График ошибки регулирования

Вместо введения

Системы автоматического управления (САУ) предназначены для автоматического изменения одного или нескольких параметров объекта управления с целью установления требуемого режима его работы. САУ обеспечивает поддержание постоянства заданных значений регулируемых параметров или их изменение по заданному закону либо оптимизирует определенные критерии качества управления. Например, к таким системам относятся:

  • системы стабилизации,
  • системы программного управления,
  • следящие системы

Это достаточно широкий класс систем, которые можно найти где угодно. Но какое это отношение имеет к Unity3D и вероятно к играм в частности? В принципе прямое: в любой игре так или иначе использующей симуляцию как элемент геймплея реализуются САУ, к таким играм относятся, например, Kerbal Space Programm, Digital Combat Simulator (бывший Lock On), Strike Suit Zero и т.д. (кто знает еще примеры — пишите в комментариях). В принципе любая игра, моделирующая реальные физические процессы, в том числе и просто кинематику с динамикой движения, может реализовывать те или иные САУ — этот подход проще, естественнее, а у разработчика уже есть есть набор готовых инструментов, предоставленных всякими Вышнеградскими, Ляпуновыми, Калманами, Чебышевами и прочими Коломогоровами, поэтому можно обойтись без изобретения велосипеда, т.к. его уже изобрели, да так, что получилась отдельная наука: Теория автоматического управления. Главное тут не переусердствовать. Одна тут только проблема: рассказывают про ТАУ не везде, не всем, зачастую мало и не очень понятно.

Немножко теории

Классическая система автоматического управления представленная на следующем рисунке:

image

Ключевым элементом любой САУ является регулятор представляющий из себя устройство, которое следит за состоянием объекта управления и обеспечивает требуемый закон управления. Процесс управления включает в себя: вычисление ошибки управления или сигнала рассогласования e(t) как разницы между желаемой уставкой (set point или SP) и текущей величиной процесса (process value или PV), после чего регулятор вырабатывает управляющие сигналы (manipulated value или MV).

Одной из разновидностью регуляторов является пропорционально-интегрально-дифференцирующий (ПИД) регулятор, который формирует управляющий сигнал, являющийся суммой трёх слагаемых: пропорционального, интегрального и дифференциального.

image

Где, $e(t)$ ошибка рассогласования, а также, $ P = K_p cdot e(t)$ — пропорциональная, $ I = K_i cdot int_0^t e(tau)dtau$ — интегральная, $D = K_d cdot frac{de(t)}{dt}$ — дифференциальная составляющие (термы) закона управления, который в итоговом виде описывается следующими формулами

$ e(t) = SP(t) - PV(t), $

$ MV(t) = underbrace{K_p cdot e(t)}_{P} + underbrace{K_i cdot int_0^t e(tau)dtau}_{I} + underbrace{K_d cdot frac{de(t)}{dt}}_{D}, $

Пропорциональная составляющая P — отвечает за т.н. пропорциональное управление, смысл которого в том, что выходной сигнал регулятора, противодействует отклонению регулируемой величины (ошибки рассогласования или еще это называют невязкой) от заданного значения. Чем больше ошибка рассогласования, тем больше командное отклонение регулятора. Это самый простой и очевидный закон управления. Недостаток пропорционального закона управления заключается в том, что регулятор никогда не стабилизируется в заданном значении, а увеличение коэффициента пропорциональности всегда приводит к автоколебаниям. Именно поэтому в довесок к пропорциональному закону управления приходиться использовать интегральный и дифференциальный.

Интегральная составляющая I накапливает (интегрирует) ошибку регулирования, что позволяет ПИД-регулятору устранять статическую ошибку (установившуюся ошибку, остаточное рассогласование). Или другими словами: интегральное звено всегда вносит некоторое смещение и если система подвержена некоторыми постоянным ошибкам, то оно их компенсирует (за счет своего смещения). А вот если же этих ошибок нет или они пренебрежительно малы, то эффект будет обратным — интегральная составляющая сама будет вносить ошибку смещения. Именно по этой причине её не используют, например, в задачах сверхточного позиционирования. Ключевым недостатком интегрального закона управления является эффект насыщения интегратора (Integrator windup).

Дифференциальная составляющая D пропорциональна темпу изменения отклонения регулируемой величины и предназначена для противодействия отклонениям от целевого значения, которые прогнозируются в будущем. Примечательно то, что дифференциальная компонента устраняет затухающие колебания. Дифференциальное регулирование особенно эффективно для процессов, которые имеют большие запаздывания. Недостатком дифференциального закона управления является его неустойчивость к воздействую шумов (Differentiation noise).

Таким образом, в зависимости от ситуации могут применятся П-, ПД-, ПИ- и ПИД-регуляторы, но основным законом управления в основном является пропорциональный (хотя в некоторых специфических задачах и могут использоваться исключительно только звенья дифференциаторов и интеграторов).

Казалось бы, вопрос реализации ПИД-регуляторов уже давно избит и здесь на Хабре есть парочка неплохих статей на эту тему в том числе и на Unity3D, также есть неплохая статья PID Without a PhD (перевод) и цикл статей в журнале «Современные технологии автоматизации» в двух частях: первая и вторая. Также к вашим услугам статья на Википедии (наиболее полную читайте в английском варианте). А на форумах коммьюнити Unity3D нет-нет, да и всплывет PID controller как и на gamedev.stackexchange

При вопрос по реализации ПИД-регуляторов несколько глубже чем и кажется. Настолько, что юных самоделкиных, решивших, реализовать такую схему регулирования ждет немало открытий чудных, а тема актуальная. Так что надеюсь сей опус, кому-нибудь да пригодиться, поэтому приступим.

Попытка номер раз

В качестве примера попытаемся реализовать схему регулирования на примере управления поворотом в простенькой космической 2D-аркаде, по шагам, начиная с самого начала (не забыли, что это туториал?).

Почему не 3D? Потому что реализация не измениться, за исключением того, что придется воротить ПИД-регулятор для контроля тангажа, рысканья и крена. Хотя вопрос корректного применения ПИД-регулирования вместе с кватернионами действительно интересный, возможно в будущем его и освящу, но даже в NASA предпочитают углы Эйлера вместо кватернионов, так что обойдемся простенькой моделью на двухмерной плоскости.

Для начала создадим сам объект игровой объект космического корабля, который будет состоять из собственно самого объекта корабля на верхнем уровне иерархии, прикрепим к нему дочерний объект Engine (чисто спецэффектов ради). Вот как это выглядит у меня:

image

А на сам объект космического корабля накидаем в инспекторе всяческих компонент. Забегая вперед, приведу скрин того, как он будет выглядеть в конце:

image
Но это потом, а пока в нем еще нет никаких скриптов, только стандартный джентльменский набор: Sprite Render, RigidBody2D, Polygon Collider, Audio Source (зачем?).

Собственно физика у нас сейчас самое главное и управление будет осуществляться исключительно через неё, в противном случае, применение ПИД-регулятора потеряло бы смысл. Масса нашего космического корабля оставим также в 1 кг, а все коэффициенты трения и гравитации равны нулю — в космосе же.

Т.к. помимо самого космического корабля есть куча других, менее умных космических объектов, то сначала опишем родительский класс BaseBody, который в себе будет содержать ссылки на на наши компоненты, методы инициализации и уничтожения, а также ряд дополнительных полей и методов, например для реализации небесной механики:

BaseBody.cs

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

namespace Assets.Scripts.SpaceShooter.Bodies
{
    [RequireComponent(typeof(SpriteRenderer))]
    [RequireComponent(typeof(AudioSource))]
    [RequireComponent(typeof(Rigidbody2D))]
    [RequireComponent(typeof(Collider2D))]

    public class BaseBody : MonoBehaviour
    {
        readonly float _deafultTimeDelay = 0.05f;

[HideInInspector]
        public static List<BaseBody> _bodies = new List<BaseBody>();

        #region RigidBody

        [HideInInspector]
        public Rigidbody2D _rb2d;

        [HideInInspector]
        public Collider2D[] _c2d;

        #endregion

        #region References

        [HideInInspector]
        public Transform _myTransform;

        [HideInInspector]
        public GameObject _myObject;

        /// <summary>
        /// Объект, который появляется при уничтожении
        /// </summary>
        public GameObject _explodePrefab;

        #endregion

        #region  Audio

        public AudioSource _audioSource;

        /// <summary>
        /// Звуки, которые проигрываются при получении повреждения
        /// </summary>
        public AudioClip[] _hitSounds;

        /// <summary>
        /// Звуки, которые проигрываются при появлении объекта
        /// </summary>
        public AudioClip[] _awakeSounds;

        /// <summary>
        /// Звуки, которые воспроизводятся перед смертью
        /// </summary>
        public AudioClip[] _deadSounds;

        #endregion

        #region External Force Variables
        /// <summary>
        /// Внешние силы воздйствующие на объект
        /// </summary>
        [HideInInspector]
        public Vector2 _ExternalForces = new Vector2();

        /// <summary>
        /// Текущий вектор скорости
        /// </summary>
        [HideInInspector]
        public Vector2 _V = new Vector2();

        /// <summary>
        /// Текущий вектор силы гравитации
        /// </summary>
        [HideInInspector]
        public Vector2 _G = new Vector2();
        #endregion

        public virtual void Awake()
        {
            Init();
        }

        public virtual void Start()
        {

        }

        public virtual void Init()
        {
            _myTransform = this.transform;
            _myObject = gameObject;

            _rb2d = GetComponent<Rigidbody2D>();
            _c2d = GetComponentsInChildren<Collider2D>();
            _audioSource = GetComponent<AudioSource>();

            PlayRandomSound(_awakeSounds);

            BaseBody bb = GetComponent<BaseBody>();
            _bodies.Add(bb);
        }

        /// <summary>
        /// Уничтожение персонажа
        /// </summary>
        public virtual void Destroy()
        {
            _bodies.Remove(this);
            for (int i = 0; i < _c2d.Length; i++)
            {
                _c2d[i].enabled = false;
            }
            float _t = PlayRandomSound(_deadSounds);
            StartCoroutine(WaitAndDestroy(_t));
        }

        /// <summary>
        /// Ждем некоторое время перед уничтожением
        /// </summary>
        /// <param name="waitTime">Время ожидания</param>
        /// <returns></returns>
        public IEnumerator WaitAndDestroy(float waitTime)
        {
            yield return new WaitForSeconds(waitTime);

            if (_explodePrefab)
            {
                Instantiate(_explodePrefab, transform.position, Quaternion.identity);
            }

            Destroy(gameObject, _deafultTimeDelay);
        }

        /// <summary>
        /// Проигрывание случайного звука
        /// </summary>
        /// <param name="audioClip">Массив звуков</param>
        /// <returns>Длительность проигрываемого звука</returns>
        public float PlayRandomSound(AudioClip[] audioClip)
        {
            float _t = 0;
            if (audioClip.Length > 0)
            {
                int _i = UnityEngine.Random.Range(0, audioClip.Length - 1);
                AudioClip _audioClip = audioClip[_i];
                _t = _audioClip.length;
                _audioSource.PlayOneShot(_audioClip);
            }
            return _t;
        }

        /// <summary>
        /// Получение урона
        /// </summary>
        /// <param name="damage">Уровень урона</param>
        public virtual void Damage(float damage)
        {
            PlayRandomSound(_hitSounds);
        }

    }
}

Вроде описали все что надо, даже больше чем нужно (в рамках этой статьи). Теперь отнаследуем от него класс корабля Ship, который должен уметь двигаться и поворачивать:

SpaceShip.cs

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();
        public float _rotation = 0f;

        public void FixedUpdate()
        {
            float torque = ControlRotate(_rotation);
            Vector2 force = ControlForce(_movement);

            _rb2d.AddTorque(torque);
            _rb2d.AddRelativeForce(force);
        }

        public float ControlRotate(Vector2 rotate)
        {
            float result = 0f;

            return result;
        }

        public Vector2 ControlForce(Vector2 movement)
        {
            Vector2 result = new Vector2();

            return result;

        }
    }
}

Пока в нем нет ничего интересно, на текущий момент это просто класс-заглушка.

Также опишем базовый(абстрактный) класс для всех контроллеров ввода BaseInputController:

BaseInputController.cs

using UnityEngine;
using Assets.Scripts.SpaceShooter.Bodies;

namespace Assets.Scripts.SpaceShooter.InputController
{
    public enum eSpriteRotation
    {
        Rigth = 0,
        Up = -90,
        Left = -180,
        Down = -270
    }

    public abstract class BaseInputController : MonoBehaviour
    {
        public GameObject _agentObject;
        public Ship _agentBody; // Ссылка на компонент логики корабля
        public eSpriteRotation _spriteOrientation = eSpriteRotation.Up; //Это связано с нестандартной 
                                                                           // ориентации спрайта "вверх" вместо "вправо"

        public abstract void ControlRotate(float dt);
        public abstract void ControlForce(float dt);

        public virtual void Start()
        {
            _agentObject = gameObject;
            _agentBody = gameObject.GetComponent<Ship>();
        }

        public virtual void FixedUpdate()
        {
            float dt = Time.fixedDeltaTime;
            ControlRotate(dt);
            ControlForce(dt);
        }

        public virtual void Update()
        {
            //TO DO
        }
    }
}

И наконец, класс контроллера игрока PlayerFigtherInput:

PlayerInput.cs

using UnityEngine;
using Assets.Scripts.SpaceShooter.Bodies;

namespace Assets.Scripts.SpaceShooter.InputController
{
    public class PlayerFigtherInput : BaseInputController
    {
        public override void ControlRotate(float dt)
        {
            // Определяем позицию мыши относительно игрока
            Vector3 worldPos = Input.mousePosition;
            worldPos = Camera.main.ScreenToWorldPoint(worldPos);

            // Сохраняем координаты указателя мыши
            float dx = -this.transform.position.x + worldPos.x;
            float dy = -this.transform.position.y + worldPos.y;

            //Передаем направление
            Vector2 target = new Vector2(dx, dy);
            _agentBody._target = target;

            //Вычисляем поворот в соответствии с нажатием клавиш
            float targetAngle = Mathf.Atan2(dy, dx) * Mathf.Rad2Deg;
            _agentBody._targetAngle = targetAngle + (float)_spriteOrientation;
        }

        public override void ControlForce(float dt)
        {
            //Передаем movement
            _agentBody._movement = Input.GetAxis("Vertical") * Vector2.up 
                + Input.GetAxis("Horizontal") * Vector2.right;
        }
    }
}

Вроде бы закончили, теперь наконец можно перейти к тому, ради чего все это затевалось, т.е. ПИД-регуляторам (не забыли надеюсь?). Его реализация кажется простой до безобразия:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Assets.Scripts.Regulator
{
    [System.Serializable] // Этот атрибут необходим для того что бы поля регулятора 
                                   // отображались в инспекторе и сериализовывались
    public class SimplePID
    {
        public float Kp, Ki, Kd;

        private float lastError;
        private float P, I, D;

        public SimplePID()
        {
            Kp = 1f;
            Ki = 0;
            Kd = 0.2f;
        }

        public SimplePID(float pFactor, float iFactor, float dFactor)
        {
            this.Kp = pFactor;
            this.Ki = iFactor;
            this.Kd = dFactor;
        }

        public float Update(float error, float dt)
        {
            P = error;
            I += error * dt;
            D = (error - lastError) / dt;
            lastError = error;

            float CO = P * Kp + I * Ki + D * Kd;

            return CO;
        }
    }
}

Значения коэффициентов по умолчанию возьмем с потолка: это будет тривиальный единичный коэффициент пропорционального закона управления Kp = 1, небольшое значение коэффициента для дифференциального закона управления Kd = 0.2, который должен устранить ожидаемые колебания и нулевое значение для Ki, которое выбрано потому, что в нашей программной модели нет никаких статичных ошибок (но вы всегда можете их внести, а потом героически побороться с помощью интегратора).

Теперь вернемся к нашему классу SpaceShip и попробуем заюзать наше творение в качестве регулятора поворота космического корабля в методе ControlRotate:

 public float ControlRotate(Vector2 rotate)
 {
      float MV = 0f;
      float dt = Time.fixedDeltaTime;

      //Вычисляем ошибку
      float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

      //Получаем корректирующее ускорение
      MV = _angleController.Update(angleError, dt);

      return MV;
 }

ПИД-регулятор будет осуществлять точное угловое позиционировая космического корабля только за счет крутящего момента. Все честно, физика и САУ, почти как в реальной жизни.

И без этих ваших Quaternion.Lerp

 if (!_rb2d.freezeRotation)
     rb2d.freezeRotation = true;

 float deltaAngle = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);
 float T = dt *  Mathf.Abs( _rotationSpeed / deltaAngle);

 // Трансформируем угол в вектор
Quaternion rot = Quaternion.Lerp(
                _myTransform.rotation,
                Quaternion.Euler(new Vector3(0, 0, targetAngle)),
                T);

 // Изменяем поворот объекта
 _myTransform.rotation = rot;

Получившейся исходный код Ship.cs под спойлером

using UnityEngine;
using Assets.Scripts.Regulator;

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public GameObject _flame;

        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();

        public float _targetAngle = 0f;
        public float _angle = 0f;

        [Header("PID")]
        public SimplePID _angleController = new SimplePID();

        public void FixedUpdate()
        {
            float torque = ControlRotate(_targetAngle);
            Vector2 force = ControlForce(_movement);

            _rb2d.AddTorque(torque);
            _rb2d.AddRelativeForce(force);
        }

        public float ControlRotate(float rotate)
        {
            float MV = 0f;
            float dt = Time.fixedDeltaTime;

            _angle = _myTransform.eulerAngles.z;

            //Вычисляем ошибку
            float angleError = Mathf.DeltaAngle(_angle, rotate);

            //Получаем корректирующее ускорение
            MV = _angleController.Update(angleError, dt);

            return MV;
        }

        public Vector2 ControlForce(Vector2 movement)
        {
            Vector2 MV = new Vector2();

            //Кусок кода спецэффекта работающего двигателя ради
            if (movement != Vector2.zero)
            {
                if (_flame != null)
                {
                    _flame.SetActive(true);
                }
            }
            else
            {
                if (_flame != null)
                {
                    _flame.SetActive(false);
                }
            }

            MV = movement;
            return MV;
        }
    }
}

Все? Расходимся по домам?

WTF! Что происходит? Почему корабль поворачивается как-то странно? И почему он так резко отскакивает от других объектов? Неужели этот глупый ПИД-регулятор не работает?

Без паники! Давайте попробуем разобраться что происходит.

В момент получения нового значения SP, происходит резкий (ступенчатый) скачок рассогласования ошибки, которая, как мы помним, вычисляется вот так: $e(t) = SP(t) - PV(t), $ соответственно происходит резкий скачок производной ошибки $frac{de(t)}{dt}$, которую мы вычисляем в этой строчке кода:

D = (error - lastError) / dt;

Можно, конечно, попробовать другие схемы дифференцирования, например, трехточечную, или пятиточечную, или… но все равно это не поможет. Ну вот не любят производные резких скачков — в таких точках функция не является дифференцируемой. Однако поэкспериментировать с разными схемами дифференцирования и интегрирования стоит, но потом и не в этой статье.

Думаю что настал момент построить графики переходного процесса: ступенчатое воздействие от S(t) = 0 в SP(t) = 90 градусов для тела массой в 1 кг, длинной плеча силы в 1 метр и шагом сетки дифференцирования 0.02 с — прям как в нашем примере на Unity3D (на самом деле не совсем, при построении этих графиков не учитывалось, что момент инерции зависит от геометрии твердого тела, поэтому переходный процесс будет немножко другой, но все же достаточно похожий для демонстрации). Все величены на грифике приведены в абсолютных значениях:
image
Хм, что здесь происходит? Куда улетел отклик ПИД-регулятора?

Поздравляю, мы только что столкнулись с таким явлением как «удар» (kick). Очевидно, что в момент времени, когда процесс еще PV = 0, а уставка уже SP = 90, то при численном дифференцировании получим значение производной порядка 4500, которое умножится на Kd=0.2 и сложится с пропорциональным теромом, так что на выходе мы получим значение углового ускорения 990, а это уже форменное надругательство над физической моделью Unity3D (угловые скорости будут достигать 18000 град/с… я думаю это предельное значение угловой скорости для RigidBody2D).

  • Может стоит подобрать коэффициенты ручками, так чтобы скачок был не таким сильным?
  • Нет! Самое лучше чего мы таким образом сможем добиться — небольшая амплитуда скачка производной, однако сам скачок как был так и останется, при этом можно докрутиться до полной неэффективности дифференциальной составляющей.

Впрочем можете поэкспериментировать.

Попытка номер два. Сатурация

Логично, что привод (в нашем случае виртуальные маневровые двигатели SpaceShip), не может отрабатывать сколько угодно большие значения которые может выдать наш безумный регулятор. Так что первое что мы сделаем — сатурируем выход регулятора:

public float ControlRotate(Vector2 rotate, float thrust)
{
    float CO = 0f;
    float MV = 0f;
    float dt = Time.fixedDeltaTime;

    //Вычисляем ошибку
    float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

    //Получаем корректирующее ускорение
    CO = _angleController.Update(angleError, dt);

    //Сатурируем
    MV = CO;
    if (MV > thrust) MV = thrust;
    if (MV< -thrust) MV = -thrust;

    return MV;
}

А очередной раз переписанный класс Ship полностью выглядит так

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public GameObject _flame;

        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();

        public float _targetAngle = 0f;
        public float _angle = 0f;

        public float _thrust = 1f;

        [Header("PID")]
        public SimplePID _angleController = new SimplePID(0.1f,0f,0.05f);

        public void FixedUpdate()
        {
            _torque = ControlRotate(_targetAngle, _thrust);
            _force = ControlForce(_movement);

            _rb2d.AddTorque(_torque);
            _rb2d.AddRelativeForce(_force);
        }

        public float ControlRotate(float targetAngle, float thrust)
        {
            float CO = 0f;
            float MV = 0f;
            float dt = Time.fixedDeltaTime;

            //Вычисляем ошибку
            float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

            //Получаем корректирующее ускорение
            CO = _angleController.Update(angleError, dt);

            //Сатурируем
            MV = CO;
            if (MV > thrust) MV = thrust;
            if (MV< -thrust) MV = -thrust;

            return MV;
        }

        public Vector2 ControlForce(Vector2 movement)
        {
            Vector2 MV = new Vector2();

            if (movement != Vector2.zero)
            {
                if (_flame != null)
                {
                    _flame.SetActive(true);
                }
            }
            else
            {
                if (_flame != null)
                {
                    _flame.SetActive(false);
                }
            }

            MV = movement * _thrust;

            return MV;
        }

        public void Update()
        {

        }        
    }
}

Итоговая схема нашего САУ тогда станет уже вот такой
image

При этом уже становится понятно, что выход контроллера CO(t) немного не одно и тоже, что управляемая величина процесса MV(t).

Собственно с этого места можно уже добавлять новую игровую сущность — привод, через которую и будет осуществляться управление процессом, логика работы которой может быть более сложной, чем просто Mathf.Clamp(), например, можно ввести дискретизацию значений (дабы не перегружать игровую физику величинами идущими шестыми после запятой), мертвую зону (опять таки не имеет смысл перегружать физику сверхмалыми реакциями), ввести задержку в упраление и нелинейность (например, сигмоиду) привода, после чего посмотреть, что из этого получится.

Запустив игру, мы обнаружим, что космический корабль стал наконец управляемым:

Если построить графики, то можно увидеть, что реакция контроллера стала уже вот такой:
image
Здесь уже используются нормированные величены, углы поделены на значение SP, а выход контроллера отнормирован относительно максимального значения на котором уже происходит сатурация.

Теперь на графике видно наличие ошибки перерегулирования (overshooting) и затухающие колебания. Уменьшая Kp и увеличивая Kd можно добиться уменьшения колебаний, но зато увеличится время реакции контроллера (скорость поворота корабля). И наоборот, увеличивая Kp и уменьшая Kd — можно добиться увеличения скорости реакции контроллера, но появятся паразитные колебания, которые при определенных (критических) значениях, перестанут быть затухающими.

Ниже приведена известна таблица влияния увеличения параметров ПИД-регулятора (как уменьшить шрифт, а то таблица безе переносов не лезет?):

А общий алгоритм ручной настройки ПИД-регулятора следующий:

  1. Подбираем пропорциональный коэффициенты при отключенных дифференциальных и интегральных звеньях до тех пор пока не начнутся автоколебания.
  2. Постепенно увеличивая дифференциальную составляющую избавляемся от автоколебаний
  3. Если наблюдается остаточная ошибка регулирования (смещение), то устраняем её за счет интегральной составляющей.

Каких-то общих значений параметров ПИД-регулятора нет: конкретные значения зависят исключительно от параметров процесса (его передаточной характеристики): ПИД-регулятор отлично работающий с одним объектом управления окажется неработоспособным с другим. Более того, коэффициенты при пропорциональной, интегральной и дифференциальной составляющих еще и взаимозависимы.

В общем не будем о грустном, дальше нас ждет самое интересное…

Попытка номер три. Еще раз производные

Приделав костыль в виде ограничения значений выхода контроллера мы так и не решили самую главную проблему нашего регулятора — дифференциальная составляющая плохо себя чувствует при ступенчатом изменении ошибки на входе регуляторе. На самом деле есть множество других костылей, например, в момент скачкообразного изменения SP «отключать» дифференциальную составляющую или же поставить фильтры нижних частот между SP(t) и операцией $SP(t)-PV(t)$ за счет которого будет происходить плавное нарастание ошибки, а можно совсем развернуться и впендюрить самый настоящий фильтр Калмана для сглаживания входных данных. В общем костылей много, и добавить наблюдателя конечно хотелось бы, но не в этот раз.

Поэтому снова вернемся к производной ошибки рассогласования и внимательно на неё посмотрим:

$ frac{de(t)}{dt} = frac{d(SP(t)-PV(t))}{dt} = frac{dSP(t)}{dt} - frac{dPV(t)}{dt}, $

Ничего не заметили? Если хорошенько присмотреться, то можно обнаружить, что вообще-то SP(t), не меняется во времени (за исключением моментов ступенчатого изменения, когда регулятор получает новую команду), т.е. её производная равна нулю:

$ frac{dSP(t)}{dt} = 0, $

тогда

$ frac{de(t)}{dt} = - frac{dPV(t)}{dt}, $

Иными словами, вместо производной ошибки, которая дифференцируема не везде мы можем использовать производную от процесса, который в мире классической механики как правило непрерывен и дифференцируем везде, а схема нашей САУ уже приобретет следующий вид:
image

$ e(t) = SP(t) - PV(t), $

$ CO(t) = underbrace{K_p cdot e(t)}_{P} + underbrace{K_i cdot int_0^t e(tau)dtau}_{I} - underbrace{K_d cdot frac{dPV(t)}{dt}}_{D}, $

Модифицируем код регулятора:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Assets.Scripts.Regulator
{
    [System.Serializable]
    public class SimplePID
    {
        public float Kp, Ki, Kd;
        private float P, I, D;

        private float lastPV = 0f;   

        public SimplePID()
        {
            Kp = 1f;
            Ki = 0f;
            Kd = 0.2f;
        }

        public SimplePID(float pFactor, float iFactor, float dFactor)
        {
            this.Kp = pFactor;
            this.Ki = iFactor;
            this.Kd = dFactor;
        }

        public float Update(float error, float PV, float dt)
        {
            P = error;
            I += error * dt;
            D = -(PV - lastPV) / dt;

            lastPV = PV;

            float CO = Kp * P + Ki * I + Kd * D;

            return CO;
        }
    }
}

И немного изменим метод ControlRotate:

public float ControlRotate(Vector2 rotate, float thrust)
{
     float CO = 0f;
     float MV = 0f;
     float dt = Time.fixedDeltaTime;

     //Вычисляем ошибку
     float angleError = Mathf.DeltaAngle(_myTransform.eulerAngles.z, targetAngle);

     //Получаем корректирующее ускорение
     CO = _angleController.Update(angleError, _myTransform.eulerAngles.z, dt);

     //Сатурируем
     MV = CO;
     if (CO > thrust) MV = thrust;
     if (CO < -thrust) MV = -thrust;

     return MV;
}

И-и-и-и… если запустить игру, то обнаружиться, что на самом деле ничего ничего не изменилось с последней попытки, что и требовалось доказать. Однако, если убрать сатурацию, то график реакции регулятора будет выглядеть вот так:
image
Скачок CO(t) по прежнему присутствует, однако он уже не такой большой как был в самом начале, а самое главное — он стал предсказуемым, т.к. обеспечивается исключительно пропорциональной составляющей, и ограничен максимально возможной ошибкой рассогласования и пропорциональным коэффициентом ПИД-регулятора (а это уже намекает на то, что Kp имеет смысл выбрать все же меньше единицы, например, 1/90f), но не зависит от шага сетки дифференцирования (т.е. dt). В общем, я настоятельно рекомендую использовать именно производную процесса, а не ошибки.

Думаю теперь никого не удивит, но таким же макаром можно заменить $K_p cdot e(t)$ на $-K_p cdot PV(t)$, однако останавливаться на этом мы не будем, можете сами поэкспериментировать и рассказать в комментариях, что из этого получилось (самому интересно)

Попытка номер четыре. Альтернативные реализации ПИД-регулятор

Помимо описанного выше идеального представления ПИД-регулятора, на практике часто применяется стандартная форма, без коэффициентов Ki и Kd, вместо которых используются временные постоянные.

Такой подход связан с тем, что ряд методик настройки ПИД-регулятора основан на частотных характеристиках ПИД-регулятора и процесса. Собственно вся ТАУ и крутится вокруг частотных характеристик процессов, поэтому для желающих углубиться, и, внезапно, столкнувшихся с альтернативной номенклатурой, приведу пример т.н. стандартной формы ПИД-регулятора:

$ e(t) = SP(t) - PV(t), $

$ CO(t) =CO_{bias} + K_p cdot Bigl(e(t) + frac{1}{T_i} cdot int_0^t e(tau)dtau - T_d cdot frac{dPV(t)}{dt} Bigl), $

где, $T_d= frac{K_d}{K_p}$ — постоянная дифференцирования, влияющая на прогнозирование состояния системы регулятором,
$T_i = frac{K_p}{K_i}$ — постоянная интегрирования, влияющая на интервал усреднения ошибки интегральным звеном.

Основные принципы настройки ПИД-регулятора в стандартной форме аналогичны идеализированному ПИД-регулятору:

  • увеличение пропорционального коэффициента увеличивает быстродействие и снижает запас устойчивости;
  • с уменьшением интегральной составляющей ошибка регулирования с течением времени уменьшается быстрее;
  • уменьшение постоянной интегрирования уменьшает запас устойчивости;
  • увеличение дифференциальной составляющей увеличивает запас устойчивости и быстродействие

Исходный код стандартной формы, вы можете найти под спойлером

namespace Assets.Scripts.Regulator
{
    [System.Serializable]    
    public class StandartPID
    {
        public float Kp, Ti, Td;
        public float error, CO;
        public float P, I, D;

        private float lastPV = 0f;

        public StandartPID()
        {
            Kp = 0.1f;
            Ti = 10000f;
            Td = 0.5f;
            bias = 0f;
        }

        public StandartPID(float Kp, float Ti, float Td)
        {
            this.Kp = Kp;
            this.Ti = Ti;
            this.Td = Td;
        }

        public float Update(float error, float PV, float dt)
        {
            this.error = error;
            P = error;
            I += (1 / Ti) * error * dt;
            D = -Td * (PV - lastPV) / dt;

            CO = Kp * (P + I + D);
            lastPV = PV;

            return CO;
        }
    }
}

В качестве значений по умолчанию, выбраны Kp = 0.01, Ti = 10000, Td = 0.5 — при таких значениях корабль поворачивается достаточно быстро и обладает некоторым запасом устойчивости.

Помимо такой формы ПИД-регулятора, часто используется т.н. реккурентная форма:

$ CO(t_k)=CO(t_{k-1})+K_pleft[left(1+dfrac{Delta t}{T_i}+dfrac{T_d}{Delta t}right)e(t_k)+left(-1-dfrac{2T_d}{Delta t}right)e(t_{k-1})+dfrac{T_d}{Delta t}e(t_{k-2})right] $

Не будем на ней останавливаться, т.к. она актуальна прежде всего для хардверных программистов, работающих с FPGA и микроконтроллерами, где такая реализация значительно удобнее и эффективнее. В нашем же случае — давайте что-нибудь сваям на Unity3D — это просто еще одна реализация ПИД-контроллера, которая ни чем не лучше других и даже менее понятная, так что еще раз дружно порадуемся как хорошо программировать в уютненьком C#, а не в жутком и страшном VHDL, например.

Вместо заключения. Куда бы еще присобачить ПИД-регулятор

Теперь попробуем немного усложнить управление корабля используя двухконтурное управление: один ПИД-регулятор, уже знакомый нам _angleController, отвечает по прежнему за угловое позиционирование, а вот второй — новый, _angularVelocityController — контролирует скорость поворота:

public float ControlRotate(float targetAngle, float thrust)
{
    float CO = 0f;
    float MV = 0f;
    float dt = Time.fixedDeltaTime;

    _angle = _myTransform.eulerAngles.z;

    //Контроллер угла поворота
    float angleError = Mathf.DeltaAngle(_angle, targetAngle);
    float torqueCorrectionForAngle = 
    _angleController.Update(angleError, _angle, dt);

    //Контроллер стабилизации скорости
    float angularVelocityError = -_rb2d.angularVelocity;
    float torqueCorrectionForAngularVelocity = 
        _angularVelocityController.Update(angularVelocityError, -angularVelocityError, dt);

    //Суммарный выход контроллера
    CO = torqueCorrectionForAngle + torqueCorrectionForAngularVelocity;

    //Дискретизируем с шагом 100            
    CO = Mathf.Round(100f * CO) / 100f;

    //Сатурируем
    MV = CO;
    if (CO > thrust) MV = thrust;
    if (CO < -thrust) MV = -thrust;

    return MV;
}

Назначение второго регулятора — гашение избыточных угловых скоростей, за счет изменения крутящего момента — это сродни наличию углового трения, которое мы отключили еще при создании игрового объекта. Такая схема управления [возможно] позволит получить более стабильное поведение корабля, и даже обойтись только пропорциональными коэффициентами управления — второй регулятор будет гасить все колебания, выполняя функцию, аналогичную дифференциальной составляющей первого регулятора.

Помимо этого, добавим новый класс ввода игрока — PlayerInputCorvette, в котором повороты буду осуществляться уже за счет нажатия клавиш «вправо-влево», а целеуказание с помощью мыши мы оставим для чего-нибудь более полезного, например, для управления турелью. Заодно у нас теперь появился такой параметр как _turnRate — отвечающий за скорость/отзывчивость поворота (не понятно только куда его поместить лучше в InputCOntroller или все же Ship).

public class PlayerCorvetteInput : BaseInputController
{
     public float _turnSpeed = 90f;

     public override void ControlRotate()
     {
         // Находим указатель мыши
         Vector3 worldPos = Input.mousePosition;
         worldPos = Camera.main.ScreenToWorldPoint(worldPos);

         // Сохраняем относительные координаты указателя мыши
         float dx = -this.transform.position.x + worldPos.x;
         float dy = -this.transform.position.y + worldPos.y;

         //Передаем направление указателя мыши
         Vector2 target = new Vector2(dx, dy);
         _agentBody._target = target;

         //Вычисляем поворот в соответствии с нажатием клавиш
         _agentBody._rotation -= Input.GetAxis("Horizontal") * _turnSpeed * Time.deltaTime;
    }

    public override void ControlForce()
    {            
         //Передаем movement
         _agentBody._movement = Input.GetAxis("Vertical") * Vector2.up;
    }
}

Также для наглядности накидаем на коленках скрипт для отображения отладочной информации

namespace Assets.Scripts.SpaceShooter.UI
{
    [RequireComponent(typeof(Ship))]
    [RequireComponent(typeof(BaseInputController))]
    public class Debugger : MonoBehaviour
    {
        Ship _ship;
        BaseInputController _controller;
        List<SimplePID> _pids = new List<SimplePID>();
        List<string> _names = new List<string>();

        Vector2 _orientation = new Vector2();

        // Use this for initialization
        void Start()
        {
            _ship = GetComponent<Ship>();
            _controller = GetComponent<BaseInputController>();

            _pids.Add(_ship._angleController);
            _names.Add("Angle controller");

            _pids.Add(_ship._angularVelocityController);
            _names.Add("Angular velocity controller");

        }

        // Update is called once per frame
        void Update()
        {
            DrawDebug();
        }

        Vector3 GetDiretion(eSpriteRotation spriteRotation)
        {
            switch (_controller._spriteOrientation)
            {
                case eSpriteRotation.Rigth:
                    return transform.right;
                case eSpriteRotation.Up:
                    return transform.up;
                case eSpriteRotation.Left:
                    return -transform.right;
                case eSpriteRotation.Down:
                    return -transform.up;
            }
            return Vector3.zero;
        }

        void DrawDebug()
        {
            //Направление поворота
            Vector3 vectorToTarget = transform.position 
                + 5f * new Vector3(-Mathf.Sin(_ship._targetAngle * Mathf.Deg2Rad), 
                    Mathf.Cos(_ship._targetAngle * Mathf.Deg2Rad), 0f);

            // Текущее направление
            Vector3 heading = transform.position + 4f * GetDiretion(_controller._spriteOrientation);

            //Угловое ускорение
            Vector3 torque = heading - transform.right * _ship._Torque;

            Debug.DrawLine(transform.position, vectorToTarget, Color.white);
            Debug.DrawLine(transform.position, heading, Color.green);
            Debug.DrawLine(heading, torque, Color.red);
        }

        void OnGUI()
        {
            float x0 = 10;
            float y0 = 100;

            float dx = 200;
            float dy = 40;

            float SliderKpMax = 1;
            float SliderKpMin = 0;
            float SliderKiMax = .5f;
            float SliderKiMin = -.5f;
            float SliderKdMax = .5f;
            float SliderKdMin = 0;

            int i = 0;
            foreach (SimplePID pid in _pids)
            {
                y0 += 2 * dy;

                GUI.Box(new Rect(25 + x0, 5 + y0, dx, dy), "");

                pid.Kp = GUI.HorizontalSlider(new Rect(25 + x0, 5 + y0, 200, 10), 
                    pid.Kp, 
                    SliderKpMin, 
                    SliderKpMax);
                pid.Ki = GUI.HorizontalSlider(new Rect(25 + x0, 20 + y0, 200, 10), 
                    pid.Ki, 
                    SliderKiMin, 
                    SliderKiMax);
                pid.Kd = GUI.HorizontalSlider(new Rect(25 + x0, 35 + y0, 200, 10), 
                    pid.Kd, 
                    SliderKdMin, 
                    SliderKdMax);

                GUIStyle style1 = new GUIStyle();
                style1.alignment = TextAnchor.MiddleRight;
                style1.fontStyle = FontStyle.Bold;
                style1.normal.textColor = Color.yellow;
                style1.fontSize = 9;

                GUI.Label(new Rect(0 + x0, 5 + y0, 20, 10), "Kp", style1);
                GUI.Label(new Rect(0 + x0, 20 + y0, 20, 10), "Ki", style1);
                GUI.Label(new Rect(0 + x0, 35 + y0, 20, 10), "Kd", style1);

                GUIStyle style2 = new GUIStyle();
                style2.alignment = TextAnchor.MiddleLeft;
                style2.fontStyle = FontStyle.Bold;
                style2.normal.textColor = Color.yellow;
                style2.fontSize = 9;

                GUI.TextField(new Rect(235 + x0, 5 + y0, 60, 10), pid.Kp.ToString(), style2);
                GUI.TextField(new Rect(235 + x0, 20 + y0, 60, 10), pid.Ki.ToString(), style2);
                GUI.TextField(new Rect(235 + x0, 35 + y0, 60, 10), pid.Kd.ToString(), style2);

                GUI.Label(new Rect(0 + x0, -8 + y0, 200, 10), _names[i++], style2);
            }
        }
    }
}

Класс Ship также претерпел необратимые мутации и теперь должен выглядеть вот так:

namespace Assets.Scripts.SpaceShooter.Bodies
{
    public class Ship : BaseBody
    {
        public GameObject _flame;

        public Vector2 _movement = new Vector2();
        public Vector2 _target = new Vector2();

        public float _targetAngle = 0f;
        public float _angle = 0f;

        public float _thrust = 1f;

        [Header("PID")]
        public SimplePID _angleController = new SimplePID(0.1f,0f,0.05f);
        public SimplePID _angularVelocityController = new SimplePID(0f,0f,0f);

        private float _torque = 0f;
        public float _Torque
        {
            get
            {
                return _torque;
            }
        }

        private Vector2 _force = new Vector2();
        public Vector2 _Force
        {
            get
            {
                return _force;
            }
        }

        public void FixedUpdate()
        {
            _torque = ControlRotate(_targetAngle, _thrust);
            _force = ControlForce(_movement, _thrust);

            _rb2d.AddTorque(_torque);
            _rb2d.AddRelativeForce(_force);
        }

        public float ControlRotate(float targetAngle, float thrust)
        {
            float CO = 0f;
            float MV = 0f;
            float dt = Time.fixedDeltaTime;

            _angle = _myTransform.eulerAngles.z;

            //Контроллер угла поворота
            float angleError = Mathf.DeltaAngle(_angle, targetAngle);
            float torqueCorrectionForAngle = 
                _angleController.Update(angleError, _angle, dt);

            //Контроллер стабилизации скорости
            float angularVelocityError = -_rb2d.angularVelocity;
            float torqueCorrectionForAngularVelocity = 
                _angularVelocityController.Update(angularVelocityError, -angularVelocityError, dt);

            //Суммарный выход контроллера
            CO = torqueCorrectionForAngle + torqueCorrectionForAngularVelocity;

            //Дискретизируем с шагом 100            
            CO = Mathf.Round(100f * CO) / 100f;

            //Сатурируем
            MV = CO;
            if (CO > thrust) MV = thrust;
            if (CO < -thrust) MV = -thrust;

            return MV;
        }

        public Vector2 ControlForce(Vector2 movement, float thrust)
        {
            Vector2 MV = new Vector2();

            if (movement != Vector2.zero)
            {
                if (_flame != null)
                {
                    _flame.SetActive(true);
                }
            }
            else
            {
                if (_flame != null)
                {
                    _flame.SetActive(false);
                }
            }

            MV = movement * thrust;

            return MV;
        }

        public void Update()
        {

        }        
    }
}

А вот, собственно заключительное видео того, что должно получиться:

К сожалению получилось охватить не все, что хотелось бы, в частности почти не затронут вопрос настройки ПИД-регулятора и практически не освящена интегральная составляющая — фактически приведен пример только для ПД-регулятора. Собственно изначально планировалось несколько больше примеров (круиз-контроль, вращение турели и компенсация вращательного момента), но статья итак уже разбухла, да и вообще:
image

Немного ссылок

  1. Годная статья на английской вики
  2. PID tutorial
  3. ПИД-регуляторы: вопросы реализации. Часть 1
  4. ПИД-регуляторы: вопросы реализации. Часть 2
  5. PID Without a PhD
  6. PID Without a PhD. Перевод
  7. Derivative Action and PID Control
  8. Control System Lab: PID
  9. ПИД-регулятор своими руками
  10. Корректная реализация разностной схемы ПИД регулятора
  11. Программируем квадрокоптер на Arduino (часть 1)
  12. Виртуальный квадрокоптер на Unity + OpenCV (Часть 1)
  13. Поляков К.Ю. Теория автоматического управления для чайников
  14. PID control system analysis, design, and technology
  15. Aidan O’Dwyer. Handbook of PI and PID Controller Tuning Rules (3rd ed.)
  16. PID process control, a “Cruise Control” example
  17. https://www.mathworks.com/discovery/pid-control.html
  18. http://scilab.ninja/study-modules/scilab-control-engineering-basics/module-4-pid-control/
  19. https://sourceforge.net/p/octave/control/ci/default/tree/inst/optiPID.m

Еще немного ссылок на другие примеры
http://luminaryapps.com/blog/use-a-pid-loop-to-control-unity-game-objects/
http://www.habrador.com/tutorials/pid-controller/3-stabilize-quadcopter/
https://www.gamedev.net/articles/programming/math-and-physics/pid-control-of-physics-bodies-r3885/
https://ksp-kos.github.io/KOS/tutorials/pidloops.html

    1. Виды ошибок регулирования и методы их снижения.

Прямые показатели качества подразделяются
на показатели качества динамического
и установившегося режимов.

Показателями качества динамических
режимов определяются из графика
переходного процесса и основными из
них являются (рис.1.42):

перерегулирование или забросσ,
равный максимуму отклонения значения
переходного процесса относительно
установившегося значения процессаhycm;

— время первой установки t1,
определяемое моментом первого пересечения
графиком переходного процесса
установившегося значенияhycm;

— время переходного процесса tПП,
определяемое момент окончательного
входа графика переходного процесса в
зону допуска, равную±5%от
установившегося значения процессаhycm.

Для всех названных динамических
показателей качества невозможно в общем
случае получить формулы для их расчета.
Это является существенным препятствием
для решения задач анализа и синтеза
САУ.

Показателями качества установившихся
режимов являются ошибки регулирования,
равные абсолютной величине разности
между заданным и фактическим значениями
сигналов САУ и которые в зависимости
от вида входного сигнала САУ подразделяются
на статические (εСТ) и
скоростные ошибки (εСК) и
ошибки (εm)
при отработке гармонического входного
сигнала.

Для
всех названных ошибок регулирования
можно в общем случае получить формулы
их расчета.

Из структурной схемы замкнутой САУ
(рис.1.43) следуют выражения передаточной
функции САУ Wε(p)по ошибке и изображенияε(р)ошибки
регулирования:

Расчет ошибки εmотработки гармонического входного
сигналаx=Xmsinωt
производится по формуле

где
— модуль комплексного числа.

Статическая (εСТ) и
скоростная (εСК) ошибки
равны установившимся значениям оригиналаи,
или в общем виде, по формуле.
Значениевычисляют через изображениеε(р)
по доказываемой в теории операционного
исчисления формуле предельного перехода,

(1.54)

Выражение передаточной функции
разомкнутой САУ в общем случае может
быть приведено к виду:

(1.55)

где К– общий коэффициент усиления
разомкнутой САУ:

ν— порядок астатизма САУ, причемνявляется целым неотрицательным
числом.

Для удобства вычислений по формуле
(1.54) подставим в нее выражение WРАЗ(р)из (1.55) и выполним предельный переход:

(1.56)

Статическая ошибка регулирования εСТрассчитывается при постоянном входном
сигналеx(t)=X=const,
а скоростнаяεСК— при
входном сигналеx=Vt,
изменяющемуся во времени с постоянной
скоростьюV=const.
Далее расчеты статической (εСТ)
и скоростной (εСК) ошибок
выполним раздельно.

Расчеты статической ошибки εСт регулирования

Входной сигнал x(t)=X=constи изображением его является.
В соответствии с (1.56) статическую ошибкуεСТследует вычислять по
формуле

(1.57)

1). Пусть в (1.57) значение порядка νастатизма САУ равно нулю:ν=0. Такая
САУ называется статической. Тогда
статическая ошибкаεСТбудет равна

В статической САУ имеется статическая
ошибка εСТ, которую можно
только уменьшить путем увеличения
общего коэффициента усиленияКразомкнутой САУ, но обратить в ноль ее
нельзя.

2). Пусть в (1.57) значение порядка νастатизма САУ равно 1:ν=1. Такая САУ
называется астатической 1-го порядка.
Тогда статическая ошибкаεСТбудет равна

В астатической САУ 1-го порядка статическая
ошибка εСТравна нулю,
т.е САУ является абсолютно точной. Можно
проверить, что при астатизме САУ выше1, статическая ошибка регулирования
всегда будет нулевой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

                                                  
(10.1)

Запас устойчивости по модулю для заданной системы в
дБ:                                                                      (10.2)

Запас устойчивости по фазе характеризует
удаление годографа от критической точки по дуге окружности единичного радиуса и
определяется углом  между
отрицательным направлением вещественной полуоси и лучом, проведенным из начала
координат в точку пересечения годографа с единичной окружностью.

                     Рис. 10.2.
Годограф Найквиста с указанием запаса устойчивости по фазе.

Для заданной системы запас устойчивости оказался
равным .

 11.
Определение ошибки регулирования системы.

Как было показано в пункте 2, передаточная функция
ошибки от регулирующего воздействия  является
отношением двух характеристических полиномов: разомкнутой и замкнутой системы.

Отношение этих полиномов можно представить в виде
некоего третьего полинома, так называемого полинома ошибки с пока что неизвестными
коэффициентами:

                              (11.1)

Коэффициенты полинома  называются
коэффициентами ошибки.

Формулу (11.1) можно записать в более удобном виде.
Так как передаточная функция есть отношение изображений двух сигналов, то

                        (11.2)

Записав это в одну строку, получим:

                           (11.3)

или, переходя от операторной (символической) формы
записи дифференциального уравнения к классической, получаем:

                       (11.4)

Таким образом, если определить неизвестные пока
коэффициенты ошибки, то искомая ошибка регулирования
записывается в аналитической форме через входной сигнал х(t) и его
производные.

Самый удобный способ определения коэффициентов
ошибки – выразить их через известные коэффициенты характеристических полиномов  и .

Запишем эти полиномы в виде:

                         (11.5)

Возвращаясь к формуле (11.1) и подставляя туда
(11.5), путем деления двух полиномов легко найти коэффициенты третьего. В частности,

     

и так далее.

Для заданной системы (2.5):

                       
(11.6)

Наличие в системе двух интегрирующих звеньев
приводит к равенству нулю коэффициентов  и , а, следовательно, и коэффициентов ошибки  и .

Вычислим коэффициенты  и :

              (11.7)

Входное воздействие представлено в виде:

Подставим выражение для входного воздействия в
формулу (11.4), учтя при этом равенство нулю коэффициентов ошибки  и , а
также всех высших производных, начиная с четвертой:

 (11.8)

    (11.9)

                             12. График
ошибки регулирования системы.

                                           
Рис. 12.1.
График ошибки регулирования системы.

СПИСОК
ЛИТЕРАТУРЫ

1. Радиоавтоматика. Методические указания к
самостоятельной аудиторной работе/сост. Лявданский С.Е. – Новосибирск: Изд–во
НГТУ, 1990. – 33 с.  

2. Радиоавтоматика. Методические указания к
самостоятельной аудиторной работе/сост. Лявданский С.Е. – Новосибирск: Изд–во
НГТУ, 1995. – 35 с.

3. Радиоавтоматика. Под ред. В. А. Бесекерского. –
М.: Высш. шк., 1985. – 271 с.   

Время на прочтение
7 мин

Количество просмотров 14K

Продолжаем публикацию лекций по курсу «Управление в Технических Системах» автор — Олег Степанович Козлов на кафедре Э7 МГТУ им. Н.Э. Баумана.

Данные лекции готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется. В предыдущих сериях:

1. Введение в теорию автоматического управления.
2. Математическое описание систем автоматического управления 2.1 — 2.3, 2.3 — 2.8, 2.9 — 2.13.
3. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ ЗВЕНЬЕВ И СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ РЕГУЛИРОВАНИЯ.
3.1. Амплитудно-фазовая частотная характеристика: годограф, АФЧХ, ЛАХ, ФЧХ. 3.2. Типовые звенья систем автоматического управления регулирования. Классификация типовых звеньев. Простейшие типовые звенья. 3.3. Апериодическое звено 1–го порядка инерционное звено. На примере входной камеры ядерного реактора. 3.4. Апериодическое звено 2-го порядка. 3.5. Колебательное звено. 3.6. Инерционно-дифференцирующее звено. 3.7. Форсирующее звено.  3.8. Инерционно-интегрирующее звено (интегрирующее звено с замедлением). 3.9. Изодромное звено (изодром). 3.10 Минимально-фазовые и не минимально-фазовые звенья. 3.11 Математическая модель кинетики нейтронов в «точечном» реакторе «нулевой» мощности. 4 Структурные преобразования систем автоматического регулирования.

Будет как всегда позновательной увлекательно и жестко

5.1. Главная передаточная функция. Передаточные функции по возмущающему воздействию и для ошибки (рассогласования)

Используя структурные преобразования (см. раздел 4), структурную схему практически любой линейной или линеаризованной САР (САУ) можно привести к виду: 

Рисунок 5.1.1 Типовая струкутура САР

Рисунок 5.1.1 Типовая струкутура САР

Где функции по времени:

x(t)— управляющее  воздействие;

y(t)– регулируемая  величина (выходное  воздействие);

f(t)– возмущающее  воздействие;

Или в изображениях: 

left { begin{align}x(t)&rightarrow X(s)\y(t)&rightarrow Y(s)\ f(t)& rightarrow F(s) \ epsilon(t)&rightarrow E(s) end{align} right.

Определение: Если единичная обратная связь охватывает все элементы (звенья) САР – она  называется главной.

Определение: Если главная обратная связь отсутствует — САР считается разомкнутой.

Передаточная функция W(s)может быть любой сложности (т.е. содержать местные обратные связи, параллельные и последовательные цепи и т.д.).

Возмущающих воздействий может быть несколько и приложены они могут быть в любом  месте структурной схемы. 

Передаточную функцию W(s)которую  в Теории Управления называют  передаточной  функцией  разомкнутой  САР, будем представлять в  следующем  виде (для единообразия):  

W(s)=frac{Kcdot N(s)}{L(s)}                                   mathbf{(5.1)}

где K– общий коэффициент усиления; N(s), L(s) – полиномы по степеням переменной s, причем свободные члены в них равны 1 (единице). 

Учитывая, что САР линейна или линеаризована, разделим на структурной схеме каналы прохождения управляющего и возмущающего воздействий.  Выделим в отдельное звено (может быть и очень сложное) ту часть системы, через которую проходит возмущающее воздействиеf(t)Rightarrow обозначим ее через M(s)Rightarrow Структурная схема САР принимает вид:  

Рисунок 5.1.2 Структурная схема общего вида с передаточной функцией и внешним воздействием

Рисунок 5.1.2 Структурная схема общего вида с передаточной функцией и внешним воздействием

где: y_1(t)rightarrow Y_1(s);   y_2(t)rightarrow Y_2(s);   y(t)=y_1(t)+y_2(t);   Y(s)=Y_1(s)+Y_2(s).

В Теории Управления используют 3 основных передаточных функций замкнутой САР: 

  •  главная передаточная функция Phi(s);

  • передаточная функция  по возмущающему воздействию Phi_f(s);

  • передаточная функция для ошибки (рассогласования) Phi_varepsilon(s). 

Рассмотрим более подробно вышеупомянутые передаточные функции. 

Главная передаточная функция

Главная передаточная функция -передаточная функция по управляющему воздействию  математическое определение этой передаточной функции:  

Phi(s) =frac{Y(s)}{X(s)}                              mathbf{(5.2)}

выведем формулу при условии если возмущеющие воздействие равно f(t)=0, Rightarrow y(t)=y_1(t). «Обойдем» структурную схемв по контуру:

Y(s)= E(s)cdot W(s)=left[ X(s)-Y(s)right]cdot W(s)Rightarrow\Y(s)=X(s)cdot W(s)-Y(s)cdot W (s) Rightarrow\Y(s)+Y(s)cdot W(s)=X(s)cdot W(s)Rightarrow\ frac{Y(s)}{X(s)}=frac{W(s)}{1+W(s)};Phi(s)=frac{W(s)}{1+W(s)}                        mathbf{(5.3)}

Примечание.  Формула (5.3) совпадает с формулой для передаточной функции цепи с местной единичной обратной связью (см. раздел 4 – «Структурные преобразования»).

Подставляя  вместо W(s) ее выражение через полиномы N(s)  и  L(s) Rightarrow  

Phi(s)=frac{Kcdot N(s)/L(s)}{1+Kcdot N(s)/L(s)}=frac{Kcdot N(s)}{L(s)+Kcdot N(s)}=frac{Kcdot N(s)}{D(s)}      mathbf{(5.4)}

где: D(s)=L(s)+Kcdot N(s)

Анализ выражения (5.4) показывает, что свойства главной передаточной функции замкнутой САР однозначно определяются свойствами разомкнутой САР, т.е. через полиномы N(s)и L(s).

Передаточная функция замкнутой САР по внешнему возмущающему воздействию

Дадим математическое определение рассматриваемой передаточной функции если управляющие воздействи x(t)=0, а возмущеющие воздействие отличное от нуля f(x)neq 0. В этом случае (см. рисунок 5.1.2) получается:

y(t)=y_1(t)+y_2(t)\ x(t)=0Rightarrow varepsilon(t)=0-y(t)=-y(t);

Перрейдем к изображением и «обойдем» схему (см. рис. 5.1.2) по контуру

Y(s)=Y_1(s)+Y_2(s) =E(s)cdot W(s)+F(s)cdot M(s)=\=-Y(s)cdot W(s)+F(s)cdot M(s) Rightarrow\Y(s)cdot[1+W(s)]=F(s)cdot M(s)Rightarrow frac{Y(s)}{F(s)}=frac{M(s)}{1+W(s)};Phi_f=frac{Y(s)}{F(s)} =frac{M(s)}{1+W(s)}

Подставляя  вместо W(s) ее выражение через полиномы N(s)  и  L(s)   получаем:

Phi_f=frac{M(s)}{1+Kcdot N(s)/L(s)}=frac{M(s)cdot L(s)}{L(s)+K(s)cdot N(s)}=frac{R(s)}{D(s)}        mathbf{(5.6)}

где: R(s) =M(s)cdot L(s)— вид данного полинома зависит от места приложения возмущающего воздействия;

Формулы 5.4 и 5.6 имеют общий занаменатель D(s)=L(s)+Kcdot N(s)

Передаточная функция замкнутой САР для ошибки (рассогласования)

Дадим математическое определение рассматриваемой передаточной функции если управляющие воздействиt отлично от 0 x(t) neq0, а возмущеющие воздействие равно 0 f(x)= 0. В этом случае для передаточной функции получается (см. рис. 5.1.2):

Phi_varepsilon(s)=frac{E(s)}{X(s)}

Сделаем вывод соответствующих формул, выполнив «обход» по контуру схемы (см. рис. 5.1.2) Rightarrow

E(s)=X(s)-Y(s)=X(s)-E(s)cdot W(s)Rightarrow \ E(s)cdot(1+W(s))=X(s) Rightarrow frac{E(s)}{X(s)}=frac{1}{1+W(s)}Phi_varepsilon(s)=frac{1}{1+W(s)}                        mathbf{(5.7)}

Учитывая формулу для главной передаточной функции Phi(s)=frac{W(s)}{1+W(s)} можно записать выражения для передаточной функции рассоглаосвания:

Phi_varepsilon(s)=1-Phi(s)                       mathbf{(5.8)}

Подставляя  вместо W(s) ее выражение через полиномы N(s)  и  L(s)  получаем:

Phi_varepsilon(s)=frac{1}{1+Kcdot N(s)/L(s)}=frac{L(s)}{L(s)+Kcdot N(s)}=frac{L(s)}{D(s)}     mathbf{(5.9)}

где: D(s)=L(s)+Kcdot N(s)

Опять замечаем, что знаменатель передаточной функции Phi_varepsilon равен полиному D(s)следовательно, характерным признаком передаточных функций замкнутой САР является  общность знаменателей ! ! !

В Теории Управления выражение D(s)=L(s)+Kcdot N(s) имеет «собственное» название:  характеристический полином  замкнутой  САР.

5.2 Уравнения динамики замкнутой САР

Как указывалось в подразделе 5.1, любую замкнутую САР можно привести к виду представленному на рисунке 5.2.1:

Рисунок 5.2.1 Общая схема замкнутой САР с возмущающим воздействием

Рисунок 5.2.1 Общая схема замкнутой САР с возмущающим воздействием

Выведены соотношения для 3-х основных передаточных функций замкнутой САР  позволяют записать выражения для регулируемой величины в изображениях:

Y(s)=underbrace{Phi(s)cdot X(s)}_{Y_x(s)}+underbrace{Phi_f(s)cdot F(s)}_{Y_f(s)}                     mathbf{(5.2.1)}

Подставляя значения Phi_s(s) и Phi_f(s) через полиномы N(s) и L(s) разомкнутой САР  получаем:

Y(s)=frac{Kcdot N(s)}{L(s)+Kcdot N(s)}cdot X(s)+frac{R(s)}{L(s)+Kcdot N(s)}cdot F(s)

подставим значения для характеристического полинома D(s)=L(s)+Kcdot N(s)получим выражение для динамического уравнения замкнутой САР в изображениях:

D(s)cdot Y(s)=Kcdot N(s)cdot X(s)+R(s)cdot F(s)            mathbf{(5.2.2)}

Переходя к оригиналам получаем символическую форму записи обыкновенного дифференциального уравнения замкнутой САР:

D(p)cdot y(t)=Kcdot N(p) x(t)+R(p)f(t)                mathbf{(5.2.3)}

Решение диференциального уравнения состоит из двух частей:

y(t)= y_{соб.}(t)+y_{вын.}(t)

где: y_{соб.}(t) —  собственная часть, решение однородного дифференциального уравнения D(p)y(t)=0;

y_{вын.} — вынужденная часть решения (частное решение), определяемая правой частью уравнения ( 5.2.3 ).

Решения однородного уравнения замкнутой САР:

D(p)y(t)=0 Rightarrow a_ncdot y^{(n)}+a_{n-1}cdot y^{n-1}+...+a_1cdot y^1+a_0cdot y=0

записываем соответствующее характеристическое уравнение:

D(lambda)=0 Rightarrow a_ncdotlambda^n+a_{n-1}cdot lambda^{n-1}+...+a_1cdot lambda+a_0=0 Rightarrow

находим корни степенного уравнения lambda_jесли все корни уравнения разные:

Y_{соб}(t)=sum_{j=1}^nC_jcdot e^{lambdacdot j},

Если есть совпадающие корни характеристического уравнения, то формула для Y_{соб}(t) изменится (см. Математическое описание систем автоматического управления). 

Обычно y_{вын.}находят по виду правой части уравнения (5.2.3) или, используя другие методы (например, метод вариаций постоянных). 

Необходимо отметить, что порядок дифференциального уравнения (5.2.3) равен «n», т.е. такой же, как и у разомкнутой САР Rightarrow

L(p)y(t)=Kcdot N(p)x(t)

если нет возмущающего воздействия, т.к. порядок дифференциального оператора L(p) обычно значительно выше, чем N(p).

По аналогии с выводом уравнения (5.2.3) можно получить уравнение динамики для  рассогласования varepsilon(t)

E(s)=Phi_varepsilon(s)cdot X(s)-Phi_f(s)cdot F(s)                      mathbf{(5.2.4)}

подставляя значения Phi_varepsilon и Phi_f(см. 5.6 и 5.9) получаем:

E(s)=frac{L(s)}{D(s)}cdot X(s)-frac{R(s)}{D(s)}cdot F(s) RightarrowD(s)cdot E(s)=L(s)cdot X(s)-R(s)cdot F(s)               mathbf{(5.2.5)}

Уравнение (5.2.5)- уравнение динамики замкнутой САР в ихображениях для рассогласования (ошибки) при наличии  управляющего и возмущающего воздействий. 

Особенностью данного уравнения (5.2.5) является то, что левая часть его практически  совпадает с левой частью (5.2.2), в то время, как порядок правой части заметно выше , т.к. порядок многочленов D (s) и L (s)  — одинаков, а порядок N(s) меньше L(s).

Это означает, что внешние воздействия  x(t)и f(t)влияют на varepsilon(t)более сильным  образом.

Дифференциальное уравнение замкнутой САР для ошибки:

D(p)varepsilon(t)=L(p)x(t)-R(p)f(t)                   mathbf{(5.2.6)}

Способы решения уравнения ( 5.2.6 ) такие же, как и для уравнения ( 5.2.3 ) .                    

5.3. Частотные характеристики замкнутой  САР. 

Наибольший интерес при анализе замкнутых САР имеет АФЧХ замкнутой САР по управляющему воздействию:

Phi(s)_{s=icdotomega}=Phi(icdotomega)=frac{W(icdotomega)}{1+W(icdot omega)}                      mathbf{(5.3.1)}

где передаточная функция:

W(icdotomega)=frac{Kcdot N(icdotomega)}{L(icdot omega)}

Учитывая, что W(icdotomega)=u(omega)+icdot v(omega)—  комплексное число, по аналогии имеем:

Phi(icdotomega)=P(omega)+ icdot Q(omega)                  mathbf{(5.3.2)}

Где P(omega)=Re(Phi_s)  — вещественная часть функции, Q(omega)=Im(Phi_s)— мнимая часть функиции.

Рисунок 5.3.1 Пример зависмостей P и Q

Рисунок 5.3.1 Пример зависмостей P и Q

На этих рисунках представлен «примерный» вид зависимостей P (w)и Q(w) для «какой-то»  замкнутой САР   причем  P(w) —  четная функция, т.е. P(w) = P(-w);  Q(w) —  нечетная функция, т.е. Q(w) = — Q(-w).

Если известны частотные свойства разомкнутой САР, то можно определить частотные свойства замкнутой САР. Воспользуемся показательной формой для АФЧХ

W(icdotomega) = A(omega)cdot e^{icdot varphi(omega)}

Где A(omega)— амплитуда (модуль), varphi(omega)— сдвиг фазы (фаза).  Подставляя это в (5.3.1), имеем получаем:

Phi(icdotomega) = A_{з}(omega)cdot e^{icdotvarphi_з(omega)}=frac{A(omega)cdot e^{icdot varphi(omega)}}{1+A(omega)cdot e^{icdot varphi(omega)}}RightarrowRightarrow 1+A(omega)cdot e^{icdotvarphi(omega)}=frac{A(omega)cdot e^{icdot varphi(omega)}}{A_{з}cdot e^{icdot varphi_з(omega)}}RightarrowRightarrow frac{e^{-icdot varphi_3(omega)}}{A_з(omega)}=1+frac{e^{-icdot varphi(omega)}}{A(omega)}                     mathbf{(5.3.3)}

Учитывая, что e^{-icdot varphi}=cos(varphi)-icdot sin(varphi) Rightarrow

frac{cos[varphi_з(omega)]}{A_з(omega)}-icdotfrac{sin[varphi_З(omega)]}{A_з(omega)}=1+frac{cos[varphi(omega)]}{A(omega)}-icdotfrac{sin[varphi(omega)]}{A(omega)}       mathbf{(5.3.4)}

Приравнивая чисто вещественные и чисто мнимые части, имеем  Rightarrow

left { begin {align}frac{cos[varphi_з(omega)]}{A_з(omega)}&=1+frac{cos[varphi(omega)]}{A(omega)}      (1)\ frac{sin[varphi_з(omega)]}{A_з(omega)}&=frac{sin[varphi(omega)]}{A(omega)}             (2). end{align} right.                    mathbf{(5.3.5)}

Для нахождения амплитуды A_з(omega)и сдвига фазы varphi_з(omega) замкнутой передаточной функции как функции от амплитуды A(omega)и сдвига фазы varphi (omega)разомкнутой системы. Разделив (2) на (1)  получим:

tg[varphi_з(omega)]=frac{sin[varphi(omega)]}{A(omega)+cos[varphi(omega)]} Rightarrow

Сдвиг фазы замкнутой системы через характеристики разомкнутой системы:

varphi_з(omega) = arctg left[ frac{sin[varphi(omega)]}{A(omega)+cos[varphi(omega)]}right] - picdot j                   mathbf{(5.3.6)}

Для получения амплитуды замкнутоей системы возведем оба уравнения системы  (5.3.5) в квадрат:  Rightarrow

left { begin {align}frac{cos^2[varphi_з(omega)]}{A^2_з(omega)}&=1+frac{cos^2[varphi(omega)]}{A^2(omega)}+2 cdotfrac{cos[varphi(omega)]}{A(omega)} ;\ frac{sin^2[varphi_з(omega)]}{A_з^2(omega)}&=frac{sin^2[varphi(omega)]}{A^2(omega)} . end{align} right.

складываем эти два уравнения:

frac{1}{A^2_з(omega)}left[underbrace{cos^2varphi_з(omega)+sin^2varphi_з(omega)}_1right]=1+frac{1}{A^2(omega)}left[underbrace{cos^2varphi(omega)+sin^2varphi(omega)}_1right]+dots\dots+2frac{cos[varphi(omega]}{A(omega)}frac{1}{A^2_з(omega)}=frac{A^2(omega)+2cdot Acdot cos[varphi(omega)]+1}{A^2(omega)}RightarrowA_з(omega)=frac{A(omega)}{sqrt{A^2(omega)+2cdot A(omega)cdot cos[varphi(omega)]+1}}                         mathbf{(5.3.7)}

Аналогичным образом можно выразить, например, P(w) и Q(w)  —  характеристики замкнутой САР через u(w) и u(w)  —  характеристики разомкнутой САР.

Пример

В качестве примера на рисунке 5.4.1 приведена модель помещения, в котором с помощью интегрирующего звена обеспечивается подвод тепла для поддержания температуры. Температура задается в виде ступенчатой функции. В качестве внешнего воздействия используется внешняя температура.

5.4.1 Рисунок сравнение физической модели и передаточных функций

5.4.1 Рисунок сравнение физической модели и передаточных функций

Передаточные функции построены средтвами автоматического анализа. Видно, что знаменатель главной передаточной функции и знаменатель передаточной функции по возмущающиму воздействию одинаковы.

5.4.2 Результаты моделирования.

5.4.2 Результаты моделирования.

График справа показывает расхождение результаты модели (зеленая линия) и передаточных функций (синит линя) в начале расчета, но потом функции сходятся. Расхождение объясняются разными начальными условиями по производным. Слева тот же самый график, но в это случае начальное состояние определено с помощю загрузки стационарного состояния, полученного предварительным моделированием. В этом случае совпадение модели и передаточных функций полное.

Ссылку на модель примера можено взять здесь…

Понравилась статья? Поделить с друзьями:
  • Грамматические ошибки я знаю что придет время что
  • Грамматические ошибки это что примеры
  • Грамматические ошибки это простыми словами
  • Грамматические ошибки это пример
  • Грамматические ошибки это определение