес-логику, которая выглядит получше, чем паттерн facade.

Кроме того, можно заметить, что он запрашивает данные у status_service, чтобы что-то с ними сделать. (Что, на этот раз, действительно разрушает идею «Говори, а не спрашивай»).

Перейдем к упрощению.

class OrderFacade:  # Renamed to match what it actually is
    def emit(self, order_id: str) -> dict:
        try:
            # NOTE: info logging still happens inside
            status_service.ensure_order_unlocked(order_id)
            receipt_note = receipt_service.create(order_id)
            broker.emit_receipt_note(receipt_note)
            order_status = status_service.get_order_status(order_id)
        except OrderAlreadyInProgress as e:
            # New block
            logger.info("Aborting emission request because it is already in progress!")
            return {"order_id": order_id, "order_status": e.order_status.value}
        except OrderAlreadyEmitted as e:
            # New block
            logger.info(f"Aborting emission because it already happened! {e}")
            return {"order_id": order_id, "order_status": e.order_status.value}
        except OrderNotFound:
            logger.exception("We got a database exception")
            raise
        except ReceiptGenerationFailed:
            logger.exception("We got a problem generating the receipt")
            raise
        except ReceiptEmissionFailed:
            logger.exception("Unable to emit the receipt")
            raise
        else:
            return {"order_id": order_id, "order_status": order_status.value}

Мы только что создали новый метод ensure_order_unlocked для нашего status_service, который теперь отвечает за создание исключений/логирование в случае, если что-то идет не так.

Хорошо, а теперь скажите, насколько легче теперь стало это читать?

Я могу понять все return при беглом просмотре. Я знаю, что происходит, когда все идет хорошо, и как крайние случаи могут привести к разным результатам. И все это без прокрутки взад-вперед.

Теперь этот код такой же простой, каким (в основном) должен быть любой код.

Обратите внимание, что я решил вывести объект исключения e в логах, поскольку под капотом он будет запускать str(e), который вернет сообщение об исключении. Я подумал, что было бы полезно говорить подробно, поскольку мы не используем log.exception для этого блока, поэтому сообщение об исключении не будет отображаться.

Теперь давайте разберемся с некоторыми хитростями, которые помогут вам сделать код понятным для чтения и простым в обслуживании.

Эффективное создание исключений

Всегда классифицируйте свои исключения через базовое и расширяйте все конкретные исключения от него. С помощью этой полезной практики вы можете переиспользовать логику для связанного кода.

Исключения – это объекты, которые несут в себе информацию, поэтому не стесняйтесь добавлять кастомные атрибуты, которые могут помочь вам понять, что происходит. Не позволяйте своему бизнес-коду учить вас тому, как он должен быть построен, ведь с таким количеством сообщений и деталей потерять себя становится трудно.

# Base category exception
class OrderCreationException(Exception):
    pass

# Specific error with custom message. Order id is required.
class OrderNotFound(OrderCreationException):
    def __init__(self, order_id):
        self.order_id = order_id  # custom property
        super().__init__(
            f"Order {order_id} was not found in db "
            f"to emit."
        )


# Specific error with custom message. Order id is required.
class ReceiptGenerationFailed(OrderCreationException):
    def __init__(self, order_id):
        self.order_id = order_id  # custom property
        super().__init__(
            "Error found during emission! "
            f"Order: {order_id}"
        )

В примере выше я мог бы выйти за рамки и расширить базовый класс, чтобы всегда получать order_id, если мне это нужно. Этот совет поможет сохранить код сухим, поскольку мне не нужно быть многословным при создании исключений. Так можно использовать всего лишь одну переменную.

def func1(order_id):
    raise OrderNotFound(order_id)
    # instead of raise OrderNotFound(f"Can't find order {order_id}")


def func2(order_id):
    raise OrderNotFound(order_id)
    # instead of raise OrderNotFound(f"Can't find order {order_id}")

  В тестировании также будет больше смысла, поскольку я могу сделать assert order_id через строку.

assert e.order_id == order_id
# instead of assert order_id in str(e)

Ловим и создаем исключения эффективно

Еще одна вещь, которую люди часто делают неправильно – это отлавливают и повторно создают исключения.

Согласно PEP 3134 Python, делать нужно следующим образом.

Повторное создание исключения

Обычной инструкции raise более чем достаточно.

try:
    ...
except CustomException as ex:
    # do stuff (e.g. logging)
    raise

Создание одного исключения из другого

Этот вариант особо актуален, поскольку он сохраняет всю трассировку стека и помогает вашей команде отлаживать основные проблемы.

try:
    ...
except CustomException as ex:
    raise MyNewException() from ex

Эффективное логирование исключений

Еще один совет, который не позволит вам быть слишком многословным.

Используйте logger.exception

Вам не нужно логировать объект исключения. Функция exception логгера предназначена для использования внутри блоков except. Она уже обрабатывает трассировку стека с информацией о выполнении и отображает, какое исключение вызвало ее, с сообщением, установленном на уровне ошибки!

try:
    ...
except CustomException:
    logger.exception("custom message")

А что, если это не ошибка?

Если по какой-то причине вы не хотите логировать исключение как ошибку, то возможно, это предупреждение или просто информация, как было показано выше.

Вы можете принять решение установить exc_info в True, если хотите сохранить трассировку стека. Кроме того, было бы неплохо использовать объект исключения внутри сообщения.

Источники

Документация Python:

·  Python logging.logger.exception

·  Python PEP 3134

Принципы и качество кода:

·  Говори, а не спрашивай

·  Паттерн facade

·  Blob


РЕГИСТРАЦИЯ

Содержание

Введение
Пример с базовым Exception
Два исключения
except Error as e:: Печать текста ошибки
else
finally
raise
Пример 2
Пример 3
Исключения, которые не нужно обрабатывать
Список исключений
Разбор примеров: IndexError, ValueError, KeyError
Похожие статьи

Введение

Если в коде есть ошибка, которую видит интерпретатор поднимается исключение, создается так называемый
Exception Object, выполнение останавливается, в терминале
показывается Traceback.

В английском языке используется словосочетание Raise Exception

Исключение, которое не было предусмотрено разработчиком называется необработанным (Unhandled Exception)

Такое поведение не всегда является оптимальным. Не все ошибки дожны останавливать работу кода.
Возможно, где-то разработчик ожидает появление ошибок и их можно обработать по-другому.

try и except нужны прежде всего для того, чтобы код правильно реагировал на возможные ошибки и продолжал выполняться
там, где появление ошибки некритично.

Исключение, которое предусмотрено в коде называется обработанным (Handled)

Блок try except имеет следующий синтаксис

try:
pass
except Exception:
pass
else:
pass
finally:
pass

В этой статье я создал файл

try_except.py

куда копирую код из примеров.

Пример

Попробуем открыть несуществующий файл и воспользоваться базовым Exception

try:
f = open(‘missing.txt’)
except Exception:
print(‘ERR: File not found’)

python try_except.py

ERR: No missing.txt file found

Ошибка поймана, видно наше сообщение а не Traceback

Проверим, что когда файл существует всё хорошо

try:
f = open(‘existing.txt’)
except Exception:
print(‘ERR: File not found’)

python try_except.py

Пустота означает успех

Два исключения

Если ошибок больше одной нужны дополнительные исключения. Попробуем открыть существующий файл, и после этого
добавить ошибку.

try:
f = open(‘existing.txt’)
x = bad_value
except Exception:
print(‘ERR: File not found’)

python try_except.py

ERR: File not found

Файл открылся, но так как в следующей строке ошибка — в терминале появилось вводящее в заблуждение сообщение.
Проблема не в том, что «File not found» а в том, что bad_value нигде не определёно.

Избежать сбивающих с толку сообщений можно указав тип ожидаемой ошибки. В данном примере это FileNotFoundError

try:
# expected exception
f = open(‘existing.txt’)
# unexpected exception should result in Traceback
x = bad_value
except FileNotFoundError:
print(‘ERR: File not found’)

python try_except.py

Traceback (most recent call last):
File «/home/andrei/python/try_except2.py», line 5, in <module>
x = bad_value
NameError: name ‘bad_value’ is not defined

Вторая ошибка не поймана поэтому показан Traceback

Поймать обе ошибки можно добавив второй Exception

try:
# expected exception should be caught by FileNotFoundError
f = open(‘missing.txt’)
# unexpected exception should be caught by Exception
x = bad_value
except FileNotFoundError:
print(‘ERR: File not found’)
except Exception:
print(‘ERR: Something unexpected went wrong’)

python try_except.py

ERR: File not found

ERR: Something unexpected went wrong

Печать текста ошибки

Вместо своего текста можно выводить текст ошибки. Попробуем с существующим файлом — должна быть одна пойманная ошибка.

try:
# expected exception should be caught by FileNotFoundError
f = open(‘existing.txt’)
# unexpected exception should be caught by Exception
x = bad_value
except FileNotFoundError as e:
print(e)
except Exception as e:
print(e)

python try_except.py

name ‘bad_value’ is not defined

Теперь попытаемся открыть несуществующий файл — должно быть две пойманные ошибки.

try:
# expected exception should be caught by FileNotFoundError
f = open(‘missing.txt’)
# unexpected exception should be caught by Exception
x = bad_value
except FileNotFoundError as e:
print(e)
except Exception as e:
print(e)

python try_except.py

name ‘bad_value’ is not defined

[Errno 2] No such file or directory: ‘missing.txt’

else

Блок else будет выполнен если исключений не будет поймано.

Попробуем открыть существующий файл

existing.txt

в котором есть строка

www.heihei.ru

try:
f = open(‘existing.txt’)
except FileNotFoundError as e:
print(e)
except Exception as e:
print(e)
else:
print(f.read())
f.close()

python try_except.py

www.heihei.ru

Если попробовать открыть несуществующий файл

missing.txt

то исключение обрабатывается, а код из блока else не выполняется.

[Errno 2] No such file or directory: ‘missing.txt’

finally

Блок finally будет выполнен независимо от того, поймано исключение или нет

try:
f = open(‘existing.txt’)
except FileNotFoundError as e:
print(e)
except Exception as e:
print(e)
else:
print(f.read())
f.close()
finally:
print(«Finally!»)

www.heihei.ru

Finally!

А если попытаться открыть несуществующий

missing.txt

[Errno 2] No such file or directory: ‘missing.txt’
Finally!

Когда нужно применять finally:

Рассмотрим скрипт, который вносит какие-то изменения в систему.
Затем он пытается что-то сделать. В конце возвращает
систему в исходное состояние.

Если ошибка случится в середине скрипта — он уже не сможет вернуть систему в исходное состояние.

Но если вынести возврат к исходному состоянию в блок finally он сработает даже при ошибке
в предыдущем блоке.

import os

def make_at(path, dir_name):
original_path = os.getcwd()
os.chdir(path)
os.mkdir(dir_name)
os.chdir(original_path)

Этот скрипт не вернётся в исходную директорию при ошибке в os.mkdir(dir_name)

А у скрипта ниже такой проблемы нет

def make_at(path, dir_name):
original_path = os.getcwd()
os.chdir(path)
try:
os.mkdir(dir_name)
finally:
os.chdir(original_path)

Не лишнима будет добавить обработку и вывод исключения

import os
import sys

def make_at(path, dir_name):
original_path = os.getcwd()
os.chdir(path)
try:
os.mkdir(dir_name)

except OSError as e:
print(e, file=sys.stderr)
raise
finally:
os.chdir(original_path)

По умолчанию print() выводит в sys.stdout, но в случае ислючений логичнее выводить в sys.stderr

raise

Можно вызывать исключения вручную в любом месте кода с помощью
raise.

try:
f = open(‘outdated.txt’)
if f.name == ‘outdated.txt’:
raise Exception
except FileNotFoundError as e:
print(e)
except Exception as e:
print(‘File is outdated!’)
else:
print(f.read())
f.close()
finally:
print(«Finally!»)

python try_except.py

File is outdated!
Finally!

raise

можно использовать для перевызова исключения, например, чтобы уйти от использования кодов ошибок.

Для этого достаточно вызвать raise без аргументов — поднимется текущее исключение.

Пример 2

Рассмотрим функцию, которая принимает числа прописью и возвращает цифрами

DIGIT_MAP = {
‘zero’: ‘0’,
‘one’: ‘1’,
‘two’: ‘2’,
‘three’: ‘3’,
‘four’: ‘4’,
‘five’: ‘5’,
‘six’: ‘6’,
‘seven’: ‘7’,
‘eight’: ‘8’,
‘nine’: ‘9’,
}

def convert(s):
number = »
for token in s:
number += DIGIT_MAP[token]
x = int(number)
return x

python

>>> from exc1 import convert
>>> convert(«one three three seven».split())
1337

Теперь передадим аргумент, который не предусмотрен в словаре

>>> convert(«something unseen«.split())
Traceback (most recent call last):
File «<stdin>», line 1, in <module>
File «/home/andrei/python/exc1.py», line 17, in convert
number &plu= DIGIT_MAP[token]
KeyError: ‘something’

KeyError — это тип Exception объекта. Полный список можно изучить в конце статьи.

Исключение прошло следующий путь:

REPL convert() DIGIT_MAP(«something») KeyError

Обработать это исключение можно внеся изменения в функцию convert

convert(s):
try:
number = »
for token in s:
number += DIGIT_MAP[token]
x = int(number)
print(«Conversion succeeded! x = «, x)
except KeyError:
print(«Conversion failed!»)
x = —1
return x

>>> from exc1 import convert
>>> convert(«one nine six one».split())
Conversion succeeded! x = 1961
1961
>>> convert(«something unseen».split())
Conversion failed!
-1

Эта обработка не спасает если передать int вместо итерируемого объекта

>>> convert(2022)
Traceback (most recent call last):
File «<stdin>», line 1, in <module>
File «/home/andrei/python/exc1.py», line 17, in convert
for token in s:
TypeError: ‘int’ object is not iterable

Нужно добавить обработку TypeError


except KeyError:
print(«Conversion failed!»)
x = —1
except TypeError:
print(«Conversion failed!»)
x = —1
return x

>>> from exc1 import convert
>>> convert(«2022».split())
Conversion failed!
-1

Избавимся от повторов, удалив принты, объединив два исключения в кортеж и вынесем присваивание значения x
из try блока.

Также добавим

докстринг

с описанием функции.

def convert(s):
«»»Convert a string to an integer.»»»
x = —1
try:
number = »
for token in s:
number += DIGIT_MAP[token]
x = int(number)
except (KeyError, TypeError):
pass
return x

>>> from exc4 import convert
>>> convert(«one nine six one».split())
1961
>>> convert(«bad nine six one».split())
-1
>>> convert(2022)
-1

Ошибки обрабатываются, но без принтов, процесс не очень информативен.

Грамотно показать текст сообщений об ошибках можно импортировав sys и изменив функцию

import sys

DIGIT_MAP = {
‘zero’: ‘0’,
‘one’: ‘1’,
‘two’: ‘2’,
‘three’: ‘3’,
‘four’: ‘4’,
‘five’: ‘5’,
‘six’: ‘6’,
‘seven’: ‘7’,
‘eight’: ‘8’,
‘nine’: ‘9’,
}

def convert(s):
«»»Convert a string to an integer.»»»
try:
number = »
for token in s:
number += DIGIT_MAP[token]
return(int(number))
except (KeyError, TypeError) as e:
print(f«Conversion error: {e!r}», file=sys.stderr)
return1

>>> from exc1 import convert
>>> convert(2022)
Conversion error: TypeError(«‘int’ object is not iterable»)
-1
>>> convert(«one nine six one».split())
1961
>>> convert(«bad nine six one».split())
Conversion error: KeyError(‘bad’)

Ошибки обрабатываются и их текст виден в терминале.

С помощью

!r

выводится

repr()

ошибки

raise вместо кода ошибки

В предыдущем примере мы полагались на возвращение числа -1 в качестве кода ошибки.

Добавим к коду примера функцию string_log() и поработаем с ней

def string_log(s):
v = convert(s)
return log(v)

>>> from exc1 import string_log
>>> string_log(«one two eight».split())
4.852030263919617
>>> string_log(«bad one two».split())
Conversion error: KeyError(‘bad’)
Traceback (most recent call last):
File «<stdin>», line 1, in <module>
File «/home/andrei/exc1.py», line 32, in string_log
return log(v)
ValueError: math domain error

convert() вернул -1 а string_log попробовал его обработать и не смог.

Можно заменить return -1 на raise. Это считается более правильным подходом в Python

def convert(s):
«»»Convert a string to an integer.»»»
try:
number = »
for token in s:
number += DIGIT_MAP[token]
return(int(number))
except (KeyError, TypeError) as e:
print(f«Conversion error: {e!r}», file=sys.stderr)
raise

>>> from exc7 import string_log
>>> string_log(«one zero».split())
2.302585092994046
>>> string_log(«bad one two».split())
Conversion error: KeyError(‘bad’)
Traceback (most recent call last):
File «<stdin>», line 1, in <module>
File «/home/andrei/exc7.py», line 31, in string_log
v = convert(s)
File «/home/andrei/exc7.py», line 23, in convert
number += DIGIT_MAP[token]
KeyError: ‘bad’

Пример 3

Рассмотрим алгоритм по поиску квадратного корня

def sqrt(x):
«»»Compute square roots using the method
of Heron of Alexandria.

Args:
x: The number for which the square root
is to be computed.

Returns:
The square root of x.
«»»

guess = x
i = 0
while guess * guess != x and i < 20:
guess = (guess + x / guess) / 2.0
i += 1
return guess

def main():
print(sqrt(9))
print(sqrt(2))

if __name__ == ‘__main__’:
main()

python sqrt_ex.py

3.0
1.414213562373095

При попытке вычислить корень от -1 получим ошибку

def main():
print(sqrt(9))
print(sqrt(2))
print(sqrt(-1))

python sqrt_ex.py

3.0
1.414213562373095
Traceback (most recent call last):
File «/home/andrei/sqrt_ex.py», line 26, in <module>
main()
File «/home/andrei/sqrt_ex.py», line 23, in main
print(sqrt(-1))
File «/home/andrei/sqrt_ex.py», line 16, in sqrt
guess = (guess + x / guess) / 2.0
ZeroDivisionError: float division by zero

В строке

guess = (guess + x / guess) / 2.0

Происходит деление на ноль

Обработать можно следующим образом:

def main():
try:
print(sqrt(9))
print(sqrt(2))
print(sqrt(-1))
except ZeroDivisionError:
print(«Cannot compute square root «
«of a negative number.»)

print(«Program execution continues «
«normally here.»)

Обратите внимание на то, что в try помещены все вызовы функции

python sqrt_ex.py

3.0
1.414213562373095
Cannot compute square root of a negative number.
Program execution continues normally here.

Если пытаться делить на ноль несколько раз — поднимется одно исключение и всё что находится в блоке
try после выполняться не будет

def main():
try:
print(sqrt(9))
print(sqrt(-1))
print(sqrt(2))
print(sqrt(-1))

python sqrt_ex.py

3.0
Cannot compute square root of a negative number.
Program execution continues normally here.

Каждую попытку вычислить корень из -1 придётся обрабатывать отдельно. Это кажется неудобным, но
в этом и заключается смысл — каждое место где вы ждёте ислючение нужно помещать в свой
try except блок.

Можно обработать исключение так:

try:
while guess * guess != x and i < 20:
guess = (guess + x / guess) / 2.0
i += 1
except ZeroDivisionError:
raise ValueError()
return guess

def main():
print(sqrt(9))
print(sqrt(-1))

python sqrt_ex.py

3.0
Traceback (most recent call last):
File «/home/andrei/sqrt_ex3.py», line 17, in sqrt
guess = (guess + x / guess) / 2.0
ZeroDivisionError: float division by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File «/home/andrei/sqrt_ex3.py», line 30, in <module>
main()
File «/home/andrei/sqrt_ex3.py», line 25, in main
print(sqrt(-1))
File «/home/andrei/sqrt_ex3.py», line 20, in sqrt
raise ValueError()
ValueError

Гораздо логичнее поднимать исключение сразу при получении аргумента

def sqrt(x):
«»»Compute square roots using the method
of Heron of Alexandria.

Args:
x: The number for which the square root
is to be computed.

Returns:
The square root of x.

Raises:
ValueError: If x is negative
«»»

if x < 0:
raise ValueError(
«Cannot compute square root of «
f«negative number {x}»)

guess = x
i = 0
while guess * guess != x and i < 20:
guess = (guess + x / guess) / 2.0
i += 1
return guess

def main():
print(sqrt(9))
print(sqrt(-1))
print(sqrt(2))
print(sqrt(-1))

if __name__ == ‘__main__’:
main()

python sqrt_ex.py

3.0
Traceback (most recent call last):
File «/home/avorotyn/python/lessons/pluralsight/core_python_getting_started/chapter8/sqrt_ex4.py», line 35, in <module>
main()
File «/home/avorotyn/python/lessons/pluralsight/core_python_getting_started/chapter8/sqrt_ex4.py», line 30, in main
print(sqrt(-1))
File «/home/avorotyn/python/lessons/pluralsight/core_python_getting_started/chapter8/sqrt_ex4.py», line 17, in sqrt
raise ValueError(
ValueError: Cannot compute square root of negative number -1

Пока получилось не очень — виден Traceback

Убрать Traceback можно добавив обработку ValueError в вызов функций

import sys

def sqrt(x):
«»»Compute square roots using the method
of Heron of Alexandria.

Args:
x: The number for which the square root
is to be computed.

Returns:
The square root of x.

Raises:
ValueError: If x is negative
«»»

if x < 0:
raise ValueError(
«Cannot compute square root of «
f«negative number {x}»)

guess = x
i = 0
while guess * guess != x and i < 20:
guess = (guess + x / guess) / 2.0
i += 1
return guess

def main():
try:
print(sqrt(9))
print(sqrt(2))
print(sqrt(-1))
print(«This is never printed»)
except ValueError as e:
print(e, file=sys.stderr)

print(«Program execution continues normally here.»)

if __name__ == ‘__main__’:
main()

python sqrt_ex.py

3.0
1.414213562373095
Cannot compute square root of negative number -1
Program execution continues normally here.

Исключения, которые не нужно обрабатывать

IndentationError, SyntaxError, NameError нужно исправлять в коде а не пытаться обработать.

Важно помнить, что использовать обработку исключений для замалчивания ошибок программиста недопустимо.

Список исключений

Список встроенных в Python исключений

Существуют следующие типы объектов Exception

BaseException
+— SystemExit
+— KeyboardInterrupt
+— GeneratorExit
+— Exception
+— StopIteration
+— StopAsyncIteration
+— ArithmeticError
| +— FloatingPointError
| +— OverflowError
| +— ZeroDivisionError
+— AssertionError
+— AttributeError
+— BufferError
+— EOFError
+— ImportError
| +— ModuleNotFoundError
+— LookupError
| +— IndexError
| +— KeyError
+— MemoryError
+— NameError
| +— UnboundLocalError
+— OSError
| +— BlockingIOError
| +— ChildProcessError
| +— ConnectionError
| | +— BrokenPipeError
| | +— ConnectionAbortedError
| | +— ConnectionRefusedError
| | +— ConnectionResetError
| +— FileExistsError
| +— FileNotFoundError
| +— InterruptedError
| +— IsADirectoryError
| +— NotADirectoryError
| +— PermissionError
| +— ProcessLookupError
| +— TimeoutError
+— ReferenceError
+— RuntimeError
| +— NotImplementedError
| +— RecursionError
+— SyntaxError
| +— IndentationError
| +— TabError
+— SystemError
+— TypeError
+— ValueError
| +— UnicodeError
| +— UnicodeDecodeError
| +— UnicodeEncodeError
| +— UnicodeTranslateError
+— Warning
+— DeprecationWarning
+— PendingDeprecationWarning
+— RuntimeWarning
+— SyntaxWarning
+— UserWarning
+— FutureWarning
+— ImportWarning
+— UnicodeWarning
+— BytesWarning
+— EncodingWarning
+— ResourceWarning

IndexError

Объекты, которые поддерживают

протокол

Sequence должны поднимать исключение IndexError при использовании несуществующего индекса.

IndexError как и

KeyError

относится к ошибкам поиска LookupError

Пример

>>> a = [0, 1, 2]
>>> a[3]

Traceback (most recent call last):
File «<stdin>», line 1, in <module>
IndexError: list index out of range

ValueError

ValueError поднимается когда объект правильного типа, но содержит неправильное значение

>>> int(«text»)

Traceback (most recent call last):
File «<stdin>», line 1, in <module>
ValueError: invalid literal for int() with base 10: ‘text’

KeyError

KeyError поднимается когда поиск по ключам не даёт результата

>>> sites = dict(urn=1, heihei=2, eth1=3)
>>> sites[«topbicycle»]

Traceback (most recent call last):
File «<stdin>», line 1, in <module>
KeyError: ‘topbicycle’

TypeError

TypeError поднимается когда для успешного выполнения операции нужен объект
определённого типа, а предоставлен другой тип.

pi = 3.1415

text = «Pi is approximately « + pi

python str_ex.py

Traceback (most recent call last):
File «str_ex.py», line 3, in <module>
text = «Pi is approximately » + pi
TypeError: can only concatenate str (not «float») to str

Пример из статьи

str()

SyntaxError

SyntaxError поднимается когда допущена ошибка в синтаксисе языка, например, использован
несуществующий оператор.

Python 3.8.10 (default, Nov 14 2022, 12:59:47)
[GCC 9.4.0] on linux
Type «help», «copyright», «credits» or «license» for more information.
>>>
>>>
>>> 0 <> 0
File «<stdin>», line 1
0 <> 0
^
SyntaxError: invalid syntax

Пример из статьи

__future__

Похожие статьи

Python
Интерактивный режим
str: строки
: перенос строки
Списки []
if, elif, else
Циклы
Функции
Пакеты
*args **kwargs
ООП
enum
Опеределить тип переменной Python
Тестирование с помощью Python
Работа с REST API на Python
Файлы: записать, прочитать, дописать, контекстный менеджер…
Скачать файл по сети
SQLite3: работа с БД
datetime: Дата и время в Python
json.dumps
Selenium + Python
Сложности при работе с Python
DJANGO
Flask
Скрипт для ZPL принтера
socket :Python Sockets
Виртуальное окружение
subprocess: выполнение bash команд из Python
multiprocessing: несколько процессов одновременно
psutil: cистемные ресурсы
sys.argv: аргументы командной строки
PyCharm: IDE
pydantic: валидация данных
paramiko: SSH из Python
enumerate
logging: запись в лог
Обучение программированию на Python

Понятие исключений и ошибок

Любой, даже самый опытный программист, в ходе разработки программ допускает различного рода ошибки, приводящие к тому, что программа либо не работает вообще,
либо работает, но выполняет вовсе не то, что задумывалось. Причинами ошибок могут быть как неправильное использование синтаксиса и пунктуации языка
(синтаксические ошибки), так и неверное понимание логики программы (семантические ошибки, которые в Python принято называть
исключениями). При этом, если первый тип ошибок легко обнаружить с помощью интерпретатора, то на устранение логических ошибок
порой может потребоваться не один час, поскольку такие ошибки обнаруживаются уже непосредственно в ходе использования программы, проявляясь либо в виде сбоев
в ее работе, либо в получении совершенно непредвиденных результатов (см. пример №1).

# Синтаксические ошибки обнаружить легко.

# Имя переменной начали с цифры.
# SyntaxError: invalid decimal literal
# 35_days = 35

# Строка должна содержать запись целого числа.
# ValueError: invalid literal for int() with base 10: 'три'
# num = int('три')    

# Числа и строки складывать нельзя.
# TypeError: unsupported operand type(s) for +: 'int' and 'str'
# res = 5 + 'один'     

# Логические ошибки всплывут потом.    

# На первый взгляд все верно, и программа даже будет  
# работать, но только до тех пор, пока пользователь 
# не введет ноль или неприводимое к числу значение.
a = int(input('Введите число: '))
print(10/a)
Введите число: 0
ZeroDivisionError: division by zero

















		
			

Пример №1. Синтаксические и логические ошибки в Python.

В примере мы показали лишь несколько видов исключений. На самом деле их намного больше. И очень важно знать о них, а также иметь инструменты для их обнаружения и
обработки. Именно поэтому в стандартной библиотеке Python присутствует внушительный набор готовых классов, представляющих различные
виды исключений и синтаксических ошибок. Все они перечислены в разделе Built-in exceptions,
где также представлена и подробная иерархия имеющихся классов исключений. Что касается обработки ошибок, то для этого Python
предоставляет ряд специальных инструкций, которые мы и будем рассматривать в данном параграфе.

Инструкция try/except/else/finally

Пожалуй, основной «рабочей лошадкой» по обработке исключений в Python является составная инструкция
try/except/else/finally, которая имеет следующий общий формат:

# Сначала выполняется основной блок инструкций.
try:
    <Основные инструкции>     
# Запускается, если в блоке try возникло исключение Exception_1.
except Exception_1:
    <Инструкции обработки исключения>     
# Запускается, если возникло любое из перечисленных исключений.
except (Exception_2, Exception_3):
    <Инструкции обработки исключений>     
# Работаем с экземпляром Exception_4, как с err.
except Exception_4 as err:
    <Инструкции обработки исключения>     
# Запускается для всех видов исключений.                    
except:
    <Инструкции обработки исключений>     
# Запускается, если в блоке try не возникло исключений.
else:
    <Дополнительные инструкции>
# Запускается в любом случае.
finally:
    <Финальные инструкции>

Первыми выполняются инструкции основного блока try. При обнаружении в нем ошибок, интерпретатор пытается найти соответствующий
возникшему исключению блок except и, в случае наличия такового, выполняет его инструкции. После того как исключение будет
обработано, оно уничтожается, а программа пытается продолжить работу в штатном режиме. Если же среди имеющихся блоков except
соот­ветствия найдено не будет, исключение переадресуется инструкции try, стоящей
выше в программе, или на верхний уровень процесса, что скорее всего вынудит интерпретатор аварийно завершить работу программы и вывести сообщение об ошибке по
умолчанию. В случае отсутствия ошибок в блоке try интерпретатор пропускает все блоки except и
начинает выполнять инструкции необязательного блока else, который разрешается использовать только при наличии хотя бы одного блока
except. При этом стоит помнить, что при наличии ошибок в блоке try инструкции данного блока
выполняться не будут. Что касается необязательного блока finally, то он используется для каких-либо завершающих операций, например,
закрытия файлов или открытых соединений с сервером. Его инструкции выполняются всегда, вне зависимости от того, возникли исключения в каком-либо блоке, включая блок
else, или нет (см. пример №2).

try:
    # Здесь исключения могут возбудиться из-за 
    # ввода нечислового значения или нуля.
    a = int(input('Введите число: '))
    print('10/{} = {}'.format(a, 10/a))    
# Если введено не целое число.
except ValueError:
    print('Введите целое число!')
# Если введен ноль.
except ZeroDivisionError:
    print('На ноль делить нельзя!')
# Выполнится только при отсутствии ошибок.	
else:
    print('Операция прошла успешно!')
# Выполняется в любом случае.
finally:
    print('Для завершения нажмите «Enter»!')    
    # Чтобы окно консоли не закрылось. 
    input()
Введите число: 0
На ноль делить нельзя!
Для завершения нажмите «Enter»!

-------------------------------

Введите число: один
Введите целое число!
Для завершения нажмите «Enter»!

-------------------------------

Введите число: 20
10/20 = 0.5
Операция прошла успешно!
Для завершения нажмите «Enter»!


			

Пример №2. Инструкция try/except/else/finally в Python (часть 1).

Стоит заметить, что в отличие от блоков except блок finally не останавливает распространение
исключений до вышестоящей инструкции try или до обработчика исключений по умолчанию, т.е. в случае возникновения ошибок
инструкции, следующие за блоком finally в программе, выполняться не будут (см. пример №3).

# Внешняя инструкция try.
try:
    # Внутреняя инструкция try.
    try:
        # Здесь исключения могут появиться из-за 
        # ввода нечислового значения или нуля.
        a = int(input('Введите число: '))
        print('10/{} = {}'.format(a, 10/a))    
    # Выполняется в любом случае.
    finally:
        print('Внутренний блок finally.')    
    
    # Выполняется при отсутствии ошибок
    # во внутреннем блоке try.
    print('Все ОК! Ошибок нет!')
    
# Если введено не целое число или ноль.
except (ValueError, ZeroDivisionError):
    print('Неверный ввод!')
# Выполнится только при отсутствии ошибок.	
else:
    print('Операция прошла успешно!') 
# Выполняется в любом случае.
finally:
    print('Внешний блок finally.')
    # Чтобы окно консоли не закрылось. 
    input() 
Введите число: 7
10/7 = 1.4285714285714286
Внутренний блок finally.
Все ОК! Ошибок нет!
Операция прошла успешно!
Внешний блок finally.

------------------------

Введите число: 0
Внутренний блок finally.
Неверный ввод!
Внешний блок finally.












		
			

Пример №3. Инструкция try/except/else/finally в Python (часть 2).

Если необходимо перехватывать сразу все возможные исключения, разрешается использовать инструкцию except без указания классов исключений.
Эта особенность может быть весьма удобна при разработке своих собственных обработчиков ошибок. Однако при использовании такого варианта могут перехватываться нежелательные
системные исключения, не связанные с работой создаваемого программного кода, а также случайно может прерываться распространение исключений, предназначенных для других
обработчиков. Данная проблема была частично решена в Python 3.0 за счет введения альтернативы в виде суперкласса
Exception, представляющего все прикладные исключения, но игнорирующего исключения, связанные с завершением программы (см. пример
№4).

# Основной блок try.
try:
    # Здесь исключения могут возбудиться из-за 
    # ввода нечислового значения или нуля.
    a = int(input('Введите число: '))
    print('10/{} = {}'.format(a, 10/a))    
     
# Выводим строковое представление исключения.
except Exception as err:
    print(err)
# Выполнится только при отсутствии ошибок.	
else:
    print('Операция прошла успешно!') 
# Выполняется в любом случае.
finally:
    # Чтобы окно консоли не закрылось. 
    input() 
Введите число: one
invalid literal for int() with base 10: 'one'

------------------------

Введите число: 0
division by zero

------------------------

Введите число: 10
10/10 = 1.0
Операция прошла успешно!


		
			

Пример №4. Инструкция try/except/else/finally в Python (часть 3).

В конце добавим, что помимо основного варианта использования try/except/else/finally инструкция
try может быть использована и в варианте try/finally, т.е. без блоков обработки исключений
except. Как не трудно догадаться, основной задачей такого варианта использования инструкции является выполнение заключительных
операций после выполнения кода основного блока.

Инструкция raise

В примерах выше мы полагались на то, что интерпретатор автоматически определит появление ошибок во время выполнения программного кода. Однако в
Python присутствует возможность и явного возбуждения исключений с помощью инструкции
raise. Все что от нас требуется, это указать через пробел имя класса или экземпляра
возбуждаемого исключения. Также разрешается использовать пустую инструкцию, тогда будет повторно возбуждено самое последнее исключение
(см. пример №5).

try:
    # Возбудим исключение IndexError принудительно.
    # Экземпляр исключения создается автоматически.
    raise IndexError    
# Обработаем его.
except IndexError:
    print('Перехватили IndexError!')

try:
    # Все тоже самое, но здесь создаем экземпляр сами.
    raise IndexError()   
# Обработаем его.
except IndexError:
    print('Перехватили IndexError!')  
    # Вложенная инструкция try.
    try:
        # Возбудили последнее исключение еще раз.
        raise   
    # Обработаем его.
    except IndexError:
        print('Перехватили IndexError!')
Перехватили IndexError!
Перехватили IndexError!
Перехватили IndexError!
















		
			

Пример №5. Инструкция raise в Python (часть 1).

Инструкция raise может использоваться для явного возбуждения не только встроенных исключений, но и созданных пользователем.
Пользовательские исключения представляют собой самые обычные классы, наследуемые от классов встроенных исключений, чаще всего от класса
Exception (см. пример №6).

# Создаем свой класс исключений, который 
# наследуется от встроенного Exception.
class OnlyAlpha(Exception): 
    # Переопределим строковое представление.
    def __str__(self): 
        return 'Разрешены только буквы!'

# Определим функцию проверки строки на
# наличие сторонних небуквенных символов.
def check_for_alpha(s):
    # Если присутствуют не только буквы.  
    if not s.isalpha():
        # Возбуждаем экземпляр своего исключения.
        raise OnlyAlpha()       

# Проверим, как все работает.
try:
    # Просим ввести строку.
    s = input('Введите имя: ')
    # Проверяем ввод.    
    check_for_alpha(s)
# Обрабатываем польз. исключение.
except OnlyAlpha as err:
    # Строковое представление экз.
    print(err)
    print('Попробуйте еще раз!')    
# Если все прошло гладко.
else:
    # Выводим введенное имя.
    print('Привет, {}!'.format(s))
# В любом случае дополняем сообщением.
finally:       
    print('Имя – это ваш ник и логин!')
Введите имя: okpython
Привет, okpython!
Имя – это ваш ник и логин!

--------------------------

Введите имя: okpython.net
Разрешены только буквы!
Попробуйте еще раз!
Имя – это ваш ник и логин!





















		
			

Пример №6. Инструкция raise в Python (часть 2).

Стоит добавить, что инструкция raise может использоваться и в формате raise/from, который используется
значительно реже, поэтому здесь мы его рассматривать не будем. Однако не поленитесь и самостоятельно посетите подраздел
«The raise statement» раздела «Simple statements» официального
справочника языка, где хотя бы бегло ознакомьтесь и с этим вариантом инструкции.

Инструкция assert

Инструкция assert представляет собой компактный условный вариант инструкции raise,
предназначенный в основном для возбуждения исключений на этапе отладки программы. В общем виде ее можно представить в формате
assert condition[, message], где condition – это условие, при невыполнении которого
(возвращается False) будет возбуждено встроенное исключение AssertionError, а также при необходимости
выведено необязательное сообщение message (см. пример №7).

# Допустим мы пишем функцию для расчета среднего
# значения чисел переданного ей списка.
def avg(li):
    len_li = len(li)
    # Список не должен быть пустым.
    assert len_li != 0, 'Список пуст!'    
    # Возвращаем среднее значение.
    return round(sum(li)/len_li, 3)

try:
   # Запускаем функцию.  
   res = avg([]) 
# Отлавливаем исключение для обработки.
except AssertionError as my_err:
    print(my_err)
# Результат выводим, если все в порядке.
else:
    print('Среднее значение: {}'.format(res)) 
Список пуст!















		
			

Пример №7. Инструкция assert в Python.

Важно не забывать, что инструкция assert главным образом предназначена для проверки соблюдения ограничений, накладываемых самим
программистом, а не для перехвата настоящих ошибок, которые интерпретатор Python в состоянии обработать самостоятельно во время
выполнения программы. Поэтому как правило инструкцию assert не используют для выявления таких проблем, как выход индекса за
допустимые пределы, несоответствие типов или деление на ноль.

Краткие итоги параграфа

  • Основной инструкцией для обработки исключений в Python является составная инструкция try/except/else/finally.
    Если в инструкциях обязательного блока try возникают ошибки, интерпретатор пытается перехватить и обработать их с помощью блоков
    except. В случае отсутствия соответствий исключение передается инструкции try, стоящей выше в программе,
    или на верхний уровень процесса. Необязательный блок else выполняется только при отсутствии ошибок, а необязательный блок
    finally выполняется всегда. При этом в отличие от блоков except блок
    finally не останавливает распространение исключений до вышестоящей инструкции try или до обработчика
    исключений по умолчанию, поэтому в случае возникновения ошибок инструкции, следующие за блоком finally в программе, выполняться не будут.
  • В стандартной библиотеке Python присутствует внушительный набор готовых классов, представляющих различные виды исключений и синтаксических
    ошибок. Все они перечислены в разделе Built-in exceptions, где также представлена и подробная
    иерархия имеющихся классов исключений.
  • Важно помнить, что при использовании блока except без указания класса перехватываемого исключения интерпретатор будет пытаться перехватить
    все имеющиеся виды встроенных исключений. Однако нужно быть осторожным при использовании такого варианта инструкции воизбежание перехвата нежелательных системных исключений,
    не связанных с работой создаваемого программного кода.
  • Для явного возбуждения исключений в Python предназначена инструкция raise, которой необходимо через
    пробел передавать имя класса или экземпляра возбуждаемого исключения. Данная инструкция может использоваться для явного возбуждения не только встроенных исключений, но
    и созданных пользователем. Пользовательские исключения представляют собой самые обычные классы, наследуемые от классов встроенных исключений, чаще всего от класса
    Exception.
  • Для возбуждения исключений на этапе отладки программы предназначена инструкция assert condition[, message], где
    condition – это условие, при невыполнении которого (возвращается False) будет возбуждено
    встроенное исключение AssertionError, а также при необходимости выведено необязательное сообщение message.
    Использовать инструкцию следует главным образом для проверки соблюдения ограничений, накладываемых самим программистом, а не для перехвата настоящих ошибок, которые могут
    быть спокойно перехвачены интерпретатором Python.

Вопросы и задания для самоконтроля

1. В каком случае выполняется код блока else составной инструкции
try/except/else/finally?

Показать решение.

Ответ. Инструкции необязательного блока else выполняются только при отсутствии
исключений в коде основного блока try.

2. Что произойдет с программой в случае возбуждения исключения, если в ней не предусмотреть его обработку?

Показать решение.

Ответ. В таком случае исключение будет передано обработчику предоставляемому интерпретатором по умолчанию.
Этот обработчик выведет сообщение об ошибке и завершит программу.

3. Перечислите верные форматы использования инструкции try:
try/except/else, try/else, try/finally,
try/except/finally, try/else/finally.

Показать решение.

Ответ. Блок else может использоваться только при наличии хотя бы одного блока
except, следовательно варианты try/else и try/else/finally
недопустимы.

4. В каком случае выполняется код блока finally?

Показать решение.

Ответ. Необязательный блок finally выполняется всегда. При этом в отличие от
блоков except блок finally не останавливает распространение исключений до вышестоящей
инструкции try или до обработчика исключений по умолчанию, поэтому в случае возникновения ошибок инструкции, следующие за
блоком finally в программе, выполняться не будут.

5. Присутствуют ли в коде условия ошибки? Проверьте свой ответ, запустив код на исполнение.
Показать решение.

try:
    a = 5; b = 0
    n = a/b   
exept Exeption as err:
    print('Ошибка: «{}».'.format(err))
else:
    print('a/b = {}'.format(n)) 
finally: 
    print('Обработка завершена!')

try:
    a = 5; b = 0
    n = a/b   
# Правильно писать except и Exception.
except Exception as err:
    print('Ошибка: «{}».'.format(err))
else:
    print('a/b = {}'.format(n)) 
finally: 
    print('Обработка завершена!')
Ошибка: «division by zero».
Обработка завершена!







			

6. Имеется ли в Python возможность создавать и возбуждать исключения вручную?

Показать решение.

Ответ. Да, имеется. Для явного возбуждения исключений в Python предназначена
инструкция raise, которой необходимо через пробел передавать имя класса или экземпляра возбуждаемого исключения. Данная
инструкция может использоваться для явного возбуждения не только встроенных исключений, но и созданных пользователем. Пользовательские исключения представляют
собой самые обычные классы, наследуемые от классов встроенных исключений, чаще всего от класса Exception.

7. Для чего служит инструкция assert?

Показать решение.

Ответ. Для возбуждения исключений на этапе отладки программы предназначена инструкция
assert condition[, message], где condition – это условие, при невыполнении
которого (возвращается False) будет возбуждено встроенное исключение AssertionError,
а также при необходимости выведено необязательное сообщение message. Использовать инструкцию следует главным образом
для проверки соблюдения ограничений, накладываемых самим программистом, а не для перехвата настоящих ошибок, которые могут быть спокойно перехвачены
интерпретатором Python.

8. Дополнительные упражнения и задачи по теме расположены в разделе
«Обработка исключений»
нашего сборника задач и упражнений по языку программирования Python.

Быстрый переход к другим страницам

Обработка исключений

При выполнении заданий к главам вы, скорее всего, нередко сталкивались с возникновением различных ошибок. В этой главе мы изучим подход, который позволяет обрабатывать ошибки после их возникновения.

Напишем программу, которая будет считать обратные значения для целых чисел из заданного диапазона и выводить их в одну строку с разделителем ‘;’. Один из вариантов кода для решения этой задачи выглядит так:

print(";".join(str(1 / x) for x in range(int(input()), int(input()) + 1)))

Программа получилась в одну строчку за счёт использования списочных выражений. Однако при вводе диапазона чисел, включающего в себя 0 (например, от -1 до 1), программа выдаст следующую ошибку:

ZeroDivisionError: division by zero

В программе произошла ошибка «деление на ноль». Такая ошибка, возникающая при выполнении программы и останавливающая её работу, называется исключением.

Попробуем в нашей программе избавиться от возникновения исключения деления на ноль. Пусть при попадании 0 в диапазон чисел обработка не производится и выводится сообщение «Диапазон чисел содержит 0». Для этого нужно проверить до списочного выражения наличие нуля в диапазоне:

interval = range(int(input()), int(input()) + 1)
if 0 in interval:
    print("Диапазон чисел содержит 0.")
else:
    print(";".join(str(1 / x) for x in interval))

Теперь для диапазона, включающего в себя 0, например от -2 до 2, исключения ZeroDivisionError не возникнет. Однако при вводе строки, которую невозможно преобразовать в целое число (например, «a»), будет вызвано другое исключение:

ValueError: invalid literal for int() with base 10: 'a'

Произошло исключение ValueError. Для борьбы с этой ошибкой нам придётся проверить, что строка состоит только из цифр. Сделать это нужно до преобразования в число. Тогда наша программа будет выглядеть так:

start = input()
end = input()
# Метод lstrip("-"), удаляющий символы "-" в начале строки, нужен для учёта
# отрицательных чисел, иначе isdigit() вернёт для них False
if not (start.lstrip("-").isdigit() and end.lstrip("-").isdigit()):
    print("
    ввести два числа.")
else:
    interval = range(int(start), int(end) + 1)
    if 0 in interval:
        print("Диапазон чисел содержит 0.")
    else:
        print(";".join(str(1 / x) for x in interval))

Теперь наша программа работает без ошибок и при вводе строк, которые нельзя преобразовать в целое число.

Подход, который был нами применён для предотвращения ошибок, называется Look Before You Leap (LBYL), или «Посмотри перед прыжком». В программе, реализующей такой подход, проверяются возможные условия возникновения ошибок до исполнения основного кода.

Подход LBYL имеет недостатки. Программу из примера стало сложнее читать из-за вложенного условного оператора. Проверка условия, что строка может быть преобразована в число, выглядит даже сложнее, чем списочное выражение. Вложенный условный оператор не решает поставленную задачу, а только лишь проверяет входные данные на корректность. Легко заметить, что решение основной задачи заняло меньше времени, чем составление условий проверки корректности входных данных.

Существует другой подход для работы с ошибками: Easier to Ask Forgiveness than Permission (EAFP), или «Проще попросить прощения, чем разрешения». В этом подходе сначала исполняется код, а в случае возникновения ошибок происходит их обработка. Подход EAFP реализован в Python в виде обработки исключений.

Исключения в Python являются классами ошибок. В Python есть много стандартных исключений. Они имеют определённую иерархию за счёт механизма наследования классов. В документации Python версии 3.10.8 приводится следующее дерево иерархии стандартных исключений:

BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
      +-- StopIteration
      +-- StopAsyncIteration
      +-- ArithmeticError
      |    +-- FloatingPointError
      |    +-- OverflowError
      |    +-- ZeroDivisionError
      +-- AssertionError
      +-- AttributeError
      +-- BufferError
      +-- EOFError
      +-- ImportError
      |    +-- ModuleNotFoundError
      +-- LookupError
      |    +-- IndexError
      |    +-- KeyError
      +-- MemoryError
      +-- NameError
      |    +-- UnboundLocalError
      +-- OSError
      |    +-- BlockingIOError
      |    +-- ChildProcessError
      |    +-- ConnectionError
      |    |    +-- BrokenPipeError
      |    |    +-- ConnectionAbortedError
      |    |    +-- ConnectionRefusedError
      |    |    +-- ConnectionResetError
      |    +-- FileExistsError
      |    +-- FileNotFoundError
      |    +-- InterruptedError
      |    +-- IsADirectoryError
      |    +-- NotADirectoryError
      |    +-- PermissionError
      |    +-- ProcessLookupError
      |    +-- TimeoutError
      +-- ReferenceError
      +-- RuntimeError
      |    +-- NotImplementedError
      |    +-- RecursionError
      +-- SyntaxError
      |    +-- IndentationError
      |         +-- TabError
      +-- SystemError
      +-- TypeError
      +-- ValueError
      |    +-- UnicodeError
      |         +-- UnicodeDecodeError
      |         +-- UnicodeEncodeError
      |         +-- UnicodeTranslateError
      +-- Warning
           +-- DeprecationWarning
           +-- PendingDeprecationWarning
           +-- RuntimeWarning
           +-- SyntaxWarning
           +-- UserWarning
           +-- FutureWarning
           +-- ImportWarning
           +-- UnicodeWarning
           +-- BytesWarning
           +-- EncodingWarning
           +-- ResourceWarning

Для обработки исключения в Python используется следующий синтаксис:

try:
    <код , который может вызвать исключения при выполнении>
except <классисключения_1>:
    <код обработки исключения>
except <классисключения_2>:
    <код обработки исключения>
...
else:
    <код выполняется, если не вызвано исключение в блоке try>
finally:
    <код , который выполняется всегда>

Блок try содержит код, в котором нужно обработать исключения, если они возникнут.
При возникновении исключения интерпретатор последовательно проверяет, в каком из блоков except обрабатывается это исключение.
Исключение обрабатывается в первом блоке except, обрабатывающем класс этого исключения или базовый класс возникшего исключения.
Необходимо учитывать иерархию исключений для определения порядка их обработки в блоках except. Начинать обработку исключений следует с более узких классов исключений. Если начать с более широкого класса исключения, например Exception, то всегда при возникновении исключения будет срабатывать первый блок except.
Сравните два следующих примера. В первом порядок обработки исключений указан от производных классов к базовым, а во втором — наоборот.

Первый пример:

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")

При вводе значений «0» и «a» получим ожидаемый, соответствующий возникающим исключениям вывод:

Невозможно преобразовать строку в число.

и

Ошибка деления на ноль.

Второй пример:

try:
    print(1 / int(input()))
except Exception:
    print("Неизвестная ошибка.")
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")

При вводе значений «0» и «a» получим в обоих случаях неинформативный вывод:

Неизвестная ошибка.

Необязательный блок else выполняет код в случае, если в блоке try не вызвано исключение. Добавим блок else в пример для вывода сообщения об успешном выполнении операции:

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")
else:
    print("Операция выполнена успешно.")

Теперь при вводе корректного значения, например «5», вывод программы будет следующим:

2.0
Операция выполнена успешно.

Блок finally выполняется всегда, даже если возникло какое-то исключение, не учтённое в блоках except, или код в этих блоках сам вызвал какое-либо исключение. Добавим в нашу программу вывод строки «Программа завершена» в конце программы даже при возникновении исключений:

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")
else:
    print("Операция выполнена успешно.")
finally:
    print("Программа завершена.")

Перепишем код, созданный с применением подхода LBYL, для первого примера из этой главы с использованием обработки исключений:

try:
    print(";".join(str(1 / x) for x in range(int(input()), int(input()) + 1)))
except ZeroDivisionError:
    print("Диапазон чисел содержит 0.")
except ValueError:
    print("Необходимо ввести два числа.")

Теперь наша программа читается намного легче. При этом создание кода для обработки исключений не заняло много времени и не потребовало проверки сложных условий.

Исключения можно принудительно вызывать с помощью оператора raise. Этот оператор имеет следующий синтаксис:

raise <класс исключения>(параметры)

В качестве параметра можно, например, передать строку с сообщением об ошибке.

Создание собственных исключений

В Python можно создавать свои собственные исключения. Синтаксис создания исключения такой же, как и у создания класса. При создании исключения его необходимо наследовать от какого-либо стандартного класса-исключения.

Напишем программу, которая выводит сумму списка целых чисел и вызывает исключение, если в списке чисел есть хотя бы одно чётное или отрицательное число. Создадим свои классы исключений:

  • NumbersError — базовый класс исключения;
  • EvenError — исключение, которое вызывается при наличии хотя бы одного чётного числа;
  • NegativeError — исключение, которое вызывается при наличии хотя бы одного отрицательного числа.
class NumbersError(Exception):
    pass


class EvenError(NumbersError):
    pass


class NegativeError(NumbersError):
    pass


def no_even(numbers):
    if all(x % 2 != 0 for x in numbers):
        return True
    raise EvenError("В списке не должно быть чётных чисел")


def no_negative(numbers):
    if all(x >= 0 for x in numbers):
        return True
    raise NegativeError("В списке не должно быть отрицательных чисел")


def main():
    print("Введите числа в одну строку через пробел:")
    try:
        numbers = [int(x) for x in input().split()]
        if no_negative(numbers) and no_even(numbers):
            print(f"Сумма чисел равна: {sum(numbers)}.")
    except NumbersError as e:  # обращение к исключению как к объекту
        print(f"Произошла ошибка: {e}.")
    except Exception as e:
        print(f"Произошла непредвиденная ошибка: {e}.")

        
if __name__ == "__main__":
    main()

Модули

Обратите внимание: в программе основной код выделен в функцию main. А код вне функций содержит только условный оператор и вызов функции main при выполнении условия __name__ == "__main__". Это условие проверяет, запущен ли файл как самостоятельная программа или импортирован как модуль.

Любая программа, написанная на языке программирования Python, может быть импортирована как модуль в другую программу. В идеологии Python импортировать модуль — значит полностью его выполнить. Если основной код модуля содержит вызовы функций, ввод или вывод данных без использования указанного условия __name__ == "__main__", то произойдёт полноценный запуск программы. А это не всегда удобно, если из модуля нужна только отдельная функция или какой-либо класс.

При изучении модуля itertools мы говорили о том, как импортировать модуль в программу. Покажем ещё раз два способа импорта на примере собственного модуля.

Для импорта модуля из файла, например example_module.py, нужно указать его имя, если он находится в той же папке, что и импортирующая его программа:

import example_module

Если требуется отдельный компонент модуля, например функция или класс, то импорт можно осуществить так:

from example_module import some_function, ExampleClass

Обратите внимание: при втором способе импортированные объекты попадают в пространство имён новой программы. Это означает, что они будут объектами новой программы и в программе не должно быть других объектов с такими же именами.

Рассмотрим написанное выше на примере. Пусть имеется программа module_hello.py, в которой находится функция hello(name), возвращающая строку приветствия пользователя по имени. В самой программе кроме функции присутствует вызов этой функции и печать результата её работы. Импортируем из модуля module_hello.py функцию hello(name) в другую программу program.py и также используем для вывода приветствия пользователя.

Код программы module_hello.py:

def hello(name):
    return f"Привет, {name}!"


print(hello(input("Введите своё имя: ")))

Код программы program.py:

from module_hello import hello

print(hello(input("Добрый день. Введите имя: ")))

При выполнении program.py нас ожидает неожиданное действие. Программа сначала запросит имя пользователя, а затем сделает это ещё раз, но с приветствием из program.py.

Введите своё имя: Андрей
Привет, Андрей!
Добрый день. Введите имя: Андрей
Привет, Андрей!

Наша ошибка заключается в том, что программа module_hello.py выполняется полностью, включая основной код с вызовом функции и выводом результата. Исправим программу module_hello.py, добавив проверку, запущена программа или импортирована как модуль:

def hello(name):
    return f"Привет, {name}!"


if __name__ == "__main__":
    print(hello(input("Введите своё имя: ")))

Теперь при импорте модуля module_hello.py код в теле условного оператора выполняться не будет. А основной код этой программы выполнится только при запуске файла как отдельной программы.
Для большего удобства обычно в теле указанного условного оператора вызывают функцию main(), а основной код программы оформляют уже внутри этой функции.
Тогда наш модуль можно переписать так:

def hello(name):
    return f"Привет, {name}!"


def main():
    print(hello(input("Введите своё имя: ")))


if __name__ == "__main__":
    main()

Обратите внимание: при импорте модуля мы можем с помощью символа * указать, что необходимо импортировать все объекты. Например, так:

from some_module import *

Однако делать так крайне не рекомендуется, потому что все объекты модуля добавляются в пространство имён нашей программы, что может приводить к конфликтам.

Понравилась статья? Поделить с друзьями:
  • Exception occurs while importing 3d max revit ошибка
  • Exception in application start method javafx ошибка
  • Exception during execution ошибка
  • Exception detected sims 4 community lib ошибка
  • Exception access violation как исправить ошибку