Функция ошибок от бесконечности

Error function
Plot of the error function

Plot of the error function

General information
General definition {displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}int _{0}^{z}e^{-t^{2}},mathrm {d} t}
Fields of application Probability, thermodynamics
Domain, Codomain and Image
Domain mathbb {C}
Image {displaystyle left(-1,1right)}
Basic features
Parity Odd
Specific features
Root 0
Derivative {displaystyle {frac {mathrm {d} }{mathrm {d} z}}operatorname {erf} z={frac {2}{sqrt {pi }}}e^{-z^{2}}}
Antiderivative {displaystyle int operatorname {erf} z,dz=zoperatorname {erf} z+{frac {e^{-z^{2}}}{sqrt {pi }}}+C}
Series definition
Taylor series {displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {z}{2n+1}}prod _{k=1}^{n}{frac {-z^{2}}{k}}}

In mathematics, the error function (also called the Gauss error function), often denoted by erf, is a complex function of a complex variable defined as:[1]

{displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}int _{0}^{z}e^{-t^{2}},mathrm {d} t.}

Some authors define operatorname {erf} without the factor of {displaystyle 2/{sqrt {pi }}}.[2]
This integral is a special (non-elementary) sigmoid function that occurs often in probability, statistics, and partial differential equations. In many of these applications, the function argument is a real number. If the function argument is real, then the function value is also real.

In statistics, for non-negative values of x, the error function has the following interpretation: for a random variable Y that is normally distributed with mean 0 and standard deviation 1/2, erf x is the probability that Y falls in the range [−x, x].

Two closely related functions are the complementary error function (erfc) defined as

{displaystyle operatorname {erfc} z=1-operatorname {erf} z,}

and the imaginary error function (erfi) defined as

{displaystyle operatorname {erfi} z=-ioperatorname {erf} iz,}

where i is the imaginary unit.

Name[edit]

The name «error function» and its abbreviation erf were proposed by J. W. L. Glaisher in 1871 on account of its connection with «the theory of Probability, and notably the theory of Errors.»[3] The error function complement was also discussed by Glaisher in a separate publication in the same year.[4]
For the «law of facility» of errors whose density is given by

{displaystyle f(x)=left({frac {c}{pi }}right)^{frac {1}{2}}e^{-cx^{2}}}

(the normal distribution), Glaisher calculates the probability of an error lying between p and q as:

{displaystyle left({frac {c}{pi }}right)^{frac {1}{2}}int _{p}^{q}e^{-cx^{2}},mathrm {d} x={tfrac {1}{2}}left(operatorname {erf} left(q{sqrt {c}}right)-operatorname {erf} left(p{sqrt {c}}right)right).}

Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Applications[edit]

When the results of a series of measurements are described by a normal distribution with standard deviation σ and expected value 0, then erf (a/σ 2) is the probability that the error of a single measurement lies between a and +a, for positive a. This is useful, for example, in determining the bit error rate of a digital communication system.

The error and complementary error functions occur, for example, in solutions of the heat equation when boundary conditions are given by the Heaviside step function.

The error function and its approximations can be used to estimate results that hold with high probability or with low probability. Given a random variable X ~ Norm[μ,σ] (a normal distribution with mean μ and standard deviation σ) and a constant L < μ:

{displaystyle {begin{aligned}Pr[Xleq L]&={frac {1}{2}}+{frac {1}{2}}operatorname {erf} {frac {L-mu }{{sqrt {2}}sigma }}\&approx Aexp left(-Bleft({frac {L-mu }{sigma }}right)^{2}right)end{aligned}}}

where A and B are certain numeric constants. If L is sufficiently far from the mean, specifically μLσln k, then:

{displaystyle Pr[Xleq L]leq Aexp(-Bln {k})={frac {A}{k^{B}}}}

so the probability goes to 0 as k → ∞.

The probability for X being in the interval [La, Lb] can be derived as

{displaystyle {begin{aligned}Pr[L_{a}leq Xleq L_{b}]&=int _{L_{a}}^{L_{b}}{frac {1}{{sqrt {2pi }}sigma }}exp left(-{frac {(x-mu )^{2}}{2sigma ^{2}}}right),mathrm {d} x\&={frac {1}{2}}left(operatorname {erf} {frac {L_{b}-mu }{{sqrt {2}}sigma }}-operatorname {erf} {frac {L_{a}-mu }{{sqrt {2}}sigma }}right).end{aligned}}}

Properties[edit]

Integrand exp(−z2)

erf z

The property erf (−z) = −erf z means that the error function is an odd function. This directly results from the fact that the integrand et2 is an even function (the antiderivative of an even function which is zero at the origin is an odd function and vice versa).

Since the error function is an entire function which takes real numbers to real numbers, for any complex number z:

{displaystyle operatorname {erf} {overline {z}}={overline {operatorname {erf} z}}}

where z is the complex conjugate of z.

The integrand f = exp(−z2) and f = erf z are shown in the complex z-plane in the figures at right with domain coloring.

The error function at +∞ is exactly 1 (see Gaussian integral). At the real axis, erf z approaches unity at z → +∞ and −1 at z → −∞. At the imaginary axis, it tends to ±i.

Taylor series[edit]

The error function is an entire function; it has no singularities (except that at infinity) and its Taylor expansion always converges, but is famously known «[…] for its bad convergence if x > 1[5]

The defining integral cannot be evaluated in closed form in terms of elementary functions (see Liouville’s theorem), but by expanding the integrand ez2 into its Maclaurin series and integrating term by term, one obtains the error function’s Maclaurin series as:

{displaystyle {begin{aligned}operatorname {erf} z&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {(-1)^{n}z^{2n+1}}{n!(2n+1)}}\[6pt]&={frac {2}{sqrt {pi }}}left(z-{frac {z^{3}}{3}}+{frac {z^{5}}{10}}-{frac {z^{7}}{42}}+{frac {z^{9}}{216}}-cdots right)end{aligned}}}

which holds for every complex number z. The denominator terms are sequence A007680 in the OEIS.

For iterative calculation of the above series, the following alternative formulation may be useful:

{displaystyle {begin{aligned}operatorname {erf} z&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }left(zprod _{k=1}^{n}{frac {-(2k-1)z^{2}}{k(2k+1)}}right)\[6pt]&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {z}{2n+1}}prod _{k=1}^{n}{frac {-z^{2}}{k}}end{aligned}}}

because −(2k − 1)z2/k(2k + 1) expresses the multiplier to turn the kth term into the (k + 1)th term (considering z as the first term).

The imaginary error function has a very similar Maclaurin series, which is:

{displaystyle {begin{aligned}operatorname {erfi} z&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {z^{2n+1}}{n!(2n+1)}}\[6pt]&={frac {2}{sqrt {pi }}}left(z+{frac {z^{3}}{3}}+{frac {z^{5}}{10}}+{frac {z^{7}}{42}}+{frac {z^{9}}{216}}+cdots right)end{aligned}}}

which holds for every complex number z.

Derivative and integral[edit]

The derivative of the error function follows immediately from its definition:

{displaystyle {frac {mathrm {d} }{mathrm {d} z}}operatorname {erf} z={frac {2}{sqrt {pi }}}e^{-z^{2}}.}

From this, the derivative of the imaginary error function is also immediate:

{displaystyle {frac {d}{dz}}operatorname {erfi} z={frac {2}{sqrt {pi }}}e^{z^{2}}.}

An antiderivative of the error function, obtainable by integration by parts, is

{displaystyle zoperatorname {erf} z+{frac {e^{-z^{2}}}{sqrt {pi }}}.}

An antiderivative of the imaginary error function, also obtainable by integration by parts, is

{displaystyle zoperatorname {erfi} z-{frac {e^{z^{2}}}{sqrt {pi }}}.}

Higher order derivatives are given by

{displaystyle operatorname {erf} ^{(k)}z={frac {2(-1)^{k-1}}{sqrt {pi }}}{mathit {H}}_{k-1}(z)e^{-z^{2}}={frac {2}{sqrt {pi }}}{frac {mathrm {d} ^{k-1}}{mathrm {d} z^{k-1}}}left(e^{-z^{2}}right),qquad k=1,2,dots }

where H are the physicists’ Hermite polynomials.[6]

Bürmann series[edit]

An expansion,[7] which converges more rapidly for all real values of x than a Taylor expansion, is obtained by using Hans Heinrich Bürmann’s theorem:[8]

{displaystyle {begin{aligned}operatorname {erf} x&={frac {2}{sqrt {pi }}}operatorname {sgn} xcdot {sqrt {1-e^{-x^{2}}}}left(1-{frac {1}{12}}left(1-e^{-x^{2}}right)-{frac {7}{480}}left(1-e^{-x^{2}}right)^{2}-{frac {5}{896}}left(1-e^{-x^{2}}right)^{3}-{frac {787}{276480}}left(1-e^{-x^{2}}right)^{4}-cdots right)\[10pt]&={frac {2}{sqrt {pi }}}operatorname {sgn} xcdot {sqrt {1-e^{-x^{2}}}}left({frac {sqrt {pi }}{2}}+sum _{k=1}^{infty }c_{k}e^{-kx^{2}}right).end{aligned}}}

where sgn is the sign function. By keeping only the first two coefficients and choosing c1 = 31/200 and c2 = −341/8000, the resulting approximation shows its largest relative error at x = ±1.3796, where it is less than 0.0036127:

{displaystyle operatorname {erf} xapprox {frac {2}{sqrt {pi }}}operatorname {sgn} xcdot {sqrt {1-e^{-x^{2}}}}left({frac {sqrt {pi }}{2}}+{frac {31}{200}}e^{-x^{2}}-{frac {341}{8000}}e^{-2x^{2}}right).}

Inverse functions[edit]

Given a complex number z, there is not a unique complex number w satisfying erf w = z, so a true inverse function would be multivalued. However, for −1 < x < 1, there is a unique real number denoted erf−1 x satisfying

{displaystyle operatorname {erf} left(operatorname {erf} ^{-1}xright)=x.}

The inverse error function is usually defined with domain (−1,1), and it is restricted to this domain in many computer algebra systems. However, it can be extended to the disk |z| < 1 of the complex plane, using the Maclaurin series[9]

{displaystyle operatorname {erf} ^{-1}z=sum _{k=0}^{infty }{frac {c_{k}}{2k+1}}left({frac {sqrt {pi }}{2}}zright)^{2k+1},}

where c0 = 1 and

{displaystyle {begin{aligned}c_{k}&=sum _{m=0}^{k-1}{frac {c_{m}c_{k-1-m}}{(m+1)(2m+1)}}\&=left{1,1,{frac {7}{6}},{frac {127}{90}},{frac {4369}{2520}},{frac {34807}{16200}},ldots right}.end{aligned}}}

So we have the series expansion (common factors have been canceled from numerators and denominators):

{displaystyle operatorname {erf} ^{-1}z={frac {sqrt {pi }}{2}}left(z+{frac {pi }{12}}z^{3}+{frac {7pi ^{2}}{480}}z^{5}+{frac {127pi ^{3}}{40320}}z^{7}+{frac {4369pi ^{4}}{5806080}}z^{9}+{frac {34807pi ^{5}}{182476800}}z^{11}+cdots right).}

(After cancellation the numerator/denominator fractions are entries OEIS: A092676/OEIS: A092677 in the OEIS; without cancellation the numerator terms are given in entry OEIS: A002067.) The error function’s value at ±∞ is equal to ±1.

For |z| < 1, we have erf(erf−1 z) = z.

The inverse complementary error function is defined as

{displaystyle operatorname {erfc} ^{-1}(1-z)=operatorname {erf} ^{-1}z.}

For real x, there is a unique real number erfi−1 x satisfying erfi(erfi−1 x) = x. The inverse imaginary error function is defined as erfi−1 x.[10]

For any real x, Newton’s method can be used to compute erfi−1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges:

{displaystyle operatorname {erfi} ^{-1}z=sum _{k=0}^{infty }{frac {(-1)^{k}c_{k}}{2k+1}}left({frac {sqrt {pi }}{2}}zright)^{2k+1},}

where ck is defined as above.

Asymptotic expansion[edit]

A useful asymptotic expansion of the complementary error function (and therefore also of the error function) for large real x is

{displaystyle {begin{aligned}operatorname {erfc} x&={frac {e^{-x^{2}}}{x{sqrt {pi }}}}left(1+sum _{n=1}^{infty }(-1)^{n}{frac {1cdot 3cdot 5cdots (2n-1)}{left(2x^{2}right)^{n}}}right)\[6pt]&={frac {e^{-x^{2}}}{x{sqrt {pi }}}}sum _{n=0}^{infty }(-1)^{n}{frac {(2n-1)!!}{left(2x^{2}right)^{n}}},end{aligned}}}

where (2n − 1)!! is the double factorial of (2n − 1), which is the product of all odd numbers up to (2n − 1). This series diverges for every finite x, and its meaning as asymptotic expansion is that for any integer N ≥ 1 one has

{displaystyle operatorname {erfc} x={frac {e^{-x^{2}}}{x{sqrt {pi }}}}sum _{n=0}^{N-1}(-1)^{n}{frac {(2n-1)!!}{left(2x^{2}right)^{n}}}+R_{N}(x)}

where the remainder is

{displaystyle R_{N}(x):={frac {(-1)^{N}}{sqrt {pi }}}2^{1-2N}{frac {(2N)!}{N!}}int _{x}^{infty }t^{-2N}e^{-t^{2}},mathrm {d} t,}

which follows easily by induction, writing

{displaystyle e^{-t^{2}}=-(2t)^{-1}left(e^{-t^{2}}right)'}

and integrating by parts.

The asymptotic behavior of the remainder term, in Landau notation, is

{displaystyle R_{N}(x)=Oleft(x^{-(1+2N)}e^{-x^{2}}right)}

as x → ∞. This can be found by

{displaystyle R_{N}(x)propto int _{x}^{infty }t^{-2N}e^{-t^{2}},mathrm {d} t=e^{-x^{2}}int _{0}^{infty }(t+x)^{-2N}e^{-t^{2}-2tx},mathrm {d} tleq e^{-x^{2}}int _{0}^{infty }x^{-2N}e^{-2tx},mathrm {d} tpropto x^{-(1+2N)}e^{-x^{2}}.}

For large enough values of x, only the first few terms of this asymptotic expansion are needed to obtain a good approximation of erfc x (while for not too large values of x, the above Taylor expansion at 0 provides a very fast convergence).

Continued fraction expansion[edit]

A continued fraction expansion of the complementary error function is:[11]

{displaystyle operatorname {erfc} z={frac {z}{sqrt {pi }}}e^{-z^{2}}{cfrac {1}{z^{2}+{cfrac {a_{1}}{1+{cfrac {a_{2}}{z^{2}+{cfrac {a_{3}}{1+dotsb }}}}}}}},qquad a_{m}={frac {m}{2}}.}

Integral of error function with Gaussian density function[edit]

{displaystyle int _{-infty }^{infty }operatorname {erf} left(ax+bright){frac {1}{sqrt {2pi sigma ^{2}}}}exp left(-{frac {(x-mu )^{2}}{2sigma ^{2}}}right),mathrm {d} x=operatorname {erf} {frac {amu +b}{sqrt {1+2a^{2}sigma ^{2}}}},qquad a,b,mu ,sigma in mathbb {R} }

which appears related to Ng and Geller, formula 13 in section 4.3[12] with a change of variables.

Factorial series[edit]

The inverse factorial series:

{displaystyle {begin{aligned}operatorname {erfc} z&={frac {e^{-z^{2}}}{{sqrt {pi }},z}}sum _{n=0}^{infty }{frac {(-1)^{n}Q_{n}}{{(z^{2}+1)}^{bar {n}}}}\&={frac {e^{-z^{2}}}{{sqrt {pi }},z}}left(1-{frac {1}{2}}{frac {1}{(z^{2}+1)}}+{frac {1}{4}}{frac {1}{(z^{2}+1)(z^{2}+2)}}-cdots right)end{aligned}}}

converges for Re(z2) > 0. Here

{displaystyle {begin{aligned}Q_{n}&{overset {text{def}}{{}={}}}{frac {1}{Gamma left({frac {1}{2}}right)}}int _{0}^{infty }tau (tau -1)cdots (tau -n+1)tau ^{-{frac {1}{2}}}e^{-tau },dtau \&=sum _{k=0}^{n}left({tfrac {1}{2}}right)^{bar {k}}s(n,k),end{aligned}}}

zn denotes the rising factorial, and s(n,k) denotes a signed Stirling number of the first kind.[13][14]
There also exists a representation by an infinite sum containing the double factorial:

{displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {(-2)^{n}(2n-1)!!}{(2n+1)!}}z^{2n+1}}

Numerical approximations[edit]

Approximation with elementary functions[edit]

  • Abramowitz and Stegun give several approximations of varying accuracy (equations 7.1.25–28). This allows one to choose the fastest approximation suitable for a given application. In order of increasing accuracy, they are:
    {displaystyle operatorname {erf} xapprox 1-{frac {1}{left(1+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4}right)^{4}}},qquad xgeq 0}

    (maximum error: 5×10−4)

    where a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108

    {displaystyle operatorname {erf} xapprox 1-left(a_{1}t+a_{2}t^{2}+a_{3}t^{3}right)e^{-x^{2}},quad t={frac {1}{1+px}},qquad xgeq 0}

    (maximum error: 2.5×10−5)

    where p = 0.47047, a1 = 0.3480242, a2 = −0.0958798, a3 = 0.7478556

    {displaystyle operatorname {erf} xapprox 1-{frac {1}{left(1+a_{1}x+a_{2}x^{2}+cdots +a_{6}x^{6}right)^{16}}},qquad xgeq 0}

    (maximum error: 3×10−7)

    where a1 = 0.0705230784, a2 = 0.0422820123, a3 = 0.0092705272, a4 = 0.0001520143, a5 = 0.0002765672, a6 = 0.0000430638

    {displaystyle operatorname {erf} xapprox 1-left(a_{1}t+a_{2}t^{2}+cdots +a_{5}t^{5}right)e^{-x^{2}},quad t={frac {1}{1+px}}}

    (maximum error: 1.5×10−7)

    where p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 = −1.453152027, a5 = 1.061405429

    All of these approximations are valid for x ≥ 0. To use these approximations for negative x, use the fact that erf x is an odd function, so erf x = −erf(−x).

  • Exponential bounds and a pure exponential approximation for the complementary error function are given by[15]
    {displaystyle {begin{aligned}operatorname {erfc} x&leq {tfrac {1}{2}}e^{-2x^{2}}+{tfrac {1}{2}}e^{-x^{2}}leq e^{-x^{2}},&quad x&>0\operatorname {erfc} x&approx {tfrac {1}{6}}e^{-x^{2}}+{tfrac {1}{2}}e^{-{frac {4}{3}}x^{2}},&quad x&>0.end{aligned}}}
  • The above have been generalized to sums of N exponentials[16] with increasing accuracy in terms of N so that erfc x can be accurately approximated or bounded by 2(2x), where
    {displaystyle {tilde {Q}}(x)=sum _{n=1}^{N}a_{n}e^{-b_{n}x^{2}}.}

    In particular, there is a systematic methodology to solve the numerical coefficients {(an,bn)}N
    n = 1
    that yield a minimax approximation or bound for the closely related Q-function: Q(x) ≈ (x), Q(x) ≤ (x), or Q(x) ≥ (x) for x ≥ 0. The coefficients {(an,bn)}N
    n = 1
    for many variations of the exponential approximations and bounds up to N = 25 have been released to open access as a comprehensive dataset.[17]

  • A tight approximation of the complementary error function for x ∈ [0,∞) is given by Karagiannidis & Lioumpas (2007)[18] who showed for the appropriate choice of parameters {A,B} that
    {displaystyle operatorname {erfc} xapprox {frac {left(1-e^{-Ax}right)e^{-x^{2}}}{B{sqrt {pi }}x}}.}

    They determined {A,B} = {1.98,1.135}, which gave a good approximation for all x ≥ 0. Alternative coefficients are also available for tailoring accuracy for a specific application or transforming the expression into a tight bound.[19]

  • A single-term lower bound is[20]

    {displaystyle operatorname {erfc} xgeq {sqrt {frac {2e}{pi }}}{frac {sqrt {beta -1}}{beta }}e^{-beta x^{2}},qquad xgeq 0,quad beta >1,}

    where the parameter β can be picked to minimize error on the desired interval of approximation.

  • Another approximation is given by Sergei Winitzki using his «global Padé approximations»:[21][22]: 2–3 
    {displaystyle operatorname {erf} xapprox operatorname {sgn} xcdot {sqrt {1-exp left(-x^{2}{frac {{frac {4}{pi }}+ax^{2}}{1+ax^{2}}}right)}}}

    where

    {displaystyle a={frac {8(pi -3)}{3pi (4-pi )}}approx 0.140012.}

    This is designed to be very accurate in a neighborhood of 0 and a neighborhood of infinity, and the relative error is less than 0.00035 for all real x. Using the alternate value a ≈ 0.147 reduces the maximum relative error to about 0.00013.[23]

    This approximation can be inverted to obtain an approximation for the inverse error function:

    {displaystyle operatorname {erf} ^{-1}xapprox operatorname {sgn} xcdot {sqrt {{sqrt {left({frac {2}{pi a}}+{frac {ln left(1-x^{2}right)}{2}}right)^{2}-{frac {ln left(1-x^{2}right)}{a}}}}-left({frac {2}{pi a}}+{frac {ln left(1-x^{2}right)}{2}}right)}}.}
  • An approximation with a maximal error of 1.2×10−7 for any real argument is:[24]
    {displaystyle operatorname {erf} x={begin{cases}1-tau &xgeq 0\tau -1&x<0end{cases}}}

    with

    {displaystyle {begin{aligned}tau &=tcdot exp left(-x^{2}-1.26551223+1.00002368t+0.37409196t^{2}+0.09678418t^{3}-0.18628806t^{4}right.\&left.qquad qquad qquad +0.27886807t^{5}-1.13520398t^{6}+1.48851587t^{7}-0.82215223t^{8}+0.17087277t^{9}right)end{aligned}}}

    and

    {displaystyle t={frac {1}{1+{frac {1}{2}}|x|}}.}

Table of values[edit]

x erf x 1 − erf x
0 0 1
0.02 0.022564575 0.977435425
0.04 0.045111106 0.954888894
0.06 0.067621594 0.932378406
0.08 0.090078126 0.909921874
0.1 0.112462916 0.887537084
0.2 0.222702589 0.777297411
0.3 0.328626759 0.671373241
0.4 0.428392355 0.571607645
0.5 0.520499878 0.479500122
0.6 0.603856091 0.396143909
0.7 0.677801194 0.322198806
0.8 0.742100965 0.257899035
0.9 0.796908212 0.203091788
1 0.842700793 0.157299207
1.1 0.880205070 0.119794930
1.2 0.910313978 0.089686022
1.3 0.934007945 0.065992055
1.4 0.952285120 0.047714880
1.5 0.966105146 0.033894854
1.6 0.976348383 0.023651617
1.7 0.983790459 0.016209541
1.8 0.989090502 0.010909498
1.9 0.992790429 0.007209571
2 0.995322265 0.004677735
2.1 0.997020533 0.002979467
2.2 0.998137154 0.001862846
2.3 0.998856823 0.001143177
2.4 0.999311486 0.000688514
2.5 0.999593048 0.000406952
3 0.999977910 0.000022090
3.5 0.999999257 0.000000743

[edit]

Complementary error function[edit]

The complementary error function, denoted erfc, is defined as

Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

{displaystyle {begin{aligned}operatorname {erfc} x&=1-operatorname {erf} x\[5pt]&={frac {2}{sqrt {pi }}}int _{x}^{infty }e^{-t^{2}},mathrm {d} t\[5pt]&=e^{-x^{2}}operatorname {erfcx} x,end{aligned}}}

which also defines erfcx, the scaled complementary error function[25] (which can be used instead of erfc to avoid arithmetic underflow[25][26]). Another form of erfc x for x ≥ 0 is known as Craig’s formula, after its discoverer:[27]

{displaystyle operatorname {erfc} (xmid xgeq 0)={frac {2}{pi }}int _{0}^{frac {pi }{2}}exp left(-{frac {x^{2}}{sin ^{2}theta }}right),mathrm {d} theta .}

This expression is valid only for positive values of x, but it can be used in conjunction with erfc x = 2 − erfc(−x) to obtain erfc(x) for negative values. This form is advantageous in that the range of integration is fixed and finite. An extension of this expression for the erfc of the sum of two non-negative variables is as follows:[28]

{displaystyle operatorname {erfc} (x+ymid x,ygeq 0)={frac {2}{pi }}int _{0}^{frac {pi }{2}}exp left(-{frac {x^{2}}{sin ^{2}theta }}-{frac {y^{2}}{cos ^{2}theta }}right),mathrm {d} theta .}

Imaginary error function[edit]

The imaginary error function, denoted erfi, is defined as

Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

{displaystyle {begin{aligned}operatorname {erfi} x&=-ioperatorname {erf} ix\[5pt]&={frac {2}{sqrt {pi }}}int _{0}^{x}e^{t^{2}},mathrm {d} t\[5pt]&={frac {2}{sqrt {pi }}}e^{x^{2}}D(x),end{aligned}}}

where D(x) is the Dawson function (which can be used instead of erfi to avoid arithmetic overflow[25]).

Despite the name «imaginary error function», erfi x is real when x is real.

When the error function is evaluated for arbitrary complex arguments z, the resulting complex error function is usually discussed in scaled form as the Faddeeva function:

w(z)=e^{-z^{2}}operatorname {erfc} (-iz)=operatorname {erfcx} (-iz).

Cumulative distribution function[edit]

The error function is essentially identical to the standard normal cumulative distribution function, denoted Φ, also named norm(x) by some software languages[citation needed], as they differ only by scaling and translation. Indeed,

the normal cumulative distribution function plotted in the complex plane

the normal cumulative distribution function plotted in the complex plane

{displaystyle {begin{aligned}Phi (x)&={frac {1}{sqrt {2pi }}}int _{-infty }^{x}e^{tfrac {-t^{2}}{2}},mathrm {d} t\[6pt]&={frac {1}{2}}left(1+operatorname {erf} {frac {x}{sqrt {2}}}right)\[6pt]&={frac {1}{2}}operatorname {erfc} left(-{frac {x}{sqrt {2}}}right)end{aligned}}}

or rearranged for erf and erfc:

{displaystyle {begin{aligned}operatorname {erf} (x)&=2Phi left(x{sqrt {2}}right)-1\[6pt]operatorname {erfc} (x)&=2Phi left(-x{sqrt {2}}right)\&=2left(1-Phi left(x{sqrt {2}}right)right).end{aligned}}}

Consequently, the error function is also closely related to the Q-function, which is the tail probability of the standard normal distribution. The Q-function can be expressed in terms of the error function as

{displaystyle {begin{aligned}Q(x)&={frac {1}{2}}-{frac {1}{2}}operatorname {erf} {frac {x}{sqrt {2}}}\&={frac {1}{2}}operatorname {erfc} {frac {x}{sqrt {2}}}.end{aligned}}}

The inverse of Φ is known as the normal quantile function, or probit function and may be expressed in terms of the inverse error function as

{displaystyle operatorname {probit} (p)=Phi ^{-1}(p)={sqrt {2}}operatorname {erf} ^{-1}(2p-1)=-{sqrt {2}}operatorname {erfc} ^{-1}(2p).}

The standard normal cdf is used more often in probability and statistics, and the error function is used more often in other branches of mathematics.

The error function is a special case of the Mittag-Leffler function, and can also be expressed as a confluent hypergeometric function (Kummer’s function):

{displaystyle operatorname {erf} x={frac {2x}{sqrt {pi }}}Mleft({tfrac {1}{2}},{tfrac {3}{2}},-x^{2}right).}

It has a simple expression in terms of the Fresnel integral.[further explanation needed]

In terms of the regularized gamma function P and the incomplete gamma function,

{displaystyle operatorname {erf} x=operatorname {sgn} xcdot Pleft({tfrac {1}{2}},x^{2}right)={frac {operatorname {sgn} x}{sqrt {pi }}}gamma left({tfrac {1}{2}},x^{2}right).}

sgn x is the sign function.

Generalized error functions[edit]

Graph of generalised error functions En(x):
grey curve: E1(x) = 1 − ex/π
red curve: E2(x) = erf(x)
green curve: E3(x)
blue curve: E4(x)
gold curve: E5(x).

Some authors discuss the more general functions:[citation needed]

{displaystyle E_{n}(x)={frac {n!}{sqrt {pi }}}int _{0}^{x}e^{-t^{n}},mathrm {d} t={frac {n!}{sqrt {pi }}}sum _{p=0}^{infty }(-1)^{p}{frac {x^{np+1}}{(np+1)p!}}.}

Notable cases are:

  • E0(x) is a straight line through the origin: E0(x) = x/eπ
  • E2(x) is the error function, erf x.

After division by n!, all the En for odd n look similar (but not identical) to each other. Similarly, the En for even n look similar (but not identical) to each other after a simple division by n!. All generalised error functions for n > 0 look similar on the positive x side of the graph.

These generalised functions can equivalently be expressed for x > 0 using the gamma function and incomplete gamma function:

{displaystyle E_{n}(x)={frac {1}{sqrt {pi }}}Gamma (n)left(Gamma left({frac {1}{n}}right)-Gamma left({frac {1}{n}},x^{n}right)right),qquad x>0.}

Therefore, we can define the error function in terms of the incomplete gamma function:

{displaystyle operatorname {erf} x=1-{frac {1}{sqrt {pi }}}Gamma left({tfrac {1}{2}},x^{2}right).}

Iterated integrals of the complementary error function[edit]

The iterated integrals of the complementary error function are defined by[29]

{displaystyle {begin{aligned}operatorname {i} ^{n}!operatorname {erfc} z&=int _{z}^{infty }operatorname {i} ^{n-1}!operatorname {erfc} zeta ,mathrm {d} zeta \[6pt]operatorname {i} ^{0}!operatorname {erfc} z&=operatorname {erfc} z\operatorname {i} ^{1}!operatorname {erfc} z&=operatorname {ierfc} z={frac {1}{sqrt {pi }}}e^{-z^{2}}-zoperatorname {erfc} z\operatorname {i} ^{2}!operatorname {erfc} z&={tfrac {1}{4}}left(operatorname {erfc} z-2zoperatorname {ierfc} zright)\end{aligned}}}

The general recurrence formula is

{displaystyle 2ncdot operatorname {i} ^{n}!operatorname {erfc} z=operatorname {i} ^{n-2}!operatorname {erfc} z-2zcdot operatorname {i} ^{n-1}!operatorname {erfc} z}

They have the power series

{displaystyle operatorname {i} ^{n}!operatorname {erfc} z=sum _{j=0}^{infty }{frac {(-z)^{j}}{2^{n-j}j!,Gamma left(1+{frac {n-j}{2}}right)}},}

from which follow the symmetry properties

{displaystyle operatorname {i} ^{2m}!operatorname {erfc} (-z)=-operatorname {i} ^{2m}!operatorname {erfc} z+sum _{q=0}^{m}{frac {z^{2q}}{2^{2(m-q)-1}(2q)!(m-q)!}}}

and

{displaystyle operatorname {i} ^{2m+1}!operatorname {erfc} (-z)=operatorname {i} ^{2m+1}!operatorname {erfc} z+sum _{q=0}^{m}{frac {z^{2q+1}}{2^{2(m-q)-1}(2q+1)!(m-q)!}}.}

Implementations[edit]

As real function of a real argument[edit]

  • In POSIX-compliant operating systems, the header math.h shall declare and the mathematical library libm shall provide the functions erf and erfc (double precision) as well as their single precision and extended precision counterparts erff, erfl and erfcf, erfcl.[30]
  • The GNU Scientific Library provides erf, erfc, log(erf), and scaled error functions.[31]

As complex function of a complex argument[edit]

  • libcerf, numeric C library for complex error functions, provides the complex functions cerf, cerfc, cerfcx and the real functions erfi, erfcx with approximately 13–14 digits precision, based on the Faddeeva function as implemented in the MIT Faddeeva Package

See also[edit]

[edit]

  • Gaussian integral, over the whole real line
  • Gaussian function, derivative
  • Dawson function, renormalized imaginary error function
  • Goodwin–Staton integral

In probability[edit]

  • Normal distribution
  • Normal cumulative distribution function, a scaled and shifted form of error function
  • Probit, the inverse or quantile function of the normal CDF
  • Q-function, the tail probability of the normal distribution
  • Standard score

References[edit]

  1. ^ Andrews, Larry C. (1998). Special functions of mathematics for engineers. SPIE Press. p. 110. ISBN 9780819426161.
  2. ^ Whittaker, E. T.; Watson, G. N. (1927). A Course of Modern Analysis. Cambridge University Press. p. 341. ISBN 978-0-521-58807-2.
  3. ^ Glaisher, James Whitbread Lee (July 1871). «On a class of definite integrals». London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4. 42 (277): 294–302. doi:10.1080/14786447108640568. Retrieved 6 December 2017.
  4. ^ Glaisher, James Whitbread Lee (September 1871). «On a class of definite integrals. Part II». London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4. 42 (279): 421–436. doi:10.1080/14786447108640600. Retrieved 6 December 2017.
  5. ^ «A007680 – OEIS». oeis.org. Retrieved 2 April 2020.
  6. ^ Weisstein, Eric W. «Erf». MathWorld.
  7. ^ Schöpf, H. M.; Supancic, P. H. (2014). «On Bürmann’s Theorem and Its Application to Problems of Linear and Nonlinear Heat Transfer and Diffusion». The Mathematica Journal. 16. doi:10.3888/tmj.16-11.
  8. ^ Weisstein, Eric W. «Bürmann’s Theorem». MathWorld.
  9. ^ Dominici, Diego (2006). «Asymptotic analysis of the derivatives of the inverse error function». arXiv:math/0607230.
  10. ^ Bergsma, Wicher (2006). «On a new correlation coefficient, its orthogonal decomposition and associated tests of independence». arXiv:math/0604627.
  11. ^ Cuyt, Annie A. M.; Petersen, Vigdis B.; Verdonk, Brigitte; Waadeland, Haakon; Jones, William B. (2008). Handbook of Continued Fractions for Special Functions. Springer-Verlag. ISBN 978-1-4020-6948-2.
  12. ^ Ng, Edward W.; Geller, Murray (January 1969). «A table of integrals of the Error functions». Journal of Research of the National Bureau of Standards Section B. 73B (1): 1. doi:10.6028/jres.073B.001.
  13. ^ Schlömilch, Oskar Xavier (1859). «Ueber facultätenreihen». Zeitschrift für Mathematik und Physik (in German). 4: 390–415.
  14. ^ Nielson, Niels (1906). Handbuch der Theorie der Gammafunktion (in German). Leipzig: B. G. Teubner. p. 283 Eq. 3. Retrieved 4 December 2017.
  15. ^ Chiani, M.; Dardari, D.; Simon, M.K. (2003). «New Exponential Bounds and Approximations for the Computation of Error Probability in Fading Channels» (PDF). IEEE Transactions on Wireless Communications. 2 (4): 840–845. CiteSeerX 10.1.1.190.6761. doi:10.1109/TWC.2003.814350.
  16. ^ Tanash, I.M.; Riihonen, T. (2020). «Global minimax approximations and bounds for the Gaussian Q-function by sums of exponentials». IEEE Transactions on Communications. 68 (10): 6514–6524. arXiv:2007.06939. doi:10.1109/TCOMM.2020.3006902. S2CID 220514754.
  17. ^ Tanash, I.M.; Riihonen, T. (2020). «Coefficients for Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials [Data set]». Zenodo. doi:10.5281/zenodo.4112978.
  18. ^ Karagiannidis, G. K.; Lioumpas, A. S. (2007). «An improved approximation for the Gaussian Q-function» (PDF). IEEE Communications Letters. 11 (8): 644–646. doi:10.1109/LCOMM.2007.070470. S2CID 4043576.
  19. ^ Tanash, I.M.; Riihonen, T. (2021). «Improved coefficients for the Karagiannidis–Lioumpas approximations and bounds to the Gaussian Q-function». IEEE Communications Letters. 25 (5): 1468–1471. arXiv:2101.07631. doi:10.1109/LCOMM.2021.3052257. S2CID 231639206.
  20. ^ Chang, Seok-Ho; Cosman, Pamela C.; Milstein, Laurence B. (November 2011). «Chernoff-Type Bounds for the Gaussian Error Function». IEEE Transactions on Communications. 59 (11): 2939–2944. doi:10.1109/TCOMM.2011.072011.100049. S2CID 13636638.
  21. ^ Winitzki, Sergei (2003). «Uniform approximations for transcendental functions». Computational Science and Its Applications – ICCSA 2003. Lecture Notes in Computer Science. Vol. 2667. Springer, Berlin. pp. 780–789. doi:10.1007/3-540-44839-X_82. ISBN 978-3-540-40155-1.
  22. ^ Zeng, Caibin; Chen, Yang Cuan (2015). «Global Padé approximations of the generalized Mittag-Leffler function and its inverse». Fractional Calculus and Applied Analysis. 18 (6): 1492–1506. arXiv:1310.5592. doi:10.1515/fca-2015-0086. S2CID 118148950. Indeed, Winitzki [32] provided the so-called global Padé approximation
  23. ^ Winitzki, Sergei (6 February 2008). «A handy approximation for the error function and its inverse».
  24. ^ Numerical Recipes in Fortran 77: The Art of Scientific Computing (ISBN 0-521-43064-X), 1992, page 214, Cambridge University Press.
  25. ^ a b c Cody, W. J. (March 1993), «Algorithm 715: SPECFUN—A portable FORTRAN package of special function routines and test drivers» (PDF), ACM Trans. Math. Softw., 19 (1): 22–32, CiteSeerX 10.1.1.643.4394, doi:10.1145/151271.151273, S2CID 5621105
  26. ^ Zaghloul, M. R. (1 March 2007), «On the calculation of the Voigt line profile: a single proper integral with a damped sine integrand», Monthly Notices of the Royal Astronomical Society, 375 (3): 1043–1048, Bibcode:2007MNRAS.375.1043Z, doi:10.1111/j.1365-2966.2006.11377.x
  27. ^ John W. Craig, A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations Archived 3 April 2012 at the Wayback Machine, Proceedings of the 1991 IEEE Military Communication Conference, vol. 2, pp. 571–575.
  28. ^ Behnad, Aydin (2020). «A Novel Extension to Craig’s Q-Function Formula and Its Application in Dual-Branch EGC Performance Analysis». IEEE Transactions on Communications. 68 (7): 4117–4125. doi:10.1109/TCOMM.2020.2986209. S2CID 216500014.
  29. ^ Carslaw, H. S.; Jaeger, J. C. (1959), Conduction of Heat in Solids (2nd ed.), Oxford University Press, ISBN 978-0-19-853368-9, p 484
  30. ^ «math.h — mathematical declarations». opengroup.org. 2018. Retrieved 21 April 2023.
  31. ^ «Special Functions – GSL 2.7 documentation».

Further reading[edit]

  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. «Chapter 7». Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 297. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  • Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (2007), «Section 6.2. Incomplete Gamma Function and Error Function», Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8
  • Temme, Nico M. (2010), «Error Functions, Dawson’s and Fresnel Integrals», in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248

External links[edit]

  • A Table of Integrals of the Error Functions
Error function
Plot of the error function

Plot of the error function

General information
General definition {displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}int _{0}^{z}e^{-t^{2}},mathrm {d} t}
Fields of application Probability, thermodynamics
Domain, Codomain and Image
Domain mathbb {C}
Image {displaystyle left(-1,1right)}
Basic features
Parity Odd
Specific features
Root 0
Derivative {displaystyle {frac {mathrm {d} }{mathrm {d} z}}operatorname {erf} z={frac {2}{sqrt {pi }}}e^{-z^{2}}}
Antiderivative {displaystyle int operatorname {erf} z,dz=zoperatorname {erf} z+{frac {e^{-z^{2}}}{sqrt {pi }}}+C}
Series definition
Taylor series {displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {z}{2n+1}}prod _{k=1}^{n}{frac {-z^{2}}{k}}}

In mathematics, the error function (also called the Gauss error function), often denoted by erf, is a complex function of a complex variable defined as:[1]

{displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}int _{0}^{z}e^{-t^{2}},mathrm {d} t.}

This integral is a special (non-elementary) sigmoid function that occurs often in probability, statistics, and partial differential equations. In many of these applications, the function argument is a real number. If the function argument is real, then the function value is also real.

In statistics, for non-negative values of x, the error function has the following interpretation: for a random variable Y that is normally distributed with mean 0 and standard deviation 1/2, erf x is the probability that Y falls in the range [−x, x].

Two closely related functions are the complementary error function (erfc) defined as

{displaystyle operatorname {erfc} z=1-operatorname {erf} z,}

and the imaginary error function (erfi) defined as

{displaystyle operatorname {erfi} z=-ioperatorname {erf} iz,}

where i is the imaginary unit

Name[edit]

The name «error function» and its abbreviation erf were proposed by J. W. L. Glaisher in 1871 on account of its connection with «the theory of Probability, and notably the theory of Errors.»[2] The error function complement was also discussed by Glaisher in a separate publication in the same year.[3]
For the «law of facility» of errors whose density is given by

{displaystyle f(x)=left({frac {c}{pi }}right)^{frac {1}{2}}e^{-cx^{2}}}

(the normal distribution), Glaisher calculates the probability of an error lying between p and q as:

{displaystyle left({frac {c}{pi }}right)^{frac {1}{2}}int _{p}^{q}e^{-cx^{2}},mathrm {d} x={tfrac {1}{2}}left(operatorname {erf} left(q{sqrt {c}}right)-operatorname {erf} left(p{sqrt {c}}right)right).}

Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Applications[edit]

When the results of a series of measurements are described by a normal distribution with standard deviation σ and expected value 0, then erf (a/σ 2) is the probability that the error of a single measurement lies between a and +a, for positive a. This is useful, for example, in determining the bit error rate of a digital communication system.

The error and complementary error functions occur, for example, in solutions of the heat equation when boundary conditions are given by the Heaviside step function.

The error function and its approximations can be used to estimate results that hold with high probability or with low probability. Given a random variable X ~ Norm[μ,σ] (a normal distribution with mean μ and standard deviation σ) and a constant L < μ:

{displaystyle {begin{aligned}Pr[Xleq L]&={frac {1}{2}}+{frac {1}{2}}operatorname {erf} {frac {L-mu }{{sqrt {2}}sigma }}&approx Aexp left(-Bleft({frac {L-mu }{sigma }}right)^{2}right)end{aligned}}}

where A and B are certain numeric constants. If L is sufficiently far from the mean, specifically μLσln k, then:

{displaystyle Pr[Xleq L]leq Aexp(-Bln {k})={frac {A}{k^{B}}}}

so the probability goes to 0 as k → ∞.

The probability for X being in the interval [La, Lb] can be derived as

{displaystyle {begin{aligned}Pr[L_{a}leq Xleq L_{b}]&=int _{L_{a}}^{L_{b}}{frac {1}{{sqrt {2pi }}sigma }}exp left(-{frac {(x-mu )^{2}}{2sigma ^{2}}}right),mathrm {d} x&={frac {1}{2}}left(operatorname {erf} {frac {L_{b}-mu }{{sqrt {2}}sigma }}-operatorname {erf} {frac {L_{a}-mu }{{sqrt {2}}sigma }}right).end{aligned}}}

Properties[edit]

Integrand exp(−z2)

erf z

The property erf (−z) = −erf z means that the error function is an odd function. This directly results from the fact that the integrand et2 is an even function (the antiderivative of an even function which is zero at the origin is an odd function and vice versa).

Since the error function is an entire function which takes real numbers to real numbers, for any complex number z:

{displaystyle operatorname {erf} {overline {z}}={overline {operatorname {erf} z}}}

where z is the complex conjugate of z.

The integrand f = exp(−z2) and f = erf z are shown in the complex z-plane in the figures at right with domain coloring.

The error function at +∞ is exactly 1 (see Gaussian integral). At the real axis, erf z approaches unity at z → +∞ and −1 at z → −∞. At the imaginary axis, it tends to ±i.

Taylor series[edit]

The error function is an entire function; it has no singularities (except that at infinity) and its Taylor expansion always converges, but is famously known «[…] for its bad convergence if x > 1[4]

The defining integral cannot be evaluated in closed form in terms of elementary functions, but by expanding the integrand ez2 into its Maclaurin series and integrating term by term, one obtains the error function’s Maclaurin series as:

{displaystyle {begin{aligned}operatorname {erf} z&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {(-1)^{n}z^{2n+1}}{n!(2n+1)}}[6pt]&={frac {2}{sqrt {pi }}}left(z-{frac {z^{3}}{3}}+{frac {z^{5}}{10}}-{frac {z^{7}}{42}}+{frac {z^{9}}{216}}-cdots right)end{aligned}}}

which holds for every complex number z. The denominator terms are sequence A007680 in the OEIS.

For iterative calculation of the above series, the following alternative formulation may be useful:

{displaystyle {begin{aligned}operatorname {erf} z&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }left(zprod _{k=1}^{n}{frac {-(2k-1)z^{2}}{k(2k+1)}}right)[6pt]&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {z}{2n+1}}prod _{k=1}^{n}{frac {-z^{2}}{k}}end{aligned}}}

because −(2k − 1)z2/k(2k + 1) expresses the multiplier to turn the kth term into the (k + 1)th term (considering z as the first term).

The imaginary error function has a very similar Maclaurin series, which is:

{displaystyle {begin{aligned}operatorname {erfi} z&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {z^{2n+1}}{n!(2n+1)}}[6pt]&={frac {2}{sqrt {pi }}}left(z+{frac {z^{3}}{3}}+{frac {z^{5}}{10}}+{frac {z^{7}}{42}}+{frac {z^{9}}{216}}+cdots right)end{aligned}}}

which holds for every complex number z.

Derivative and integral[edit]

The derivative of the error function follows immediately from its definition:

{displaystyle {frac {mathrm {d} }{mathrm {d} z}}operatorname {erf} z={frac {2}{sqrt {pi }}}e^{-z^{2}}.}

From this, the derivative of the imaginary error function is also immediate:

{displaystyle {frac {d}{dz}}operatorname {erfi} z={frac {2}{sqrt {pi }}}e^{z^{2}}.}

An antiderivative of the error function, obtainable by integration by parts, is

{displaystyle zoperatorname {erf} z+{frac {e^{-z^{2}}}{sqrt {pi }}}.}

An antiderivative of the imaginary error function, also obtainable by integration by parts, is

{displaystyle zoperatorname {erfi} z-{frac {e^{z^{2}}}{sqrt {pi }}}.}

Higher order derivatives are given by

{displaystyle operatorname {erf} ^{(k)}z={frac {2(-1)^{k-1}}{sqrt {pi }}}{mathit {H}}_{k-1}(z)e^{-z^{2}}={frac {2}{sqrt {pi }}}{frac {mathrm {d} ^{k-1}}{mathrm {d} z^{k-1}}}left(e^{-z^{2}}right),qquad k=1,2,dots }

where H are the physicists’ Hermite polynomials.[5]

Bürmann series[edit]

An expansion,[6] which converges more rapidly for all real values of x than a Taylor expansion, is obtained by using Hans Heinrich Bürmann’s theorem:[7]

{displaystyle {begin{aligned}operatorname {erf} x&={frac {2}{sqrt {pi }}}operatorname {sgn} xcdot {sqrt {1-e^{-x^{2}}}}left(1-{frac {1}{12}}left(1-e^{-x^{2}}right)-{frac {7}{480}}left(1-e^{-x^{2}}right)^{2}-{frac {5}{896}}left(1-e^{-x^{2}}right)^{3}-{frac {787}{276480}}left(1-e^{-x^{2}}right)^{4}-cdots right)[10pt]&={frac {2}{sqrt {pi }}}operatorname {sgn} xcdot {sqrt {1-e^{-x^{2}}}}left({frac {sqrt {pi }}{2}}+sum _{k=1}^{infty }c_{k}e^{-kx^{2}}right).end{aligned}}}

where sgn is the sign function. By keeping only the first two coefficients and choosing c1 = 31/200 and c2 = −341/8000, the resulting approximation shows its largest relative error at x = ±1.3796, where it is less than 0.0036127:

{displaystyle operatorname {erf} xapprox {frac {2}{sqrt {pi }}}operatorname {sgn} xcdot {sqrt {1-e^{-x^{2}}}}left({frac {sqrt {pi }}{2}}+{frac {31}{200}}e^{-x^{2}}-{frac {341}{8000}}e^{-2x^{2}}right).}

Inverse functions[edit]

Given a complex number z, there is not a unique complex number w satisfying erf w = z, so a true inverse function would be multivalued. However, for −1 < x < 1, there is a unique real number denoted erf−1 x satisfying

{displaystyle operatorname {erf} left(operatorname {erf} ^{-1}xright)=x.}

The inverse error function is usually defined with domain (−1,1), and it is restricted to this domain in many computer algebra systems. However, it can be extended to the disk |z| < 1 of the complex plane, using the Maclaurin series

{displaystyle operatorname {erf} ^{-1}z=sum _{k=0}^{infty }{frac {c_{k}}{2k+1}}left({frac {sqrt {pi }}{2}}zright)^{2k+1},}

where c0 = 1 and

{displaystyle {begin{aligned}c_{k}&=sum _{m=0}^{k-1}{frac {c_{m}c_{k-1-m}}{(m+1)(2m+1)}}&=left{1,1,{frac {7}{6}},{frac {127}{90}},{frac {4369}{2520}},{frac {34807}{16200}},ldots right}.end{aligned}}}

So we have the series expansion (common factors have been canceled from numerators and denominators):

{displaystyle operatorname {erf} ^{-1}z={frac {sqrt {pi }}{2}}left(z+{frac {pi }{12}}z^{3}+{frac {7pi ^{2}}{480}}z^{5}+{frac {127pi ^{3}}{40320}}z^{7}+{frac {4369pi ^{4}}{5806080}}z^{9}+{frac {34807pi ^{5}}{182476800}}z^{11}+cdots right).}

(After cancellation the numerator/denominator fractions are entries OEIS: A092676/OEIS: A092677 in the OEIS; without cancellation the numerator terms are given in entry OEIS: A002067.) The error function’s value at ±∞ is equal to ±1.

For |z| < 1, we have erf(erf−1 z) = z.

The inverse complementary error function is defined as

{displaystyle operatorname {erfc} ^{-1}(1-z)=operatorname {erf} ^{-1}z.}

For real x, there is a unique real number erfi−1 x satisfying erfi(erfi−1 x) = x. The inverse imaginary error function is defined as erfi−1 x.[8]

For any real x, Newton’s method can be used to compute erfi−1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges:

{displaystyle operatorname {erfi} ^{-1}z=sum _{k=0}^{infty }{frac {(-1)^{k}c_{k}}{2k+1}}left({frac {sqrt {pi }}{2}}zright)^{2k+1},}

where ck is defined as above.

Asymptotic expansion[edit]

A useful asymptotic expansion of the complementary error function (and therefore also of the error function) for large real x is

{displaystyle {begin{aligned}operatorname {erfc} x&={frac {e^{-x^{2}}}{x{sqrt {pi }}}}left(1+sum _{n=1}^{infty }(-1)^{n}{frac {1cdot 3cdot 5cdots (2n-1)}{left(2x^{2}right)^{n}}}right)[6pt]&={frac {e^{-x^{2}}}{x{sqrt {pi }}}}sum _{n=0}^{infty }(-1)^{n}{frac {(2n-1)!!}{left(2x^{2}right)^{n}}},end{aligned}}}

where (2n − 1)!! is the double factorial of (2n − 1), which is the product of all odd numbers up to (2n − 1). This series diverges for every finite x, and its meaning as asymptotic expansion is that for any integer N ≥ 1 one has

{displaystyle operatorname {erfc} x={frac {e^{-x^{2}}}{x{sqrt {pi }}}}sum _{n=0}^{N-1}(-1)^{n}{frac {(2n-1)!!}{left(2x^{2}right)^{n}}}+R_{N}(x)}

where the remainder, in Landau notation, is

{displaystyle R_{N}(x)=Oleft(x^{-(1+2N)}e^{-x^{2}}right)}

as x → ∞.

Indeed, the exact value of the remainder is

{displaystyle R_{N}(x):={frac {(-1)^{N}}{sqrt {pi }}}2^{1-2N}{frac {(2N)!}{N!}}int _{x}^{infty }t^{-2N}e^{-t^{2}},mathrm {d} t,}

which follows easily by induction, writing

{displaystyle e^{-t^{2}}=-(2t)^{-1}left(e^{-t^{2}}right)'}

and integrating by parts.

For large enough values of x, only the first few terms of this asymptotic expansion are needed to obtain a good approximation of erfc x (while for not too large values of x, the above Taylor expansion at 0 provides a very fast convergence).

Continued fraction expansion[edit]

A continued fraction expansion of the complementary error function is:[9]

{displaystyle operatorname {erfc} z={frac {z}{sqrt {pi }}}e^{-z^{2}}{cfrac {1}{z^{2}+{cfrac {a_{1}}{1+{cfrac {a_{2}}{z^{2}+{cfrac {a_{3}}{1+dotsb }}}}}}}},qquad a_{m}={frac {m}{2}}.}

Integral of error function with Gaussian density function[edit]

{displaystyle int _{-infty }^{infty }operatorname {erf} left(ax+bright){frac {1}{sqrt {2pi sigma ^{2}}}}exp left(-{frac {(x-mu )^{2}}{2sigma ^{2}}}right),mathrm {d} x=operatorname {erf} {frac {amu +b}{sqrt {1+2a^{2}sigma ^{2}}}},qquad a,b,mu ,sigma in mathbb {R} }

which appears related to Ng and Geller, formula 13 in section 4.3[10] with a change of variables.

Factorial series[edit]

The inverse factorial series:

{displaystyle {begin{aligned}operatorname {erfc} z&={frac {e^{-z^{2}}}{{sqrt {pi }},z}}sum _{n=0}^{infty }{frac {(-1)^{n}Q_{n}}{{(z^{2}+1)}^{bar {n}}}}&={frac {e^{-z^{2}}}{{sqrt {pi }},z}}left(1-{frac {1}{2}}{frac {1}{(z^{2}+1)}}+{frac {1}{4}}{frac {1}{(z^{2}+1)(z^{2}+2)}}-cdots right)end{aligned}}}

converges for Re(z2) > 0. Here

{displaystyle {begin{aligned}Q_{n}&{overset {text{def}}{{}={}}}{frac {1}{Gamma left({frac {1}{2}}right)}}int _{0}^{infty }tau (tau -1)cdots (tau -n+1)tau ^{-{frac {1}{2}}}e^{-tau },dtau &=sum _{k=0}^{n}left({tfrac {1}{2}}right)^{bar {k}}s(n,k),end{aligned}}}

zn denotes the rising factorial, and s(n,k) denotes a signed Stirling number of the first kind.[11][12]
There also exists a representation by an infinite sum containing the double factorial:

{displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {(-2)^{n}(2n-1)!!}{(2n+1)!}}z^{2n+1}}

Numerical approximations[edit]

Approximation with elementary functions[edit]

  • Abramowitz and Stegun give several approximations of varying accuracy (equations 7.1.25–28). This allows one to choose the fastest approximation suitable for a given application. In order of increasing accuracy, they are:
    {displaystyle operatorname {erf} xapprox 1-{frac {1}{left(1+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4}right)^{4}}},qquad xgeq 0}

    (maximum error: 5×10−4)

    where a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108

    {displaystyle operatorname {erf} xapprox 1-left(a_{1}t+a_{2}t^{2}+a_{3}t^{3}right)e^{-x^{2}},quad t={frac {1}{1+px}},qquad xgeq 0}

    (maximum error: 2.5×10−5)

    where p = 0.47047, a1 = 0.3480242, a2 = −0.0958798, a3 = 0.7478556

    {displaystyle operatorname {erf} xapprox 1-{frac {1}{left(1+a_{1}x+a_{2}x^{2}+cdots +a_{6}x^{6}right)^{16}}},qquad xgeq 0}

    (maximum error: 3×10−7)

    where a1 = 0.0705230784, a2 = 0.0422820123, a3 = 0.0092705272, a4 = 0.0001520143, a5 = 0.0002765672, a6 = 0.0000430638

    {displaystyle operatorname {erf} xapprox 1-left(a_{1}t+a_{2}t^{2}+cdots +a_{5}t^{5}right)e^{-x^{2}},quad t={frac {1}{1+px}}}

    (maximum error: 1.5×10−7)

    where p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 = −1.453152027, a5 = 1.061405429

    All of these approximations are valid for x ≥ 0. To use these approximations for negative x, use the fact that erf x is an odd function, so erf x = −erf(−x).

  • Exponential bounds and a pure exponential approximation for the complementary error function are given by[13]
    {displaystyle {begin{aligned}operatorname {erfc} x&leq {tfrac {1}{2}}e^{-2x^{2}}+{tfrac {1}{2}}e^{-x^{2}}leq e^{-x^{2}},&quad x&>0operatorname {erfc} x&approx {tfrac {1}{6}}e^{-x^{2}}+{tfrac {1}{2}}e^{-{frac {4}{3}}x^{2}},&quad x&>0.end{aligned}}}
  • The above have been generalized to sums of N exponentials[14] with increasing accuracy in terms of N so that erfc x can be accurately approximated or bounded by 2(2x), where
    {displaystyle {tilde {Q}}(x)=sum _{n=1}^{N}a_{n}e^{-b_{n}x^{2}}.}

    In particular, there is a systematic methodology to solve the numerical coefficients {(an,bn)}N
    n = 1
    that yield a minimax approximation or bound for the closely related Q-function: Q(x) ≈ (x), Q(x) ≤ (x), or Q(x) ≥ (x) for x ≥ 0. The coefficients {(an,bn)}N
    n = 1
    for many variations of the exponential approximations and bounds up to N = 25 have been released to open access as a comprehensive dataset.[15]

  • A tight approximation of the complementary error function for x ∈ [0,∞) is given by Karagiannidis & Lioumpas (2007)[16] who showed for the appropriate choice of parameters {A,B} that
    {displaystyle operatorname {erfc} xapprox {frac {left(1-e^{-Ax}right)e^{-x^{2}}}{B{sqrt {pi }}x}}.}

    They determined {A,B} = {1.98,1.135}, which gave a good approximation for all x ≥ 0. Alternative coefficients are also available for tailoring accuracy for a specific application or transforming the expression into a tight bound.[17]

  • A single-term lower bound is[18]

    {displaystyle operatorname {erfc} xgeq {sqrt {frac {2e}{pi }}}{frac {sqrt {beta -1}}{beta }}e^{-beta x^{2}},qquad xgeq 0,quad beta >1,}

    where the parameter β can be picked to minimize error on the desired interval of approximation.

  • Another approximation is given by Sergei Winitzki using his «global Padé approximations»:[19][20]: 2–3 
    {displaystyle operatorname {erf} xapprox operatorname {sgn} xcdot {sqrt {1-exp left(-x^{2}{frac {{frac {4}{pi }}+ax^{2}}{1+ax^{2}}}right)}}}

    where

    {displaystyle a={frac {8(pi -3)}{3pi (4-pi )}}approx 0.140012.}

    This is designed to be very accurate in a neighborhood of 0 and a neighborhood of infinity, and the relative error is less than 0.00035 for all real x. Using the alternate value a ≈ 0.147 reduces the maximum relative error to about 0.00013.[21]

    This approximation can be inverted to obtain an approximation for the inverse error function:

    {displaystyle operatorname {erf} ^{-1}xapprox operatorname {sgn} xcdot {sqrt {{sqrt {left({frac {2}{pi a}}+{frac {ln left(1-x^{2}right)}{2}}right)^{2}-{frac {ln left(1-x^{2}right)}{a}}}}-left({frac {2}{pi a}}+{frac {ln left(1-x^{2}right)}{2}}right)}}.}
  • An approximation with a maximal error of 1.2×10−7 for any real argument is:[22]
    {displaystyle operatorname {erf} x={begin{cases}1-tau &xgeq 0tau -1&x<0end{cases}}}

    with

    {displaystyle {begin{aligned}tau &=tcdot exp left(-x^{2}-1.26551223+1.00002368t+0.37409196t^{2}+0.09678418t^{3}-0.18628806t^{4}right.&left.qquad qquad qquad +0.27886807t^{5}-1.13520398t^{6}+1.48851587t^{7}-0.82215223t^{8}+0.17087277t^{9}right)end{aligned}}}

    and

    {displaystyle t={frac {1}{1+{frac {1}{2}}|x|}}.}

Table of values[edit]

x erf x 1 − erf x
0 0 1
0.02 0.022564575 0.977435425
0.04 0.045111106 0.954888894
0.06 0.067621594 0.932378406
0.08 0.090078126 0.909921874
0.1 0.112462916 0.887537084
0.2 0.222702589 0.777297411
0.3 0.328626759 0.671373241
0.4 0.428392355 0.571607645
0.5 0.520499878 0.479500122
0.6 0.603856091 0.396143909
0.7 0.677801194 0.322198806
0.8 0.742100965 0.257899035
0.9 0.796908212 0.203091788
1 0.842700793 0.157299207
1.1 0.880205070 0.119794930
1.2 0.910313978 0.089686022
1.3 0.934007945 0.065992055
1.4 0.952285120 0.047714880
1.5 0.966105146 0.033894854
1.6 0.976348383 0.023651617
1.7 0.983790459 0.016209541
1.8 0.989090502 0.010909498
1.9 0.992790429 0.007209571
2 0.995322265 0.004677735
2.1 0.997020533 0.002979467
2.2 0.998137154 0.001862846
2.3 0.998856823 0.001143177
2.4 0.999311486 0.000688514
2.5 0.999593048 0.000406952
3 0.999977910 0.000022090
3.5 0.999999257 0.000000743

[edit]

Complementary error function[edit]

The complementary error function, denoted erfc, is defined as

Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

{displaystyle {begin{aligned}operatorname {erfc} x&=1-operatorname {erf} x[5pt]&={frac {2}{sqrt {pi }}}int _{x}^{infty }e^{-t^{2}},mathrm {d} t[5pt]&=e^{-x^{2}}operatorname {erfcx} x,end{aligned}}}

which also defines erfcx, the scaled complementary error function[23] (which can be used instead of erfc to avoid arithmetic underflow[23][24]). Another form of erfc x for x ≥ 0 is known as Craig’s formula, after its discoverer:[25]

{displaystyle operatorname {erfc} (xmid xgeq 0)={frac {2}{pi }}int _{0}^{frac {pi }{2}}exp left(-{frac {x^{2}}{sin ^{2}theta }}right),mathrm {d} theta .}

This expression is valid only for positive values of x, but it can be used in conjunction with erfc x = 2 − erfc(−x) to obtain erfc(x) for negative values. This form is advantageous in that the range of integration is fixed and finite. An extension of this expression for the erfc of the sum of two non-negative variables is as follows:[26]

{displaystyle operatorname {erfc} (x+ymid x,ygeq 0)={frac {2}{pi }}int _{0}^{frac {pi }{2}}exp left(-{frac {x^{2}}{sin ^{2}theta }}-{frac {y^{2}}{cos ^{2}theta }}right),mathrm {d} theta .}

Imaginary error function[edit]

The imaginary error function, denoted erfi, is defined as

Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

{displaystyle {begin{aligned}operatorname {erfi} x&=-ioperatorname {erf} ix[5pt]&={frac {2}{sqrt {pi }}}int _{0}^{x}e^{t^{2}},mathrm {d} t[5pt]&={frac {2}{sqrt {pi }}}e^{x^{2}}D(x),end{aligned}}}

where D(x) is the Dawson function (which can be used instead of erfi to avoid arithmetic overflow[23]).

Despite the name «imaginary error function», erfi x is real when x is real.

When the error function is evaluated for arbitrary complex arguments z, the resulting complex error function is usually discussed in scaled form as the Faddeeva function:

w(z)=e^{-z^{2}}operatorname {erfc} (-iz)=operatorname {erfcx} (-iz).

Cumulative distribution function[edit]

The error function is essentially identical to the standard normal cumulative distribution function, denoted Φ, also named norm(x) by some software languages[citation needed], as they differ only by scaling and translation. Indeed,

the normal cumulative distribution function plotted in the complex plane

the normal cumulative distribution function plotted in the complex plane

{displaystyle {begin{aligned}Phi (x)&={frac {1}{sqrt {2pi }}}int _{-infty }^{x}e^{tfrac {-t^{2}}{2}},mathrm {d} t[6pt]&={frac {1}{2}}left(1+operatorname {erf} {frac {x}{sqrt {2}}}right)[6pt]&={frac {1}{2}}operatorname {erfc} left(-{frac {x}{sqrt {2}}}right)end{aligned}}}

or rearranged for erf and erfc:

{displaystyle {begin{aligned}operatorname {erf} (x)&=2Phi left(x{sqrt {2}}right)-1[6pt]operatorname {erfc} (x)&=2Phi left(-x{sqrt {2}}right)&=2left(1-Phi left(x{sqrt {2}}right)right).end{aligned}}}

Consequently, the error function is also closely related to the Q-function, which is the tail probability of the standard normal distribution. The Q-function can be expressed in terms of the error function as

{displaystyle {begin{aligned}Q(x)&={frac {1}{2}}-{frac {1}{2}}operatorname {erf} {frac {x}{sqrt {2}}}&={frac {1}{2}}operatorname {erfc} {frac {x}{sqrt {2}}}.end{aligned}}}

The inverse of Φ is known as the normal quantile function, or probit function and may be expressed in terms of the inverse error function as

{displaystyle operatorname {probit} (p)=Phi ^{-1}(p)={sqrt {2}}operatorname {erf} ^{-1}(2p-1)=-{sqrt {2}}operatorname {erfc} ^{-1}(2p).}

The standard normal cdf is used more often in probability and statistics, and the error function is used more often in other branches of mathematics.

The error function is a special case of the Mittag-Leffler function, and can also be expressed as a confluent hypergeometric function (Kummer’s function):

{displaystyle operatorname {erf} x={frac {2x}{sqrt {pi }}}Mleft({tfrac {1}{2}},{tfrac {3}{2}},-x^{2}right).}

It has a simple expression in terms of the Fresnel integral.[further explanation needed]

In terms of the regularized gamma function P and the incomplete gamma function,

{displaystyle operatorname {erf} x=operatorname {sgn} xcdot Pleft({tfrac {1}{2}},x^{2}right)={frac {operatorname {sgn} x}{sqrt {pi }}}gamma left({tfrac {1}{2}},x^{2}right).}

sgn x is the sign function.

Generalized error functions[edit]

Graph of generalised error functions En(x):
grey curve: E1(x) = 1 − ex/π
red curve: E2(x) = erf(x)
green curve: E3(x)
blue curve: E4(x)
gold curve: E5(x).

Some authors discuss the more general functions:[citation needed]

{displaystyle E_{n}(x)={frac {n!}{sqrt {pi }}}int _{0}^{x}e^{-t^{n}},mathrm {d} t={frac {n!}{sqrt {pi }}}sum _{p=0}^{infty }(-1)^{p}{frac {x^{np+1}}{(np+1)p!}}.}

Notable cases are:

  • E0(x) is a straight line through the origin: E0(x) = x/eπ
  • E2(x) is the error function, erf x.

After division by n!, all the En for odd n look similar (but not identical) to each other. Similarly, the En for even n look similar (but not identical) to each other after a simple division by n!. All generalised error functions for n > 0 look similar on the positive x side of the graph.

These generalised functions can equivalently be expressed for x > 0 using the gamma function and incomplete gamma function:

{displaystyle E_{n}(x)={frac {1}{sqrt {pi }}}Gamma (n)left(Gamma left({frac {1}{n}}right)-Gamma left({frac {1}{n}},x^{n}right)right),qquad x>0.}

Therefore, we can define the error function in terms of the incomplete gamma function:

{displaystyle operatorname {erf} x=1-{frac {1}{sqrt {pi }}}Gamma left({tfrac {1}{2}},x^{2}right).}

Iterated integrals of the complementary error function[edit]

The iterated integrals of the complementary error function are defined by[27]

{displaystyle {begin{aligned}operatorname {i} ^{n}!operatorname {erfc} z&=int _{z}^{infty }operatorname {i} ^{n-1}!operatorname {erfc} zeta ,mathrm {d} zeta [6pt]operatorname {i} ^{0}!operatorname {erfc} z&=operatorname {erfc} zoperatorname {i} ^{1}!operatorname {erfc} z&=operatorname {ierfc} z={frac {1}{sqrt {pi }}}e^{-z^{2}}-zoperatorname {erfc} zoperatorname {i} ^{2}!operatorname {erfc} z&={tfrac {1}{4}}left(operatorname {erfc} z-2zoperatorname {ierfc} zright)end{aligned}}}

The general recurrence formula is

{displaystyle 2ncdot operatorname {i} ^{n}!operatorname {erfc} z=operatorname {i} ^{n-2}!operatorname {erfc} z-2zcdot operatorname {i} ^{n-1}!operatorname {erfc} z}

They have the power series

{displaystyle operatorname {i} ^{n}!operatorname {erfc} z=sum _{j=0}^{infty }{frac {(-z)^{j}}{2^{n-j}j!,Gamma left(1+{frac {n-j}{2}}right)}},}

from which follow the symmetry properties

{displaystyle operatorname {i} ^{2m}!operatorname {erfc} (-z)=-operatorname {i} ^{2m}!operatorname {erfc} z+sum _{q=0}^{m}{frac {z^{2q}}{2^{2(m-q)-1}(2q)!(m-q)!}}}

and

{displaystyle operatorname {i} ^{2m+1}!operatorname {erfc} (-z)=operatorname {i} ^{2m+1}!operatorname {erfc} z+sum _{q=0}^{m}{frac {z^{2q+1}}{2^{2(m-q)-1}(2q+1)!(m-q)!}}.}

Implementations[edit]

As real function of a real argument[edit]

  • In Posix-compliant operating systems, the header math.h shall declare and the mathematical library libm shall provide the functions erf and erfc (double precision) as well as their single precision and extended precision counterparts erff, erfl and erfcf, erfcl.[28]
  • The GNU Scientific Library provides erf, erfc, log(erf), and scaled error functions.[29]

As complex function of a complex argument[edit]

  • libcerf, numeric C library for complex error functions, provides the complex functions cerf, cerfc, cerfcx and the real functions erfi, erfcx with approximately 13–14 digits precision, based on the Faddeeva function as implemented in the MIT Faddeeva Package

See also[edit]

[edit]

  • Gaussian integral, over the whole real line
  • Gaussian function, derivative
  • Dawson function, renormalized imaginary error function
  • Goodwin–Staton integral

In probability[edit]

  • Normal distribution
  • Normal cumulative distribution function, a scaled and shifted form of error function
  • Probit, the inverse or quantile function of the normal CDF
  • Q-function, the tail probability of the normal distribution

References[edit]

  1. ^ Andrews, Larry C. (1998). Special functions of mathematics for engineers. SPIE Press. p. 110. ISBN 9780819426161.
  2. ^ Glaisher, James Whitbread Lee (July 1871). «On a class of definite integrals». London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4. 42 (277): 294–302. doi:10.1080/14786447108640568. Retrieved 6 December 2017.
  3. ^ Glaisher, James Whitbread Lee (September 1871). «On a class of definite integrals. Part II». London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4. 42 (279): 421–436. doi:10.1080/14786447108640600. Retrieved 6 December 2017.
  4. ^ «A007680 – OEIS». oeis.org. Retrieved 2 April 2020.
  5. ^ Weisstein, Eric W. «Erf». MathWorld.
  6. ^ Schöpf, H. M.; Supancic, P. H. (2014). «On Bürmann’s Theorem and Its Application to Problems of Linear and Nonlinear Heat Transfer and Diffusion». The Mathematica Journal. 16. doi:10.3888/tmj.16-11.
  7. ^ Weisstein, Eric W. «Bürmann’s Theorem». MathWorld.
  8. ^ Bergsma, Wicher (2006). «On a new correlation coefficient, its orthogonal decomposition and associated tests of independence». arXiv:math/0604627.
  9. ^ Cuyt, Annie A. M.; Petersen, Vigdis B.; Verdonk, Brigitte; Waadeland, Haakon; Jones, William B. (2008). Handbook of Continued Fractions for Special Functions. Springer-Verlag. ISBN 978-1-4020-6948-2.
  10. ^ Ng, Edward W.; Geller, Murray (January 1969). «A table of integrals of the Error functions». Journal of Research of the National Bureau of Standards Section B. 73B (1): 1. doi:10.6028/jres.073B.001.
  11. ^ Schlömilch, Oskar Xavier (1859). «Ueber facultätenreihen». Zeitschrift für Mathematik und Physik (in German). 4: 390–415. Retrieved 4 December 2017.
  12. ^ Nielson, Niels (1906). Handbuch der Theorie der Gammafunktion (in German). Leipzig: B. G. Teubner. p. 283 Eq. 3. Retrieved 4 December 2017.
  13. ^ Chiani, M.; Dardari, D.; Simon, M.K. (2003). «New Exponential Bounds and Approximations for the Computation of Error Probability in Fading Channels» (PDF). IEEE Transactions on Wireless Communications. 2 (4): 840–845. CiteSeerX 10.1.1.190.6761. doi:10.1109/TWC.2003.814350.
  14. ^ Tanash, I.M.; Riihonen, T. (2020). «Global minimax approximations and bounds for the Gaussian Q-function by sums of exponentials». IEEE Transactions on Communications. 68 (10): 6514–6524. arXiv:2007.06939. doi:10.1109/TCOMM.2020.3006902. S2CID 220514754.
  15. ^ Tanash, I.M.; Riihonen, T. (2020). «Coefficients for Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials [Data set]». Zenodo. doi:10.5281/zenodo.4112978.
  16. ^ Karagiannidis, G. K.; Lioumpas, A. S. (2007). «An improved approximation for the Gaussian Q-function» (PDF). IEEE Communications Letters. 11 (8): 644–646. doi:10.1109/LCOMM.2007.070470. S2CID 4043576.
  17. ^ Tanash, I.M.; Riihonen, T. (2021). «Improved coefficients for the Karagiannidis–Lioumpas approximations and bounds to the Gaussian Q-function». IEEE Communications Letters. 25 (5): 1468–1471. arXiv:2101.07631. doi:10.1109/LCOMM.2021.3052257. S2CID 231639206.
  18. ^ Chang, Seok-Ho; Cosman, Pamela C.; Milstein, Laurence B. (November 2011). «Chernoff-Type Bounds for the Gaussian Error Function». IEEE Transactions on Communications. 59 (11): 2939–2944. doi:10.1109/TCOMM.2011.072011.100049. S2CID 13636638.
  19. ^ Winitzki, Sergei (2003). «Uniform approximations for transcendental functions». Computational Science and Its Applications – ICCSA 2003. Lecture Notes in Computer Science. Vol. 2667. Springer, Berlin. pp. 780–789. doi:10.1007/3-540-44839-X_82. ISBN 978-3-540-40155-1.
  20. ^ Zeng, Caibin; Chen, Yang Cuan (2015). «Global Padé approximations of the generalized Mittag-Leffler function and its inverse». Fractional Calculus and Applied Analysis. 18 (6): 1492–1506. arXiv:1310.5592. doi:10.1515/fca-2015-0086. S2CID 118148950. Indeed, Winitzki [32] provided the so-called global Padé approximation
  21. ^ Winitzki, Sergei (6 February 2008). «A handy approximation for the error function and its inverse».
  22. ^ Numerical Recipes in Fortran 77: The Art of Scientific Computing (ISBN 0-521-43064-X), 1992, page 214, Cambridge University Press.
  23. ^ a b c Cody, W. J. (March 1993), «Algorithm 715: SPECFUN—A portable FORTRAN package of special function routines and test drivers» (PDF), ACM Trans. Math. Softw., 19 (1): 22–32, CiteSeerX 10.1.1.643.4394, doi:10.1145/151271.151273, S2CID 5621105
  24. ^ Zaghloul, M. R. (1 March 2007), «On the calculation of the Voigt line profile: a single proper integral with a damped sine integrand», Monthly Notices of the Royal Astronomical Society, 375 (3): 1043–1048, Bibcode:2007MNRAS.375.1043Z, doi:10.1111/j.1365-2966.2006.11377.x
  25. ^ John W. Craig, A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations Archived 3 April 2012 at the Wayback Machine, Proceedings of the 1991 IEEE Military Communication Conference, vol. 2, pp. 571–575.
  26. ^ Behnad, Aydin (2020). «A Novel Extension to Craig’s Q-Function Formula and Its Application in Dual-Branch EGC Performance Analysis». IEEE Transactions on Communications. 68 (7): 4117–4125. doi:10.1109/TCOMM.2020.2986209. S2CID 216500014.
  27. ^ Carslaw, H. S.; Jaeger, J. C. (1959), Conduction of Heat in Solids (2nd ed.), Oxford University Press, ISBN 978-0-19-853368-9, p 484
  28. ^ https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/math.h.html
  29. ^ «Special Functions – GSL 2.7 documentation».

Further reading[edit]

  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. «Chapter 7». Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 297. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  • Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (2007), «Section 6.2. Incomplete Gamma Function and Error Function», Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8
  • Temme, Nico M. (2010), «Error Functions, Dawson’s and Fresnel Integrals», in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248

External links[edit]

  • A Table of Integrals of the Error Functions
Error function
Plot of the error function

Plot of the error function

General information
General definition {displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}int _{0}^{z}e^{-t^{2}},mathrm {d} t}
Fields of application Probability, thermodynamics
Domain, Codomain and Image
Domain mathbb {C}
Image {displaystyle left(-1,1right)}
Basic features
Parity Odd
Specific features
Root 0
Derivative {displaystyle {frac {mathrm {d} }{mathrm {d} z}}operatorname {erf} z={frac {2}{sqrt {pi }}}e^{-z^{2}}}
Antiderivative {displaystyle int operatorname {erf} z,dz=zoperatorname {erf} z+{frac {e^{-z^{2}}}{sqrt {pi }}}+C}
Series definition
Taylor series {displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {z}{2n+1}}prod _{k=1}^{n}{frac {-z^{2}}{k}}}

In mathematics, the error function (also called the Gauss error function), often denoted by erf, is a complex function of a complex variable defined as:[1]

{displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}int _{0}^{z}e^{-t^{2}},mathrm {d} t.}

This integral is a special (non-elementary) sigmoid function that occurs often in probability, statistics, and partial differential equations. In many of these applications, the function argument is a real number. If the function argument is real, then the function value is also real.

In statistics, for non-negative values of x, the error function has the following interpretation: for a random variable Y that is normally distributed with mean 0 and standard deviation 1/2, erf x is the probability that Y falls in the range [−x, x].

Two closely related functions are the complementary error function (erfc) defined as

{displaystyle operatorname {erfc} z=1-operatorname {erf} z,}

and the imaginary error function (erfi) defined as

{displaystyle operatorname {erfi} z=-ioperatorname {erf} iz,}

where i is the imaginary unit

Name[edit]

The name «error function» and its abbreviation erf were proposed by J. W. L. Glaisher in 1871 on account of its connection with «the theory of Probability, and notably the theory of Errors.»[2] The error function complement was also discussed by Glaisher in a separate publication in the same year.[3]
For the «law of facility» of errors whose density is given by

{displaystyle f(x)=left({frac {c}{pi }}right)^{frac {1}{2}}e^{-cx^{2}}}

(the normal distribution), Glaisher calculates the probability of an error lying between p and q as:

{displaystyle left({frac {c}{pi }}right)^{frac {1}{2}}int _{p}^{q}e^{-cx^{2}},mathrm {d} x={tfrac {1}{2}}left(operatorname {erf} left(q{sqrt {c}}right)-operatorname {erf} left(p{sqrt {c}}right)right).}

Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Plot of the error function Erf(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Applications[edit]

When the results of a series of measurements are described by a normal distribution with standard deviation σ and expected value 0, then erf (a/σ 2) is the probability that the error of a single measurement lies between a and +a, for positive a. This is useful, for example, in determining the bit error rate of a digital communication system.

The error and complementary error functions occur, for example, in solutions of the heat equation when boundary conditions are given by the Heaviside step function.

The error function and its approximations can be used to estimate results that hold with high probability or with low probability. Given a random variable X ~ Norm[μ,σ] (a normal distribution with mean μ and standard deviation σ) and a constant L < μ:

{displaystyle {begin{aligned}Pr[Xleq L]&={frac {1}{2}}+{frac {1}{2}}operatorname {erf} {frac {L-mu }{{sqrt {2}}sigma }}&approx Aexp left(-Bleft({frac {L-mu }{sigma }}right)^{2}right)end{aligned}}}

where A and B are certain numeric constants. If L is sufficiently far from the mean, specifically μLσln k, then:

{displaystyle Pr[Xleq L]leq Aexp(-Bln {k})={frac {A}{k^{B}}}}

so the probability goes to 0 as k → ∞.

The probability for X being in the interval [La, Lb] can be derived as

{displaystyle {begin{aligned}Pr[L_{a}leq Xleq L_{b}]&=int _{L_{a}}^{L_{b}}{frac {1}{{sqrt {2pi }}sigma }}exp left(-{frac {(x-mu )^{2}}{2sigma ^{2}}}right),mathrm {d} x&={frac {1}{2}}left(operatorname {erf} {frac {L_{b}-mu }{{sqrt {2}}sigma }}-operatorname {erf} {frac {L_{a}-mu }{{sqrt {2}}sigma }}right).end{aligned}}}

Properties[edit]

Integrand exp(−z2)

erf z

The property erf (−z) = −erf z means that the error function is an odd function. This directly results from the fact that the integrand et2 is an even function (the antiderivative of an even function which is zero at the origin is an odd function and vice versa).

Since the error function is an entire function which takes real numbers to real numbers, for any complex number z:

{displaystyle operatorname {erf} {overline {z}}={overline {operatorname {erf} z}}}

where z is the complex conjugate of z.

The integrand f = exp(−z2) and f = erf z are shown in the complex z-plane in the figures at right with domain coloring.

The error function at +∞ is exactly 1 (see Gaussian integral). At the real axis, erf z approaches unity at z → +∞ and −1 at z → −∞. At the imaginary axis, it tends to ±i.

Taylor series[edit]

The error function is an entire function; it has no singularities (except that at infinity) and its Taylor expansion always converges, but is famously known «[…] for its bad convergence if x > 1[4]

The defining integral cannot be evaluated in closed form in terms of elementary functions, but by expanding the integrand ez2 into its Maclaurin series and integrating term by term, one obtains the error function’s Maclaurin series as:

{displaystyle {begin{aligned}operatorname {erf} z&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {(-1)^{n}z^{2n+1}}{n!(2n+1)}}[6pt]&={frac {2}{sqrt {pi }}}left(z-{frac {z^{3}}{3}}+{frac {z^{5}}{10}}-{frac {z^{7}}{42}}+{frac {z^{9}}{216}}-cdots right)end{aligned}}}

which holds for every complex number z. The denominator terms are sequence A007680 in the OEIS.

For iterative calculation of the above series, the following alternative formulation may be useful:

{displaystyle {begin{aligned}operatorname {erf} z&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }left(zprod _{k=1}^{n}{frac {-(2k-1)z^{2}}{k(2k+1)}}right)[6pt]&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {z}{2n+1}}prod _{k=1}^{n}{frac {-z^{2}}{k}}end{aligned}}}

because −(2k − 1)z2/k(2k + 1) expresses the multiplier to turn the kth term into the (k + 1)th term (considering z as the first term).

The imaginary error function has a very similar Maclaurin series, which is:

{displaystyle {begin{aligned}operatorname {erfi} z&={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {z^{2n+1}}{n!(2n+1)}}[6pt]&={frac {2}{sqrt {pi }}}left(z+{frac {z^{3}}{3}}+{frac {z^{5}}{10}}+{frac {z^{7}}{42}}+{frac {z^{9}}{216}}+cdots right)end{aligned}}}

which holds for every complex number z.

Derivative and integral[edit]

The derivative of the error function follows immediately from its definition:

{displaystyle {frac {mathrm {d} }{mathrm {d} z}}operatorname {erf} z={frac {2}{sqrt {pi }}}e^{-z^{2}}.}

From this, the derivative of the imaginary error function is also immediate:

{displaystyle {frac {d}{dz}}operatorname {erfi} z={frac {2}{sqrt {pi }}}e^{z^{2}}.}

An antiderivative of the error function, obtainable by integration by parts, is

{displaystyle zoperatorname {erf} z+{frac {e^{-z^{2}}}{sqrt {pi }}}.}

An antiderivative of the imaginary error function, also obtainable by integration by parts, is

{displaystyle zoperatorname {erfi} z-{frac {e^{z^{2}}}{sqrt {pi }}}.}

Higher order derivatives are given by

{displaystyle operatorname {erf} ^{(k)}z={frac {2(-1)^{k-1}}{sqrt {pi }}}{mathit {H}}_{k-1}(z)e^{-z^{2}}={frac {2}{sqrt {pi }}}{frac {mathrm {d} ^{k-1}}{mathrm {d} z^{k-1}}}left(e^{-z^{2}}right),qquad k=1,2,dots }

where H are the physicists’ Hermite polynomials.[5]

Bürmann series[edit]

An expansion,[6] which converges more rapidly for all real values of x than a Taylor expansion, is obtained by using Hans Heinrich Bürmann’s theorem:[7]

{displaystyle {begin{aligned}operatorname {erf} x&={frac {2}{sqrt {pi }}}operatorname {sgn} xcdot {sqrt {1-e^{-x^{2}}}}left(1-{frac {1}{12}}left(1-e^{-x^{2}}right)-{frac {7}{480}}left(1-e^{-x^{2}}right)^{2}-{frac {5}{896}}left(1-e^{-x^{2}}right)^{3}-{frac {787}{276480}}left(1-e^{-x^{2}}right)^{4}-cdots right)[10pt]&={frac {2}{sqrt {pi }}}operatorname {sgn} xcdot {sqrt {1-e^{-x^{2}}}}left({frac {sqrt {pi }}{2}}+sum _{k=1}^{infty }c_{k}e^{-kx^{2}}right).end{aligned}}}

where sgn is the sign function. By keeping only the first two coefficients and choosing c1 = 31/200 and c2 = −341/8000, the resulting approximation shows its largest relative error at x = ±1.3796, where it is less than 0.0036127:

{displaystyle operatorname {erf} xapprox {frac {2}{sqrt {pi }}}operatorname {sgn} xcdot {sqrt {1-e^{-x^{2}}}}left({frac {sqrt {pi }}{2}}+{frac {31}{200}}e^{-x^{2}}-{frac {341}{8000}}e^{-2x^{2}}right).}

Inverse functions[edit]

Given a complex number z, there is not a unique complex number w satisfying erf w = z, so a true inverse function would be multivalued. However, for −1 < x < 1, there is a unique real number denoted erf−1 x satisfying

{displaystyle operatorname {erf} left(operatorname {erf} ^{-1}xright)=x.}

The inverse error function is usually defined with domain (−1,1), and it is restricted to this domain in many computer algebra systems. However, it can be extended to the disk |z| < 1 of the complex plane, using the Maclaurin series

{displaystyle operatorname {erf} ^{-1}z=sum _{k=0}^{infty }{frac {c_{k}}{2k+1}}left({frac {sqrt {pi }}{2}}zright)^{2k+1},}

where c0 = 1 and

{displaystyle {begin{aligned}c_{k}&=sum _{m=0}^{k-1}{frac {c_{m}c_{k-1-m}}{(m+1)(2m+1)}}&=left{1,1,{frac {7}{6}},{frac {127}{90}},{frac {4369}{2520}},{frac {34807}{16200}},ldots right}.end{aligned}}}

So we have the series expansion (common factors have been canceled from numerators and denominators):

{displaystyle operatorname {erf} ^{-1}z={frac {sqrt {pi }}{2}}left(z+{frac {pi }{12}}z^{3}+{frac {7pi ^{2}}{480}}z^{5}+{frac {127pi ^{3}}{40320}}z^{7}+{frac {4369pi ^{4}}{5806080}}z^{9}+{frac {34807pi ^{5}}{182476800}}z^{11}+cdots right).}

(After cancellation the numerator/denominator fractions are entries OEIS: A092676/OEIS: A092677 in the OEIS; without cancellation the numerator terms are given in entry OEIS: A002067.) The error function’s value at ±∞ is equal to ±1.

For |z| < 1, we have erf(erf−1 z) = z.

The inverse complementary error function is defined as

{displaystyle operatorname {erfc} ^{-1}(1-z)=operatorname {erf} ^{-1}z.}

For real x, there is a unique real number erfi−1 x satisfying erfi(erfi−1 x) = x. The inverse imaginary error function is defined as erfi−1 x.[8]

For any real x, Newton’s method can be used to compute erfi−1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges:

{displaystyle operatorname {erfi} ^{-1}z=sum _{k=0}^{infty }{frac {(-1)^{k}c_{k}}{2k+1}}left({frac {sqrt {pi }}{2}}zright)^{2k+1},}

where ck is defined as above.

Asymptotic expansion[edit]

A useful asymptotic expansion of the complementary error function (and therefore also of the error function) for large real x is

{displaystyle {begin{aligned}operatorname {erfc} x&={frac {e^{-x^{2}}}{x{sqrt {pi }}}}left(1+sum _{n=1}^{infty }(-1)^{n}{frac {1cdot 3cdot 5cdots (2n-1)}{left(2x^{2}right)^{n}}}right)[6pt]&={frac {e^{-x^{2}}}{x{sqrt {pi }}}}sum _{n=0}^{infty }(-1)^{n}{frac {(2n-1)!!}{left(2x^{2}right)^{n}}},end{aligned}}}

where (2n − 1)!! is the double factorial of (2n − 1), which is the product of all odd numbers up to (2n − 1). This series diverges for every finite x, and its meaning as asymptotic expansion is that for any integer N ≥ 1 one has

{displaystyle operatorname {erfc} x={frac {e^{-x^{2}}}{x{sqrt {pi }}}}sum _{n=0}^{N-1}(-1)^{n}{frac {(2n-1)!!}{left(2x^{2}right)^{n}}}+R_{N}(x)}

where the remainder, in Landau notation, is

{displaystyle R_{N}(x)=Oleft(x^{-(1+2N)}e^{-x^{2}}right)}

as x → ∞.

Indeed, the exact value of the remainder is

{displaystyle R_{N}(x):={frac {(-1)^{N}}{sqrt {pi }}}2^{1-2N}{frac {(2N)!}{N!}}int _{x}^{infty }t^{-2N}e^{-t^{2}},mathrm {d} t,}

which follows easily by induction, writing

{displaystyle e^{-t^{2}}=-(2t)^{-1}left(e^{-t^{2}}right)'}

and integrating by parts.

For large enough values of x, only the first few terms of this asymptotic expansion are needed to obtain a good approximation of erfc x (while for not too large values of x, the above Taylor expansion at 0 provides a very fast convergence).

Continued fraction expansion[edit]

A continued fraction expansion of the complementary error function is:[9]

{displaystyle operatorname {erfc} z={frac {z}{sqrt {pi }}}e^{-z^{2}}{cfrac {1}{z^{2}+{cfrac {a_{1}}{1+{cfrac {a_{2}}{z^{2}+{cfrac {a_{3}}{1+dotsb }}}}}}}},qquad a_{m}={frac {m}{2}}.}

Integral of error function with Gaussian density function[edit]

{displaystyle int _{-infty }^{infty }operatorname {erf} left(ax+bright){frac {1}{sqrt {2pi sigma ^{2}}}}exp left(-{frac {(x-mu )^{2}}{2sigma ^{2}}}right),mathrm {d} x=operatorname {erf} {frac {amu +b}{sqrt {1+2a^{2}sigma ^{2}}}},qquad a,b,mu ,sigma in mathbb {R} }

which appears related to Ng and Geller, formula 13 in section 4.3[10] with a change of variables.

Factorial series[edit]

The inverse factorial series:

{displaystyle {begin{aligned}operatorname {erfc} z&={frac {e^{-z^{2}}}{{sqrt {pi }},z}}sum _{n=0}^{infty }{frac {(-1)^{n}Q_{n}}{{(z^{2}+1)}^{bar {n}}}}&={frac {e^{-z^{2}}}{{sqrt {pi }},z}}left(1-{frac {1}{2}}{frac {1}{(z^{2}+1)}}+{frac {1}{4}}{frac {1}{(z^{2}+1)(z^{2}+2)}}-cdots right)end{aligned}}}

converges for Re(z2) > 0. Here

{displaystyle {begin{aligned}Q_{n}&{overset {text{def}}{{}={}}}{frac {1}{Gamma left({frac {1}{2}}right)}}int _{0}^{infty }tau (tau -1)cdots (tau -n+1)tau ^{-{frac {1}{2}}}e^{-tau },dtau &=sum _{k=0}^{n}left({tfrac {1}{2}}right)^{bar {k}}s(n,k),end{aligned}}}

zn denotes the rising factorial, and s(n,k) denotes a signed Stirling number of the first kind.[11][12]
There also exists a representation by an infinite sum containing the double factorial:

{displaystyle operatorname {erf} z={frac {2}{sqrt {pi }}}sum _{n=0}^{infty }{frac {(-2)^{n}(2n-1)!!}{(2n+1)!}}z^{2n+1}}

Numerical approximations[edit]

Approximation with elementary functions[edit]

  • Abramowitz and Stegun give several approximations of varying accuracy (equations 7.1.25–28). This allows one to choose the fastest approximation suitable for a given application. In order of increasing accuracy, they are:
    {displaystyle operatorname {erf} xapprox 1-{frac {1}{left(1+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4}right)^{4}}},qquad xgeq 0}

    (maximum error: 5×10−4)

    where a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108

    {displaystyle operatorname {erf} xapprox 1-left(a_{1}t+a_{2}t^{2}+a_{3}t^{3}right)e^{-x^{2}},quad t={frac {1}{1+px}},qquad xgeq 0}

    (maximum error: 2.5×10−5)

    where p = 0.47047, a1 = 0.3480242, a2 = −0.0958798, a3 = 0.7478556

    {displaystyle operatorname {erf} xapprox 1-{frac {1}{left(1+a_{1}x+a_{2}x^{2}+cdots +a_{6}x^{6}right)^{16}}},qquad xgeq 0}

    (maximum error: 3×10−7)

    where a1 = 0.0705230784, a2 = 0.0422820123, a3 = 0.0092705272, a4 = 0.0001520143, a5 = 0.0002765672, a6 = 0.0000430638

    {displaystyle operatorname {erf} xapprox 1-left(a_{1}t+a_{2}t^{2}+cdots +a_{5}t^{5}right)e^{-x^{2}},quad t={frac {1}{1+px}}}

    (maximum error: 1.5×10−7)

    where p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 = −1.453152027, a5 = 1.061405429

    All of these approximations are valid for x ≥ 0. To use these approximations for negative x, use the fact that erf x is an odd function, so erf x = −erf(−x).

  • Exponential bounds and a pure exponential approximation for the complementary error function are given by[13]
    {displaystyle {begin{aligned}operatorname {erfc} x&leq {tfrac {1}{2}}e^{-2x^{2}}+{tfrac {1}{2}}e^{-x^{2}}leq e^{-x^{2}},&quad x&>0operatorname {erfc} x&approx {tfrac {1}{6}}e^{-x^{2}}+{tfrac {1}{2}}e^{-{frac {4}{3}}x^{2}},&quad x&>0.end{aligned}}}
  • The above have been generalized to sums of N exponentials[14] with increasing accuracy in terms of N so that erfc x can be accurately approximated or bounded by 2(2x), where
    {displaystyle {tilde {Q}}(x)=sum _{n=1}^{N}a_{n}e^{-b_{n}x^{2}}.}

    In particular, there is a systematic methodology to solve the numerical coefficients {(an,bn)}N
    n = 1
    that yield a minimax approximation or bound for the closely related Q-function: Q(x) ≈ (x), Q(x) ≤ (x), or Q(x) ≥ (x) for x ≥ 0. The coefficients {(an,bn)}N
    n = 1
    for many variations of the exponential approximations and bounds up to N = 25 have been released to open access as a comprehensive dataset.[15]

  • A tight approximation of the complementary error function for x ∈ [0,∞) is given by Karagiannidis & Lioumpas (2007)[16] who showed for the appropriate choice of parameters {A,B} that
    {displaystyle operatorname {erfc} xapprox {frac {left(1-e^{-Ax}right)e^{-x^{2}}}{B{sqrt {pi }}x}}.}

    They determined {A,B} = {1.98,1.135}, which gave a good approximation for all x ≥ 0. Alternative coefficients are also available for tailoring accuracy for a specific application or transforming the expression into a tight bound.[17]

  • A single-term lower bound is[18]

    {displaystyle operatorname {erfc} xgeq {sqrt {frac {2e}{pi }}}{frac {sqrt {beta -1}}{beta }}e^{-beta x^{2}},qquad xgeq 0,quad beta >1,}

    where the parameter β can be picked to minimize error on the desired interval of approximation.

  • Another approximation is given by Sergei Winitzki using his «global Padé approximations»:[19][20]: 2–3 
    {displaystyle operatorname {erf} xapprox operatorname {sgn} xcdot {sqrt {1-exp left(-x^{2}{frac {{frac {4}{pi }}+ax^{2}}{1+ax^{2}}}right)}}}

    where

    {displaystyle a={frac {8(pi -3)}{3pi (4-pi )}}approx 0.140012.}

    This is designed to be very accurate in a neighborhood of 0 and a neighborhood of infinity, and the relative error is less than 0.00035 for all real x. Using the alternate value a ≈ 0.147 reduces the maximum relative error to about 0.00013.[21]

    This approximation can be inverted to obtain an approximation for the inverse error function:

    {displaystyle operatorname {erf} ^{-1}xapprox operatorname {sgn} xcdot {sqrt {{sqrt {left({frac {2}{pi a}}+{frac {ln left(1-x^{2}right)}{2}}right)^{2}-{frac {ln left(1-x^{2}right)}{a}}}}-left({frac {2}{pi a}}+{frac {ln left(1-x^{2}right)}{2}}right)}}.}
  • An approximation with a maximal error of 1.2×10−7 for any real argument is:[22]
    {displaystyle operatorname {erf} x={begin{cases}1-tau &xgeq 0tau -1&x<0end{cases}}}

    with

    {displaystyle {begin{aligned}tau &=tcdot exp left(-x^{2}-1.26551223+1.00002368t+0.37409196t^{2}+0.09678418t^{3}-0.18628806t^{4}right.&left.qquad qquad qquad +0.27886807t^{5}-1.13520398t^{6}+1.48851587t^{7}-0.82215223t^{8}+0.17087277t^{9}right)end{aligned}}}

    and

    {displaystyle t={frac {1}{1+{frac {1}{2}}|x|}}.}

Table of values[edit]

x erf x 1 − erf x
0 0 1
0.02 0.022564575 0.977435425
0.04 0.045111106 0.954888894
0.06 0.067621594 0.932378406
0.08 0.090078126 0.909921874
0.1 0.112462916 0.887537084
0.2 0.222702589 0.777297411
0.3 0.328626759 0.671373241
0.4 0.428392355 0.571607645
0.5 0.520499878 0.479500122
0.6 0.603856091 0.396143909
0.7 0.677801194 0.322198806
0.8 0.742100965 0.257899035
0.9 0.796908212 0.203091788
1 0.842700793 0.157299207
1.1 0.880205070 0.119794930
1.2 0.910313978 0.089686022
1.3 0.934007945 0.065992055
1.4 0.952285120 0.047714880
1.5 0.966105146 0.033894854
1.6 0.976348383 0.023651617
1.7 0.983790459 0.016209541
1.8 0.989090502 0.010909498
1.9 0.992790429 0.007209571
2 0.995322265 0.004677735
2.1 0.997020533 0.002979467
2.2 0.998137154 0.001862846
2.3 0.998856823 0.001143177
2.4 0.999311486 0.000688514
2.5 0.999593048 0.000406952
3 0.999977910 0.000022090
3.5 0.999999257 0.000000743

[edit]

Complementary error function[edit]

The complementary error function, denoted erfc, is defined as

Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Plot of the complementary error function Erfc(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

{displaystyle {begin{aligned}operatorname {erfc} x&=1-operatorname {erf} x[5pt]&={frac {2}{sqrt {pi }}}int _{x}^{infty }e^{-t^{2}},mathrm {d} t[5pt]&=e^{-x^{2}}operatorname {erfcx} x,end{aligned}}}

which also defines erfcx, the scaled complementary error function[23] (which can be used instead of erfc to avoid arithmetic underflow[23][24]). Another form of erfc x for x ≥ 0 is known as Craig’s formula, after its discoverer:[25]

{displaystyle operatorname {erfc} (xmid xgeq 0)={frac {2}{pi }}int _{0}^{frac {pi }{2}}exp left(-{frac {x^{2}}{sin ^{2}theta }}right),mathrm {d} theta .}

This expression is valid only for positive values of x, but it can be used in conjunction with erfc x = 2 − erfc(−x) to obtain erfc(x) for negative values. This form is advantageous in that the range of integration is fixed and finite. An extension of this expression for the erfc of the sum of two non-negative variables is as follows:[26]

{displaystyle operatorname {erfc} (x+ymid x,ygeq 0)={frac {2}{pi }}int _{0}^{frac {pi }{2}}exp left(-{frac {x^{2}}{sin ^{2}theta }}-{frac {y^{2}}{cos ^{2}theta }}right),mathrm {d} theta .}

Imaginary error function[edit]

The imaginary error function, denoted erfi, is defined as

Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

Plot of the imaginary error function Erfi(z) in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D

{displaystyle {begin{aligned}operatorname {erfi} x&=-ioperatorname {erf} ix[5pt]&={frac {2}{sqrt {pi }}}int _{0}^{x}e^{t^{2}},mathrm {d} t[5pt]&={frac {2}{sqrt {pi }}}e^{x^{2}}D(x),end{aligned}}}

where D(x) is the Dawson function (which can be used instead of erfi to avoid arithmetic overflow[23]).

Despite the name «imaginary error function», erfi x is real when x is real.

When the error function is evaluated for arbitrary complex arguments z, the resulting complex error function is usually discussed in scaled form as the Faddeeva function:

w(z)=e^{-z^{2}}operatorname {erfc} (-iz)=operatorname {erfcx} (-iz).

Cumulative distribution function[edit]

The error function is essentially identical to the standard normal cumulative distribution function, denoted Φ, also named norm(x) by some software languages[citation needed], as they differ only by scaling and translation. Indeed,

the normal cumulative distribution function plotted in the complex plane

the normal cumulative distribution function plotted in the complex plane

{displaystyle {begin{aligned}Phi (x)&={frac {1}{sqrt {2pi }}}int _{-infty }^{x}e^{tfrac {-t^{2}}{2}},mathrm {d} t[6pt]&={frac {1}{2}}left(1+operatorname {erf} {frac {x}{sqrt {2}}}right)[6pt]&={frac {1}{2}}operatorname {erfc} left(-{frac {x}{sqrt {2}}}right)end{aligned}}}

or rearranged for erf and erfc:

{displaystyle {begin{aligned}operatorname {erf} (x)&=2Phi left(x{sqrt {2}}right)-1[6pt]operatorname {erfc} (x)&=2Phi left(-x{sqrt {2}}right)&=2left(1-Phi left(x{sqrt {2}}right)right).end{aligned}}}

Consequently, the error function is also closely related to the Q-function, which is the tail probability of the standard normal distribution. The Q-function can be expressed in terms of the error function as

{displaystyle {begin{aligned}Q(x)&={frac {1}{2}}-{frac {1}{2}}operatorname {erf} {frac {x}{sqrt {2}}}&={frac {1}{2}}operatorname {erfc} {frac {x}{sqrt {2}}}.end{aligned}}}

The inverse of Φ is known as the normal quantile function, or probit function and may be expressed in terms of the inverse error function as

{displaystyle operatorname {probit} (p)=Phi ^{-1}(p)={sqrt {2}}operatorname {erf} ^{-1}(2p-1)=-{sqrt {2}}operatorname {erfc} ^{-1}(2p).}

The standard normal cdf is used more often in probability and statistics, and the error function is used more often in other branches of mathematics.

The error function is a special case of the Mittag-Leffler function, and can also be expressed as a confluent hypergeometric function (Kummer’s function):

{displaystyle operatorname {erf} x={frac {2x}{sqrt {pi }}}Mleft({tfrac {1}{2}},{tfrac {3}{2}},-x^{2}right).}

It has a simple expression in terms of the Fresnel integral.[further explanation needed]

In terms of the regularized gamma function P and the incomplete gamma function,

{displaystyle operatorname {erf} x=operatorname {sgn} xcdot Pleft({tfrac {1}{2}},x^{2}right)={frac {operatorname {sgn} x}{sqrt {pi }}}gamma left({tfrac {1}{2}},x^{2}right).}

sgn x is the sign function.

Generalized error functions[edit]

Graph of generalised error functions En(x):
grey curve: E1(x) = 1 − ex/π
red curve: E2(x) = erf(x)
green curve: E3(x)
blue curve: E4(x)
gold curve: E5(x).

Some authors discuss the more general functions:[citation needed]

{displaystyle E_{n}(x)={frac {n!}{sqrt {pi }}}int _{0}^{x}e^{-t^{n}},mathrm {d} t={frac {n!}{sqrt {pi }}}sum _{p=0}^{infty }(-1)^{p}{frac {x^{np+1}}{(np+1)p!}}.}

Notable cases are:

  • E0(x) is a straight line through the origin: E0(x) = x/eπ
  • E2(x) is the error function, erf x.

After division by n!, all the En for odd n look similar (but not identical) to each other. Similarly, the En for even n look similar (but not identical) to each other after a simple division by n!. All generalised error functions for n > 0 look similar on the positive x side of the graph.

These generalised functions can equivalently be expressed for x > 0 using the gamma function and incomplete gamma function:

{displaystyle E_{n}(x)={frac {1}{sqrt {pi }}}Gamma (n)left(Gamma left({frac {1}{n}}right)-Gamma left({frac {1}{n}},x^{n}right)right),qquad x>0.}

Therefore, we can define the error function in terms of the incomplete gamma function:

{displaystyle operatorname {erf} x=1-{frac {1}{sqrt {pi }}}Gamma left({tfrac {1}{2}},x^{2}right).}

Iterated integrals of the complementary error function[edit]

The iterated integrals of the complementary error function are defined by[27]

{displaystyle {begin{aligned}operatorname {i} ^{n}!operatorname {erfc} z&=int _{z}^{infty }operatorname {i} ^{n-1}!operatorname {erfc} zeta ,mathrm {d} zeta [6pt]operatorname {i} ^{0}!operatorname {erfc} z&=operatorname {erfc} zoperatorname {i} ^{1}!operatorname {erfc} z&=operatorname {ierfc} z={frac {1}{sqrt {pi }}}e^{-z^{2}}-zoperatorname {erfc} zoperatorname {i} ^{2}!operatorname {erfc} z&={tfrac {1}{4}}left(operatorname {erfc} z-2zoperatorname {ierfc} zright)end{aligned}}}

The general recurrence formula is

{displaystyle 2ncdot operatorname {i} ^{n}!operatorname {erfc} z=operatorname {i} ^{n-2}!operatorname {erfc} z-2zcdot operatorname {i} ^{n-1}!operatorname {erfc} z}

They have the power series

{displaystyle operatorname {i} ^{n}!operatorname {erfc} z=sum _{j=0}^{infty }{frac {(-z)^{j}}{2^{n-j}j!,Gamma left(1+{frac {n-j}{2}}right)}},}

from which follow the symmetry properties

{displaystyle operatorname {i} ^{2m}!operatorname {erfc} (-z)=-operatorname {i} ^{2m}!operatorname {erfc} z+sum _{q=0}^{m}{frac {z^{2q}}{2^{2(m-q)-1}(2q)!(m-q)!}}}

and

{displaystyle operatorname {i} ^{2m+1}!operatorname {erfc} (-z)=operatorname {i} ^{2m+1}!operatorname {erfc} z+sum _{q=0}^{m}{frac {z^{2q+1}}{2^{2(m-q)-1}(2q+1)!(m-q)!}}.}

Implementations[edit]

As real function of a real argument[edit]

  • In Posix-compliant operating systems, the header math.h shall declare and the mathematical library libm shall provide the functions erf and erfc (double precision) as well as their single precision and extended precision counterparts erff, erfl and erfcf, erfcl.[28]
  • The GNU Scientific Library provides erf, erfc, log(erf), and scaled error functions.[29]

As complex function of a complex argument[edit]

  • libcerf, numeric C library for complex error functions, provides the complex functions cerf, cerfc, cerfcx and the real functions erfi, erfcx with approximately 13–14 digits precision, based on the Faddeeva function as implemented in the MIT Faddeeva Package

See also[edit]

[edit]

  • Gaussian integral, over the whole real line
  • Gaussian function, derivative
  • Dawson function, renormalized imaginary error function
  • Goodwin–Staton integral

In probability[edit]

  • Normal distribution
  • Normal cumulative distribution function, a scaled and shifted form of error function
  • Probit, the inverse or quantile function of the normal CDF
  • Q-function, the tail probability of the normal distribution

References[edit]

  1. ^ Andrews, Larry C. (1998). Special functions of mathematics for engineers. SPIE Press. p. 110. ISBN 9780819426161.
  2. ^ Glaisher, James Whitbread Lee (July 1871). «On a class of definite integrals». London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4. 42 (277): 294–302. doi:10.1080/14786447108640568. Retrieved 6 December 2017.
  3. ^ Glaisher, James Whitbread Lee (September 1871). «On a class of definite integrals. Part II». London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4. 42 (279): 421–436. doi:10.1080/14786447108640600. Retrieved 6 December 2017.
  4. ^ «A007680 – OEIS». oeis.org. Retrieved 2 April 2020.
  5. ^ Weisstein, Eric W. «Erf». MathWorld.
  6. ^ Schöpf, H. M.; Supancic, P. H. (2014). «On Bürmann’s Theorem and Its Application to Problems of Linear and Nonlinear Heat Transfer and Diffusion». The Mathematica Journal. 16. doi:10.3888/tmj.16-11.
  7. ^ Weisstein, Eric W. «Bürmann’s Theorem». MathWorld.
  8. ^ Bergsma, Wicher (2006). «On a new correlation coefficient, its orthogonal decomposition and associated tests of independence». arXiv:math/0604627.
  9. ^ Cuyt, Annie A. M.; Petersen, Vigdis B.; Verdonk, Brigitte; Waadeland, Haakon; Jones, William B. (2008). Handbook of Continued Fractions for Special Functions. Springer-Verlag. ISBN 978-1-4020-6948-2.
  10. ^ Ng, Edward W.; Geller, Murray (January 1969). «A table of integrals of the Error functions». Journal of Research of the National Bureau of Standards Section B. 73B (1): 1. doi:10.6028/jres.073B.001.
  11. ^ Schlömilch, Oskar Xavier (1859). «Ueber facultätenreihen». Zeitschrift für Mathematik und Physik (in German). 4: 390–415. Retrieved 4 December 2017.
  12. ^ Nielson, Niels (1906). Handbuch der Theorie der Gammafunktion (in German). Leipzig: B. G. Teubner. p. 283 Eq. 3. Retrieved 4 December 2017.
  13. ^ Chiani, M.; Dardari, D.; Simon, M.K. (2003). «New Exponential Bounds and Approximations for the Computation of Error Probability in Fading Channels» (PDF). IEEE Transactions on Wireless Communications. 2 (4): 840–845. CiteSeerX 10.1.1.190.6761. doi:10.1109/TWC.2003.814350.
  14. ^ Tanash, I.M.; Riihonen, T. (2020). «Global minimax approximations and bounds for the Gaussian Q-function by sums of exponentials». IEEE Transactions on Communications. 68 (10): 6514–6524. arXiv:2007.06939. doi:10.1109/TCOMM.2020.3006902. S2CID 220514754.
  15. ^ Tanash, I.M.; Riihonen, T. (2020). «Coefficients for Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials [Data set]». Zenodo. doi:10.5281/zenodo.4112978.
  16. ^ Karagiannidis, G. K.; Lioumpas, A. S. (2007). «An improved approximation for the Gaussian Q-function» (PDF). IEEE Communications Letters. 11 (8): 644–646. doi:10.1109/LCOMM.2007.070470. S2CID 4043576.
  17. ^ Tanash, I.M.; Riihonen, T. (2021). «Improved coefficients for the Karagiannidis–Lioumpas approximations and bounds to the Gaussian Q-function». IEEE Communications Letters. 25 (5): 1468–1471. arXiv:2101.07631. doi:10.1109/LCOMM.2021.3052257. S2CID 231639206.
  18. ^ Chang, Seok-Ho; Cosman, Pamela C.; Milstein, Laurence B. (November 2011). «Chernoff-Type Bounds for the Gaussian Error Function». IEEE Transactions on Communications. 59 (11): 2939–2944. doi:10.1109/TCOMM.2011.072011.100049. S2CID 13636638.
  19. ^ Winitzki, Sergei (2003). «Uniform approximations for transcendental functions». Computational Science and Its Applications – ICCSA 2003. Lecture Notes in Computer Science. Vol. 2667. Springer, Berlin. pp. 780–789. doi:10.1007/3-540-44839-X_82. ISBN 978-3-540-40155-1.
  20. ^ Zeng, Caibin; Chen, Yang Cuan (2015). «Global Padé approximations of the generalized Mittag-Leffler function and its inverse». Fractional Calculus and Applied Analysis. 18 (6): 1492–1506. arXiv:1310.5592. doi:10.1515/fca-2015-0086. S2CID 118148950. Indeed, Winitzki [32] provided the so-called global Padé approximation
  21. ^ Winitzki, Sergei (6 February 2008). «A handy approximation for the error function and its inverse».
  22. ^ Numerical Recipes in Fortran 77: The Art of Scientific Computing (ISBN 0-521-43064-X), 1992, page 214, Cambridge University Press.
  23. ^ a b c Cody, W. J. (March 1993), «Algorithm 715: SPECFUN—A portable FORTRAN package of special function routines and test drivers» (PDF), ACM Trans. Math. Softw., 19 (1): 22–32, CiteSeerX 10.1.1.643.4394, doi:10.1145/151271.151273, S2CID 5621105
  24. ^ Zaghloul, M. R. (1 March 2007), «On the calculation of the Voigt line profile: a single proper integral with a damped sine integrand», Monthly Notices of the Royal Astronomical Society, 375 (3): 1043–1048, Bibcode:2007MNRAS.375.1043Z, doi:10.1111/j.1365-2966.2006.11377.x
  25. ^ John W. Craig, A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations Archived 3 April 2012 at the Wayback Machine, Proceedings of the 1991 IEEE Military Communication Conference, vol. 2, pp. 571–575.
  26. ^ Behnad, Aydin (2020). «A Novel Extension to Craig’s Q-Function Formula and Its Application in Dual-Branch EGC Performance Analysis». IEEE Transactions on Communications. 68 (7): 4117–4125. doi:10.1109/TCOMM.2020.2986209. S2CID 216500014.
  27. ^ Carslaw, H. S.; Jaeger, J. C. (1959), Conduction of Heat in Solids (2nd ed.), Oxford University Press, ISBN 978-0-19-853368-9, p 484
  28. ^ https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/math.h.html
  29. ^ «Special Functions – GSL 2.7 documentation».

Further reading[edit]

  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. «Chapter 7». Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 297. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  • Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (2007), «Section 6.2. Incomplete Gamma Function and Error Function», Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8
  • Temme, Nico M. (2010), «Error Functions, Dawson’s and Fresnel Integrals», in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248

External links[edit]

  • A Table of Integrals of the Error Functions

График функции

В математике функция ошибок (также называемая Функция ошибок Гаусса ), часто обозначаемая erf, является сложной функцией комплексной определяемой как:

erf ⁡ z = 2 π ∫ 0 ze — t 2 dt. { displaystyle operatorname {erf} z = { frac {2} { sqrt { pi}}} int _ {0} ^ {z} e ^ {- t ^ {2}} , dt.}{ displaystyle operatorname {erf} z = { гидроразрыва {2} { sqrt { pi}}} int _ {0} ^ {z} e ^ {- t ^ {2}} , dt.}

Этот интеграл является особой (не элементарной ) и сигмоидной функцией, которая часто встречается в статистике вероятность, и уравнения в частных производных. Во многих из этих приложений аргумент функции является действительным числом. Если аргумент функции является действительным, значение также является действительным.

В статистике для неотрицательных значений x функция имеет интерпретацию: для случайной величины Y, которая нормально распределена с среднее 0 и дисперсия 1/2, erf x — это вероятность того, что Y попадает в диапазон [-x, x].

Две связанные функции: дополнительные функции ошибок (erfc ), определенная как

erfc ⁡ z = 1 — erf ⁡ z, { displaystyle operatorname {erfc} z = 1- operatorname {erf} z,}{ displaystyle operatorname {erfc} z = 1- operatorname {erf} z, }

и функция мнимой ошибки (erfi ), определяемая как

erfi ⁡ z = — i erf ⁡ (iz), { displaystyle operatorname {erfi} z = -i operatorname {erf} (iz),}{ displaystyle operatorname {erfi} z = -i operatorname {erf} (iz),}

, где i — мнимая единица.

Содержание

  • 1 Имя
  • 2 Приложения
  • 3 Свойства
    • 3.1 Ряд Тейлора
    • 3.2 Производная и интеграл
    • 3.3 Ряд Бюрмана
    • 3.4 Обратные функции
    • 3.5 Асимптотическое разложение
    • 3.6 Разложение на непрерывную дробь
    • 3,7 Интеграл функции ошибок с функцией плотности Гаусса
    • 3.8 Факториальный ряд
  • 4 Численные приближения
    • 4.1 Аппроксимация с элементарными функциями
    • 4.2 Полином
    • 4.3 Таблица значений
  • 5 Связанные функции
    • 5.1 функция дополнительных ошибок
    • 5.2 Функция мнимой ошибки
    • 5.3 Кумулятивная функци я распределения на
    • 5.4 Обобщенные функции ошибок
    • 5.5 Итерированные интегралы дополнительных функций ошибок
  • 6 Реализации
    • 6.1 Как действующая функция действительного аргумента
    • 6.2 Как комплексная функция комплексного аргумента
  • 7 См. Также
    • 7.1 Связанные функции
    • 7.2 Вероятность
  • 8 Ссылки
  • 9 Дополнительная литература
  • 10 Внешние ссылки

Имя

Название «функция ошибки» и его аббревиатура erf были предложены Дж. В. Л. Глейшер в 1871 г. по причине его связи с «теорией вероятности, и особенно теорией ошибок ». Дополнение функции ошибок также обсуждалось Глейшером в отдельной публикации в том же году. Для «закона удобства» ошибок плотность задана как

f (x) = (c π) 1 2 e — cx 2 { displaystyle f (x) = left ({ frac {c } { pi}} right) ^ { tfrac {1} {2}} e ^ {- cx ^ {2}}}{ displaystyle f (x) = left ({ frac {c} { pi}} right) ^ { tfrac {1} {2}} e ^ {- cx ^ {2}}}

(нормальное распределение ), Глейшер вычисляет вероятность ошибки, лежащей между p { displaystyle p}pи q { displaystyle q}дкак:

(c π) 1 2 ∫ pqe — cx 2 dx = 1 2 (erf ⁡ (qc) — erf ⁡ (pc)). { displaystyle left ({ frac {c} { pi}} right) ^ { tfrac {1} {2}} int _ {p} ^ {q} e ^ {- cx ^ {2} } dx = { tfrac {1} {2}} left ( operatorname {erf} (q { sqrt {c}}) — operatorname {erf} (p { sqrt {c}}) right).}{ displaystyle left ({ frac {c} { pi}} right) ^ { tfrac {1} {2}} int _ {p} ^ {q} e ^ {- cx ^ {2 }} dx = { tfrac {1} {2}} left ( operatorname {erf} (q { sqrt {c}}) - operatorname {erf} (p { sqrt {c}}) right).}

Приложения

Когда результаты серии измерений описываются нормальным распределением со стандартным отклонением σ { displaystyle sigma}sigmaи ожидаемое значение 0, затем erf ⁡ (a σ 2) { displaystyle textstyle operatorname {erf} left ({ frac {a} { sigma { sqrt {2}) }}} right)}{ displaystyle textstyle operatorname {erf} left ({ frac {a} { sigma { sqrt {2}}}}} right)}— это вероятность того, что ошибка единичного измерения находится между −a и + a, для положительного a. Это полезно, например, при определении коэффициента битовых ошибок цифровой системы связи.

Функции и дополнительные функции ошибок возникают, например, в решениях уравнения теплопроводности, когда граничные ошибки задаются ступенчатой ​​функцией Хевисайда.

Функция ошибок и ее приближения Программу присвоили себе преподавателей, которые получили с высокой вероятностью или с низкой вероятностью. Дана случайная величина X ∼ Norm ⁡ [μ, σ] { displaystyle X sim operatorname {Norm} [ mu, sigma]}X sim operatorname {Norm} [ му, sigma]и константа L < μ {displaystyle L<mu }L < mu:

Pr [X ≤ L ] = 1 2 + 1 2 erf ⁡ (L — μ 2 σ) ≈ A ехр (- B (L — μ σ) 2) { Displaystyle Pr [X Leq L] = { frac {1} {2 }} + { frac {1} {2}} operatorname {erf} left ({ frac {L- mu} {{ sqrt {2}} sigma}} right) приблизительно A exp left (-B left ({ frac {L- mu} { sigma}} right) ^ {2} right)}{ displaystyle Pr [X leq L ] = { frac {1} {2}} + { frac {1} {2}} operatorname {erf} left ({ frac {L- mu} {{ sqrt {2}} sigma }} right) приблизительно A exp left (-B left ({ frac {L- mu} { sigma}} right) ^ {2} right)}

где A и B — верх числовые константы. Если L достаточно далеко от среднего, то есть μ — L ≥ σ ln ⁡ k { displaystyle mu -L geq sigma { sqrt { ln {k}}}}mu -L geq sigma { sqrt { ln {k}}}, то:

Pr [X ≤ L] ≤ A exp ⁡ (- B ln ⁡ k) = A К B { displaystyle Pr [X leq L] leq A exp (-B ln {k}) = { frac {A} {k ^ {B}}}}{ displaystyle Pr [X leq L] leq A exp (-B ln {k}) = { frac {A} {k ^ {B}}}}

, поэтому становится вероятность 0 при k → ∞ { displaystyle k to infty}k to infty.

Свойства

Графики на комплексной плоскости Интегрируем exp (-z) erf (z)

Свойство erf ⁡ (- z) = — erf ⁡ (z) { displaystyle operatorname {erf} (-z) = — operatorname {erf} (z)}operatorname {erf} (-z) = - operatorname {erf} (z)означает, что функция является ошибкой нечетной функции. Это связано с тем, что подынтегральное выражение e — t 2 { displaystyle e ^ {- t ^ {2}}}e ^ {- t ^ {2}}является четной функцией.

Для любого комплексное число z:

erf ⁡ (z ¯) = erf ⁡ (z) ¯ { displaystyle operatorname {erf} ({ overline {z}}) = { overline { operatorname {erf} (z)}}}operatorname {erf} ({ overline {z}}) = { overline { operatorname {erf} (z)}}

где z ¯ { displaystyle { overline {z}}}{ overline {z}}— комплексное сопряжение число z.

Подынтегральное выражение f = exp (−z) и f = erf (z) показано в комплексной плоскости z на рисунках 2 и 3. Уровень Im (f) = 0 показан жирным зеленым цветом. линия. Отрицательные целые значения Im (f) показаны жирными красными линиями. Положительные целые значения Im (f) показаны толстыми синими линиями. Промежуточные уровни Im (f) = проявляются тонкими зелеными линиями. Промежуточные уровни Re (f) = показаны тонкими красными линиями для отрицательных значений и тонкими синими линиями для положительных значений.

Функция ошибок при + ∞ равна 1 (см. интеграл Гаусса ). На действительной оси erf (z) стремится к единице при z → + ∞ и к −1 при z → −∞. На мнимой оси он стремится к ± i∞.

Серия Тейлора

Функция ошибок — это целая функция ; у него нет сингулярностей (кроме бесконечности), и его разложение Тейлора всегда сходится, но, как известно, «[…] его плохая сходимость, если x>1».

определяющий интеграл нельзя вычислить в закрытой форме в терминах элементарных функций, но путем расширения подынтегрального выражения e в его ряд Маклорена и интегрирована почленно, можно получить ряд Маклорена функции ошибок как:

erf ⁡ (z) = 2 π ∑ n = 0 ∞ (- 1) nz 2 n + 1 n! (2 n + 1) знак равно 2 π (z — z 3 3 + z 5 10 — z 7 42 + z 9 216 — ⋯) { displaystyle operatorname {erf} (z) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n} z ^ {2n + 1}} {n! (2n + 1)}} = { frac {2} { sqrt { pi}}} left (z — { frac {z ^ {3}} {3}} + { frac {z ^ { 5}} {10}} — { frac {z ^ {7}} {42}} + { frac {z ^ {9}} {216}} — cdots right)}{ displaystyle operatorname {erf} (z) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} { frac { (-1) ^ {n} z ^ {2n + 1}} {п! (2n + 1)}} = { frac {2} { sqrt { pi}}} left (z - { frac {z ^ {3}} {3}} + { frac {z ^ { 5}} {10}} - { frac {z ^ {7}} {42}} + { frac {z ^ {9}} {216}} - cdots right)}

, которое выполняется для каждого комплексного числа г. Члены знаменателя представляют собой последовательность A007680 в OEIS.

Для итеративного вычисления нового ряда может быть полезна следующая альтернативная формулировка:

erf ⁡ (z) = 2 π ∑ n = 0 ∞ (z ∏ К знак равно 1 N — (2 К — 1) Z 2 К (2 К + 1)) знак равно 2 π ∑ N = 0 ∞ Z 2 N + 1 ∏ К = 1 N — Z 2 К { Displaystyle OperatorName { erf} (z) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} left (z prod _ {k = 1} ^ {n} { frac {- (2k-1) z ^ {2}} {k (2k + 1)}} right) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} { frac {z} {2n + 1}} prod _ {k = 1} ^ {n} { frac {-z ^ {2}} {k}}}operatorname {erf} (z) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} left (z prod _ {k = 1} ^ {n} { frac {- (2k-1) z ^ {2}} {k (2k + 1))}} right) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} { frac {z} {2n + 1}} prod _ {k = 1} ^ {n} { frac {-z ^ {2}} {k}}

потому что что — (2 k — 1) z 2 k (2 k + 1) { displaystyle { frac {- (2k-1) z ^ {2}} {k (2k + 1))}} }{ frac {- (2k-1) z ^ {2}} {k (2k + 1)}}выражает множитель для превращения члена k в член (k + 1) (рассматривая z как первый член).

Функция мнимой ошибки имеет очень похожий ряд Маклорена:

erfi ⁡ (z) = 2 π ∑ n = 0 ∞ z 2 n + 1 n! (2 n + 1) знак равно 2 π (z + z 3 3 + z 5 10 + z 7 42 + z 9 216 + ⋯) { displaystyle operatorname {erfi} (z) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} { frac {z ^ {2n + 1}} {n! (2n + 1)}} = { frac {2} { sqrt { pi}}} left (z + { frac {z ^ {3}} {3}} + { frac {z ^ { 5}} {10}} + { frac {z ^ {7}} {42}} + { frac {z ^ {9}} {216}} + cdots right)}{ displaystyle operatorname {erfi} (z) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} { frac {z ^ {2n + 1}} {n! (2n + 1)}} = { frac {2} { sqrt { pi}}} left (z + { frac {z ^ {3}} {3}} + { frac {z ^ { 5}} {10}} + { frac {z ^ {7}} {42}} + { frac {z ^ {9}} {216}} + cdots right)}

, которое выполняется для любого комплексного числа z.

Производная и интеграл

Производная функция ошибок сразу следует из ее определения:

ddz erf ⁡ (z) = 2 π e — z 2. { displaystyle { frac {d} {dz}} operatorname {erf} (z) = { frac {2} { sqrt { pi}}} e ^ {- z ^ {2}}.}{ displaystyle { frac {d} {dz}} operatorname {erf} (z) = { frac {2} { sqrt { pi}}} е ^ {- z ^ {2}}.}

Отсюда немедленно вычисляется производная функция мнимой ошибки :

ddz erfi ⁡ (z) = 2 π ez 2. { displaystyle { frac {d} {dz}} operatorname {erfi} (z) = { frac {2} { sqrt { pi }}} e ^ {z ^ {2}}.}{ displaystyle { frac {d} {dz}} operatorname {erfi} (z) = { frac {2} { sqrt { pi}}} e ^ {z ^ {2}}.}

первообразная функции ошибок, которые можно получить посредством интегрирования по частям, составляет

z erf ⁡ (z) + е — z 2 π. { displaystyle z operatorname {erf} (z) + { frac {e ^ {- z ^ {2}}} { sqrt { pi}}}.}{ displaystyle z operatorname {erf} (z) + { frac {e ^ {- z ^ {2}}} { sqrt { pi}}}.}

Первообразная мнимой функции ошибок, также можно получить интегрированием по частям:

z erfi ⁡ (z) — ez 2 π. { displaystyle z operatorname {erfi} (z) — { frac {e ^ {z ^ {2}}} { sqrt { pi}}}.}{ displaystyle z operatorname {erfi} (z) - { frac {e ^ {z ^ {2}}} { sqrt { pi}}}.}

Производные высшего порядка задаются как

erf (k) ⁡ (z) = 2 (- 1) k — 1 π H k — 1 (z) e — z 2 = 2 π dk — 1 dzk — 1 (e — z 2), k = 1, 2, … { Displaystyle operatorname {erf} ^ {(k)} (z) = { frac {2 (-1) ^ {k-1}} { sqrt { pi}}} { mathit {H} } _ {k-1} (z) e ^ {- z ^ {2}} = { frac {2} { sqrt { pi}}} { frac {d ^ {k-1}} {dz ^ {k-1}}} left (e ^ {- z ^ {2}} right), qquad k = 1,2, dots}{ displaystyle operatorname {erf} ^ {(k)} (z) = { frac {2 (-1) ^ {k-1}} { sqrt { pi}}} { mathit {H}} _ {k-1} (z) e ^ {- z ^ { 2}} = { frac {2} { sqrt { pi}}} { frac {d ^ {k-1}} {dz ^ {k-1}}} left (e ^ {- z ^ {2}} right), qquad k = 1,2, dots}

где H { displaystyle { mathit {H}}}{ displaystyle { mathit {H}}}— физики многочлены Эрмита.

ряд Бюрмана

Расширение, которое сходится быстрее для всех реальных значений x { displaystyle x}x, чем разложение Тейлора, получается с помощью теоремы Ганса Генриха Бюрмана :

erf ⁡ (x) = 2 π sgn ⁡ (x) 1 — e — x 2 (1 — 1 12 ( 1 — e — x 2) — 7 480 (1 — e — x 2) 2 — 5 896 (1 — e — x 2) 3 — 787 276480 (1 — e — x 2)) 4 — ⋯) знак равно 2 π знак ⁡ (x) 1 — e — x 2 (π 2 + ∑ k = 1 ∞ cke — kx 2). { displaystyle { begin {align} operatorname {erf} (x) = { frac {2} { sqrt { pi}}} operatorname {sgn} (x) { sqrt {1-e ^ {-x ^ {2}}}} left (1 — { frac {1} {12}} left (1-e ^ {- x ^ {2}} right) — { frac {7} {480}} left (1-e ^ {- x ^ {2}} right) ^ {2} — { frac {5} {896}} left (1-e ^ {- x ^ {2 }} right) ^ {3} — { frac {787} {276480}} left (1-e ^ {- x ^ {2}} right) ^ {4} — cdots right) [10pt] = { frac {2} { sqrt { pi}}} operatorname {sgn} (x) { sqrt {1-e ^ {- x ^ {2}}}} left ({ frac { sqrt { pi}} {2}} + sum _ {k = 1} ^ { infty} c_ {k} e ^ {- kx ^ {2}} right). end {выровнено}}{ displaystyle { begin {align} operatorname {erf} (x) = { frac {2} { sqrt { pi}}} operatorname {sgn} (x) { sqrt {1-e ^ {- x ^ {2}}}} left (1 - { frac {1} {12}} left (1 -e ^ {- x ^ {2}} right) - { frac {7} {480}} left (1-e ^ {- x ^ {2}} right) ^ {2} - { frac {5} {896}} left (1-e ^ {- x ^ {2}} right) ^ {3} - { frac {787} {276480}} left (1-e ^ {- x ^ {2 }} right) ^ {4} - cdots right)  [10pt] = { frac {2} { sqrt { pi}}} operatorname {sgn} (x) { sqrt {1 -e ^ {- x ^ {2}}}} left ({ frac { sqrt { pi}} {2}} + sum _ {k = 1} ^ { infty} c_ {k} e ^ {- kx ^ {2}} right). end {align}}}

Сохраняя только первые два коэффициента и выбирая c 1 = 31 200 { displaystyle c_ {1} = { frac {31} {200}}}c_ {1} = { frac {31} {200}}и c 2 = — 341 8000, { displaystyle c_ {2} = — { frac {341} {8000}},}{ displayst yle c_ {2} = - { frac {341} {8000}},}результирующая аппроксимация дает наибольшую относительную ошибку при x = ± 1,3796, { displaystyle x = pm 1,3796,}{ displaystyle x = pm 1.3796,}, где оно меньше 3,6127 ⋅ 10 — 3 { displaystyle 3.6127 cdot 10 ^ {- 3}}{ displaystyle 3.6127 cdot 10 ^ {- 3}}:

erf ⁡ (x) ≈ 2 π sign ⁡ (x) 1 — e — x 2 (π 2 + 31 200 e — x 2 — 341 8000 e — 2 х 2). { displaystyle operatorname {erf} (x) приблизительно { frac {2} { sqrt { pi}}} operatorname {sgn} (x) { sqrt {1-e ^ {- x ^ {2 }}}} left ({ frac { sqrt { pi}} {2}} + { frac {31} {200}} e ^ {- x ^ {2}} — { frac {341} {8000}} e ^ {- 2x ^ {2}} right).}{ displaystyle operatorname {erf} (x) приблизительно { frac {2} { sqrt { pi}}} operatorname {sgn} (x) { sqrt {1-e ^ {- x ^ {2}} }} left ({ frac { sqrt { pi}} {2}} + { frac {31} {200}} e ^ {- x ^ {2}} - { frac {341} {8000 }} e ^ {- 2x ^ {2}} right).}

Обратные функции

Обратная функция

Учитывая комплексное число z, не существует уникального комплексного числа w, удовлетворяющего erf ⁡ (w) = z { displaystyle operatorname {erf} (w) = z}operatorname {erf} (w) = z, поэтому истинная обратная функция будет многозначной. Однако для −1 < x < 1, there is a unique real number denoted erf — 1 ⁡ (x) { displaystyle operatorname {erf} ^ {- 1} (x)}operatorname {erf} ^ {- 1} (х), удовлетворяющего

erf ⁡ (erf — 1 ⁡ ( х)) = х. { displaystyle operatorname {erf} left ( operatorname {erf} ^ {- 1} (x) right) = x.}{ displaystyle operatorname {erf} left ( operatorname {erf} ^ {- 1} (x) right) = x.}

Обратная функция ошибок обычно определяется с помощью домена (- 1,1), и он ограничен этой областью многих систем компьютерной алгебры. Однако его можно продолжить и на диск | z | < 1 of the complex plane, using the Maclaurin series

erf — 1 ⁡ (z) знак равно ∑ К знак равно 0 ∞ ck 2 k + 1 (π 2 z) 2 k + 1, { displaystyle operatorname {erf} ^ {- 1} (z) = sum _ {k = 0} ^ { infty} { frac {c_ {k}} {2k + 1}} left ({ frac { sqrt { pi}} {2}} z right) ^ {2k + 1},}{ displaystyle operatorname {erf} ^ {- 1} (z) = sum _ {k = 0} ^ { infty} { frac {c_ {k}} {2k + 1}} left ({ frac { sqrt { pi}} {2}} z right) ^ {2k + 1},}

где c 0 = 1 и

ck = ∑ m = 0 k — 1 cmck — 1 — m (m + 1) (2 m + 1) = {1, 1, 7 6, 127 90, 4369 2520, 34807 16200,…}. { displaystyle c_ {k} = sum _ {m = 0} ^ {k-1} { frac {c_ {m} c_ {k-1-m}} {(m + 1) (2m + 1) }} = left {1,1, { frac {7} {6}}, { frac {127} {90}}, { frac {4369} {2520}}, { frac {34807} {16200}}, ldots right }.}c_ {k} = sum _ {m = 0} ^ {k-1} { frac {c_ {m} c_ {k-1-m}} {(m + 1) (2m + 1)}} = left {1,1, { frac {7} {6}}, { frac {127} {90}}, { frac {4369} {2520}}, { frac {34807} {16200}}, ldots right }.

Итак, у нас есть разложение в ряд (общие множители были удалены из числителей и знаменателей):

erf — 1 ⁡ (z) = 1 2 π ( z + π 12 z 3 + 7 π 2 480 z 5 + 127 π 3 40320 z 7 + 4369 π 4 5806080 z 9 + 34807 π 5 182476800 z 11 + ⋯). { displaystyle operatorname {erf} ^ {- 1} (z) = { tfrac {1} {2}} { sqrt { pi}} left (z + { frac { pi} {12} } z ^ {3} + { frac {7 pi ^ {2}} {480}} z ^ {5} + { frac {127 pi ^ {3}} {40320}} z ^ {7} + { frac {4369 pi ^ {4}} {5806080}} z ^ {9} + { frac {34807 pi ^ {5}} {182476800}} z ^ {11} + cdots right). }{ displaystyle operatorname {erf} ^ {- 1} (z) = { tfrac {1} {2}} { sqrt { pi}} left (z + { frac { pi} {12}} z ^ {3} + { frac {7 pi ^ {2}} {480}} z ^ {5} + { frac {127 pi ^ {3}} {40320} } z ^ {7} + { frac {4369 pi ^ {4}} {5806080}} z ^ {9} + { frac {34807 pi ^ {5}} {182476800}} z ^ {11} + cdots right).}

(После отмены дроби числителя / знаменателя характерми OEIS : A092676 / OEIS : A092677 в OEIS ; без отмены членов числителя в записи OEIS : A002067.) Значение функции ошибок при ± ∞ равно ± 1.

Для | z | < 1, we have erf ⁡ (erf — 1 ⁡ (z)) = z { displaystyle operatorname {erf} left ( operatorname {erf} ^ {- 1} (z) right) = z}OperatorName {erf} left ( operatorname {erf} ^ {- 1} (z) right) = z.

обратная дополнительная функция ошибок определяется как

erfc — 1 ⁡ (1 — z) = erf — 1 ⁡ (z). { displaystyle operatorname {erfc} ^ {- 1} (1-z) = operatorname {erf} ^ {- 1} (z).}operatorname {erfc} ^ {- 1} (1-z) = operatorname {erf} ^ {- 1} (z).

Для действительного x существует уникальное действительное число erfi — 1 ⁡ (x) { displaystyle operatorname {erfi} ^ {- 1} (x)}имя оператора {erfi} ^ {- 1} (x)удовлетворяет erfi ⁡ (erfi — 1 ⁡ (x)) = x { displaystyle operatorname { erfi} left ( operatorname {erfi} ^ {- 1} (x) right) = x}operatorname {erfi} left ( operatorname {erfi} ^ {- 1} (x) right) = x. функция обратной мнимой ошибки определяется как erfi — 1 ⁡ (x) { displaystyle operatorname {erfi} ^ {- 1} (x)}имя оператора {erfi} ^ {- 1} (x).

Для любого действительного x, Метод Ньютона можно использовать для вычислений erfi — 1 ⁡ (x) { displaystyle operatorname {erfi} ^ {- 1} (x)}имя оператора {erfi} ^ {- 1} (x), а для — 1 ≤ x ≤ 1 { displaystyle -1 leq x leq 1}-1 leq x leq 1, сходится следующий ряд Маклорена:

erfi — 1 ⁡ (z) = ∑ k = 0 ∞ (- 1) ККК 2 К + 1 (π 2 Z) 2 К + 1, { Displaystyle OperatorName {erfi} ^ {- 1} (г) = сумма _ {к = 0} ^ { infty} { гидроразрыва {(-1) ^ {k} c_ {k}} {2k + 1}} left ({ frac { sqrt { pi}} {2}} z right) ^ {2k + 1},}{ displaystyle имя оператора {erfi} ^ {- 1} (z) = sum _ {k = 0} ^ { infty} { frac {(-1) ^ {k} c_ {k}} {2k + 1}} left ({ frac { sqrt { pi}} {2}} z справа) ^ {2k + 1},}

, где c k определено, как указано выше.

Асимптотическое разложение

Полезным асимптотическим разложением дополнительные функции (и, следовательно, также и функции ошибок) для больших вещественных x

erfc ⁡ (x) = e — x 2 x π [1 + ∑ n = 1 ∞ (- 1) n 1 ⋅ 3 ⋅ 5 ⋯ (2 n — 1) (2 x 2) n] = e — x 2 x π ∑ n = 0 ∞ (- 1) п (2 п — 1)! ! (2 х 2) n, { displaystyle operatorname {erfc} (x) = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}} left [1 + sum _ {n = 1} ^ { infty} (- 1) ^ {n} { frac {1 cdot 3 cdot 5 cdots (2n-1)} {(2x ^ {2}) ^ {n}}} right] = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}} sum _ {n = 0} ^ { infty} ( -1) ^ {n} { frac {(2n-1) !!} {(2x ^ {2}) ^ {n}}},}{ displaystyle operatorname {erfc} (x) = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}} left [1+ sum _ {n = 1} ^ { infty} (-1) ^ {n} { frac {1 cdot 3 cdot 5 cdots (2n-1)} {(2x ^ {2}) ^ { n}}} right] = { frac {e ^ {-x ^ {2}}} {x { sqrt { pi}}}} sum _ {n = 0} ^ { infty} (- 1) ^ {n} { frac {(2n-1) !!} {(2x ^ {2}) ^ {n}}},}

где (2n — 1) !! — это двойной факториал числа (2n — 1), которое является произведением всех нечетных чисел до (2n — 1). Этот ряд расходуется для любого конечного x, и его значение как асимптотического разложения состоит в том, что для любого N ∈ N { displaystyle N in mathbb {N}}N in Nимеется

erfc ⁡ (Икс) знак равно е — Икс 2 Икс π ∑ N знак равно 0 N — 1 (- 1) N (2 N — 1)! ! (2 х 2) n + RN (x) { displaystyle operatorname {erfc} (x) = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}} sum _ {n = 0} ^ {N-1} (- 1) ^ {n} { frac {(2n-1) !!} {(2x ^ {2}) ^ {n}}} + R_ {N} (x)}{ displaystyle operatorname {erfc} (x) = { frac {e ^ { - x ^ {2}}} {x { sqrt { pi}}}} sum _ {n = 0} ^ {N- 1} (- 1) ^ {n} { frac {(2n-1) !!} {(2x ^ {2}) ^ {n}}} + R_ {N} (x)}

где остаток в нотации Ландау равен

RN (x) = O (x 1 — 2 N e — x 2) { displaystyle R_ {N} ( x) = O left (x ^ {1-2N} e ^ {- x ^ {2}} right)}{ displaystyle R_ {N} (x) = O left (x ^ {1-2N} e ^ {- x ^ {2}} right)}

при x → ∞. { displaystyle x to infty.}x к infty.

Действительно, точное значение остатка равно

R N (x): = (- 1) N π 2 1 — 2 N (2 N)! N! ∫ Икс ∞ T — 2 N e — T 2 dt, { Displaystyle R_ {N} (x): = { frac {(-1) ^ {N}} { sqrt { pi}}} 2 ^ { 1-2N} { frac {(2N)!} {N!}} Int _ {x} ^ { infty} t ^ {- 2N} e ^ {- t ^ {2}} , dt,}{ displaystyle R_ {N} (x): = { frac {(-1) ^ {N}} { sqrt { pi}}} 2 ^ {1-2N} { frac {(2N)!} {N!}} Int _ {x} ^ { infty} t ^ {- 2N} e ^ {- t ^ {2}} , dt,}

который легко следует по индукции, записывая

e — t 2 = — (2 t) — 1 (e — t 2) ′ { displaystyle e ^ {- t ^ {2}} = — (2t) ^ {- 1} left (e ^ {- t ^ {2}} right) ‘}{displaystyle e^{-t^{2}}=-(2t)^{-1}left(e^{-t^{2}}right)'}

и интегрирование по частям.

Для достаточно больших значений x, только первые несколько этих асимптотических разностей необходимы, чтобы получить хорошее приближение erfc (x) (в то время как для не слишком больших значений x приведенное выше разложение Тейлора при 0 обеспечивает очень быструю сходимость).

Расширение непрерывной дроби

A Разложение непрерывной дроби дополнительные функции ошибок:

erfc ⁡ (z) = z π e — z 2 1 z 2 + a 1 1 + a 2 z 2 + a 3 1 + ⋯ am = м 2. { displaystyle operatorname {erfc} (z) = { frac {z} { sqrt { pi}}} e ^ {- z ^ {2}} { cfrac {1} {z ^ {2} + { cfrac {a_ {1}} {1 + { cfrac {a_ {2}} {z ^ {2} + { cfrac {a_ {3}} {1+) dotsb}}}}}}}} qquad a_ {m} = { frac {m} {2}}.}{ displaystyle operatorname {erfc} (z) = { frac {z} { sqrt { pi}}} e ^ {- z ^ {2}} { cfrac {1} {z ^ {2 } + { cfrac {a_ {1}} {1 + { cfrac {a_ {2}} {z ^ {2} + { cfrac {a_ {3}} {1+ dotsb}}}}}} }} qquad a_ {m} = { frac {m} {2}}.}

Интеграл функции ошибок с функцией плотности Гаусса

∫ — ∞ ∞ erf ⁡ (ax + б) 1 2 π σ 2 е — (Икс — μ) 2 2 σ 2 dx знак равно erf ⁡ [a μ + b 1 + 2 a 2 σ 2], a, b, μ, σ ∈ R { displaystyle int _ {- infty} ^ { infty} operatorname {erf} left (ax + b right) { frac {1} { sqrt {2 pi sigma ^ {2}}}} e ^ {- { frac {(x- mu) ^ {2}} {2 sigma ^ {2}}}} , dx = operatorname {erf} left [{ frac {a mu + b } { sqrt {1 + 2a ^ {2} sigma ^ {2}}} right], qquad a, b, mu, sigma in mathbb {R}}{ displaystyle int _ {- infty} ^ { infty} operatorname {erf} left (ax + b right) { frac {1} { sqrt {2 pi sigma ^ {2}}}} e ^ {- { frac {(x- mu) ^ {2}} {2 sigma ^ {2}}}} , dx = operatorname {erf} left [{ frac {a mu + b} { sqrt {1 + 2a ^ {2} sigma ^ {2}}} right], qquad a, b, му, sigma in mathbb {R}}

Факториальный ряд

  • Обратное:
erfc ⁡ z = e — z 2 π z ∑ n = 0 ∞ (- 1) n Q n (z 2 + 1) n ¯ = e — z 2 π z (1 — 1 2 1 (z 2 + 1) + 1 4 1 (z 2 + 1) (z 2 + 2) — ⋯) { displaystyle { begin {align} operatorname {erfc} z = { frac {e ^ {- z ^ {2}}} {{ sqrt { pi}} , z}} sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n} Q_ {n}} {{(z ^ {2} + 1)} ^ { ba r {n}}}} = { frac {e ^ {- z ^ {2}}} {{ sqrt { pi}} , z}} left ( 1 — { frac {1} {2}} { frac {1} {(z ^ {2} +1)}} + { frac {1} {4}} { frac {1} {(z ^ {2} +1) (z ^ {2} +2)}} — cdots right) end {align}}}{ displaystyle { begin {align} operatorname {erfc} z = { frac {e ^ {- z ^ {2}}} {{ sqrt { pi}} , z}} sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n} Q_ {n}} {{(z ^ {2} +1) } ^ { bar {n}}}}  = { frac {e ^ {- z ^ {2}}} {{ sqrt { pi}} , z}} left (1 - { frac {1} {2}} { frac {1} {(z ^ {2} +1)}} + { frac {1} {4}} { frac {1} {(z ^ {2 } +1) (z ^ {2} +2)}} - cdots right) end {align}}}
сходится для Re ⁡ (z 2)>0. { displaystyle operatorname {Re} (z ^ {2})>0.}{displaystyle operatorname {Re} (z^{2})>0.}Здесь

Q n = def 1 Γ (1/2) ∫ 0 ∞ τ (τ — 1) ⋯ ( τ — n + 1) τ — 1/2 е — τ d τ знак равно ∑ К знак равно 0 N (1 2) к ¯ s (n, k), { displaystyle Q_ {n} { stackrel { text {def}} {=}} { frac {1} { Gamma (1/2)}} int _ {0} ^ { infty} tau ( tau -1) cdots ( tau -n + 1) tau ^ {-1/2} e ^ {- tau} d tau = sum _ {k = 0} ^ {n} left ({ frac {1} {2}} right) ^ { bar {k}} s (n, k),}{ displaystyle Q_ {n} { stackrel { text {def} } {=}} { frac {1} { Gamma (1/2)}} int _ {0} ^ { infty} tau ( tau -1) cdots ( tau -n + 1) tau ^ {- 1/2} e ^ {- tau} d tau = sum _ {k = 0} ^ {n} left ({ frac {1} {2}} right) ^ { bar {k}} s (n, k),}
zn ¯ { displaystyle z ^ { bar {n}}}{ displaystyle z ^ { bar {n}}}обозначает возрастающий факториал, а s (n, k) { displaystyle s (n, k)}{ displaystyle s (n, k)}обозначает знаковое число Стирлинга первого рода.
  • Представление бесконечной суммой, составляющей двойной факториал :
ERF ⁡ (Z) знак равно 2 π ∑ N знак равно 0 ∞ (- 2) N (2 N — 1)! (2 N + 1)! Z 2 N + 1 { Displaystyle OperatorName {ERF} (г) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} { frac {( -2) ^ {n} (2n-1) !!} {(2n + 1)!}} Z ^ {2n + 1}}{ displaystyle operatorname {erf} (z) = { frac {2} { sqrt { число Пи}}} sum _ {n = 0} ^ { infty} { frac {(-2) ^ {n} (2n-1) !!} { (2n + 1)!}} Z ^ {2n + 1}}

Численные приближения

Приближение элементов сарными функциями

  • Абрамовиц и Стегун дают несколько приближений с точностью (уравнения 7.1.25–28). Это позволяет выбрать наиболее быстрое приближение, подходящее для данного приложения. В порядке увеличения точности они следующие:
erf ⁡ (x) ≈ 1 — 1 (1 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4) 4, x ≥ 0 { displaystyle имя оператора {erf} (x) приблизительно 1 — { frac {1} {(1 + a_ {1} x + a_ {2} x ^ {2} + a_ {3} x ^ {3} + a_ { 4} x ^ {4}) ^ {4}}}, qquad x geq 0}{ displaystyle operatorname {erf} (x) приблизительно 1- { frac {1 } {(1 + a_ {1} x + a_ {2} x ^ {2} + a_ {3} x ^ {3} + a_ {4} x ^ {4}) ^ {4}}}, qquad х geq 0}
(максимальная ошибка: 5 × 10)
, где a 1 = 0,278393, a 2 = 0,230389, a 3 = 0,000972, a 4 = 0,078108
erf ⁡ (x) ≈ 1 — (a 1 t + a 2 t 2 + a 3 t 3) e — x 2, t = 1 1 + px, x ≥ 0 { displaystyle operatorname {erf} (x) приблизительно 1- (a_ {1} t + a_ {2} t ^ {2} + a_ {3} t ^ {3}) e ^ {- x ^ {2}}, quad t = { frac {1} {1 + px}}, qquad x geq 0}{ displaystyle operatorname {erf} (x) приблизительно 1- (a_ {1} t + a_ {2} t ^ {2} + a_ {3} t ^ {3}) e ^ {- x ^ {2}}, quad t = { frac {1} {1 + px}}, qquad x geq 0}(максимальная ошибка: 2,5 × 10)
где p = 0,47047, a 1 = 0,3480242, a 2 = -0,0958798, a 3 = 0,7478556
erf ⁡ (x) ≈ 1 — 1 (1 + a 1 x + a 2 x 2 + ⋯ + a 6 x 6) 16, x ≥ 0 { displaystyle operatorname {erf} (x) приблизительно 1 — { frac {1} {(1 + a_ {1} x + a _ {2} x ^ {2} + cdots + a_ {6} x ^ {6}) ^ {16}}}, qquad x geq 0}{ displaystyle operatorname {erf} (x) приблизительно 1 - { frac {1} {(1 + a_ {1} x + a_ {2} x ^ {2} + cdots + a_ {6} x ^ {6}) ^ {16}}}, qquad x geq 0}(максимальная ошибка: 3 × 10)
, где a 1 = 0,0705230784, a 2 = 0,0422820123, a 3 = 0,0092705272, a 4 = 0,0001520143, a 5 = 0,0002765672, a 6 = 0,0000430638
erf ⁡ (x) ≈ 1 — (a 1 t + a 2 t 2 + ⋯ + a 5 t 5) e — x 2, t = 1 1 + px { displaystyle operatorname {erf} (x) приблизительно 1- (a_ {1} t + a_ {2} t ^ {2} + cdots + a_ {5} t ^ {5}) e ^ {- x ^ {2}}, quad t = { frac {1} {1 + px}}}{ displaystyle operatorname {erf} (x) приблизительно 1- (a_ {1} t + a_ {2} t ^ {2} + cdots + a_ {5} t ^ {5}) e ^ {- x ^ {2}}, quad t = { frac {1} {1 + px}}}(максимальная ошибка: 1,5 × 10)
, где p = 0,3275911, a 1 = 0,254829592, a 2 = −0,284496736, a 3 = 1,421413741, a 4 = −1,453152027, a 5 = 1,061405429
Все эти приближения действительны для x ≥ 0 Чтобы использовать эти приближения для отрицательного x, викорируйте тот факт, что erf (x) — нечетная функция, поэтому erf (x) = −erf (−x).
  • Экспоненциальные границы и чисто экспоненциальное приближение для дополнительных функций задаются как
erfc ⁡ (x) ≤ 1 2 e — 2 x 2 + 1 2 e — x 2 ≤ e — x 2, x>0 erfc ⁡ ( х) ≈ 1 6 е — х 2 + 1 2 е — 4 3 х 2, х>0. { displaystyle { begin {align} operatorname {erfc} (x) leq { frac {1} {2}} e ^ {- 2x ^ {2}} + { frac {1} {2} } e ^ {- x ^ {2}} leq e ^ {- x ^ {2}}, qquad x>0 имя оператора {erfc} (x) приблизительно { frac {1} { 6}} e ^ {- x ^ {2}} + { frac {1} {2}} e ^ {- { frac {4} {3}} x ^ {2}}, qquad x>0. end {align}}}{displaystyle {begin{aligned}operatorname {erfc} (x)leq {frac {1}{2}}e^{-2x^{2}}+{frac {1}{2}}e^{-x^{2}}leq e^{-x^{2}},qquad x>0  operatorname {erfc} (x) приблизительно { frac {1} {6}} e ^ {- x ^ {2}} + { frac {1} {2}} e ^ {- { frac {4} {3}} x ^ {2}}, qquad x>0. end {align}}}
erfc ⁡ (x) ≈ (1 — e — A x) e — x 2 B π х. { displaystyle operatorname {erfc} left (x right) приблизительно { frac { left (1-e ^ {- Ax} right) e ^ {- x ^ {2}}} {B { sqrt { pi}} x}}.}{ Displaystyle имя оператора {erfc} left (x right) приблизительно { frac { left (1-e ^ {- Ax} right) e ^ {- x ^ {2}}} {B { sqrt { pi }} x}}.}
Они определили {A, B} = {1.98, 1.135}, { displaystyle {A, B } = {1.98,1.135 },}{ displaystyle {A, B } = {1.98,1.135 },}, что дает хорошее приближение для всех x ≥ 0. { displaystyle x geq 0.}{ displaystyle x geq 0.}
  • Одноканальная нижняя граница:
erfc ⁡ (x) ≥ 2 e π β — 1 β е — β Икс 2, Икс ≥ 0, β>1, { Displaystyle OperatorName {erfc} (x) geq { sqrt { frac {2e} { pi}}} { frac { sqrt { beta -1}} { beta}} e ^ {- beta x ^ {2}}, qquad x geq 0, beta>1,}{displaystyle operatorname {erfc} (x)geq {sqrt {frac {2e}{pi }}}{frac {sqrt {beta -1}}{beta }}e^{-beta x^{2}},qquad xgeq 0,beta>1, }
где параметр β может быть выбран, чтобы минимизировать ошибку на желаемом интервале приближения.
  • Другое приближение дано Сергеем Виницким с использованием его «глобальных приближений Паде»:
erf ⁡ (x) ≈ sgn ⁡ (x) 1 — exp ⁡ (- x 2 4 π + ax 2 1 + ax 2) { displaystyle operatorname {erf} (x) приблизительно Operatorname {sgn} (x) { sqrt {1- exp left (-x ^ {2} { frac {{ frac {4} { pi) })} + ax ^ {2}} {1 + ax ^ {2}}} right)}}}{ Displaystyle OperatorName {ERF} (х) приблизительно OperatorName {SGN } (х) { sqrt {1- exp left (-x ^ {2} { frac {{ frac {4} { pi}} + ax ^ {2}} {1 + ax ^ {2 }}} right)}}}
где
a = 8 (π — 3) 3 π (4 — π) ≈ 0, 140012. { displaystyle a = { frac {8 ( pi -3)} {3 pi (4- pi)}} приблизительно 0,140012.}{ displaystyle a = { frac {8 ( pi -3)} {3 pi (4- pi)}} приблизительно 0,140012.}
Это сделано так, чтобы быть очень точным в окрестностях 0 и добавление бесконечности, а относительная погрешность меньше 0,00035 для всех действительных x. Использование альтернативного значения ≈ 0,147 снижает максимальную относительную ошибку примерно до 0,00013.
Это приближение можно инвертировать, чтобы получить приближение для других функций ошибок:
erf — 1 ⁡ (x) ≈ sgn ⁡ (x) (2 π a + ln ⁡ (1 — x 2) 2) 2 — ln ⁡ (1 — x 2) a — (2 π a + ln ⁡ (1 — x 2) 2). { displaystyle operatorname {erf} ^ {- 1} (x) приблизительно operatorname {sgn} (x) { sqrt {{ sqrt { left ({ frac {2} { pi a}} + { frac { ln (1-x ^ {2})} {2}} right) ^ {2} — { frac { ln (1-x ^ {2})} {a}}}} — left ({ frac {2} { pi a}} + { frac { ln (1-x ^ {2})} {2}} right)}}.}{ displaystyle operatorname {erf} ^ {- 1} ( x) приблизительно OperatorName {sgn} (x) { sqrt {{ sqrt { left ({ frac {2} { pi a}} + { frac { ln (1-x ^ {2}))} {2}} right) ^ {2} - { frac { ln (1-x ^ {2})} {a}}}} - left ({ frac {2} { pi a }} + { frac { ln (1-x ^ {2})} {2}} right)}}.}

Многочлен

Приближение с максимальной ошибкой 1,2 × 10-7 { displaystyle 1,2 times 10 ^ {- 7}}1,2 times 10 ^ {- 7}для любого действительного аргумента:

erf ⁡ ( x) = {1 — τ x ≥ 0 τ — 1 x < 0 {displaystyle operatorname {erf} (x)={begin{cases}1-tau xgeq 0tau -1x<0end{cases}}}{ displaystyle operatorname {erf} (x) = { begin {case} 1- tau x geq 0  тау -1 x <0 end {cases}}

с

τ = t ⋅ exp ⁡ (- x 2 — 1,26551223 + 1,00002368 t + 0,37409196 t 2 + 0,09678418 t 3 — 0,18628806 t 4 + 0,27886807 t 5 — 1,13520398 t 6 + 1,48851587 t 7 — 0,82215223 t 8 + 0,17087277 t 9) { displaystyle { begin {align} tau = t cdot exp left (-x ^ {2} -1,26551223 + 1,00002368 t + 0,37409196t ^ {2} + 0,09678418t ^ {3} -0,18628806t ^ {4} вправо. left. qquad qquad qquad + 0,27886807t ^ {5} -1,13520398t ^ {6} + 1,48851587t ^ {7} -0,82215223t ^ {8} + 0,17087 277t ^ {9} right) end {align}}}{ displaystyle { begin {align} tau = t cdot exp left (-x ^ {2} -1,26551223 + 1,00002368t + 0,37409196t ^ { 2} + 0,09678418t ^ {3} -0,18628806t ^ {4} right.  осталось. Qquad qquad qquad + 0,27886807t ^ {5} -1,13520398t ^ {6} + 1.48851587t ^ {7} - 0,82215223t ^ {8} + 0,17087277t ^ {9} right) end {align}}}

и

t = 1 1 + 0,5 | х |. { displaystyle t = { frac {1} {1 + 0,5 | x |}}.}t = { frac {1} {1 + 0,5 | х |}}.

Таблица значений

x erf(x) 1-erf (x)
0 0 1
0,02 0,022564575 0,977435425
0,04 0,045111106 0,954888894
0,06 0,067621594 0, 932378406
0,08 0.090078126 0,909921874
0,1 0,112462916 0,887537084
0,2 0,222702589 0,777297411
0,3 0,328626759 0,671373241
0, 4 0,428392355 0,571607645
0,5 0,520499878 0,479500122
0,6 0.603856091 0,396143909
0,7 0,677801194 0,322198806
0,8 257> 0,742100965 0,257899035
0,9 0,796908212 0,203091788
1 0,842700793 0, 157299207
1,1 0,88020507 0,11979493
1,2 0,910313978 0,089686022
1,3 0,934007945 0,065992055
1,4 0.95228512 0,04771488
1,5 0, 966105146 0,033894854
1,6 0,976348383 0,023651617
1,7 0,983790459 0,016209541
1,8 0,989090502 0,010909498
1,9 0,992790429 0,007209571
2 0,995322265<25767> 0,00477
2.1 0.997020533 0.002979467
2.2 0.998137154 0,001862846
2,3 0,998856823 0,001143177
2,4 0,999311486 0,000688514
2,5 0.999593048 0.000406952
3 0.99997791 0,00002209
3,5 0,999999257 0,000000743

Связанные функции

Дополнительная функция

дополнительная функция ошибок, обозначается erfc { displaystyle mathrm {erfc}}mathrm {erfc}, определяется как

erfc ⁡ (x) = 1 — erf ⁡ (x) = 2 π ∫ x ∞ e — t 2 dt знак равно е — Икс 2 erfcx ⁡ (х), { displaystyle { begin {выровнено} OperatorName {erfc} (x) = 1- operatorname {erf} (x) [5p t] = { frac {2} { sqrt { pi}}} int _ {x} ^ { infty} e ^ {- t ^ {2}} , dt [5pt] = e ^ {- x ^ {2}} operatorname {erfcx} (x), end {align}}}{ displaystyle { begin {align} operatorname {erfc} (x) = 1- operatorname {erf} (x)  [5pt ] = { frac {2} { sqrt { pi}}} int _ {x} ^ { infty} e ^ {- t ^ {2}} , dt  [5pt] = e ^ {- x ^ {2}} operatorname {erfcx} (x), end {align}}}

, который также определяет erfcx { displaystyle mathrm {erfcx} }{ displaystyle mathrm {erfcx}}, масштабированная дополнительная функция ошибок (которую можно использовать вместо erfc, чтобы избежать арифметического переполнения ). Известна другая форма erfc ⁡ (x) { displaystyle operatorname {erfc} (x)}{ displaystyle operatorname {erfc} (x)}для неотрицательного x { displaystyle x}xкак формула Крейга после ее первооткрывателя:

erfc ⁡ (x ∣ x ≥ 0) = 2 π ∫ 0 π / 2 exp ⁡ (- x 2 sin 2 ⁡ θ) d θ. { displaystyle operatorname {erfc} (x mid x geq 0) = { frac {2} { pi}} int _ {0} ^ { pi / 2} exp left (- { frac {x ^ {2}} { sin ^ {2} theta}} right) , d theta.}{ displaystyle operatorname {erfc} (x mid x geq 0) = { frac {2} { pi}} int _ {0} ^ { pi / 2} exp left (- { frac {x ^ {2}} { sin ^ {2} theta}} right) , d theta.}

Это выражение действительно только для положительных значений x, но его можно использовать вместе с erfc (x) = 2 — erfc (−x), чтобы получить erfc (x) для отрицательных значений. Эта форма выгодна тем, что диапазон интегрирования является фиксированным и конечным. Расширение этого выражения для erfc { displaystyle mathrm {erfc}}mathrm {erfc}суммы двух неотрицательных чисел следующим образом:

erfc ⁡ (x + y ∣ x, y ≥ 0) = 2 π ∫ 0 π / 2 ехр ⁡ (- x 2 sin 2 ⁡ θ — y 2 cos 2 ⁡ θ) d θ. { displaystyle operatorname {erfc} (x + y mid x, y geq 0) = { frac {2} { pi}} int _ {0} ^ { pi / 2} exp left (- { frac {x ^ {2}} { sin ^ {2} theta}} — { frac {y ^ {2}} { cos ^ {2} theta}} right) , d theta.}{ displaystyle operatorname {erfc} (x + y mid x, y geq 0) = { frac {2} { pi}} int _ {0} ^ { pi / 2} exp left (- { frac {x ^ {2}} { sin ^ {2} theta}} - { frac {y ^ {2}} { cos ^ {2} theta}} right) , d theta.}

Функция мнимой ошибки

мнимой ошибки, обозначаемая erfi, обозначает ошибки как

erfi ⁡ (x) = — i erf ⁡ (ix) Знак равно 2 π ∫ 0 xet 2 dt знак равно 2 π ex 2 D (x), { displaystyle { begin {align} operatorname {erfi} (x) = — i operatorname {erf} (ix) [ 5pt] = { frac {2} { sqrt { pi}}} int _ {0} ^ {x} e ^ {t ^ {2}} , dt [5pt] = { frac {2} { sqrt { pi}}} e ^ {x ^ {2}} D (x), end {align}}}{ displaystyle { begin {align} operatorname {erfi} (x) = - i operatorname {erf} (ix)  [5pt] = { frac {2} { sqrt { pi}}} int _ {0} ^ {x} e ^ {t ^ {2 }} , dt  [5pt] = { frac {2} { sqrt { pi}}} e ^ {x ^ {2}} D (x), end {align}}}

где D (x) — функция Доусона (который можно использовать вместо erfi, чтобы избежать арифметического переполнения ).

Несмотря на название «функция мнимой ошибки», erfi ⁡ (x) { displaystyle operatorname {erfi} (x)}operatorname {erfi} (x)реально, когда x действительно.

Функция Когда ошибки оценивается для произвольных сложных аргументов z, результирующая комплексная функция ошибок обычно обсуждается в масштабированной форме как функция Фаддеева :

w (z) = e — z 2 erfc ⁡ (- iz) = erfcx ⁡ (- iz). { displaystyle w (z) = e ^ {- z ^ {2}} operatorname {erfc} (-iz) = operatorname {erfcx} (-iz).}вес (z) = e ^ {- z ^ {2}} operatorname {erfc} (-iz) = operatorname {erfcx} (-iz).

Кумулятивная функция распределения

Функция ошибок по существующей стандартной стандартной функции нормального кумулятивного распределения, обозначаемой нормой (x) в некоторых языках программного обеспечения, поскольку они отличаются только масштабированием и переводом. Действительно,

Φ (x) = 1 2 π ∫ — ∞ xe — t 2 2 dt = 1 2 [1 + erf ⁡ (x 2)] = 1 2 erfc ⁡ (- x 2) { displaystyle Phi (x) = { frac {1} { sqrt {2 pi}}} int _ {- infty} ^ {x} e ^ { tfrac {-t ^ {2}} {2}} , dt = { frac {1} {2}} left [1+ operatorname {erf} left ({ frac {x} { sqrt {2}}} right) right] = { frac {1} {2}} operatorname {erfc} left (- { frac {x} { sqrt {2}}} right)}{ displaystyle Phi (x) = { frac {1} { sqrt {2 pi}}} int _ {- infty} ^ {x } e ^ { tfrac {-t ^ {2}} {2}} , dt = { frac {1} {2}} left [1+ operatorname {erf} left ({ frac {x } { sqrt {2}}} right) right] = { frac {1} {2}} operatorname {erfc} left (- { frac {x} { sqrt {2}}} справа)}

или переставлен для erf и erfc:

erf ⁡ ( x) = 2 Φ (x 2) — 1 erfc ⁡ (x) = 2 Φ (- x 2) = 2 (1 — Φ (x 2)). { displaystyle { begin {align} operatorname {erf} (x) = 2 Phi left (x { sqrt {2}} right) -1 operatorname {erfc} (x) = 2 Phi left (-x { sqrt {2}} right) = 2 left (1- Phi left (x { sqrt {2}} right) right). End {выравнивается} }}{ displaystyle { begin {align} operatorname {erf} (x) = 2 Phi left (x { sqrt {2}} right) -1  имя оператора {erfc} (x) = 2 Phi left (-x { sqrt {2}} right) = 2 left (1- Phi left (x { sqrt {2}} right) right). End {align}}}

Следовательно, функция ошибок также тесно связана с Q-функцией, которая является вероятностью хвоста стандартного нормального распределения. Q-функция может быть выражена через функцию ошибок как

Q (x) = 1 2 — 1 2 erf ⁡ (x 2) = 1 2 erfc ⁡ (x 2). { displaystyle Q (x) = { frac {1} {2}} — { frac {1} {2}} operatorname {erf} left ({ frac {x} { sqrt {2}}) } right) = { frac {1} {2}} operatorname {erfc} left ({ frac {x} { sqrt {2}}} right).}{ displaystyle Q (x) = { frac {1} {2}} - { frac {1} {2}} operatorname {erf} left ({ frac {x} { sqrt {2}}} right) = { frac {1 } {2}} operatorname {erfc} left ({ frac {x} { sqrt {2}}} right).}

Обратное значение из Φ { displaystyle Phi}Phiизвестен как функция нормальной квантиля или функция пробит и может быть выражена в терминах обратная функция ошибок как

пробит ⁡ (p) = Φ — 1 (p) = 2 erf — 1 ⁡ (2 p — 1) = — 2 erfc — 1 ⁡ (2 p). { displaystyle operatorname {probit} (p) = Phi ^ {- 1} (p) = { sqrt {2}} operatorname {erf} ^ {- 1} (2p-1) = — { sqrt {2}} operatorname {erfc} ^ {- 1} (2p).}{ displaystyle operatorname {probit} (p) = Phi ^ {- 1} (p) = { sqrt {2}} operatorname {erf} ^ {-1 } (2p-1) = - { sqrt {2}} operatorname {erfc} ^ {- 1} (2p).}

Стандартный нормальный cdf чаще используется в вероятности и статистике, а функция ошибок чаще используется в других разделах математики.

Функция ошибки является частным случаем функции Миттаг-Леффлера и может также быть выражена как сливающаяся гипергеометрическая функция (функция Куммера):

erf ⁡ (х) знак равно 2 х π M (1 2, 3 2, — х 2). { displaystyle operatorname {erf} (x) = { frac {2x} { sqrt { pi}}} M left ({ frac {1} {2}}, { frac {3} {2 }}, — x ^ {2} right).}{ displaystyle operatorname {erf } (x) = { frac {2x} { sqrt { pi}}} M left ({ frac {1} {2}}, { frac {3} {2}}, - x ^ { 2} right).}

Он имеет простое выражение в терминах интеграла Френеля.

В терминах регуляризованной гамма-функции P и неполная гамма-функция,

erf ⁡ (x) = sgn ⁡ (x) P (1 2, x 2) = sgn ⁡ (x) π γ (1 2, x 2). { displaystyle operatorname {erf} (x) = operatorname {sgn} (x) P left ({ frac {1} {2}}, x ^ {2} right) = { frac { operatorname {sgn} (x)} { sqrt { pi}}} gamma left ({ frac {1} {2}}, x ^ {2} right).}{ displaystyle operatorname {erf} (x) = operatorname {sgn} (x) P left ({ frac {1} {2}}, x ^ {2} right) = { frac { operatorname {sgn} (x)} { sqrt { pi}}} gamma left ({ frac {1} {2}}, x ^ {2} right).}

sgn ⁡ (x) { displaystyle operatorname {sgn} (x)}operatorname {sgn} (x)— знаковая функция .

Обобщенные функции ошибок

График обобщенных функций ошибок E n (x):. серая кривая: E 1 (x) = (1 — e) /

π { displaystyle scriptstyle { sqrt { pi}}}

scriptstyle { sqrt { pi}}. красная кривая: E 2 (x) = erf (x). зеленая кривая: E 3 (x). синяя кривая: E 4 (x). золотая кривая: E 5 (x).

Некоторые авторы обсуждают более общие функции:

E n (x) = n! π ∫ 0 Икс е — Т N д т знак равно N! π ∑ п знак равно 0 ∞ (- 1) п Икс N п + 1 (N п + 1) п!. { displaystyle E_ {n} (x) = { frac {n!} { sqrt { pi}}} int _ {0} ^ {x} e ^ {- t ^ {n}} , dt = { frac {n!} { sqrt { pi}}} sum _ {p = 0} ^ { infty} (- 1) ^ {p} { frac {x ^ {np + 1}} {(np + 1) p!}}.}{ displaystyle E_ {n} (x) = { frac {n!} { sqrt { pi}}} int _ {0} ^ {x} e ^ {- t ^ {n}} , dt = { frac {n!} { sqrt { pi }}} sum _ {p = 0} ^ { infty} (- 1) ^ {p} { frac {x ^ {np + 1}} {(np + 1) p!}}.}.}.}.}.}

Примечательные случаи:

  • E0(x) — прямая линия, проходящая через начало координат: E 0 (x) = xe π { displaystyle textstyle E_ {0} (x) = { dfrac {x} {e { sqrt { pi}}}}}{ displaystyle textstyle E_ {0} (x) = { dfrac {x} {e { sqrt { pi}}}}}
  • E2(x) — функция, erf (x) ошибки.

После деления на n!, все E n для нечетных n выглядят похожими (но не идентичными) друг на друга. Аналогично, E n для четного n выглядят похожими (но не идентичными) друг другу после простого деления на n!. Все обобщенные функции ошибок для n>0 выглядят одинаково на положительной стороне x графика.

Эти обобщенные функции могут быть эквивалентно выражены для x>0 с помощью гамма-функции и неполной гамма-функции :

E n (x) = 1 π Γ (n) (Γ (1 n) — Γ (1 n, xn)), x>0. { displaystyle E_ {n} (x) = { frac {1} { sqrt { pi}}} Gamma (n) left ( Gamma left ({ frac {1} {n}} right) — Gamma left ({ frac {1} {n}}, x ^ {n} right) right), quad quad x>0.}{displaystyle E_{n}(x)={frac {1}{sqrt {pi }}}Gamma (n)left(Gamma left({frac {1}{n}}right)-Gamma left({frac {1}{n}},x^{n}right)right),quad quad x>0.}

Следовательно, мы можем определить ошибку функция в терминах неполной гамма-функции:

erf ⁡ (x) = 1 — 1 π Γ (1 2, x 2). { displaystyle operatorname {erf} (x) = 1 — { frac {1} { sqrt { pi}}} Gamma left ({ frac {1} {2}}, x ^ {2} right).}{ displaystyle operatorname {erf} (x) = 1 - { frac {1} { sqrt { pi}}} Gamma left ({ frac {1} {2}}, x ^ {2} right).}

Итерированные интегралы дополнительных функций

Повторные интегралы дополнительные функции ошибок определения как

inerfc ⁡ (z) = ∫ z ∞ in — 1 erfc ⁡ (ζ) d ζ i 0 erfc ⁡ (z) = erfc ⁡ (z) i 1 erfc ⁡ (z) = ierfc ⁡ (z) знак равно 1 π е — z 2 — z erfc ⁡ (z) я 2 erfc ⁡ (z) = 1 4 [erfc ⁡ (z) — 2 z ierfc ⁡ (z)] { displaystyle { begin {align } operatorname {i ^ {n} erfc} (z) = int _ {z} ^ { infty} operatorname {i ^ {n-1} erfc} ( zeta) , d zeta имя оператора {i ^ {0} erfc} (z) = operatorname {erfc} (z) operatorname {i ^ {1} erfc} (z) = operat orname {ierfc} (z) = { frac { 1} { sqrt { pi}}} e ^ {- z ^ {2}} — z operatorname {erfc} (z) operatorname {i ^ {2} erfc} (z) = { frac {1} {4}} left [ operatorname {erfc} (z) -2z operatorname {ierfc} (z) right] end {выровнено}}{ displaystyle { begin {align} operatorname { i ^ {n} erfc} (z) = int _ {z} ^ { infty} operatorname {i ^ {n-1} erfc} ( zeta) , d zeta  имя оператора {i ^ {0} erfc} (z) = operatorname {erfc} (z)  operatorname {i ^ {1} erfc} (z) = operatorname {ierfc} (z) = { frac {1} { sqrt { pi}}} e ^ {- z ^ {2}} - z operatorname {erfc} (z)  operatorname {i ^ {2} erfc} (z) = { frac { 1} {4}} left [ operatorname {erfc} (z) -2z operatorname {ierfc} (z) right]  конец {выровнено}}}

Общая рекуррентная формула:

2 ninerfc ⁡ (z) = in — 2 erfc ⁡ (z) — 2 цинк — 1 erfc ⁡ (z) { displaystyle 2n operatorname {i ^ {n} erfc} (z) = operatorname {i ^ { n-2} erfc} (z) -2z operatorname {i ^ {n-1} erfc} (z)}{ displaystyle 2n operatorname {я ^ {n} erfc} (z) = operatorname {i ^ {n-2} erfc} (z) -2z operatorname {i ^ {n-1} erfc} (z) }

У них есть степенной ряд

в erfc ⁡ (z) = ∑ j = 0 ∞ (- Z) J 2 N — JJ! Γ (1 + N — J 2), { displaystyle i ^ {n} operatorname {erfc} (z) = sum _ {j = 0} ^ { infty} { frac {(-z) ^ { j}} {2 ^ {nj} j! Gamma left (1 + { frac {nj} {2}} right)}},}{ displaystyle i ^ {n} operatorname {erfc} (z) = sum _ {j = 0} ^ { infty} { frac {(-z) ^ {j}} {2 ^ {nj} j! Gamma left (1 + { frac {nj} {2}} right)}},}

из следуют свойства симметрии

i 2 m ERFC ⁡ (- Z) знак равно — я 2 m ERFC ⁡ (Z) + ∑ Q знак равно 0 мZ 2 д 2 2 (м — д) — 1 (2 д)! (м — д)! { displaystyle i ^ {2m} operatorname {erfc} (-z) = — i ^ {2m} operatorname {erfc} (z) + sum _ {q = 0} ^ {m} { frac {z ^ {2q}} {2 ^ {2 (mq) -1} (2q)! (Mq)!}}}{ displaystyle i ^ {2m} OperatorName {erfc} (-z) = - i ^ {2m} operatorname {erfc} (z) + sum _ {q = 0} ^ {m} { frac {z ^ {2q}} {2 ^ { 2 (кв.) - 1} (2 кв.)! (Mq)!}}}

и

i 2 m + 1 erfc ⁡ (- z) = i 2 m + 1 erfc ⁡ (г) + ∑ ä знак равно 0 ìZ 2 ä + 1 2 2 ( м — д) — 1 (2 д + 1)! (м — д)!. { displaystyle i ^ {2m + 1} operatorname {erfc} (-z) = i ^ {2m + 1} operatorname {erfc} (z) + sum _ {q = 0} ^ {m} { гидроразрыва {z ^ {2q + 1}} {2 ^ {2 (mq) -1} (2q + 1)! (mq)!}}.}{ displaystyle i ^ {2m + 1} operatorname {erfc} (-z) = i ^ {2m + 1} operatorname {erfc} (z) + sum _ {q = 0} ^ {m} { frac {z ^ {2q + 1}} {2 ^ {2 (mq) -1} (2q + 1)! (mq)!}}.}

Реализации

Как действительная функция вещественного аргумента

  • В операционных системах, совместимых с Posix, заголовок math.h должен являть, а математическая библиотека libm должна быть функция erf и erfc (двойная точность ), а также их одинарная точность и расширенная точность аналоги erff, erfl и erfc, erfcl.
  • Библиотека GNU Scientific предоставляет функции erf, erfc, log (erf) и масштабируемые функции ошибок.

Как сложная функция комплексного аргумента

  • libcerf, числовая библиотека C для сложных функций, предоставляет комплексные функции cerf, cerfc, cerfcx и реальные функции erfi, erfcx с точностью 13–14 цифр на основе функции Фаддеева, реализованной в пакете MIT Faddeeva Package

См. также

Связанные ции

  • интеграл Гаусса, по всей действительной прямой
  • функция Гаусса, производная
  • функция Доусона, перенормированная функция мнимой ошибки
  • интеграл Гудвина — Стона

по вероятности

  • Нормальное распределение
  • Нормальная кумулятивная функция распределения, масштабированная и сдвинутая форма функций ошибок
  • Пробит, обратная или квантильная функция нормального CDF
  • Q-функция, вероятность хвоста нормального распределения

Ссылки

Дополнительная литература

  • Abramowitz, Milton ; Стегун, Ирен Энн, ред. (1983) [июнь 1964]. «Глава 7». Справочник по математическим функциям с формулами, графики и математическими таблицами. Прикладная математика. 55 (Девятое переиздание с дополнительными исправлениями; десятое оригинальное издание с исправлениями (декабрь 1972 г.); первое изд.). Вашингтон.; Нью-Йорк: Министерство торговли США, Национальное бюро стандартов; Dover Publications. п. 297. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  • Press, William H.; Теукольский, Саул А.; Веттерлинг, Уильям Т.; Фланнери, Брайан П. (2007), «Раздел 6.2. Неполная гамма-функция и функция ошибок », Числовые рецепты: Искусство научных вычислений (3-е изд.), Нью-Йорк: Cambridge University Press, ISBN 978-0-521- 88068-8
  • Темме, Нико М. (2010), «Функции ошибок, интегралы Доусона и Френеля», в Олвер, Фрэнк У. Дж. ; Лозье, Даниэль М.; Бойсверт, Рональд Ф.; Кларк, Чарльз В. (ред.), Справочник NIST по математическим функциям, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248

Внешние ссылки

  • MathWorld — Erf
  • Таблица интегралов функций ошибок

3.3.Температурное
поле непрерывного неподвижного точечного
источ­ни­ка в неограниченной среде.
Функция ошибок Гаусса (функция erf(x)).

Если в точ­ке с
координатами x,
y,
z
в интервале времени от t
= 0 до t
= t
ра­ботает источник тепла мощностью
W,
то температурное поле этого ис­точ­ни­ка,
как указано выше, мо­жет быть найдено
интегрированием фундаментального
решения по t
от 0 до t
(т.е. от момента включения до момента
выключения источника). Поместим начало
координат в точку, где находится источник
теп­ла. Тогда x’
=
y’
=
z’
= 0,
и формула
для температуры принимает вид:

,
(3.3.1)

где r2
= (x — x’)
2
+ (y — y’)
2
+ (z — z’)
2
= x2
+ y
2
+ z
2
— квадрат расстояния от источника до
точки на­блю­де­ния.

Произведем в
интеграле (3.3.1) замену переменных:
r2/[4a(t
— t’)] =
2.
Тогда: (t —
t’)
3/2
= r
3/(8a3/23),
dt’ = r
2d/(2a3),
пределы интегрирования: t’
= 0 
,
t’ = t


=
,
и фор­мула (3.3.1) принимает вид:

.
(3.3.2)

Первый интеграл,
стоящий в скобках, известен из курса
высшей математики:


(интеграл
Пуассона),

а второй интеграл
через элементарные функции не выражается
и определяет специальную фун­к­цию,
которая называется функцией
ошибок Гаусса
,
или интегралом
вероятностей
,
или фун­к­ци­ей эрфектум:


(3.3.3)

(читается «эрфектум»
или сокращенно: «эрф»). Через эту
функцию выражаются решения мно­гих
задач в теории теплопроводности, да и
в других областях физики она играет
важную роль.

Из определения
(3.3.3) видно, что erf(0)
= 0, а erf()
= 1, т.е. erf(x)
— это мо­но­тон­но возрастающая
функция, вид ко­то­рой изо­бражен
на Рис.3.3. Функция erf(x)
та­бу­ли­­ро­вана, и ее зна­чения
приводят­ся в раз­лич­ных
справочниках; в таблице 3.1 при­ве­де­ны
несколько значений этой функции. В
биб­ли­о­те­ках не­ко­торых
языков программирова­ния имеются
го­то­вые под­про­грам­мы для
вы­чис­ления функции erf(x).
Если готовой под­про­­грам­мы
нет, функцию erf(x)
можно
вы­чис­лить с помощью степенного
ряда. «Стан­дар­т­ное»
раз­ло­жение этой функ­ции в
сте­пен­ной ряд, которое обычно
приводится в математи­чес­ких
спра­воч­никах, име­ет вид:

.
(3.3.4)

Этот
ряд удобен для анализа свойств функции,
но для практических расчетов он неудобен,
т.к. яв­ляется знакопеременным, что
при вычислениях приводит к потере
точности. Более удобен сле­­дующий
ряд:

,
(3.3.5)

где

,

.

С

Рис. 3.3.

помощью этого ряда легко соста­вить
программу вычисления erf(x)
на лю­бом языке про­грам­ми­рования
и да­же на программируемом
микро­каль­ку­ля­торе. Суммирование
надо пре­кра­щать, ко­гда при
добавлении оче­ред­но­го an-го
слагаемого сумма перестанет ме­няться
(будет до­стиг­ну­та «ма­шин­ная
точность»).

Если большой
точности не требуется, то можно
использовать приближенную фор­мулу:

erf(x)

[1 —
exp(-4x2/)]1/2.
(3.3.6)

Формула (3.3.6) дает
значения, абсолютная погрешность которых
не более 6.310-3,
а отно­си­тель­ная погрешность
не более 0.71%.

Иногда требуется
определить erf(x)
в области отрицательных значений x.
Из формулы (3.3.3) очевидно, что erf(-x)
= — erf(x).

Заметим, что хотя
функция erf(x)
не является «элементарной», с точки
зре­ния ее свойств и способов
вы­чис­ления она проще, чем многие
«элементарные» функции, например,
тригонометрические.

С функцией erf(x)
связано еще несколько функций, часто
встречающихся в тепло­фи­зи­чес­ких
задачах. Это прежде всего дополнительный
интеграл ве­ро­ят­ностей
:

,
(3.3.7)

который встречается
настолько часто, что для него используется
специальное обозначение: erfc(x)
(сокращенно читается «эрфик»). Вид
этой функции также приведен на рис.3.3.

Довольно часто
функцию erf(x)
приходится дифференцировать и
ин­те­грировать. Из оп­ре­де­ления
(3.3.3) следует, что

,
(3.3.8)

а интеграл от
erfc(x)
(обозначается как ierfc(x))
равен:

.
(3.3.9)

Вернемся к формуле
(3.3.2). Замечая, что ca
= ,
запишем эту формулу в виде:

.
(3.3.10)

При t


значение функции

0,


1, и формула (3.3.10), как и должно быть,
сов­па­да­ет с формулой для
стационарного решения (если T0
принять за на­ча­ло отсчета
тем­пе­ра­ту­ры), т.к. при t


до­сти­га­ет­ся стационарное
распределение тем­пе­ра­ту­ры
в безграничной среде.

Таблица 3.1.
Некоторые значения функции erf(x).

x

erf(x)

x

erf(x)

x

erf(x)

x

erf(x)

x

erf(x)

0.0

0.0

0.3

0.32863

0.6

0.60386

0.9

0.79691

2.0

0.99532

0.1

0.11246

0.4

0.42839

0.7

0.67780

1.0

0.84270

2.5

0.99959

0.2

0.22270

0.5

0.52050

0.8

0.74210

1.5

0.96611

Соседние файлы в папке КраткийКонспектЛекций

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Макеты страниц

7.3.1. Определение.

Функция вероятности ошибок определяется-интегралом

Рассмотрим функцию Гаусса

Она изображается кривой, представленной на рис. 7.9. Площадь, заключенная между кривой и осью абсцисс, равна единице. Действительно.

полагая имеем

Согласно формуле (3) из п. 7.4.1, получаем

что и требовалось доказать.

Площадь между кривой и осью абсцисс слева от абсциссы х обозначается через Следовательно,

Обе функции играют большую роль в теории вероятности. Первая из них часто используется при анализе возмущений, распространяющихся по линиям передачи. Полезно установить зависимость между функциями так как функция подробно затабулирована Если положить то

Так как

то

Рис. 7.9.

7.3.2. Разложение функции Ф(x) в степенной ряд.

Достаточно проинтегрировать разложение в ряд от нуля до х, чтобы получить степенной ряд

сходящийся при любом

7.3.3. Разложение в асимптотический ряд функции 1 — Ф(x)

Имеем

Положим

Повторно интегрируя частям, получаем

Отсюда

Отношение абсолютных величин двух последовательных членов равно Оно близко к единице, если близко к Ясно, что член асимптотического разложения соответствующий этому имеет наименьшую абсолютную величину. Именно на нем и следует остановиться, чтобы получить наименьшую ошибку при вычислении

Замечание. В примере 3 п. 2.2.8 мы показали, что функция Гаусса представленная на рис. 7.9, обладает свойством быть своей собственной трансформантой Фурье. Поэтому понятна та важная роль, которую она играет при изучении спектра сигналов и диаграмм направленности источников радиоволн.

7.3.4. Выражение функции 1 — Ф(x/2) через интеграл Коши.

В разложении функции в степенной ряд заменим х на Получаем

Согласно результатам п. 7.4.3, имеем ( целое)

Это дает возможность написать

Согласно формуле (10) п. 7.4.5. (см. также рис. 7.12),

Отсюда

и

Функция удовлетворяет условиям леммы Жордана

Поэтому мы можем также написать

7.3.5. Таблица функции …

(см. скан)

7.3.6. График функции …

Рис. 7.10.

График функции ошибок

В математике функция ошибок (функция Лапласа) — это неэлементарная функция, возникающая в теории вероятностей, статистике и теории дифференциальных уравнений в частных производных. Она определяется как

operatorname{erf},x = frac{2}{sqrt{pi}}intlimits_0^x e^{-t^2},mathrm dt.

Дополнительная функция ошибок, обозначаемая operatorname{erfc},x (иногда применяется обозначение operatorname{Erf},x) определяется через функцию ошибок:

operatorname{erfc},x = 1-operatorname{erf},x = frac{2}{sqrt{pi}} intlimits_x^{infty} e^{-t^2},mathrm dt.

Комплексная функция ошибок, обозначаемая w(x), также определяется через функцию ошибок:

w(x) = e^{-x^2}operatorname{erfc},(-ix).

Содержание

  • 1 Свойства
  • 2 Применение
  • 3 Асимптотическое разложение
  • 4 Родственные функции
    • 4.1 Обобщённые функции ошибок
    • 4.2 Итерированные интегралы дополнительной функции ошибок
  • 5 Реализация
  • 6 См. также
  • 7 Литература
  • 8 Ссылки

Свойства

  • Функция ошибок нечётна:
operatorname{erf},(-x) = -operatorname{erf},x.
  • Для любого комплексного x выполняется
operatorname{erf},bar{x} = overline{operatorname{erf},x}

где черта обозначает комплексное сопряжение числа x.

  • Функция ошибок не может быть представлена через элементарные функции, но, разлагая интегрируемое выражение в ряд Тейлора и интегрируя почленно, мы можем получить её представление в виде ряда:
operatorname{erf},x= frac{2}{sqrt{pi}}sum_{n=0}^infinfrac{(-1)^n x^{2n+1}}{n! (2n+1)} =frac{2}{sqrt{pi}} left(x-frac{x^3}{3}+frac{x^5}{10}-frac{x^7}{42}+frac{x^9}{216}- cdotsright)

Это равенство выполняется (и ряд сходится) как для любого вещественного x[источник не указан 302 дня], так и на всей комплексной плоскости. Последовательность знаменателей образует последовательность A007680 в OEIS.

  • Для итеративного вычисления элементов ряда полезно представить его в альтернативном виде:
operatorname{erf},x= frac{2}{sqrt{pi}}sum_{n=0}^infinleft(x prod_{i=1}^n{frac{-(2i-1) x^2}{i (2i+1)}}right) = frac{2}{sqrt{pi}} sum_{n=0}^infin frac{x}{2n+1} prod_{i=1}^n frac{-x^2}{i}

поскольку frac{-(2i-1) x^2}{i (2i+1)} — сомножитель, превращающий i-й член ряда в (i+1)-й, считая первым членом x.

  • Функция ошибок на бесконечности равна единице; однако это справедливо только при приближении к бесконечности по вещественной оси, так как:
  • При рассмотрении функции ошибок в комплексной плоскости точка z=infty будет для неё существенно особой.
  • Производная функции ошибок выводится непосредственно из определения функции:
frac{d}{dx},operatorname{erf},x=frac{2}{sqrt{pi}},e^{-x^2}.
  • Обратная функция ошибок представляет собой ряд
operatorname{erf}^{-1},x=sum_{k=0}^infinfrac{c_k}{2k+1}left (frac{sqrt{pi}}{2}xright )^{2k+1}, ,!

где c0 = 1 и

c_k=sum_{m=0}^{k-1}frac{c_m c_{k-1-m}}{(m+1)(2m+1)} = left{1,1,frac{7}{6},frac{127}{90},ldotsright}.

Поэтому ряд можно представить в следующем виде (заметим, что дроби сокращены):

operatorname{erf}^{-1},x=frac{1}{2}sqrt{pi}left (x+frac{pi x^3}{12}+frac{7pi^2 x^5}{480}+frac{127pi^3 x^7}{40320}+frac{4369pi^4 x^9}{5806080}+frac{34807pi^5 x^{11}}{182476800}+dotsright ). ,![1]

Последовательности числителей и знаменателей после сокращения — A092676 и A132467 в OEIS; последовательность числителей до сокращения — A002067 в OEIS.

Дополнительная функция ошибок

Применение

Если набор случайных чисел подчиняется нормальному распределению со стандартным отклонением sigma, то вероятность, что число отклонится от среднего не более чем на a, равна operatorname{erf},frac{a}{sigma sqrt{2}}.

Функция ошибок и дополнительная функция ошибок встречаются в решении некоторых дифференциальных уравнений, например, уравнения теплопроводности с граничными условиями описываемыми функцией Хевисайда («ступенькой»).

В системах цифровой оптической коммуникации, вероятность ошибки на бит также выражается формулой, использующей функцию ошибок.

Асимптотическое разложение

При больших x полезно асимптотическое разложение для дополнительной функции ошибок:

operatorname{erfc},x = frac{e^{-x^2}}{xsqrt{pi}}left [1+sum_{n=1}^infty (-1)^n frac{1cdot3cdot5cdots(2n-1)}{(2x^2)^n}right ]=frac{e^{-x^2}}{xsqrt{pi}}sum_{n=0}^infty (-1)^n frac{(2n)!}{n!(2x)^{2n}}.,

Хотя для любого конечного x этот ряд расходится, на практике первых нескольких членов достаточно для вычисления operatorname{erfc},x с хорошей точностью, в то время как ряд Тейлора сходится очень медленно.

Другое приближение даётся формулой

(operatorname{erf},x)^2approx 1-expleft(-x^2frac{4/pi+ax^2}{1+ax^2}right)

где

a = frac{-8}{3pi}frac{pi-3}{pi-4}.

Родственные функции

С точностью до масштаба и сдвига, функция ошибок совпадает с нормальным интегральным распределением, обозначаемым Phi(x)

Phi(x) = frac{1}{2}left(1+operatorname{erf},frac{x}{sqrt{2}}right),.

Обратная функция к Phi, известная как нормальная квантильная функция, иногда обозначается operatorname{probit} и выражается через нормальную функцию ошибок как

operatorname{probit},p = Phi^{-1}(p) = sqrt{2},operatorname{erf}^{-1}(2p-1).

Нормальное интегральное распределение чаще применяется в теории вероятностей и математической статистике, в то время как функция ошибок чаще применяется в других разделах математики.

Функция ошибок является частным случаем функции Миттаг-Леффлера, а также может быть представлена как вырожденная гипергеометрическая функция (функция Куммера):

operatorname{erf},x= frac{2x}{sqrt{pi}},_1F_1left(frac{1}{2},frac{3}{2},-x^2right).

Функция ошибок выражается также через интеграл Френеля. В терминах регуляризованной неполной гамма-функции P и неполной гамма-функции,

operatorname{erf},x=operatorname{sign},x,Pleft(frac{1}{2}, x^2right)={operatorname{sign},x over sqrt{pi}}gammaleft(frac{1}{2}, x^2right).

Обобщённые функции ошибок

Некоторые авторы обсуждают более общие функции

E_n(x) = frac{n!}{sqrt{pi}} intlimits_0^x e^{-t^n},mathrm dt =frac{n!}{sqrt{pi}}sum_{p=0}^infin(-1)^pfrac{x^{np+1}}{(np+1)p!},.

Примечательными частными случаями являются:

После деления на n! все E_n с нечётными n выглядят похоже (но не идентично). Все E_n с чётными n тоже выглядят похоже, но не идентично, после деления на n!. Все обобщённые функции ошибок с n>0 выглядят похоже на полуоси x>0.

На полуоси x>0 все обобщённые функции могут быть выражены через гамма-функцию:

E_n(x) = frac{xleft(x^nright)^{-1/n}Gamma(n)left(Gammaleft(frac{1}{n}right)-Gammaleft(frac{1}{n},x^nright)right)}{sqrtpi}, quad quad x>0

Следовательно, мы можем выразить функцию ошибок через гамма-функцию:

operatorname{erf},x = 1 - frac{Gammaleft(frac{1}{2},x^2right)}{sqrtpi}

Итерированные интегралы дополнительной функции ошибок

Итерированные интегралы дополнительной функции ошибок определяются как

i^n,operatorname{erfc},z = intlimits_z^infty i^{n-1},operatorname{erfc},zeta,dzeta.,

Их можно разложить в ряд:

i^n,operatorname{erfc},z = sum_{j=0}^infty frac{(-z)^j}{2^{n-j}j!,Gamma left( 1 + frac{n-j}{2}right)},,

откуда следуют свойства симметрии

i^{2m},operatorname{erfc},(-z) = -i^{2m},operatorname{erfc},z + sum_{q=0}^m frac{z^{2q}}{2^{2(m-q)-1}(2q)!(m-q)!}

и

i^{2m+1},operatorname{erfc},(-z) =i^{2m+1},operatorname{erfc},z + sum_{q=0}^m frac{z^{2q+1}}{2^{2(m-q)-1}(2q+1)! (m-q)!},.

Реализация

В стандарте языка Си (ISO/IEC 9899:1999, 7.12.8) предусмотрены функция ошибок operatorname{erf} и дополнительная функция ошибок operatorname{erfc}. Функции находятся в заголовочных файлах math.h или cmath. Там же есть пары функций erff(),erfcf() и erfl(),erfcl(). Первая пара получает и возвращает значения типа float, а вторая — значения типа long double. Соответствующие функции также содержатся в библиотеке Math проекта Boost.

В языке Java функции ошибок нет в стандартной библиотеке математических функций java.lang.Math [2]. Класс Erf есть в пакете org.apache.commons.math.special от Apache [3]. Однако эта библиотека не является одной из стандартных библиотек Java 6.

Matlab[4], Mathematica и Maxima[5] содержат обычную и дополнительную функцию ошибок, а также обратные к ним функции.

В языке Python функция ошибок доступна из стандартной библиотеки math, начиная с версии 2.7. [6] Также функция ошибок, дополнительная функция ошибок и многие другие специальные функции определены в модуле Special проекта SciPy [7].

В языке Erlang функция ошибок и дополнительная функция ошибок доступны из стандартного модуля math, [8].

См. также

  • Функция Гаусса
  • Функция Доусона

Литература

  • Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972. (См. часть 7)
  • Nikolai G. Lehtinen «Error functions», April 2010 [9]

Ссылки

  • MathWorld — Erf
  • Онлайновый калькулятор Erf и много других специальных функций (до 6 знаков)
  • Онлайновый калькулятор, вычисляющий в том числе Erf

эрф | Функции ошибок, использующие cmath в C ++

В математике функция ошибки (также называемая функцией ошибки Гаусса) является специальной (неэлементарной) функцией сигмоидальной формы, которая встречается в уравнениях вероятности, статистики и дифференциальных уравнений в частных производных, описывающих диффузию.

Это вероятность того, что нормальная случайная величина со средним значением 0 и дисперсией 0,5 принимает значение между [-x, x]. Обозначается через erf (x) и рассчитывается как:

В cmath библиотеке C ++ функция ошибок уже была реализована. Есть две такие функции:

  1. erf (x) : эта встроенная функция вычисляет функцию ошибки для входного значения x. Параметр x, который может быть int или float или double. Возвращает двойное число, которое есть erf (x).
  2. erfc (x) : эта встроенная функция вычисляет дополнительную функцию ошибки для входного значения x. Параметр x, который может быть int или float или double. Возвращает двойное число, равное 1 — erf (x).

/ * C ++ код для использования erf * /
#include <iostream>
#include <cmath> /* erf */

Функция ошибки

В математике , то функция ошибок (также называется гауссовская ошибка функция ) является функция целого числа используется в анализе . Эта функция обозначается erf и является частью специальных функций . Это определяется:

Функция erf регулярно вмешивается в области вероятностей и статистики , а также в проблемы диффузии ( тепла или вещества ).

Резюме

Интерес этой функции

Вероятность и статистика

Вероятность того, что приведенная центрированная нормальная переменная X принимает значение в интервале [- z , z ], равна:

Функция распределения по X , или функция распределения нормального закона , как правило , обозначаются Ф, связана с функцией ошибки, ERF , обозначенное соотношением:

Проблемы диффузии

Функция ошибок участвует в выражении решений уравнения теплопроводности или уравнения диффузии , например, когда начальные условия задаются функцией Хевисайда .

Рассмотрим, в частности, полупространство x ≥ 0, занятое твердым телом с температуропроводностью κ и изначально однородной температурой T 1 . Если в момент времени t = 0 его граница x = 0 доведена до температуры T 2 , температура T ( x , t ) в любой момент времени t> 0 и в любой точке x > 0 определяется выражением:

Численный расчет

Интеграл не может быть получен с помощью замкнутой формулы, а путем разложения в целочисленный ряд (бесконечного радиуса сходимости), интегрированного по члену,

Существуют таблицы, в которых значения интегралов представлены в зависимости от z , но сегодня большинство числовых программ ( электронные таблицы , Scilab ) или CAS (например, Maple или MuPAD ) включают в себя процедуру вычисления erf (x) и ее взаимное смещение, инвертирование (x), которое еще более полезен при вычислении вероятностей .

Однако могут быть полезны следующие приближения:

  • In (с погрешностью менее 6 × 10 –4 при x <0,5) v ( 0 ) , Эрф ⁡ ( Икс ) знак равно 2 π е — Икс 2 ( Икс + 2 3 Икс 3 + 4 15 Икс 5 ) + о ( Икс 6 е — Икс 2 ) (x) = >> e ^ > left (x + > , x ^ + > , x ^ right) + o (x ^ , e ^ >)>
  • In (с погрешностью менее 2 × 10 –4 при x > 1,75) v ( + ∞ ) , Эрф ⁡ ( Икс ) знак равно 1 — е — Икс 2 1 π . ( 1 Икс — 1 2 Икс 3 + 3 4 Икс 5 — 15 8 Икс 7 ) + о ( Икс — 8 е — Икс 2 ) (x) = 1-e ^ >>>. left ( > — >> + >> — >> right) + o (x ^ e ​​^ >)>
  • Для Икс > 0 , 1 — е — Икс 2 ≤ Эрф ⁡ ( Икс ) ≤ 1 — е — 4 Икс 2 / π >>> leq operatorname (x) leq / pi>>>>

(схема, предложенная Дж. Т. Чу, 1955; верхняя граница приближается к функции erf всюду в пределах 7 × 10 −3 ).

  • Для Икс > 0 , Эрф ⁡ ( Икс ) ≃ 1 — е — 1 , 9 Икс 1 , 3 (x) simeq 1-e ^ >>

(приближение, предложенное Э. Робертом, 1996; оно приближается к функции erf везде в пределах 2,2 × 10 −2 . Приближение улучшается до менее 10 −2 для ). Икс ≥ 1

  • Функция является решением дифференциального уравнения, имеющего значение 0 в 0 и производную в 0. Икс ↦ Эрф ⁡ ( Икс ) × е Икс 2 (x) times e ^ >> y ″ — 2 Икс y ′ — 2 y знак равно 0 2 π >>>

Расширения

Бывает, что более общая функция определяется: E нет >

используется, а E 2 называется интегральной ошибкой.

Другие функции ошибок, используемые в анализе, в том числе:

  • Дополнительная функция ошибок отметила ERFC и определяется по формуле:
  • Функция ierfc (напротив) интеграла дополнительной функции ошибок erfc :
  • Функция мнимой ошибки, отмеченная erfi , определяется следующим образом:

Часто он определяется только в некоторых программах компьютерной алгебры, таких как Mathematica и Maple . Тем не менее, его можно описать с помощью разложения в целочисленный ряд :

Взаимная функция

Функция обратной ошибки иногда используется в статистических формулах . Это можно описать с помощью последовательного расширения:

где и против 0 знак равно 1 = 1>

Получаем следующую разработку:

( радиус сходимости этого ряда равен 1, он дает хорошие приблизительные значения, например, только для | z | <1/2).

Документация

erf( x ) возвращает Функцию ошибок, оцененную для каждого элемента x .

Примеры

Нахождение функции ошибок

Найдите функцию ошибок значения.

Найдите функцию ошибок элементов вектора.

Найдите функцию ошибок элементов матрицы.

Нахождение кумулятивной функции распределения нормального распределения

Кумулятивная функция распределения (CDF) нормального, или Гауссова, распределения со стандартным отклонением σ и среднее значение μ

ϕ ( x ) = 1 2 ( 1 + e r f ( x — μ σ 2 ) ) .

Обратите внимание на то, что для увеличенной вычислительной точности, можно переписать формулу в терминах erfc . Для получения дополнительной информации смотрите Советы.

Постройте CDF нормального распределения с μ = 0 и σ = 1 .

Figure contains an axes object. The axes object with title C D F blank o f blank n o r m a l blank d i s t r i b u t i o n blank w i t h blank mu blank = blank 0 blank a n d blank sigma blank = blank 1 contains an object of type line.

Вычисление решения уравнения тепла с начальным условием

Где u ( x , t ) представляет температуру в положении x и время t , уравнение тепла

∂ u ∂ t = c ∂ 2 u ∂ x 2 ,

где c константа.

Для материала с коэффициентом тепла k , и для начального условия u ( x , 0 ) = a для x > b и u ( x , 0 ) = 0 в другом месте решение уравнения тепла

u ( x , t ) = a 2 ( e r f ( x — b 4 k t ) ) .

Для k = 2 , a = 5 , и b = 1 , постройте решение уравнения тепла во времена t = 0.1 , 5 , и 100 .

Figure contains an axes object. The axes object with title Temperatures across material at t = 0.1, t = 5, and t = 100 contains 3 objects of type line. These objects represent t = 0.1, t = 5, t = 100.

Входные параметры

x входной параметр
вещественное число | вектор из вещественных чисел | матрица вещественных чисел | многомерный массив вещественных чисел

Введите в виде вещественного числа, или вектора, матрицы или многомерного массива вещественных чисел. x не может быть разреженным.

Типы данных: single | double

Больше о

Функция ошибок

Функция ошибок erf x

erf( x )= 2 π ∫ 0 x e − t 2 d t .

Советы

Можно также найти стандартное нормальное распределение вероятностей с помощью функции normcdf (Statistics and Machine Learning Toolbox) . Отношение между функцией ошибок erf и normcdf

normcdf ( x ) = 1 2 ( 1 − erf ( − x 2 ) ) .

Для выражений формы 1 — erf(x) , используйте дополнительную функцию ошибок erfc вместо этого. Эта замена обеспечивает точность. Когда erf(x) близко к 1 , затем 1 — erf(x) небольшое число и может быть округлено в меньшую сторону до 0 . Вместо этого замена 1 — erf(x) с erfc(x) .

Расширенные возможности

«Высокие» массивы
Осуществление вычислений с массивами, которые содержат больше строк, чем помещается в памяти.

Генерация кода C/C++
Генерация кода C и C++ с помощью MATLAB® Coder™.

Указания и ограничения по применению:

Строгие вычисления с одинарной точностью не поддерживаются. В сгенерированном коде входные параметры с одинарной точностью производят выходные параметры с одинарной точностью. Однако переменные в функциональной силе быть с двойной точностью.

Основанная на потоке среда
Запустите код в фоновом режиме с помощью MATLAB® backgroundPool или ускорьте код с Parallel Computing Toolbox™ ThreadPool .

Эта функция полностью поддерживает основанные на потоке среды. Для получения дополнительной информации смотрите функции MATLAB Запуска в Основанной на потоке Среде.

Массивы графического процессора
Ускорьте код путем работы графического процессора (GPU) с помощью Parallel Computing Toolbox™.

Эта функция полностью поддерживает массивы графического процессора. Для получения дополнительной информации смотрите функции MATLAB Запуска на графическом процессоре (Parallel Computing Toolbox) .

Распределенные массивы
Большие массивы раздела через объединенную память о вашем кластере с помощью Parallel Computing Toolbox™.

Эта функция полностью поддерживает распределенные массивы. Для получения дополнительной информации смотрите функции MATLAB Запуска с Распределенными Массивами (Parallel Computing Toolbox) .

Смотрите также

Открытый пример

У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?

Документация MATLAB

Поддержка

© 1994-2021 The MathWorks, Inc.

1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.

2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.

3. Сохраняйте структуру оригинального текста — например, не разбивайте одно предложение на два.

4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.

5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.

Функция ошибок (также называемая функция ошибок Гаусса) — не элементарная функция, возникающая в теории вероятностей, статистике и теории дифференциальных уравнений в частных производных. Она определяется как

[math]displaystyle{ operatorname{erf},x = frac{2}{sqrt{pi}}intlimits_0^x e^{-t^2},mathrm dt }[/math].

Дополнительная функция ошибок, обозначаемая [math]displaystyle{ operatorname{erfc},x }[/math] (иногда применяется обозначение [math]displaystyle{ operatorname{Erf},x }[/math]), определяется через функцию ошибок:

[math]displaystyle{ operatorname{erfc},x = 1-operatorname{erf},x = frac{2}{sqrt{pi}} intlimits_x^{infty} e^{-t^2},mathrm dt }[/math].

Комплексная функция ошибок, обозначаемая [math]displaystyle{ w(x) }[/math], также определяется через функцию ошибок:

[math]displaystyle{ w(x) = e^{-x^2}operatorname{erfc},(-ix) }[/math].

Свойства

  • Функция ошибок нечётна:
[math]displaystyle{ operatorname{erf},(-x) = -operatorname{erf},x. }[/math]
  • Для любого комплексного [math]displaystyle{ x }[/math] выполняется
[math]displaystyle{ operatorname{erf},bar{x} = overline{operatorname{erf},x} }[/math]
где черта обозначает комплексное сопряжение числа [math]displaystyle{ x }[/math].
  • Функция ошибок не может быть представлена через элементарные функции, но, разлагая интегрируемое выражение в ряд Тейлора и интегрируя почленно, мы можем получить её представление в виде ряда:
[math]displaystyle{ operatorname{erf},x= frac{2}{sqrt{pi}}sum_{n=0}^infinfrac{(-1)^n x^{2n+1}}{n! (2n+1)} =frac{2}{sqrt{pi}} left(x-frac{x^3}{3}+frac{x^5}{10}-frac{x^7}{42}+frac{x^9}{216}- cdotsright) }[/math]
Это равенство выполняется (и ряд сходится) как для любого вещественного [math]displaystyle{ x }[/math], так и на всей комплексной плоскости, согласно признаку Д’Аламбера. Последовательность знаменателей образует последовательность A007680 в OEIS.
  • Для итеративного вычисления элементов ряда полезно представить его в альтернативном виде:
[math]displaystyle{ operatorname{erf},x= frac{2}{sqrt{pi}}sum_{n=0}^infinleft(x prod_{i=1}^n{frac{-(2i-1) x^2}{i (2i+1)}}right) = frac{2}{sqrt{pi}} sum_{n=0}^infin frac{x}{2n+1} prod_{i=1}^n frac{-x^2}{i} }[/math]
поскольку [math]displaystyle{ frac{-(2i-1) x^2}{i (2i+1)} }[/math] — сомножитель, превращающий [math]displaystyle{ i }[/math]-й член ряда в [math]displaystyle{ (i+1) }[/math]-й, считая первым членом [math]displaystyle{ x }[/math].
  • Функция ошибок на бесконечности равна единице; однако это справедливо только при приближении к бесконечности по вещественной оси, так как:
  • При рассмотрении функции ошибок в комплексной плоскости точка [math]displaystyle{ z=infty }[/math] будет для неё существенно особой.
  • Производная функции ошибок выводится непосредственно из определения функции:
[math]displaystyle{ frac{d}{dx},operatorname{erf},x=frac{2}{sqrt{pi}},e^{-x^2}. }[/math]
  • Первообразная функции ошибок, получаемая способом интегрирования по частям:
[math]displaystyle{ F(x)=xoperatorname{erf}(x) + frac{e^{-x^2}}{sqrt{pi}}. }[/math]
  • Обратная функция ошибок представляет собой ряд
[math]displaystyle{ operatorname{erf}^{-1},x=sum_{k=0}^infinfrac{c_k}{2k+1}left (frac{sqrt{pi}}{2}xright )^{2k+1}, }[/math]
где c0 = 1 и

[math]displaystyle{ c_k=sum_{m=0}^{k-1}frac{c_m c_{k-1-m}}{(m+1)(2m+1)} = left{1,1,frac{7}{6},frac{127}{90},ldotsright}. }[/math]
Поэтому ряд можно представить в следующем виде (заметим, что дроби сокращены):

[math]displaystyle{ operatorname{erf}^{-1},x=frac{1}{2}sqrt{pi}left (x+frac{pi x^3}{12}+frac{7pi^2 x^5}{480}+frac{127pi^3 x^7}{40320}+frac{4369pi^4 x^9}{5806080}+frac{34807pi^5 x^{11}}{182476800}+dotsright ). }[/math][1]
Последовательности числителей и знаменателей после сокращения — A092676 и A132467 в OEIS; последовательность числителей до сокращения — A002067 в OEIS.

Дополнительная функция ошибок

Применение

Если набор случайных величин подчиняется нормальному распределению со стандартным отклонением [math]displaystyle{ sigma }[/math], то вероятность, что величина отклонится от среднего не более чем на [math]displaystyle{ a }[/math], равна [math]displaystyle{ operatorname{erf},frac{a}{sigma sqrt{2}} }[/math].

Функция ошибок и дополнительная функция ошибок встречаются в решении некоторых дифференциальных уравнений, например, уравнения теплопроводности с начальными условиями, описываемыми функцией Хевисайда («ступенькой»).

В системах цифровой оптической коммуникации, вероятность ошибки на бит также выражается формулой, использующей функцию ошибок.

Асимптотическое разложение

При больших [math]displaystyle{ x }[/math] полезно асимптотическое разложение для дополнительной функции ошибок:

[math]displaystyle{ operatorname{erfc},x = frac{e^{-x^2}}{xsqrt{pi}}left [1+sum_{n=1}^infty (-1)^n frac{1cdot3cdot5cdots(2n-1)}{(2x^2)^n}right ]=frac{e^{-x^2}}{xsqrt{pi}}sum_{n=0}^infty (-1)^n frac{(2n)!}{n!(2x)^{2n}}. }[/math]

Хотя для любого конечного [math]displaystyle{ x }[/math] этот ряд расходится, на практике первых нескольких членов достаточно для вычисления [math]displaystyle{ operatorname{erfc},x }[/math] с хорошей точностью, в то время как ряд Тейлора сходится очень медленно.

Другое приближение даётся формулой

[math]displaystyle{ (operatorname{erf},x)^2approx 1-expleft(-x^2frac{4/pi+ax^2}{1+ax^2}right) }[/math]

где

[math]displaystyle{ a = frac{8}{3pi}frac{pi — 3}{4 — pi}. }[/math]

Родственные функции

С точностью до масштаба и сдвига, функция ошибок совпадает с нормальным интегральным распределением, обозначаемым [math]displaystyle{ Phi(x) }[/math]

[math]displaystyle{ Phi(x) = frac{1}{2}biggl(1+operatorname{erf},frac{x}{sqrt{2}}biggl). }[/math]

Обратная функция к [math]displaystyle{ Phi }[/math], известная как нормальная квантильная функция, иногда обозначается [math]displaystyle{ operatorname{probit} }[/math] и выражается через нормальную функцию ошибок как

[math]displaystyle{
operatorname{probit},p = Phi^{-1}(p) = sqrt{2},operatorname{erf}^{-1}(2p-1).
}[/math]

Нормальное интегральное распределение чаще применяется в теории вероятностей и математической статистике, в то время как функция ошибок чаще применяется в других разделах математики.

Функция ошибок является частным случаем функции Миттаг-Леффлера, а также может быть представлена как вырожденная гипергеометрическая функция (функция Куммера):

[math]displaystyle{ operatorname{erf},x=
frac{2x}{sqrt{pi}},_1F_1left(frac{1}{2},frac{3}{2},-x^2right). }[/math]

Функция ошибок выражается также через интеграл Френеля. В терминах регуляризованной неполной гамма-функции P и неполной гамма-функции,

[math]displaystyle{ operatorname{erf},x=operatorname{sign},x,Pleft(frac{1}{2}, x^2right)={operatorname{sign},x over sqrt{pi}}gammaleft(frac{1}{2}, x^2right). }[/math]

Обобщённые функции ошибок

График обобщённых функций ошибок [math]displaystyle{ E_n(x) }[/math]:
серая линия: [math]displaystyle{ E_1(x)=(1-e^{-x})/sqrt{pi} }[/math]
красная линия: [math]displaystyle{ E_2(x)=operatorname{erf},x }[/math]
зелёная линия: [math]displaystyle{ E_3(x) }[/math]
синяя линия: [math]displaystyle{ E_4(x) }[/math]
жёлтая линия: [math]displaystyle{ E_5(x) }[/math].

Некоторые авторы обсуждают более общие функции

[math]displaystyle{ E_n(x) = frac{n!}{sqrt{pi}} intlimits_0^x e^{-t^n},mathrm dt
=frac{n!}{sqrt{pi}}sum_{p=0}^infin(-1)^pfrac{x^{np+1}}{(np+1)p!},. }[/math]

Примечательными частными случаями являются:

  • [math]displaystyle{ E_0(x) }[/math] — прямая линия, проходящая через начало координат: [math]displaystyle{ E_0(x)=frac{x}{e sqrt{pi}} }[/math]
  • [math]displaystyle{ E_2(x) }[/math] — функция ошибок [math]displaystyle{ operatorname{erf},x }[/math].

После деления на [math]displaystyle{ n! }[/math] все [math]displaystyle{ E_n }[/math] с нечётными [math]displaystyle{ n }[/math] выглядят похоже (но не идентично), это же можно сказать про [math]displaystyle{ E_n }[/math] с чётными [math]displaystyle{ n }[/math]. Все обобщённые функции ошибок с [math]displaystyle{ ngt 0 }[/math] выглядят похоже на полуоси [math]displaystyle{ xgt 0 }[/math].

На полуоси [math]displaystyle{ xgt 0 }[/math] все обобщённые функции могут быть выражены через гамма-функцию:

[math]displaystyle{ E_n(x) = frac{Gamma(n)left(Gammaleft(frac{1}{n}right)-Gammaleft(frac{1}{n},x^nright)right)}{sqrtpi},
quad quad
xgt 0 }[/math]

Следовательно, мы можем выразить функцию ошибок через гамма-функцию:

[math]displaystyle{ operatorname{erf},x = 1 — frac{Gammaleft(frac{1}{2},x^2right)}{sqrtpi} }[/math]

Повторные интегралы дополнительной функции ошибок

Повторные интегралы [math]displaystyle{ operatorname{I^n erfc} }[/math] дополнительной функции ошибок определяются как[1]

[math]displaystyle{ operatorname{I^0 erfc},z = operatorname{erfc},z }[/math],
[math]displaystyle{ operatorname{I^n erfc},z = intlimits_z^infty operatorname{I^{n-1}erfc},zeta,dzeta, }[/math] для [math]displaystyle{ ngt 0 }[/math].

Их можно разложить в ряд:

[math]displaystyle{
operatorname{I^nerfc},z
=
sum_{j=0}^infty frac{(-z)^j}{2^{n-j}j!,Gamma left( 1 + frac{n-j}{2}right)},,
}[/math]

откуда следуют свойства симметрии

[math]displaystyle{
operatorname{I^{2m}erfc},(-z)
= -operatorname{I^{2m}erfc},z
+ sum_{q=0}^m frac{z^{2q}}{2^{2(m-q)-1}(2q)!(m-q)!}
}[/math]

и

[math]displaystyle{
operatorname{I^{2m+1}erfc},(-z)
=operatorname{I^{2m+1}erfc},z
+ sum_{q=0}^m frac{z^{2q+1}}{2^{2(m-q)-1}(2q+1)! (m-q)!},.
}[/math]

Реализации

В стандарте языка Си (ISO/IEC 9899:1999, пункт 7.12.8) предусмотрены функция ошибок [math]displaystyle{ operatorname{erf} }[/math] и дополнительная функция ошибок [math]displaystyle{ operatorname{erfc} }[/math]. Функции объявлены в заголовочных файлах math.h (для Си) или cmath (для C++). Там же объявлены пары функций erff(), erfcf() и erfl(), erfcl(). Первая пара получает и возвращает значения типа float, а вторая — значения типа long double. Соответствующие функции также содержатся в библиотеке Math проекта «Boost».

В языке Java стандартная библиотека математических функций java.lang.Math не содержит[2] функцию ошибок. Класс Erf можно найти в пакете org.apache.commons.math.special из не стандартной библиотеки, поставляемой[3] Apache Software Foundation.

Системы компьютерной алгебры Maple[2], Matlab[3], Mathematica и Maxima[4] содержат обычную и дополнительную функции ошибок, а также обратные к ним функции.

В языке Python функция ошибок доступна[4] из стандартной библиотеки math, начиная с версии 2.7. Также функция ошибок, дополнительная функция ошибок и многие другие специальные функции определены в модуле Special проекта SciPy[5].

В языке Erlang функция ошибок и дополнительная функция ошибок доступны из стандартного модуля math[5].

В Excel функция ошибок представлена, как ФОШ и ФОШ.ТОЧН[6]

См. также

  • Функция Гаусса
  • Функция Доусона
  • Гауссов интеграл

Примечания

  1. Carslaw, H. S. & Jaeger, J. C. (1959), Conduction of Heat in Solids (2nd ed.), Oxford University Press, ISBN 978-0-19-853368-9, p 484
  2. Math (Java Platform SE 6). Дата обращения: 28 марта 2008. Архивировано 29 августа 2009 года.
  3. Архивированная копия (недоступная ссылка). Дата обращения: 28 марта 2008. Архивировано 9 апреля 2008 года.
  4. 9.2. math — Mathematical functions — Python 2.7.10rc0 documentation
  5. Язык Erlang. Описание Архивная копия от 20 июня 2012 на Wayback Machine функций стандартного модуля math.
  6. Функция ФОШ. support.microsoft.com. Дата обращения: 15 ноября 2021. Архивировано 15 ноября 2021 года.

Литература

  • Press, William H.; Teukolsky, Saul A.; Vetterling, William T. & Flannery, Brian P. (2007), Section 6.2. Incomplete Gamma Function and Error Function, Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8
  • Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. — New York: Dover, 1972. — Т. 7.
  • Nikolai G. Lehtinen. Error functions (April 2010). Дата обращения: 25 мая 2019.

Ссылки

  • MathWorld — Erf
  • Онлайновый калькулятор Erf и много других специальных функций (до 6 знаков)
  • Онлайновый калькулятор, вычисляющий в том числе Erf

График функции ошибок

В математике функция ошибки (также называемый Функция ошибок Гаусса), часто обозначаемый Эрф, является сложной функцией комплексной переменной, определяемой как:[1]

{ displaystyle  operatorname {erf} z = { frac {2} { sqrt { pi}}}  int _ {0} ^ {z} e ^ {- t ^ {2}} , dt.}

Этот интеграл является специальный (неэлементарный ) и сигмовидный функция, которая часто встречается в вероятность, статистика, и уравнения в частных производных. Во многих из этих приложений аргумент функции является действительным числом. Если аргумент функции является действительным, значение функции также является действительным.

В статистике при неотрицательных значениях Икс, функция ошибки имеет следующую интерпретацию: для случайная переменная Y это нормально распределенный с иметь в виду 0 и отклонение 1/2, Эрф Икс вероятность того, что Y попадает в диапазон [−Икс, Икс].

Две тесно связанные функции: дополнительная функция ошибок (erfc) определяется как

{ displaystyle  operatorname {erfc} z = 1-  operatorname {erf} z,}

и функция мнимой ошибки (Эрфи) определяется как

{ displaystyle  operatorname {erfi} z = -i  operatorname {erf} (iz),}

где я это мнимая единица.

имя

Название «функция ошибки» и его сокращение. Эрф были предложены Дж. У. Л. Глейшер в 1871 г. из-за его связи с «теорией вероятностей, и особенно теорией Ошибки.»[2] Дополнение функции ошибок также обсуждалось Глейшером в отдельной публикации в том же году.[3]Для «закона легкости» ошибок, плотность дан кем-то

{ displaystyle f (x) =  left ({ frac {c} { pi}}  right) ^ { tfrac {1} {2}} e ^ {- cx ^ {2}}}

(в нормальное распределение ), Глейшер вычисляет вероятность ошибки, лежащей между п и q в качестве:

{ displaystyle  left ({ frac {c} { pi}}  right) ^ { tfrac {1} {2}}  int _ {p} ^ {q} e ^ {- cx ^ {2} } dx = { tfrac {1} {2}}  left ( operatorname {erf} (q { sqrt {c}}) -  operatorname {erf} (p { sqrt {c}})  right) .}

Приложения

Когда результаты серии измерений описываются нормальное распределение с среднеквадратичное отклонение сигма и ожидаемое значение 0, тогда { displaystyle  textstyle  operatorname {erf}  left ({ frac {a} { sigma { sqrt {2}}}}  right)} вероятность того, что ошибка единичного измерения находится между —а и +а, для положительного а. Это полезно, например, при определении частота ошибок по битам цифровой системы связи.

Функции ошибок и дополнительных ошибок встречаются, например, в решениях уравнение теплопроводности когда граничные условия даны Ступенчатая функция Хевисайда.

Функция ошибок и ее приближения могут использоваться для оценки результатов, которые верны. с большой вероятностью или с малой вероятностью. Учитывая случайную величину X  sim  operatorname {Norm} [ mu,  sigma] и постоянный L < mu:

{ displaystyle  Pr [X  leq L] = { frac {1} {2}} + { frac {1} {2}}  operatorname {erf}  left ({ frac {L-  mu} {{ sqrt {2}}  sigma}}  right)  приблизительно A  exp  left (-B  left ({ frac {L-  mu} { sigma}}  right) ^ {2}  верно)}

где А и B — определенные числовые константы. Если L достаточно далеко от среднего, т.е.  mu -L  geq  sigma { sqrt { ln {k}}}, тогда:

{ Displaystyle  Pr [Икс  Leq L]  Leq A  ехр (-B  ln {k}) = { frac {A} {k ^ {B}}}}

так что вероятность стремится к 0 как k  to  infty.

Характеристики

Интегрируем exp (-z2)

эрф (z)

Недвижимость  operatorname {erf} (-z) = -  operatorname {erf} (z) означает, что функция ошибок является нечетная функция. Это напрямую связано с тем, что подынтегральное выражение е ^ {- т ^ {2}} является даже функция.

Для любого комплексное число z:

 operatorname {erf} ({ overline {z}}) = { overline { operatorname {erf} (z)}}

где { overline {z}} это комплексно сопряженный из z.

Подынтегральное выражение ж = ехр (-z2) и ж = erf (z) показаны в комплексе z-плоскость на рисунках 2 и 3. Уровень Im (ж) = 0 отображается толстой зеленой линией. Отрицательные целые значения Im (ж) показаны толстыми красными линиями. Положительные целочисленные значения Im (ж) показаны толстыми синими линиями. Промежуточные уровни Im (ж) = constant показаны тонкими зелеными линиями. Промежуточные уровни Re (ж) = constant показаны тонкими красными линиями для отрицательных значений и тонкими синими линиями для положительных значений.

Функция ошибок при + ∞ равна 1 (см. Гауссов интеграл ). На действительной оси erf (z) приближается к единице при z → + ∞ и −1 при z → −∞. На мнимой оси он стремится к ±я∞.

Серия Тейлор

Функция ошибок — это вся функция; он не имеет особенностей (кроме бесконечности) и его Расширение Тейлора всегда сходится, но, как известно, «[…] плохая сходимость, если x> 1».[4]

Определяющий интеграл нельзя вычислить в закрытая форма с точки зрения элементарные функции, но за счет расширения интегрировать еz2 в его Серия Маклорена и интегрируя почленно, можно получить ряд Маклорена функции ошибок как:

{ displaystyle  operatorname {erf} (z) = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty} { frac {(-1) ^ { n} z ^ {2n + 1}} {n! (2n + 1)}} = { frac {2} { sqrt { pi}}}  left (z - { frac {z ^ {3}) } {3}} + { frac {z ^ {5}} {10}} - { frac {z ^ {7}} {42}} + { frac {z ^ {9}} {216}} -  cdots  right)}

которое справедливо для каждого комплексное число  z. Члены знаменателя — это последовательность A007680 в OEIS.

Для итеративного расчета вышеуказанного ряда может быть полезна следующая альтернативная формулировка:

 operatorname {erf} (z) = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty}  left (z  prod _ {k = 1} ^ {n} { frac {- (2k-1) z ^ {2}} {k (2k + 1)}}  right) = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty} { frac {z} {2n + 1}}  prod _ {k = 1} ^ {n} { frac {-z ^ {2}} {k}}

потому что { frac {- (2k-1) z ^ {2}} {k (2k + 1)}} выражает множитель, чтобы повернуть kth член в (k + 1)ул срок (учитывая z как первый член).

Функция мнимой ошибки имеет очень похожий ряд Маклорена, а именно:

{ displaystyle  operatorname {erfi} (z) = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty} { frac {z ^ {2n + 1 }} {n! (2n + 1)}} = { frac {2} { sqrt { pi}}}  left (z + { frac {z ^ {3}} {3}} + { frac {z ^ {5}} {10}} + { frac {z ^ {7}} {42}} + { frac {z ^ {9}} {216}} +  cdots  right)}

которое справедливо для каждого комплексное число  z.

Производная и интеграл

Производная функции ошибок сразу следует из ее определения:

{ displaystyle { frac {d} {dz}}  operatorname {erf} (z) = { frac {2} { sqrt { pi}}} e ^ {- z ^ {2}}.}

Отсюда немедленно вычисляется производная мнимой функции ошибок:

{ displaystyle { frac {d} {dz}}  operatorname {erfi} (z) = { frac {2} { sqrt { pi}}} e ^ {z ^ {2}}.}

An первообразный функции ошибок, которую можно получить интеграция по частям, является

{ displaystyle z  operatorname {erf} (z) + { frac {e ^ {- z ^ {2}}} { sqrt { pi}}}.}.

Первообразной функции мнимой ошибки, также получаемой интегрированием по частям, является

{ displaystyle z  operatorname {erfi} (z) - { frac {e ^ {z ^ {2}}} { sqrt { pi}}}.}

Производные высшего порядка даются формулами

{ displaystyle  operatorname {erf} ^ {(k)} (z) = { frac {2 (-1) ^ {k-1}} { sqrt { pi}}} { mathit {H}} _ {k-1} (z) e ^ {- z ^ {2}} = { frac {2} { sqrt { pi}}} { frac {d ^ {k-1}} {dz ^ {k-1}}}  left (e ^ {- z ^ {2}}  right),  qquad k = 1,2,  dots}

где { displaystyle { mathit {H}}} физики Полиномы Эрмита.[5]

Bürmann серии

Расширение,[6] который сходится быстрее для всех реальных значений Икс чем разложение Тейлора, получается с помощью Ганс Генрих Бюрманн Теорема:[7]

{ displaystyle { begin {align}  operatorname {erf} (x) & = { frac {2} { sqrt { pi}}}  operatorname {sgn} (x) { sqrt {1-e ^ {-x ^ {2}}}}  left (1 - { frac {1} {12}}  left (1-e ^ {- x ^ {2}}  right) - { frac {7} {480}}  left (1-e ^ {- x ^ {2}}  right) ^ {2} - { frac {5} {896}}  left (1-e ^ {- x ^ {2 }}  right) ^ {3} - { frac {787} {276480}}  left (1-e ^ {- x ^ {2}}  right) ^ {4} -  cdots  right)  [10pt] & = { frac {2} { sqrt { pi}}}  operatorname {sgn} (x) { sqrt {1-e ^ {- x ^ {2}}}}  left ({  frac { sqrt { pi}} {2}} +  sum _ {k = 1} ^ { infty} c_ {k} e ^ {- kx ^ {2}}  right).  end {выровнено }}}

Сохраняя только первые два коэффициента и выбирая c_ {1} = { frac {31} {200}} и { displaystyle c_ {2} = - { frac {341} {8000}},} полученное приближение показывает наибольшую относительную ошибку при { displaystyle x =  pm 1.3796,} где меньше чем { displaystyle 3.6127  cdot 10 ^ {- 3}}:

{ displaystyle  operatorname {erf} (x)  приблизительно { frac {2} { sqrt { pi}}}  operatorname {sgn} (x) { sqrt {1-e ^ {- x ^ {2 }}}}  left ({ frac { sqrt { pi}} {2}} + { frac {31} {200}} e ^ {- x ^ {2}} - { frac {341} {8000}} e ^ {- 2x ^ {2}}  right).}

Обратные функции

Функция обратной ошибки

Учитывая комплексное число z, это не уникальный комплексное число ш удовлетворение  operatorname {erf} (w) = z, поэтому истинная обратная функция будет многозначной. Однако для −1 < Икс < 1, есть уникальный настоящий число обозначено  operatorname {erf} ^ {- 1} (х) удовлетворение

{ displaystyle  operatorname {erf}  left ( operatorname {erf} ^ {- 1} (x)  right) = x.}

В функция обратной ошибки обычно определяется с помощью области (−1,1), и она ограничена этой областью во многих системах компьютерной алгебры. Однако его можно расширить на диск |z| < 1 комплексной плоскости, используя ряд Маклорена

{ displaystyle  operatorname {erf} ^ {- 1} (z) =  sum _ {k = 0} ^ { infty} { frac {c_ {k}} {2k + 1}}  left ({ frac { sqrt { pi}} {2}} z  right) ^ {2k + 1},}

где c0 = 1 и

c_ {k} =  sum _ {m = 0} ^ {k-1} { frac {c_ {m} c_ {k-1-m}} {(m + 1) (2m + 1)}} =  left  {1,1, { frac {7} {6}}, { frac {127} {90}}, { frac {4369} {2520}}, { frac {34807} {16200} },  ldots  right }.

Итак, у нас есть разложение в ряд (общие множители из числителей и знаменателей удалены):

{ displaystyle  operatorname {erf} ^ {- 1} (z) = { tfrac {1} {2}} { sqrt { pi}}  left (z + { frac { pi} {12}} z ^ {3} + { frac {7  pi ^ {2}} {480}} z ^ {5} + { frac {127  pi ^ {3}} {40320}} z ^ {7} + { frac {4369  pi ^ {4}} {5806080}} z ^ {9} + { frac {34807  pi ^ {5}} {182476800}} z ^ {11} +  cdots  right). }

(После отмены дроби числителя / знаменателя являются записями OEIS: A092676/OEIS: A092677 в OEIS; без отмены условия в числителе приведены в записи OEIS: A002067.) Значение функции ошибок при ± ∞ равно ± 1.

За |z| < 1, у нас есть  operatorname {erf}  left ( operatorname {erf} ^ {- 1} (z)  right) = z.

В обратная дополнительная функция ошибок определяется как

 operatorname {erfc} ^ {- 1} (1-z) =  operatorname {erf} ^ {- 1} (z).

За настоящий Икс, есть уникальный настоящий количество  operatorname {erfi} ^ {- 1} (х) удовлетворение  operatorname {erfi}  left ( operatorname {erfi} ^ {- 1} (x)  right) = x. В функция обратной мнимой ошибки определяется как  operatorname {erfi} ^ {- 1} (х).[8]

Для любого реального Икс, Метод Ньютона можно использовать для вычисления  operatorname {erfi} ^ {- 1} (х), и для -1  leq x  leq 1сходится следующий ряд Маклорена:

{ displaystyle  operatorname {erfi} ^ {- 1} (z) =  sum _ {k = 0} ^ { infty} { frac {(-1) ^ {k} c_ {k}} {2k + 1}}  left ({ frac { sqrt { pi}} {2}} z  right) ^ {2k + 1},}

где ck определяется, как указано выше.

Асимптотическое разложение

Полезный асимптотическое разложение дополнительной функции ошибок (а, следовательно, и функции ошибок) для больших вещественных Икс является

{ displaystyle  operatorname {erfc} (x) = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}}  left [1+  sum _ {n = 1} ^ { infty} (- 1) ^ {n} { frac {1  cdot 3  cdot 5  cdots (2n-1)} {(2x ^ {2}) ^ {n}}}  right ] = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}}  sum _ {n = 0} ^ { infty} (- 1) ^ {n} { frac {(2n-1) !!} {(2x ^ {2}) ^ {n}}},}

где (2п — 1) !! это двойной факториал из (2п — 1), который является произведением всех нечетных чисел до (2п — 1). Этот ряд расходится для каждого конечного Икс, и его смысл как асимптотического разложения состоит в том, что для любого N  in  N надо

{ displaystyle  operatorname {erfc} (x) = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}}  sum _ {n = 0} ^ {N -1} (- 1) ^ {n} { frac {(2n-1) !!} {(2x ^ {2}) ^ {n}}} + R_ {N} (x)}

где остаток, в Обозначения Ландау, является

{ displaystyle R_ {N} (x) = O  left (x ^ {1-2N} e ^ {- x ^ {2}}  right)}

так как х  до  infty.

Действительно, точное значение остатка равно

{ displaystyle R_ {N} (x): = { frac {(-1) ^ {N}} { sqrt { pi}}} 2 ^ {1-2N} { frac {(2N)!} {N!}}  Int _ {x} ^ { infty} t ^ {- 2N} e ^ {- t ^ {2}} , dt,}

что легко следует по индукции, записывая

{ displaystyle e ^ {- t ^ {2}} = - (2t) ^ {- 1}  left (e ^ {- t ^ {2}}  right) '}

и интеграция по частям.

Для достаточно больших значений x нужны только первые несколько членов этого асимптотического разложения, чтобы получить хорошее приближение erfc (Икс) (при не слишком больших значениях Икс, приведенное выше разложение Тейлора в 0 обеспечивает очень быструю сходимость).

Непрерывное расширение фракции

А непрерывная дробь расширение дополнительной функции ошибок:[9]

{ displaystyle  operatorname {erfc} (z) = { frac {z} { sqrt { pi}}} e ^ {- z ^ {2}} { cfrac {1} {z ^ {2} + { cfrac {a_ {1}} {1 + { cfrac {a_ {2}} {z ^ {2} + { cfrac {a_ {3}} {1+  dotsb}}}}}}}}  qquad a_ {m} = { frac {m} {2}}.}

Интеграл функции ошибок с функцией плотности Гаусса

{ displaystyle  int _ {-  infty} ^ { infty}  operatorname {erf}  left (ax + b  right) { frac {1} { sqrt {2  pi  sigma ^ {2}} }} e ^ {- { frac {(x-  mu) ^ {2}} {2  sigma ^ {2}}}} , dx =  operatorname {erf}  left [{ frac {a  mu + b} { sqrt {1 + 2a ^ {2}  sigma ^ {2}}}  right],  qquad a, b,  mu,  sigma  in  mathbb {R}}

Факторный ряд

  • Обратное факториальный ряд:
{ displaystyle { begin {align}  operatorname {erfc} z & = { frac {e ^ {- z ^ {2}}} {{ sqrt { pi}} , z}}  sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n} Q_ {n}} {{(z ^ {2} +1)} ^ { bar {n}}}}  & = { frac {e ^ {- z ^ {2}}} {{ sqrt { pi}} , z}}  left (1 - { frac {1} {2}} { frac {1 } {(z ^ {2} +1)}} + { frac {1} {4}} { frac {1} {(z ^ {2} +1) (z ^ {2} +2)} } -  cdots  right)  end {выравнивается}}}
сходится для { displaystyle  operatorname {Re} (z ^ {2})> 0.} Здесь

{ displaystyle Q_ {n} { stackrel { text {def}} {=}} { frac {1} { Gamma (1/2)}}  int _ {0} ^ { infty}  tau ( tau -1)  cdots ( tau -n + 1)  tau ^ {- 1/2} e ^ {-  tau} d  tau =  sum _ {k = 0} ^ {n}  left ({ frac {1} {2}}  right) ^ { bar {k}} s (n, k),}   
{ Displaystyle г ^ { бар {п}}} обозначает возрастающий факториал, и { Displaystyle s (п, к)} обозначает подписанный Число Стирлинга первого рода.[10][11]
  • Представление бесконечной суммой, содержащей двойной факториал:
{ displaystyle  operatorname {erf} (z) = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty} { frac {(-2) ^ { n} (2n-1) !!} {(2n + 1)!}} z ^ {2n + 1}}

Численные приближения

Приближение с элементарными функциями

  • Абрамовиц и Стегун дают несколько приближений с различной точностью (уравнения 7.1.25–28). Это позволяет выбрать наиболее быстрое приближение, подходящее для данного приложения. В порядке увеличения точности это:
{ displaystyle  operatorname {erf} (x)  приблизительно 1 - { frac {1} {(1 + a_ {1} x + a_ {2} x ^ {2} + a_ {3} x ^ {3}) + a_ {4} x ^ {4}) ^ {4}}},  qquad x  geq 0}
(максимальная ошибка: 5 × 10−4)
где а1 = 0.278393, а2 = 0.230389, а3 = 0.000972, а4 = 0.078108
{ displaystyle  operatorname {erf} (x)  приблизительно 1- (a_ {1} t + a_ {2} t ^ {2} + a_ {3} t ^ {3}) e ^ {- x ^ {2 }},  quad t = { frac {1} {1 + px}},  qquad x  geq 0} (максимальная ошибка: 2,5 × 10−5)
где п = 0.47047, а1 = 0.3480242, а2 = −0.0958798, а3 = 0.7478556
{ displaystyle  operatorname {erf} (x)  приблизительно 1 - { frac {1} {(1 + a_ {1} x + a_ {2} x ^ {2} +  cdots + a_ {6} x ^ {6}) ^ {16}}},  qquad x  geq 0} (максимальная ошибка: 3 × 10−7)
где а1 = 0.0705230784, а2 = 0.0422820123, а3 = 0.0092705272, а4 = 0.0001520143, а5 = 0.0002765672, а6 = 0.0000430638
{ displaystyle  operatorname {erf} (x)  приблизительно 1- (a_ {1} t + a_ {2} t ^ {2} +  cdots + a_ {5} t ^ {5}) e ^ {- x ^ {2}},  quad t = { frac {1} {1 + px}}} (максимальная погрешность: 1,5 × 10−7)
где п = 0.3275911, а1 = 0.254829592, а2 = −0.284496736, а3 = 1.421413741, а4 = −1.453152027, а5 = 1.061405429
Все эти приближения справедливы для Икс ≥ 0. Чтобы использовать эти приближения для отрицательных Икс, используйте тот факт, что erf (x) — нечетная функция, поэтому erf (Икс) = −erf (-Икс).
  • Экспоненциальные границы и чисто экспоненциальное приближение для дополнительной функции ошибок даются формулами [12]
{ displaystyle { begin {align}  operatorname {erfc} (x) &  leq { frac {1} {2}} e ^ {- 2x ^ {2}} + { frac {1} {2} } e ^ {- x ^ {2}}  leq e ^ {- x ^ {2}},  qquad x> 0  имя оператора {erfc} (x) &  приблизительно { frac {1} {6 }} e ^ {- x ^ {2}} + { frac {1} {2}} e ^ {- { frac {4} {3}} x ^ {2}},  qquad x> 0.  конец {выровнено}}}
{ displaystyle { tilde {Q}} (x) =  sum _ {n = 1} ^ {N} a_ {n} e ^ {- b_ {n} x ^ {2}}.}
В частности, существует систематическая методология решения числовых коэффициентов { displaystyle  {(a_ {n}, b_ {n}) } _ {n = 1} ^ {N}} что дает минимакс приближение или оценка тесно связанных Q-функция: { Displaystyle Q (х)  приблизительно { тильда {Q}} (х)}, { Displaystyle Q (х)  leq { тильда {Q}} (х)}, или { Displaystyle Q (х)  geq { тильда {Q}} (х)} за х  geq 0. Коэффициенты { displaystyle  {(a_ {n}, b_ {n}) } _ {n = 1} ^ {N}} для многих вариаций экспоненциальных приближений и оценок вплоть до { displaystyle N = 25} были выпущены в открытый доступ в виде исчерпывающего набора данных.[14]
{ displaystyle  operatorname {erfc}  left (x  right)  приблизительно { frac { left (1-e ^ {- Ax}  right) e ^ {- x ^ {2}}} {B { sqrt { pi}} x}}.}
Они определили { Displaystyle  {А, В } =  {1.98,1.135 },} что дало хорошее приближение для всех { displaystyle x  geq 0.}
  • Одноканальная нижняя граница[16]
{ displaystyle  operatorname {erfc} (x)  geq { sqrt { frac {2e} { pi}}} { frac { sqrt { beta -1}} { beta}} e ^ {-  beta x ^ {2}},  qquad x  geq 0,  beta> 1,}
где параметр β можно выбрать, чтобы минимизировать ошибку на желаемом интервале приближения.
  • Другое приближение дано Сергеем Виницким с использованием его «глобальных приближений Паде»:[17][18]:2–3
{ displaystyle  operatorname {erf} (x)  приблизительно  operatorname {sgn} (x) { sqrt {1-  exp  left (-x ^ {2} { frac {{ frac {4} {) pi}} + ax ^ {2}} {1 + ax ^ {2}}}  right)}}}
где
{ displaystyle a = { frac {8 ( pi -3)} {3  pi (4-  pi)}}  приблизительно 0,140012.}
Это сделано так, чтобы быть очень точным в окрестности 0 и в окрестности бесконечности, а родственник ошибка меньше 0,00035 для всех реальных Икс. Использование альтернативного значения а ≈ 0,147 снижает максимальную относительную погрешность примерно до 0,00013.[19]
Это приближение можно инвертировать, чтобы получить приближение обратной функции ошибок:
{ displaystyle  operatorname {erf} ^ {- 1} (x)  приблизительно  operatorname {sgn} (x) { sqrt {{ sqrt { left ({ frac {2} { pi a}} + { frac { ln (1-x ^ {2})} {2}}  right) ^ {2} - { frac { ln (1-x ^ {2})} {a}}}} -  left ({ frac {2} { pi a}} + { frac { ln (1-x ^ {2})} {2}}  right)}}.}

Полиномиальный

Приближение с максимальной ошибкой 1,2  раз 10 ^ {- 7} для любого реального аргумента это:[20]

{ displaystyle  operatorname {erf} (x) = { begin {cases} 1-  tau & x  geq 0  tau -1 & x <0  end {cases}}}

с

{ displaystyle { begin {align}  tau & = t  cdot  exp  left (-x ^ {2} -1.26551223 + 1.00002368t + 0.37409196t ^ {2} + 0,09678418t ^ {3} -0.18628806t ^ {4}  right.  &  left.  Qquad  qquad  qquad + 0,27886807t ^ {5} -1,13520398t ^ {6} + 1,48851587t ^ {7} -0,82215223t ^ {8} + 0,17087277t ^ {9}  right)  end {align}}}

и

t = { frac {1} {1 + 0,5 | x |}}.

Таблица значений

Икс erf (x) 1-эрф (х)
0 0 1
0.02 0.022564575 0.977435425
0.04 0.045111106 0.954888894
0.06 0.067621594 0.932378406
0.08 0.090078126 0.909921874
0.1 0.112462916 0.887537084
0.2 0.222702589 0.777297411
0.3 0.328626759 0.671373241
0.4 0.428392355 0.571607645
0.5 0.520499878 0.479500122
0.6 0.603856091 0.396143909
0.7 0.677801194 0.322198806
0.8 0.742100965 0.257899035
0.9 0.796908212 0.203091788
1 0.842700793 0.157299207
1.1 0.88020507 0.11979493
1.2 0.910313978 0.089686022
1.3 0.934007945 0.065992055
1.4 0.95228512 0.04771488
1.5 0.966105146 0.033894854
1.6 0.976348383 0.023651617
1.7 0.983790459 0.016209541
1.8 0.989090502 0.010909498
1.9 0.992790429 0.007209571
2 0.995322265 0.004677735
2.1 0.997020533 0.002979467
2.2 0.998137154 0.001862846
2.3 0.998856823 0.001143177
2.4 0.999311486 0.000688514
2.5 0.999593048 0.000406952
3 0.99997791 0.00002209
3.5 0.999999257 0.000000743

Дополнительная функция ошибок

В дополнительная функция ошибок, обозначенный  mathrm {erfc}, определяется как

{ displaystyle { begin {align}  operatorname {erfc} (x) & = 1-  operatorname {erf} (x)  [5pt] & = { frac {2} { sqrt { pi}} }  int _ {x} ^ { infty} e ^ {- t ^ {2}} , dt  [5pt] & = e ^ {- x ^ {2}}  operatorname {erfcx} (x) ,  end {align}}}

который также определяет { displaystyle  mathrm {erfcx}}, то масштабированная дополнительная функция ошибок[21] (который можно использовать вместо erfc, чтобы избежать арифметическое истощение[21][22]). Другая форма { displaystyle  operatorname {erfc} (x)} для неотрицательных Икс известна как формула Крейга в честь ее первооткрывателя:[23]

{ displaystyle  operatorname {erfc} (x  mid x  geq 0) = { frac {2} { pi}}  int _ {0} ^ { pi / 2}  exp  left (- { frac {x ^ {2}} { sin ^ {2}  theta}}  right) , d  theta.}

Это выражение действительно только для положительных значений Икс, но его можно использовать вместе с erfc (Икс) = 2 — erfc (-Икс) для получения erfc (Икс) для отрицательных значений. Эта форма выгодна тем, что диапазон интегрирования является фиксированным и конечным. Расширение этого выражения для  mathrm {erfc} суммы двух неотрицательных переменных выглядит следующим образом:[24]

{ displaystyle  operatorname {erfc} (x + y  mid x, y  geq 0) = { frac {2} { pi}}  int _ {0} ^ { pi / 2}  exp  left (- { frac {x ^ {2}} { sin ^ {2}  theta}} - { frac {y ^ {2}} { cos ^ {2}  theta}}  right) , d  theta.}

Функция мнимой ошибки

В функция мнимой ошибки, обозначенный Эрфи, определяется как

{ displaystyle { begin {align}  operatorname {erfi} (x) & = - i  operatorname {erf} (ix)  [5pt] & = { frac {2} { sqrt { pi}} }  int _ {0} ^ {x} e ^ {t ^ {2}} , dt  [5pt] & = { frac {2} { sqrt { pi}}} e ^ {x ^ {2}} D (x),  end {align}}}

где D(Икс) это Функция Доусона (который можно использовать вместо erfi, чтобы избежать арифметическое переполнение[21]).

Несмотря на название «функция мнимой ошибки»,  operatorname {erfi} (х) реально, когда Икс реально.

Когда функция ошибок оценивается для произвольного сложный аргументы z, результирующий сложная функция ошибок обычно обсуждается в масштабированной форме как Функция Фаддеева:

w (z) = e ^ {- z ^ {2}}  operatorname {erfc} (-iz) =  operatorname {erfcx} (-iz).

Кумулятивная функция распределения

Функция ошибок практически идентична стандартной. нормальная кумулятивная функция распределения, обозначаемый Φ, также называемый нормой (Икс) некоторыми языками программного обеспечения[нужна цитата ], так как они отличаются только масштабированием и переводом. Действительно,

{ displaystyle  Phi (x) = { frac {1} { sqrt {2  pi}}}  int _ {-  infty} ^ {x} e ^ { tfrac {-t ^ {2}} {2}} , dt = { frac {1} {2}}  left [1+  operatorname {erf}  left ({ frac {x} { sqrt {2}}}  right)  right ] = { frac {1} {2}}  operatorname {erfc}  left (- { frac {x} { sqrt {2}}}  right)}

или переставил для erf и erfc:

{ displaystyle { begin {align}  operatorname {erf} (x) & = 2  Phi  left (x { sqrt {2}}  right) -1  operatorname {erfc} (x) & = 2  Phi  left (-x { sqrt {2}}  right) = 2  left (1-  Phi  left (x { sqrt {2}}  right)  right).  End {выравнивается} }}

Следовательно, функция ошибок также тесно связана с Q-функция, которая представляет собой хвостовую вероятность стандартного нормального распределения. Q-функция может быть выражена через функцию ошибок как

{ displaystyle Q (x) = { frac {1} {2}} - { frac {1} {2}}  operatorname {erf}  left ({ frac {x} { sqrt {2}}) }  right) = { frac {1} {2}}  operatorname {erfc}  left ({ frac {x} { sqrt {2}}}  right).}

В обратный из  Phi известен как нормальная квантильная функция, или пробит функция и может быть выражена через обратную функцию ошибок как

{ displaystyle  operatorname {probit} (p) =  Phi ^ {- 1} (p) = { sqrt {2}}  operatorname {erf} ^ {- 1} (2p-1) = - { sqrt {2}}  operatorname {erfc} ^ {- 1} (2p).}

Стандартный нормальный cdf чаще используется в вероятностях и статистике, а функция ошибок чаще используется в других разделах математики.

Функция ошибок — это частный случай Функция Миттаг-Леффлера, а также может быть выражено как конфлюэнтная гипергеометрическая функция (Функция Куммера):

{ displaystyle  operatorname {erf} (x) = { frac {2x} { sqrt { pi}}} M  left ({ frac {1} {2}}, { frac {3} {2 }}, - x ^ {2}  right).}

Он имеет простое выражение в терминах Интеграл Френеля.[требуется дальнейшее объяснение ]

Что касается регуляризованная гамма-функция P и неполная гамма-функция,

{ displaystyle  operatorname {erf} (x) =  operatorname {sgn} (x) P  left ({ frac {1} {2}}, x ^ {2}  right) = { frac { operatorname {sgn} (x)} { sqrt { pi}}}  gamma  left ({ frac {1} {2}}, x ^ {2}  right).}

 operatorname {sgn} (х) это функция знака.

Обобщенные функции ошибок

График обобщенных функций ошибок Eп(Икс):
серая кривая: E1(Икс) = (1 — e −Икс)/ scriptstyle { sqrt { pi}}
красная кривая: E2(Икс) = erf (Икс)
зеленая кривая: E3(Икс)
синяя кривая: E4(Икс)
золотая кривая: E5(Икс).

Некоторые авторы обсуждают более общие функции:[нужна цитата ]

{ displaystyle E_ {n} (x) = { frac {n!} { sqrt { pi}}}  int _ {0} ^ {x} e ^ {- t ^ {n}} , dt = { frac {n!} { sqrt { pi}}}  sum _ {p = 0} ^ { infty} (- 1) ^ {p} { frac {x ^ {np + 1}} {(np + 1) p!}}.}

Известные случаи:

  • E0(Икс) — прямая линия, проходящая через начало координат: { displaystyle  textstyle E_ {0} (x) = { dfrac {x} {e { sqrt { pi}}}}}
  • E2(Икс) — функция ошибок, erf (Икс).

После деления на п!, все Eп для нечетных п похожи (но не идентичны) друг на друга. Точно так же Eп даже для п похожи (но не идентичны) друг на друга после простого деления на п!. Все обобщенные функции ошибок для п > 0 похожи на положительные Икс сторона графика.

Эти обобщенные функции могут быть эквивалентно выражены для Икс > 0 с помощью гамма-функция и неполная гамма-функция:

{ displaystyle E_ {n} (x) = { frac {1} { sqrt { pi}}}  Gamma (n)  left ( Gamma  left ({ frac {1} {n}}  right) -  Gamma  left ({ frac {1} {n}}, x ^ {n}  right)  right),  quad  quad x> 0.}

Следовательно, мы можем определить функцию ошибок в терминах неполной гамма-функции:

{ displaystyle  operatorname {erf} (x) = 1 - { frac {1} { sqrt { pi}}}  Gamma  left ({ frac {1} {2}}, x ^ {2} верно).}

Итерированные интегралы дополнительной функции ошибок

Повторные интегралы дополнительной функции ошибок определяются как[25]

{ displaystyle { begin {align}  operatorname {i ^ {n} erfc} (z) & =  int _ {z} ^ { infty}  operatorname {i ^ {n-1} erfc} ( zeta ) , d  zeta  operatorname {i ^ {0} erfc} (z) & =  operatorname {erfc} (z)  OperatorName {i ^ {1} erfc} (z) & =  operatorname {ierfc} (z) = { frac {1} { sqrt { pi}}} e ^ {- z ^ {2}} - z  operatorname {erfc} (z)  operatorname {i ^ { 2} erfc} (z) & = { frac {1} {4}}  left [ operatorname {erfc} (z) -2z  operatorname {ierfc} (z)  right]  конец {выровнено} }}

Общая рекуррентная формула

{ displaystyle 2n  operatorname {я ^ {n} erfc} (z) =  operatorname {i ^ {n-2} erfc} (z) -2z  operatorname {i ^ {n-1} erfc} (z) }

У них есть степенной ряд

{ displaystyle i ^ {n}  operatorname {erfc} (z) =  sum _ {j = 0} ^ { infty} { frac {(-z) ^ {j}} {2 ^ {nj} j !  Gamma  left (1 + { frac {nj} {2}}  right)}},}

откуда следуют свойства симметрии

{ displaystyle i ^ {2m}  operatorname {erfc} (-z) = - i ^ {2m}  operatorname {erfc} (z) +  sum _ {q = 0} ^ {m} { frac {z ^ {2q}} {2 ^ {2 (mq) -1} (2q)! (Mq)!}}}

и

{ displaystyle i ^ {2m + 1}  operatorname {erfc} (-z) = i ^ {2m + 1}  operatorname {erfc} (z) +  sum _ {q = 0} ^ {m} { гидроразрыв {z ^ {2q + 1}} {2 ^ {2 (mq) -1} (2q + 1)! (mq)!}}.}

Реализации

Как реальная функция реального аргумента

  • В Posix совместимые операционные системы, заголовок math.h объявляет и математическая библиотека libm обеспечивает функции Эрф и erfc (двойная точность ) а также их одинарная точность и повышенная точность аналоги эрфф, эрфл и erfc, erfcl.[26]
  • В Научная библиотека GNU обеспечивает Эрф, erfc, журнал (erf), и масштабированные функции ошибок.[27]

Как сложная функция сложного аргумента

  • libcerf, числовая библиотека C для сложных функций ошибок, предоставляет сложные функции Cerf, Cerfc, Cerfcx и реальные функции Эрфи, erfcx с точностью примерно 13–14 цифр, в зависимости от Функция Фаддеева как реализовано в Пакет МИТ Фаддеева

Смотрите также

  • Гауссов интеграл, по всей реальной линии
  • Функция Гаусса, производная
  • Функция Доусона, перенормированная функция мнимой ошибки
  • Интеграл Гудвина – Стэтона

По вероятности

  • Нормальное распределение
  • Нормальная кумулятивная функция распределения, масштабированная и сдвинутая форма функции ошибок
  • Пробит, обратное или квантильная функция нормального CDF
  • Q-функция, хвостовая вероятность нормального распределения

Рекомендации

  1. ^ Эндрюс, Ларри С. (1998). Специальные функции математики для инженеров. SPIE Press. п. 110. ISBN  9780819426161.
  2. ^ Глейшер, Джеймс Уитбред Ли (июль 1871 г.). «Об одном классе определенных интегралов». Лондонский, Эдинбургский и Дублинский философский журнал и научный журнал. 4. 42 (277): 294–302. Дои:10.1080/14786447108640568. Получено 6 декабря 2017.
  3. ^ Глейшер, Джеймс Уитбред Ли (сентябрь 1871 г.). «Об одном классе определенных интегралов. Часть II». Лондонский, Эдинбургский и Дублинский философский журнал и научный журнал. 4. 42 (279): 421–436. Дои:10.1080/14786447108640600. Получено 6 декабря 2017.
  4. ^ «A007680 — OEIS». oeis.org. Получено 2 апреля 2020.
  5. ^ Вайсштейн, Эрик В. «Эрф». MathWorld. Вольфрам.
  6. ^ Х. М. Шёпф и П. Х. Супанчич, «О теореме Бюрмана и ее применении к задачам линейного и нелинейного теплообмена и диффузии», The Mathematica Journal, 2014. doi: 10.3888 / tmj.16–11.Шёпф, Супанчич
  7. ^ Вайсштейн, Э. «Теорема Бюрмана». Wolfram MathWorld — веб-ресурс Wolfram.
  8. ^ Бергсма, Уичер (2006). «О новом коэффициенте корреляции, его ортогональном разложении и связанных тестах независимости». arXiv:математика / 0604627.
  9. ^ Cuyt, Annie A.M .; Petersen, Vigdis B .; Вердонк, Бриджит; Вааделанд, Хокон; Джонс, Уильям Б. (2008). Справочник по непрерывным дробям для специальных функций. Springer-Verlag. ISBN  978-1-4020-6948-2.
  10. ^ Шлёмильх, Оскар Ксавьер (1859). «Ueber facultätenreihen». Zeitschrift für Mathematik und Physik (на немецком). 4: 390–415. Получено 4 декабря 2017.
  11. ^ Уравнение (3) на странице 283 из Нильсон, Нильс (1906). Handbuch der Theorie der Gammafunktion (на немецком). Лейпциг: Б. Г. Тойбнер. Получено 4 декабря 2017.
  12. ^ Chiani, M .; Дардари, Д .; Саймон, М. (2003). «Новые экспоненциальные границы и приближения для вычисления вероятности ошибки в каналах с замираниями» (PDF). Транзакции IEEE по беспроводной связи. 2 (4): 840–845. CiteSeerX  10.1.1.190.6761. Дои:10.1109 / TWC.2003.814350.
  13. ^ Танаш, И.М .; Риихонен, Т. (2020). «Глобальные минимаксные приближения и оценки гауссовской Q-функции суммами экспонент». Транзакции IEEE по коммуникациям. 68 (10): 6514–6524. arXiv:2007.06939. Дои:10.1109 / TCOMM.2020.3006902. S2CID  220514754.
  14. ^ Танаш, И.М .; Риихонен, Т. (2020). «Коэффициенты для глобального минимаксного приближения и границы для гауссовой Q-функции суммами экспонент [набор данных]». Зенодо. Дои:10.5281 / zenodo.4112978.
  15. ^ Карагианнидис, Г. К., и Лиумпас, А. С. Улучшенное приближение для гауссовой Q-функции. 2007. IEEE Communications Letters, 11 (8), стр. 644-646.
  16. ^ Чанг, Сок-Хо; Cosman, Pamela C .; Мильштейн, Лоуренс Б. (ноябрь 2011 г.). «Границы типа Чернова для гауссовской функции ошибок». Транзакции IEEE по коммуникациям. 59 (11): 2939–2944. Дои:10.1109 / TCOMM.2011.072011.100049. S2CID  13636638.
  17. ^ Виницки, Серж (2003). «Равномерные приближения для трансцендентных функций». Конспект лекций по вычислительной технике. Наука. Конспект лекций по информатике. 2667. Spronger, Берлин. стр.780–789. Дои:10.1007 / 3-540-44839-X_82. ISBN  978-3-540-40155-1. (Раздел 3.1 «Функция ошибок действительного аргумента erf Икс«)
  18. ^ Цзэн, Кайбинь; Чен, Ян Цуань (2015). «Глобальные аппроксимации Паде обобщенной функции Миттаг-Леффлера и ее обратной». Дробное исчисление и прикладной анализ. 18 (6): 1492–1506. arXiv:1310.5592. Дои:10.1515 / fca-2015-0086. S2CID  118148950. Действительно, Виницки [32] предоставил так называемое глобальное приближение Паде
  19. ^ Виницкий, Сергей (6 февраля 2008 г.). «Удобное приближение для функции ошибок и ее обратной».
  20. ^ Числовые рецепты в Fortran 77: Искусство научных вычислений (ISBN  0-521-43064-X), 1992, стр. 214, Cambridge University Press.
  21. ^ а б c Коди, У. Дж. (Март 1993 г.), «Алгоритм 715: SPECFUN — портативный пакет FORTRAN специальных функций и драйверов тестирования» (PDF), ACM Trans. Математика. Софтв., 19 (1): 22–32, CiteSeerX  10.1.1.643.4394, Дои:10.1145/151271.151273, S2CID  5621105
  22. ^ Заглул М. Р. (1 марта 2007 г.), «О расчете профиля линии Фойгта: единственный собственный интеграл с затухающим синусоидальным интегралом», Ежемесячные уведомления Королевского астрономического общества, 375 (3): 1043–1048, Дои:10.1111 / j.1365-2966.2006.11377.x
  23. ^ Джон В. Крейг, Новый, простой и точный результат для расчета вероятности ошибки для двумерных сигнальных созвездий. В архиве 3 апреля 2012 г. Wayback Machine, Труды конференции по военной связи IEEE 1991 г., вып. 2. С. 571–575.
  24. ^ Бехнад, Айдын (2020). «Новое расширение формулы Q-функции Крейга и ее применение в анализе производительности EGC с двумя ветвями». Транзакции IEEE по коммуникациям. 68 (7): 4117–4125. Дои:10.1109 / TCOMM.2020.2986209. S2CID  216500014.
  25. ^ Карслав, Х.С.; Jaeger, J.C. (1959), Проводимость тепла в твердых телах (2-е изд.), Oxford University Press, ISBN  978-0-19-853368-9, стр 484
  26. ^ https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/math.h.html
  27. ^ https://www.gnu.org/software/gsl/doc/html/specfunc.html#error-functions

дальнейшее чтение

  • Абрамовиц, Милтон; Стегун, Ирен Энн, ред. (1983) [июнь 1964]. «Глава 7». Справочник по математическим функциям с формулами, графиками и математическими таблицами. Прикладная математика. 55 (Девятое переиздание с дополнительными исправлениями, десятое оригинальное издание с исправлениями (декабрь 1972 г.); первое изд.). Вашингтон.; Нью-Йорк: Министерство торговли США, Национальное бюро стандартов; Dover Publications. п. 297. ISBN  978-0-486-61272-0. LCCN  64-60036. Г-Н  0167642. LCCN  65-12253.
  • Press, William H .; Teukolsky, Saul A .; Веттерлинг, Уильям Т .; Фланнери, Брайан П. (2007), «Раздел 6.2. Неполная гамма-функция и функция ошибок», Числовые рецепты: искусство научных вычислений (3-е изд.), Нью-Йорк: Издательство Кембриджского университета, ISBN  978-0-521-88068-8
  • Темме, Нико М. (2010), «Функции ошибок, интегралы Доусона и Френеля», в Олвер, Фрэнк В. Дж.; Lozier, Daniel M .; Бойсверт, Рональд Ф .; Кларк, Чарльз В. (ред.), Справочник NIST по математическим функциям, Издательство Кембриджского университета, ISBN  978-0-521-19225-5, Г-Н  2723248

внешняя ссылка

  • MathWorld — Эрф
  • Таблица интегралов функций ошибок

3.3.Температурное
поле непрерывного неподвижного точечного
источ­ни­ка в неограниченной среде.
Функция ошибок Гаусса (функция erf(x)).

Если в точ­ке с
координатами x,
y,
z
в интервале времени от t
= 0 до t
= t
ра­ботает источник тепла мощностью
W,
то температурное поле этого ис­точ­ни­ка,
как указано выше, мо­жет быть найдено
интегрированием фундаментального
решения по t
от 0 до t
(т.е. от момента включения до момента
выключения источника). Поместим начало
координат в точку, где находится источник
теп­ла. Тогда x’
=
y’
=
z’
= 0,
и формула
для температуры принимает вид:

,
(3.3.1)

где r2
= (x — x’)
2
+ (y — y’)
2
+ (z — z’)
2
= x2
+ y
2
+ z
2
— квадрат расстояния от источника до
точки на­блю­де­ния.

Произведем в
интеграле (3.3.1) замену переменных:
r2/[4a(t
— t’)] =
2.
Тогда: (t —
t’)
3/2
= r
3/(8a3/23),
dt’ = r
2d/(2a3),
пределы интегрирования: t’
= 0 
,
t’ = t


=
,
и фор­мула (3.3.1) принимает вид:

.
(3.3.2)

Первый интеграл,
стоящий в скобках, известен из курса
высшей математики:


(интеграл
Пуассона),

а второй интеграл
через элементарные функции не выражается
и определяет специальную фун­к­цию,
которая называется функцией
ошибок Гаусса
,
или интегралом
вероятностей
,
или фун­к­ци­ей эрфектум:


(3.3.3)

(читается «эрфектум»
или сокращенно: «эрф»). Через эту
функцию выражаются решения мно­гих
задач в теории теплопроводности, да и
в других областях физики она играет
важную роль.

Из определения
(3.3.3) видно, что erf(0)
= 0, а erf()
= 1, т.е. erf(x)
— это мо­но­тон­но возрастающая
функция, вид ко­то­рой изо­бражен
на Рис.3.3. Функция erf(x)
та­бу­ли­­ро­вана, и ее зна­чения
приводят­ся в раз­лич­ных
справочниках; в таблице 3.1 при­ве­де­ны
несколько значений этой функции. В
биб­ли­о­те­ках не­ко­торых
языков программирова­ния имеются
го­то­вые под­про­грам­мы для
вы­чис­ления функции erf(x).
Если готовой под­про­­грам­мы
нет, функцию erf(x)
можно
вы­чис­лить с помощью степенного
ряда. «Стан­дар­т­ное»
раз­ло­жение этой функ­ции в
сте­пен­ной ряд, которое обычно
приводится в математи­чес­ких
спра­воч­никах, име­ет вид:

.
(3.3.4)

Этот
ряд удобен для анализа свойств функции,
но для практических расчетов он неудобен,
т.к. яв­ляется знакопеременным, что
при вычислениях приводит к потере
точности. Более удобен сле­­дующий
ряд:

,
(3.3.5)

где

,

.

С

Рис. 3.3.

помощью этого ряда легко соста­вить
программу вычисления erf(x)
на лю­бом языке про­грам­ми­рования
и да­же на программируемом
микро­каль­ку­ля­торе. Суммирование
надо пре­кра­щать, ко­гда при
добавлении оче­ред­но­го an-го
слагаемого сумма перестанет ме­няться
(будет до­стиг­ну­та «ма­шин­ная
точность»).

Если большой
точности не требуется, то можно
использовать приближенную фор­мулу:

erf(x)

[1 —
exp(-4x2/)]1/2.
(3.3.6)

Формула (3.3.6) дает
значения, абсолютная погрешность которых
не более 6.310-3,
а отно­си­тель­ная погрешность
не более 0.71%.

Иногда требуется
определить erf(x)
в области отрицательных значений x.
Из формулы (3.3.3) очевидно, что erf(-x)
= — erf(x).

Заметим, что хотя
функция erf(x)
не является «элементарной», с точки
зре­ния ее свойств и способов
вы­чис­ления она проще, чем многие
«элементарные» функции, например,
тригонометрические.

С функцией erf(x)
связано еще несколько функций, часто
встречающихся в тепло­фи­зи­чес­ких
задачах. Это прежде всего дополнительный
интеграл ве­ро­ят­ностей
:

,
(3.3.7)

который встречается
настолько часто, что для него используется
специальное обозначение: erfc(x)
(сокращенно читается «эрфик»). Вид
этой функции также приведен на рис.3.3.

Довольно часто
функцию erf(x)
приходится дифференцировать и
ин­те­грировать. Из оп­ре­де­ления
(3.3.3) следует, что

,
(3.3.8)

а интеграл от
erfc(x)
(обозначается как ierfc(x))
равен:

.
(3.3.9)

Вернемся к формуле
(3.3.2). Замечая, что ca
= ,
запишем эту формулу в виде:

.
(3.3.10)

При t


значение функции

0,


1, и формула (3.3.10), как и должно быть,
сов­па­да­ет с формулой для
стационарного решения (если T0
принять за на­ча­ло отсчета
тем­пе­ра­ту­ры), т.к. при t


до­сти­га­ет­ся стационарное
распределение тем­пе­ра­ту­ры
в безграничной среде.

Таблица 3.1.
Некоторые значения функции erf(x).

x

erf(x)

x

erf(x)

x

erf(x)

x

erf(x)

x

erf(x)

0.0

0.0

0.3

0.32863

0.6

0.60386

0.9

0.79691

2.0

0.99532

0.1

0.11246

0.4

0.42839

0.7

0.67780

1.0

0.84270

2.5

0.99959

0.2

0.22270

0.5

0.52050

0.8

0.74210

1.5

0.96611

Соседние файлы в папке КраткийКонспектЛекций

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Функция ошибок нормального распределения
  • Функция ошибок лапласа таблица
  • Функция ошибок крампа
  • Функция ошибок комплексного аргумента
  • Функция ошибок гаусса это