Интегрирование сигнала ошибки

      1. Реакция интегрирующего усилителя на воздействие типовых сигналов

1. Ступенчатый сигнал

Входной
ступенчатый сигнал как функция времени
равен
при
,
при
(рис.1.3, а,
б
). Используя первое из этих условий,
имеем:

.

аб

Рис. 1.3. Реакция интегратора на ступенчатый
сигнал:
а – входной сигнал, б – выходной
сигнал

Таким
образом, изменение выходного напряжения
во времени представляет собой наклонную
прямую с полярностью, противоположной
полярности входного сигнала.

2. Прямоугольное колебание

Входное
напряжение внутри периода повторения
является функцией времени (рис. 1.4,а). Имеем

= 5 В при
,
=
–5 В при
.

После
интегрирования имеем
,
т.е. наклонную прямую на каждом
полупериоде.

а б

Рис. 1.4. Реакция интегратора на прямоугольные
колебания:
а – входной сигнал, б –
выходной сигнал

Накопленное
напряжение в конце первого полупериода,
т.е. интервала между
при

= 10кОм и
= 0,1мкФ,
:

.

Накопленное
напряжение за второй полупериод между

:

В.

Полученный
выходной сигнал показан на рис.
1.4,б.Размах этого сигнала от
пика к пику равен 2,5 В.
При любом сигнале на входе изменение
сигнала на выходе должно начинаться от
того значения, которое выходной сиг­нал
имел к моменту прихода входного сигнала.

3. Треугольный сигнал

На
входе интегратора – пилообразное
напряжение
,
показанное на рис. 1.4,б, как функция времени на интервале
от
,
равное

,
где
.

Напряжение
на выходе интегратора:

.

Таким
образом, напряжение на выходе – это
квадратичная функция вре­мени
(парабола), показанная на рис.
1.5.

Рис. 1.5. Реакция интегратора на треугольный
сигнал

      1. О реальном интеграторе

До
сих пор операционный усилитель в
интеграторе считался идеальным. В
действительности, реальный операционный
уси­литель имеет некоторое напряжение
сдвига и нуждается в не­котором токе
смещения. Напряжение сдвига интегрируется
как ступенчатая функция, что дает
дополнительный линейно нара­стающий
(или спадающий) выходной сигнал, причем
полярность этого сигнала определяется
полярностью
,
а наклон –вели­чиной
.
Ток смещения течет через конденсатор
обратной связи, что также приводит к
появлению наклонного выходного сигнала.
В результате действия этих двух эффектов
конден­сатор обратной связи через
некоторое время неизбежно заря­жается
до максимально возможного выходного
напряжения усилителя. Такое постепенное
накопление заряда на конденса­торе
обратной связи накладывает ограничение
на интервал времени, в течение которого
может быть осуществлено интегри­рование
с достаточной точностью. Кроме того,
добавляется к напряжению на конденсаторе,
и, поскольку это напряжение равно
,
такая прибавка вносит в результат
ошибку, равную
.
В итоге выражение для
принимает вид

. (1.2)

Последние
три члена в правой части равенства
(1.2)соответствуют указанным выше
ошибкам, а первый член описывает полезный
выходной сигнал. Знаки погрешностей
могут быть любыми по отношению друг к
другу и к полезному сигналу.

Ошибку
напряжения сдвига можно уменьшить
следующими приемами:

  1. использовать
    операционный усилитель с низким
    ;

периодически
сбрасывать интегратор (т.е. разряжать
конденсатор до некоторого заранее
выбранного значения);

шунтировать
сопротивлением
,
как показано на рис.1.6.

Шунтирование
конденсатора обратной связи сопротивлением

позволяет на низких частотах, где
конденсатор фактически действует как
разомкнутая цепь, ограничить напряжение
ошибки величиной
вместо
.
Такое шунтирование одновременно
ограничивает снизу область частот, в
которой происходит интегрирование.
Например, на рабочей частоте
погрешность интегрирования составит
около 5 %;увеличение
рабочей частоты выше величины
приведет к увеличению погрешности.

Слагаемое
ошибки,связанное с током
смещения, можно уменьшить за счет
использования операционного усилителя
с входом на полевых транзисторах или
путем подключения между неинвертирующим
входом и землей сопротивления
,
равного
,если в схеме уже использовано сопротивление

(рис. 1.6).При использовании
такого сопротивления третий член в
правой части равенства (1.2)равен.

Ключ
«Кл» служит для периодического сброса
конденсатора
,
сопротивление
служит для уменьшения эффекта
,
а сопротивление
уменьшает эффект
.

Конденсаторы,
используемые в интеграторах с большим
временем интегрирования, должны иметь
очень высокое собственное активное
параллельное сопротивление (т. е. очень
малые утечки). Хорошую стабильность на
больших временах обеспечивают тефлоновые
или полистироловые конденсаторы.

Рис. 1.6.Коррекция ошибки
интегратора
в случае медленно
меняющегося сигнала

Ошибка — интегрирование

Cтраница 2

Ни одна из электрических схем не обеспечивает идеального интегрирования, однако ошибку интегрирования можно задать заранее.
 [16]

Второе слагаемое ( Uaax) и все последующие слагаемые представляют собой ошибку интегрирования.
 [17]

В существующих АВМ обычно коэффициент усиления выбирают ( 4 — 5) 104, поэтому ошибка интегрирования не превышает одного процента, что вполне приемлемо в данном случае.
 [18]

В существующих АВМ обычно коэффициент усиления выбирают ( 4 — 5) 104, поэтому ошибка интегрирования не превышает одного процента, что вполне приемлемо в данном случае.
 [19]

В данном случае получаем ( 1 ku) — кратное увеличение постоянной времени и уменьшение ошибки интегрирования. Одновременно схема дает & и-кратное увеличение выходного напряжения, что требуется во многих устройствах.
 [20]

Если первый член в правой части уравнения (3.100) пропорционален интегралу от входного напряжения ( K-IRC), то наличие второго члена определяет ошибку интегрирования.
 [22]

При интегрировании сигнала нулевой частоты — постоянного ( или очень медленно меняющегося) — приходится находить предельное время / шах, в течение которого ошибка интегрирования не превосходит допустимого значения.
 [23]

Отклонение экспоненты на участке / з — 1 от штриховой линии происходит вследствие нарушения условия тЗГ для импульса наибольшей продолжительности, что приводит к возрастанию ошибки интегрирования из-за нелинейности используемого участка экспоненты.
 [24]

Отличие от идеального интегратора проявляется в том, что: а) интегрирование правильно только в окрестности фронта входного импульса при 0, по мере увеличения значений t ошибка интегрирования увеличивается; б) реальная интегрирующая цепь не имеет бесконечной памяти; если в идеальном интеграторе при t — T UBblx ( t) const, то в реальной С-цепи после окончания действия импульса конденсатор С разряжается и напряжение убывает по экспоненциальному закону.
 [25]

Таким образом, увеличение постоянной времени Т RC интегрирующей цепочки целесообразно лишь до такой величины, пока сопротивление RH не будет соизмеримо с сопротивлением R; дальнейшее увеличение Т не уменьшает ошибки интегрирования, а лишь понижает амплитуду выходного сигнала.
 [27]

Реальное напряжение, приближаясь к идеальному, изменяется по закону квадратичной параболы. Ошибка интегрирования по мере увеличения t возрастает и при t r будет максимальной. После окончания действия импульса конденсатор С разряжается; напряжение на нем уменьшается по экспоненциальному закону.
 [28]

Однако при интегрировании следует иметь в виду, что в спектре импульса всегда найдутся такие низкие частоты в окрестности точки ( о 0, для которых при конечном значении 0 выполнить условие Q T не удается. Появляется спектральная ошибка интегрирования, вызванная неудовлетворительным интегрированием низких частот спектра. Такая ошибка вызывает временную ошибку. Поскольку низкие частоты спектра влияют в основном на формирование вершины импульса, то временная ошибка может быть существенной при интегрировании вершины импульса и незначительной при интегрировании участка, прилегающего к фронту импульса. Рассмотрим это положение на конкретных примерах.
 [29]

При отсутствии этой способности при очень малых входных сигналах привод останавливается. В периоды остановок происходит накопление ошибок интегрирования.
 [30]

Страницы:  

   1

   2

   3

   4

Всем доброго времени суток. В одной из своих статей я рассказывал о простых RC-цепях и о влиянии на прохождении сигналов различной формы через эти цепи. Сегодняшняя статья несколько дополнит предыдущую в сфере операционных усилителей.

Интегратор

Различные разновидности интеграторов применяются во многих схемах, например, в активных фильтрах или в системах автоматического регулирования для интегрирования сигнала ошибки.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Схемы интеграторов: простой RC-интегратор и интегратор на основе ОУ
Схемы интеграторов: простой RC-интегратор и интегратор на основе ОУ.

Простой RC-интегратор имеет два серьёзных недостатка:

  1. При прохождении сигнала через простой RC-интегратор происходит ослабление входного сигнала.
  2. RC-интегратор имеет высокое выходное сопротивление.

Интегратор на основе ОУ лишён данных недостатков, поэтому на практике применяется чаще. Он состоит из ОУ DA1, входного резистора R1 и конденсатора С1, который обеспечивает обратную связь.

Работа интегратора основана на том, что инвертирующий вход заземлён, согласно принципу виртуального замыкания. Через резистор R1 протекает входной ток IBX, в тоже время для уравновешивания точки нулевого потенциала, конденсатор будет заряжаться током одинаковым по величине IBX, но с противоположным знаком. В результате на выходе интегратора будет формироваться напряжение, до которого конденсатор заряжается этим током. Входное сопротивление интегратора будет равно сопротивлению резистора R1, а выходное сопротивление будет определяться параметрами ОУ.

Основные соотношения интегратора

604201601

Основным недостатком интегратора на ОУ является явление дрейфа выходного напряжения. В основе данного явления лежит то, что конденсатор С1, кроме заряда входным током заряжается различными токами утечки и смещения ОУ. Последствием данного недостатка является появление напряжения смещения на выходе схемы, которое может привести к насыщению ОУ.

Для устранения данного недостатка может быть применено три способа:

  1. Использование ОУ с малым напряжение смещения.
  2. Периодически разряжать конденсатор.
  3. Шунтировать конденсатор С1 сопротивление RP.

Реализация данных способов показана на рисунке ниже

Устранение дрейфа выходного напряжения интегратора
Устранение дрейфа выходного напряжения интегратора.

Включение резистора RСД между землёй и неинвертирующим входом позволяет снизить входное напряжение смещения, за счёт уравновешивания падения напряжения на входах ОУ, величина RСД = R1||RP, либо RСД = R1 (при отсутствии RP).

Величина резистора RP выбирается из того, что постоянная времени RPС1 должна быть значительно больше, чем период интегрирования, то есть R1С1

604201602

Конденсаторы, применяемые в интеграторах, должны иметь очень малый ток утечки, особенно если частота интегрирования составляет единицы Гц.

Дифференциатор

Дифференциатор, выполняет функцию противоположную интегратору, то есть на выходе дифференциатора напряжение пропорционально скорости изменения входного напряжения. Так же как и интегратор, дифференциатор находит широкое применение в активных фильтрах и схемах автоматического регулирования. Дифференциатор получается из интегратора путем перемены местами резистора и конденсатора.

 Схемы дифференциаторов: простого RC-дифференциатора и дифференциатора на основе ОУ
Схемы дифференциаторов: простого RC-дифференциатора и дифференциатора на основе ОУ.

Простой дифференциатор имеет два существенных недостатка: большое выходное сопротивление и ослабление входного сигнала, поэтому в современных схемах он почти не применяется. Для дифференцирования сигналов применяют дифференциатор на ОУ, состоящий из ОУ DA1, входного конденсатора С1 и резистора R1, через который осуществляется положительная обратная связь с выхода ОУ на его вход.

При поступлении сигнала на вход дифференциатора конденсатор С1 начинает заряжаться током IBX, за счёт принципа виртуального замыкания ток такой же величины будет протекать и через резистор R1. В результате на выходе ОУ будет формироваться напряжение пропорционально скорости изменения входного напряжения.

Параметры дифференциатора определяются следующими выражениями

604201603

Основной недостаток дифференциатора на ОУ состоит в том, что на высоких частотах коэффициент усиления больше, чем на низких частотах. Поэтому на высоких частотах происходит значительное усиление собственных шумов резисторов и активных элементов, кроме того возможно возбуждение дифференциатора на высоких частотах.

Решение данной проблемы является включение дополнительного резистора на вход дифференциатора. Сопротивление резистора должно составлять несколько десятков Ом (в среднем порядка 50 Ом).

Предложите, как улучшить StudyLib

(Для жалоб на нарушения авторских прав, используйте

другую форму
)

Ваш е-мэйл

Заполните, если хотите получить ответ

Оцените наш проект

1

2

3

4

5

5.4.1. Погрешность дифференцирования и шум

5.4.2. Интегральное насыщение

5.4.3. Запас устойчивости и робастность

5.4.4. Сокращение нулей и полюсов

5.4.5. Безударное переключение режимов регулирования

5.4.6. Дискретная форма регулятора

Описанный выше ПИД-регулятор и его модификации являются теоретическими идеализациями реальных регуляторов, поэтому для их практического воплощения необходимо учесть особенности, порождаемые реальными условиями применения и технической реализации. К таким особенностям относятся:

  • конечный динамический диапазон изменений физических переменных в системе (например, ограниченная мощность нагревателя, ограниченная пропускная способность клапана);
  • отсутствие (как правило) в системе поддержания температуры холодильника (управляющее воздействие соответствует включению холодильника, а не выключению нагревателя);
  • ограниченная точность измерений, что требует специальных мер для выполнения операций дифференцирования с приемлемой погрешностью;
  • наличие практически во всех системах типовых нелинейностей: насыщение (ограничение динамического диапазона изменения переменных), ограничение скорости нарастания, гистерезис и люфт;
  • технологический разброс и случайные вариации параметров регулятора и объекта;
  • дискретная реализация регулятора;
  • необходимость плавного (безударного) переключение режимов регулирования.

Ниже описываются методы решения перечисленных проблем.

5.4.1. Погрешность дифференцирования и шум

Проблема численного дифференцирования является достаточно старой и общей как в цифровых, так и в аналоговых регуляторах. Суть ее заключается в том, что производная вычисляется обычно как разность двух близких по величине значений функции, поэтому относительная погрешность производной всегда оказывается больше, чем относительная погрешность численного представления дифференцируемой функции.

В частности, если на вход дифференциатора поступает синусоидальный сигнал , то на выходе получим , т.е. с ростом частоты увеличивается амплитуда сигнала на выходе дифференциатора. Иначе говоря, дифференциатор усиливает высокочастотные помехи, короткие выбросы и шум.

Рис. 5.66. Структурная реализация дифференциального члена ПИД-регулятора

Если помехи, усиленные дифференциатором, лежат за границей рабочих частот ПИД-регулятора, то их можно ослабить с помощью фильтра верхних частот. Структурная реализация дифференциатора с фильтром показана на рис. 5.66. Здесь ,

т.е. передаточная функция полученного дифференциатора может быть представлена в виде произведения передаточной функции идеального дифференциатора на передаточную функцию фильтра первого порядка: , где коэффициент задает граничную частоту фильтра и обычно выбирается равным 2…20 [Astrom].

Большее ослабление высокочастотных шумов можно получить с помощью отдельного фильтра, который включается последовательно с ПИД-регулятором. Обычно используют фильтр второго порядка [Astrom] с передаточной функцией .

Постоянную времени фильтра обычно выбирают равной , где =2…20 [Astrom]. Граничную частоту фильтра желательно не выбирать ниже частоты , т.к. это усложняет расчет параметров регулятора и запаса устойчивости.

Кроме шумов дифференцирования на характеристики ПИД-регулятора влияют шумы измерений. Через цепь обратной связи эти шумы поступают на вход системы и затем проявляются как дисперсия управляющей переменной . Высокочастотные шумы вредны тем, что вызывают ускоренный износ трубопроводной арматуры и электродвигателей.

Поскольку объект управления обычно является низкочастотным фильтром, шумы измерений редко проникают по контуру регулирования на выход системы. Однако они увеличивают погрешность измерений и снижают точность регулирования.

В ПИД регуляторах различают шум с низкочастотным спектром, вызванный внешними воздействиями на объект управления, и высокочастотный шум, связанный с электромагнитными наводками, помехами по шинам питания и земли, с дискретизацией измеряемого сигнала и другими причинами [Денисенко, Денисенко]. Низкочастотный шум моделируют как внешние возмущения (), высокочастотный — как шумы измерений ().

5.4.2. Интегральное насыщение

Рис. 5.67. Реакция выходной переменной на скачок входного воздействия для ПИ-регулятора при условии ограничения мощности на входе объекта и без ограничения. Объект — второго порядка, , , . Параметры регулятора: , , .

Рис. 5.68. Сигнал на входе объекта при условии ограничения мощности и без. Объект — второго порядка, , , . Параметры регулятора: , , .

В установившемся режиме работы и при малых возмущениях большинство систем с ПИД-регуляторами являются линейными. Однако процесс выхода на режим практически всегда требует учета нелинейности типа «ограничение». Эта нелинейность связана с естественными ограничениями на мощность, скорость, частоту вращения, угол поворота, площадь поперечного сечения клапана, динамический диапазон, и т. п. Контур регулирования в системе, находящейся в насыщении (когда переменная достигла ограничения), оказывается разомкнутым, поскольку при изменении переменной на входе звена с ограничением его выходная переменная остается без изменений.

Наиболее типовым проявлением режима ограничения является так называемое «интегральное насыщение», которое возникает в процессе выхода системы на режим в регуляторах с ненулевой постоянной интегрирования . Интегральное насыщение приводит к затягиванию переходного процесса (рис. 5.67 — рис. 5.68). Аналогичный эффект возникает вследствие ограничения пропорционального и интегрального члена ПИД-регулятора (рис. 5.69 — рис. 5.70). Однако часто под интегральным насыщением понимают совокупность эффектов, связанных с нелинейностью типа «ограничение».

Суть проблемы интегрального насыщения состоит в том, что если сигнал на входе объекта управления вошел в зону насыщения (ограничения), а сигнал рассогласования не равен нулю, интегратор продолжает интегрировать т. е. сигнал на его выходе растет, но этот сигнал не участвует в процессе регулирования и не воздействует на объект вследствие эффекта насыщения. Система управления в этом случае становится эквивалентной разомкнутой системе, сигнал на входе которой равен уровню насыщения управляющего сигнала .

Для тепловых систем ограничением снизу обычно является нулевая мощность нагрева, в то время как ПИД-регулятор требует подачи на объект «отрицательной мощности нагрева», т.е. требует охлаждения объекта.

Рис. 5.69. Реакция выходной переменной на скачок входного воздействия для ПИД-регулятора при условии ограничения мощности на входе объекта и без ограничения. Объект — второго порядка, , , . Параметры регулятора: , , .

Рис. 5.70. Сигнал на входе объекта в контуре с ПИД-регулятором при условии ограничения мощности и без. Объект — второго порядка, , , . Параметры регулятора: , , .

Эффект интегрального насыщения известен давно. В аналоговых регуляторах его устранение было достаточно проблематичным, поскольку в них проблема не могла быть решена алгоритмически, а только аппаратными средствами. С появлением микропроцессоров проблему удается решить гораздо эффективнее. Методы устранения интегрального насыщения обычно являются предметом изобретений, относятся к коммерческой тайне фирм-производителей и защищаются патентами. Ниже рассмотрены несколько таких идей, описанных в литературе [Astrom].

Ограничение скорости нарастания входного воздействия

Поскольку максимальное значение входного воздействия на объект управления снижается с уменьшением разности , то для устранения эффекта ограничения можно просто снизить скорость нарастания сигнала уставки , например, с помощью фильтра. Недостатком такого способа является снижение быстродействия системы, а также невозможность устранить интегральное насыщение, вызванное внешними возмущениями, а не сигналом уставки.

Алгоритмический запрет интегрирования

Когда управляющее воздействие на объект достигает насыщения, обратная связь разрывается и интегральная составляющая продолжает расти, даже если при отсутствии насыщения она должна была бы падать. Поэтому один из методов устранения интегрального насыщения состоит в том, что контроллер следит за величиной управляющего воздействия на объект, и как только оно достигает насыщения, контроллер вводит программный запрет интегрирования для интегральной составляющей.

Рис. 5.71. Компенсация эффекта интегрального насыщения с помощью дополнительной обратной связи для передачи сигнала ошибки на вход интегратора

Компенсация насыщения с помощью дополнительной обратной связи

Эффект интегрального насыщения можно ослабить, отслеживая состояние исполнительного устройства, входящего в насыщение, и компенсируя сигнал, подаваемый на вход интегратора [Astrom]. Структура системы с таким компенсатором показана на рис. 5.71.

Принцип ее работы состоит в следующем. В системе вырабатывается сигнал рассогласования между входом и выходом исполнительного устройства . Сигнал на выходе исполнительного устройства либо измеряют, либо вычисляют, используя математическую модель (рис. 5.71). Если , это эквивалентно отсутствию компенсатора и получаем обычный ПИД-регулятор. Если же исполнительное устройство входит в насыщение, то и . При этом сигнал на входе интегратора уменьшается на величину ошибки , что приводит к замедлению роста сигнала на выходе интегратора, уменьшению сигнала рассогласования и величины выброса на переходной характеристике системы (рис. 5.72). Постоянная времени определяет степень компенсации сигнала рассогласования (рис. 5.72).

В некоторых регуляторах вход устройства сравнения выделяют как отдельный вход, называемый «вход слежения», что бывает удобно при построении сложных систем управления и при каскадном соединении нескольких регуляторов.

Условное интегрирование

Этот способ является обобщением алгоритмического запрета интегрирования. После наступления запрета интегральная составляющая остается постоянной, на том же уровне, который она имела в момент появления запрета интегрирования. Обобщение состоит в том, что запрет интегрирования наступает не только при достижении насыщения, но и при некоторых других условиях.

Такими условиями могут быть, например, достижение сигналом ошибки или выходной переменной некоторого заданного значения. При выключении процесса интегрирования нужно следить, в каком состоянии в момент выключения находится интегратор. Если он накапливает ошибку и степень насыщения возрастает, то интегрирование выключают. Если же в момент выключения степень насыщения понижается, то интегратор оставляют включенным [Astrom].

На рис. 5.73 показан пример переходного процесса в системе с отключением интегратора при достижении выходной величины заданного значения (, , ).

Интегратор с ограничением

На рис. 5.58 был представлен вариант реализации ПИ-регулятора с помощью интегратора в цепи обратной связи. Если эту схему дополнить ограничителем (рис. 5.74-а), то сигнал на выходе никогда не выйдет за границы, установленные порогами ограничителя, что уменьшает выброс на переходной характеристике системы (рис. 5.75). На рис. 5.74,б представлена модификация такого ограничителя.

Модель эффекта ограничения можно улучшить, если после превышении уровня, при котором наступает ограничение, уменьшить сигнал на выходе модели (рис. 5.76) [Astrom]. Это ускоряет выход системы из режима насыщения.

а)

б)

Рис. 5.74. Модификации интегратора с ограничением.

5.4.3. Запас устойчивости и робастность

Возможность потери устойчивости является основным недостатком систем с обратной связью. Поэтому обеспечение необходимого запаса устойчивости являются самым важным этапом при разработке и настройке ПИД-регулятора.

Устойчивость системы с ПИД-регулятором — это способность системы возвращаться к слежению за уставкой после прекращения действия внешних воздействий. В контексте данного определения под внешними воздействиями понимаются не только внешние возмущения, действующие на объект, но любые возмущения, действующие на любую часть замкнутой системы, в том числе шумы измерений, временная нестабильность уставки, шумы дискретизации и квантования, шумы и погрешность вычислений. Все эти возмущения вызывают отклонения системы от положения равновесия. Если после прекращения воздействия система возвращается в положение равновесия, то она считается устойчивой. При анализе устойчивости ПИД-регуляторов обычно ограничиваются исследованием реакции системы на ступенчатое изменение уставки , шум измерений и внешние возмущения . Потеря устойчивости проявляется как неограниченное возрастание управляемой переменной объекта, или как ее колебание с нарастающей амплитудой.

Рис. 5.77. Структура разомкнутой системы управления с ПИД-регулятором для анализа устойчивости

В производственных условиях попытки добиться устойчивости системы с ПИД-регулятором опытным путем, без ее идентификации, не всегда приводят к успеху (например, для систем с объектом высокого порядка, для систем с большой транспортной задержкой или для объектов, которые трудно идентифицировать). Это создает впечатление, что устойчивость — мистическое свойство, которым не всегда можно управлять. Однако, если процесс идентифицирован достаточно точно, то мистика исчезает и анализ устойчивости сводится к анализу дифференциального уравнения, описывающего замкнутый контур с обратной связью.

Практически интерес представляет анализ запаса устойчивости, т. е. определение численных значений критериев, которые позволяют указать, как далеко находится система от состояния неустойчивости.

Наиболее полную информацию о запасе устойчивости системы можно получить, решив дифференциальное уравнение, описывающее замкнутую систему при внешних возмущениях. Однако этот процесс слишком трудоемок, поэтому для линейных систем используют упрощенные методы, позволяющие дать оценку запаса устойчивости без решения уравнений [Воронов]. Мы рассмотрим два метода: оценку с помощью годографа комплексной частотной характеристики разомкнутого контура (критерий Найквиста) и с помощью логарифмических АЧХ и ФЧХ (диаграмм Боде).

Устойчивая система может стать неустойчивой при небольших изменениях ее параметров, например, вследствие их технологического разброса. Поэтому ниже мы проанализируем функцию чувствительности системы с ПИД-регулятором, которая позволяет выявить условия, при которых система становится грубой (мало чувствительной к изменению ее параметров).

Система, которая сохраняет заданный запас устойчивости во всем диапазоне изменений параметров вследствие их технологического разброса, старения, условий эксплуатации, во всем диапазоне изменений параметров нагрузки, а также во всем диапазоне действующих на систему возмущений в реальных условиях эксплуатации, называют робастной. Иногда робастность и грубость используют как эквивалентные понятия.

Критерий Найквиста

Рассмотрим систему, состоящую из контроллера и объекта управления (рис. 5.77), которая получена путем исключения из классической системы с ПИД-регулятором (рис. 5.34) сигнала уставки . Будем считать, что обратная связь разомкнута, а для ее замыкания достаточно соединить точки и . Предположим теперь, что на вход подан сигнал

.

(5.86)

Тогда, пройдя через регулятор и объект управления, этот сигнал появится на выходе с измененной амплитудой и фазой, в виде

,

(5.87)

где комплексная частотная характеристика (КЧХ) системы, аргумент КЧХ, модуль КЧХ. Таким образом, при прохождении через регулятор и объект амплитуда сигнала изменится пропорционально модулю, а фаза — на величину аргумента КЧХ.

Если теперь замкнуть точки и , то сигнал будет циркулировать по замкнутому контуру, причем будет выполняться условие . Если при этом и , т.е. после прохождения по контуру сигнал попадает на вход регулятора в той же фазе, что и на предыдущем цикле, то после каждого прохождения по контуру амплитуда синусоидального сигнала будет возрастать, пока не достигнет границы диапазона линейности системы, после чего форма колебаний станет отличаться от синусоидальной. В этом случае для анализа устойчивости можно использовать метод гармонической линеаризации, когда рассматривают только первую гармонику искаженного сигнала. В установившемся режиме после наступления ограничения амплитуды колебаний в силу равенства будет выполняться условие

Решив уравнение , можно найти частоту колебаний в замкнутой системе.

Комплексную частотную характеристику графически изображают в виде годографа (диаграммы Найквиста) — графика в координатах и (рис. 5.78). Стрелка на линии годографа указывает направление движения «карандаша» при возрастании частоты. Точка , которая соответствует условию существования незатухающих колебаний в системе, на этом графике имеет координаты и . Поэтому критерий устойчивости Найквиста формулируется следующим образом [Ротач]: контур, устойчивый в разомкнутом состоянии, сохранит устойчивость и после его замыкания, если его КЧХ в разомкнутом состоянии не охватывает точку с координатами [-1, j0]. Более строго, при движении вдоль траектории годографа в направлении увеличения частоты точка [-1, j0] должна оставаться слева [Astrom], чтобы замкнутый контур был устойчив.

На рис. 5.79 показаны реакции замкнутых систем с тремя различными годографами (рис. 5.78) на единичный скачок уставки. Все три системы устойчивы, однако скорость затухания колебаний и форма переходного процесса у них различная. Интуитивно понятно, что система с параметрами наиболее близка к тому, чтобы перейти в состояние незатухающих колебаний при небольшом изменении ее параметров. Поэтому при проектировании ПИД-регулятора важно обеспечить не столько устойчивость, сколько ее запас, необходимый для нормального функционирования системы в реальных условиях.

Запас устойчивости оценивают как степень удаленности КЧХ от критической точки [-1, j0]. Если , то можно найти, во сколько раз осталось увеличить передаточную функцию, чтобы результирующее усиление вывело систему в колебательный режим: , откуда

(5. 89)

Запасом по усилению называется величина, на которую нужно умножить передаточную функцию разомкнутой системы , чтобы ее модуль на частоте сдвига фаз 180˚ стал равен 1.

Если на частоте сдвига фаз 180˚ коэффициент усиления разомкнутого контура равен (рис. 5.78), то дополнительное усиление величиной переведет систему в точку [-1, j0], поскольку .

Аналогично вводится понятие запаса по фазе: это минимальная величина , на которую нужно увеличить фазовый сдвиг в разомкнутой системе , чтобы суммарный фазовый сдвиг достиг 180˚, т.е.

.

(5.90)

Рис. 5.79. Переходная характеристика замкнутой системы, которая имеет годограф, показанный на рис. 5.78

Знак «+» перед стоит потому, что .

Для оценки запаса устойчивости используют также минимальное расстояние от кривой годографа до точки [-1, j0] (рис. 5.78).

На практике считаются приемлемыми значения =2…5, =30˚…60˚, =0,5…0,8 [Astrom].

Для графика на рис. 5.78 эти критерии имеют следующие значения:

  • для случая , =12,1; =15˚; =0,303.
  • для случая , =11,8; =47,6; =0,663.
  • для случая , =1,5; =35,2; =0,251.

Если кривая годографа пересекает действительную ось в нескольких точках, то для оценки запаса устойчивости берут ту из них, которая наиболее близка к точке [-1, j0]. При более сложном годографе может быть использована оценка запаса устойчивости как запас по задержке [Astrom]. Запас по задержке— это минимальная задержка, при добавлении которой в контур он теряет устойчивость. Наиболее часто этот критерий используется для оценки запаса устойчивости систем с предиктором Смита.

Частотный критерий устойчивости

Рис. 5.80. Оценка запаса по фазе и усилению для системы с годографом, показанным на рис. 5.78

Для графического представления передаточной функции разомкнутой системы и оценки запаса устойчивости могут быть использованы логарифмические АЧХ и ФЧХ (рис. 5.80). Для оценки запаса по фазе сначала с помощью АЧХ находят частоту частота среза» или «частота единичного усиления«), при которой , затем по ФЧХ находят соответствующий запас по фазе. Для оценки запаса по усилению сначала с помощью ФЧХ находят частоту , на которой фазовый сдвиг равен 180˚, затем по АЧХ находят запас по усилению. На (рис. 5.80) приведены примеры графических построений для оценки запаса по фазе и усилению для системы, годограф которой показан на рис. 5.78.

Если запас по фазе разомкнутого контура равен 0˚ или запас по усилению равен 1, после замыкания контура обратной связи система окажется неустойчивой.

Функции чувствительности

Передаточная функция реального объекта может изменяться в процессе функционирования на величину , например, вследствие изменения нагрузки на валу двигателя, числа яиц в инкубаторе, уровня или состава жидкости в автоклаве, вследствие старения и износа материала, появления люфта, изменения смазки и т.п. Правильно спроектированная система автоматического регулирования должна сохранять свои показатели качества не только в идеальных условиях, но и при наличии перечисленных вредных факторов. Для оценки влияния относительного изменения передаточной функции объекта на передаточную функция замкнутой системы (5.41) найдем дифференциал :

.

(5. 91)

Поделив обе части этого равенства на и подставив в правую часть , получим

.

(5.92)

Из последнего соотношения виден смысл коэффициента — он характеризует степень влияния относительного изменения передаточной функции объекта на относительное изменение передаточной функции замкнутого контура, то есть является коэффициентом чувствительности замкнутого контура к вариации передаточной функции объекта. Поскольку коэффициент является частотозависимым, его называют функцией чувствительности [Astrom].

Как следует из (5.92),

.

(5. 93)

Введем обозначение .

(5.94)

Рис. 5.81. Модули функций чувствительности для систем с годографами, показанными на рис. 5.78

Величина называется комплементарной (дополнительной) функцией чувствительности [Astrom], поскольку .

Заметим, что функция чувствительности входит во все три слагаемые уравнения замкнутой системы с ПИД-регулятором (5.42).

Функция чувствительности позволяет оценить изменение свойств системы после замыкания обратной связи. Поскольку передаточная функция разомкнутой системы равна , а замкнутой , то их отношение . Аналогично, передаточная функция от входа возмущений на выход замкнутой системы равна (см. (5.42)), а разомкнутой — , следовательно, их отношение также равно . Для передаточной функции от входа шума измерений на выход системы можно получить то же отношение .

Таким образом, зная вид функции (см, например, рис. 5.81), можно сказать, как изменится подавление внешних воздействий на систему для разных частот после замыкания цепи обратной связи. Очевидно, шумы, лежащие в диапазоне частот, в котором , после замыкания обратной связи будут усиливаться, а шумы с частотами, на которых , после замыкания обратной связи будут ослаблены.

Наихудший случай (наибольшее усиление внешних воздействий) будет наблюдаться на частоте максимума модуля функции чувствительности (рис. 5.81):

.

(5.95)

Максимум функции чувствительности можно связать с запасом устойчивости (рис. 5.78). Для этого обратим внимание, что представляет собой расстояние от точки (-1, j0) до текущей точки на годографе функции . Следовательно, минимальное расстояние от точки (-1, j0) до функции равно

.

(5.96)

Сопоставляя (5.95) и (5.96), можно заключить, что .

Если с ростом частоты модуль уменьшается, то, как видно из (рис. 5.78), . Подставляя сюда соотношение , получим оценку запаса по усилению, выраженную через максимум функции чувствительности:

.

(5.97)

Аналогично, но с более грубыми допущениями можно записать оценку запаса по фазе через максимум функции чувствительности [Astrom]:

.

(5.98)

Например, при получим и .

Робастность

Робастность — это способность системы сохранять заданный запас устойчивости при вариациях ее параметров, вызванных изменением нагрузки (например, при изменении загрузки печи меняются ее постоянные времени), технологическим разбросом параметров и их старением, внешними воздействиями, погрешностями вычислений и погрешностью модели объекта. Используя понятие чувствительности, можно сказать, что робастность — это низкая чувствительность запаса устойчивости к вариации параметров объекта.

Если параметры объекта изменяются в небольших пределах, когда можно использовать замену дифференциала конечным приращением, влияние изменений параметров объекта на передаточную функцию замкнутой системы можно оценить с помощью функции чувствительности (5.92). В частности, можно сделать вывод, что на тех частотах, где модуль функции чувствительности мал, будет мало и влияние изменений параметров объекта на передаточную функцию замкнутой системы и, соответственно, на запас устойчивости.

Для оценки влияния больших изменения параметров объекта представим передаточную функцию объекта в виде двух слагаемых

,

(5.99)

где — расчетная передаточная функция, — величина отклонения от , которая должна быть устойчивой передаточной функцией. Тогда петлевое усиление разомкнутой системы можно представить в виде . Поскольку расстояние от точки (-1, j0) до текущей точки на годографе невозмущенной системы (для которой ) равно (см. рис. 5.82), условие устойчивости системы с отклонением петлевого усиления можно представить в виде

,

откуда , или ,

где — дополнительная функция чувствительности (5.94). Окончательно можно записать соотношение

,

(5.100)

Рис. 5.82. Пояснение к выводу соотношения (5.100)

которое должно выполняться, чтобы система сохраняла устойчивость при изменении параметров процесса на величину .

5.4.4. Сокращение нулей и полюсов

Поскольку передаточная функция разомкнутой системы является произведением двух передаточных функций, которые в общем случае имеют и числитель, и знаменатель, то возможно сокращение нулей с полюсами, которые лежат в правой полуплоскости или близки к ней. Поскольку в реальных условиях, когда существует разброс параметров, такое сокращение выполняется неточно, то может возникнуть ситуация, когда теоретический анализ приводит к выводу, что система устойчива, хотя на самом деле при небольшом отклонении параметров процесса от расчетных значений она становится неустойчивой.

Поэтому каждый раз, когда происходит сокращение нулей и полюсов, необходимо проверять устойчивость системы при реальном разбросе параметров объекта.

Вторым эффектом является появление существенного различия между временем установления переходного процесса при воздействии сигнала уставки и внешних возмущений. Поэтому необходимо проверять реакцию синтезированного регулятора для каждого из этих воздействаий.

5.4.5. Безударное переключение режимов регулирования

В ПИД-регуляторах могут существовать режимы, когда их параметры изменяются скачком. Например, когда в работающей системе потребовалось изменить постоянную интегрирования или если после ручного управления системой необходимо перейти на автоматический режим. В описанных случаях могут появиться нежелательные выбросы регулируемой величины, если не принять специальных мер. Поэтому возникает задача плавного («безударного») переключения режимов работы или параметров регулятора.

Основной метод решения проблемы заключается в построении такой структуры регулятора, когда изменение параметра выполнятся до этапа интегрирования. Например, при изменяющемся параметре интегральный член можно записать в двух формах:

или .

В первом случае при скачкообразном изменении интегральный член будет меняться скачком, во втором случае — плавно, поскольку находится под знаком интеграла, значение которого не может изменяться скачком.

Аналогичный метод реализуется в инкрементной форме ПИД-регулятора (см. раздел «Инкрементная форма цифрового ПИД-регулятора») и в последовательной форме ПИД-регулятора, где интегрирование выполняется на заключительной стадии вычисления управляющего воздействия.

5.4.6. Дискретная форма регулятора

Непрерывные переменные удобно использовать для анализа и синтеза ПИД-регуляторов. Для технического воплощения необходимо перейти к дискретной форме уравнений, поскольку основой всех регуляторов является микроконтроллер, контроллер или компьютер, которые оперируют с переменными, полученными из аналоговых сигналов после их дискретизации по времени и квантования по уровню.

Вследствие конечного времени вычисления управляющего воздействия в микроконтроллере и задержки аналого-цифрового преобразования между моментом поступления аналогового сигнала на вход регулятора и появлением управляющего воздействия на его выходе появляется нежелательная задержка, которая увеличивает общую задержку в контуре регулирования и снижает запас устойчивости.

Основным эффектом, который появляется при дискретизации и который часто «открывают заново», является появление алиасных частот в спектре квантованного сигнала в случае, когда частота дискретизации недостаточно высока. Аналогичный эффект возникает при киносъемке вращающегося колеса автомобиля. Частота алиасного сигнала равна разности между частотой помехи и частотой дискретизации. При этом высокочастотный сигнал помехи смещается в низкочастотную область, где накладывается на полезный сигнал и создает большие проблемы, поскольку отфильтровать его на этой стадии невозможно.

Для устранения алиасного эффекта перед входом аналого-цифрового преобразователя необходимо установить аналоговый фильтр, который бы ослаблял помеху по крайне мере на порядок на частоте, равной половине частоты дискретизации. Обычно используют фильтр Баттерворта второго или более высокого порядка. Вторым вариантом решения проблемы является увеличение частоты дискретизации так, чтобы она по крайней мере в 2 раза (согласно теореме Котельникова) была выше максимальной частоты спектра помехи. Это позволяет применить после дискретизации цифровой фильтр нижних частот. При такой частоте дискретизации полученный цифровой сигнал с точки зрения количества информации полностью эквивалентен аналоговому и все свойства аналогового регулятора можно распространить на цифровой.

Переход к конечно-разностным уравнениям

Переход к дискретным переменным в уравнениях аналогового регулятора выполняется путем замены производных и интегралов их дискретными аналогами. Если уравнение записано в операторной форме, то сначала выполняют переход из области изображений в область оригиналов. При этом оператор дифференцирования заменяют производной, оператор интегрирования — интегралом.

Существует множество способов аппроксимации производных и интегралов их дискретными аналогами, которые изложены в курсах численных методов решения дифференциальных уравнений. В ПИД-регуляторах наиболее распространенными являются простейшая аппроксимация производной конечной разностью и интеграла — конечной суммой.

Рассмотрим интегральный член ПИД-регулятора: . Продифференцировав обе части по времени, получим . Заменяя дифференциалы в этом выражении конечными разностями (левыми разностями), получим , где индекс обозначает, что данная величина взята в момент времени (обратим внимание, что здесь и ниже индекс в обозначает не номер временного шага, а интегральный коэффициент ПИД-регулятора). Из последнего выражения получим

.

(5.101)

Таким образом, очередное значение интеграла можно вычислить, зная предыдущее и значение ошибки в предыдущий момент времени. Однако такая формула имеет свойство накапливать ошибку вычислений с течением времени, если отношение недостаточно мало. Более устойчива другая формула интегрирования с правыми разностями, когда значение ошибки берется в тот же момент времени, что и вычисляемый интеграл:

.

(5.102)

Рассмотрим дифференциальный член ПИД-регулятора с фильтром (см. раздел «Погрешность дифференцирования и шум»).

Переходя в этой формуле от изображений к оригиналам, получим . Заменяя дифференциалы конечными приращениями, получим разностное уравнение

.

(5.103)

Для сходимости итерационного процесса (5.103) необходимо, чтобы , т.е.

.

(5.104)

При итерационный процесс (5.103) становится колебательным, что недопустимо для ПИД-регулятора.

Лучшими характеристиками обладает разностное уравнение, полученное при использовании правых разностей:

.

(5.105)

Здесь условие сходимости выполняется для всех и ни при каких значениях параметров не возникает колебаний. Кроме того, последняя формула позволяет «отключить» дифференциальную составляющую в ПИД регуляторе путем назначения , чего нельзя сделать в выражении (5.103), поскольку при этом возникает деление на ноль.

Можно использовать еще более точные формулы численного дифференцирования и интегрирования, известные из курса численных методов решения уравнений.

Величина шага дискретизации выбирается как можно меньше, это улучшает качество регулирования. Для обеспечения хорошего качества регулирования он не должен быть больше чем 1/15…1/6 от времени установления переходной характеристики объекта по уровню 0,95 или 1/4…1/6 от величины транспортной задержки [Изерман]. Однако при увеличении частоты дискретизации более чем в 2 раза по сравнению с верхней частотой спектра возмущающих сигналов (по теореме Котельникова) дальнейшего улучшения качества регулирования не происходит.

Если на входе регулятора нет антиалиасного фильтра, то частоту дискретизации выбирают в 2 раза выше верхней граничной частоты спектра помехи, чтобы использовать цифровую фильтрацию. Необходимо учитывать также, что исполнительное устройство должно успеть отработать за время .

Если контроллер используется не только для регулирования, но и для аварийной сигнализации, то такт дискретизации не может быть меньше, чем допустимая задержка срабатывания сигнала аварии.

При малом такте дискретизации увеличивается погрешность вычисления производной. Для ее снижения можно использовать сглаживание получаемых данных по нескольким собранным точкам перед этапом дифференцирования.

Уравнение цифрового ПИД-регулятора

Основываясь на изложенном выше, уравнение дискретного ПИД-регулятора можно записать в виде

,

(5.106)

где — номер временного такта. Величины и вычисляют по выражениям (5.102) и (5.105). Для начала работы алгоритма выбирают обычно , , , однако могут быть и другие начальные условия, в зависимости от конкретной задачи регулирования.

Отметим, что алгоритм, полученный путем простой замены операторов дифференцирования и интегрирования в выражении (5.36) конечными разностями и конечными суммами

,

(5.107)

(здесь — индекс суммирования отсчетов от начала процесса до текущего i-того временного такта) обладает плохой устойчивостью и низкой точностью, как это было показано выше. Однако с ростом частоты дискретизации различие между приведенными двумя алгоритмами стирается.

Инкрементная форма цифрового ПИД-регулятора

Рис. 5.83. Инкрементная форма ПИД-регулятора

Довольно часто, особенно в нейросетевых и фаззи-регуляторах, используют уравнение ПИД-регулятора в виде зависимости приращения управляющей величины от ошибки регулирования и ее производных (без интегрального члена). Такое представление удобно, когда роль интегратора выполняет внешнее устройство, например, обычный или шаговый двигатель. Угол поворота его оси пропорционален значению управляющего сигнала и времени. В фаззи-регуляторах при формулировке нечетких правил эксперт может сформулировать зависимость управляющей величины от величины производной, но не может — от величины интеграла, поскольку интеграл «запоминает» всю предысторию изменения ошибки, которую человек помнить не может.

Инкрементная форма ПИД-регулятора получается путем дифференцирования уравнения (5.36):

;

Для получения нулевой ошибки регулирования на выходе инкрементного регулятора должен стоять интегратор (рис. 5.83):

Переходя в полученных выражениях к конечным разностям, получим дискретную форму инкрементного ПИД-регулятора:

,

(5.108)

где , .

Более устойчивое и точное разностное уравнение можно получить, подставив в формулу выражения для и из (5.106).

Инкрементная форма регулятора удобна для применения в микроконтроллерах, поскольку в ней основная часть вычислений выполняется с приращениями, для представления которых можно использовать слово с малым количеством двоичных разрядов. Для получения значения управляющей величины можно выполнить накопительное суммирование на финальной стадии вычислений:

.

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookies и персональных данных в соответсвии с политикой. Окей, не возражаю

Понравилась статья? Поделить с друзьями:
  • Интересные грамматические ошибки
  • Интегральная ошибка формула
  • Интервальное оценивание доверительная вероятность предельная ошибка выборки
  • Интеграл эколог ошибка
  • Интерактивное телевидение ростелеком ошибка при воспроизведении