Интеграл ошибок таблица значений

Список литературы

1.Росляков Г.В., Князев Б.А. Методы обработки экспериментальных данных. Новосибирск: НГУ, 1985. 5

2.Князев Б.А., Кругляков Э.П., Воробьев В.В., Капитонов В.А. Постоянная Керра воды ЖПМТФ. 1976. (1):157–160. 7, 9

3.Сквайрс Дж. Практическая физика. М.: Мир, 1971. 31, 32

4.Кунце Х.-И. Методы физических измерений. М.: Мир, 1989. 39

5.Зайдель А.Н. Ошибки измерений физических величин. Л.: Наука, 1974.

6.Худсон Д. Статистика для физиков. М.: Мир, 1967. 30

7.Тейлор Дж. Введение в теорию ошибок. М.: Мир, 1985. 39

8.Румшисский Л.З. Математическая обработка результатов эксперимента. М.: Наука, 1971.

9.Вильямс А., Кэмпион П.Дж., Барнс Д.Е. Практическое руководство по представлению результатов измерений. М.: Атомиздат, 1979.

10.Агекян Т.А. Основы теории ошибок для астрономов и физиков. М.: Наука, 1968.

11.Маркин Н.С. Основы теории обработки результатов измерений. М.: Изд. стандартов, 1991.

12.Секей Г. Парадоксы в теории вероятностей и в математической статистике. М.: Мир, 1990.

13.Мантуров О.В. Курс высшей математики. М.: Выс.школа, 1991. 7, 22

14.Корн Т., Корн Г. Справочник по математике для научных работников и инженеров. М.: Наука, 1968. 16

15.Сирая Т.Н., Грановский В.А. Методы обработки экспериментальных данных при измерениях. Л.: Энергоатомиздат, 1990. 28

16.Дойников А.С., Брянский Л.Н. Краткий справочник метролога. М.: Стандарты, 1991. 28

 Задвижки, фильтры, кланы, клапаны, виброкомпенсаторы ABRA

Межфланцевые прокладки. Герметики. Уплотнительные материалы

Таблицы DPVA.ru — Инженерный Справочник

Free counters!


Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Теория вероятностей. Математическая статистика. Комбинаторика.  / / Таблица. Интеграл вероятности или интеграл вероятностей. Таблица значений функции Лапласа. Она же функция ошибок erf

Таблица. Интеграл вероятности или интеграл вероятностей. Таблица значений функции Лапласа. Она же функция ошибок erf.

Таблица. Функция Лапласа или интеграл вероятностей. (Функция ошибок)

Интегральная функция вероятности распределения обычно выражается через специальную функцию erf(z).

z

0

1

2

3

4

5

6

7

8 9
0,00 0,0000 0011 0023 0034 0045 0056 0068 0079 0090 0102
1 0113 0124 0135 0147 0158 0169 0181 0192 0203 0214
2 0226 0237 0248 0260 0271 0282 0293 0305 0316 0327
3 0338 0350 0361 0372 0384 0395 0406 0417 0429 0553
4 0451 0462 0474 0485 0496 0507 0519 0530 0541 0553
5 0564 0575 0586 0598 0609 0620 0631 0643 0654 0665
6 0676 0688 0699 0710 0721 0732 0744 0755 0766 0777
7 0789 0800 0811 0822 0834 0845 0856 0867 0878 0890
8 0901 0912 0923 0934 0946 0957 0968 0979 0990 1002
9 1013 1024 1035 1046 1058 1069 1080 1091 1102 1113
10 1125 1136 1147 1158 1169 1180 1192 1203 1214 1225
1 1236 1247 1259 1270 1281 1292 1303 1314 1325 1386
2 1348 1359 1370 1381 1392 1403 1414 1425 1436 1448
3 1459 1470 1481 1492 1503 1514 1525 1536 1547 1558
4 1569 1581 1592 1603 1614 1625 1636 1647 1658 1669
5 1680 1691 1702 1713 1724 1735 1746 1757 1768 1779
6 1790 1801 1812 1823 1834 1845 1856 1867 1878 1889
7 1900 1911 1922 1933 1944 1955 1966 1977 1988 1998
8 2009 2020 2031 2042 2053 2064 2075 2086 2097 2108
9 2118 2129 2140 2151 2162 2173 2184 2194 2205 2216
20 2227 2238 2249 2260 2270 2281 2292 2303 2314 2324
1 2335 2346 2357 2368 2378 2389 2400 2411 2421 2432
2 2443 2454 2464 2475 2486 2497 2507 2518 2529 2540
3 2550 2561 2572 2582 2593 2604 2614 2625 2636 2646
4 2657 2668 2678 2689 2700 2710 2721 2731 2742 2753
5 2763 2774 2784 2795 2806 2816 2827 2837 2848 2858
6 2869 2880 2890 2901 2911 2922 2932 2943 2953 2964
7 2974 2985 2995 3006 3016 3027 3037 3047 3058 3068
8 3079 3089 3100 3110 3120 3131 3141 3152 3162 3276
9 3183 3193 3204 3214 3224 3235 3246 3255 3266 3276
30 3286 3297 3307 3317 3327 3338 3348 3358 3369 3379
1 3389 3399 3410 3420 3430 3440 3450 3461 3471 3481
2 3491 3501 3512 3522 3532 3542 3552 3562 3573 3583
3 3593 3603 3613 3623 3633 3643 3653 3663 3674 3684
4 3694 3704 3714 3724 8734 3744 2754 3764 3774 3784
5 3794 3804 3814 3824 3834 3844 3854 3864 3873 3883
6 3893 3903 3913 3923 3933 8943 3953 3963 3972 3982
7 3992 4002 4012 4022 4031 4041 4051 4061 4071 4080
8 4090 4100 4110 4119 4129 4189 4149 4158 4168 4178
9 4187 4197 4207 4216 4226 4236 4245 4255 4265 4274
40 4284 4294 4303 4313 4322 4332 4341 4351 4361 4370
1 4380 4389 4399 4408 4418 4427 4437 4446 4456 4465
2 4475 4484 4494 4503 4512 4522 4531 4541 4550 4559
3 4569 4578 4588 4597 4606 4616 4625 4634 4644 4653
4 4662 4672 4681 4690 4699 4709 4718 4727 4736 4746
5 4755 4764 4773 4782 4792 4801 4810 4819 4828 4837
6 4847 4856 4865 4874 4883 4892 4901 4910 4919 4928
7 4937 4946 4956 4965 4974 4983 4992 5001 5010 5019
8 5027 5036 5045 5054 5063 5072 5081 5090 5099 5108
9 5117 5126 5134 5143 5152 5161 5170 5179 5187 5196

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Поиск в инженерном справочнике DPVA. Введите свой запрос:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.

Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
Free xml sitemap generator

www.dpva.ru Инженерный справочник.

График функции

В математике функция ошибок (также называемая Функция ошибок Гаусса ), часто обозначаемая erf, является сложной функцией комплексной определяемой как:

erf ⁡ z = 2 π ∫ 0 ze — t 2 dt. { displaystyle operatorname {erf} z = { frac {2} { sqrt { pi}}} int _ {0} ^ {z} e ^ {- t ^ {2}} , dt.}{ displaystyle  operatorname {erf} z = { гидроразрыва {2} { sqrt { pi}}}  int _ {0} ^ {z} e ^ {- t ^ {2}} , dt.}

Этот интеграл является особой (не элементарной ) и сигмоидной функцией, которая часто встречается в статистике вероятность, и уравнения в частных производных. Во многих из этих приложений аргумент функции является действительным числом. Если аргумент функции является действительным, значение также является действительным.

В статистике для неотрицательных значений x функция имеет интерпретацию: для случайной величины Y, которая нормально распределена с среднее 0 и дисперсия 1/2, erf x — это вероятность того, что Y попадает в диапазон [-x, x].

Две связанные функции: дополнительные функции ошибок (erfc ), определенная как

erfc ⁡ z = 1 — erf ⁡ z, { displaystyle operatorname {erfc} z = 1- operatorname {erf} z,}{ displaystyle  operatorname {erfc} z = 1-  operatorname {erf} z, }

и функция мнимой ошибки (erfi ), определяемая как

erfi ⁡ z = — i erf ⁡ (iz), { displaystyle operatorname {erfi} z = -i operatorname {erf} (iz),}{ displaystyle  operatorname {erfi} z = -i  operatorname {erf} (iz),}

, где i — мнимая единица.

Содержание

  • 1 Имя
  • 2 Приложения
  • 3 Свойства
    • 3.1 Ряд Тейлора
    • 3.2 Производная и интеграл
    • 3.3 Ряд Бюрмана
    • 3.4 Обратные функции
    • 3.5 Асимптотическое разложение
    • 3.6 Разложение на непрерывную дробь
    • 3,7 Интеграл функции ошибок с функцией плотности Гаусса
    • 3.8 Факториальный ряд
  • 4 Численные приближения
    • 4.1 Аппроксимация с элементарными функциями
    • 4.2 Полином
    • 4.3 Таблица значений
  • 5 Связанные функции
    • 5.1 функция дополнительных ошибок
    • 5.2 Функция мнимой ошибки
    • 5.3 Кумулятивная функци я распределения на
    • 5.4 Обобщенные функции ошибок
    • 5.5 Итерированные интегралы дополнительных функций ошибок
  • 6 Реализации
    • 6.1 Как действующая функция действительного аргумента
    • 6.2 Как комплексная функция комплексного аргумента
  • 7 См. Также
    • 7.1 Связанные функции
    • 7.2 Вероятность
  • 8 Ссылки
  • 9 Дополнительная литература
  • 10 Внешние ссылки

Имя

Название «функция ошибки» и его аббревиатура erf были предложены Дж. В. Л. Глейшер в 1871 г. по причине его связи с «теорией вероятности, и особенно теорией ошибок ». Дополнение функции ошибок также обсуждалось Глейшером в отдельной публикации в том же году. Для «закона удобства» ошибок плотность задана как

f (x) = (c π) 1 2 e — cx 2 { displaystyle f (x) = left ({ frac {c } { pi}} right) ^ { tfrac {1} {2}} e ^ {- cx ^ {2}}}{ displaystyle f (x) =  left ({ frac {c} { pi}}  right) ^ { tfrac {1} {2}} e ^ {- cx ^ {2}}}

(нормальное распределение ), Глейшер вычисляет вероятность ошибки, лежащей между p { displaystyle p}p и q { displaystyle q}д как:

(c π) 1 2 ∫ pqe — cx 2 dx = 1 2 (erf ⁡ (qc) — erf ⁡ (pc)). { displaystyle left ({ frac {c} { pi}} right) ^ { tfrac {1} {2}} int _ {p} ^ {q} e ^ {- cx ^ {2} } dx = { tfrac {1} {2}} left ( operatorname {erf} (q { sqrt {c}}) — operatorname {erf} (p { sqrt {c}}) right).}{ displaystyle  left ({ frac {c} { pi}}  right) ^ { tfrac {1} {2}}  int _ {p} ^ {q} e ^ {- cx ^ {2 }} dx = { tfrac {1} {2}}  left ( operatorname {erf} (q { sqrt {c}}) -  operatorname {erf} (p { sqrt {c}})  right).}

Приложения

Когда результаты серии измерений описываются нормальным распределением со стандартным отклонением σ { displaystyle sigma} sigma и ожидаемое значение 0, затем erf ⁡ (a σ 2) { displaystyle textstyle operatorname {erf} left ({ frac {a} { sigma { sqrt {2}) }}} right)}{ displaystyle  textstyle  operatorname {erf}  left ({ frac {a} { sigma { sqrt {2}}}}}  right)} — это вероятность того, что ошибка единичного измерения находится между −a и + a, для положительного a. Это полезно, например, при определении коэффициента битовых ошибок цифровой системы связи.

Функции и дополнительные функции ошибок возникают, например, в решениях уравнения теплопроводности, когда граничные ошибки задаются ступенчатой ​​функцией Хевисайда.

Функция ошибок и ее приближения Программу присвоили себе преподавателей, которые получили с высокой вероятностью или с низкой вероятностью. Дана случайная величина X ∼ Norm ⁡ [μ, σ] { displaystyle X sim operatorname {Norm} [ mu, sigma]}X  sim  operatorname {Norm} [ му,  sigma] и константа L < μ {displaystyle L<mu }L < mu :

Pr [X ≤ L ] = 1 2 + 1 2 erf ⁡ (L — μ 2 σ) ≈ A ехр (- B (L — μ σ) 2) { Displaystyle Pr [X Leq L] = { frac {1} {2 }} + { frac {1} {2}} operatorname {erf} left ({ frac {L- mu} {{ sqrt {2}} sigma}} right) приблизительно A exp left (-B left ({ frac {L- mu} { sigma}} right) ^ {2} right)}{ displaystyle  Pr [X  leq L ] = { frac {1} {2}} + { frac {1} {2}}  operatorname {erf}  left ({ frac {L-  mu} {{ sqrt {2}}  sigma }}  right)  приблизительно A  exp  left (-B  left ({ frac {L-  mu} { sigma}}  right) ^ {2}  right)}

где A и B — верх числовые константы. Если L достаточно далеко от среднего, то есть μ — L ≥ σ ln ⁡ k { displaystyle mu -L geq sigma { sqrt { ln {k}}}} mu -L  geq  sigma { sqrt { ln {k}}} , то:

Pr [X ≤ L] ≤ A exp ⁡ (- B ln ⁡ k) = A К B { displaystyle Pr [X leq L] leq A exp (-B ln {k}) = { frac {A} {k ^ {B}}}}{ displaystyle  Pr [X  leq L]  leq A  exp (-B  ln {k}) = { frac {A} {k ^ {B}}}}

, поэтому становится вероятность 0 при k → ∞ { displaystyle k to infty}k  to  infty .

Свойства

Графики на комплексной плоскости Интегрируем exp (-z) erf (z)

Свойство erf ⁡ (- z) = — erf ⁡ (z) { displaystyle operatorname {erf} (-z) = — operatorname {erf} (z)} operatorname {erf} (-z) = -  operatorname {erf} (z) означает, что функция является ошибкой нечетной функции. Это связано с тем, что подынтегральное выражение e — t 2 { displaystyle e ^ {- t ^ {2}}}e ^ {- t ^ {2}} является четной функцией.

Для любого комплексное число z:

erf ⁡ (z ¯) = erf ⁡ (z) ¯ { displaystyle operatorname {erf} ({ overline {z}}) = { overline { operatorname {erf} (z)}}} operatorname {erf} ({ overline {z}}) = { overline { operatorname {erf} (z)}}

где z ¯ { displaystyle { overline {z}}}{ overline {z}} — комплексное сопряжение число z.

Подынтегральное выражение f = exp (−z) и f = erf (z) показано в комплексной плоскости z на рисунках 2 и 3. Уровень Im (f) = 0 показан жирным зеленым цветом. линия. Отрицательные целые значения Im (f) показаны жирными красными линиями. Положительные целые значения Im (f) показаны толстыми синими линиями. Промежуточные уровни Im (f) = проявляются тонкими зелеными линиями. Промежуточные уровни Re (f) = показаны тонкими красными линиями для отрицательных значений и тонкими синими линиями для положительных значений.

Функция ошибок при + ∞ равна 1 (см. интеграл Гаусса ). На действительной оси erf (z) стремится к единице при z → + ∞ и к −1 при z → −∞. На мнимой оси он стремится к ± i∞.

Серия Тейлора

Функция ошибок — это целая функция ; у него нет сингулярностей (кроме бесконечности), и его разложение Тейлора всегда сходится, но, как известно, «[…] его плохая сходимость, если x>1».

определяющий интеграл нельзя вычислить в закрытой форме в терминах элементарных функций, но путем расширения подынтегрального выражения e в его ряд Маклорена и интегрирована почленно, можно получить ряд Маклорена функции ошибок как:

erf ⁡ (z) = 2 π ∑ n = 0 ∞ (- 1) nz 2 n + 1 n! (2 n + 1) знак равно 2 π (z — z 3 3 + z 5 10 — z 7 42 + z 9 216 — ⋯) { displaystyle operatorname {erf} (z) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n} z ^ {2n + 1}} {n! (2n + 1)}} = { frac {2} { sqrt { pi}}} left (z — { frac {z ^ {3}} {3}} + { frac {z ^ { 5}} {10}} — { frac {z ^ {7}} {42}} + { frac {z ^ {9}} {216}} — cdots right)}{ displaystyle  operatorname {erf} (z) = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty} { frac { (-1) ^ {n} z ^ {2n + 1}} {п! (2n + 1)}} = { frac {2} { sqrt { pi}}}  left (z - { frac {z ^ {3}} {3}} + { frac {z ^ { 5}} {10}} - { frac {z ^ {7}} {42}} + { frac {z ^ {9}} {216}} -  cdots  right)}

, которое выполняется для каждого комплексного числа г. Члены знаменателя представляют собой последовательность A007680 в OEIS.

Для итеративного вычисления нового ряда может быть полезна следующая альтернативная формулировка:

erf ⁡ (z) = 2 π ∑ n = 0 ∞ (z ∏ К знак равно 1 N — (2 К — 1) Z 2 К (2 К + 1)) знак равно 2 π ∑ N = 0 ∞ Z 2 N + 1 ∏ К = 1 N — Z 2 К { Displaystyle OperatorName { erf} (z) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} left (z prod _ {k = 1} ^ {n} { frac {- (2k-1) z ^ {2}} {k (2k + 1)}} right) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} { frac {z} {2n + 1}} prod _ {k = 1} ^ {n} { frac {-z ^ {2}} {k}}} operatorname {erf} (z) = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty}  left (z  prod _ {k = 1} ^ {n} { frac {- (2k-1) z ^ {2}} {k (2k + 1))}}  right) = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty} { frac {z} {2n + 1}}  prod _ {k = 1} ^ {n} { frac {-z ^ {2}} {k}}

потому что что — (2 k — 1) z 2 k (2 k + 1) { displaystyle { frac {- (2k-1) z ^ {2}} {k (2k + 1))}} }{ frac {- (2k-1) z ^ {2}} {k (2k + 1)}} выражает множитель для превращения члена k в член (k + 1) (рассматривая z как первый член).

Функция мнимой ошибки имеет очень похожий ряд Маклорена:

erfi ⁡ (z) = 2 π ∑ n = 0 ∞ z 2 n + 1 n! (2 n + 1) знак равно 2 π (z + z 3 3 + z 5 10 + z 7 42 + z 9 216 + ⋯) { displaystyle operatorname {erfi} (z) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} { frac {z ^ {2n + 1}} {n! (2n + 1)}} = { frac {2} { sqrt { pi}}} left (z + { frac {z ^ {3}} {3}} + { frac {z ^ { 5}} {10}} + { frac {z ^ {7}} {42}} + { frac {z ^ {9}} {216}} + cdots right)}{ displaystyle  operatorname {erfi} (z) = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty} { frac {z ^ {2n + 1}} {n! (2n + 1)}} = { frac {2} { sqrt { pi}}}  left (z + { frac {z ^ {3}} {3}} + { frac {z ^ { 5}} {10}} + { frac {z ^ {7}} {42}} + { frac {z ^ {9}} {216}} +  cdots  right)}

, которое выполняется для любого комплексного числа z.

Производная и интеграл

Производная функция ошибок сразу следует из ее определения:

ddz erf ⁡ (z) = 2 π e — z 2. { displaystyle { frac {d} {dz}} operatorname {erf} (z) = { frac {2} { sqrt { pi}}} e ^ {- z ^ {2}}.}{ displaystyle { frac {d} {dz}}  operatorname {erf} (z) = { frac {2} { sqrt { pi}}} е ^ {- z ^ {2}}.}

Отсюда немедленно вычисляется производная функция мнимой ошибки :

ddz erfi ⁡ (z) = 2 π ez 2. { displaystyle { frac {d} {dz}} operatorname {erfi} (z) = { frac {2} { sqrt { pi }}} e ^ {z ^ {2}}.}{ displaystyle { frac {d} {dz}}  operatorname {erfi} (z) = { frac {2} { sqrt { pi}}} e ^ {z ^ {2}}.}

первообразная функции ошибок, которые можно получить посредством интегрирования по частям, составляет

z erf ⁡ (z) + е — z 2 π. { displaystyle z operatorname {erf} (z) + { frac {e ^ {- z ^ {2}}} { sqrt { pi}}}.}{ displaystyle z  operatorname {erf} (z) + {  frac {e ^ {- z ^ {2}}} {  sqrt { pi}}}.}

Первообразная мнимой функции ошибок, также можно получить интегрированием по частям:

z erfi ⁡ (z) — ez 2 π. { displaystyle z operatorname {erfi} (z) — { frac {e ^ {z ^ {2}}} { sqrt { pi}}}.}{ displaystyle z  operatorname {erfi} (z) - { frac {e ^ {z ^ {2}}} { sqrt { pi}}}.}

Производные высшего порядка задаются как

erf (k) ⁡ (z) = 2 (- 1) k — 1 π H k — 1 (z) e — z 2 = 2 π dk — 1 dzk — 1 (e — z 2), k = 1, 2, … { Displaystyle operatorname {erf} ^ {(k)} (z) = { frac {2 (-1) ^ {k-1}} { sqrt { pi}}} { mathit {H} } _ {k-1} (z) e ^ {- z ^ {2}} = { frac {2} { sqrt { pi}}} { frac {d ^ {k-1}} {dz ^ {k-1}}} left (e ^ {- z ^ {2}} right), qquad k = 1,2, dots}{ displaystyle  operatorname {erf} ^ {(k)} (z) = { frac {2 (-1) ^ {k-1}} { sqrt { pi}}} { mathit {H}} _ {k-1} (z) e ^ {- z ^ { 2}} = { frac {2} { sqrt { pi}}} { frac {d ^ {k-1}} {dz ^ {k-1}}}  left (e ^ {- z ^ {2}}  right),  qquad k = 1,2,  dots}

где H { displaystyle { mathit {H}}}{ displaystyle { mathit {H}}} — физики многочлены Эрмита.

ряд Бюрмана

Расширение, которое сходится быстрее для всех реальных значений x { displaystyle x}x , чем разложение Тейлора, получается с помощью теоремы Ганса Генриха Бюрмана :

erf ⁡ (x) = 2 π sgn ⁡ (x) 1 — e — x 2 (1 — 1 12 ( 1 — e — x 2) — 7 480 (1 — e — x 2) 2 — 5 896 (1 — e — x 2) 3 — 787 276480 (1 — e — x 2)) 4 — ⋯) знак равно 2 π знак ⁡ (x) 1 — e — x 2 (π 2 + ∑ k = 1 ∞ cke — kx 2). { displaystyle { begin {align} operatorname {erf} (x) = { frac {2} { sqrt { pi}}} operatorname {sgn} (x) { sqrt {1-e ^ {-x ^ {2}}}} left (1 — { frac {1} {12}} left (1-e ^ {- x ^ {2}} right) — { frac {7} {480}} left (1-e ^ {- x ^ {2}} right) ^ {2} — { frac {5} {896}} left (1-e ^ {- x ^ {2 }} right) ^ {3} — { frac {787} {276480}} left (1-e ^ {- x ^ {2}} right) ^ {4} — cdots right) \ [10pt] = { frac {2} { sqrt { pi}}} operatorname {sgn} (x) { sqrt {1-e ^ {- x ^ {2}}}} left ({ frac { sqrt { pi}} {2}} + sum _ {k = 1} ^ { infty} c_ {k} e ^ {- kx ^ {2}} right). end {выровнено}}{ displaystyle { begin {align}  operatorname {erf} (x) = { frac {2} { sqrt { pi}}}  operatorname {sgn} (x) { sqrt {1-e ^ {- x ^ {2}}}}  left (1 - { frac {1} {12}}  left (1 -e ^ {- x ^ {2}}  right) - { frac {7} {480}}  left (1-e ^ {- x ^ {2}}  right) ^ {2} - { frac {5} {896}}  left (1-e ^ {- x ^ {2}}  right) ^ {3} - { frac {787} {276480}}  left (1-e ^ {- x ^ {2 }}  right) ^ {4} -  cdots  right) \ [10pt] = { frac {2} { sqrt { pi}}}  operatorname {sgn} (x) { sqrt {1 -e ^ {- x ^ {2}}}}  left ({ frac { sqrt { pi}} {2}} +  sum _ {k = 1} ^ { infty} c_ {k} e ^ {- kx ^ {2}}  right).  end {align}}}

Сохраняя только первые два коэффициента и выбирая c 1 = 31 200 { displaystyle c_ {1} = { frac {31} {200}}}c_ {1} = { frac {31} {200}} и c 2 = — 341 8000, { displaystyle c_ {2} = — { frac {341} {8000}},}{ displayst yle c_ {2} = - { frac {341} {8000}},} результирующая аппроксимация дает наибольшую относительную ошибку при x = ± 1,3796, { displaystyle x = pm 1,3796,}{ displaystyle x =  pm 1.3796,} , где оно меньше 3,6127 ⋅ 10 — 3 { displaystyle 3.6127 cdot 10 ^ {- 3}}{ displaystyle 3.6127  cdot 10 ^ {- 3}} :

erf ⁡ (x) ≈ 2 π sign ⁡ (x) 1 — e — x 2 (π 2 + 31 200 e — x 2 — 341 8000 e — 2 х 2). { displaystyle operatorname {erf} (x) приблизительно { frac {2} { sqrt { pi}}} operatorname {sgn} (x) { sqrt {1-e ^ {- x ^ {2 }}}} left ({ frac { sqrt { pi}} {2}} + { frac {31} {200}} e ^ {- x ^ {2}} — { frac {341} {8000}} e ^ {- 2x ^ {2}} right).}{ displaystyle  operatorname {erf} (x)  приблизительно { frac {2} { sqrt { pi}}}  operatorname {sgn} (x) { sqrt {1-e ^ {- x ^ {2}} }}  left ({ frac { sqrt { pi}} {2}} + { frac {31} {200}} e ^ {- x ^ {2}} - { frac {341} {8000 }} e ^ {- 2x ^ {2}}  right).}

Обратные функции

Обратная функция

Учитывая комплексное число z, не существует уникального комплексного числа w, удовлетворяющего erf ⁡ (w) = z { displaystyle operatorname {erf} (w) = z} operatorname {erf} (w) = z , поэтому истинная обратная функция будет многозначной. Однако для −1 < x < 1, there is a unique real number denoted erf — 1 ⁡ (x) { displaystyle operatorname {erf} ^ {- 1} (x)} operatorname {erf} ^ {- 1} (х) , удовлетворяющего

erf ⁡ (erf — 1 ⁡ ( х)) = х. { displaystyle operatorname {erf} left ( operatorname {erf} ^ {- 1} (x) right) = x.}{ displaystyle  operatorname {erf}  left ( operatorname {erf} ^ {- 1} (x)  right) = x.}

Обратная функция ошибок обычно определяется с помощью домена (- 1,1), и он ограничен этой областью многих систем компьютерной алгебры. Однако его можно продолжить и на диск | z | < 1 of the complex plane, using the Maclaurin series

erf — 1 ⁡ (z) знак равно ∑ К знак равно 0 ∞ ck 2 k + 1 (π 2 z) 2 k + 1, { displaystyle operatorname {erf} ^ {- 1} (z) = sum _ {k = 0} ^ { infty} { frac {c_ {k}} {2k + 1}} left ({ frac { sqrt { pi}} {2}} z right) ^ {2k + 1},}{ displaystyle  operatorname {erf} ^ {- 1} (z) =  sum _ {k = 0} ^ { infty} { frac {c_ {k}} {2k + 1}}  left ({ frac { sqrt { pi}} {2}} z  right) ^ {2k + 1},}

где c 0 = 1 и

ck = ∑ m = 0 k — 1 cmck — 1 — m (m + 1) (2 m + 1) = {1, 1, 7 6, 127 90, 4369 2520, 34807 16200,…}. { displaystyle c_ {k} = sum _ {m = 0} ^ {k-1} { frac {c_ {m} c_ {k-1-m}} {(m + 1) (2m + 1) }} = left {1,1, { frac {7} {6}}, { frac {127} {90}}, { frac {4369} {2520}}, { frac {34807} {16200}}, ldots right }.}c_ {k} =  sum _ {m = 0} ^ {k-1} {  frac {c_ {m} c_ {k-1-m}} {(m + 1) (2m + 1)}} =  left  {1,1, { frac {7} {6}}, {  frac {127} {90}}, { frac {4369} {2520}}, { frac {34807} {16200}},  ldots  right }.

Итак, у нас есть разложение в ряд (общие множители были удалены из числителей и знаменателей):

erf — 1 ⁡ (z) = 1 2 π ( z + π 12 z 3 + 7 π 2 480 z 5 + 127 π 3 40320 z 7 + 4369 π 4 5806080 z 9 + 34807 π 5 182476800 z 11 + ⋯). { displaystyle operatorname {erf} ^ {- 1} (z) = { tfrac {1} {2}} { sqrt { pi}} left (z + { frac { pi} {12} } z ^ {3} + { frac {7 pi ^ {2}} {480}} z ^ {5} + { frac {127 pi ^ {3}} {40320}} z ^ {7} + { frac {4369 pi ^ {4}} {5806080}} z ^ {9} + { frac {34807 pi ^ {5}} {182476800}} z ^ {11} + cdots right). }{ displaystyle  operatorname {erf} ^ {- 1} (z) = { tfrac {1} {2}} { sqrt { pi}}  left (z + { frac {  pi} {12}} z ^ {3} + { frac {7  pi ^ {2}} {480}} z ^ {5} + { frac {127  pi ^ {3}} {40320} } z ^ {7} + { frac {4369  pi ^ {4}} {5806080}} z ^ {9} + { frac {34807  pi ^ {5}} {182476800}} z ^ {11} +  cdots  right).}

(После отмены дроби числителя / знаменателя характерми OEIS : A092676 / OEIS : A092677 в OEIS ; без отмены членов числителя в записи OEIS : A002067.) Значение функции ошибок при ± ∞ равно ± 1.

Для | z | < 1, we have erf ⁡ (erf — 1 ⁡ (z)) = z { displaystyle operatorname {erf} left ( operatorname {erf} ^ {- 1} (z) right) = z} OperatorName {erf}  left ( operatorname {erf} ^ {- 1} (z)  right) = z .

обратная дополнительная функция ошибок определяется как

erfc — 1 ⁡ (1 — z) = erf — 1 ⁡ (z). { displaystyle operatorname {erfc} ^ {- 1} (1-z) = operatorname {erf} ^ {- 1} (z).} operatorname {erfc} ^ {- 1} (1-z) =  operatorname {erf} ^ {- 1} (z).

Для действительного x существует уникальное действительное число erfi — 1 ⁡ (x) { displaystyle operatorname {erfi} ^ {- 1} (x)} имя оператора {erfi} ^ {- 1} (x) удовлетворяет erfi ⁡ (erfi — 1 ⁡ (x)) = x { displaystyle operatorname { erfi} left ( operatorname {erfi} ^ {- 1} (x) right) = x} operatorname {erfi}  left ( operatorname {erfi} ^ {- 1} (x)  right) = x . функция обратной мнимой ошибки определяется как erfi — 1 ⁡ (x) { displaystyle operatorname {erfi} ^ {- 1} (x)} имя оператора {erfi} ^ {- 1} (x) .

Для любого действительного x, Метод Ньютона можно использовать для вычислений erfi — 1 ⁡ (x) { displaystyle operatorname {erfi} ^ {- 1} (x)} имя оператора {erfi} ^ {- 1} (x) , а для — 1 ≤ x ≤ 1 { displaystyle -1 leq x leq 1}-1  leq x  leq 1 , сходится следующий ряд Маклорена:

erfi — 1 ⁡ (z) = ∑ k = 0 ∞ (- 1) ККК 2 К + 1 (π 2 Z) 2 К + 1, { Displaystyle OperatorName {erfi} ^ {- 1} (г) = сумма _ {к = 0} ^ { infty} { гидроразрыва {(-1) ^ {k} c_ {k}} {2k + 1}} left ({ frac { sqrt { pi}} {2}} z right) ^ {2k + 1},}{ displaystyle  имя оператора {erfi} ^ {- 1} (z) =  sum _ {k = 0} ^ { infty} { frac {(-1) ^ {k} c_ {k}} {2k + 1}}  left ({ frac { sqrt { pi}} {2}} z  справа) ^ {2k + 1},}

, где c k определено, как указано выше.

Асимптотическое разложение

Полезным асимптотическим разложением дополнительные функции (и, следовательно, также и функции ошибок) для больших вещественных x

erfc ⁡ (x) = e — x 2 x π [1 + ∑ n = 1 ∞ (- 1) n 1 ⋅ 3 ⋅ 5 ⋯ (2 n — 1) (2 x 2) n] = e — x 2 x π ∑ n = 0 ∞ (- 1) п (2 п — 1)! ! (2 х 2) n, { displaystyle operatorname {erfc} (x) = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}} left [1 + sum _ {n = 1} ^ { infty} (- 1) ^ {n} { frac {1 cdot 3 cdot 5 cdots (2n-1)} {(2x ^ {2}) ^ {n}}} right] = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}} sum _ {n = 0} ^ { infty} ( -1) ^ {n} { frac {(2n-1) !!} {(2x ^ {2}) ^ {n}}},}{ displaystyle  operatorname {erfc} (x) = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}}  left [1+  sum _ {n = 1} ^ { infty} (-1) ^ {n} { frac {1  cdot 3  cdot 5  cdots (2n-1)} {(2x ^ {2}) ^ { n}}}  right] = { frac {e ^ {-x ^ {2}}} {x { sqrt { pi}}}}  sum _ {n = 0} ^ { infty} (- 1) ^ {n} { frac {(2n-1) !!} {(2x ^ {2}) ^ {n}}},}

где (2n — 1) !! — это двойной факториал числа (2n — 1), которое является произведением всех нечетных чисел до (2n — 1). Этот ряд расходуется для любого конечного x, и его значение как асимптотического разложения состоит в том, что для любого N ∈ N { displaystyle N in mathbb {N}}N  in  N имеется

erfc ⁡ (Икс) знак равно е — Икс 2 Икс π ∑ N знак равно 0 N — 1 (- 1) N (2 N — 1)! ! (2 х 2) n + RN (x) { displaystyle operatorname {erfc} (x) = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}} sum _ {n = 0} ^ {N-1} (- 1) ^ {n} { frac {(2n-1) !!} {(2x ^ {2}) ^ {n}}} + R_ {N} (x)}{ displaystyle  operatorname {erfc} (x) = { frac {e ^ { - x ^ {2}}} {x { sqrt { pi}}}}  sum _ {n = 0} ^ {N- 1} (- 1) ^ {n} { frac {(2n-1) !!} {(2x ^ {2}) ^ {n}}} + R_ {N} (x)}

где остаток в нотации Ландау равен

RN (x) = O (x 1 — 2 N e — x 2) { displaystyle R_ {N} ( x) = O left (x ^ {1-2N} e ^ {- x ^ {2}} right)}{ displaystyle R_ {N} (x) = O  left (x ^ {1-2N} e ^ {- x ^ {2}}  right)}

при x → ∞. { displaystyle x to infty.}x  к  infty.

Действительно, точное значение остатка равно

R N (x): = (- 1) N π 2 1 — 2 N (2 N)! N! ∫ Икс ∞ T — 2 N e — T 2 dt, { Displaystyle R_ {N} (x): = { frac {(-1) ^ {N}} { sqrt { pi}}} 2 ^ { 1-2N} { frac {(2N)!} {N!}} Int _ {x} ^ { infty} t ^ {- 2N} e ^ {- t ^ {2}} , dt,}{ displaystyle R_ {N} (x): = { frac {(-1) ^ {N}} { sqrt { pi}}} 2 ^ {1-2N} { frac {(2N)!} {N!}}  Int _ {x} ^ { infty} t ^ {- 2N} e ^ {- t ^ {2}} , dt,}

который легко следует по индукции, записывая

e — t 2 = — (2 t) — 1 (e — t 2) ′ { displaystyle e ^ {- t ^ {2}} = — (2t) ^ {- 1} left (e ^ {- t ^ {2}} right) ‘}{displaystyle e^{-t^{2}}=-(2t)^{-1}left(e^{-t^{2}}right)'}

и интегрирование по частям.

Для достаточно больших значений x, только первые несколько этих асимптотических разностей необходимы, чтобы получить хорошее приближение erfc (x) (в то время как для не слишком больших значений x приведенное выше разложение Тейлора при 0 обеспечивает очень быструю сходимость).

Расширение непрерывной дроби

A Разложение непрерывной дроби дополнительные функции ошибок:

erfc ⁡ (z) = z π e — z 2 1 z 2 + a 1 1 + a 2 z 2 + a 3 1 + ⋯ am = м 2. { displaystyle operatorname {erfc} (z) = { frac {z} { sqrt { pi}}} e ^ {- z ^ {2}} { cfrac {1} {z ^ {2} + { cfrac {a_ {1}} {1 + { cfrac {a_ {2}} {z ^ {2} + { cfrac {a_ {3}} {1+) dotsb}}}}}}}} qquad a_ {m} = { frac {m} {2}}.}{ displaystyle  operatorname {erfc} (z) = { frac {z} { sqrt { pi}}} e ^ {- z ^ {2}} { cfrac {1} {z ^ {2 } + { cfrac {a_ {1}} {1 + { cfrac {a_ {2}} {z ^ {2} + { cfrac {a_ {3}} {1+  dotsb}}}}}} }}  qquad a_ {m} = { frac {m} {2}}.}

Интеграл функции ошибок с функцией плотности Гаусса

∫ — ∞ ∞ erf ⁡ (ax + б) 1 2 π σ 2 е — (Икс — μ) 2 2 σ 2 dx знак равно erf ⁡ [a μ + b 1 + 2 a 2 σ 2], a, b, μ, σ ∈ R { displaystyle int _ {- infty} ^ { infty} operatorname {erf} left (ax + b right) { frac {1} { sqrt {2 pi sigma ^ {2}}}} e ^ {- { frac {(x- mu) ^ {2}} {2 sigma ^ {2}}}} , dx = operatorname {erf} left [{ frac {a mu + b } { sqrt {1 + 2a ^ {2} sigma ^ {2}}} right], qquad a, b, mu, sigma in mathbb {R}}{ displaystyle  int _ {-  infty} ^ { infty}  operatorname {erf}  left (ax + b  right) { frac {1} { sqrt {2  pi  sigma ^ {2}}}} e ^ {- { frac {(x-  mu) ^ {2}} {2  sigma ^ {2}}}} , dx =  operatorname {erf}  left [{ frac {a  mu + b} { sqrt {1 + 2a ^ {2}  sigma ^ {2}}}  right],  qquad a, b,  му,  sigma  in  mathbb {R}}

Факториальный ряд

  • Обратное:
erfc ⁡ z = e — z 2 π z ∑ n = 0 ∞ (- 1) n Q n (z 2 + 1) n ¯ = e — z 2 π z (1 — 1 2 1 (z 2 + 1) + 1 4 1 (z 2 + 1) (z 2 + 2) — ⋯) { displaystyle { begin {align} operatorname {erfc} z = { frac {e ^ {- z ^ {2}}} {{ sqrt { pi}} , z}} sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n} Q_ {n}} {{(z ^ {2} + 1)} ^ { ba r {n}}}} \ = { frac {e ^ {- z ^ {2}}} {{ sqrt { pi}} , z}} left ( 1 — { frac {1} {2}} { frac {1} {(z ^ {2} +1)}} + { frac {1} {4}} { frac {1} {(z ^ {2} +1) (z ^ {2} +2)}} — cdots right) end {align}}}{ displaystyle { begin {align}  operatorname {erfc} z = { frac {e ^ {- z ^ {2}}} {{ sqrt {  pi}} , z}}  sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n} Q_ {n}} {{(z ^ {2} +1) } ^ { bar {n}}}} \ = { frac {e ^ {- z ^ {2}}} {{ sqrt { pi}} , z}}  left (1 - {  frac {1} {2}} { frac {1} {(z ^ {2} +1)}} + { frac {1} {4}} { frac {1} {(z ^ {2 } +1) (z ^ {2} +2)}} -  cdots  right)  end {align}}}
сходится для Re ⁡ (z 2)>0. { displaystyle operatorname {Re} (z ^ {2})>0.}{displaystyle operatorname {Re} (z^{2})>0.} Здесь

Q n = def 1 Γ (1/2) ∫ 0 ∞ τ (τ — 1) ⋯ ( τ — n + 1) τ — 1/2 е — τ d τ знак равно ∑ К знак равно 0 N (1 2) к ¯ s (n, k), { displaystyle Q_ {n} { stackrel { text {def}} {=}} { frac {1} { Gamma (1/2)}} int _ {0} ^ { infty} tau ( tau -1) cdots ( tau -n + 1) tau ^ {-1/2} e ^ {- tau} d tau = sum _ {k = 0} ^ {n} left ({ frac {1} {2}} right) ^ { bar {k}} s (n, k),}{ displaystyle Q_ {n} { stackrel { text {def} } {=}} { frac {1} { Gamma (1/2)}}  int _ {0} ^ { infty}  tau ( tau -1)  cdots ( tau -n + 1)  tau ^ {- 1/2} e ^ {-  tau} d  tau =  sum _ {k = 0} ^ {n}  left ({ frac {1} {2}}  right) ^ {  bar {k}} s (n, k),}
zn ¯ { displaystyle z ^ { bar {n}}}{ displaystyle z ^ { bar {n}}} обозначает возрастающий факториал, а s (n, k) { displaystyle s (n, k)}{ displaystyle s (n, k)} обозначает знаковое число Стирлинга первого рода.
  • Представление бесконечной суммой, составляющей двойной факториал :
ERF ⁡ (Z) знак равно 2 π ∑ N знак равно 0 ∞ (- 2) N (2 N — 1)! (2 N + 1)! Z 2 N + 1 { Displaystyle OperatorName {ERF} (г) = { frac {2} { sqrt { pi}}} sum _ {n = 0} ^ { infty} { frac {( -2) ^ {n} (2n-1) !!} {(2n + 1)!}} Z ^ {2n + 1}}{ displaystyle  operatorname {erf} (z) = { frac {2} { sqrt { число Пи}}}  sum _ {n = 0} ^ { infty} { frac {(-2) ^ {n} (2n-1) !!} { (2n + 1)!}} Z ^ {2n + 1}}

Численные приближения

Приближение элементов сарными функциями

  • Абрамовиц и Стегун дают несколько приближений с точностью (уравнения 7.1.25–28). Это позволяет выбрать наиболее быстрое приближение, подходящее для данного приложения. В порядке увеличения точности они следующие:
erf ⁡ (x) ≈ 1 — 1 (1 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4) 4, x ≥ 0 { displaystyle имя оператора {erf} (x) приблизительно 1 — { frac {1} {(1 + a_ {1} x + a_ {2} x ^ {2} + a_ {3} x ^ {3} + a_ { 4} x ^ {4}) ^ {4}}}, qquad x geq 0}{ displaystyle  operatorname {erf} (x)  приблизительно 1- { frac {1 } {(1 + a_ {1} x + a_ {2} x ^ {2} + a_ {3} x ^ {3} + a_ {4} x ^ {4}) ^ {4}}},  qquad х  geq 0}
(максимальная ошибка: 5 × 10)
, где a 1 = 0,278393, a 2 = 0,230389, a 3 = 0,000972, a 4 = 0,078108
erf ⁡ (x) ≈ 1 — (a 1 t + a 2 t 2 + a 3 t 3) e — x 2, t = 1 1 + px, x ≥ 0 { displaystyle operatorname {erf} (x) приблизительно 1- (a_ {1} t + a_ {2} t ^ {2} + a_ {3} t ^ {3}) e ^ {- x ^ {2}}, quad t = { frac {1} {1 + px}}, qquad x geq 0}{ displaystyle  operatorname {erf} (x)  приблизительно 1- (a_ {1} t + a_ {2} t ^ {2} + a_ {3} t ^ {3}) e ^ {- x ^ {2}},  quad t = { frac {1} {1 + px}},  qquad x  geq 0} (максимальная ошибка: 2,5 × 10)
где p = 0,47047, a 1 = 0,3480242, a 2 = -0,0958798, a 3 = 0,7478556
erf ⁡ (x) ≈ 1 — 1 (1 + a 1 x + a 2 x 2 + ⋯ + a 6 x 6) 16, x ≥ 0 { displaystyle operatorname {erf} (x) приблизительно 1 — { frac {1} {(1 + a_ {1} x + a _ {2} x ^ {2} + cdots + a_ {6} x ^ {6}) ^ {16}}}, qquad x geq 0}{ displaystyle  operatorname {erf} (x)  приблизительно 1 - { frac {1} {(1 + a_ {1} x + a_ {2} x ^ {2} +  cdots + a_ {6} x ^ {6}) ^ {16}}},  qquad x  geq 0} (максимальная ошибка: 3 × 10)
, где a 1 = 0,0705230784, a 2 = 0,0422820123, a 3 = 0,0092705272, a 4 = 0,0001520143, a 5 = 0,0002765672, a 6 = 0,0000430638
erf ⁡ (x) ≈ 1 — (a 1 t + a 2 t 2 + ⋯ + a 5 t 5) e — x 2, t = 1 1 + px { displaystyle operatorname {erf} (x) приблизительно 1- (a_ {1} t + a_ {2} t ^ {2} + cdots + a_ {5} t ^ {5}) e ^ {- x ^ {2}}, quad t = { frac {1} {1 + px}}}{ displaystyle  operatorname {erf} (x)  приблизительно 1- (a_ {1} t + a_ {2} t ^ {2} +  cdots + a_ {5} t ^ {5}) e ^ {- x ^ {2}},  quad t = { frac {1} {1 + px}}} (максимальная ошибка: 1,5 × 10)
, где p = 0,3275911, a 1 = 0,254829592, a 2 = −0,284496736, a 3 = 1,421413741, a 4 = −1,453152027, a 5 = 1,061405429
Все эти приближения действительны для x ≥ 0 Чтобы использовать эти приближения для отрицательного x, викорируйте тот факт, что erf (x) — нечетная функция, поэтому erf (x) = −erf (−x).
  • Экспоненциальные границы и чисто экспоненциальное приближение для дополнительных функций задаются как
erfc ⁡ (x) ≤ 1 2 e — 2 x 2 + 1 2 e — x 2 ≤ e — x 2, x>0 erfc ⁡ ( х) ≈ 1 6 е — х 2 + 1 2 е — 4 3 х 2, х>0. { displaystyle { begin {align} operatorname {erfc} (x) leq { frac {1} {2}} e ^ {- 2x ^ {2}} + { frac {1} {2} } e ^ {- x ^ {2}} leq e ^ {- x ^ {2}}, qquad x>0 \ имя оператора {erfc} (x) приблизительно { frac {1} { 6}} e ^ {- x ^ {2}} + { frac {1} {2}} e ^ {- { frac {4} {3}} x ^ {2}}, qquad x>0. end {align}}}{displaystyle {begin{aligned}operatorname {erfc} (x)leq {frac {1}{2}}e^{-2x^{2}}+{frac {1}{2}}e^{-x^{2}}leq e^{-x^{2}},qquad x>0 \ operatorname {erfc} (x)  приблизительно { frac {1} {6}} e ^ {- x ^ {2}} + { frac {1} {2}} e ^ {- { frac {4} {3}} x ^ {2}},  qquad x>0.  end {align}}}
erfc ⁡ (x) ≈ (1 — e — A x) e — x 2 B π х. { displaystyle operatorname {erfc} left (x right) приблизительно { frac { left (1-e ^ {- Ax} right) e ^ {- x ^ {2}}} {B { sqrt { pi}} x}}.}{ Displaystyle  имя оператора {erfc}  left (x  right)  приблизительно { frac { left (1-e ^ {- Ax}  right) e ^ {- x ^ {2}}} {B { sqrt { pi }} x}}.}
Они определили {A, B} = {1.98, 1.135}, { displaystyle {A, B } = {1.98,1.135 },}{ displaystyle  {A, B } =  {1.98,1.135 },} , что дает хорошее приближение для всех x ≥ 0. { displaystyle x geq 0.}{ displaystyle x  geq 0.}
  • Одноканальная нижняя граница:
erfc ⁡ (x) ≥ 2 e π β — 1 β е — β Икс 2, Икс ≥ 0, β>1, { Displaystyle OperatorName {erfc} (x) geq { sqrt { frac {2e} { pi}}} { frac { sqrt { beta -1}} { beta}} e ^ {- beta x ^ {2}}, qquad x geq 0, beta>1,}{displaystyle operatorname {erfc} (x)geq {sqrt {frac {2e}{pi }}}{frac {sqrt {beta -1}}{beta }}e^{-beta x^{2}},qquad xgeq 0,beta>1, }
где параметр β может быть выбран, чтобы минимизировать ошибку на желаемом интервале приближения.
  • Другое приближение дано Сергеем Виницким с использованием его «глобальных приближений Паде»:
erf ⁡ (x) ≈ sgn ⁡ (x) 1 — exp ⁡ (- x 2 4 π + ax 2 1 + ax 2) { displaystyle operatorname {erf} (x) приблизительно Operatorname {sgn} (x) { sqrt {1- exp left (-x ^ {2} { frac {{ frac {4} { pi) })} + ax ^ {2}} {1 + ax ^ {2}}} right)}}}{ Displaystyle  OperatorName {ERF} (х)  приблизительно  OperatorName {SGN } (х) { sqrt {1-  exp  left (-x ^ {2} { frac {{ frac {4} { pi}} + ax ^ {2}} {1 + ax ^ {2 }}}  right)}}}
где
a = 8 (π — 3) 3 π (4 — π) ≈ 0, 140012. { displaystyle a = { frac {8 ( pi -3)} {3 pi (4- pi)}} приблизительно 0,140012.}{ displaystyle a = { frac {8 ( pi -3)} {3  pi (4-  pi)}}  приблизительно 0,140012.}
Это сделано так, чтобы быть очень точным в окрестностях 0 и добавление бесконечности, а относительная погрешность меньше 0,00035 для всех действительных x. Использование альтернативного значения ≈ 0,147 снижает максимальную относительную ошибку примерно до 0,00013.
Это приближение можно инвертировать, чтобы получить приближение для других функций ошибок:
erf — 1 ⁡ (x) ≈ sgn ⁡ (x) (2 π a + ln ⁡ (1 — x 2) 2) 2 — ln ⁡ (1 — x 2) a — (2 π a + ln ⁡ (1 — x 2) 2). { displaystyle operatorname {erf} ^ {- 1} (x) приблизительно operatorname {sgn} (x) { sqrt {{ sqrt { left ({ frac {2} { pi a}} + { frac { ln (1-x ^ {2})} {2}} right) ^ {2} — { frac { ln (1-x ^ {2})} {a}}}} — left ({ frac {2} { pi a}} + { frac { ln (1-x ^ {2})} {2}} right)}}.}{ displaystyle  operatorname {erf} ^ {- 1} ( x)  приблизительно  OperatorName {sgn} (x) { sqrt {{ sqrt { left ({ frac {2} { pi a}} + { frac { ln (1-x ^ {2}))} {2}}  right) ^ {2} - { frac { ln (1-x ^ {2})} {a}}}} -  left ({ frac {2} { pi a }} + { frac { ln (1-x ^ {2})} {2}}  right)}}.}

Многочлен

Приближение с максимальной ошибкой 1,2 × 10-7 { displaystyle 1,2 times 10 ^ {- 7}}1,2  times 10 ^ {- 7} для любого действительного аргумента:

erf ⁡ ( x) = {1 — τ x ≥ 0 τ — 1 x < 0 {displaystyle operatorname {erf} (x)={begin{cases}1-tau xgeq 0\tau -1x<0end{cases}}}{ displaystyle  operatorname {erf} (x) = { begin {case} 1-  tau x  geq 0 \ тау -1 x <0  end {cases}}

с

τ = t ⋅ exp ⁡ (- x 2 — 1,26551223 + 1,00002368 t + 0,37409196 t 2 + 0,09678418 t 3 — 0,18628806 t 4 + 0,27886807 t 5 — 1,13520398 t 6 + 1,48851587 t 7 — 0,82215223 t 8 + 0,17087277 t 9) { displaystyle { begin {align} tau = t cdot exp left (-x ^ {2} -1,26551223 + 1,00002368 t + 0,37409196t ^ {2} + 0,09678418t ^ {3} -0,18628806t ^ {4} вправо. \ left. qquad qquad qquad + 0,27886807t ^ {5} -1,13520398t ^ {6} + 1,48851587t ^ {7} -0,82215223t ^ {8} + 0,17087 277t ^ {9} right) end {align}}}{ displaystyle { begin {align}  tau = t  cdot  exp  left (-x ^ {2} -1,26551223 + 1,00002368t + 0,37409196t ^ { 2} + 0,09678418t ^ {3} -0,18628806t ^ {4}  right. \  осталось.  Qquad  qquad  qquad + 0,27886807t ^ {5} -1,13520398t ^ {6} + 1.48851587t ^ {7} - 0,82215223t ^ {8} + 0,17087277t ^ {9}  right)  end {align}}}

и

t = 1 1 + 0,5 | х |. { displaystyle t = { frac {1} {1 + 0,5 | x |}}.}t = { frac {1} {1 + 0,5 | х |}}.

Таблица значений

x erf(x) 1-erf (x)
0 0 1
0,02 0,022564575 0,977435425
0,04 0,045111106 0,954888894
0,06 0,067621594 0, 932378406
0,08 0.090078126 0,909921874
0,1 0,112462916 0,887537084
0,2 0,222702589 0,777297411
0,3 0,328626759 0,671373241
0, 4 0,428392355 0,571607645
0,5 0,520499878 0,479500122
0,6 0.603856091 0,396143909
0,7 0,677801194 0,322198806
0,8 257> 0,742100965 0,257899035
0,9 0,796908212 0,203091788
1 0,842700793 0, 157299207
1,1 0,88020507 0,11979493
1,2 0,910313978 0,089686022
1,3 0,934007945 0,065992055
1,4 0.95228512 0,04771488
1,5 0, 966105146 0,033894854
1,6 0,976348383 0,023651617
1,7 0,983790459 0,016209541
1,8 0,989090502 0,010909498
1,9 0,992790429 0,007209571
2 0,995322265<25767> 0,00477
2.1 0.997020533 0.002979467
2.2 0.998137154 0,001862846
2,3 0,998856823 0,001143177
2,4 0,999311486 0,000688514
2,5 0.999593048 0.000406952
3 0.99997791 0,00002209
3,5 0,999999257 0,000000743

Связанные функции

Дополнительная функция

дополнительная функция ошибок, обозначается erfc { displaystyle mathrm {erfc}} mathrm {erfc} , определяется как

erfc ⁡ (x) = 1 — erf ⁡ (x) = 2 π ∫ x ∞ e — t 2 dt знак равно е — Икс 2 erfcx ⁡ (х), { displaystyle { begin {выровнено} OperatorName {erfc} (x) = 1- operatorname {erf} (x) \ [5p t] = { frac {2} { sqrt { pi}}} int _ {x} ^ { infty} e ^ {- t ^ {2}} , dt \ [5pt] = e ^ {- x ^ {2}} operatorname {erfcx} (x), end {align}}}{ displaystyle { begin {align}  operatorname {erfc} (x) = 1-  operatorname {erf} (x) \ [5pt ] = { frac {2} { sqrt { pi}}}  int _ {x} ^ { infty} e ^ {- t ^ {2}} , dt \ [5pt] = e ^ {- x ^ {2}}  operatorname {erfcx} (x),  end {align}}}

, который также определяет erfcx { displaystyle mathrm {erfcx} }{ displaystyle  mathrm {erfcx}} , масштабированная дополнительная функция ошибок (которую можно использовать вместо erfc, чтобы избежать арифметического переполнения ). Известна другая форма erfc ⁡ (x) { displaystyle operatorname {erfc} (x)}{ displaystyle  operatorname {erfc} (x)} для неотрицательного x { displaystyle x}x как формула Крейга после ее первооткрывателя:

erfc ⁡ (x ∣ x ≥ 0) = 2 π ∫ 0 π / 2 exp ⁡ (- x 2 sin 2 ⁡ θ) d θ. { displaystyle operatorname {erfc} (x mid x geq 0) = { frac {2} { pi}} int _ {0} ^ { pi / 2} exp left (- { frac {x ^ {2}} { sin ^ {2} theta}} right) , d theta.}{ displaystyle  operatorname {erfc} (x  mid x  geq 0) = { frac {2} { pi}}  int _ {0} ^ {  pi / 2}  exp  left (- { frac {x ^ {2}} { sin ^ {2}  theta}}  right) , d  theta.}

Это выражение действительно только для положительных значений x, но его можно использовать вместе с erfc (x) = 2 — erfc (−x), чтобы получить erfc (x) для отрицательных значений. Эта форма выгодна тем, что диапазон интегрирования является фиксированным и конечным. Расширение этого выражения для erfc { displaystyle mathrm {erfc}} mathrm {erfc} суммы двух неотрицательных чисел следующим образом:

erfc ⁡ (x + y ∣ x, y ≥ 0) = 2 π ∫ 0 π / 2 ехр ⁡ (- x 2 sin 2 ⁡ θ — y 2 cos 2 ⁡ θ) d θ. { displaystyle operatorname {erfc} (x + y mid x, y geq 0) = { frac {2} { pi}} int _ {0} ^ { pi / 2} exp left (- { frac {x ^ {2}} { sin ^ {2} theta}} — { frac {y ^ {2}} { cos ^ {2} theta}} right) , d theta.}{ displaystyle  operatorname {erfc} (x + y  mid x, y  geq 0) = { frac {2} { pi}}  int _ {0} ^ { pi / 2}  exp  left (- { frac {x ^ {2}} { sin ^ {2}  theta}} - { frac {y ^ {2}} { cos ^ {2}  theta}}  right) , d  theta.}

Функция мнимой ошибки

мнимой ошибки, обозначаемая erfi, обозначает ошибки как

erfi ⁡ (x) = — i erf ⁡ (ix) Знак равно 2 π ∫ 0 xet 2 dt знак равно 2 π ex 2 D (x), { displaystyle { begin {align} operatorname {erfi} (x) = — i operatorname {erf} (ix) \ [ 5pt] = { frac {2} { sqrt { pi}}} int _ {0} ^ {x} e ^ {t ^ {2}} , dt \ [5pt] = { frac {2} { sqrt { pi}}} e ^ {x ^ {2}} D (x), end {align}}}{ displaystyle { begin {align}  operatorname {erfi} (x) = - i  operatorname {erf} (ix) \ [5pt] = { frac {2} { sqrt { pi}}}  int _ {0} ^ {x} e ^ {t ^ {2 }} , dt \ [5pt] = { frac {2} { sqrt { pi}}} e ^ {x ^ {2}} D (x),  end {align}}}

где D (x) — функция Доусона (который можно использовать вместо erfi, чтобы избежать арифметического переполнения ).

Несмотря на название «функция мнимой ошибки», erfi ⁡ (x) { displaystyle operatorname {erfi} (x)} operatorname {erfi} (x) реально, когда x действительно.

Функция Когда ошибки оценивается для произвольных сложных аргументов z, результирующая комплексная функция ошибок обычно обсуждается в масштабированной форме как функция Фаддеева :

w (z) = e — z 2 erfc ⁡ (- iz) = erfcx ⁡ (- iz). { displaystyle w (z) = e ^ {- z ^ {2}} operatorname {erfc} (-iz) = operatorname {erfcx} (-iz).}вес (z) = e ^ {- z ^ {2}}  operatorname {erfc} (-iz) =  operatorname {erfcx} (-iz).

Кумулятивная функция распределения

Функция ошибок по существующей стандартной стандартной функции нормального кумулятивного распределения, обозначаемой нормой (x) в некоторых языках программного обеспечения, поскольку они отличаются только масштабированием и переводом. Действительно,

Φ (x) = 1 2 π ∫ — ∞ xe — t 2 2 dt = 1 2 [1 + erf ⁡ (x 2)] = 1 2 erfc ⁡ (- x 2) { displaystyle Phi (x) = { frac {1} { sqrt {2 pi}}} int _ {- infty} ^ {x} e ^ { tfrac {-t ^ {2}} {2}} , dt = { frac {1} {2}} left [1+ operatorname {erf} left ({ frac {x} { sqrt {2}}} right) right] = { frac {1} {2}} operatorname {erfc} left (- { frac {x} { sqrt {2}}} right)}{ displaystyle  Phi (x) = { frac {1} { sqrt {2  pi}}}  int _ {-  infty} ^ {x } e ^ { tfrac {-t ^ {2}} {2}} , dt = { frac {1} {2}}  left [1+  operatorname {erf}  left ({ frac {x } { sqrt {2}}}  right)  right] = { frac {1} {2}}  operatorname {erfc}  left (- { frac {x} { sqrt {2}}}  справа)}

или переставлен для erf и erfc:

erf ⁡ ( x) = 2 Φ (x 2) — 1 erfc ⁡ (x) = 2 Φ (- x 2) = 2 (1 — Φ (x 2)). { displaystyle { begin {align} operatorname {erf} (x) = 2 Phi left (x { sqrt {2}} right) -1 \ operatorname {erfc} (x) = 2 Phi left (-x { sqrt {2}} right) = 2 left (1- Phi left (x { sqrt {2}} right) right). End {выравнивается} }}{ displaystyle { begin {align}  operatorname {erf} (x) = 2  Phi  left (x { sqrt {2}}  right) -1 \ имя оператора {erfc} (x) = 2  Phi  left (-x { sqrt {2}}  right) = 2  left (1-  Phi  left (x { sqrt {2}}  right)  right).  End {align}}}

Следовательно, функция ошибок также тесно связана с Q-функцией, которая является вероятностью хвоста стандартного нормального распределения. Q-функция может быть выражена через функцию ошибок как

Q (x) = 1 2 — 1 2 erf ⁡ (x 2) = 1 2 erfc ⁡ (x 2). { displaystyle Q (x) = { frac {1} {2}} — { frac {1} {2}} operatorname {erf} left ({ frac {x} { sqrt {2}}) } right) = { frac {1} {2}} operatorname {erfc} left ({ frac {x} { sqrt {2}}} right).}{ displaystyle Q (x) = { frac {1} {2}} - { frac {1} {2}}  operatorname {erf}  left ({ frac {x} { sqrt {2}}}  right) = { frac {1 } {2}}  operatorname {erfc}  left ({ frac {x} { sqrt {2}}}  right).}

Обратное значение из Φ { displaystyle Phi} Phi известен как функция нормальной квантиля или функция пробит и может быть выражена в терминах обратная функция ошибок как

пробит ⁡ (p) = Φ — 1 (p) = 2 erf — 1 ⁡ (2 p — 1) = — 2 erfc — 1 ⁡ (2 p). { displaystyle operatorname {probit} (p) = Phi ^ {- 1} (p) = { sqrt {2}} operatorname {erf} ^ {- 1} (2p-1) = — { sqrt {2}} operatorname {erfc} ^ {- 1} (2p).}{ displaystyle  operatorname {probit} (p) =  Phi ^ {- 1} (p) = { sqrt {2}}  operatorname {erf} ^ {-1 } (2p-1) = - { sqrt {2}}  operatorname {erfc} ^ {- 1} (2p).}

Стандартный нормальный cdf чаще используется в вероятности и статистике, а функция ошибок чаще используется в других разделах математики.

Функция ошибки является частным случаем функции Миттаг-Леффлера и может также быть выражена как сливающаяся гипергеометрическая функция (функция Куммера):

erf ⁡ (х) знак равно 2 х π M (1 2, 3 2, — х 2). { displaystyle operatorname {erf} (x) = { frac {2x} { sqrt { pi}}} M left ({ frac {1} {2}}, { frac {3} {2 }}, — x ^ {2} right).}{ displaystyle  operatorname {erf } (x) = { frac {2x} { sqrt { pi}}} M  left ({ frac {1} {2}}, { frac {3} {2}}, - x ^ { 2}  right).}

Он имеет простое выражение в терминах интеграла Френеля.

В терминах регуляризованной гамма-функции P и неполная гамма-функция,

erf ⁡ (x) = sgn ⁡ (x) P (1 2, x 2) = sgn ⁡ (x) π γ (1 2, x 2). { displaystyle operatorname {erf} (x) = operatorname {sgn} (x) P left ({ frac {1} {2}}, x ^ {2} right) = { frac { operatorname {sgn} (x)} { sqrt { pi}}} gamma left ({ frac {1} {2}}, x ^ {2} right).}{ displaystyle  operatorname {erf} (x) =  operatorname {sgn} (x) P  left ({ frac {1} {2}}, x ^ {2}  right) = { frac { operatorname {sgn} (x)} { sqrt { pi}}}  gamma  left ({ frac {1} {2}}, x ^ {2}  right).}

sgn ⁡ (x) { displaystyle operatorname {sgn} (x)} operatorname {sgn} (x) — знаковая функция .

Обобщенные функции ошибок

График обобщенных функций ошибок E n (x):. серая кривая: E 1 (x) = (1 — e) /

π { displaystyle scriptstyle { sqrt { pi}}}

 scriptstyle { sqrt { pi}} . красная кривая: E 2 (x) = erf (x). зеленая кривая: E 3 (x). синяя кривая: E 4 (x). золотая кривая: E 5 (x).

Некоторые авторы обсуждают более общие функции:

E n (x) = n! π ∫ 0 Икс е — Т N д т знак равно N! π ∑ п знак равно 0 ∞ (- 1) п Икс N п + 1 (N п + 1) п!. { displaystyle E_ {n} (x) = { frac {n!} { sqrt { pi}}} int _ {0} ^ {x} e ^ {- t ^ {n}} , dt = { frac {n!} { sqrt { pi}}} sum _ {p = 0} ^ { infty} (- 1) ^ {p} { frac {x ^ {np + 1}} {(np + 1) p!}}.}{ displaystyle E_ {n} (x) = { frac {n!} { sqrt { pi}}}  int _ {0} ^ {x} e ^ {- t ^ {n}} , dt = { frac {n!} { sqrt { pi }}}  sum _ {p = 0} ^ { infty} (- 1) ^ {p} { frac {x ^ {np + 1}} {(np + 1) p!}}.}.}.}.}.}

Примечательные случаи:

  • E0(x) — прямая линия, проходящая через начало координат: E 0 (x) = xe π { displaystyle textstyle E_ {0} (x) = { dfrac {x} {e { sqrt { pi}}}}}{ displaystyle  textstyle E_ {0} (x) = { dfrac {x} {e { sqrt { pi}}}}}
  • E2(x) — функция, erf (x) ошибки.

После деления на n!, все E n для нечетных n выглядят похожими (но не идентичными) друг на друга. Аналогично, E n для четного n выглядят похожими (но не идентичными) друг другу после простого деления на n!. Все обобщенные функции ошибок для n>0 выглядят одинаково на положительной стороне x графика.

Эти обобщенные функции могут быть эквивалентно выражены для x>0 с помощью гамма-функции и неполной гамма-функции :

E n (x) = 1 π Γ (n) (Γ (1 n) — Γ (1 n, xn)), x>0. { displaystyle E_ {n} (x) = { frac {1} { sqrt { pi}}} Gamma (n) left ( Gamma left ({ frac {1} {n}} right) — Gamma left ({ frac {1} {n}}, x ^ {n} right) right), quad quad x>0.}{displaystyle E_{n}(x)={frac {1}{sqrt {pi }}}Gamma (n)left(Gamma left({frac {1}{n}}right)-Gamma left({frac {1}{n}},x^{n}right)right),quad quad x>0.}

Следовательно, мы можем определить ошибку функция в терминах неполной гамма-функции:

erf ⁡ (x) = 1 — 1 π Γ (1 2, x 2). { displaystyle operatorname {erf} (x) = 1 — { frac {1} { sqrt { pi}}} Gamma left ({ frac {1} {2}}, x ^ {2} right).}{ displaystyle  operatorname {erf} (x) = 1 - { frac {1} { sqrt { pi}}}  Gamma  left ({ frac {1} {2}}, x ^ {2}  right).}

Итерированные интегралы дополнительных функций

Повторные интегралы дополнительные функции ошибок определения как

inerfc ⁡ (z) = ∫ z ∞ in — 1 erfc ⁡ (ζ) d ζ i 0 erfc ⁡ (z) = erfc ⁡ (z) i 1 erfc ⁡ (z) = ierfc ⁡ (z) знак равно 1 π е — z 2 — z erfc ⁡ (z) я 2 erfc ⁡ (z) = 1 4 [erfc ⁡ (z) — 2 z ierfc ⁡ (z)] { displaystyle { begin {align } operatorname {i ^ {n} erfc} (z) = int _ {z} ^ { infty} operatorname {i ^ {n-1} erfc} ( zeta) , d zeta \ имя оператора {i ^ {0} erfc} (z) = operatorname {erfc} (z) \ operatorname {i ^ {1} erfc} (z) = operat orname {ierfc} (z) = { frac { 1} { sqrt { pi}}} e ^ {- z ^ {2}} — z operatorname {erfc} (z) \ operatorname {i ^ {2} erfc} (z) = { frac {1} {4}} left [ operatorname {erfc} (z) -2z operatorname {ierfc} (z) right] \ end {выровнено}}{ displaystyle { begin {align}  operatorname { i ^ {n} erfc} (z) =  int _ {z} ^ { infty}  operatorname {i ^ {n-1} erfc} ( zeta) , d  zeta \ имя оператора {i ^ {0} erfc} (z) =  operatorname {erfc} (z) \ operatorname {i ^ {1} erfc} (z) =  operatorname {ierfc} (z) = { frac {1} { sqrt { pi}}} e ^ {- z ^ {2}} - z  operatorname {erfc} (z) \ operatorname {i ^ {2} erfc} (z) = { frac { 1} {4}}  left [ operatorname {erfc} (z) -2z  operatorname {ierfc} (z)  right] \ конец {выровнено}}}

Общая рекуррентная формула:

2 ninerfc ⁡ (z) = in — 2 erfc ⁡ (z) — 2 цинк — 1 erfc ⁡ (z) { displaystyle 2n operatorname {i ^ {n} erfc} (z) = operatorname {i ^ { n-2} erfc} (z) -2z operatorname {i ^ {n-1} erfc} (z)}{ displaystyle 2n  operatorname {я ^ {n} erfc} (z) =  operatorname {i ^ {n-2} erfc} (z) -2z  operatorname {i ^ {n-1} erfc} (z) }

У них есть степенной ряд

в erfc ⁡ (z) = ∑ j = 0 ∞ (- Z) J 2 N — JJ! Γ (1 + N — J 2), { displaystyle i ^ {n} operatorname {erfc} (z) = sum _ {j = 0} ^ { infty} { frac {(-z) ^ { j}} {2 ^ {nj} j! Gamma left (1 + { frac {nj} {2}} right)}},}{ displaystyle i ^ {n}  operatorname {erfc} (z) =  sum _ {j = 0} ^ { infty} { frac {(-z) ^ {j}} {2 ^ {nj} j!  Gamma  left (1 + { frac {nj} {2}}  right)}},}

из следуют свойства симметрии

i 2 m ERFC ⁡ (- Z) знак равно — я 2 m ERFC ⁡ (Z) + ∑ Q знак равно 0 мZ 2 д 2 2 (м — д) — 1 (2 д)! (м — д)! { displaystyle i ^ {2m} operatorname {erfc} (-z) = — i ^ {2m} operatorname {erfc} (z) + sum _ {q = 0} ^ {m} { frac {z ^ {2q}} {2 ^ {2 (mq) -1} (2q)! (Mq)!}}}{ displaystyle i ^ {2m}  OperatorName {erfc} (-z) = - i ^ {2m}  operatorname {erfc} (z) +  sum _ {q = 0} ^ {m} { frac {z ^ {2q}} {2 ^ { 2 (кв.) - 1} (2 кв.)! (Mq)!}}}

и

i 2 m + 1 erfc ⁡ (- z) = i 2 m + 1 erfc ⁡ (г) + ∑ ä знак равно 0 ìZ 2 ä + 1 2 2 ( м — д) — 1 (2 д + 1)! (м — д)!. { displaystyle i ^ {2m + 1} operatorname {erfc} (-z) = i ^ {2m + 1} operatorname {erfc} (z) + sum _ {q = 0} ^ {m} { гидроразрыва {z ^ {2q + 1}} {2 ^ {2 (mq) -1} (2q + 1)! (mq)!}}.}{ displaystyle i ^ {2m + 1}  operatorname {erfc} (-z) = i ^ {2m + 1}  operatorname {erfc} (z) +  sum _ {q = 0} ^ {m} { frac {z ^ {2q + 1}} {2 ^ {2 (mq) -1} (2q + 1)! (mq)!}}.}

Реализации

Как действительная функция вещественного аргумента

  • В операционных системах, совместимых с Posix, заголовок math.h должен являть, а математическая библиотека libm должна быть функция erf и erfc (двойная точность ), а также их одинарная точность и расширенная точность аналоги erff, erfl и erfc, erfcl.
  • Библиотека GNU Scientific предоставляет функции erf, erfc, log (erf) и масштабируемые функции ошибок.

Как сложная функция комплексного аргумента

  • libcerf, числовая библиотека C для сложных функций, предоставляет комплексные функции cerf, cerfc, cerfcx и реальные функции erfi, erfcx с точностью 13–14 цифр на основе функции Фаддеева, реализованной в пакете MIT Faddeeva Package

См. также

Связанные ции

  • интеграл Гаусса, по всей действительной прямой
  • функция Гаусса, производная
  • функция Доусона, перенормированная функция мнимой ошибки
  • интеграл Гудвина — Стона

по вероятности

  • Нормальное распределение
  • Нормальная кумулятивная функция распределения, масштабированная и сдвинутая форма функций ошибок
  • Пробит, обратная или квантильная функция нормального CDF
  • Q-функция, вероятность хвоста нормального распределения

Ссылки

Дополнительная литература

  • Abramowitz, Milton ; Стегун, Ирен Энн, ред. (1983) [июнь 1964]. «Глава 7». Справочник по математическим функциям с формулами, графики и математическими таблицами. Прикладная математика. 55 (Девятое переиздание с дополнительными исправлениями; десятое оригинальное издание с исправлениями (декабрь 1972 г.); первое изд.). Вашингтон.; Нью-Йорк: Министерство торговли США, Национальное бюро стандартов; Dover Publications. п. 297. ISBN 978-0-486-61272-0 . LCCN 64-60036. MR 0167642. LCCN 65-12253.
  • Press, William H.; Теукольский, Саул А.; Веттерлинг, Уильям Т.; Фланнери, Брайан П. (2007), «Раздел 6.2. Неполная гамма-функция и функция ошибок », Числовые рецепты: Искусство научных вычислений (3-е изд.), Нью-Йорк: Cambridge University Press, ISBN 978-0-521- 88068-8
  • Темме, Нико М. (2010), «Функции ошибок, интегралы Доусона и Френеля», в Олвер, Фрэнк У. Дж. ; Лозье, Даниэль М.; Бойсверт, Рональд Ф.; Кларк, Чарльз В. (ред.), Справочник NIST по математическим функциям, Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248

Внешние ссылки

  • MathWorld — Erf
  • Таблица интегралов функций ошибок

Калькулятор функции ошибки

О Калькулятор функции ошибки

Калькулятор функции ошибки используется для расчета функции ошибки для заданного числа.

Функция ошибки

В математике функция ошибок — это специальная (нефундаментальная) функция сигмовидной формы, которая встречается в теории вероятностей, статистике и уравнениях в частных производных. Она также известна как функция ошибки Гаусса или интеграл вероятности.

Функция ошибки определяется как:

Определение функции ошибки

Таблица функций ошибок

Ниже приведена таблица функций ошибок и дополнительных функций ошибок, в которой показаны значения erf(x) и erfc(x) для x в диапазоне от 0 до 3,5 с шагом 0,01.

X ЭРФ(х) ЭРФК(х)
0.0 0.0 1.0
0.01 0.011283416 0.988716584
0.02 0.022564575 0.977435425
0.03 0.033841222 0.966158778
0.04 0.045111106 0.954888894
0.05 0.056371978 0.943628022
0.06 0.067621594 0.932378406
0.07 0.07885772 0.92114228
0.08 0.090078126 0.909921874
0.09 0.101280594 0.898719406
0.1 0.112462916 0.887537084
0.11 0.123622896 0.876377104
0.12 0.134758352 0.865241648
0.13 0.145867115 0.854132885
0.14 0.156947033 0.843052967
0.15 0.167995971 0.832004029
0.16 0.179011813 0.820988187
0.17 0.189992461 0.810007539
0.18 0.200935839 0.799064161
0.19 0.211839892 0.788160108
0.2 0.222702589 0.777297411
0.21 0.233521923 0.766478077
0.22 0.244295912 0.755704088
0.23 0.2550226 0.7449774
0.24 0.265700059 0.734299941
0.25 0.27632639 0.72367361
0.26 0.286899723 0.713100277
0.27 0.297418219 0.702581781
0.28 0.307880068 0.692119932
0.29 0.318283496 0.681716504
0.3 0.328626759 0.671373241
0.31 0.33890815 0.66109185
0.32 0.349125995 0.650874005
0.33 0.359278655 0.640721345
0.34 0.369364529 0.630635471
0.35 0.379382054 0.620617946
0.36 0.389329701 0.610670299
0.37 0.399205984 0.600794016
0.38 0.409009453 0.590990547
0.39 0.4187387 0.5812613
0.4 0.428392355 0.571607645
0.41 0.43796909 0.56203091
0.42 0.447467618 0.552532382
0.43 0.456886695 0.543113305
0.44 0.466225115 0.533774885
0.45 0.47548172 0.52451828
0.46 0.48465539 0.51534461
0.47 0.493745051 0.506254949
0.48 0.502749671 0.497250329
0.49 0.511668261 0.488331739
0.5 0.520499878 0.479500122
0.51 0.52924362 0.47075638
0.52 0.53789863 0.46210137
0.53 0.546464097 0.453535903
0.54 0.55493925 0.44506075
0.55 0.563323366 0.436676634
0.56 0.571615764 0.428384236
0.57 0.579815806 0.420184194
0.58 0.5879229 0.4120771
0.59 0.595936497 0.404063503
0.6 0.603856091 0.396143909
0.61 0.611681219 0.388318781
0.62 0.619411462 0.380588538
0.63 0.627046443 0.372953557
0.64 0.634585829 0.365414171
0.65 0.642029327 0.357970673
0.66 0.649376688 0.350623312
0.67 0.656627702 0.343372298
0.68 0.663782203 0.336217797
0.69 0.670840062 0.329159938
0.7 0.677801194 0.322198806
0.71 0.68466555 0.31533445
0.72 0.691433123 0.308566877
0.73 0.698103943 0.301896057
0.74 0.704678078 0.295321922
0.75 0.711155634 0.288844366
0.76 0.717536753 0.282463247
0.77 0.723821614 0.276178386
0.78 0.730010431 0.269989569
0.79 0.736103454 0.263896546
0.8 0.742100965 0.257899035
0.81 0.748003281 0.251996719
0.82 0.753810751 0.246189249
0.83 0.759523757 0.240476243
0.84 0.765142711 0.234857289
0.85 0.770668058 0.229331942
0.86 0.776100268 0.223899732
0.87 0.781439845 0.218560155
0.88 0.786687319 0.213312681
0.89 0.791843247 0.208156753
0.9 0.796908212 0.203091788
0.91 0.801882826 0.198117174
0.92 0.806767722 0.193232278
0.93 0.811563559 0.188436441
0.94 0.816271019 0.183728981
0.95 0.820890807 0.179109193
0.96 0.82542365 0.17457635
0.97 0.829870293 0.170129707
0.98 0.834231504 0.165768496
0.99 0.83850807 0.16149193
1.0 0.842700793 0.157299207
1.01 0.846810496 0.153189504
1.02 0.850838018 0.149161982
1.03 0.854784211 0.145215789
1.04 0.858649947 0.141350053
1.05 0.862436106 0.137563894
1.06 0.866143587 0.133856413
1.07 0.869773297 0.130226703
1.08 0.873326158 0.126673842
1.09 0.876803102 0.123196898
1.1 0.88020507 0.11979493
1.11 0.883533012 0.116466988
1.12 0.88678789 0.11321211
1.13 0.88997067 0.11002933
1.14 0.893082328 0.106917672
1.15 0.896123843 0.103876157
1.16 0.899096203 0.100903797
1.17 0.902000399 0.097999601
1.18 0.904837427 0.095162573
1.19 0.907608286 0.092391714
1.2 0.910313978 0.089686022
1.21 0.912955508 0.087044492
1.22 0.915533881 0.084466119
1.23 0.918050104 0.081949896
1.24 0.920505184 0.079494816
1.25 0.922900128 0.077099872
1.26 0.925235942 0.074764058
1.27 0.927513629 0.072486371
1.28 0.929734193 0.070265807
1.29 0.931898633 0.068101367
1.3 0.934007945 0.065992055
1.31 0.936063123 0.063936877
1.32 0.938065155 0.061934845
1.33 0.940015026 0.059984974
1.34 0.941913715 0.058086285
1.35 0.943762196 0.056237804
1.36 0.945561437 0.054438563
1.37 0.947312398 0.052687602
1.38 0.949016035 0.050983965
1.39 0.950673296 0.049326704
1.4 0.95228512 0.04771488
1.41 0.953852439 0.046147561
1.42 0.955376179 0.044623821
1.43 0.956857253 0.043142747
1.44 0.95829657 0.04170343
1.45 0.959695026 0.040304974
1.46 0.96105351 0.03894649
1.47 0.9623729 0.0376271
1.48 0.963654065 0.036345935
1.49 0.964897865 0.035102135
1.5 0.966105146 0.033894854
1.51 0.967276748 0.032723252
1.52 0.968413497 0.031586503
1.53 0.969516209 0.030483791
1.54 0.97058569 0.02941431
1.55 0.971622733 0.028377267
1.56 0.972628122 0.027371878
1.57 0.973602627 0.026397373
1.58 0.974547009 0.025452991
1.59 0.975462016 0.024537984
1.6 0.976348383 0.023651617
1.61 0.977206837 0.022793163
1.62 0.978038088 0.021961912
1.63 0.97884284 0.02115716
1.64 0.97962178 0.02037822
1.65 0.980375585 0.019624415
1.66 0.981104921 0.018895079
1.67 0.981810442 0.018189558
1.68 0.982492787 0.017507213
1.69 0.983152587 0.016847413
1.7 0.983790459 0.016209541
1.71 0.984407008 0.015592992
1.72 0.985002827 0.014997173
1.73 0.9855785 0.0144215
1.74 0.986134595 0.013865405
1.75 0.986671671 0.013328329
1.76 0.987190275 0.012809725
1.77 0.987690942 0.012309058
1.78 0.988174196 0.011825804
1.79 0.988640549 0.011359451
1.8 0.989090502 0.010909498
1.81 0.989524545 0.010475455
1.82 0.989943156 0.010056844
1.83 0.990346805 0.009653195
1.84 0.990735948 0.009264052
1.85 0.99111103 0.00888897
1.86 0.991472488 0.008527512
1.87 0.991820748 0.008179252
1.88 0.992156223 0.007843777
1.89 0.992479318 0.007520682
1.9 0.992790429 0.007209571
1.91 0.99308994 0.00691006
1.92 0.993378225 0.006621775
1.93 0.99365565 0.00634435
1.94 0.993922571 0.006077429
1.95 0.994179334 0.005820666
1.96 0.994426275 0.005573725
1.97 0.994663725 0.005336275
1.98 0.994892 0.005108
1.99 0.995111413 0.004888587
2.0 0.995322265 0.004677735
2.01 0.995524849 0.004475151
2.02 0.995719451 0.004280549
2.03 0.995906348 0.004093652
2.04 0.99608581 0.00391419
2.05 0.996258096 0.003741904
2.06 0.996423462 0.003576538
2.07 0.996582153 0.003417847
2.08 0.996734409 0.003265591
2.09 0.996880461 0.003119539
2.1 0.997020533 0.002979467
2.11 0.997154845 0.002845155
2.12 0.997283607 0.002716393
2.13 0.997407023 0.002592977
2.14 0.997525293 0.002474707
2.15 0.997638607 0.002361393
2.16 0.997747152 0.002252848
2.17 0.997851108 0.002148892
2.18 0.997950649 0.002049351
2.19 0.998045943 0.001954057
2.2 0.998137154 0.001862846
2.21 0.998224438 0.001775562
2.22 0.998307948 0.001692052
2.23 0.998387832 0.001612168
2.24 0.998464231 0.001535769
2.25 0.998537283 0.001462717
2.26 0.998607121 0.001392879
2.27 0.998673872 0.001326128
2.28 0.998737661 0.001262339
2.29 0.998798606 0.001201394
2.3 0.998856823 0.001143177
2.31 0.998912423 0.001087577
2.32 0.998965513 0.001034487
2.33 0.999016195 0.000983805
2.34 0.99906457 0.00093543
2.35 0.999110733 0.000889267
2.36 0.999154777 0.000845223
2.37 0.99919679 0.00080321
2.38 0.999236858 0.000763142
2.39 0.999275064 0.000724936
2.4 0.999311486 0.000688514
2.41 0.999346202 0.000653798
2.42 0.999379283 0.000620717
2.43 0.999410802 0.000589198
2.44 0.999440826 0.000559174
2.45 0.99946942 0.00053058
2.46 0.999496646 0.000503354
2.47 0.999522566 0.000477434
2.48 0.999547236 0.000452764
2.49 0.999570712 0.000429288
2.5 0.999593048 0.000406952
2.51 0.999614295 0.000385705
2.52 0.999634501 0.000365499
2.53 0.999653714 0.000346286
2.54 0.999671979 0.000328021
2.55 0.99968934 0.00031066
2.56 0.999705837 0.000294163
2.57 0.999721511 0.000278489
2.58 0.9997364 0.0002636
2.59 0.999750539 0.000249461
2.6 0.999763966 0.000236034
2.61 0.999776711 0.000223289
2.62 0.999788809 0.000211191
2.63 0.999800289 0.000199711
2.64 0.999811181 0.000188819
2.65 0.999821512 0.000178488
2.66 0.999831311 0.000168689
2.67 0.999840601 0.000159399
2.68 0.999849409 0.000150591
2.69 0.999857757 0.000142243
2.7 0.999865667 0.000134333
2.71 0.999873162 0.000126838
2.72 0.999880261 0.000119739
2.73 0.999886985 0.000113015
2.74 0.999893351 0.000106649
2.75 0.999899378 0.000100622
2.76 0.999905082 9.4918e-05
2.77 0.99991048 8.952e-05
2.78 0.999915587 8.4413e-05
2.79 0.999920418 7.9582e-05
2.8 0.999924987 7.5013e-05
2.81 0.999929307 7.0693e-05
2.82 0.99993339 6.661e-05
2.83 0.99993725 6.275e-05
2.84 0.999940898 5.9102e-05
2.85 0.999944344 5.5656e-05
2.86 0.999947599 5.2401e-05
2.87 0.999950673 4.9327e-05
2.88 0.999953576 4.6424e-05
2.89 0.999956316 4.3684e-05
2.9 0.999958902 4.1098e-05
2.91 0.999961343 3.8657e-05
2.92 0.999963645 3.6355e-05
2.93 0.999965817 3.4183e-05
2.94 0.999967866 3.2134e-05
2.95 0.999969797 3.0203e-05
2.96 0.999971618 2.8382e-05
2.97 0.999973334 2.6666e-05
2.98 0.999974951 2.5049e-05
2.99 0.999976474 2.3526e-05
3.0 0.99997791 2.209E-05
3.01 0.999979261 2.0739e-05
3.02 0.999980534 1.9466e-05
3.03 0.999981732 1.8268e-05
3.04 0.999982859 1.7141e-05
3.05 0.99998392 1.608e-05
3.06 0.999984918 1.5082e-05
3.07 0.999985857 1.4143e-05
3.08 0.99998674 1.326e-05
3.09 0.999987571 1.2429e-05
3.1 0.999988351 1.1649e-05
3.11 0.999989085 1.0915e-05
3.12 0.999989774 1.0226e-05
3.13 0.999990422 9.578e-06
3.14 0.99999103 8.97e-06
3.15 0.999991602 8.398e-06
3.16 0.999992138 7.862e-06
3.17 0.999992642 7.358e-06
3.18 0.999993115 6.885e-06
3.19 0.999993558 6.442e-06
3.2 0.999993974 6.026e-06
3.21 0.999994365 5.635e-06
3.22 0.999994731 5.269e-06
3.23 0.999995074 4.926e-06
3.24 0.999995396 4.604e-06
3.25 0.999995697 4.303e-06
3.26 0.99999598 4.02e-06
3.27 0.999996245 3.755e-06
3.28 0.999996493 3.507e-06
3.29 0.999996725 3.275e-06
3.3 0.999996942 3.058e-06
3.31 0.999997146 2.854e-06
3.32 0.999997336 2.664e-06
3.33 0.999997515 2.485e-06
3.34 0.999997681 2.319e-06
3.35 0.999997838 2.162e-06
3.36 0.999997983 2.017e-06
3.37 0.99999812 1.88E-06
3.38 0.999998247 1.753e-06
3.39 0.999998367 1.633e-06
3.4 0.999998478 1.522E-06
3.41 0.999998582 1.418e-06
3.42 0.999998679 1.321e-06
3.43 0.99999877 1.23E-06
3.44 0.999998855 1.145e-06
3.45 0.999998934 1.066e-06
3.46 0.999999008 9.92e-07
3.47 0.999999077 9.23e-07
3.48 0.999999141 8.59e-07
3.49 0.999999201 7.99e-07
3.5 0.999999257 7.43e-07

Общие инструменты

  • Калькулятор среднего балла (GPA)

  • дробь в десятичный калькулятор

  • футы дюймы в сантиметры

  • калькулятор ИМТ

  • инструмент подсчета слов

  • счетчик символов

  • калькулятор времени удвоения

  • конвертер фунтов в кг

  • калькулятор десятичной дроби

  • калькулятор сложных процентов

  • калькулятор даты

  • калькулятор площади параллелограмма

  • Калькулятор комплексных чисел

  • конвертер футов в метры

  • калькулятор натуральных логарифмов

  • Калькулятор Гугл Адсенс

  • калькулятор скидок

  • Калькулятор коэффициента вариации

  • процентный калькулятор

  • Конвертер градусов в радианы

  • двоичный калькулятор

  • Калькулятор числа судьбы

  • Калькулятор площади поверхности цилиндра (Высокая точность)

  • Калькулятор площади равностороннего треугольника

  • калькулятор возраста

  • Калькулятор объема пирамиды (Высокая точность)

  • Калькулятор рентабельности инвестиций

  • калькулятор дисперсии (Высокая точность)

  • Акры в Квадратные ярды Конвертер

  • Калькулятор гамма-функции

В математике функция ошибок (также называемая функцией ошибок Гаусса ), часто обозначаемая erf , является сложной функцией комплексной переменной, определяемой как:

{ displaystyle  operatorname {erf} z = { frac {2} { sqrt { pi}}}  int _ {0} ^ {z} e ^ {- t ^ {2}} , dt.}

Этот интеграл представляет собой специальную ( неэлементарную ) сигмовидную функцию, которая часто встречается в уравнениях вероятности , статистики и дифференциальных уравнений в частных производных . Во многих из этих приложений аргумент функции является действительным числом. Если аргумент функции является действительным, то значение функции также является действительным.

В статистике для неотрицательных значений x функция ошибок имеет следующую интерпретацию: для случайной величины Y, которая нормально распределена со средним значением 0 и стандартным отклонением
1/2
, erf x — вероятность того, что Y попадает в диапазон [- x , x ] .

Две тесно связанные функции — это дополнительная функция ошибок ( erfc ), определяемая как

{ Displaystyle  OperatorName {ERFC} Z = 1-  OperatorName {ERF} Z,}

и функция мнимой ошибки ( erfi ), определяемая как

{ displaystyle  operatorname {erfi} z = -i  operatorname {erf} iz,}

где i — мнимая единица .

Имя

Название «функция ошибок» и ее сокращение erf были предложены Дж. В. Л. Глейшером в 1871 г. в связи с его связью с «теорией вероятности и, в частности, теорией ошибок ». Дополнение к функции ошибок также обсуждалось Глейшером в отдельной публикации в том же году. Для «закона удобства» ошибок, плотность которых определяется как

{ displaystyle f (x) =  left ({ frac {c} { pi}}  right) ^ { frac {1} {2}} e ^ {- cx ^ {2}}}

( нормальное распределение ), Глейшер вычисляет вероятность ошибки, лежащей между p и q, как:

{ displaystyle  left ({ frac {c} { pi}}  right) ^ { frac {1} {2}}  int _ {p} ^ {q} e ^ {- cx ^ {2} } , dx = { tfrac {1} {2}}  left ( operatorname {erf}  left (q { sqrt {c}}  right) -  operatorname {erf}  left (p { sqrt {c}}  right)  right).}

Приложения

Когда результаты серии измерений описываются нормальным распределением со стандартным отклонением σ и ожидаемым значением 0, тогда erf (а/σ 2) — вероятность того, что ошибка единичного измерения находится между a и + a для положительного a . Это полезно, например, при определении частоты ошибок по битам в цифровой системе связи.

Ошибки и дополнительные функции ошибок возникают, например, в решениях уравнения теплопроводности, когда граничные условия задаются ступенчатой ​​функцией Хевисайда .

Функция ошибок и ее приближения могут использоваться для оценки результатов, которые имеют высокую или низкую вероятность. Дана случайная величина X ~ Norm [ μ , σ ] (нормальное распределение со средним μ и стандартным отклонением σ ) и константа L < μ :

{ displaystyle { begin {align}  Pr [X  leq L] & = { frac {1} {2}} + { frac {1} {2}}  operatorname {erf} { frac {L -  mu} {{ sqrt {2}}  sigma}} \ &  приблизительно A  exp  left (-B  left ({ frac {L-  mu} { sigma}}  right) ^ {2}  right)  end {выравнивается}}}

где A и B — некоторые числовые константы. Если L достаточно далеко от среднего, а именно μLσ ln k , то:

{ Displaystyle  Pr [Икс  Leq L]  Leq A  ехр (-B  ln {k}) = { frac {A} {k ^ {B}}}}

поэтому вероятность стремится к 0 при k → ∞ .

Вероятность того, что X находится в интервале [ L a , L b ], может быть получена как

{ displaystyle { begin {align}  Pr [L_ {a}  leq X  leq L_ {b}] & =  int _ {L_ {a}} ^ {L_ {b}} { frac {1} {{ sqrt {2  pi}}  sigma}}  exp  left (- { frac {(x-  mu) ^ {2}} {2  sigma ^ {2}}}  right) , dx \ & = { frac {1} {2}}  left ( operatorname {erf} { frac {L_ {b} -  mu} {{ sqrt {2}}  sigma}} -  operatorname {erf} { frac {L_ {a} -  mu} {{ sqrt {2}}  sigma}}  right).  end {align}}}

Характеристики

Интегрируем exp (- z 2 )

erf z

Свойство erf (- z ) = −erf z означает, что функция ошибок является нечетной функцией . Это напрямую связано с тем, что подынтегральное выражение e t 2 является четной функцией (интегрирование четной функции дает нечетную функцию и наоборот).

Для любого комплексного числа z :

{ displaystyle  operatorname {erf} { overline {z}} = { overline { operatorname {erf} z}}}

где г представляет собой комплексно сопряженное из г .

Подынтегральное выражение f = exp (- z 2 ) и f = erf z показано на комплексной плоскости z на рисунках справа с раскраской области .

Функция ошибок при + ∞ равна 1 (см. Интеграл Гаусса ). На действительной оси erf z стремится к единице при z → + ∞ и −1 при z → −∞ . На мнимой оси он стремится к ± i .

Серия Тейлора

Функция ошибок — это целая функция ; у него нет сингулярностей (кроме бесконечности), и его разложение Тейлора всегда сходится, но, как известно, «[…] его плохая сходимость, если x > 1 ».

Определяющий интеграл не может быть вычислен в замкнутой форме в терминах элементарных функций , но, раскладывая подынтегральное выражение e z 2 в его ряд Маклорена и интегрируя член за членом, можно получить ряд Маклорена функции ошибок как:

{ displaystyle { begin {align}  operatorname {erf} z & = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty} { frac {(- 1) ^ {n} z ^ {2n + 1}} {n! (2n + 1)}} \ [6pt] & = { frac {2} { sqrt { pi}}}  left (z - { frac {z ^ {3}} {3}} + { frac {z ^ {5}} {10}} - { frac {z ^ {7}} {42}} + { frac { z ^ {9}} {216}} -  cdots  right)  end {align}}}

которое выполняется для любого комплексного числа  z . Члены знаменателя — это последовательность (последовательность A007680 в OEIS ) в OEIS .

Для итеративного расчета вышеуказанного ряда может быть полезна следующая альтернативная формулировка:

{ displaystyle { begin {align}  operatorname {erf} z & = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty}  left (z  prod _ {k = 1} ^ {n} { frac {- (2k-1) z ^ {2}} {k (2k + 1)}}  right) \ [6pt] & = { frac {2 } { sqrt { pi}}}  sum _ {n = 0} ^ { infty} { frac {z} {2n + 1}}  prod _ {k = 1} ^ {n} { frac {-z ^ {2}} {k}}  end {align}}}

потому что — (2 к — 1) z 2/к (2 к + 1)выражает множитель для превращения k- го члена в ( k  + 1) -й член (считая z первым членом).

Функция мнимой ошибки имеет очень похожий ряд Маклорена, а именно:

{ displaystyle { begin {align}  operatorname {erfi} z & = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty} { frac {z ^ {2n + 1}} {n! (2n + 1)}} \ [6pt] & = { frac {2} { sqrt { pi}}}  left (z + { frac {z ^ {3 }} {3}} + { frac {z ^ {5}} {10}} + { frac {z ^ {7}} {42}} + { frac {z ^ {9}} {216} } +  cdots  right)  end {выровнены}}}

которое выполняется для любого комплексного числа  z .

Производная и интеграл

Производная функции ошибок сразу следует из ее определения:

{ displaystyle { frac {d} {dz}}  operatorname {erf} z = { frac {2} { sqrt { pi}}} e ^ {- z ^ {2}}.}

Отсюда немедленно вычисляется производная мнимой функции ошибок:

{ displaystyle { frac {d} {dz}}  operatorname {erfi} z = { frac {2} { sqrt { pi}}} e ^ {z ^ {2}}.}

Первообразная функции ошибки, получаемый путем интегрирования по частям , является

{ displaystyle z  operatorname {erf} z + { frac {e ^ {- z ^ {2}}} { sqrt { pi}}}.}.

Первообразной функции мнимой ошибки, которую также можно получить интегрированием по частям, является

{ displaystyle z  operatorname {erfi} z - { frac {e ^ {z ^ {2}}} { sqrt { pi}}}.}.

Производные высшего порядка даются формулами

{ displaystyle  operatorname {erf} ^ {(k)} z = { frac {2 (-1) ^ {k-1}} { sqrt { pi}}} { mathit {H}} _ { k-1} (z) e ^ {- z ^ {2}} = { frac {2} { sqrt { pi}}} { frac {d ^ {k-1}} {dz ^ {k -1}}}  left (e ^ {- z ^ {2}}  right),  qquad k = 1,2,  dots}

где H — полиномы Эрмита физиков .

Серия Bürmann

Разложение, которое сходится быстрее для всех действительных значений x, чем разложение Тейлора, получается с помощью теоремы Ганса Генриха Бюрмана :

{ displaystyle { begin {align}  operatorname {erf} x & = { frac {2} { sqrt { pi}}}  operatorname {sgn} x  cdot { sqrt {1-e ^ {- x ^ {2}}}}  left (1 - { frac {1} {12}}  left (1-e ^ {- x ^ {2}}  right) - { frac {7} {480} }  left (1-e ^ {- x ^ {2}}  right) ^ {2} - { frac {5} {896}}  left (1-e ^ {- x ^ {2}}  справа) ^ {3} - { frac {787} {276480}}  left (1-e ^ {- x ^ {2}}  right) ^ {4} -  cdots  right) \ [10pt] & = { frac {2} { sqrt { pi}}}  operatorname {sgn} x  cdot { sqrt {1-e ^ {- x ^ {2}}}}  left ({ frac {  sqrt { pi}} {2}} +  sum _ {k = 1} ^ { infty} c_ {k} e ^ {- kx ^ {2}}  right).  end {align}}}

где sgn — знаковая функция . Сохраняя только первые два коэффициента и выбирая c 1 =31 год/200и c 2 = —341/8000, полученное приближение показывает свою наибольшую относительную ошибку при x = ± 1,3796 , где она меньше 0,0036127:

{ displaystyle  operatorname {erf} x  приблизительно { frac {2} { sqrt { pi}}}  operatorname {sgn} x  cdot { sqrt {1-e ^ {- x ^ {2}} }}  left ({ frac { sqrt { pi}} {2}} + { frac {31} {200}} e ^ {- x ^ {2}} - { frac {341} {8000 }} e ^ {- 2x ^ {2}}  right).}

Обратные функции

Для комплексного числа z не существует уникального комплексного числа w, удовлетворяющего erf w = z , поэтому истинная обратная функция будет многозначной. Однако для −1 < x <1 существует уникальное действительное число, обозначенное erf −1 x, удовлетворяющее

{ displaystyle  operatorname {erf}  left ( operatorname {erf} ^ {- 1} x  right) = x.}

Функция обратной ошибки обычно определяется с помощью области (-1,1) , и она ограничена этой областью во многих системах компьютерной алгебры. Однако его можно распространить на диск | z | <1 комплексной плоскости, используя ряд Маклорена

{ displaystyle  operatorname {erf} ^ {- 1} z =  sum _ {k = 0} ^ { infty} { frac {c_ {k}} {2k + 1}}  left ({ frac {  sqrt { pi}} {2}} z  right) ^ {2k + 1},}

где c 0 = 1 и

{ displaystyle { begin {align} c_ {k} & =  sum _ {m = 0} ^ {k-1} { frac {c_ {m} c_ {k-1-m}} {(m + 1) (2m + 1)}} \ & =  left  {1,1, { frac {7} {6}}, { frac {127} {90}}, { frac {4369} { 2520}}, { frac {34807} {16200}},  ldots  right }.  End {align}}}

Итак, у нас есть расширение в ряд (общие множители из числителей и знаменателей удалены):

{ displaystyle  operatorname {erf} ^ {- 1} z = { frac { sqrt { pi}} {2}}  left (z + { frac { pi} {12}} z ^ {3} + { frac {7  pi ^ {2}} {480}} z ^ {5} + { frac {127  pi ^ {3}} {40320}} z ^ {7} + { frac {4369  pi ^ {4}} {5806080}} z ^ {9} + { frac {34807  pi ^ {5}} {182476800}} z ^ {11} +  cdots  right).}

(После отмены дроби числителя / знаменателя представляют собой записи OEIS :  A092676 / OEIS :  A092677 в OEIS ; без отмены члены числителя приведены в записи OEIS :  A002067 .) Значение функции ошибок при  ± ∞ равно  ± 1 .

Для | z | <1 , имеем erf (erf −1 z ) = z .

Обратная дополнительная функция ошибок определяются как

{ displaystyle  operatorname {erfc} ^ {- 1} (1-z) =  operatorname {erf} ^ {- 1} z.}

Для действительного x существует уникальное действительное число erfi −1 x, удовлетворяющее erfi (erfi −1 x ) = x . Функция обратной мнимой ошибки определяется как erfi −1 x .

Для любого вещественного х , метод Ньютона может быть использован для вычисления ЕрФИ -1 х , а для -1 ≤ х ≤ 1 , следующие сходится ряд Маклорена:

{ displaystyle  operatorname {erfi} ^ {- 1} z =  sum _ {k = 0} ^ { infty} { frac {(-1) ^ {k} c_ {k}} {2k + 1} }  left ({ frac { sqrt { pi}} {2}} z  right) ^ {2k + 1},}

где c k определено, как указано выше.

Асимптотическое разложение

Полезное асимптотическое разложение дополнительной функции ошибок (и, следовательно, также функции ошибок) для больших действительных x :

{ displaystyle { begin {align}  operatorname {erfc} x & = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}}  left (1+  sum _ {n = 1} ^ { infty} (- 1) ^ {n} { frac {1  cdot 3  cdot 5  cdots (2n-1)} { left (2x ^ {2}  right) ^ {n}}}  right) \ [6pt] & = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}}  sum _ {n = 0 } ^ { infty} (- 1) ^ {n} { frac {(2n-1) !!} { left (2x ^ {2}  right) ^ {n}}},  end {выровнено} }}

где (2 n — 1) !! — двойной факториал числа (2 n — 1) , который является произведением всех нечетных чисел до (2 n — 1) . Этот ряд расходится для любого конечного x , и его смысл как асимптотического разложения состоит в том, что для любого целого числа N ≥ 1 выполняется

{ displaystyle  operatorname {erfc} x = { frac {e ^ {- x ^ {2}}} {x { sqrt { pi}}}}}  sum _ {n = 0} ^ {N-1 } (- 1) ^ {n} { frac {(2n-1) !!} { left (2x ^ {2}  right) ^ {n}}} + R_ {N} (x)}

где остаток в обозначениях Ландау равен

{ displaystyle R_ {N} (x) = O  left (x ^ {- (1 + 2N)} e ^ {- x ^ {2}}  right)}

при x → ∞ .

Действительно, точное значение остатка равно

{ displaystyle R_ {N} (x): = { frac {(-1) ^ {N}} { sqrt { pi}}} 2 ^ {1-2N} { frac {(2N)!} {N!}}  Int _ {x} ^ { infty} t ^ {- 2N} e ^ {- t ^ {2}} , dt,}

что легко следует по индукции, записывая

{ displaystyle e ^ {- t ^ {2}} = - (2t) ^ {- 1}  left (e ^ {- t ^ {2}}  right) '}

и интеграция по частям.

Для достаточно больших значений x необходимы только первые несколько членов этого асимптотического разложения, чтобы получить хорошее приближение erfc x (в то время как для не слишком больших значений x приведенное выше разложение Тейлора при 0 обеспечивает очень быструю сходимость).

Непрерывное расширение фракции

Цепная дробь расширение дополнительной функции ошибок является:

{ displaystyle  operatorname {erfc} z = { frac {z} { sqrt { pi}}} e ^ {- z ^ {2}} { cfrac {1} {z ^ {2} + { cfrac {a_ {1}} {1 + { cfrac {a_ {2}} {z ^ {2} + { cfrac {a_ {3}} {1+  dotsb}}}}}}}},  qquad a_ {m} = { frac {m} {2}}.}

Интеграл функции ошибок с функцией плотности Гаусса

{ displaystyle  int _ {-  infty} ^ { infty}  operatorname {erf}  left (ax + b  right) { frac {1} { sqrt {2  pi  sigma ^ {2}} }}  exp  left (- { frac {(x-  mu) ^ {2}} {2  sigma ^ {2}}}  right) , dx =  operatorname {erf} { frac {a  mu + b} { sqrt {1 + 2a ^ {2}  sigma ^ {2}}}},  qquad a, b,  mu,  sigma  in  mathbb {R}}

которая, по-видимому, связана с Нг и Геллером, формула 13 в разделе 4.3 с заменой переменных.

Факторный ряд

Обратный факторный ряд :

{ displaystyle { begin {align}  operatorname {erfc} z & = { frac {e ^ {- z ^ {2}}} {{ sqrt { pi}} , z}}  sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n} Q_ {n}} {{(z ^ {2} +1)} ^ { bar {n}}}} \ & = { frac {e ^ {- z ^ {2}}} {{ sqrt { pi}} , z}}  left (1 - { frac {1} {2}} { frac {1 } {(z ^ {2} +1)}} + { frac {1} {4}} { frac {1} {(z ^ {2} +1) (z ^ {2} +2)} } -  cdots  right)  end {align}}}

сходится при Re ( z 2 )> 0 . Здесь

{ displaystyle { begin {align} Q_ {n} & { overset { text {def}} {{} = {}}} { frac {1} { Gamma  left ({ frac {1} {2}}  right)}}  int _ {0} ^ { infty}  tau ( tau -1)  cdots ( tau -n + 1)  tau ^ {- { frac {1} { 2}}} e ^ {-  tau} , d  tau \ & =  sum _ {k = 0} ^ {n}  left ({ tfrac {1} {2}}  right) ^ {  bar {k}} s (n, k),  end {align}}}

z n обозначает возрастающий факториал , а s ( n , k ) обозначает число Стирлинга первого рода со знаком . Также существует представление бесконечной суммой, содержащее двойной факториал :

{ displaystyle  operatorname {erf} z = { frac {2} { sqrt { pi}}}  sum _ {n = 0} ^ { infty} { frac {(-2) ^ {n} (2n-1) !!} {(2n + 1)!}} Z ^ {2n + 1}}

Численные приближения

Приближение с элементарными функциями

  • Абрамовиц и Стегун дают несколько приближений с различной точностью (уравнения 7.1.25–28). Это позволяет выбрать наиболее быстрое приближение, подходящее для данного приложения. В порядке увеличения точности это:
    { displaystyle  operatorname {erf} x  приблизительно 1 - { frac {1} { left (1 + a_ {1} x + a_ {2} x ^ {2} + a_ {3} x ^ {3} + a_ {4} x ^ {4}  right) ^ {4}}},  qquad x  geq 0}

    (максимальная ошибка: 5 × 10 −4 )

    где a 1 = 0,278393 , a 2 = 0,230389 , a 3 = 0,000972 , a 4 = 0,078108

    { displaystyle  operatorname {erf} x  приблизительно 1-  left (a_ {1} t + a_ {2} t ^ {2} + a_ {3} t ^ {3}  right) e ^ {- x ^ {2}},  quad t = { frac {1} {1 + px}},  qquad x  geq 0}

    (максимальная ошибка: 2,5 × 10 −5 )

    где p = 0,47047 , a 1 = 0,3480242 , a 2 = −0,0958798 , a 3 = 0,7478556

    { displaystyle  operatorname {erf} x  приблизительно 1 - { frac {1} { left (1 + a_ {1} x + a_ {2} x ^ {2} +  cdots + a_ {6} x ^ {6}  right) ^ {16}}},  qquad x  geq 0}

    (максимальная ошибка: 3 × 10 −7 )

    где a 1 = 0,0705230784 , a 2 = 0,0422820123 , a 3 = 0,0092705272 , a 4 = 0,0001520143 , a 5 = 0,0002765672 , a 6 = 0,0000430638

    { displaystyle  operatorname {erf} x  приблизительно 1-  left (a_ {1} t + a_ {2} t ^ {2} +  cdots + a_ {5} t ^ {5}  right) e ^ { -x ^ {2}},  quad t = { frac {1} {1 + px}}}

    (максимальная ошибка: 1,5 × 10 −7 )

    где p = 0,3275911 , a 1 = 0,254829592 , a 2 = −0,284496736 , a 3 = 1,421413741 , a 4 = −1,453152027 , a 5 = 1,061405429.

    Все эти приближения верны для x ≥ 0 . Чтобы использовать эти приближения для отрицательного x , используйте тот факт, что erf x — нечетная функция, поэтому erf x = −erf (- x ) .

  • Экспоненциальные границы и чисто экспоненциальное приближение для дополнительной функции ошибок даются формулами
    { displaystyle { begin {align}  operatorname {erfc} x &  leq { tfrac {1} {2}} e ^ {- 2x ^ {2}} + { tfrac {1} {2}} e ^ {-x ^ {2}}  leq e ^ {- x ^ {2}}, &  quad x &> 0 \ имя оператора {erfc} x &  приблизительно { tfrac {1} {6}} e ^ { -x ^ {2}} + { tfrac {1} {2}} e ^ {- { frac {4} {3}} x ^ {2}}, &  quad x &> 0.  end {выровнено }}}
  • Вышеупомянутое было обобщено до сумм из N экспонент с возрастающей точностью в терминах N, так что erfc x может быть точно аппроксимирован или ограничен величиной 2 ( 2 x ) , где
    { displaystyle { tilde {Q}} (x) =  sum _ {n = 1} ^ {N} a_ {n} e ^ {- b_ {n} x ^ {2}}.}

    В частности, существует систематическая методология решения числовых коэффициентов {( a n , b n )}N
    n = 1
    которые дают минимаксное приближение или оценку для тесно связанной Q-функции : Q ( x ) ≈ ( x ) , Q ( x ) ≤ ( x ) или Q ( x ) ≥ ( x ) для x ≥ 0 . Коэффициенты {( a n , b n )}N
    n = 1
    для многих вариаций экспоненциальных приближений и границ до N = 25 были выпущены в открытый доступ в виде исчерпывающего набора данных.

  • Точная аппроксимация дополнительной функции ошибок для x ∈ [0, ∞) дана Karagiannidis & Lioumpas (2007), которые показали для соответствующего выбора параметров { A , B }, что
    { displaystyle  operatorname {erfc} x  приблизительно { frac { left (1-e ^ {- Ax}  right) e ^ {- x ^ {2}}} {B { sqrt { pi}} Икс}}.}

    Они определили { A , B } = {1.98,1.135} , что дает хорошее приближение для всех x ≥ 0 . Также доступны альтернативные коэффициенты для настройки точности для конкретного приложения или преобразования выражения в жесткую границу.

  • Одноканальная нижняя граница

    { displaystyle  operatorname {erfc} x  geq { sqrt { frac {2e} { pi}}} { frac { sqrt { beta -1}} { beta}} e ^ {-  beta x ^ {2}},  qquad x  geq 0,  quad  beta> 1,}

    где параметр β может быть выбран так, чтобы минимизировать ошибку на желаемом интервале аппроксимации.

  • Другое приближение дает Сергей Виницкий, используя свои «глобальные приближения Паде»:
    { displaystyle  operatorname {erf} x  приблизительно  operatorname {sgn} x  cdot { sqrt {1-  exp  left (-x ^ {2} { frac {{ frac {4} { pi}) } + ax ^ {2}} {1 + ax ^ {2}}}  right)}}}

    куда

    { displaystyle a = { frac {8 ( pi -3)} {3  pi (4-  pi)}}  приблизительно 0,140012.}

    Это сделано так, чтобы быть очень точным в окрестности 0 и в окрестности бесконечности, а относительная ошибка меньше 0,00035 для всех действительных x . Использование альтернативного значения a ≈ 0,147 снижает максимальную относительную ошибку примерно до 0,00013.

    Это приближение можно инвертировать, чтобы получить приближение для обратной функции ошибок:

    { displaystyle  operatorname {erf} ^ {- 1} x  приблизительно  operatorname {sgn} x  cdot { sqrt {{ sqrt { left ({ frac {2} { pi a}} + { frac { ln  left (1-x ^ {2}  right)} {2}}  right) ^ {2} - { frac { ln  left (1-x ^ {2}  right)} {a}}}} -  left ({ frac {2} { pi a}} + { frac { ln  left (1-x ^ {2}  right)} {2}}  right) }}.}
  • Приближение с максимальной погрешностью 1,2 × 10 −7 для любого действительного аргумента:
    { displaystyle  operatorname {erf} x = { begin {cases} 1-  tau & x  geq 0 \ tau -1 & x <0  end {cases}}}

    с участием

    { displaystyle { begin {align}  tau & = t  cdot  exp  left (-x ^ {2} -1,26551223 + 1,00002368t + 0,37409196t ^ {2} + 0,09678418t ^ {3} -0,18628806t ^ {4}  right. \ &  left.  Qquad  qquad  qquad + 0,27886807t ^ {5} -1,13520398t ^ {6} + 1,48851587t ^ {7} -0,82215223t ^ {8} + 0,17087277t ^ {9}  right)  end {выравнивается}}}

    а также

    { displaystyle t = { frac {1} {1 + { frac {1} {2}} | x |}}.}

Таблица значений

Икс erf x 1 — эрф х
0 0 1
0,02 0,022 564 575 0,977 435 425
0,04 0,045 111 106 0,954 888 894
0,06 0,067 621 594 0,932 378 406
0,08 0,090 078 126 0,909 921 874
0,1 0,112 462 916 0,887 537 084
0,2 0,222 702 589 0,777 297 411
0,3 0,328 626 759 0,671 373 241
0,4 0,428 392 355 0,571 607 645
0,5 0,520 499 878 0,479 500 122
0,6 0,603 856 091 0,396 143 909
0,7 0,677 801 194 0,322 198 806
0,8 0,742 100 965 0,257 899 035
0,9 0,796 908 212 0,203 091 788
1 0,842 700 793 0,157 299 207
1.1 0,880 205 070 0,119 794 930
1.2 0,910 313 978 0,089 686 022
1.3 0,934 007 945 0,065 992 055
1.4 0,952 285 120 0,047 714 880
1.5 0,966 105 146 0,033 894 854
1.6 0,976 348 383 0,023 651 617
1,7 0,983 790 459 0,016 209 541
1,8 0,989 090 502 0,010 909 498
1.9 0,992 790 429 0,007 209 571
2 0,995 322 265 0,004 677 735
2.1 0,997 020 533 0,002 979 467
2.2 0,998 137 154 0,001 862 846
2.3 0,998 856 823 0,001 143 177
2,4 0,999 311 486 0,000 688 514
2,5 0,999 593 048 0,000 406 952
3 0,999 977 910 0,000 022 090
3.5 0,999 999 257 0,000 000 743

Дополнительная функция ошибок

Дополнительная функция ошибок , обозначаемая ERFC , определяется как

{ displaystyle { begin {align}  operatorname {erfc} x & = 1-  operatorname {erf} x \ [5pt] & = { frac {2} { sqrt { pi}}}  int _ { x} ^ { infty} e ^ {- t ^ {2}} , dt \ [5pt] & = e ^ {- x ^ {2}}  operatorname {erfcx} x,  end {выровнено}} }

который также определяет erfcx , масштабированную дополнительную функцию ошибок (которую можно использовать вместо erfc, чтобы избежать арифметического переполнения ). Другая форма erfc x для x ≥ 0 известна как формула Крейга в честь ее первооткрывателя:

{ displaystyle  operatorname {erfc} (x  mid x  geq 0) = { frac {2} { pi}}  int _ {0} ^ { frac { pi} {2}}  exp  left (- { frac {x ^ {2}} { sin ^ {2}  theta}}  right) , d  theta.}

Это выражение действительно только для положительных значений x , но его можно использовать вместе с erfc x = 2 — erfc (- x ) для получения erfc ( x ) для отрицательных значений. Эта форма выгодна тем, что диапазон интегрирования является фиксированным и конечным. Расширение этого выражения для erfc суммы двух неотрицательных переменных выглядит следующим образом:

{ displaystyle  operatorname {erfc} (x + y  mid x, y  geq 0) = { frac {2} { pi}}  int _ {0} ^ { frac { pi} {2} }  exp  left (- { frac {x ^ {2}} { sin ^ {2}  theta}} - { frac {y ^ {2}} { cos ^ {2}  theta}}  right) , d  theta.}

Функция мнимой ошибки

Функция мнимой ошибки , обозначаемая erfi , определяется как

{ displaystyle { begin {align}  operatorname {erfi} x & = - i  operatorname {erf} ix \ [5pt] & = { frac {2} { sqrt { pi}}}  int _ { 0} ^ {x} e ^ {t ^ {2}} , dt \ [5pt] & = { frac {2} { sqrt { pi}}} e ^ {x ^ {2}} D (х),  конец {выровнено}}}

где D ( x ) — функция Доусона (которую можно использовать вместо erfi, чтобы избежать арифметического переполнения ).

Несмотря на название «мнимая функция ошибок», erfi x реально, когда x реально.

Когда функция ошибок оценивается для произвольных комплексных аргументов z , результирующая комплексная функция ошибок обычно обсуждается в масштабированной форме как функция Фаддеева :

w (z) = e ^ {- z ^ {2}}  operatorname {erfc} (-iz) =  operatorname {erfcx} (-iz).

Кумулятивная функция распределения

Функция ошибок по существу идентична стандартной нормальной кумулятивной функции распределения , обозначаемой Φ , также называемой нормой ( x ) в некоторых языках программного обеспечения, поскольку они различаются только масштабированием и преобразованием. Действительно,

{ displaystyle { begin {align}  Phi (x) & = { frac {1} { sqrt {2  pi}}}  int _ {-  infty} ^ {x} e ^ { tfrac { -t ^ {2}} {2}} , dt \ [6pt] & = { frac {1} {2}}  left (1+  operatorname {erf} { frac {x} { sqrt {2}}}  right) \ [6pt] & = { frac {1} {2}}  operatorname {erfc}  left (- { frac {x} { sqrt {2}}}  right )  конец {выровнено}}}

или переставил для erf и erfc :

{ displaystyle { begin {align}  operatorname {erf} (x) & = 2  Phi  left (x { sqrt {2}}  right) -1 \ [6pt]  operatorname {erfc} (x ) & = 2  Phi  left (-x { sqrt {2}}  right) \ & = 2  left (1-  Phi  left (x { sqrt {2}}  right)  right) .  end {выровнено}}}

Следовательно, функция ошибок также тесно связана с Q-функцией , которая является вероятностью хвоста стандартного нормального распределения. Q-функция может быть выражена через функцию ошибок как

{ displaystyle { begin {align} Q (x) & = { frac {1} {2}} - { frac {1} {2}}  operatorname {erf} { frac {x} { sqrt {2}}} \ & = { frac {1} {2}}  operatorname {erfc} { frac {x} { sqrt {2}}}.  End {align}}}

Обратное из Ф называется нормальной функции квантиль , или пробит функции и могут быть выражены в терминах функции обратной ошибки как

{ displaystyle  operatorname {probit} (p) =  Phi ^ {- 1} (p) = { sqrt {2}}  operatorname {erf} ^ {- 1} (2p-1) = - { sqrt {2}}  operatorname {erfc} ^ {- 1} (2p).}

Стандартный нормальный cdf чаще используется в вероятностях и статистике, а функция ошибок чаще используется в других разделах математики.

Функция ошибок является частным случаем функции Миттаг-Леффлера и также может быть выражена как конфлюэнтная гипергеометрическая функция ( функция Куммера):

{ displaystyle  operatorname {erf} x = { frac {2x} { sqrt { pi}}} M  left ({ tfrac {1} {2}}, { tfrac {3} {2}} , -x ^ {2}  right).}

Он имеет простое выражение в терминах интеграла Френеля .

С точки зрения регуляризованном гамма — функции P и неполной гамма — функции ,

{ displaystyle  operatorname {erf} x =  operatorname {sgn} x  cdot P  left ({ tfrac {1} {2}}, x ^ {2}  right) = { frac { operatorname {sgn } x} { sqrt { pi}}}  gamma  left ({ tfrac {1} {2}}, x ^ {2}  right).}

sgn x — знаковая функция .

Обобщенные функции ошибок

График обобщенных функций ошибок E n ( x ) :
серая кривая: E 1 ( x ) =1 — е х/π
красная кривая: E 2 ( x ) = erf ( x )
зеленая кривая: E 3 ( x )
синяя кривая: E 4 ( x )
золотая кривая: E 5 ( x ) .

Некоторые авторы обсуждают более общие функции:

{ displaystyle E_ {n} (x) = { frac {n!} { sqrt { pi}}}  int _ {0} ^ {x} e ^ {- t ^ {n}} , dt = { frac {n!} { sqrt { pi}}}  sum _ {p = 0} ^ { infty} (- 1) ^ {p} { frac {x ^ {np + 1}} {(np + 1) p!}}.}

Известные случаи:

  • E 0 ( x ) — прямая линия, проходящая через начало координат: E 0 ( x ) =Икс/е π
  • E 2 ( x ) — функция ошибок, erf x .

После деления на п ! , все E n для нечетных n похожи (но не идентичны) друг на друга. Точно так же E n для четного n выглядят похожими (но не идентичными) друг на друга после простого деления на n ! . Все обобщенные функции ошибок для n > 0 выглядят одинаково на положительной стороне графика x .

Эти обобщенные функции могут быть эквивалентно выражены для x > 0 с использованием гамма-функции и неполной гамма-функции :

{ displaystyle E_ {n} (x) = { frac {1} { sqrt { pi}}}  Gamma (n)  left ( Gamma  left ({ frac {1} {n}}  right) -  Gamma  left ({ frac {1} {n}}, x ^ {n}  right)  right),  qquad x> 0.}

Следовательно, мы можем определить функцию ошибок в терминах неполной гамма-функции:

{ displaystyle  operatorname {erf} x = 1 - { frac {1} { sqrt { pi}}}  Gamma  left ({ tfrac {1} {2}}, x ^ {2}  right ).}

Итерированные интегралы дополнительной функции ошибок

Повторные интегралы дополнительной функции ошибок определяются как

{ displaystyle { begin {align}  operatorname {i} ^ {n} !  operatorname {erfc} z & =  int _ {z} ^ { infty}  operatorname {i} ^ {n-1}  !  operatorname {erfc}  zeta , d  zeta \ [6pt]  operatorname {i} ^ {0} !  operatorname {erfc} z & =  operatorname {erfc} z \ operatorname {i} ^ {1} !  Operatorname {erfc} z & =  operatorname {ierfc} z = { frac {1} { sqrt { pi}}} e ^ {- z ^ {2}} - z  operatorname {erfc } z \ operatorname {i} ^ {2} !  operatorname {erfc} z & = { tfrac {1} {4}}  left ( operatorname {erfc} z-2z  operatorname {ierfc} z  вправо) \ конец {выровнено}}}

Общая рекуррентная формула

{ displaystyle 2n  cdot  operatorname {i} ^ {n} !  operatorname {erfc} z =  operatorname {i} ^ {n-2} !  operatorname {erfc} z-2z  cdot  operatorname { i} ^ {n-1} !  operatorname {erfc} z}

У них есть степенной ряд

{ displaystyle  operatorname {i} ^ {n} !  operatorname {erfc} z =  sum _ {j = 0} ^ { infty} { frac {(-z) ^ {j}} {2 ^ {nj} j! ,  Gamma  left (1 + { frac {nj} {2}}  right)}},}

откуда следуют свойства симметрии

{ displaystyle  operatorname {i} ^ {2m} !  operatorname {erfc} (-z) = -  operatorname {i} ^ {2m} !  operatorname {erfc} z +  sum _ {q = 0} ^ {m} { frac {z ^ {2q}} {2 ^ {2 (mq) -1} (2q)! (mq)!}}}

а также

{ displaystyle  operatorname {i} ^ {2m + 1} !  operatorname {erfc} (-z) =  operatorname {i} ^ {2m + 1} !  operatorname {erfc} z +  sum _ {q = 0} ^ {m} { frac {z ^ {2q + 1}} {2 ^ {2 (mq) -1} (2q + 1)! (Mq)!}}.}.}

Реализации

Как реальная функция реального аргумента

  • В Posix -совместимый операционных систем, заголовок math.h возвестят и математическая библиотека libm должна обеспечивать функции erfи erfc( двойной точности ), а также их одинарной точности и повышенной точности аналогов erff, erflи erfcf, erfcl.
  • GNU Scientific Library предоставляет erf, erfc, log(erf), и масштабируемые функции ошибок.

Как сложная функция сложного аргумента

  • libcerf , цифровая библиотека C для сложных функций ошибок, обеспечивает комплексные функцииcerf,cerfc,cerfcxи реальные функцииerfi,erfcxпримерно с 13-14 точностью цифр, на основе функции Фаддеева , как реализовано в MIT Фаддеевого пакете

Смотрите также

  • Гауссовский интеграл по всей действительной прямой
  • Функция Гаусса , производная
  • Функция Доусона , перенормированная функция мнимой ошибки
  • Интеграл Гудвина – Стэтона

По вероятности

  • Нормальное распределение
  • Нормальная кумулятивная функция распределения , масштабированная и сдвинутая форма функции ошибок
  • Пробит , обратная или квантильная функция нормального CDF
  • Q-функция , хвостовая вероятность нормального распределения

использованная литература

дальнейшее чтение

  • Абрамовиц, Милтон ; Стегун, Ирен Энн , ред. (1983) [июнь 1964]. «Глава 7» . Справочник по математическим функциям с формулами, графиками и математическими таблицами . Прикладная математика. 55 (Девятое переиздание с дополнительными исправлениями, десятое оригинальное издание с исправлениями (декабрь 1972 г.); первое изд.). Вашингтон; Нью-Йорк: Министерство торговли США, Национальное бюро стандартов; Dover Publications. п. 297. ISBN. 978-0-486-61272-0. LCCN  64-60036 . Руководство по ремонту  0167642 . LCCN  65-12253 .
  • Press, William H .; Teukolsky, Saul A .; Веттерлинг, Уильям Т .; Фланнери, Брайан П. (2007), «Раздел 6.2. Неполная гамма-функция и функция ошибок» , Численные рецепты: Искусство научных вычислений (3-е изд.), Нью-Йорк: Cambridge University Press, ISBN 978-0-521-88068-8
  • Темме, Нико М. (2010), «Функции ошибок, интегралы Доусона и Френеля» , в Olver, Frank WJ ; Lozier, Daniel M .; Бойсверт, Рональд Ф .; Кларк, Чарльз В. (ред.), Справочник по математическим функциям NIST , Cambridge University Press, ISBN 978-0-521-19225-5, MR  2723248

внешние ссылки

  • MathWorld — Эрф
  • Таблица интегралов функций ошибок

Понравилась статья? Поделить с друзьями:
  • Интеграл ошибок от бесконечности
  • Интеграл ошибок график
  • Интеграл ошибок гаусса таблица
  • Интеграл ошибок erf
  • Инструменты человеческого фактора для предотвращения ошибок