Формула установившейся ошибки тау

Лекция 17.
Расчет
установившейся ошибки в системах
управления. Структурные признаки
астатизма. Коэффициенты ошибок

Установившейся
(статической) ошибкой называют постоянное
значение сигнала ошибки x(t)=g(t)-y(t),
которое она приобретает по окончании
переходного процесса:
,
рисунок 116.

Очевидно,
установившаяся ошибка зависит от законов
изменения и численных характеристик
входных сигналов системы. Поэтому при
ее определении принято рассматривать
так называемые типовые входные сигналы,
законы изменения которых составляют
степенной ряд относительно времени.
Например, для задающего воздействия:

,

,


и так далее.

При наличии
нескольких воздействий на линейную
систему для определения xуст
используется принцип суперпозиции –
реакция линейной системы на совокупность
входных сигналов совпадает с алгебраической
суммой ее реакций на каждый из сигналов
в отдельности:

,

где каждое слагаемое,
или составляющая сигнала ошибки,
определяется
для i-го
входного сигнала при условии, что
остальные тождественно равны нулю.
Такой подход полностью соответствует
определению передаточной функции и
позволяет выполнять расчет установившейся
ошибки на основе структурной схемы
системы.

Рассмотрим порядок
расчета установившейся ошибки на
следующем достаточно общем примере
(рисунок 117).

В соответствии с
принципом суперпозиции установившаяся
ошибка будет определяться здесь в виде
суммы трех составляющих
.

Изображение по
Лапласу ошибки от задающего воздействия
получают через передаточную функцию
замкнутой системы по ошибке

при известном изображении задающего
воздействия G(s):

,

где (s)
– основная передаточная функция
замкнутой системы. Для структурной
схемы на рисунке 117

,

где

— передаточная функция разомкнутой
системы, или прямой цепи системы, для
рассматриваемого примера.

Непосредственно
для расчета установившегося значения
ошибки от задающего воздействия
используют теорему о конечном значении
для преобразования Лапласа:

В результате:

.

Изображение по
Лапласу ошибки от возмущающего воздействия
получают через передаточную функцию
замкнутой системы по ошибке от возмущения

при известном изображении возмущающего
воздействия F(s):

,

где f(s)
–передаточная функция замкнутой системы
по возмущающему воздействию,

;

Wf(s)
– передаточная функция разомкнутой
системы по возмущению (передаточная
функция участка прямой цепи системы от
точки приложения возмущающего воздействия
до выхода системы).

Для структурной
схемы на рисунке 8 необходимо учитывать
два возмущающих воздействия, приложенные
в различные точки системы.

Для f1:

,

,

.

Для f2:

,

,

.

Расчет упрощается
для системы с единичной отрицательной
обратной связью (рисунок 118):

,

,

где k=k1k2k3
– коэффициент передачи разомкнутой
системы.

Найдем установившуюся
ошибку для некоторых типовых вариантов
задающего воздействия.

При

получим:

.

При

получим:

.

При

получим:

.

Если установившаяся
ошибка тождественно равна нулю при
каком-либо типовом варианте входного
сигнала, независимо от его численных
характеристик, систему называют
астатической по рассматриваемому
входному сигналу.

Количество типовых
вариантов входного сигнала – членов
степенного ряда, при которых установившаяся
ошибка тождественно равна нулю, определяет
порядок астатизма.

Рассматриваемая
система обладает свойством астатизма
второго порядка по задающему воздействию.

Рассмотрим
установившуюся ошибку от возмущения
f1:

,

,

где

– коэффициент передачи разомкнутой
системы по возмущению f1.

При

получим:

.

При

получим:

.

При

получим тот же результат.

Отметим, что по
возмущению f1
рассматриваемая система не является
астатической. Кроме того, она не в
состоянии отработать два последних
варианта входного сигнала.

Рассмотрим
установившуюся ошибку от возмущения
f2:

,

,

где

– коэффициент передачи разомкнутой
системы по возмущению f2.

При

получим:

.

При

получим:

.

При

получим:

.

По возмущению f2
рассматриваемая система имеет астатизм
первого порядка. Она не в состоянии
отработать возмущающее воздействие,
изменяющееся во времени с постоянным
ускорением.

Подведем некоторые
итоги:

1. Наличие и глубина
свойства астатизма зависят от точки
приложения входного сигнала.

2. Постоянные
времени звеньев системы не влияют на
ее точность.

3. Увеличение
значения коэффициента передачи
разомкнутой системы приводит к снижению
величины установившейся ошибки.

Для систем с
единичной отрицательной обратной связью
существуют достаточно простые структурные
признаки астатизма.

Рассмотрим
структуру, показанную на рисунке 119.

В общем случае
передаточная функция разомкнутой
системы может быть представлена в
следующей форме:

,

где l0.

Тогда получим:

и для общего вида
задающего воздействия
,
которому соответствует изображение
,

.

Результат нахождения
этого предела зависит от соотношения
показателей степени:

— при l>v
установившаяся ошибка равна нулю
независимо от остальных параметров, то
есть имеет место астатизм;

— при l=v
получаем константу;

— при l<v
установившаяся ошибка стремится к
бесконечности, то есть система не в
состоянии отработать входной сигнал.

Учитывая, что
минимальное значение v
нулевое, получаем условие астатизма по
задающему воздействию: l>0.

Таким образом,
структурный признак астатизма по
задающему воздействию в системе с
единичной отрицательной обратной связью
состоит в наличии нулевых корней в
знаменателе передаточной функции
разомкнутой системы, или интегрирующих
звеньев в прямой цепи системы.

Нетрудно также
убедиться, что положительное значение
l
совпадает с порядком астатизма.

Для получения
признака астатизма по возмущающему
воздействию представим передаточные
функции на рисунке 10 в форме:

,

,

где l1+l2=l,
k1k2=k,
m1+m2=m,
n1+n2=n,
причем

и
.

Тогда получим:

и для общего вида
возмущающего воздействия
,
которому соответствует изображение
,

.

Все вышеприведенные
выводы можно повторить для показателя
степени l1.

Таким образом,
структурный признак астатизма по
возмущающему воздействию в системе с
единичной отрицательной обратной связью
состоит в наличии нулевых корней в
знаменателе передаточной функции
участка системы до точки приложения
воздействия, или интегрирующих звеньев
на том же участке.

Более общий подход
к оценке точности линейных систем
управления основан на получении и
использовании коэффициентов ошибок.
Рассмотрим его на примере анализа
реакции системы на задающее воздействие.

Если рассматривать
произвольный закон изменения задающего
воздействия g(t),
то эта функция времени может быть
разложена в степенной ряд относительно
аргумента t.
Члены степенного ряда, как известно,
находятся через производные

,
,
…,
,

В общем случае ряд
бесконечен. Поэтому с практической
точки зрения рассматривать такое
представление сигнала целесообразно
только при достаточно плавном его
изменении, когда можно ограничиться
конечным числом членов ряда, имея в
виду, что при n
большем некоторого m
можно принять

,
n>m.

Для задачи оценки
установившейся ошибки при

с формулированное допущение вполне
корректно, так как в противном случае
эта задача не имеет смысла.

Коэффициенты
ошибки получают разложением передаточной
функции замкнутой системы по ошибке в
степенной ряд (ряд Тейлора) относительно
аргумента s:

,

где коэффициенты
разложения в общем случае находят как
значения производных в точке s=0:

.

Передаточные
функции, представляющие собой отношения
полиномов, при достаточно высоком
порядке системы могут оказаться слишком
сложными для дифференцирования. Поэтому
на практике коэффициенты их разложения
в ряд чаще находят путем деления полиномов
– числителя на знаменатель.

С учетом разложения
передаточной функции в ряд можно записать
изображение по Лапласу сигнала ошибки
в следующей форме:

.

Отметим, что с
учетом сформулированного выше допущения
такое представление сигнала ошибки
соответствует

или
.

Перейдя к оригиналу
с учетом теоремы дифференцирования
получим:

.

Вернемся к
рассмотренному выше примеру и предположим,
что задающее воздействие изменяется
по произвольному закону, но при достаточно
больших значениях времени этот закон
аппроксимируется выражением
.

Найдем коэффициенты
разложения передаточной функции по
ошибке

в степенной ряд.

Здесь сразу можно
отметить, что номер первого ненулевого
члена ряда определяется низшей степенью
аргумента s
в числителе дроби, то есть первые два
коэффициента c0
и c1
здесь получаем тождественно равными
нулю.

Далее получим:

В результате
получаем
,
,
,

и так далее.

Найдем производные
задающего воздействия:

,
,
.

Ясно, что для
определения установившейся ошибки
достаточно первых трех коэффициентов:

.

В заключение
отметим, что порядок астатизма системы
по какому-либо входному сигналу совпадает
с количеством нулевых коэффициентов
ошибки, получаемых в разложении в ряд
передаточной функции по ошибке от
данного входного сигнала.

Лекция 17.
Расчет
установившейся ошибки в системах
управления. Структурные признаки
астатизма. Коэффициенты ошибок

Установившейся
(статической) ошибкой называют постоянное
значение сигнала ошибки x(t)=g(t)-y(t),
которое она приобретает по окончании
переходного процесса:
,
рисунок 116.

Очевидно,
установившаяся ошибка зависит от законов
изменения и численных характеристик
входных сигналов системы. Поэтому при
ее определении принято рассматривать
так называемые типовые входные сигналы,
законы изменения которых составляют
степенной ряд относительно времени.
Например, для задающего воздействия:

,

,


и так далее.

При наличии
нескольких воздействий на линейную
систему для определения xуст
используется принцип суперпозиции –
реакция линейной системы на совокупность
входных сигналов совпадает с алгебраической
суммой ее реакций на каждый из сигналов
в отдельности:

,

где каждое слагаемое,
или составляющая сигнала ошибки,
определяется
для i-го
входного сигнала при условии, что
остальные тождественно равны нулю.
Такой подход полностью соответствует
определению передаточной функции и
позволяет выполнять расчет установившейся
ошибки на основе структурной схемы
системы.

Рассмотрим порядок
расчета установившейся ошибки на
следующем достаточно общем примере
(рисунок 117).

В соответствии с
принципом суперпозиции установившаяся
ошибка будет определяться здесь в виде
суммы трех составляющих
.

Изображение по
Лапласу ошибки от задающего воздействия
получают через передаточную функцию
замкнутой системы по ошибке

при известном изображении задающего
воздействия G(s):

,

где (s)
– основная передаточная функция
замкнутой системы. Для структурной
схемы на рисунке 117

,

где

— передаточная функция разомкнутой
системы, или прямой цепи системы, для
рассматриваемого примера.

Непосредственно
для расчета установившегося значения
ошибки от задающего воздействия
используют теорему о конечном значении
для преобразования Лапласа:

В результате:

.

Изображение по
Лапласу ошибки от возмущающего воздействия
получают через передаточную функцию
замкнутой системы по ошибке от возмущения

при известном изображении возмущающего
воздействия F(s):

,

где f(s)
–передаточная функция замкнутой системы
по возмущающему воздействию,

;

Wf(s)
– передаточная функция разомкнутой
системы по возмущению (передаточная
функция участка прямой цепи системы от
точки приложения возмущающего воздействия
до выхода системы).

Для структурной
схемы на рисунке 8 необходимо учитывать
два возмущающих воздействия, приложенные
в различные точки системы.

Для f1:

,

,

.

Для f2:

,

,

.

Расчет упрощается
для системы с единичной отрицательной
обратной связью (рисунок 118):

,

,

где k=k1k2k3
– коэффициент передачи разомкнутой
системы.

Найдем установившуюся
ошибку для некоторых типовых вариантов
задающего воздействия.

При

получим:

.

При

получим:

.

При

получим:

.

Если установившаяся
ошибка тождественно равна нулю при
каком-либо типовом варианте входного
сигнала, независимо от его численных
характеристик, систему называют
астатической по рассматриваемому
входному сигналу.

Количество типовых
вариантов входного сигнала – членов
степенного ряда, при которых установившаяся
ошибка тождественно равна нулю, определяет
порядок астатизма.

Рассматриваемая
система обладает свойством астатизма
второго порядка по задающему воздействию.

Рассмотрим
установившуюся ошибку от возмущения
f1:

,

,

где

– коэффициент передачи разомкнутой
системы по возмущению f1.

При

получим:

.

При

получим:

.

При

получим тот же результат.

Отметим, что по
возмущению f1
рассматриваемая система не является
астатической. Кроме того, она не в
состоянии отработать два последних
варианта входного сигнала.

Рассмотрим
установившуюся ошибку от возмущения
f2:

,

,

где

– коэффициент передачи разомкнутой
системы по возмущению f2.

При

получим:

.

При

получим:

.

При

получим:

.

По возмущению f2
рассматриваемая система имеет астатизм
первого порядка. Она не в состоянии
отработать возмущающее воздействие,
изменяющееся во времени с постоянным
ускорением.

Подведем некоторые
итоги:

1. Наличие и глубина
свойства астатизма зависят от точки
приложения входного сигнала.

2. Постоянные
времени звеньев системы не влияют на
ее точность.

3. Увеличение
значения коэффициента передачи
разомкнутой системы приводит к снижению
величины установившейся ошибки.

Для систем с
единичной отрицательной обратной связью
существуют достаточно простые структурные
признаки астатизма.

Рассмотрим
структуру, показанную на рисунке 119.

В общем случае
передаточная функция разомкнутой
системы может быть представлена в
следующей форме:

,

где l0.

Тогда получим:

и для общего вида
задающего воздействия
,
которому соответствует изображение
,

.

Результат нахождения
этого предела зависит от соотношения
показателей степени:

— при l>v
установившаяся ошибка равна нулю
независимо от остальных параметров, то
есть имеет место астатизм;

— при l=v
получаем константу;

— при l<v
установившаяся ошибка стремится к
бесконечности, то есть система не в
состоянии отработать входной сигнал.

Учитывая, что
минимальное значение v
нулевое, получаем условие астатизма по
задающему воздействию: l>0.

Таким образом,
структурный признак астатизма по
задающему воздействию в системе с
единичной отрицательной обратной связью
состоит в наличии нулевых корней в
знаменателе передаточной функции
разомкнутой системы, или интегрирующих
звеньев в прямой цепи системы.

Нетрудно также
убедиться, что положительное значение
l
совпадает с порядком астатизма.

Для получения
признака астатизма по возмущающему
воздействию представим передаточные
функции на рисунке 10 в форме:

,

,

где l1+l2=l,
k1k2=k,
m1+m2=m,
n1+n2=n,
причем

и
.

Тогда получим:

и для общего вида
возмущающего воздействия
,
которому соответствует изображение
,

.

Все вышеприведенные
выводы можно повторить для показателя
степени l1.

Таким образом,
структурный признак астатизма по
возмущающему воздействию в системе с
единичной отрицательной обратной связью
состоит в наличии нулевых корней в
знаменателе передаточной функции
участка системы до точки приложения
воздействия, или интегрирующих звеньев
на том же участке.

Более общий подход
к оценке точности линейных систем
управления основан на получении и
использовании коэффициентов ошибок.
Рассмотрим его на примере анализа
реакции системы на задающее воздействие.

Если рассматривать
произвольный закон изменения задающего
воздействия g(t),
то эта функция времени может быть
разложена в степенной ряд относительно
аргумента t.
Члены степенного ряда, как известно,
находятся через производные

,
,
…,
,

В общем случае ряд
бесконечен. Поэтому с практической
точки зрения рассматривать такое
представление сигнала целесообразно
только при достаточно плавном его
изменении, когда можно ограничиться
конечным числом членов ряда, имея в
виду, что при n
большем некоторого m
можно принять

,
n>m.

Для задачи оценки
установившейся ошибки при

с формулированное допущение вполне
корректно, так как в противном случае
эта задача не имеет смысла.

Коэффициенты
ошибки получают разложением передаточной
функции замкнутой системы по ошибке в
степенной ряд (ряд Тейлора) относительно
аргумента s:

,

где коэффициенты
разложения в общем случае находят как
значения производных в точке s=0:

.

Передаточные
функции, представляющие собой отношения
полиномов, при достаточно высоком
порядке системы могут оказаться слишком
сложными для дифференцирования. Поэтому
на практике коэффициенты их разложения
в ряд чаще находят путем деления полиномов
– числителя на знаменатель.

С учетом разложения
передаточной функции в ряд можно записать
изображение по Лапласу сигнала ошибки
в следующей форме:

.

Отметим, что с
учетом сформулированного выше допущения
такое представление сигнала ошибки
соответствует

или
.

Перейдя к оригиналу
с учетом теоремы дифференцирования
получим:

.

Вернемся к
рассмотренному выше примеру и предположим,
что задающее воздействие изменяется
по произвольному закону, но при достаточно
больших значениях времени этот закон
аппроксимируется выражением
.

Найдем коэффициенты
разложения передаточной функции по
ошибке

в степенной ряд.

Здесь сразу можно
отметить, что номер первого ненулевого
члена ряда определяется низшей степенью
аргумента s
в числителе дроби, то есть первые два
коэффициента c0
и c1
здесь получаем тождественно равными
нулю.

Далее получим:

В результате
получаем
,
,
,

и так далее.

Найдем производные
задающего воздействия:

,
,
.

Ясно, что для
определения установившейся ошибки
достаточно первых трех коэффициентов:

.

В заключение
отметим, что порядок астатизма системы
по какому-либо входному сигналу совпадает
с количеством нулевых коэффициентов
ошибки, получаемых в разложении в ряд
передаточной функции по ошибке от
данного входного сигнала.

Соседние файлы в папке Конспект ТАУ

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Лекция 17. Расчет установившейся ошибки в системах управления.
Структурные признаки астатизма

Установившейся (статической) ошибкой называют
постоянное значение сигнала ошибки x(t)=g(t)-y(t),
которое она приобретает по окончании переходного процесса: , рисунок 116.

Очевидно, установившаяся ошибка зависит от законов
изменения и численных характеристик входных сигналов системы. Поэтому при ее
определении принято рассматривать так называемые типовые входные сигналы,
законы изменения которых составляют степенной ряд относительно времени.
Например, для задающего воздействия:

 и так
далее.

При наличии нескольких воздействий на линейную систему
для определения xуст используется
принцип суперпозиции – реакция линейной системы на совокупность входных
сигналов совпадает с алгебраической суммой ее реакций на каждый из сигналов в
отдельности:

, где
каждое слагаемое, или составляющая сигнала ошибки, определяется
для i-го входного сигнала при условии, что остальные
тождественно равны нулю. Такой подход полностью соответствует определению
передаточной функции и позволяет выполнять расчет установившейся ошибки на
основе структурной схемы системы.

Рассмотрим порядок расчета установившейся ошибки на
следующем достаточно общем примере (рисунок 117).

В соответствии с принципом суперпозиции установившаяся
ошибка будет определяться здесь в виде суммы трех составляющих .

Изображение по Лапласу ошибки от задающего воздействия
получают через передаточную функцию замкнутой системы по ошибке  при известном изображении задающего
воздействия G(s):

, где
F(s) – основная передаточная функция замкнутой системы.
Для структурной схемы на рисунке 117

, где  — передаточная функция
разомкнутой системы, или прямой цепи системы, для рассматриваемого примера.

Непосредственно для расчета
установившегося значения ошибки от задающего воздействия используют теорему о
конечном значении для преобразования Лапласа:

В результате:

.

Изображение по Лапласу ошибки от возмущающего
воздействия получают через передаточную функцию замкнутой системы по ошибке от
возмущения  при известном изображении возмущающего
воздействия F(s):

, где
Ff(s) –передаточная функция замкнутой системы по
возмущающему воздействию,

;

Wf(s)
– передаточная функция разомкнутой системы по возмущению (передаточная функция
участка прямой цепи системы от точки приложения возмущающего воздействия до
выхода системы).

Для структурной схемы на рисунке 8 необходимо
учитывать два возмущающих воздействия, приложенные в различные точки системы.

Для f1:                             
,

,

.

Для f2:                                
,

,

.

Расчет упрощается для
системы с единичной отрицательной обратной связью (рисунок 118):

,

, где k=k1k2k3 – коэффициент передачи
разомкнутой системы.

Найдем установившуюся ошибку
для некоторых типовых вариантов задающего воздействия.

При  получим:

.

При  получим:

.

При  получим:

.

Если установившаяся ошибка
тождественно равна нулю при каком-либо типовом варианте входного сигнала,
независимо от его численных характеристик, систему называют астатической по
рассматриваемому входному сигналу.

Количество типовых вариантов
входного сигнала – членов степенного ряда, при которых установившаяся ошибка
тождественно равна нулю, определяет порядок астатизма.

Рассматриваемая система
обладает свойством астатизма второго порядка по задающему воздействию.

Рассмотрим установившуюся
ошибку от возмущения f1:

,

, где  –
коэффициент передачи разомкнутой системы по возмущению f1.

При  получим:

.

При  получим:

.

При  получим
тот же результат.

Отметим, что по возмущению f1 рассматриваемая система
не является астатической. Кроме того, она не в состоянии отработать два последних
варианта входного сигнала.

Рассмотрим установившуюся
ошибку от возмущения f2:

,

, где  –
коэффициент передачи разомкнутой системы по возмущению f2.

При  получим:

.

При  получим:

.

При  получим:

.

По возмущению f2 рассматриваемая система имеет
астатизм первого порядка. Она не в состоянии отработать возмущающее
воздействие, изменяющееся во времени с постоянным ускорением.

Подведем некоторые итоги:

1. Наличие и глубина
свойства астатизма зависят от точки приложения входного сигнала.

2. Постоянные времени
звеньев системы не влияют на ее точность.

3. Увеличение значения
коэффициента передачи разомкнутой системы приводит к снижению величины
установившейся ошибки.

Для систем с единичной
отрицательной обратной связью существуют достаточно простые структурные
признаки астатизма.

Рассмотрим структуру,
показанную на рисунке 119.

В общем случае передаточная
функция разомкнутой системы может быть представлена в следующей форме:

, где l³0.

Тогда получим:

и для общего вида задающего воздействия , которому соответствует изображение ,

.

Результат нахождения этого
предела зависит от соотношения показателей степени:

— при l>v установившаяся
ошибка равна нулю независимо от остальных параметров, то есть имеет место
астатизм;

— при l=v получаем
константу;

— при l<v установившаяся
ошибка стремится к бесконечности, то есть система не в состоянии отработать
входной сигнал.

Учитывая, что минимальное
значение v нулевое,
получаем условие астатизма по задающему воздействию: l>0.

Таким образом, структурный
признак астатизма по задающему воздействию в системе с единичной отрицательной
обратной связью состоит в наличии нулевых корней в знаменателе передаточной
функции разомкнутой системы, или интегрирующих звеньев в прямой цепи системы.

Нетрудно также убедиться,
что положительное значение l совпадает
с порядком астатизма.

Для получения признака
астатизма по возмущающему воздействию представим передаточные функции на
рисунке 10 в форме:

,

, где l1+l2=l,
k1k2=k, m1+m2=m,
n1+n2=n,
причем  и .

Тогда получим:

и для общего вида возмущающего воздействия , которому соответствует изображение ,

.

Все вышеприведенные выводы
можно повторить для показателя степени l1.

Таким образом, структурный
признак астатизма по возмущающему воздействию в системе с единичной
отрицательной обратной связью состоит в наличии нулевых корней в знаменателе
передаточной функции участка системы до точки приложения воздействия, или
интегрирующих звеньев на том же участке.

Понравилась статья? Поделить с друзьями:
  • Форма нбо ошибка 0400400010 как исправить
  • Форк плеер ошибка подключения соединение 2
  • Форд фьюжн самодиагностика ошибок
  • Форд фьюжн робот ошибка u0415 60
  • Форд фьюжн робот ошибка u0401