Функция ошибки нейронной сети это

Нейронная сеть — попытка с помощью математических моделей воспроизвести работу человеческого мозга для создания машин, обладающих искусственным интеллектом.

Искусственная нейронная сеть обычно обучается с учителем. Это означает наличие обучающего набора (датасета), который содержит примеры с истинными значениями: тегами, классами, показателями.

Неразмеченные наборы также используют для обучения нейронных сетей, но мы не будем здесь это рассматривать.

Например, если вы хотите создать нейросеть для оценки тональности текста, датасетом будет список предложений с соответствующими каждому эмоциональными оценками. Тональность текста определяют признаки (слова, фразы, структура предложения), которые придают негативную или позитивную окраску. Веса признаков в итоговой оценке тональности текста (позитивный, негативный, нейтральный) зависят от математической функции, которая вычисляется во время обучения нейронной сети.

Раньше люди генерировали признаки вручную. Чем больше признаков и точнее подобраны веса, тем точнее ответ. Нейронная сеть автоматизировала этот процесс.

Искусственная нейронная сеть состоит из трех компонентов:

  • Входной слой;
  • Скрытые (вычислительные) слои;
  • Выходной слой.

простая нейронная сеть изображение

Обучение нейросетей происходит в два этапа:

  • Прямое распространение ошибки;
  • Обратное распространение ошибки.

Во время прямого распространения ошибки делается предсказание ответа. При обратном распространении ошибка между фактическим ответом и предсказанным минимизируется.

neural network neiroset

Прямое распространение ошибки

Прямое распространение ошибки

Прямое распространение

Зададим начальные веса случайным образом:

  • w1
  • w2
  • w3

Умножим входные данные на веса для формирования скрытого слоя:

  • h1 = (x1 * w1) + (x2 * w1)
  • h2 = (x1 * w2) + (x2 * w2)
  • h3 = (x1 * w3) + (x2 * w3)

Выходные данные из скрытого слоя передается через нелинейную функцию (функцию активации), для получения выхода сети:

  • y_ = fn(h1 , h2, h3)

Обратное распространение

обратное распространение

  • Суммарная ошибка (total_error) вычисляется как разность между ожидаемым значением «y» (из обучающего набора) и полученным значением «y_» (посчитанное на этапе прямого распространения ошибки), проходящих через функцию потерь (cost function).
  • Частная производная ошибки вычисляется по каждому весу (эти частные дифференциалы отражают вклад каждого веса в общую ошибку (total_loss)).
  • Затем эти дифференциалы умножаются на число, называемое скорость обучения или learning rate (η).

Полученный результат затем вычитается из соответствующих весов.

В результате получатся следующие обновленные веса:

  • w1 = w1 — (η * ∂(err) / ∂(w1))
  • w2 = w2 — (η * ∂(err) / ∂(w2))
  • w3 = w3 — (η * ∂(err) / ∂(w3))

То, что мы предполагаем и инициализируем веса случайным образом, и они будут давать точные ответы, звучит не вполне обоснованно, тем не менее, работает хорошо.

карлон data scientist

Популярный мем о том, как Карлсон стал Data Science разработчиком

biasЕсли вы знакомы с рядами Тейлора, обратное распространение ошибки имеет такой же конечный результат. Только вместо бесконечного ряда мы пытаемся оптимизировать только его первый член.

Смещения – это веса, добавленные к скрытым слоям. Они тоже случайным образом инициализируются и обновляются так же, как скрытый слой. Роль скрытого слоя заключается в том, чтобы определить форму базовой функции в данных, в то время как роль смещения – сдвинуть найденную функцию в сторону так, чтобы она частично совпала с исходной функцией.

Частные производные

Частные производные можно вычислить, поэтому известно, какой был вклад в ошибку по каждому весу. Необходимость производных очевидна. Представьте нейронную сеть, пытающуюся найти оптимальную скорость беспилотного автомобиля. Eсли машина обнаружит, что она едет быстрее или медленнее требуемой скорости, нейронная сеть будет менять скорость, ускоряя или замедляя автомобиль. Что при этом ускоряется/замедляется? Производные скорости.

Разберем необходимость частных производных на примере.

Предположим, детей попросили бросить дротик в мишень, целясь в центр. Вот результаты:

основы - нейронная сеть

Теперь, если мы найдем общую ошибку и просто вычтем ее из всех весов, мы обобщим ошибки, допущенные каждым. Итак, скажем, ребенок попал слишком низко, но мы просим всех детей стремиться попадать в цель, тогда это приведет к следующей картине:

частные производные

Ошибка нескольких детей может уменьшиться, но общая ошибка все еще увеличивается.

Найдя частные производные, мы узнаем ошибки, соответствующие каждому весу в отдельности. Если выборочно исправить веса, можно получить следующее:

нейронные сети частная производная

Гиперпараметры

Нейронная сеть используется для автоматизации отбора признаков, но некоторые параметры настраиваются вручную.

Скорость обучения (learning rate)

Скорость обучения является очень важным гиперпараметром. Если скорость обучения слишком мала, то даже после обучения нейронной сети в течение длительного времени она будет далека от оптимальных результатов. Результаты будут выглядеть примерно так:

функция потери

С другой стороны, если скорость обучения слишком высока, то сеть очень быстро выдаст ответы. Получится следующее:

результаты

Функция активации (activation function)

Функция активации — это один из самых мощных инструментов, который влияет на силу, приписываемую нейронным сетям. Отчасти, она определяет, какие нейроны будут активированы, другими словами и какая информация будет передаваться последующим слоям.

Без функций активации глубокие сети теряют значительную часть своей способности к обучению. Нелинейность этих функций отвечает за повышение степени свободы, что позволяет обобщать проблемы высокой размерности в более низких измерениях. Ниже приведены примеры распространенных функций активации:

функции активации нейронной сети

Функция потери (loss function)

Функция потерь находится в центре нейронной сети. Она используется для расчета ошибки между  реальными и полученными ответами. Наша глобальная цель — минимизировать эту ошибку. Таким образом, функция потерь эффективно приближает обучение нейронной сети к этой цели.

Функция потерь измеряет «насколько хороша» нейронная сеть в отношении данной обучающей выборки и ожидаемых ответов. Она также может зависеть от таких переменных, как веса и смещения.

Функция потерь одномерна и не является вектором, поскольку она оценивает, насколько хорошо нейронная сеть работает в целом.

Некоторые известные функции потерь:

  • Квадратичная (среднеквадратичное отклонение);
  • Кросс-энтропия;
  • Экспоненциальная (AdaBoost);
  • Расстояние Кульбака — Лейблера или прирост информации.

Cреднеквадратичное отклонение – самая простая фукция потерь и наиболее часто используемая. Она задается следующим образом:

среднеквадратическое отклонение

Функция потерь в нейронной сети должна удовлетворять двум условиям:

  • Функция потерь должна быть записана как среднее;
  • Функция потерь не должна зависеть от каких-либо активационных значений нейронной сети, кроме значений, выдаваемых на выходе.

Глубокие нейронные сети

Глубокое обучение (deep learning) – это класс алгоритмов машинного обучения, которые учатся глубже (более абстрактно) понимать данные. Популярные алгоритмы нейронных сетей глубокого обучения представлены на схеме ниже.

Популярные алгоритмы нейронных сетей

Популярные алгоритмы нейронных сетей (http://www.asimovinstitute.org/neural-network-zoo)

Более формально в deep learning:

  • Используется каскад (пайплайн, как последовательно передаваемый поток) из множества обрабатывающих слоев (нелинейных) для извлечения и преобразования признаков;
  • Основывается на изучении признаков (представлении информации) в данных без обучения с учителем. Функции более высокого уровня (которые находятся в последних слоях) получаются из функций нижнего уровня (которые находятся в слоях начальных слоях);
  • Изучает многоуровневые представления, которые соответствуют разным уровням абстракции; уровни образуют иерархию представления.

Пример

Рассмотрим однослойную нейронную сеть:

простая нейросеть

Здесь, обучается первый слой (зеленые нейроны), он просто передается на выход.

В то время как в случае двухслойной нейронной сети, независимо от того, как обучается зеленый скрытый слой, он затем передается на синий скрытый слой, где продолжает обучаться:

двухслойная нейронная сеть

Следовательно, чем больше число скрытых слоев, тем больше возможности обучения сети.

нейросеть

Не следует путать с широкой нейронной сетью.

В этом случае большое число нейронов в одном слое не приводит к глубокому пониманию данных. Но это приводит к изучению большего числа признаков.

Пример:

Изучая английскую грамматику, требуется знать огромное число понятий. В этом случае однослойная широкая нейронная сеть работает намного лучше, чем глубокая нейронная сеть, которая значительно меньше.

Но

В случае изучения преобразования Фурье, ученик (нейронная сеть) должен быть глубоким, потому что не так много понятий, которые нужно знать, но каждое из них достаточно сложное и требует глубокого понимания.

Главное — баланс

Очень заманчиво использовать глубокие и широкие нейронные сети для каждой задачи. Но это может быть плохой идеей, потому что:

  • Обе требуют значительно большего количества данных для обучения, чтобы достичь минимальной желаемой точности;
  • Обе имеют экспоненциальную сложность;
  • Слишком глубокая нейронная сеть попытается сломать фундаментальные представления, но при этом она будет делать ошибочные предположения и пытаться найти псевдо-зависимости, которые не существуют;
  • Слишком широкая нейронная сеть будет пытаться найти больше признаков, чем есть. Таким образом, подобно предыдущей, она начнет делать неправильные предположения о данных.

Проклятье размерности

Проклятие размерности относится к различным явлениям, возникающим при анализе и организации данных в многомерных пространствах (часто с сотнями или тысячами измерений), и не встречается в ситуациях с низкой размерностью.

Грамматика английского языка имеет огромное количество аттрибутов, влияющих на нее. В машинном обучении мы должны представить их признаками в виде массива/матрицы конечной и существенно меньшей длины (чем количество существующих признаков). Для этого сети обобщают эти признаки. Это порождает две проблемы:

  • Из-за неправильных предположений появляется смещение. Высокое смещение может привести к тому, что алгоритм пропустит существенную взаимосвязь между признаками и целевыми переменными. Это явление называют недообучение.
  • От небольших отклонений в обучающем множестве из-за недостаточного изучения признаков увеличивается дисперсия. Высокая дисперсия ведет к переобучению, ошибки воспринимаются в качестве надежной информации.

Компромисс

На ранней стадии обучения смещение велико, потому что выход из сети далек от желаемого. А дисперсия очень мала, поскольку данные имеет пока малое влияние.

В конце обучения смещение невелико, потому что сеть выявила основную функцию в данных. Однако, если обучение слишком продолжительное, сеть также изучит шум, характерный для этого набора данных. Это приводит к большому разбросу результатов при тестировании на разных множествах, поскольку шум меняется от одного набора данных к другому.

Действительно,

переобучение, недообучение

алгоритмы с большим смещением обычно в основе более простых моделей, которые не склонны к переобучению, но могут недообучиться и не выявить важные закономерности или свойства признаков. Модели с маленьким смещением и большой дисперсией обычно более сложны с точки зрения их структуры, что позволяет им более точно представлять обучающий набор. Однако они могут отображать много шума из обучающего набора, что делает их прогнозы менее точными, несмотря на их дополнительную сложность.

Следовательно, как правило, невозможно иметь маленькое смещение и маленькую дисперсию одновременно.

Сейчас есть множество инструментов, с помощью которых можно легко создать сложные модели машинного обучения, переобучение занимает центральное место. Поскольку смещение появляется, когда сеть не получает достаточно информации. Но чем больше примеров, тем больше появляется вариантов зависимостей и изменчивостей в этих корреляциях.

Знакомимся с методом обратного распространения ошибки

Время на прочтение
6 мин

Количество просмотров 44K

Всем привет! Новогодние праздники подошли к концу, а это значит, что мы вновь готовы делиться с вами полезным материалом. Перевод данной статьи подготовлен в преддверии запуска нового потока по курсу «Алгоритмы для разработчиков».

Поехали!


Метод обратного распространения ошибки – вероятно самая фундаментальная составляющая нейронной сети. Впервые он был описан в 1960-е и почти 30 лет спустя его популяризировали Румельхарт, Хинтон и Уильямс в статье под названием «Learning representations by back-propagating errors».

Метод используется для эффективного обучения нейронной сети с помощью так называемого цепного правила (правила дифференцирования сложной функции). Проще говоря, после каждого прохода по сети обратное распространение выполняет проход в обратную сторону и регулирует параметры модели (веса и смещения).

В этой статья я хотел бы подробно рассмотреть с точки зрения математики процесс обучения и оптимизации простой 4-х слойной нейронной сети. Я считаю, что это поможет читателю понять, как работает обратное распространение, а также осознать его значимость.

Определяем модель нейронной сети

Четырехслойная нейронная сеть состоит из четырех нейронов входного слоя, четырех нейронов на скрытых слоях и 1 нейрона на выходном слое.


Простое изображение четырехслойной нейронной сети.

Входной слой

На рисунке нейроны фиолетового цвета представляют собой входные данные. Они могут быть простыми скалярными величинами или более сложными – векторами или многомерными матрицами.


Уравнение, описывающее входы xi.

Первый набор активаций (а) равен входным значениям. «Активация» — это значение нейрона после применения функции активации. Подробнее смотрите ниже.

Скрытые слои

Конечные значения в скрытых нейронах (на рисунке зеленого цвета) вычисляются с использованием zl – взвешенных входов в слое I и aI активаций в слое L. Для слоев 2 и 3 уравнения будут следующими:

Для l = 2:

Для l = 3:

W2 и W3 – это веса на слоях 2 и 3, а b2 и b3 – смещения на этих слоях.

Активации a2 и a3 вычисляются с помощью функции активации f. Например, эта функция f является нелинейной (как сигмоид, ReLU и гиперболический тангенс) и позволяет сети изучать сложные паттерны в данных. Мы не будем подробно останавливаться на том, как работают функции активации, но, если вам интересно, я настоятельно рекомендую прочитать эту замечательную статью.

Присмотревшись внимательно, вы увидите, что все x, z2, a2, z3, a3, W1, W2, b1 и b2 не имеют нижних индексов, представленных на рисунке четырехслойной нейронной сети. Дело в том, что мы объединили все значения параметров в матрицы, сгруппированные по слоям. Это стандартный способ работы с нейронными сетями, и он довольно комфортный. Однако я пройдусь по уравнениям, чтобы не возникло путаницы.

Давайте возьмем слой 2 и его параметры в качестве примера. Те же самые операции можно применить к любому слою нейронной сети.
W1 – это матрица весов размерности (n, m), где n – это количество выходных нейронов (нейронов на следующем слое), а m – число входных нейронов (нейронов в предыдущем слое). В нашем случае n = 2 и m = 4.

Здесь первое число в нижнем индексе любого из весов соответствует индексу нейрона в следующем слое (в нашем случае – это второй скрытый слой), а второе число соответствует индексу нейрона в предыдущем слое (в нашем случае – это входной слой).

x – входной вектор размерностью (m, 1), где m – число входных нейронов. В нашем случае m = 4.

b1 – это вектор смещения размерности (n, 1), где n – число нейронов на текущем слое. В нашем случае n = 2.

Следуя уравнению для z2 мы можем использовать приведенные выше определения W1, x и b1 для получения уравнения z2:

Теперь внимательно посмотрите на иллюстрацию нейронной сети выше:

Как видите, z2 можно выразить через z12 и z22, где z12 и z22 – суммы произведений каждого входного значения xi на соответствующий вес Wij1.

Это приводит к тому же самому уравнению для z2 и доказывает, что матричные представления z2, a2, z3 и a3 – верны.

Выходной слой

Последняя часть нейронной сети – это выходной слой, который выдает прогнозируемое значение. В нашем простом примере он представлен в виде одного нейрона, окрашенного в синий цвет и рассчитываемого следующим образом:

И снова мы используем матричное представление для упрощения уравнения. Можно использовать вышеприведенные методы, чтобы понять лежащую в их основе логику.

Прямое распространение и оценка

Приведенные выше уравнения формируют прямое распространение по нейронной сети. Вот краткий обзор:

(1) – входной слой
(2) – значение нейрона на первом скрытом слое
(3) – значение активации на первом скрытом слое
(4) – значение нейрона на втором скрытом слое
(5) – значение активации на втором скрытом уровне
(6) – выходной слой

Заключительным шагом в прямом проходе является оценка прогнозируемого выходного значения s относительно ожидаемого выходного значения y.

Выходные данные y являются частью обучающего набора данных (x, y), где x – входные данные (как мы помним из предыдущего раздела).

Оценка между s и y происходит через функцию потерь. Она может быть простой как среднеквадратичная ошибка или более сложной как перекрестная энтропия.

Мы назовем эту функцию потерь С и обозначим ее следующим образом:

Где cost может равняться среднеквадратичной ошибке, перекрестной энтропии или любой другой функции потерь.

Основываясь на значении С, модель «знает», насколько нужно скорректировать ее параметры, чтобы приблизиться к ожидаемому выходному значению y. Это происходит с помощью метода обратного распространения ошибки.

Обратное распространение ошибки и вычисление градиентов

Опираясь на статью 1989 года, метод обратного распространения ошибки:

Постоянно настраивает веса соединений в сети, чтобы минимизировать меру разности между фактическим выходным вектором сети и желаемым выходным вектором.
и
…дает возможность создавать полезные новые функции, что отличает обратное распространение от более ранних и простых методов…

Другими словами, обратное распространение направлено на минимизацию функции потерь путем корректировки весов и смещений сети. Степень корректировки определяется градиентами функции потерь по отношению к этим параметрам.

Возникает один вопрос: Зачем вычислять градиенты?

Чтобы ответить на этот вопрос, нам сначала нужно пересмотреть некоторые понятия вычислений:

Градиентом функции С(x1, x2, …, xm) в точке x называется вектор частных производных С по x.

Производная функции С отражает чувствительность к изменению значения функции (выходного значения) относительно изменения ее аргумента х (входного значения). Другими словами, производная говорит нам в каком направлении движется С.

Градиент показывает, насколько необходимо изменить параметр x (в положительную или отрицательную сторону), чтобы минимизировать С.

Вычисление этих градиентов происходит с помощью метода, называемого цепным правилом.
Для одного веса (wjk)l градиент равен:

(1) Цепное правило
(2) По определению m – количество нейронов на l – 1 слое
(3) Вычисление производной
(4) Окончательное значение
Аналогичный набор уравнений можно применить к (bj)l
:

(1) Цепное правило
(2) Вычисление производной
(3) Окончательное значение

Общая часть в обоих уравнениях часто называется «локальным градиентом» и выражается следующим образом:

«Локальный градиент» можно легко определить с помощью правила цепи. Этот процесс я не буду сейчас расписывать.

Градиенты позволяют оптимизировать параметры модели:

Пока не будет достигнут критерий остановки выполняется следующее:

Алгоритм оптимизации весов и смещений (также называемый градиентным спуском)

  • Начальные значения w и b выбираются случайным образом.
  • Эпсилон (e) – это скорость обучения. Он определяет влияние градиента.
  • w и b – матричные представления весов и смещений.
  • Производная C по w или b может быть вычислена с использованием частных производных С по отдельным весам или смещениям.
  • Условие завершение выполняется, как только функция потерь минимизируется.

Заключительную часть этого раздела я хочу посвятить простому примеру, в котором мы рассчитаем градиент С относительно одного веса (w22)2.

Давайте увеличим масштаб нижней части вышеупомянутой нейронной сети:

Визуальное представление обратного распространения в нейронной сети
Вес (w22)2 соединяет (a2)2 и (z2)2, поэтому вычисление градиента требует применения цепного правила на (z3)2 и (a3)2:

Вычисление конечного значения производной С по (a2)3 требует знания функции С. Поскольку С зависит от (a2)3, вычисление производной должно быть простым.

Я надеюсь, что этот пример сумел пролить немного света на математику, стоящую за вычислением градиентов. Если захотите узнать больше, я настоятельно рекомендую вам посмотреть Стэндфордскую серию статей по NLP, где Ричард Сочер дает 4 замечательных объяснения обратного распространения.

Заключительное замечание

В этой статье я подробно объяснил, как обратное распространение ошибки работает под капотом с помощью математических методов, таких как вычисление градиентов, цепное правило и т.д. Знание механизмов этого алгоритма укрепит ваши знания о нейронных сетях и позволит вам чувствовать себя комфортно при работе с более сложными моделями. Удачи вам в путешествии по глубокому обучению!

На этом все. Приглашаем всех на бесплатный вебинар по теме «Дерево отрезков: просто и быстро».

Обучение нейронных сетей

Перед использованием нейронной сети ее необходимо обучить.

Процесс обучения нейронной сети заключается в подстройке ее внутренних параметров под конкретную задачу.

Алгоритм работы нейронной сети является итеративным, его шаги называют эпохами или циклами.

Эпоха — одна итерация в процессе обучения, включающая предъявление всех примеров из обучающего множества и, возможно, проверку качества обучения на контрольном множестве.

Процесс обучения осуществляется на обучающей выборке.

Обучающая выборка включает входные значения и соответствующие им выходные значения набора данных. В ходе обучения нейронная сеть находит некие зависимости выходных полей от входных.

Таким образом, перед нами ставится вопрос — какие входные поля (признаки) нам необходимо использовать. Первоначально выбор осуществляется эвристически, далее количество входов может быть изменено.

Сложность может вызвать вопрос о количестве наблюдений в наборе данных. И хотя существуют некие правила, описывающие связь между необходимым количеством наблюдений и размером сети, их верность не доказана.

Количество необходимых наблюдений зависит от сложности решаемой задачи. При увеличении количества признаков количество наблюдений возрастает нелинейно, эта проблема носит название «проклятие размерности». При недостаточном количестве данных рекомендуется использовать линейную модель.

Аналитик должен определить количество слоев в сети и количество нейронов в каждом слое.

Далее необходимо назначить такие значения весов и смещений, которые смогут минимизировать ошибку решения. Веса и смещения автоматически настраиваются таким образом, чтобы минимизировать разность между желаемым и полученным на выходе сигналами, которая называется ошибка обучения.

Ошибка обучения для построенной нейронной сети вычисляется путем сравнения выходных и целевых (желаемых) значений. Из полученных разностей формируется функция ошибок.

Функция ошибок — это целевая функция, требующая минимизации в процессе управляемого обучения нейронной сети.

С помощью функции ошибок можно оценить качество работы нейронной сети во время обучения. Например, часто используется сумма квадратов ошибок.

От качества обучения нейронной сети зависит ее способность решать поставленные перед ней задачи.

Переобучение нейронной сети

При обучении нейронных сетей часто возникает серьезная трудность, называемая проблемой переобучения (overfitting).

Переобучение, или чрезмерно близкая подгонка — излишне точное соответствие нейронной сети конкретному набору обучающих примеров, при котором сеть теряет способность к обобщению.

Переобучение возникает в случае слишком долгого обучения, недостаточного числа обучающих примеров или переусложненной структуры нейронной сети.

Переобучение связано с тем, что выбор обучающего (тренировочного) множества является случайным. С первых шагов обучения происходит уменьшение ошибки. На последующих шагах с целью уменьшения ошибки (целевой функции) параметры подстраиваются под особенности обучающего множества. Однако при этом происходит «подстройка» не под общие закономерности ряда, а под особенности его части — обучающего подмножества. При этом точность прогноза уменьшается.

Один из вариантов борьбы с переобучением сети — деление обучающей выборки на два множества (обучающее и тестовое).

На обучающем множестве происходит обучение нейронной сети. На тестовом множестве осуществляется проверка построенной модели. Эти множества не должны пересекаться.

С каждым шагом параметры модели изменяются, однако постоянное уменьшение значения целевой функции происходит именно на обучающем множестве. При разбиении множества на два мы можем наблюдать изменение ошибки прогноза на тестовом множестве параллельно с наблюдениями над обучающим множеством. Какое-то количество шагов ошибки прогноза уменьшается на обоих множествах. Однако на определенном шаге ошибка на тестовом множестве начинает возрастать, при этом ошибка на обучающем множестве продолжает уменьшаться. Этот момент считается концом реального или настоящего обучения, с него и начинается переобучение.

Описанный процесс проиллюстрирован на рис. 11.2.

Процесс обучений сети. Явление переобучения

Рис.
11.2.
Процесс обучений сети. Явление переобучения

На первом шаге ошибки прогноза для обучающего и тестового множества одинаковы. На последующих шагах значения обеих ошибок уменьшаются, однако с семидесятого шага ошибка на тестовом множестве начинает возрастать, т.е. начинается процесс переобучения сети.

Прогноз на тестовом множестве является проверкой работоспособности построенной модели. Ошибка на тестовом множестве может являться ошибкой прогноза, если тестовое множество максимально приближено к текущему моменту.

Нейронные сети обучаются с помощью тех или иных модификаций градиентного спуска, а чтобы применять его, нужно уметь эффективно вычислять градиенты функции потерь по всем обучающим параметрам. Казалось бы, для какого-нибудь запутанного вычислительного графа это может быть очень сложной задачей, но на помощь спешит метод обратного распространения ошибки.

Открытие метода обратного распространения ошибки стало одним из наиболее значимых событий в области искусственного интеллекта. В актуальном виде он был предложен в 1986 году Дэвидом Э. Румельхартом, Джеффри Э. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно красноярскими математиками С. И. Барцевым и В. А. Охониным. С тех пор для нахождения градиентов параметров нейронной сети используется метод вычисления производной сложной функции, и оценка градиентов параметров сети стала хоть сложной инженерной задачей, но уже не искусством. Несмотря на простоту используемого математического аппарата, появление этого метода привело к значительному скачку в развитии искусственных нейронных сетей.

Суть метода можно записать одной формулой, тривиально следующей из формулы производной сложной функции: если $f(x) = g_m(g_{m-1}(ldots (g_1(x)) ldots))$, то $frac{partial f}{partial x} = frac{partial g_m}{partial g_{m-1}}frac{partial g_{m-1}}{partial g_{m-2}}ldots frac{partial g_2}{partial g_1}frac{partial g_1}{partial x}$. Уже сейчас мы видим, что градиенты можно вычислять последовательно, в ходе одного обратного прохода, начиная с $frac{partial g_m}{partial g_{m-1}}$ и умножая каждый раз на частные производные предыдущего слоя.

Backpropagation в одномерном случае

В одномерном случае всё выглядит особенно просто. Пусть $w_0$ — переменная, по которой мы хотим продифференцировать, причём сложная функция имеет вид

$$f(w_0) = g_m(g_{m-1}(ldots g_1(w_0)ldots)),$$

где все $g_i$ скалярные. Тогда

$$f'(w_0) = g_m'(g_{m-1}(ldots g_1(w_0)ldots))cdot g’_{m-1}(g_{m-2}(ldots g_1(w_0)ldots))cdotldots cdot g’_1(w_0)$$

Суть этой формулы такова. Если мы уже совершили forward pass, то есть уже знаем

$$g_1(w_0), g_2(g_1(w_0)),ldots,g_{m-1}(ldots g_1(w_0)ldots),$$

то мы действуем следующим образом:

  • берём производную $g_m$ в точке $g_{m-1}(ldots g_1(w_0)ldots)$;

  • умножаем на производную $g_{m-1}$ в точке $g_{m-2}(ldots g_1(w_0)ldots)$;

  • и так далее, пока не дойдём до производной $g_1$ в точке $w_0$.

Проиллюстрируем это на картинке, расписав по шагам дифференцирование по весам $w_i$ функции потерь логистической регрессии на одном объекте (то есть для батча размера 1):

17_1.png

Собирая все множители вместе, получаем:

$$frac{partial f}{partial w_0} = (-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_1} = x_1cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_2} = x_2cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

Таким образом, мы видим, что сперва совершается forward pass для вычисления всех промежуточных значений (и да, все промежуточные представления нужно будет хранить в памяти), а потом запускается backward pass, на котором в один проход вычисляются все градиенты.

Почему же нельзя просто пойти и начать везде вычислять производные?

В главе, посвящённой матричным дифференцированиям, мы поднимаем вопрос о том, что вычислять частные производные по отдельности — это зло, лучше пользоваться матричными вычислениями. Но есть и ещё одна причина: даже и с матричной производной в принципе не всегда хочется иметь дело. Рассмотрим простой пример. Допустим, что $X^r$ и $X^{r+1}$ — два последовательных промежуточных представления $Ntimes M$ и $Ntimes K$, связанных функцией $X^{r+1} = f^{r+1}(X^r)$. Предположим, что мы как-то посчитали производную $frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$ функции потерь $mathcal{L}$, тогда

$$frac{partialmathcal{L}}{partial X^{r}_{st}} = sum_{i,j}frac{partial f^{r+1}_{ij}}{partial X^{r}_{st}}frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$$

И мы видим, что, хотя оба градиента $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ и $frac{partialmathcal{L}}{partial X_{st}^{r}}$ являются просто матрицами, в ходе вычислений возникает «четырёхмерный кубик» $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, даже хранить который весьма болезненно: уж больно много памяти он требует ($N^2MK$ по сравнению с безобидными $NM + NK$, требуемыми для хранения градиентов). Поэтому хочется промежуточные производные $frac{partial f^{r+1}}{partial X^{r}}$ рассматривать не как вычисляемые объекты $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, а как преобразования, которые превращают $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ в $frac{partialmathcal{L}}{partial X_{st}^{r}}$. Целью следующих глав будет именно это: понять, как преобразуется градиент в ходе error backpropagation при переходе через тот или иной слой.

  Вы спросите себя: надо ли мне сейчас пойти и прочитать главу учебника про матричное дифференцирование?

Встречный вопрос. Найдите производную функции по вектору $x$:

$$f(x) = x^TAx, Ain Mat_{n}{mathbb{R}}text{ — матрица размера }ntimes n$$

А как всё поменяется, если $A$ тоже зависит от $x$? Чему равен градиент функции, если $A$ является скаляром? Если вы готовы прямо сейчас взять ручку и бумагу и посчитать всё, то вам, вероятно, не надо читать про матричные дифференцирования. Но мы советуем всё-таки заглянуть в эту главу, если обозначения, которые мы будем дальше использовать, покажутся вам непонятными: единой нотации для матричных дифференцирований человечество пока, увы, не изобрело, и переводить с одной на другую не всегда легко.

Мы же сразу перейдём к интересующей нас вещи: к вычислению градиентов сложных функций.

Градиент сложной функции

Напомним, что формула производной сложной функции выглядит следующим образом:

$$left[D_{x_0} (color{#5002A7}{u} circ color{#4CB9C0}{v}) right](h) = color{#5002A7}{left[D_{v(x_0)} u right]} left( color{#4CB9C0}{left[D_{x_0} vright]} (h)right)$$

Теперь разберёмся с градиентами. Пусть $f(x) = g(h(x))$ – скалярная функция. Тогда

$$left[D_{x_0} f right] (x-x_0) = langlenabla_{x_0} f, x-x_0rangle.$$

С другой стороны,

$$left[D_{h(x_0)} g right] left(left[D_{x_0}h right] (x-x_0)right) = langlenabla_{h_{x_0}} g, left[D_{x_0} hright] (x-x_0)rangle = langleleft[D_{x_0} hright]^* nabla_{h(x_0)} g, x-x_0rangle.$$

То есть $color{#FFC100}{nabla_{x_0} f} = color{#348FEA}{left[D_{x_0} h right]}^* color{#FFC100}{nabla_{h(x_0)}}g$ — применение сопряжённого к $D_{x_0} h$ линейного отображения к вектору $nabla_{h(x_0)} g$.

Эта формула — сердце механизма обратного распространения ошибки. Она говорит следующее: если мы каким-то образом получили градиент функции потерь по переменным из некоторого промежуточного представления $X^k$ нейронной сети и при этом знаем, как преобразуется градиент при проходе через слой $f^k$ между $X^{k-1}$ и $X^k$ (то есть как выглядит сопряжённое к дифференциалу слоя между ними отображение), то мы сразу же находим градиент и по переменным из $X^{k-1}$:

17_2.png

Таким образом слой за слоем мы посчитаем градиенты по всем $X^i$ вплоть до самых первых слоёв.

Далее мы разберёмся, как именно преобразуются градиенты при переходе через некоторые распространённые слои.

Градиенты для типичных слоёв

Рассмотрим несколько важных примеров.

Примеры

  1. $f(x) = u(v(x))$, где $x$ — вектор, а $v(x)$ – поэлементное применение $v$:

    $$vbegin{pmatrix}
    x_1 \
    vdots\
    x_N
    end{pmatrix}
    = begin{pmatrix}
    v(x_1)\
    vdots\
    v(x_N)
    end{pmatrix}$$

    Тогда, как мы знаем,

    $$left[D_{x_0} fright] (h) = langlenabla_{x_0} f, hrangle = left[nabla_{x_0} fright]^T h.$$

    Следовательно,

    $$
    left[D_{v(x_0)} uright] left( left[ D_{x_0} vright] (h)right) = left[nabla_{v(x_0)} uright]^T left(v'(x_0) odot hright) =\
    $$

    $$
    = sumlimits_i left[nabla_{v(x_0)} uright]_i v'(x_{0i})h_i
    = langleleft[nabla_{v(x_0)} uright] odot v'(x_0), hrangle.
    ,$$

    где $odot$ означает поэлементное перемножение. Окончательно получаем

    $$color{#348FEA}{nabla_{x_0} f = left[nabla_{v(x_0)}uright] odot v'(x_0) = v'(x_0) odot left[nabla_{v(x_0)} uright]}$$

    Отметим, что если $x$ и $h(x)$ — это просто векторы, то мы могли бы вычислять всё и по формуле $frac{partial f}{partial x_i} = sum_jbig(frac{partial z_j}{partial x_i}big)cdotbig(frac{partial h}{partial z_j}big)$. В этом случае матрица $big(frac{partial z_j}{partial x_i}big)$ была бы диагональной (так как $z_j$ зависит только от $x_j$: ведь $h$ берётся поэлементно), и матричное умножение приводило бы к тому же результату. Однако если $x$ и $h(x)$ — матрицы, то $big(frac{partial z_j}{partial x_i}big)$ представлялась бы уже «четырёхмерным кубиком», и работать с ним было бы ужасно неудобно.

  2. $f(X) = g(XW)$, где $X$ и $W$ — матрицы. Как мы знаем,

    $$left[D_{X_0} f right] (X-X_0) = text{tr}, left(left[nabla_{X_0} fright]^T (X-X_0)right).$$

    Тогда

    $$
    left[ D_{X_0W} g right] left(left[D_{X_0} left( ast Wright)right] (H)right) =
    left[ D_{X_0W} g right] left(HWright)=\
    $$ $$
    = text{tr}, left( left[nabla_{X_0W} g right]^T cdot (H) W right) =\
    $$ $$
    =
    text{tr} , left(W left[nabla_{X_0W} (g) right]^T cdot (H)right) = text{tr} , left( left[left[nabla_{X_0W} gright] W^Tright]^T (H)right)
    $$

    Здесь через $ast W$ мы обозначили отображение $Y hookrightarrow YW$, а в предпоследнем переходе использовалось следующее свойство следа:

    $$
    text{tr} , (A B C) = text{tr} , (C A B),
    $$

    где $A, B, C$ — произвольные матрицы подходящих размеров (то есть допускающие перемножение в обоих приведённых порядках). Следовательно, получаем

    $$color{#348FEA}{nabla_{X_0} f = left[nabla_{X_0W} (g) right] cdot W^T}$$

  3. $f(W) = g(XW)$, где $W$ и $X$ — матрицы. Для приращения $H = W — W_0$ имеем

    $$
    left[D_{W_0} f right] (H) = text{tr} , left( left[nabla_{W_0} f right]^T (H)right)
    $$

    Тогда

    $$
    left[D_{XW_0} g right] left( left[D_{W_0} left(X astright) right] (H)right) = left[D_{XW_0} g right] left( XH right) =
    $$ $$
    = text{tr} , left( left[nabla_{XW_0} g right]^T cdot X (H)right) =
    text{tr}, left(left[X^T left[nabla_{XW_0} g right] right]^T (H)right)
    $$

    Здесь через $X ast$ обозначено отображение $Y hookrightarrow XY$. Значит,

    $$color{#348FEA}{nabla_{X_0} f = X^T cdot left[nabla_{XW_0} (g)right]}$$

  4. $f(X) = g(softmax(X))$, где $X$ — матрица $Ntimes K$, а $softmax$ — функция, которая вычисляется построчно, причём для каждой строки $x$

    $$softmax(x) = left(frac{e^{x_1}}{sum_te^{x_t}},ldots,frac{e^{x_K}}{sum_te^{x_t}}right)$$

    В этом примере нам будет удобно воспользоваться формализмом с частными производными. Сначала вычислим $frac{partial s_l}{partial x_j}$ для одной строки $x$, где через $s_l$ мы для краткости обозначим $softmax(x)_l = frac{e^{x_l}} {sum_te^{x_t}}$. Нетрудно проверить, что

    $$frac{partial s_l}{partial x_j} = begin{cases}
    s_j(1 — s_j), & j = l,
    -s_ls_j, & jne l
    end{cases}$$

    Так как softmax вычисляется независимо от каждой строчки, то

    $$frac{partial s_{rl}}{partial x_{ij}} = begin{cases}
    s_{ij}(1 — s_{ij}), & r=i, j = l,
    -s_{il}s_{ij}, & r = i, jne l,
    0, & rne i
    end{cases},$$

    где через $s_{rl}$ мы обозначили для краткости $softmax(X)_{rl}$.

    Теперь пусть $nabla_{rl} = nabla g = frac{partialmathcal{L}}{partial s_{rl}}$ (пришедший со следующего слоя, уже известный градиент). Тогда

    $$frac{partialmathcal{L}}{partial x_{ij}} = sum_{r,l}frac{partial s_{rl}}{partial x_{ij}} nabla_{rl}$$

    Так как $frac{partial s_{rl}}{partial x_{ij}} = 0$ при $rne i$, мы можем убрать суммирование по $r$:

    $$ldots = sum_{l}frac{partial s_{il}}{partial x_{ij}} nabla_{il} = -s_{i1}s_{ij}nabla_{i1} — ldots + s_{ij}(1 — s_{ij})nabla_{ij}-ldots — s_{iK}s_{ij}nabla_{iK} =$$

    $$= -s_{ij}sum_t s_{it}nabla_{it} + s_{ij}nabla_{ij}$$

    Таким образом, если мы хотим продифференцировать $f$ в какой-то конкретной точке $X_0$, то, смешивая математические обозначения с нотацией Python, мы можем записать:

    $$begin{multline*}
    color{#348FEA}{nabla_{X_0}f =}\
    color{#348FEA}{= -softmax(X_0) odot text{sum}left(
    softmax(X_0)odotnabla_{softmax(X_0)}g, text{ axis = 1}
    right) +}\
    color{#348FEA}{softmax(X_0)odot nabla_{softmax(X_0)}g}
    end{multline*}
    $$

Backpropagation в общем виде

Подытожим предыдущее обсуждение, описав алгоритм error backpropagation (алгоритм обратного распространения ошибки). Допустим, у нас есть текущие значения весов $W^i_0$ и мы хотим совершить шаг SGD по мини-батчу $X$. Мы должны сделать следующее:

  1. Совершить forward pass, вычислив и запомнив все промежуточные представления $X = X^0, X^1, ldots, X^m = widehat{y}$.
  2. Вычислить все градиенты с помощью backward pass.
  3. С помощью полученных градиентов совершить шаг SGD.

Проиллюстрируем алгоритм на примере двуслойной нейронной сети со скалярным output’ом. Для простоты опустим свободные члены в линейных слоях.

17_3.png Обучаемые параметры – матрицы $U$ и $W$. Как найти градиенты по ним в точке $U_0, W_0$?

$$nabla_{W_0}mathcal{L} = nabla_{W_0}{left({vphantom{frac12}mathcal{L}circ hcircleft[Wmapsto g(XU_0)Wright]}right)}=$$

$$=g(XU_0)^Tnabla_{g(XU_0)W_0}(mathcal{L}circ h) = underbrace{g(XU_0)^T}_{ktimes N}cdot
left[vphantom{frac12}underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes 1}odot
underbrace{nabla_{hleft(vphantom{int_0^1}g(XU_0)W_0right)}mathcal{L}}_{Ntimes 1}right]$$

Итого матрица $ktimes 1$, как и $W_0$

$$nabla_{U_0}mathcal{L} = nabla_{U_0}left(vphantom{frac12}
mathcal{L}circ hcircleft[Ymapsto YW_0right]circ gcircleft[ Umapsto XUright]
right)=$$

$$=X^Tcdotnabla_{XU^0}left(vphantom{frac12}mathcal{L}circ hcirc [Ymapsto YW_0]circ gright) =$$

$$=X^Tcdotleft(vphantom{frac12}g'(XU_0)odot
nabla_{g(XU_0)}left[vphantom{in_0^1}mathcal{L}circ hcirc[Ymapsto YW_0right]
right)$$

$$=ldots = underset{Dtimes N}{X^T}cdotleft(vphantom{frac12}
underbrace{g'(XU_0)}_{Ntimes K}odot
underbrace{left[vphantom{int_0^1}left(
underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes1}odotunderbrace{nabla_{h(vphantom{int_0^1}gleft(XU_0right)W_0)}mathcal{L}}_{Ntimes 1}
right)cdot underbrace{W^T}_{1times K}right]}_{Ntimes K}
right)$$

Итого $Dtimes K$, как и $U_0$

Схематически это можно представить следующим образом:

17_4.gif

Backpropagation для двуслойной нейронной сети

Подробнее о предыдущих вычисленияхЕсли вы не уследили за вычислениями в предыдущем примере, давайте более подробно разберём его чуть более конкретную версию (для $g = h = sigma$).

Рассмотрим двуслойную нейронную сеть для классификации. Мы уже встречали ее ранее при рассмотрении линейно неразделимой выборки. Предсказания получаются следующим образом:

$$
widehat{y} = sigma(X^1 W^2) = sigmaBig(big(sigma(X^0 W^1 )big) W^2 Big).
$$

Пусть $W^1_0$ и $W^2_0$ — текущее приближение матриц весов. Мы хотим совершить шаг по градиенту функции потерь, и для этого мы должны вычислить её градиенты по $W^1$ и $W^2$ в точке $(W^1_0, W^2_0)$.

Прежде всего мы совершаем forward pass, в ходе которого мы должны запомнить все промежуточные представления: $X^1 = X^0 W^1_0$, $X^2 = sigma(X^0 W^1_0)$, $X^3 = sigma(X^0 W^1_0) W^2_0$, $X^4 = sigma(sigma(X^0 W^1_0) W^2_0) = widehat{y}$. Они понадобятся нам дальше.

Для полученных предсказаний вычисляется значение функции потерь:

$$
l = mathcal{L}(y, widehat{y}) = y log(widehat{y}) + (1-y) log(1-widehat{y}).
$$

Дальше мы шаг за шагом будем находить производные по переменным из всё более глубоких слоёв.

  1. Градиент $mathcal{L}$ по предсказаниям имеет вид

    $$
    nabla_{widehat{y}}l = frac{y}{widehat{y}} — frac{1 — y}{1 — widehat{y}} = frac{y — widehat{y}}{widehat{y} (1 — widehat{y})},
    $$

    где, напомним, $ widehat{y} = sigma(X^3) = sigmaBig(big(sigma(X^0 W^1_0 )big) W^2_0 Big)$ (обратите внимание на то, что $W^1_0$ и $W^2_0$ тут именно те, из которых мы делаем градиентный шаг).

  2. Следующий слой — поэлементное взятие $sigma$. Как мы помним, при переходе через него градиент поэлементно умножается на производную $sigma$, в которую подставлено предыдущее промежуточное представление:

    $$
    nabla_{X^3}l = sigma'(X^3)odotnabla_{widehat{y}}l = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — widehat{y}}{widehat{y} (1 — widehat{y})} =
    $$

    $$
    = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — sigma(X^3)}{sigma(X^3) (1 — sigma(X^3))} =
    y — sigma(X^3)
    $$

  3. Следующий слой — умножение на $W^2_0$. В этот момент мы найдём градиент как по $W^2$, так и по $X^2$. При переходе через умножение на матрицу градиент, как мы помним, умножается с той же стороны на транспонированную матрицу, а значит:

    $$
    color{blue}{nabla_{W^2_0}l} = (X^2)^Tcdot nabla_{X^3}l = (X^2)^Tcdot(y — sigma(X^3)) =
    $$

    $$
    = color{blue}{left( sigma(X^0W^1_0) right)^T cdot (y — sigma(sigma(X^0W^1_0)W^2_0))}
    $$

    Аналогичным образом

    $$
    nabla_{X^2}l = nabla_{X^3}lcdot (W^2_0)^T = (y — sigma(X^3))cdot (W^2_0)^T =
    $$

    $$
    = (y — sigma(X^2W_0^2))cdot (W^2_0)^T
    $$

  4. Следующий слой — снова взятие $sigma$.

    $$
    nabla_{X^1}l = sigma'(X^1)odotnabla_{X^2}l = sigma(X^1)left( 1 — sigma(X^1) right) odot left( (y — sigma(X^2W_0^2))cdot (W^2_0)^T right) =
    $$

    $$
    = sigma(X^1)left( 1 — sigma(X^1) right) odotleft( (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^T right)
    $$

  5. Наконец, последний слой — это умножение $X^0$ на $W^1_0$. Тут мы дифференцируем только по $W^1$:

    $$
    color{blue}{nabla_{W^1_0}l} = (X^0)^Tcdot nabla_{X^1}l = (X^0)^Tcdot big( sigma(X^1) left( 1 — sigma(X^1) right) odot (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^Tbig) =
    $$

    $$
    = color{blue}{(X^0)^Tcdotbig(sigma(X^0W^1_0)left( 1 — sigma(X^0W^1_0) right) odot (y — sigma(sigma(X^0W^1_0)W_0^2))cdot (W^2_0)^Tbig) }
    $$

Итоговые формулы для градиентов получились страшноватыми, но они были получены друг из друга итеративно с помощью очень простых операций: матричного и поэлементного умножения, в которые порой подставлялись значения заранее вычисленных промежуточных представлений.

Автоматизация и autograd

Итак, чтобы нейросеть обучалась, достаточно для любого слоя $f^k: X^{k-1}mapsto X^k$ с параметрами $W^k$ уметь:

  • превращать $nabla_{X^k_0}mathcal{L}$ в $nabla_{X^{k-1}_0}mathcal{L}$ (градиент по выходу в градиент по входу);
  • считать градиент по его параметрам $nabla_{W^k_0}mathcal{L}$.

При этом слою совершенно не надо знать, что происходит вокруг. То есть слой действительно может быть запрограммирован как отдельная сущность, умеющая внутри себя делать forward pass и backward pass, после чего слои механически, как кубики в конструкторе, собираются в большую сеть, которая сможет работать как одно целое.

Более того, во многих случаях авторы библиотек для глубинного обучения уже о вас позаботились и создали средства для автоматического дифференцирования выражений (autograd). Поэтому, программируя нейросеть, вы почти всегда можете думать только о forward-проходе, прямом преобразовании данных, предоставив библиотеке дифференцировать всё самостоятельно. Это делает код нейросетей весьма понятным и выразительным (да, в реальности он тоже бывает большим и страшным, но сравните на досуге код какой-нибудь разухабистой нейросети и код градиентного бустинга на решающих деревьях и почувствуйте разницу).

Но это лишь начало

Метод обратного распространения ошибки позволяет удобно посчитать градиенты, но дальше с ними что-то надо делать, и старый добрый SGD едва ли справится с обучением современной сетки. Так что же делать? О некоторых приёмах мы расскажем в следующей главе.

Введение в нейронные сети. Общая постановка задачи. Персептрон. Функции активации нейронов.

Общая постановка задачи

В общем случае задача программирования нейронной сети — это разработать такую нейронную сеть, которая по входу X, будет выдавать правильные ответы Y.

Входом в нейронную сеть могут быть:

  • сырые данные, например, звук или фотография.
  • либо уже заранее обработанные данные алгоритмом, которые по входу X выдаст признаки (feauture), которые будут передаваться нейронной сети. Данные признаки могут быть определены другой нейронной сетью.
  • и т.п.

Выходом могут являться:

  • Ответ да или нет.
  • Номер категории, к которой принадлежат входные данные.
  • Картинка, изображение, звук.
  • и т.п.

Задача программиста:

  1. определить что будет считаться входом в нейронную сеть, а что выходом.
  2. в каком формате будет принимать нейронная сеть данные.
  3. структурировать и привести в единую форму входные и выходные данные.
  4. определить признаки данных, которые могут быть дополнительно поданы на вход в нейронную сеть.
  5. определить количество слоев нейронной сети.
  6. определить дополнительные алгоритмы в архитектуре нейронной сети, как отдельные слои.
  7. создать и разметить DataSet, на котором будет проходить обучение нейронная сеть.
  8. создать правильную архитектуру нейронной сети.
  9. обучить нейронную сеть и проверить ее на контрольной выборке.
  10. внедрить полученную нейронную сеть.

Размеченный DataSet ((D)) — это набор данных и известных ответов к ним. По этому датасету обучаются нейронные сети. При этом датасет делится на две части. Обучающий и контрольный. По обучающему датасету нейронная сеть учится, а по контрольному тестируется. Важно, чтобы данные контрольного датасета не попадали в обучающий, иначе нейронная сеть просто заучит правильные ответы.

Правильным результатом считается, когда нейронная сеть наименьше всего ошибается на обоих дата сетах. Берутся ответы нейронной сети и сравниваются с правильными. Чем меньше ошибка, тем лучше работает нейронная сеть.

Функцией ошибки ((Q)) называется разница между правильными ответами и ответами, которая выдает нейронная сеть на обучающем и контрольном датасете.

Обучение по размеченному датасету называется обучением с учителем. Есть также другие варианты обучения. Например, без учителя. В данном случае правильные ответы отсуствуют и нейронная сеть должна найти их сама. Эта задача хорошо подходит, например, для нахождения общих признаков на большом количестве данных.

Математикой обучения занимаются алгоритмы популярных библиотек TensorFlow, Keros.

Ахитектурой нейронной сети ((F)) — называется цепочка, последовательность слоев этой сети.

Архитектура нейронных сетей может быть разной формы и длины, состоять из нескольких последовательных или паралельных слоев или других цепочек.

Слой — это набор персептронов или определенный алгоритм, который преобразует, по некоторому принципу, входные сигналы p в выходные p’.

Создание архитектуры нейронной сети напоминает конструктор лего, где программист опытным путем подбирает правильный порядок слоев в архитектуре нейронной сети, чтобы она на выходе выдавала правильный результат и значение функии ошибки стремилось к нулю (Q(F, D) to 0)

Каждый слой выполняет определенную функцию. Слои могут отличаться друг от друга.

Примеры слоев:

  • простой слой персептронов.
  • сверточный слой.
  • слой конвертации изображения из двухмерной картинки в одномерный вектор.
  • нахождение максимума или минимума.
  • фильтрация значения по критерию
  • измененя яркости или контрастности.
  • удаления или добавление шума.
  • Max Pooling и Average Pooling.
  • и т.п.

Архитектура нейронной сети может быть иерархической.

Математическое описание задачи обучения с учителем

Дано:

(X) — это входные тестовые данные. Вектор вида ((x_1, x_2, x_3, … , x_n))
(Y) — выходные тестовые данные. Вектор вида ((y_1, y_2, y_3, … , y_k))
(D) — это обучающая выборка, множество кортежей вида ((X_i,Y_i)), множество входных значений и ответов к ним (выходных значений), где для каждого (X_i) известно (Y_i).
(n) — длинна вектора (X)
(k) — длинна вектора (Y)
(m) — размер выборки, количество кортежей в множестве (D)

Требуется:

Найти функцию (F), которая (Y approx F(X))

Обозначим функцию потерь как:

(L(F,X_i)=|Y_i — F(X_i)|)

Эта функция означает, насколько ошибается функция (F) на конкретном примере ((X_i,Y_i)).

Функция (Q), будет называться функцией ошибки (F) на множестве (D) и определена как сумма всех значений функции (L)

(Q (F) = frac{ sum_{i=1}^{m} L(F,X_i) } {m})

Функция (F) и ее веса будут найдена при условии (Q(F) to 0) 

Есть разные варианты формул ошибки:

Абсолютная ошибка:

(Q (F) = frac{ sum_{i=1}^{m} |Y_i — F(X_i)| } {m})

В Tenzorflow loss=’mean_absolute_error’

Среднеквадратическая ошибка:

(Q (F) = frac{ sqrt {sum_{i=1}^{m} (Y_i — F(X_i))^2} } {m})

В Tenzorflow loss=’mean_squared_error’

Математическая модель нейрона

Нейрон — это атом нейронной сети. У каждого нейрона есть несколько входов и один выход.

Ниже представлена математическая модель одного нейрона.

Основная задача нейрона проводить сигнал или гасить его в зависимости от входных значений.

Выходной сигнал нейрона считается как сумма входных значений, умноженная на их веса плюс базис, обработанная функцией активации.

(y = a(sum_{i=1}^{n} omega_i * x_i + beta))

(a(v)) — функция активации нейрона. Функция активации нейрона нужна, чтобы определить при каких входных значениях должен активироваться (включаться) нейрон, т.е. проводить сигнал. А при каких нет. Нейрон включается, если достигается нужный уровень сигнала, после этого нейрон передает сигнал дальше. Поэтому функция и называется функцией активации.

(omega_i) — вес нейронной связи. Задает какой входящий сигнал и с какой силой должен учитываться, а какой нет.

(beta) — смещение bias. Это пороговое значение, которое смещает аргумент активационной функции, потому что активация (включение) нейрона может происходит не в точке 0, а в какой-то другой точке. А т.к. функция активации работает в точке ноль, то аргумент нужно сместить по оси x на смещение bias.

Ниже отображена функция активациции со смещением bias. На графике видно, что нейрон будет включаться после аргумента функции больше 2, а не больше 0. Смещение bias в данном случае равно +2.

Смещение bias также является входом в нейронную сеть, для которого подбирается свой вес. Этот вес и является смещением. Обычно вес смещения является нулевым весом (omega_0), при входном сигнале равным 1. Получается само смещение вычисляется по формуле (beta = omega_0 *1)

Тогда формула активации нейрона примет вид:

(y = a(omega_0 + sum_{i=1}^{n} omega_i * x_i))

Это удобно, потому что в данном случае формула принимает одинаковый вид, и для обучения нейрона требуется подобрать кортеж весов ((omega_0, omega_1, omega_2, omega_3, … , omega_n))

Функция ошибки и активации являются важными параметрами архитектуры нейронной сети.

Однослойный персептрон

Архитектура нейронной сети состоит из последовательности слоев, которые соединены между собой. 

Нейронная сеть состоящая только из входных и выходных слоев называется однослойным персептроном и обозначается упрощенно:

Данная нейронная сеть очень простая. Однослойный персептрон называют более простым термином полносвязный слой. В библиотеке Tensorflow полносвязный слой создается через класс Dense.

Многослойный персептрон

Данный вид нейронной сети имеет следующие названия:

  • нейронная сеть с прямой связью
  • Feed Forward neural network
  • полносвязная сеть
  • классификатор

Полносвязная сеть используется очень часто, и хорошо решают задачи на классификацию, например:

  1. Распознать какая цифра по ее изображению.
  2. Отличить кошку от собаки.
  3. Определить какой цветок, по его параметрам (цвет, форма цветка, длинна и т.д.)
  4. и т.п.

Во сверточных нейронных сетях, полносвязная сеть используется как классификатор на выходе. Сверточная сеть выделяет признаки по картинке и передает ее в полносвязную. А полносвязная уже квалифицирует и выдает ответ.

Многослойный персептрон (полносвязная сеть) — это последовательность полносвязных слоев однослойных персептронов. Основным отличием многослойного персептрона от одногослойного — в наличии одного или более скрытого слоя. Входные и выходные значения соединяются через скрытый слой, а не напрямую, как в однослойном персептроне.

Желтым обозначены входной слой X.

Красным — выходной слой нейронов Y.

Зеленый — это скрытый слой нейронов.

Каждый выход нейрона вычисляется по формуле:

(p’_j = a(omega_0 + sum_{i=1}^{n} omega_i * p_i)), где p — это входные значения, а p’ — это выходные значения нейрона.

В данной нейронной сети 3 слоя. Входной, скрытый и выходной слой. Данную нейронную сеть часто обозначают упрощенно:

Feed Forward neural network

Текстовая нотация Feed Forward:

ff = [
  "Input",
  "Dense",
  "Output"
];

Многослойный персептрон с более чем одним скрытым слоем называют Deep Feed Forward.

Текстовая нотация Deep Feed Forward:

dff = [
  "Input",
  "Dense",
  "Dense",
  "Output"
];

Функции активации нейрона

Пороговая функция активации

(sign(x) = begin{cases} -1 & ,x < 0 \ 0 & ,x = 0 \ 1 &, x > 0 end{cases})

Сигмоида sigm

(sigm(x) = frac{1}{1+e^{-x}})


relu

(relu(x) = max(0,x) = begin{cases} 0 , x leq 0 \ x , x > 0 end{cases})


leaky relu

(lerelu(x) = begin{cases} 0.01x & ,x leq 0 \ x &, x > 0 end{cases})

Материалы

  1. Обучение многослойного персептрона операции XOR
  2. Материалы для самостоятельного изучения нейронных сетей
  3. Базы датасетов для обучения нейронных сетей
  4. AIML-4-1 Персептроны
  5. AIML-4-2 Метод обратного распространения ошибки
  6. Формулы обратного распространения
  7. Архитектуры нейронных сетей
  8. Сервис чтобы строить графики
  9. Ускорение обучения, начальные веса, стандартизация, подготовка выборки
  10. Переобучение — что это и как этого избежать, критерии останова обучения
  11. Функции активации, критерии качества работы НС
  12. Функции активации. Краткий обзор применений CNN и RNN.
  13. Playground Tensorflow

Понравилась статья? Поделить с друзьями:
  • Фф глупая ошибка бтс
  • Функция ошибки машинное обучение
  • Футболка ошибка поколения фараон
  • Футболка ошибка поколения pharaoh
  • Футболист играл вопреки указаниям тренера найдите грамматическую ошибку