Грубую ошибку измерений обычно называют

Систематическая погрешность измеренийс— состав­ляющая
погрешности измерения, остающаяся
постоян­ной или закономерно изменяющаяся
при повторных из­мерениях одной и той
же величины [2, 3].

Причины
воз­никновения систематических
погрешностей обычно могут быть
установ­лены при подготовке и проведении
измерений. Эти причины весьма разнообразны:
несовершенство используемых средств
и методов изме­рений, неправильная
установка средства измерений, влияние
внешних факторов (влияющих величин) на
параметры средств измерений и на сам
объект измерения, недостатки метода
измерения (методические погрешности),
индивидуальные особенности оператора
(субъективные погрешности) и др. [7]. По
характеру проявления систематические
погрешности делятся на постоянные и
переменные. К постоянным от­носятся,
например, погрешности, обусловленные
неточностью подгон­ки значения меры,
неправильной градуировкой шкалы прибора,
непра­вильной установкой прибора
относительно направления магнитных
по­лей и т.д. Переменные систематические
погрешности обусловлены воздействием
на процесс измерения влияющих величин
и могут воз­никнуть, например, при
изменении напряжения источника питания
прибора, внешних магнитных полей, частоты
измеряемого переменного напряжения и
пр. Основная особенность систематических
погреш­ностей состоит в том, что
зависимость их от влияющих величин
подчиняется определенному закону. Этот
закон может быть изучен, а результат
измерения — уточнен путем внесения
поправок, если числовые значения этих
погрешностей определены. Другим способом
уменьшения влияния систематический
погрешностей является применение таких
методов измерения, которые дают
возможность исключить влияние
систематических погрешностей без
определения их значений (например, метод
замещения).

Результат измерений тем ближе к истинному
значению измеряемой величины, чем меньше
оставшиеся неисключенные систематические
погрешности. Наличие исключенных
систематических погрешностей определяет
правильность измерений, качество,
отражающее близость к нулю систематических
погрешностей [2,
7]. Результат измерения будет настолько
правильным, насколько
он неискажен систематическими
погрешностями и тем правильнее, чем
меньше эти погрешности.

Прогрессирующими(или дрейфовыми)
называются непредсказуе­мые погрешности,
медленно изменяющиеся во времени. Эти
погреш­ности, как правило, вызываются
процессами старения тех или иных деталей
аппаратуры (разрядка источников питания,
старение резисто­ров, конденсаторов,
деформация механических деталей, усадка
бумаж­ной ленты в самопишущих приборах
и т. п.). Особенностью прогрес­сирующих
погрешностей является то, что они могут
быть скорректи­рованы путем введения
поправки лишь в заданный момент времени,
а далее вновь непредсказуемо возрастают.
Поэтому в отличие от системати­ческих
погрешностей, которые могут быть
скорректированы поправкой, найденной
один раз на весь срок службы прибора,
прогрессирующие погрешности требуют
непрерывного повторения коррекции и
тем чаще, чем меньше должно быть их
остаточное значение. Другая особенность
прогрессирующих погрешностей состоит
в том, что их изме­нение во времени
представляет собой нестационарный
случайный процесс и поэтому в рамках
хорошо разработанной теории стационар­ных
случайных процессов они могут быть
описаны лишь с оговорками.

Случайная погрешность измерения
составляю­щая погрешности измерений,
изменяющаяся случайным образом при
повторных измерениях одной и той же
ве­личины. Значение и знак случайных
погрешностей опре­делить невозможно,
они не поддаются непосредственно­му
учету вследствие их хаотического
изменения, обуслов­ленного одновременным
воздействием на результат измерения
различных независимых друг от друга
факто­ров. Обнаруживаются случайные
погрешности при мно­гократных
измерениях одной и той же величины
(отдель­ные измерения в этом случае
называются наблюдением) одними и теми
же средствами измерения в одинаковых
ус­ловиях одним и тем же наблюдателем,
т.е. при равно­точных (равнорассеянных)
измерениях. Влияние случай­ных
погрешностей на результат измерения
учитывается методами математической
статистики и теории вероят­ности.

Грубые погрешности измерений — случайные
погреш­ности измерений, существенно
превышающие ожидаемые при данных
условиях погрешности.

Грубые
погрешности (промахи) обычно обусловлены
неправильным отсчетом по прибору,
ошибкой при записи наблюдений, наличием
сильно влияющей величины, неисправностью
средств измерений и другими причинами.
Как правило, результаты измерений,
содержащие грубые погрешности, не
принимаются во внимание, поэтому грубые
погрешности мало влияют на точность
измерения. Обнаружить промах бывает
не всегда легко, особенно при единичном
измерении; часто трудно бывает отличить
грубую погрешность от большой по значению
случайной погрешности. Если грубые
погрешности встречаются часто, мы
поставим под сомнение все результаты
измерений. Поэтому грубые погрешности
влияют на годность измерений.

В
заключение описанного деления погрешностей
средств и резуль­татов измерений на
случайную, прогрессирующую и систематическую
составляющие необходимо обратить
внимание на то, что такое деление является
весьма упрощенным приемом их анализа.
Поэтому всегда следует помнить, что в
реальной действительности эти
состав­ляющие погрешности проявляются
совместно и образуют единый не­стационарный
случайный процесс. Погреш­ность
результата измерений при этом можно
представить в виде суммы случайных
и систематическихспогрешностей:=с+.
В погрешности измерений входит случайная
составляющая, поэтому её следует считать
случайной величиной.

Рассмотрение
характера проявления погрешностей
измерений показывает, нам, что единственно
правильный путь оценки погрешностей
дает нам теория вероятностей и
математическая статистика.

Полученное из опыта значение измеряемой величины может
отличаться от ее действительного (истинного) значения.

Погрешность измерения – отклонение результата измерения от истинного (действительного) значения измеряемой
величины.

Это может быть обусловлено конструктивными недостатками прибора, несовершенством технологии его
изготовления, а также влиянием различных внешних факторов.

Таким образом, погрешности классифицируют:

  1. По источнику возникновения (метод, инструмент, субъект)

    -Методические (зависят от метода измерения и способа включения приборов в электрическую цепь)

    -Инструментальные (зависят от средства измерения)

    -Субъективные (зависят от измерителя)

  2. По условиям проведения измерений (температура, давление, влажность)

    -Основные (измерения проводятся в нормальных условиях — при нормальной температуре, давлении,
    влажности)

    -Дополнительные (условия отличны от нормальных)

  3. По характеру проявления (систематические, случайные, промахи)

    Систематические – погрешности, остающиеся постоянными или закономерно изменяющимися при повторных
    измерениях тем же способом и средствами. Т.е. они заранее известны и их легко исключить.

    Случайные – погрешности, изменяющиеся случайным образом при повторных измерениях одной и той же
    величины.  Обычно выявляются в результате многократных измерений (не менее 10).

    Промах – грубая ошибка, обусловленная неправильным отсчетом или расчетом, небрежностью измеряющего,
    поломки прибора, неправильно собранной схемы, невнимательности и т.д. Такие данные необходимо исключать.

  4. По временному поведению измеряемой величины (статическая, динамическая)

    Статическая – когда измеряемая величина не меняется за время измерения

    Динамическая – когда прибор не успевает реагировать на изменения измеряемой величины.

  5. По способу выражения измеряемой величины

    • абсолютная;

    • относительная;

    • приведенная.

      Абсолютной погрешностью
      D
      Х называется разность между измеренным и действительным значениями.

       – измеренное значение;

      – действительное значение измеряемой величины.

      Выражается
      D
      Х в единицах измеряемой величины.

      Относительная погрешность
       – отношение абсолютной погрешности к действительному значению измеряемой величины.

      Выражается в процентах или относительных единицах. Относительная погрешность характеризует
      точность измерений.

      Приведенная погрешность
      g
      пр – отношение абсолютной погрешности к номинальному (нормированному) значению – верхнему пределу диапазона
      или поддиапазона измерения прибора.

      Пределом измерения прибора называется наибольшая величина, на которую рассчитан данный
      прибор.

      Прибор может иметь несколько пределов измерений (например, вольтметр).

      Чем меньшую погрешность дает прибор, тем он точнее.

    • Выражается в процентах.

      Максимальная приведенная погрешность определяет класс точности прибора.

    • Электроизмерительные приборы изготавливаются нескольких классов точности

0,01

0,02

0,2

1,5

0,05

0,5

2,5

0,1

1,0

4

Эти числа определяют максимальную погрешность прибора при полном отклонении указателя (стрелки).

Определяют также среднеквадратическую погрешность результата измерения по формуле:

Выражается  в единицах измеряемой величины.

За действительное значение измеряемой величины принимается обычно среднее арифметическое из ряда
измерений.

Хд = ХСР = 1 + Х2 +
Х3 + … + Хn)/n,

где Х1, Х2,… , Хn – результаты измерений


       n – количество измерений

Какие Основные Причины Погрешности Измерений Вам Известны
Основные причины возникновения погрешностей :

  • неверная настройка средства измерений или смещение уровня настройки во время эксплуатации;
  • неверная установка объекта измерения на измерительную позицию;
  • ошбки в процессе получения, преобразования и выдачи информации в измерительной цепи средства измерений ;

Meer items

В чем причина погрешностей выполненных измерений?

Они возникают из-за разности температур объекта измерения и средства измерения. Существуют два основных источника, обуславливающих погрешность от температурных деформаций: отклонение температуры воздуха от 20 °C и кратковременные колебания температуры воздуха в процессе измерения.

Какие факторы влияют на погрешность измерения?

Измерение физических величин основано на том, что физика исследует объективные закономерности, которые происходят в природе. Найти значение физической величины — умножить конкретное число на единицу измерения данной величины, которая стандартизирована ( эталоны ).

расположение наблюдателя относительно измерительного прибора: если на линейку смотреть сбоку, погрешность измерений произойдёт по причине неточного определения полученного значения;деформация измерительного прибора: металлические и пластиковые линейки могут изогнуться, сантиметровая лента растягивается со временем;несоответствие шкалы прибора эталонным значениям: при множественном копировании эталонов может произойти ошибка, которая будет множиться;физический износ шкалы измерений, что приводит к невозможности распознавания значений.

Рассмотрим на примере измерения длины бруска линейкой с сантиметровой шкалой. Рис. (1). Линейка и брусок Внимательно рассмотрим шкалу. Расстояние между двумя соседними метками составляет (1) см. Если этой линейкой измерять брусок, который изображён на рисунке, то правый конец бруска будет находиться между (9) и (10) метками.

  • У нас есть два варианта определения длины этого бруска. (1).
  • Если мы заявим, что длина бруска — (9) сантиметров, то недостаток длины от истинной составит более половины сантиметра ((0,5) см (= 5) мм). (2).
  • Если мы заявим, что длина бруска — (10) сантиметров, то избыток длины от истинной составит менее половины сантиметра ((0,5) см (= 5) мм).

Погрешность измерений — это отклонение полученного значения измерения от истинного. Погрешность измерительного прибора равна цене деления прибора. Для первой линейки цена деления составляет (1) сантиметр. Значит, погрешность этой линейки (1) см. Если нам необходимо произвести более точные измерения, то следует поменять линейку на другую, например, с миллиметровыми делениями. Рис. (2). Деревянная линейка Если же необходимы ещё более точные измерения, то нужно найти прибор с меньшей ценой деления, например, штангенциркуль. Существуют штангенциркули с ценой деления (0,1) мм и (0,05) мм, Рис. (3). Штангенциркуль На процесс измерения влияют следующие факторы: масштаб шкалы прибора, который определяет значения делений и расстояние между ними; уровень экспериментальных умений. Считается, что погрешность прибора превосходит по величине погрешность метода вычисления, поэтому за абсолютную погрешность принимают погрешность прибора.

Каковы причины возникновения грубой погрешности?

Грубые погрешности (промахи) обычно обусловлены неправильным отсчетом по шкале прибора, ошибкой при записи наблюдений, наличием сильно влияющей величины, неисправностью средств измерений и другими причинами.

Какие виды измерений вы знаете?

По видам измерений — Согласно РМГ 29-99 «Метрология. Основные термины и определения» выделяют следующие виды измерений:

  • Прямое измерение — измерение, при котором искомое значение физической величины получают непосредственно.
  • Косвенное измерение — определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.
  • Совместные измерения — проводимые одновременно измерения двух или нескольких не одноимённых величин для определения зависимости между ними.
  • Совокупные измерения — проводимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин определяют путём решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.
  • Равноточные измерения — ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.
  • Неравноточные измерения — ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.
  • Однократное измерение — измерение, выполненное один раз.
  • Многократное измерение — измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, то есть состоящее из ряда однократных измерений
  • Статическое измерение — измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения.
  • Динамическое измерение — измерение изменяющейся по размеру физической величины.
  • Абсолютное измерение — измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
  • Относительное измерение — измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение изменения величины по отношению к одноимённой величине, принимаемой за исходную (см. ниже нулевой метод ).

Также стоит отметить, что в различных источниках дополнительно выделяют такие виды измерений: метрологические и технические, необходимые и избыточные и др.

Какие бывают погрешности в химии?

Погрешности (иногда их же называют ошибками, что не совсем правильно) подразделяют на грубые, систематические и случайные. Грубые, систематические и случайные погрешности.

Почему получается погрешность?

Систематические погрешности порождаются: несовершенством приборов; неточной установкой прибора; смещением шкалы прибора; неточной установкой стрелки прибора в нулевом положении; недостаточной чувствительностью прибора; неучетом тепловых, электрических и магнитных полей, давлений, влажности и других внешних факторов,

Что понимается под погрешностью измерений?

Погре́шность измере́ния — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения. Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного.

Это отклонение принято называть ошибкой измерения, Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов, На практике вместо истинного значения используют действительное значение величины х д, то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него,

Такое значение обычно вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому при записи результатов измерений необходимо указывать их точность,

  1. Например, запись T = 2,8 ± 0,1 с; P = 0,95 означает, что истинное значение величины T лежит в интервале от 2,7 с до 2,9 с с доверительной вероятностью 95 %.
  2. Количественная оценка величины погрешности измерения — мера «сомнения в измеряемой величине» — приводит к такому понятию, как « неопределённость измерения ».

В то же время иногда, особенно в физике, термин «погрешность измерения» ( англ. measurement error ) используется как синоним термина «неопределённость измерения» ( англ. measurement uncertainty ),

Какие бывают погрешности В физике?

Какие бывают погрешности — Любое число, которое выдает нам эксперимент, это результат измерения. Измерение производится прибором, и это либо непосредственные показания прибора, либо результат обработки этих показаний. И в том, и в другом случае полученный результат измерения неидеален, он содержит погрешности,

  • И потому любой грамотный физик должен не только предъявить численный результат измерения, но и обязан указать все сопутствующие погрешности.
  • Не будет преувеличением сказать, что численный экспериментальный результат, предъявленный без указания каких-либо погрешностей, бессмыслен.
  • В физике элементарных частиц к указанию погрешностей относятся исключительно ответственно.

Экспериментаторы не только сообщают погрешности, но и разделяют их на разные группы. Три основных погрешности, которые встречаются чаще всего, это статистическая, систематическая и теоретическая (или модельная) погрешности. Цель такого разделения — дать четкое понимание того, что именно ограничивает точность этого конкретного измерения, а значит, за счет чего эту точность можно улучшить в будущем.

Статистическая погрешность связана с разбросом значений, которые выдает эксперимент после каждой попытки измерить величину. ( Подробнее о статистической погрешности ) Систематическая погрешность характеризует несовершенство самого измерительного инструмента или методики обработки данных, а точнее, недостаточное знание того, насколько «сбоит» инструмент или методика.

( Подробнее о систематической погрешности ) Теоретическая/модельная погрешность — это неопределенность результата измерения, которая возникла потому, что методика обработки данных была сложная и в чем-то опиралась на теоретические предположения или результаты моделирования, которые тоже несовершенны.

  • Впрочем, иногда эту погрешность считают просто разновидностью систематических погрешностей.
  • Подробнее о погрешности теории и моделирования ) Наконец, в отдельный класс, видимо, можно отнести возможные человеческие ошибки, прежде всего психологического свойства (предвзятость при анализе данных, ленность при проверке того, как результаты зависят от методики анализа).

Строго говоря, они не являются погрешностью измерения, поскольку могут и должны быть устранены. Зачастую это избавление от человеческих ошибок может быть вполне формализовано. Так называемый дважды слепой эксперимент в биомедицинских науках — один тому пример.

В чем причина возникновения ошибок при измерениях?

Основные причины возникновения погрешностей: ошбки в процессе получения, преобразования и выдачи информации в измерительной цепи средства измерений ; внешние воздействия на средтво и объект измерений (изменение температуры и давления, влияние электрического и магнитного полей, вибрация и т.

В чем измеряется погрешность измерений?

Погрешность средств измерения и результатов измерения. Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).

Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины. Инструментальные и методические погрешности. Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений.

Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели. Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета.

Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены. Инструментальная погрешность обусловлена несовершенством применяемых средств измерений.

Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы. Статическая и динамическая погрешности.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей. Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях. Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Как оценить погрешность измерения?

1.1 Результат измерения — Рассмотрим простейший пример: измерение длины стержня с помощью линейки. Линейка проградуирована производителем с помощью некоторого эталона длины — таким образом, сравнивая длину стержня с ценой деления линейки, мы выполняем косвенное сравнение с общепринятым стандартным эталоном.

Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат x = x изм, Можно ли утверждать, что x изм — это длина стержня? Во-первых, значение x не может быть задано точно, хотя бы потому, что оно обязательно округлено до некоторой значащей цифры: если линейка «обычная», то у неё есть цена деления ; а если линейка, к примеру, «лазерная» — у неё высвечивается конечное число значащих цифр на дисплее.

Во-вторых, мы никак не можем быть уверенны, что длина стержня на самом деле такова хотя бы с точностью до ошибки округления. Действительно, мы могли приложить линейку не вполне ровно; сама линейка могла быть изготовлена не вполне точно; стержень может быть не идеально цилиндрическим и т.п.

  1. И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной точности измерения, теряет смысл само понятие «длины стержня».
  2. Ведь на масштабах атомов у стержня нет чётких границ, а значит говорить о его геометрических размерах в таком случае крайне затруднительно! Итак, из нашего примера видно, что никакое физическое измерение не может быть произведено абсолютно точно, то есть у любого измерения есть погрешность,

Замечание. Также используют эквивалентный термин ошибка измерения (от англ. error). Подчеркнём, что смысл этого термина отличается от общеупотребительного бытового: если физик говорит «в измерении есть ошибка», — это не означает, что оно неправильно и его надо переделать.

  • Имеется ввиду лишь, что это измерение неточно, то есть имеет погрешность,
  • Количественно погрешность можно было бы определить как разность между измеренным и «истинным» значением длины стержня: δ ⁢ x = x изм — x ист,
  • Однако на практике такое определение использовать нельзя: во-первых, из-за неизбежного наличия погрешностей «истинное» значение измерить невозможно, и во-вторых, само «истинное» значение может отличаться в разных измерениях (например, стержень неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).

Поэтому говорят обычно об оценке погрешности. Об измеренной величине также часто говорят как об оценке, подчеркивая, что эта величина не точна и зависит не только от физических свойств исследуемого объекта, но и от процедуры измерения. Замечание. Термин оценка имеет и более формальное значение.

Что такое грубые погрешности измерений?

Грубая погрешность измерения – погрешность измерения, существенно превышающая ожидаемую при данных условиях измерения. Источник – монография Е.Ф. Кретова «Ультразвуковая дефектоскопия в энергомашиностроении» Грубая погрешность измерения: погрешность измерения, существенно превышающая зависящие от объективных условий измерений значения систематической и случайной погрешностей.

Как определить грубую погрешность?

Секция «Метрология, стандартизация и сертификация» УДК 519.254 МЕТОДЫ ИСКЛЮЧЕНИЯ ГРУБОЙ ПОГРЕШНОСТИ Ю.А. Петровская, Е.А. Петровская Научный руководитель — М.С. Эльберг Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева Российская Федерация, 660037, г. Красноярск, просп. им. газ. «Красноярский рабочий», 31 Е-mail: timeswallower0@gmail.com Рассматриваются методы исключения грубой погрешности, использующие нулевую гипотезу о том, что генеральная совокупность не содержит промаха, а также приводится пример расчета с использованием некоторых методов. Ключевые слова: исключения грубой погрешности, критерий Диксона, критерий «трех сигм». ELIMINATION OF GROSS ERRORS’ METHODS Y.А. Petrovskaya, Е.А. Petrovskaya Scientific supervisor — M.S. Elberg Reshetnev Siberian State Aerospace University 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation E-mail: timeswallower0@gmail.com There are elimination of gross errors’ methods in the article. The methods commonly based on hypothesis testing. In a gross error detection case, the null hypothesis is that no gross error is present. Also, there is an example for calculation including some of these methods. Keywords: elimination of gross error, Dickson’s criterion, «three sigma» criterion. На сегодня очень важно обеспечивать высокое качество выпускаемой продукции для поддержания конкурентоспособности. Одним из методов контроля обеспечения качества является выборка. При статистической обработке результатов наблюдения первым шагом является выявление грубых погрешностей. Эта задача позволяет исключить промахи из результатов наблюдений для последующих методов математической статистики. Существует несколько методов обнаружения и исключения грубой погрешности: критерий «трех сигм», критерий Романовского, вариационный критерий Диксона и критерий Шовине. Во всех этих методах проверяется гипотеза о том, что результаты наблюдения не содержат грубой погрешности. Пользуясь конкретными критериями, эту гипотезу пытаются опровергнуть. Если это удается, то результат наблюдений рассматривают как содержащий грубую погрешность и его исключают. Обычно проверяются наибольшее и наименьшее значения результатов наблюдений. Например, перед нами поставлена задача проведения проверки на наличие промахов для приведенного ряда измерений, указанных в таблице: Ряд измерений 25 25 23 22 25 25 23 24 26 24 23 26 25 25 23 25 28 25 23 24 25 23 23 25 24 24 25 24 23 24 Данную задачу можно решить используя критерий «трех сигм» и вариационный критерий Диксона. Так как число измерений п = 30, то мы исключаем возможность использования критерия Романовского, для которого число измерений должно быть не больше 20, и критерия Шовине, для которого число измерений должно быть не больше 10, Актуальные проблемы авиации и космонавтики — 2015. Том 2 По критерию «трех сигм» считается, что результат является промахом, если выполняется следующее условие: |х — хп| > 3 □, где х — среднее арифметическое результатов измерения, не учитывающий проверяемые значения измерений; хп — результат измерения, вызывающий подозрение; □ — среднее квадратичное отклонение.

Что такое погрешность средств измерений?

Погрешность средства измерений — это разность между показаниями СИ и истинным (действительным) значением измеряемой величины.

Можно ли устранить прогрессирующие погрешности?

Прогрессирующая (дрейфовая) погрешность – это непредсказуемая погрешность, медленно меняющаяся во времени. Они могут быть скорректированы поправками только в данный момент времени.

В зависимости от обстоятельств, при которых проводились измерения, а также в зависимости от целей измерения, выбирается та или иная классификация погрешностей. Иногда используют одновременно несколько взаимно пересекающихся классификаций, желая по нескольким признакам точно охарактеризовать влияющие на результат измерения физические величины. В таком случае рассматривают, например, инструментальную составляющую неисключённой систематической погрешности. При выборе классификаций важно учитывать наиболее весомые или динамично меняющиеся или поддающиеся регулировке влияющие величины. Ниже приведены общепринятые классификации согласно типовым признакам и влияющим величинам.

По виду представления, различают абсолютную, относительную и приведённую погрешности.

Абсолютная погрешность это разница между результатом измерения X и истинным значением Q измеряемой величины. Абсолютная погрешность находится как D = X — Q и выражается в единицах измеряемой величины.

Относительная погрешность это отношение абсолютной погрешности измерения к истинному значению измеряемой величины: d = D / Q = (X – Q) / Q .

Приведённая погрешность это относительная погрешность, в которой абсолютная погрешность средства измерения отнесена к условно принятому нормирующему значению QN , постоянному во всём диапазоне измерений или его части. Относительная и приведённая погрешности – безразмерные величины.

В зависимости от источника возникновения, различают субъективную, инструментальную и методическую погрешности.

Субъективная погрешность обусловлена погрешностью отсчёта оператором показаний средства измерения.

Инструментальная погрешность обусловлена несовершенством применяемого средства измерения. Иногда эту погрешность называют аппаратурной. Метрологические характеристики средств измерений нормируются согласно ГОСТ 8.009 – 84, при этом различают четыре составляющие инструментальной погрешности: основная, дополнительная, динамическая, интегральная. Согласно этой классификации, инструментальная погрешность зависит от условий и режима работы, а также от параметров сигнала и объекта измерения.

Методическая погрешность обусловлена следующими основными причинами:

– отличие принятой модели объекта измерения от модели, адекватно описывающей его метрологические свойства;

– влияние средства измерения на объект измерения;

– неточность применяемых при вычислениях физических констант и математических соотношений.

В зависимости от измеряемой величины, различают погрешность аддитивную и мультипликативную. Аддитивная погрешность не зависит от измеряемой величины. Мультипликативная погрешность меняется пропорционально измеряемой величине.

В зависимости от режима работы средства измерений, различают статическую и динамическую погрешности.

Динамическая погрешность обусловлена реакцией средства измерения на изменение параметров измеряемого сигнала (динамический режим).

Статическая погрешность средства измерения определяется при параметрах измеряемого сигнала, принимаемых за неизменные на протяжении времени измерения (статический режим).

По характеру проявления во времени, различают случайную и систематическую погрешности.

Систематической погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях остаётся постоянной или закономерно меняется.

Случайной погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях изменяется случайным образом.

Погрешности измерений и их
классификация
.

При
измерении физических величии с помощью даже самых точных и совершенных средств
и методов
их результат всегда отличается от истин­ного
значения измеряемой физической величины, т.е. определяется с неко­торой
погрешностью.
Источниками погрешностей измерения являются сле­дующие
причины: несовершенство используемых методов и средств измере­ний,
нестабильность измеряемых физических величин, непостоянство климатических
условий, внешние и внутренние помехи, а также различные субъек­тивные факторы
экспериментатора.

Определение
«погрешность» является одним из центральных в метрологии, в котором
используются понятия «погрешность результата измере­ния» и «погрешность
средства измерения».

Погрешностью результата измерения (погрешностью измерения) называется отклонение
результата измерения от истинного значения измеряемой физической величины. Так
как истинное значение измеряемой величины неизвестно, то при количественной
оценке погрешности пользуются
дейст­вительным значением физической
величины.

Это
значение находится экспериментальным путем и настолько близко к истинному
значению, что для поставленной измерительной задачи может быть использовано
вместо него.

Погрешность средства измерения (СИ) — разность между показаниями СИ
и истинным (действительным) значением измеряемой физической величины. Она
характеризует точность результатов измерений, проводимых дан­ным
средством

Существует пять основных
признаков, по
которым классифицируются погрешности измерения.

По
способу количественного выражения погрешности измерения делятся на абсолютные,
относительные и приведенные.

Абсолютной погрешностью , выражаемой в единицах
измеряемой величины, называется отклонение результата измерения
х от истинного зна­чения хн:                                (1.1)

и знак полученной
погрешности, но не определяет качество самого проведенного измерения.

Понятие
погрешности характеризует как бы несовершенство измере­ния.
Характеристикой качества измерения является используемое в метроло­гии понятие
точности измерений, отражающее меру близости результатов измерений к истинному
значению измеряемой физической величины. Точ­ность и погрешность связаны
обратной зависимостью. Иначе говоря, высо­кой точности измерений соответствует
малая погрешность. Так, например, измерение силы тока в 10 А и 100 А может быть
выполнено с идентичной аб­солютной погрешностью ∆ = ±1 А. Однако качество
(точность) первого из­мерения ниже второго. Поэтому, чтобы иметь возможность
сравнивать каче­ство измерений, введено понятие относительной погрешности.

Относительной погрешностью δ называется отношение
абсолютной погрешности измерения к истинному значению измеряемой величины:

                                                                   (1.2)

Мерой
точности измерений служит величина,
обратная модулю отно­сительной погрешности, т.е. 1/|δ|. Погрешность δ часто выражают в
про­центах:

δ
= 100
н (%). Поскольку обычно △⋍хн, то относительная по­грешность
может быть определена как δ
или δ = 100/х (%).

Если
измерение выполнено однократно и за
абсолютную погрешность результата измерения
принята разность между
показанием прибора и ис­тинным значением измеряемой величины
хН то из соотношения (1.2)
следу­ет, что значение относительной погрешности δ уменьшается с ростом вели­чины
хн  (здесь предполагается
независимость
от хн). Поэтому для изме­рений
целесообразно выбирать такой прибор, показания которого были бы в последней
части его шкалы (диапазона измерений), а для сравнения различ­ных приборов
использовать понятие приведенной погрешности.

Приведенной погрешностью δпр, выражающей
потенциальную точ­ность измерений, называется отношение абсолютной погрешности
к неко­торому нормирующему
значению
XN (например, к конечному
значению шкалы прибора или сумме конечных значений шкал при двусторонней шка­ле).     

По
характеру (закономерности) изменения погрешности измерений подразделяются на
систематические, случайные и грубые (промахи).

Систематические погрешности с — составляющие погрешности из­мерений,
остающиеся постоянными или закономерно изменяющиеся , при многократных (повторных)
измерениях одной и той же величины в одних и тех же условиях. Такие погрешности
могут быть выявлены путем детального анализа возможных их источников и
уменьшены (применением более точных приборов, калибровкой приборов с помощью
рабочих мер и пр.). Однако полностью их устранить нельзя.

По
характеру изменения во времени систематические погрешности подразделяются на
постоянные (сохраняющие величину и
знак),
прогресси­рующие (возрастающие или убывающие во времени), периодические, а также изменяющиеся во
времени по сложному непериодическому закону. Основ­ные из этих погрешностей —
прогрессирующие.

Прогрессирующая (дрейфовая) погрешность — это непредсказуемая по­грешность,
медленно меняющаяся во времени. Прогрессирующие погрешно­сти характеризуются
следующими особенностями:

        
возможна
их коррекция поправками только в данный момент времени, а далее эти погрешности
вновь непредсказуемо изменяются;

          
изменения
прогрессирующих погрешностей во времени представляют со­бой нестационарный
случайный процесс (характеристики которого изменяются во времени), и поэтому в
рамках достаточно полно разработанной теории стационарных случайных процессов
они могут быть описаны лишь с некоторыми ограничениями.

Случайные погрешности 
— составляющие погрешности измерений, изменяющиеся случайным образом при
повторных (многократных) измере­ниях одной и той же величины в одних и тех же
условиях. В появлении таких погрешностей нет каких-либо закономерностей, они
проявляются при повторных измерениях одной и той же величины в виде некоторого
разброса получаемых результатов. Практически случайные погрешности неизбежны,
неустранимы и всегда имеют место в результатах измерений. Описание случайных
погрешностей возможно только на основе теории случайных процессов и
математической статистики. В отличие от систематических случайные погрешности
нельзя исклю­чить из результатов измерений путем введения поправки, однако их
можно существенно уменьшить путем многократного измерения этой величины и
последующей статистической обработкой полученных результатов.

Грубые погрешности (промахи) —
погрешности, существенно превы­шающие ожидаемые при данных условиях измерения.
Такие погрешности возникают из-за ошибок оператора или неучтенных внешних
воздействий. Их выявляют при обработке результатов измерений и исключают из рас­смотрения,
пользуясь определенными правилами.

По причинам возникновения погрешности измерения подразделяются
на методические, инструментальные, внешние и субъективные.

Методические
погрешности
возникают обычно из-за
несовершенства метода измерений, использования неверных теоретических
предпосылок (допущений) при измерениях, а также из-за влияния выбранного
средства изме­рения на измеряемые физические величины. При подключении
электроизме­рительного прибора от источника сигнала потребляется некоторая
мощность. Это приводит к искажению режима работы источника сигнала и вызывает
погрешность метода измерения (методическую погрешность).

Так,
например, если вольтметр обладает недостаточно высоким входным сопротивлением,
то его подключение к исследуемой схеме способно из­менить в ней распределение
токов и напряжений. При этом результат изме­рения может существенно отличаться
от действительного. Для расчета мето­дической погрешности при измерении токов и
напряжений необходимо знать внутренние сопротивления амперметров
RA
и вольтметров
Rv. Методическую
погрешность можно уменьшить путем применения бо­лее точного метода измерения.

Инструментальные
(аппаратурные, приборные) погрешности

возни­кают из-за несовершенства средств измерения» т.е. из-за погрешностей
средств измерений. Источниками инструментальных погрешностей могут быть,
например, неточная градуировка прибора и смещение нуля, вариация показаний
прибора в процессе эксплуатации и т.д. Уменьшают инструмен­тальные погрешности
применением более точного прибора.

Внешняя
погрешность —
важная составляющая погрешности
измере­ния,
связанная с отклонением одной или
нескольких влияющих величин от нормальных значений или выходом их за пределы нормальной области (на­пример,
влияние влажности, температуры
, внешних электрических и
магнит­ных полей, нестабильности источников питания, механических воздействий и
т.д.). В большинстве случаев внешние погрешности являются систематиче­скими и
определяются дополнительными погрешностями применяемых средств измерений. .

Субъективные
погрешности
вызываются ошибками оператора при от­счете
показаний средств измерения (погрешности от небрежности и невни­мания
оператора, от параллакса, т.е. от неправильного направления взгляда при отсчете
показаний стрелочного прибора и пр.). Подобные погрешности устраняются
применением современных цифровых приборов или автомати­ческих методов
измерения.

По характеру поведения измеряемой физической величины в процессе
измерений различают статические и динамические погрешности.

Статические
погрешности
возникают при измерении
установившего­ся значения измеряемой величины, т.е. когда эта величина
перестает изме­няться во времени.

Динамические
погрешности
имеют место при динамических
измерени­ях, когда измеряемая
величина
изменяется во времени и требуется установить закон ее изменения. Причина
появления динамических погрешностей состо­ит в несоответствии скоростных
(временных) характеристик прибора и ско­рости изменения измеряемой величины.

Средства измерений
могут применяться в нормальных и рабочих усло­виях.

Эти
 условия для
конкретных видов СИ (средств  измерения) установлены в
стандартах или технических условиях.

Нормальным
 условиям
применения средств измерений должен
удовлетворять ряд следующих (основных) требований:

температура
окружающего воздуха (20±5) °С;  

относительная
влажность (65±15) %;  

атмосферное
давле­ние (100±4) кПа;  

напряжение
питающей сети (220±4) В и (115±2,5) В;  

частота
сети (50±1) Гц и (400±12) Гц.

Как
следует из перечисленных требований, нормальные условия применения СИ
характеризуются диапазоном значений влияющих на них величин типа климатических
факторов и параметров элек­тропитания.

Рабочие
условия
применения СИ определяются диапазоном
значений влияющих величин не только климатического характера и параметров
электропитания, но и типа механических воздействий. В частности, диапазон климатических
воздействий делится на ряд групп, охватывающих широкий диапазон изменения
окружающей температуры.

Понравилась статья? Поделить с друзьями:
  • Группы ошибок при дисграфии
  • Грубой ошибкой при демонстрации 1 тура является
  • Группы ошибок http
  • Грубейшая ошибка стягивать стропила резьбовыми шпильками
  • Группа роковая ошибка