Как проявляются ошибки выполнения

Отладка программы — один их самых сложных этапов разработки программного обеспечения, требующий глубокого знания:

специфики управления используемыми техническими средствами,

операционной системы,

среды и языка программирования,

реализуемых процессов,

природы и специфики различных ошибок,

методик отладки и соответствующих программных средств. 

Отладка — это процесс локализации и исправления ошибок, обнаруженных при тестировании программного обеспечения. Локализацией называют процесс определения оператора программы, выполнение которого вызвало нарушение нормального вычислительного процесса. Доя исправления ошибки необходимо определить ее причину, т. е. определить оператор или фрагмент, содержащие ошибку. Причины ошибок могут быть как очевидны, так и очень глубоко скрыты.

Вцелом сложность отладки обусловлена следующими причинами:

требует от программиста глубоких знаний специфики управления используемыми техническими средствами, операционной системы, среды и языка программирования, реализуемых процессов, природы и специфики различных ошибок, методик отладки и соответствующих программных средств;

психологически дискомфортна, так как необходимо искать собственные ошибки и, как правило, в условиях ограниченного времени;

возможно взаимовлияние ошибок в разных частях программы, например, за счет затирания области памяти одного модуля другим из-за ошибок адресации;

отсутствуют четко сформулированные методики отладки.

Всоответствии с этапом обработки, на котором проявляются ошибки, различают (рис. 10.1):


    синтаксические ошибки — ошибки, фиксируемые компилятором (транслятором, интерпретатором) при выполнении синтаксического и частично семантического анализа программы; ошибки компоновки — ошибки, обнаруженные компоновщиком (редактором связей) при объединении модулей программы;

    ошибки выполнения — ошибки, обнаруженные операционной системой, аппаратными средствами или пользователем при выполнении программы.

Синтаксические ошибки. Синтаксические ошибки относят к группе самых простых, так как синтаксис языка, как правило, строго формализован, и ошибки сопровождаются развернутым комментарием с указанием ее местоположения. Определение причин таких ошибок, как правило, труда не составляет, и даже при нечетком знании правил языка за несколько прогонов удается удалить все ошибки данного типа.

Следует иметь в виду, что чем лучше формализованы правила синтаксиса языка, тем больше ошибок из общего количества может обнаружить компилятор и, соответственно, меньше ошибок будет обнаруживаться на следующих этапах. В связи с этим говорят о языках программирования с защищенным синтаксисом и с незащищенным синтаксисом. К первым, безусловно, можно отнести Pascal, имеющий очень простой и четко определенный синтаксис, хорошо проверяемый при компиляции программы, ко вторым — Си со всеми его модификациями. Чего стоит хотя бы возможность выполнения присваивания в условном операторе в Си, например:

if (c = n) x = 0; /* в данном случае не проверятся равенство с и n, а выполняется присваивание с значения n, после чего результат операции сравнивается с нулем, если программист хотел выполнить не присваивание, а сравнение, то эта ошибка будет обнаружена только на этапе выполнения при получении результатов, отличающихся от ожидаемых */ 

Ошибки компоновки. Ошибки компоновки, как следует из названия, связаны с проблемами,

обнаруженными при разрешении внешних ссылок. Например, предусмотрено обращение к подпрограмме другого модуля, а при объединении модулей данная подпрограмма не найдена или не стыкуются списки параметров. В большинстве случаев ошибки такого рода также удается быстро локализовать и устранить.

    Ошибки выполнения. К самой непредсказуемой группе относятся ошибки выполнения. Прежде всего они могут иметь разную природу, и соответственно по-разному проявляться. Часть ошибок обнаруживается и документируется операционной системой. Выделяют четыре способа проявления таких ошибок:

• появление сообщения об ошибке, зафиксированной схемами контроля выполнения машинных команд, например, переполнении разрядной сетки, ситуации «деление на ноль», нарушении адресации и т. п.;

появление сообщения об ошибке, обнаруженной операционной системой, например, нарушении защиты памяти, попытке записи на устройства, защищенные от записи, отсутствии файла с заданным именем и т. п.;

«зависание» компьютера, как простое, когда удается завершить программу без перезагрузки операционной системы, так и «тяжелое», когда для продолжения работы необходима перезагрузка;

несовпадение полученных результатов с ожидаемыми.

Примечание. Отметим, что, если ошибки этапа выполнения обнаруживает пользователь, то в двух первых случаях, получив соответствующее сообщение, пользователь в зависимости от своего характера, степени необходимости и опыта работы за компьютером, либо попробует понять, что произошло, ища свою вину, либо обратится за помощью, либо постарается никогда больше не иметь дела с этим продуктом. При «зависании» компьютера пользователь может даже не сразу понять, что происходит что-то не то, хотя его печальный опыт и заставляет волноваться каждый раз, когда компьютер не выдает быстрой реакции на введенную команду, что также целесообразно иметь в виду. Также опасны могут быть ситуации, при которых пользователь получает неправильные результаты и использует их в своей работе.

Причины ошибок выполнения очень разнообразны, а потому и локализация может оказаться крайне сложной. Все возможные причины ошибок можно разделить на следующие группы:

неверное определение исходных данных,

логические ошибки,

накопление погрешностей результатов вычислений (рис. 10.2).

Н е в е р н о е о п р е д е л е н и е и с х о д н ы х д а н н ы х происходит, если возникают любые ошибки при выполнении операций ввода-вывода: ошибки передачи, ошибки преобразования, ошибки перезаписи и ошибки данных. Причем использование специальных технических средств и программирование с защитой от ошибок (см.§ 2.7) позволяет обнаружить и предотвратить только часть этих ошибок, о чем безусловно не следует забывать.

Л о г и ч е с к и е о ш и б к и имеют разную природу. Так они могут следовать из ошибок, допущенных при проектировании, например, при выборе методов, разработке алгоритмов или определении структуры классов, а могут быть непосредственно внесены при кодировании модуля.

Кпоследней группе относят:

ошибки некорректного использования переменных, например, неудачный выбор типов данных, использование переменных до их инициализации, использование индексов, выходящих за границы определения массивов, нарушения соответствия типов данных при использовании явного или неявного переопределения типа данных, расположенных в памяти при использовании нетипизированных переменных, открытых массивов, объединений, динамической памяти, адресной арифметики и т. п.;

ошибки вычислений, например, некорректные вычисления над неарифметическими переменными, некорректное использование целочисленной арифметики, некорректное преобразование типов данных в процессе вычислений, ошибки, связанные с незнанием приоритетов выполнения операций для арифметических и логических выражений, и т. п.;

ошибки межмодульного интерфейса, например, игнорирование системных соглашений, нарушение типов и последовательности при передачи параметров, несоблюдение единства единиц измерения формальных и фактических параметров, нарушение области действия локальных и глобальных переменных;

другие ошибки кодирования, например, неправильная реализация логики программы при кодировании, игнорирование особенностей или ограничений конкретного языка программирования.

На к о п л е н и е п о г р е ш н о с т е й результатов числовых вычислений возникает, например, при некорректном отбрасывании дробных цифр чисел, некорректном использовании приближенных методов вычислений, игнорировании ограничения разрядной сетки представления вещественных чисел в ЭВМ и т. п.

Все указанные выше причины возникновения ошибок следует иметь в виду в процессе отладки. Кроме того, сложность отладки увеличивается также вследствие влияния следующих факторов:

опосредованного проявления ошибок;

возможности взаимовлияния ошибок;

возможности получения внешне одинаковых проявлений разных ошибок;

отсутствия повторяемости проявлений некоторых ошибок от запуска к запуску – так называемые стохастические ошибки;

возможности устранения внешних проявлений ошибок в исследуемой ситуации при внесении некоторых изменений в программу, например, при включении в программу диагностических фрагментов может аннулироваться или измениться внешнее проявление ошибок;

написания отдельных частей программы разными программистами.

Методы отладки программного обеспечения

Отладка программы в любом случае предполагает обдумывание и логическое осмысление всей имеющейся информации об ошибке. Большинство ошибок можно обнаружить по косвенным признакам посредством тщательного анализа текстов программ и результатов тестирования без получения дополнительной информации. При этом используют различные методы:

ручного тестирования;

индукции;

дедукции;

обратного прослеживания.

Метод ручного тестирования. Это — самый простой и естественный способ данной группы. При обнаружении ошибки необходимо выполнить тестируемую программу вручную, используя тестовый набор, при работе с которым была обнаружена ошибка.

Метод очень эффективен, но не применим для больших программ, программ со сложными вычислениями и в тех случаях, когда ошибка связана с неверным представлением программиста о выполнении некоторых операций.

Данный метод часто используют как составную часть других методов отладки.

Метод индукции. Метод основан на тщательном анализе симптомов ошибки, которые могут проявляться как неверные результаты вычислений или как сообщение об ошибке. Если компьютер просто «зависает», то фрагмент проявления ошибки вычисляют, исходя из последних полученных результатов и действий пользователя. Полученную таким образом информацию организуют и тщательно изучают, просматривая соответствующий фрагмент программы. В результате этих действий выдвигают гипотезы об ошибках, каждую из которых проверяют. Если гипотеза верна, то детализируют информацию об ошибке, иначе — выдвигают другую гипотезу. Последовательность выполнения отладки методом индукции показана на рис. 10.3 в виде схемы алгоритма.

Самый ответственный этап — выявление симптомов ошибки. Организуя данные об ошибке, целесообразно записать все, что известно о ее проявлениях, причем фиксируют, как ситуации, в которых фрагмент с ошибкой выполняется нормально, так и ситуации, в которых ошибка проявляется. Если в результате изучения данных никаких гипотез не появляется, то необходима дополнительная информация об ошибке. Дополнительную информацию можно получить, например, в результате выполнения схожих тестов.

В процессе доказательства пытаются выяснить, все ли проявления ошибки объясняет данная гипотеза, если не все, то либо гипотеза не верна, либо ошибок несколько.

Метод дедукции. По методу дедукции вначале формируют множество причин, которые могли бы вызвать данное проявление ошибки. Затем анализируя причины, исключают те, которые противоречат имеющимся данным. Если все причины исключены, то следует выполнить дополнительное тестирование исследуемого фрагмента. В противном случае наиболее вероятную гипотезу пытаются доказать. Если гипотеза объясняет полученные признаки ошибки, то ошибка найдена, иначе — проверяют следующую причину (рис. 10.4).

Метод обратного прослеживания. Для небольших программ эффективно применение метода обратного прослеживания. Начинают с точки вывода неправильного результата. Для этой точки строится гипотеза о значениях основных переменных, которые могли бы привести к получению имеющегося результата. Далее, исходя из этой гипотезы, делают предложения о значениях переменных в предыдущей точке. Процесс продолжают, пока не обнаружат причину ошибки.

Отладка программы призвана выискивать «вредителей» кода и устранять их. За это отвечают отладчик и журналирование для вывода сведений о программе.

В предыдущей части мы рассмотрели исходный код и его составляющие.

После того, как вы начнете проверять фрагменты кода или попытаетесь решить связанные с ним проблемы, вы очень скоро поймете, что существуют моменты, когда программа крашится, прерывается и прекращает работу.

Отладка программы

Это часто вызвано ошибками, известными как дефекты или исключительные ситуации во время выполнения. Акт обнаружения и удаления ошибок из нашего кода – это отладка программы. Вы лучше разберетесь в отладке на практике, используя ее как можно чаще. Мы не только отлаживаем собственный код, но и порой дебажим написанное другими программистами.

Для начала необходимо рассортировать общие ошибки, которые могут возникнуть в исходном коде.

отладка программы

Синтаксические ошибки

Эти эрроры не позволяют скомпилировать исходный код на компилируемых языках программирования. Они обнаруживаются во время компиляции или интерпретации исходного кода. Они также могут быть легко обнаружены статическими анализаторами (линтами). Подробнее о линтах мы узнаем немного позже.

Синтаксические ошибки в основном вызваны нарушением ожидаемой формы или структуры языка, на котором пишется программа. Как пример, это может быть отсутствующая закрывающая скобка в уравнении.

Семантические ошибки

Отладка программы может потребоваться и по причине семантических ошибок, также известных как логические. Они являются наиболее сложными из всех, потому что не могут быть легко обнаружены. Признак того, что существует семантическая ошибка, – это когда программа запускается, отрабатывает, но не дает желаемого результата.

Рассмотрим данный пример:

3 + 5 * 6

По порядку приоритета, называемому старшинством операции, с учетом математических правил мы ожидаем, что сначала будет оценена часть умножения, и окончательный результат будет равен 33. Если программист хотел, чтобы сначала происходило добавление двух чисел, следовало поступить иначе. Для этого используются круглые скобки, которые отвечают за смещение приоритетов в математической формуле. Исправленный пример должен выглядеть так:

(3 + 5) * 6

3 + 5, заключенные в скобки, дадут желаемый результат, а именно 48.

Ошибки в процессе выполнения

Как и семантические, ошибки во время выполнения никогда не обнаруживаются при компиляции. В отличие от семантических ошибок, эти прерывают программу и препятствуют ее дальнейшему выполнению. Они обычно вызваны неожиданным результатом некоторых вычислений в исходном коде.

Вот хороший пример:

input = 25
x = 0.8/(Math.sqrt(input) - 5)

Фрагмент кода выше будет скомпилирован успешно, но input 25 приведет к ZeroDivisionError. Это ошибка во время выполнения. Другим популярным примером является StackOverflowError или IndexOutofBoundError. Важно то, что вы идентифицируете эти ошибки и узнаете, как с ними бороться.

Существуют ошибки, связанные с тем, как ваш исходный код использует память и пространство на платформе или в среде, в которой он запущен. Они также являются ошибками во время выполнения. Такие ошибки, как OutOfMemoryErrorand и HeapError обычно вызваны тем, что ваш исходный код использует слишком много ресурсов. Хорошее знание алгоритмов поможет написать код, который лучше использует ресурсы. В этом и заключается отладка программы.

Процесс перезаписи кода для повышения производительности называется оптимизацией. Менее популярное наименование процесса – рефакторинг. Поскольку вы тратите больше времени на кодинг, то должны иметь это в виду.

Отладка программы

Вот несколько советов о том, как правильно выполнять отладку:

  1. Использовать Linters. Linters – это инструменты, которые помогают считывать исходный код, чтобы проверить, соответствует ли он ожидаемому стандарту на выбранном языке программирования. Существуют линты для многих языков.
  2. Превалирование IDE над простыми редакторами. Вы можете выбрать IDE, разработанную для языка, который изучаете. IDE – это интегрированные среды разработки. Они созданы для написания, отладки, компиляции и запуска кода. Jetbrains создают отличные IDE, такие как Webstorm и IntelliJ. Также есть NetBeans, Komodo, Qt, Android Studio, XCode (поставляется с Mac), etc.
  3. Чтение кода вслух. Это полезно, когда вы ищете семантическую ошибку. Читая свой код вслух, есть большая вероятность, что вы зачитаете и ошибку.
  4. Чтение логов. Когда компилятор отмечает Error, обязательно посмотрите, где он находится.

Двигаемся дальше

Поздравляем! Слово «ошибка» уже привычно для вас, равно как и «отладка программы». В качестве новичка вы можете изучать кодинг по книгам, онлайн-урокам или видео. И даже чужой код вам теперь не страшен :)

В процессе кодинга измените что-нибудь, чтобы понять, как он работает. Но будьте уверены в том, что сами написали.

Викторина

  1. Какая ошибка допущена в фрагменте кода Python ниже?
items = [0,1,2,3,4,5]
print items[8]
//комментарий: элементы здесь представляют собой массив с шестью элементами. Например, чтобы получить 4-й элемент, вы будете использовать [3]. Мы начинаем отсчет с 0.
  1. Какая ошибка допущена в фрагменте кода Python ниже?
input = Hippo'
if input == 'Hippo':
  print 'Hello, Hippo'

Ответы на вопросы

  1. Ошибка выполнения: ошибка индекса вне диапазона.

2. Синтаксическая ошибка: Отсутствует стартовая кавычка в первой строке.

Привет, Вы узнаете про виды ошибок программного обеспечения, Разберем основные ее виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое
виды ошибок программного обеспечения, принципы отладки , настоятельно рекомендую прочитать все из категории Качество и тестирование программного обеспечения. Quality Assurance..

1. Отладка программы

Отладка, как мы уже говорили, бывает двух видов:
Синтаксическая отладка. Синтаксические ошибки выявляет компилятор, поэтому исправлять их достаточно легко.
Семантическая (смысловая) отладка. Ее время наступает тогда, когда синтаксических ошибок не осталось, но результаты программа выдает неверные. Здесь компилятор сам ничего выявить не сможет, хотя в среде программирования обычно существуют вспомогательные средства отладки, о которых мы еще поговорим.
Отладка — это процесс локализации и исправления ошибок в программе.

Как бы тщательно мы ни писали, отладка почти всегда занимает больше времени, чем программирование.

2. Локализация ошибок

Локализация — это нахождение места ошибки в программе.

В процессе поиска ошибки мы обычно выполняем одни и те же действия:

  • прогоняем программу и получаем результаты;
  • сверяем результаты с эталонными и анализируем несоответствие;
  • выявляем наличие ошибки, выдвигаем гипотезу о ее характере и месте в программе;
  • проверяем текст программы, исправляем ошибку, если мы нашли ее правильно.

Способы обнаружения ошибки:

  • Аналитический — имея достаточное представление о структуре программы, просматриваем ее текст вручную, без прогона.
  • Экспериментальный — прогоняем программу, используя отладочную печать и средства трассировки, и анализируем результаты ее работы.

Оба способа по-своему удобны и обычно используются совместно.

3.
принципы отладки

Принципы локализации ошибок:

  • Большинство ошибок обнаруживается вообще без запуска программы — просто внимательным просматриванием текста.
  • Если отладка зашла в тупик и обнаружить ошибку не удается, лучше отложить программу. Когда глаз «замылен», эффективность работы упорно стремится к нулю.
  • Чрезвычайно удобные вспомогательные средства — это отладочные механизмы среды разработки: трассировка, промежуточный контроль значений. Можно использовать даже дамп памяти, но такие радикальные действия нужны крайне редко.
  • Экспериментирования типа «а что будет, если изменить плюс на минус» — нужно избегать всеми силами. Обычно это не дает результатов, а только больше запутывает процесс отладки, да еще и добавляет новые ошибки.

Принципы исправления ошибок еще больше похожи на законы Мерфи:

  • Там, где найдена одна ошибка, возможно, есть и другие.
  • Вероятность, что ошибка найдена правильно, никогда не равна ста процентам.
  • Наша задача — найти саму ошибку, а не ее симптом.

Это утверждение хочется пояснить. Если программа упорно выдает результат 0,1 вместо эталонного нуля, простым округлением вопрос не решить. Если результат получается отрицательным вместо эталонного положительного, бесполезно брать его по модулю — мы получим вместо решения задачи ерунду с подгонкой.
Исправляя одну ошибку, очень легко внести в программу еще парочку. «Наведенные» ошибки — настоящий бич отладки.
Исправление ошибок зачастую вынуждает нас возвращаться на этап составления программы. Это неприятно, но порой неизбежно.

4. Методы отладки

Силовые методы

  • — Использование дампа (распечатки) памяти.Это интересно с познавательной точки зрения: можно досконально разобраться в машинных процессах. Иногда такой подход даже необходим — например, когда речь идет о выделении и высвобождении памяти под динамические переменные с использованием недокументированных возможностей языка. Однако, в большинстве случаев мы получаем огромное количество низкоуровневой информации, разбираться с которой — не пожелаешь и врагу, а результативность поиска — исчезающе низка.
  • — Использование отладочной печати в тексте программы — произвольно и в большом количестве.Получать информацию о выполнении каждого оператора тоже небезынтересно. Но здесь мы снова сталкиваемся со слишком большими объемами информации. Кроме того, мы здорово захламляем программу добавочными операторами, получая малочитабельный текст, да еще рискуем внести десяток новых ошибок.
  • — Использование автоматических средств отладки — трассировки с отслеживанием промежуточных значений переменых.Пожалуй, это самый распространенный способ отладки. Не нужно только забывать, что это только один из способов, и применять всегда и везде только его — часто невыгодно.

Сложности возникают, когда приходится отслеживать слишком большие структуры данных или огромное их число. Еще проблематичнее трассировать проект, где выполнение каждой подпрограммы приводит к вызову пары десятков других. Но для небольших программ трассировки вполне достаточно.

С точки зрения «правильного» программирования силовые методы плохи тем, что не поощряют анализ задачи.

Суммируя свойства силовых методов, получаем практические советы:
— использовать трассировку и отслеживание значений переменных для небольших проектов, отдельных подпрограмм;
— использовать отладочную печать в небольших количества и «по делу»;
— оставить дамп памяти на самый крайний случай.

Метод индукции — анализ программы от частного к общему.
Просматриваем симптомы ошибки и определяем данные, которые имеют к ней хоть какое-то отношение. Затем, используя тесты, исключаем маловероятные гипотезы, пока не остается одна, которую мы пытаемся уточнить и доказать.
Метод дедукции — от общего к частному.
Выдвигаем гипотезу, которая может объяснить ошибку, пусть и не полностью. Затем при помощи тестов эта гипотеза проверяется и доказывается.
Обратное движение по алгоритму.
Отладка начинается там, где впервые встретился неправильный результат. Затем работа программы прослеживается (мысленно или при помощи тестов) в обратном порядке, пока не будет обнаружено место возможной ошибки.
Метод тестирования.

Давайте рассмотрим процесс локализации ошибки на конкретном примере. Пусть дана небольшая программа, которая выдает значение максимального из трех введенных пользователем чисел.

var
a, b, c: real;
begin
writeln('Программа находит значение максимального из трех введенных чисел');
write('Введите первое число '); readln(a);
write('Введите второе число '); readln(b);
write('Введите третье число '); readln(c);
if (a>b)and(a>c) then
writeln('Наибольшим оказалось первое число ',a:8:2)
else if (b>a)and(a>c) then
writeln('Наибольшим оказалось второе число ',b:8:2)
else
writeln('Наибольшим оказалось третье число ',b:8:2);
end.

Обе выделенные ошибки можно обнаружить невооруженным глазом: первая явно допущена по невнимательности, вторая — из-за того, что скопированную строку не исправили.

Тестовые наборы данных должны учитывать все варианты решения, поэтому выберем следующие наборы чисел:

Данные Ожидаемый результат
a=10; b=-4; c=1 max=a=10
a=-2; b=8; c=4 max=b=8
a=90; b=0; c=90.4 max=c=90.4

В результате выполнения программы мы, однако, получим следующие результаты:
Для a=10; b=-4; c=1:

Наибольшим оказалось первое число 10.00

Для a=-2; b=8; c=4: < pre class=»list»>Наибольшим оказалось третье число 8.00Для a=90; b=0; c=90.4:

Наибольшим оказалось третье число 0.00

Вывод во втором и третьем случаях явно неверен. Будем разбираться.

1. Трассировка и промежуточная наблюдение за переменными

Добавляем промежуточную печать или наблюдение за переменными:

  • — вывод a, b, c после ввода (проверяем, правильно ли получили данные)
  • — вывод значения каждого из условий (проверяем, правильно ли записали условия)

Листинг программы существенно увеличился и стал вот таким:

var
a, b, c: real;
begin
writeln(‘Программа находит значение максимального из трех введенных чисел’);
write(‘Введите первое число ‘); readln(a);
writeln(‘Вы ввели число ‘,a:8:2); {отл.печать}
write(‘Введите второе число ‘); readln(b);
writeln(‘Вы ввели число ‘,b:8:2); {отл.печать}
write(‘Введите третье число ‘); readln(c);
writeln(‘Вы ввели число ‘,c:8:2); {отл.печать}
writeln(‘a>b=’,a>b,’, a>c=’,a>c,’, (a>b)and(a>c)=’,(a>b)and(a>c)); {отл.печать}
if (a>b)and(a>c) then
writeln(‘Наибольшим оказалось первое число ‘,a:8:2)
else begin
writeln(‘b>a=’,b>a,’, b>c=’,b>c,’, (b>a)and(b>c)=’,(b>a)and(b>c)); {отл.печать}
if (b>a)and(a>c) then
writeln(‘Наибольшим оказалось второе число ‘,b:8:2)
else
writeln(‘Наибольшим оказалось третье число ‘,b:8:2);
end;
end.

В принципе, еще при наборе у нас неплохой шанс отловить ошибку в условии: подобные кусочки кода обычно не перебиваются, а копируются, и если дать себе труд слегка при этом задуматься, ошибку найти легко.

Но давайте считать, что глаз «замылен» совершенно, и найти ошибку не удалось.

Вывод для второго случая получается следующим:

Программа находит значение максимального из трех введенных чисел
Введите первое число -2
Вы ввели число -2.00
Введите второе число 8
Вы ввели число 8.00
Введите третье число 4
Вы ввели число 4.00
a>b=FALSE, a>c=FALSE, (a>b)and(a>c)=FALSE
b>a=TRUE, b>c=TRUE, (b>a)and(b>c)=TRUE
Наибольшим оказалось третье число 8.00

Со вводом все в порядке . Об этом говорит сайт https://intellect.icu . Впрочем, в этом сомнений и так было немного. А вот что касается второй группы операторов печати, то картина вышла интересная: в результате выводится верное число (8.00), но неправильное слово («третье», а не «второе»).

Вероятно, проблемы в выводе результатов. Тщательно проверяем текст и обнаруживаем, что действительно в последнем случае выводится не c, а b. Однако к решению текущей проблемы это не относится: исправив ошибку, мы получаем для чисел -2.0, 8.0, 4.0 следующий результат.

Наибольшим оказалось третье число 4.00

Теперь ошибка локализована до расчетного блока и, после некоторых усилий, мы ее находим и исправляем.

2. Метод индукции

Судя по результатам, ошибка возникает, когда максимальное число — второе или третье (если максимальное — первое, то определяется оно правильно, для доказательства можно програть еще два-три теста).

Просматриваем все, относящееся к переменным b и с. Со вводом никаких проблем не замечено, а что касается вывода — то мы быстро натыкаемся на замену b на с. Исправляем.

Как видно, невыявленные ошибки в программе остаются. Просматриваем расчетный блок: все, что относится к максимальному b (максимум с получается «в противном случае»), и обнаруживаем пресловутую проблему «a>c» вместо «b>c». Программа отлажена.

3. Метод дедукции

Неверные результаты в нашем случае могут получиться из-за ошибки в:

  • — вводе данных;
  • — расчетном блоке;
  • — собственно выводе.

Для доказательства мы можем пользоваться отладочной печатью, трассировкой или просто набором тестов. В любом случае мы выявляем одну ошибку в расчете и одну в выводе.

4. Обратное движение по алгоритму

Зная, что ошибка возникает при выводе результатов, рассматриваем код, начиная с операторов вывода. Сразу же находим лишнюю b в операторе writeln.

Далее, смотрим по конкретной ветке условного оператора, откуда взялся результат. Для значений -2.0, 8.0, 4.0 расчет идет по ветке с условием if (b>a)and(a>c) then… где мы тут же обнаруживаем искомую ошибку.

5. Тестирование

В нашей задаче для самого полного набора данных нужно выбрать такие переменные, что
a > b > c
a > c > b
b > a > c
b > c > a
c > a > b
c > b > a

Анализируя получившиеся в каждом из этих случаев результаты, мы приходим к тому, что проблемы возникают при b>c>a и с — максимальном. Зная эти подробности, мы можем заострить внимание на конкретных участках программы.

Конечно, в реальной работе мы не расписываем так занудно каждый шаг, не прибегаем исключительно к одной методике, да и вообще частенько не задумываемся, каким образом искать ляпы. Теперь, когда мы разобрались со всеми подходами, каждый волен выбрать те из них, которые кажутся самыми удобными.

5. Средства отладки

Помимо методик, хорошо бы иметь представление о средствах, которые помогают нам выявлять ошибки. Это:

1) Аварийная печать — вывод сообщений о ненормальном завершении отдельных блоков и всей программы в целом.

2) Печать в узлах программы — вывод промежуточных значений параметров в местах, выбранных программистом. Обычно, это критичные участки алгоритма (например, значение, от которого зависит дальнейший ход выполнения) или составные части сложных формул (отдельно просчитать и вывести числитель и знаменатель большой дроби).

3) Непосредственное слежение:

  • — арифметическое (за тем, чему равны, когда и как изменяются выбранные переменные),
  • — логическое (когда и как выполняется выбранная последовательность операторов),
  • — контроль выхода индексов за допустимые пределы,
  • — отслеживание обращений к переменным,
  • — отслеживание обращений к подпрограммам,
  • — проверка значений индексов элементов массивов и т.д.

Нынешние среды разработки часто предлагают нам реагировать на возникающую проблему в диалоговом режиме. При этом можно:

  • — просмотреть текущие значения переменных, состояние памяти, участок алгоритма, где произошел сбой;
  • — прервать выполнение программы;
  • — внести в программу изменения и повторно запустить ее (в компиляторных средах для этого потребуется перекомпилировать код, в интерпретаторных выполнение можно продолжить прямо с измененного оператора).

Виды ошибок и основные принципы отладки программного обеспеченияРис Пример отладки приложения

6. Классификация ошибок

Ошибки в программах могут допускаться от самого начального этапа составления алгоритма решения задачи до окончательного оформления программы. Разновидностей ошибок достаточно много. Рассмотрим некоторые группы ошибок и соответствующие примеры:

Виды ошибок и основные принципы отладки программного обеспечения

Если вы удручены тем, что насажали в текст программы глупых ошибок — не расстраивайтесь. Ошибки вообще не бывают умными, хотя и могут относиться к самым разным частям кода:

  • — ошибки обращения к данным,
  • — ошибки описания данных,
  • — ошибки вычислений,
  • — ошибки при сравнении,
  • — ошибки в передаче управления,
  • — ошибки ввода-вывода,
  • — ошибки интерфейса,
  • и т д

Виды ошибок и основные принципы отладки программного обеспечения

Классификация ошибок по этапу обработки программы

Виды ошибок и основные принципы отладки программного обеспечения

рис Классификация ошибок этапа выполнения по возможным причинам

Синтаксические ошибки

Синтаксические ошибки зачастую выявляют уже на этапе трансляции. К сожалению, многие ошибки других видов транслятор выявить не в силах, т.к. ему не известен задуманный или требуемый результат работы программы. Отсутствие сообщений транслятора о наличии синтаксических ошибок является необходимым условием правильности программы, но не может свидетельствовать о том, что она даст правильный результат.

Примеры синтаксических ошибок :

  • отсутствие знака пунктуации;
  • несоответствие количества открывающих и закрывающих скобок;
  • неправильно сформированный оператор;
  • неправильная запись имени переменной;
  • ошибка в написании служебных слов;
  • отсутствие условия окончания цикла;
  • отсутствие описания массивов и т.п.

Ошибки, которые не обнаруживает транслятор

В случае правильного написания операторов в программе может присутствовать большое количество ошибок, которые транслятор не может обнаружить. Рассмотрим примеры таких ошибок:

Логические ошибки: после проверки заданного условия неправильно указана ветвь алгоритма; неполный перечень возможных условий при решении задачи; один или более блоков алгоритма в программе пропущен.

Ошибки в циклах: неправильно указано начало цикла; неправильно указаны условия окончания цикла; неправильно указано количество повторений цикла; использование бесконечного цикла.

Ошибки ввода-вывода; ошибки при работе с данными: неправильно задан тип данных; организовано считывание меньшего или большего объема данных, чем нужно; неправильно отредактированы данные.

Ошибки в использовании переменных: используются переменных, для которых не указаны начальные значения; ошибочно указана одна переменная вместо другой. Ошибки при работе с массивами: пропущено предварительное обнуление массивов; неправильное описание массивов; индексы массивов следуют в ошибочном порядке.

ошибки безопасности, умышленные и не умышленные уязвимости в системе, открытость к отказам в обслуживании. несанкционированном доступе. екхолы

Ошибки в арифметических операциях: неправильное использование типа переменной (например, для сохранения результата деления используется целочисленная переменная); неправильно определен порядок действий; выполняется деление на нуль; при расчете выполняется попытка извлечения квадратного корня из отрицательного числа; не учитываются значащие разряды числа.

ошибки в архитектуре приложения пприводящие к увеличени технического долга

Методы (пути) снижение ошибок в программировании

  • использование тестиования
  • использование более простых решений
  • использование систем с наименьшим числом составлящих
  • использование ранее использованных и проверенных компонентов
  • использование более квалифицрованных специалистов

7. Советы отладчику

1) Проверяйте тщательнее: ошибка скорее всего находится не в том месте, в котором кажется.

2) Часто оказывается легче выделить те места программы, ошибок в которых нет, а затем уже искать в остальных.

3) Тщательнее следить за объявлениями констант, типов и переменных, входными данными.

4) При последовательной разработке приходится особенно аккуратно писать драйверы и заглушки — они сами могут быть источником ошибок.

5) Анализировать код, начиная с самых простых вариантов. Чаще всего встречаются ошибки:
— значения входных аргументов принимаются не в том порядке,
— переменная не проинициализирована,
— при повторном прохождении модуля, перемен ная повторно не инициализируется,
— вместо предполагаемого полного копирования структуры данных, копируется только верхний уровень (например, вместо создания новой динамической переменной и присваивания ей нужного значения, адрес тупо копируется из уже существующей переменной),
— скобки в сложном выражении расставлены неправильно.

6) При упорной длительной отладке глаз «замыливается». Хороший прием — обратиться за помощью к другому лицу, чтобы не повторять ошибочных рассуждений. Правда, частенько остается проблемой убедить это другое лицо помочь вам.

7) Ошибка, скорее всего окажется вашей и будет находиться в тексте программы. Гораздо реже она оказывается:

  • в компиляторе,
  • операционной системе,
  • аппаратной части,
  • электропроводке в здании и т.д.

Но если вы совершенно уверены, что в программе ошибок нет, просмотрите стандартные модули, к которым она обращается, выясните, не менялась ли версия среды разработки, в конце концов, просто перегрузите компьютер — некоторые проблемы (особенно в DOS-средах, запускаемых из-под Windows) возникают из-за некорректной работы с памятью.

8) Убедитесь, что исходный текст программы соответствует скомпилированному объектному коду (текст может быть изменен, а запускаемый модуль, который вы тестируете — скомпилирован еще из старого варианта).

9) Навязчивый поиск одной ошибки почти всегда непродуктивен. Не получается — отложите задачу, возьмитесь за написание следующего модуля, на худой конец займитесь документированием.

10) Старайтесь не жалеть времени, чтобы уясненить причину ошибки. Это поможет вам:
исправить программу,
обнаружить другие ошибки того же типа,
не делать их в дальнейшем.

11) Если вы уже знаете симптомы ошибки, иногда полезно не исправлять ее сразу, а на фоне известного поведения программы поискать другие ляпы.

12) Самые труднообнаруживаемые ошибки — наведенные, то есть те, что были внесены в код при исправлении других.

8. Тестирование

Тестирование — это выполнение программы для набора проверочных входных значений и сравнение полученных результатов с ожидаемыми.

Цель тестирования — проверка и доказательство правильности работы программы. В противном случае — выявление того, что в ней есть ошибки. Тестирование само не показывает местонахождение ошибки и не указывает на ее причины.
Принципы тестирования.

1) Тест — просчитанный вручную пример выполнения программы от исходных данных до ожидаемых результатов расчета. Эти результаты считаются эталонными.
Полномаршрутным будет такое тестирование, при котором каждый линейный участок программы будет пройден хотя бы при выполнении одного теста.

2) При прогоне программы по тестовым начальным данным, полученные результаты нужно сверить с эталонными и проанализировать разницу, если она есть.

3) При разработке тестов нужно учитывать не только правильные, но и неверные исходные данные.

4) Мы должны проверить программу на нежелательные побочные эффекты при задании некоторых исходных данных (деление на ноль, попытка считывания из несуществующего файла и т.д.).

5) Тестирование нужно планировать: заранее выбрать, что мы контролируем и как это сделать лучше. Обычно тесты планируются на этапе алгоритмизации или выбора численного метода решения. Причем, составляя тесты, мы предполагаем, что ошибки в программе есть.

6) Чем больше ошибок в коде мы уже нашли, тем больше вероятность, что мы обнаружим еще не найденные.
Хорошим называют тест, который с большой вероятностью должен обнаруживать ошибки, а удачным — тот, который их обнаружил.

9. Проектирование тестов

Тесты просчитываются вручную, значит, они должны быть достаточно просты для этого.
Тесты должны проверять каждую ветку алгоритма. По возможности, конечно. Так что количество и сложность тестов зависит от сложности программы.
Тесты составляются до кодирования и отладки: во время разработки алгоритма или даже составления математической модели.
Обычно для экономии времени сначала пропускают более простые тесты, а затем более сложные.

Давайте рассмотрим задачу: нужно проверить, попадает ли введенное число в заданный пользователем диапазон.

program Example;
(******************************************************
* Задача: проверить, попадает ли введенное число в *
* заданный пользователем диапазон *
******************************************************)

var
min, max, A, tmp: real;
begin
writeln(‘Программа проверяет, попадают ли введенные пользователем’);
writeln(‘значения в заданный диапазон’);
writeln;
writeln(‘Введите нижнюю границу диапазона ‘); readln(min);
writeln(‘Введите верхнюю границу диапазона ‘); readln(max);
if min>max then begin
writeln(‘Вы перепутали диапазоны, и я их поменяю’);
tmp:=min;
min:=max;
max:=tmp;
end;
repeat
writeln(‘Введите число для проверки (0 — конец работы) ‘); readln(A);
if (A>=min)and(A<=max) then
writeln(‘Число ‘,A,’ попадает в диапазон [‘,min,’..’,max,’]’)
else
writeln(‘Число ‘,A,’ не попадает в диапазон [‘,min,’..’,max,’]’);
until A=0;
writeln;
end.

Если исходить из алгоритма программы, мы должны составить следующие тесты:
ввод границ диапазона
— min< max
— min>max
ввод числа
— A < min (A<>0)
— A > max (A<>0)
— min <= A <= max (A<>0)
— A=0

Как видите, программа очень мала, а тестов для проверки всех ветвей ее алгоритма, требуется довольно много.

10. Стратегии тестирования

1) Тестирование программы как «черного ящика».

Мы знаем только о том, что делает программа, но даже не задумываемся о ее внутренней структуре. Задаем набор входных данных, получаем результаты, сверяем с эталонными.

При этом обнаружить все ошибки мы можем только если составили тесты для всех возможных наборов данных. Естественно, это противоречит экономическим принципам, да и просто достаточно глупо.

«Черным ящиком» удобно тестировать небольшие подпрограммы.
2) Тестирование программы как «белого ящика».

Здесь перед составлением теста мы изучаем логику программы, ее внутреннюю структуру. Тестирование будет считаться удачным, если проверяет программу по всем направлениям. Однако, как мы уже говорили, это требует огромного количества тестов.

На практике мы, как всегда, совместно используем оба принципа.
3) Тестирование программ модульной структуры.

Мы снова возвращаемся к вопросу о структурном программировании. Если вы помните, программы строятся из модулей не в последнюю очередь для того, чтобы их легко было отлаживать и тестировать. Действительно, структурированную программу мы будем тестировать частями. При этом нам нужно:
строить набор тестов;
комбинировать модули для тестирования.

Такое комбинирование может строиться двумя способами:
Пошаговое тестирование — тестируем каждый модуль, присоединяя его к уже оттестированным. При этом можем соединять части программы сверху вниз (нисходящий способ) или снизу вверх (восходящий).
Монолитное тестирование — каждый модуль тестируется отдельно, а затем из них формируется готовая рабочая программа и тестируется уже целиком.

Чтобы протестировать отдельный модуль, нужен модуль-драйвер (всегда один) и модул и-заглушки (этих может быть несколько).
Модуль-драйвер содержит фиксированные исходные данные. Он вызывает тестируемый модуль и отображает (а возможно, и анализирует) результаты.
Модуль-заглушка нужен, если в тестируемом модуле есть вызовы других. Вместо этого вызова управление передается модулю-заглушке, и уже он имитирует необходимые действия.

К сожалению, мы опять сталкиваемся с тем, что драйверы и заглушки сами могут оказаться источником ошибок. Поэтому создаваться они должны с большой осторожностью.

Вау!! 😲 Ты еще не читал? Это зря!

  • ошибки в приложениях , bugs , баг репорт , bug report ,
  • Фича
  • GIGO
  • Патч
  • тестирование
  • цикломатическая сложность
  • баг репорт
  • качество программного обеспечения

К сожалению, в одной статье не просто дать все знания про виды ошибок программного обеспечения. Но я — старался.
Если ты проявишь интерес к раскрытию подробностей,я обязательно напишу продолжение! Надеюсь, что теперь ты понял что такое виды ошибок программного обеспечения, принципы отладки
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
Качество и тестирование программного обеспечения. Quality Assurance.

В C++ различают ошибки времени компиляции и ошибки времени выполнения. Ошибки первого типа обнаруживает компилятор до запуска программы. К ним относятся, например, синтаксические ошибки в коде. Ошибки второго типа проявляются при запуске программы. Примеры ошибок времени выполнения: ввод некорректных данных, некорректная работа с памятью, недостаток места на диске и т. д. Часто такие ошибки могут привести к неопределённому поведению программы.

Некоторые ошибки времени выполнения можно обнаружить заранее с помощью проверок в коде. Например, такими могут быть ошибки, нарушающие инвариант класса в конструкторе. Обычно, если ошибка обнаружена, то дальнейшее выполение функции не имеет смысла, и нужно сообщить об ошибке в то место кода, откуда эта функция была вызвана. Для этого предназначен механизм исключений.

Коды возврата и исключения

Рассмотрим функцию, которая считывает со стандартного потока возраст и возвращает его вызывающей стороне. Добавим в функцию проверку корректности возраста: он должен находиться в диапазоне от 0 до 128 лет. Предположим, что повторный ввод возраста в случае ошибки не предусмотрен.

int ReadAge() {
    int age;
    std::cin >> age;
    if (age < 0 || age >= 128) {
        // Что вернуть в этом случае?
    }
    return age;
}

Что вернуть в случае некорректного возраста? Можно было бы, например, договориться, что в этом случае функция возвращает ноль. Но тогда похожая проверка должна быть и в месте вызова функции:

int main() {
    if (int age = ReadAge(); age == 0) {
        // Произошла ошибка
    } else {
        // Работаем с возрастом age
    }
}

Такая проверка неудобна. Более того, нет никакой гарантии, что в вызывающей функции программист вообще её напишет. Фактически мы тут выбрали некоторое значение функции (ноль), обозначающее ошибку. Это пример подхода к обработке ошибок через коды возврата. Другим примером такого подхода является хорошо знакомая нам функция main. Только она должна возвращать ноль при успешном завершении и что-либо ненулевое в случае ошибки.

Другим способом сообщить об обнаруженной ошибке являются исключения. С каждым сгенерированным исключением связан некоторый объект, который как-то описывает ошибку. Таким объектом может быть что угодно — даже целое число или строка. Но обычно для описания ошибки заводят специальный класс и генерируют объект этого класса:

#include <iostream>

struct WrongAgeException {
    int age;
};

int ReadAge() {
    int age;
    std::cin >> age;
    if (age < 0 || age >= 128) {
        throw WrongAgeException(age);
    }
    return age;
}

Здесь в случае ошибки оператор throw генерирует исключение, которое представлено временным объектом типа WrongAgeException. В этом объекте сохранён для контекста текущий неправильный возраст age. Функция досрочно завершает работу: у неё нет возможности обработать эту ошибку, и она должна сообщить о ней наружу. Поток управления возвращается в то место, откуда функция была вызвана. Там исключение может быть перехвачено и обработано.

Перехват исключения

Мы вызывали нашу функцию ReadAge из функции main. Обработать ошибку в месте вызова можно с помощью блока try/catch:

int main() {
    try {
        age = ReadAge();  // может сгенерировать исключение
        // Работаем с возрастом age
    } catch (const WrongAgeException& ex) {  // ловим объект исключения
        std::cerr << "Age is not correct: " << ex.age << "n";
        return 1;  // выходим из функции main с ненулевым кодом возврата
    }
    // ...
}

Мы знаем заранее, что функция ReadAge может сгенерировать исключение типа WrongAgeException. Поэтому мы оборачиваем вызов этой функции в блок try. Если происходит исключение, для него подбирается подходящий catch-обработчик. Таких обработчиков может быть несколько. Можно смотреть на них как на набор перегруженных функций от одного аргумента — объекта исключения. Выбирается первый подходящий по типу обработчик и выполняется его код. Если же ни один обработчик не подходит по типу, то исключение считается необработанным. В этом случае оно пробрасывается дальше по стеку — туда, откуда была вызвана текущая функция. А если обработчик не найдётся даже в функции main, то программа аварийно завершается.

Усложним немного наш пример, чтобы из функции ReadAge могли вылетать исключения разных типов. Сейчас мы проверяем только значение возраста, считая, что на вход поступило число. Но предположим, что поток ввода досрочно оборвался, или на входе была строка вместо числа. В таком случае конструкция std::cin >> age никак не изменит переменную age, а лишь возведёт специальный флаг ошибки в объекте std::cin. Наша переменная age останется непроинициализированной: в ней будет лежать неопределённый мусор. Можно было бы явно проверить этот флаг в объекте std::cin, но мы вместо этого включим режим генерации исключений при таких ошибках ввода:

int ReadAge() {
    std::cin.exceptions(std::istream::failbit);
    int age;
    std::cin >> age;
    if (age < 0 || age >= 128) {
        throw WrongAgeException(age);
    }
    return age;
}

Теперь ошибка чтения в операторе >> у потока ввода будет приводить к исключению типа std::istream::failure. Функция ReadAge его не обрабатывает. Поэтому такое исключение покинет пределы этой функции. Поймаем его в функции main:

int main() {
    try {
        age = ReadAge();  // может сгенерировать исключения разных типов
        // Работаем с возрастом age
    } catch (const WrongAgeException& ex) {
        std::cerr << "Age is not correct: " << ex.age << "n";
        return 1;
    } catch (const std::istream::failure& ex) {
        std::cerr << "Failed to read age: " << ex.what() << "n";
        return 1;
    } catch (...) {
        std::cerr << "Some other exceptionn";
        return 1;
    }
    // ...
}

При обработке мы воспользовались функцией ex.what у исключения типа std::istream::failure. Такие функции есть у всех исключений стандартной библиотеки: они возвращают текстовое описание ошибки.

Обратите внимание на третий catch с многоточием. Такой блок, если он присутствует, будет перехватывать любые исключения, не перехваченные ранее.

Исключения стандартной библиотеки

Функции и классы стандартной библиотеки в некоторых ситуациях генерируют исключения особых типов. Все такие типы выстроены в иерархию наследования от базового класса std::exception. Иерархия классов позволяет писать обработчик catch сразу на группу ошибок, которые представлены базовым классом: std::logic_error, std::runtime_error и т. д.

Вот несколько примеров:

  1. Функция at у контейнеров std::array, std::vector и std::deque генерирует исключение std::out_of_range при некорректном индексе.

  2. Аналогично, функция at у std::map, std::unordered_map и у соответствующих мультиконтейнеров генерирует исключение std::out_of_range при отсутствующем ключе.

  3. Обращение к значению у пустого объекта std::optional приводит к исключению std::bad_optional_access.

  4. Потоки ввода-вывода могут генерировать исключение std::ios_base::failure.

Исключения в конструкторах

В главе 3.1 мы написали класс Time. Этот класс должен был соблюдать инвариант на значение часов, минут и секунд: они должны были быть корректными. Если на вход конструктору класса Time передавались некорректные значения, мы приводили их к корректным, используя деление с остатком.

Более правильным было бы сгенерировать в конструкторе исключение. Таким образом мы бы явно передали сообщение об ошибке во внешнюю функцию, которая пыталась создать объект.

class Time {
private:
    int hours, minutes, seconds;

public:
    // Заведём класс для исключения и поместим его внутрь класса Time как в пространство имён
    class IncorrectTimeException {
    };

    Time::Time(int h, int m, int s) {
        if (s < 0 || s > 59 || m < 0 || m > 59 || h < 0 || h > 23) {
            throw IncorrectTimeException();
        }
        hours = h;
        minutes = m;
        seconds = s;
    }

    // ...
};

Генерировать исключения в конструкторах — совершенно нормальная практика. Однако не следует допускать, чтобы исключения покидали пределы деструкторов. Чтобы понять причины, посмотрим подробнее, что происходит при генерации исключения.

Свёртка стека

Вспомним класс Logger из предыдущей главы. Посмотрим, как он ведёт себя при возникновении исключения. Воспользуемся в этом примере стандартным базовым классом std::exception, чтобы не писать свой класс исключения.

#include <exception>
#include <iostream>

void f() {
    std::cout << "Welcome to f()!n";
    Logger x;
    // ...
    throw std::exception();  // в какой-то момент происходит исключение
}

int main() {
    try {
        Logger y;
        f();
    } catch (const std::exception&) {
        std::cout << "Something happened...n";
        return 1;
    }
}

Мы увидим такой вывод:

Logger(): 1
Welcome to f()!
Logger(): 2
~Logger(): 2
~Logger(): 1
Something happened...

Сначала создаётся объект y в блоке try. Затем мы входим в функцию f. В ней создаётся объект x. После этого происходит исключение. Мы должны досрочно покинуть функцию. В этот момент начинается свёртка стека (stack unwinding): вызываются деструкторы для всех созданных объектов в самой функции и в блоке try, как если бы они вышли из своей области видимости. Поэтому перед обработчиком исключения мы видим вызов деструктора объекта x, а затем — объекта y.

Аналогично, свёртка стека происходит и при генерации исключения в конструкторе. Напишем класс с полем Logger и сгенерируем нарочно исключение в его конструкторе:

#include <exception>
#include <iostream>

class C {
private:
    Logger x;

public:
    C() {
        std::cout << "C()n";
        Logger y;
        // ...
        throw std::exception();
    }

    ~C() {
        std::cout << "~C()n";
    }
};

int main() {
    try {
        C c;
    } catch (const std::exception&) {
        std::cout << "Something happened...n";
    }
}

Вывод программы:

Logger(): 1  // конструктор поля x
C()
Logger(): 2  // конструктор локальной переменной y
~Logger(): 2  // свёртка стека: деструктор y
~Logger(): 1  // свёртка стека: деструктор поля x
Something happened...

Заметим, что деструктор самого класса C не вызывается, так как объект в конструкторе не был создан.

Механизм свёртки стека гарантирует, что деструкторы для всех созданных автоматических объектов или полей класса в любом случае будут вызваны. Однако он полагается на важное свойство: деструкторы самих классов не должны генерировать исключений. Если исключение в деструкторе произойдёт в момент свёртки стека при обработке другого исключения, то программа аварийно завершится.

Пример с динамической памятью

Подчеркнём, что свёртка стека работает только с автоматическими объектами. В этом нет ничего удивительного: ведь за временем жизни объектов, созданных в динамической памяти, программист должен следить самостоятельно. Исключения вносят дополнительные сложности в ручное управление динамическими объектами:

void f() {
    Logger* ptr = new Logger();  // конструируем объект класса Logger в динамической памяти
    // ...
    g();  // вызываем какую-то функцию
    // ...
    delete ptr;  // вызываем деструктор и очищаем динамическую память
}

На первый взгляд кажется, что в этом коде нет ничего опасного: delete вызывается в конце функции. Однако функция g может сгенерировать исключение. Мы не перехватываем его в нашей функции f. Механизм свёртки уберёт со стека лишь сам указатель ptr, который является автоматической переменной примитивного типа. Однако он ничего не сможет сделать с объектом в памяти, на которую ссылается этот указатель. В логе мы увидим только вызов конструктора класса Logger, но не увидим вызова деструктора. Нам придётся обработать исключение вручную:

void f() {
    Logger* ptr = new Logger();
    // ...
    try {
        g();
    } catch (...) {  // ловим любое исключение
        delete ptr;  // вручную удаляем объект
        throw;  // перекидываем объект исключения дальше
    }
    // ...
    delete ptr;

}

Здесь мы перехватываем любое исключение и частично обрабатываем его, удаляя объект в динамической памяти. Затем мы прокидываем текущий объект исключения дальше с помощью оператора throw без аргументов.

Согласитесь, этот код очень далёк от совершенства. При непосредственной работе с объектами в динамической памяти нам приходится оборачивать в try/catch любую конструкцию, из которой может вылететь исключение. Понятно, что такой код чреват ошибками. В главе 3.6 мы узнаем, как с точки зрения C++ следует работать с такими ресурсами, как память.

Гарантии безопасности исключений

Предположим, что мы пишем свой класс-контейнер, похожий на двусвязный список. Наш контейнер позволяет добавлять элементы в хранилище и отдельно хранит количество элементов в некотором поле elementsCount. Один из инвариантов этого класса такой: значение elementsCount равно реальному числу элементов в хранилище.

Не вдаваясь в детали, давайте посмотрим, как могла бы выглядеть функция добавления элемента.

template <typename T>
class List {
private:
    struct Node {  // узел двусвязного списка
        T element;
        Node* prev = nullptr;  // предыдущий узел
        Node* next = nullptr;  // следующий узел
    };

    Node* first = nullptr;  // первый узел списка
    Node* last = nullptr;  // последний узел списка
    int elementsCount = 0;

public:
    // ...

    size_t Size() const {
        return elementsCount;
    }

    void PushBack(const T& elem) {
        ++elementsCount;

        // Конструируем в динамической памяти новой узел списка
        Node* node = new Node(elem, last, nullptr);

        // Связываем новый узел с остальными узлами
        if (last != nullptr) {
            last->next = node;
        } else {
            first = node;
        }
        last = node;
    }
};

Не будем здесь рассматривать другие функции класса — конструкторы, деструктор, оператор присваивания… Рассмотрим функцию PushBack. В ней могут произойти такие исключения:

  1. Выражение new может сгенерировать исключение std::bad_alloc из-за нехватки памяти.

  2. Конструктор копирования класса T может сгенерировать произвольное исключение. Этот конструктор вызывается при инициализации поля element создаваемого узла в конструкторе класса Node. В этом случае new ведёт себя как транзакция: выделенная перед этим динамическая память корректно вернётся системе.

Эти исключения не перехватываются в функции PushBack. Их может перехватить код, из которого PushBack вызывался:

#include <iostream>

class C;  // какой-то класс

int main() {
    List<C> data;
    C element;

    try {
        data.PushBack(element);
    } catch (...) {  // не получилось добавить элемент
        std::cout << data.Size() << "n";  // внезапно 1, а не 0
    }

    // работаем дальше с data
}

Наша функция PushBack сначала увеличивает счётчик элементов, а затем выполняет опасные операции. Если происходит исключение, то в классе List нарушается инвариант: значение счётчика elementsCount перестаёт соответствовать реальности. Можно сказать, что функция PushBack не даёт гарантий безопасности.

Всего выделяют четыре уровня гарантий безопасности исключений (exception safety guarantees):

  1. Гарантия отсутствия сбоев. Функции с такими гарантиями вообще не выбрасывают исключений. Примерами могут служить правильно написанные деструктор и конструктор перемещения, а также константные функции вида Size.

  2. Строгая гарантия безопасности. Исключение может возникнуть, но от этого объект нашего класса не поменяет состояние: количество элементов останется прежним, итераторы и ссылки не будут инвалидированы и т. д.

  3. Базовая гарантия безопасности. При исключении состояние объекта может поменяться, но оно останется внутренне согласованным, то есть, инварианты будут соблюдаться.

  4. Отсутсвие гарантий. Это довольно опасная категория: при возникновении исключений могут нарушаться инварианты.

Всегда стоит разрабатывать классы, обеспечивающие хотя бы базовую гарантию безопасности. При этом не всегда возможно эффективно обеспечить строгую гарантию.

Переместим в нашей функции PushBack изменение счётчика в конец:

    void PushBack(const T& elem) {
        Node* node = new Node(elem, last, nullptr);

        if (last != nullptr) {
            last->next = node;
        } else {
            first = node;
        }
        last = node;

        ++elementsCount;  // выполнится только если раньше не было исключений
    }

Теперь такая функция соответствует строгой гарантии безопасности.

В документации функций из классов стандартной библиотеки обычно указано, какой уровень гарантии они обеспечивают. Рассмотрим, например, гарантии безопасности класса std::vector.

  • Деструктор, функции empty, size, capacity, а также clear предоставляют гарантию отсутствия сбоев.

  • Функции push_back и resize предоставляют строгую гарантию.

  • Функция insert предоставляет лишь базовую гарантию. Можно было бы сделать так, чтобы она предоставляла строгую гарантию, но за это пришлось бы заплатить её эффективностью: при вставке в середину вектора пришлось бы делать реаллокацию.

Функции класса, которые гарантируют отсутсвие сбоев, следует помечать ключевым словом noexcept:

class C {
public:
    void f() noexcept {
        // ...
    }
};

С одной стороны, эта подсказка позволяет компилятору генерировать более эффективный код. С другой — эффективно обрабатывать объекты таких классов в стандартных контейнерах. Например, std::vector<C> при реаллокации будет использовать конструктор перемещения класса C, если он помечен как noexcept. В противном случае будет использован конструктор копирования, который может быть менее эффективен, но зато позволит обеспечить строгую гарантию безопасности при реаллокации.

Ошибки в программировании – дело обычное, хоть и неприятное. В данной статье будет рассказано о том, какими бывают ошибки (баги), а также что собой представляют исключения.

Определение

Ошибка в программировании (или так называемый баг) – это ситуация у разработчиков, при которой определенный код вследствие обработки выдает неверный результат. Причин данному явлению множество: неисправность компилятора, сбои интерфейса, неточности и нарушения в программном коде.

Баги обнаруживаются чаще всего в момент отладки или бета-тестирования. Реже – после итогового релиза готовой программы. Вот несколько вариантов багов:

  1. Появляется сообщение об ошибке, но приложение продолжает функционировать.
  2. ПО вылетает или зависает. Никаких предупреждений или предпосылок этому не было. Процедура осуществляется неожиданно для пользователя. Возможен вариант, при котором контент перезапускается самостоятельно и непредсказуемо.
  3. Одно из событий, описанных ранее, сопровождается отправкой отчетов разработчикам.

Ошибки в программах могут привести соответствующее приложение в негодность, а также к непредсказуемым алгоритмам функционирования. Желательно обнаруживать баги на этапе ранней разработки или тестирования. Лишь в этом случае программист сможет оперативно и относительно недорого внести необходимые изменения в код для отладки ПО.

История происхождения термина

Баг – слово, которое используется разработчиками в качестве сленга. Оно произошло от слова «bug» – «жук». Точно неизвестно, откуда в программировании и IT возник соответствующий термин. Существуют две теории:

  1. 9 сентября 1945 года ученые из Гарварда тестировали очередную вычислительную машину. Она называлась Mark II Aiken Relay Calculator. Устройство начало работать с ошибками. Когда его разобрали, то ученые заметили мотылька, застрявшего между реле. Тогда некая Грейс Хоппер назвала произошедший сбой упомянутым термином.
  2. Слово «баг» появилось задолго до появления Mark II. Термин использовался Томасом Эдисоном и указывал на мелкие недочеты и трудности. Во время Второй Мировой войны «bugs» называли проблемы с радарной электроникой.

Второй вариант кажется более реалистичным. Это факт, который подтвержден документально. Со временем научились различать различные типы багов в IT. Далее они будут рассмотрены более подробно.

Как классифицируют

Ошибки работы программ разделяются по разным факторам. Классификация у рядовых пользователей и разработчиков различается. То, что для первых – «просто программа вылетела» или «глючит», для вторых – огромная головная боль. Но существует и общепринятая классификация ошибок. Пример – по критичности:

  1. Серьезные неполадки. Это нарушения работоспособности приложения, которые могут приводить к непредвиденным крупным изменениям.
  2. Незначительные ошибки в программах. Чаще всего не оказывают серьезного воздействия на функциональность ПО.
  3. Showstopper. Критические проблемы в приложении или аппаратном обеспечении. Приводят к выходу программы из строя почти всегда. Для примера можно взять любое клиент-серверное приложение, в котором не получается авторизоваться через логин и пароль.

Последний вариант требует особого внимания со стороны программистов. Их стараются обнаружить и устранить в первую очередь. Критические ошибки могут отложить релиз исходной программы на неопределенный срок.

Также существуют различные виды сбоев в плане частоты проявления: постоянные и «разовые». Вторые встречаются редко, чаще – при определенных настройках и действиях со стороны пользователя. Первые появляются независимо от используемой платформы и выполненных клиентом манипуляций.

Иногда может получиться так, что ошибка возникает только на устройстве конкретного пользователя. В данном случае устранение неполадки требует индивидуального подхода. Иногда – полной замены компьютера. Связано это с тем, что никто не будет редактировать исходный код, когда он «глючит» только у одного пользователя.

Виды

Существуют различные типы ошибок в программах в зависимости от типовых условий использования приложений. Пример – сбои, которые возникают при возрастании нагрузки на оперативную память или центральный процессор устройства. Есть баги граничных условий, сбоя идентификаторов, несовместимости с архитектурой процессора (наиболее распространенная проблема на мобильных устройствах).

Разработчики выделяют следующие типы ошибок по уровню сложности:

  1. «Борбаг» – «стабильная» неполадка. Она легко обнаруживается на этапе разработки и компилирования. Иногда – во время тестирования наработкой исходной программы.
  2. «Гейзенбаг» – баги с поддержкой изменения свойств, включая зависимость от среды, в которой было запущено приложение. Сюда относят периодические неполадки в программах. Они могут исчезать на некоторое время, но через какой-то промежуток вновь дают о себе знать.
  3. «Мандельбаг» – непредвиденные ошибки. Обладают энтропийным поведением. Предсказать, к чему они приведут, практически невозможно.
  4. «Шрединбаг» – критические неполадки. Приводят к тому, что злоумышленники могут взломать программу. Данный тип ошибок обнаружить достаточно трудно, потому что они никак себя не проявляют.

Также есть классификация «по критичности». Тут всего два варианта – warning («варнинги») и критические весомые сбои. Первые сопровождаются характерными сообщениями и отчетами для разработчиков. Они не представляют серьезной опасности для работоспособности приложения. При компилировании такие сбои легко исправляются. В отдельных случаях компилятор справляется с этой задачей самостоятельно. А вот критические весомые сбои говорят сами за себя. Они приводят к серьезным нарушениям ПО. Исправляются обычно путем проработки логики и значительных изменений программного кода.

Типы багов

Ошибки в программах бывают:

  • логическими;
  • синтаксическими;
  • взаимодействия;
  • компиляционные;
  • ресурсные;
  • арифметические;
  • среды выполнения.

Это – основная классификация сбоев в приложениях и операционных системах. Логические, синтаксические и «среды выполнения» встречаются в разработке чаще остальных. На них будет сделан основной акцент.

Ошибки синтаксиса

Синтаксические баги распространены среди новичков. Они относятся к категории «самых безобидных». С данной категорией ошибок способны справиться компиляторы тех или иных языков. Соответствующие инструменты показывают, где допущена неточность. Остается лишь понять, как исправить ее.

Синтаксические ошибки – ошибки синтаксиса, правил языка. Вот пример в Паскале:

Код написан неверно. Согласно действующим синтаксическим нормам, в Pascal в первой строчке нужно в конце поставить точку с запятой.

Логические

Тут стоит выделить обычные и арифметические типы. Вторые возникают, когда программе при работе необходимо вычислить много переменных, но на каком-то этапе расчетов возникают неполадки или нечто непредвиденное. Пример – получение в результатах «бесконечности».

Логические сбои обычного типа – самые сложные и неприятные. Их тяжелее всего обнаружить и исправить. С точки зрения языка программа может быть написана идеально, но работать неправильно. Подобное явление – следствие логической ошибки. Компиляторы их не обнаруживают.

Выше – пример логической ошибки в программе. Тут:

  1. Происходит сравнение значения i с 15.
  2. На экран выводится сообщение, если I = 15.
  3. В заданном цикле i не будет равно 15. Связано это с диапазоном значений – от 1 до 10.

Может показаться, что ошибка безобидная. В приведенном примере так и есть, но в более крупных программах такое явление приводит к серьезным последствиям.

Время выполнения

Run-time сбои – это ошибка времени выполнения программы. Встречается даже когда исходный код лишен логических и синтаксических ошибок. Связаны такие неполадки с ходом выполнения программного продукта. Пример – в процессе функционирования ПО был удален файл, считываемый программой. Если игнорировать подобные неполадки, можно столкнуться с аварийным завершением работы контента.

Самый распространенный пример в данной категории – это неожиданное деление на ноль. Предложенный фрагмент кода с точки зрения синтаксиса и логики написан грамотно. Но, если клиент наберет 0, произойдет сбой системы.

Компиляционный тип

Встречается при разработке на языках высокого уровня. Во время преобразований в машинный тип «что-то идет не так». Причиной служат синтаксические ошибки или сбои непосредственно в компиляторе.

Наличие подобных неполадок делает бета-тестирование невозможным. Компиляционные ошибки устраняются при разработке-отладке.

Ресурсные

Ресурсный тип ошибок – это сбои вроде «переполнение буфера» или «нехватка памяти». Тесно связаны с «железом» устройства. Могут быть вызваны действиями пользователя. Пример – запуск «свежих» игр на стареньких компьютерах.

Исправить ситуацию помогают основательные работы над исходным кодом. А именно – полное переписывание программы или «проблемного» фрагмента.

Взаимодействие

Подразумевается взаимодействие с аппаратным или программным окружением. Пример – ошибка при использовании веб-протоколов. Это приведет к тому, что облачный сервис не будет нормально функционировать. При постоянном возникновении соответствующей неполадки остается один путь – полностью переписывать «проблемный» участок кода, ответственный за соответствующий баг.

Исключения и как избежать багов

Исключение – событие, при возникновении которых начинается «неправильное» поведение программы. Механизм, необходимый для стабилизации обработки неполадок независимо от типа ПО, платформ и иных условий. Помогают разрабатывать единые концепции ответа на баги со стороны операционной системы или контента.

Исключения бывают:

  1. Программными. Они генерируются приложением или ОС.
  2. Аппаратными. Создаются процессором. Пример – обращение к невыделенной памяти.

Исключения нужны для охвата критических багов. Избежать неполадок помогут отладчики на этапе разработки. А еще – своевременное поэтапное тестирование программы.

P. S. Большой выбор курсов по тестированию есть и в Otus. Присутствуют варианты как для продвинутых, так и для начинающих пользователей.

Понравилась статья? Поделить с друзьями:
  • Как прочитать ошибку форд фокус 2 рестайлинг
  • Как рассчитать средняя ошибка средней арифметической величины
  • Как рассчитать средняя ошибка первой средней арифметической
  • Как рассчитать среднюю ошибку средней арифметической пример
  • Как рассчитать среднюю ошибку выборки