Как вернуть ошибку питон

One has pretty much control on which information from the traceback to be displayed/logged when catching exceptions.

The code

with open("not_existing_file.txt", 'r') as text:
    pass

would produce the following traceback:

Traceback (most recent call last):
  File "exception_checks.py", line 19, in <module>
    with open("not_existing_file.txt", 'r') as text:
FileNotFoundError: [Errno 2] No such file or directory: 'not_existing_file.txt'

Print/Log the full traceback

As others already mentioned, you can catch the whole traceback by using the traceback module:

import traceback
try:
    with open("not_existing_file.txt", 'r') as text:
        pass
except Exception as exception:
    traceback.print_exc()

This will produce the following output:

Traceback (most recent call last):
  File "exception_checks.py", line 19, in <module>
    with open("not_existing_file.txt", 'r') as text:
FileNotFoundError: [Errno 2] No such file or directory: 'not_existing_file.txt'

You can achieve the same by using logging:

try:
    with open("not_existing_file.txt", 'r') as text:
        pass
except Exception as exception:
    logger.error(exception, exc_info=True)

Output:

__main__: 2020-05-27 12:10:47-ERROR- [Errno 2] No such file or directory: 'not_existing_file.txt'
Traceback (most recent call last):
  File "exception_checks.py", line 27, in <module>
    with open("not_existing_file.txt", 'r') as text:
FileNotFoundError: [Errno 2] No such file or directory: 'not_existing_file.txt'

Print/log error name/message only

You might not be interested in the whole traceback, but only in the most important information, such as Exception name and Exception message, use:

try:
    with open("not_existing_file.txt", 'r') as text:
        pass
except Exception as exception:
    print("Exception: {}".format(type(exception).__name__))
    print("Exception message: {}".format(exception))

Output:

Exception: FileNotFoundError
Exception message: [Errno 2] No such file or directory: 'not_existing_file.txt'

Содержание:развернуть

  • Как устроен механизм исключений
  • Как обрабатывать исключения в Python (try except)
  • As — сохраняет ошибку в переменную

  • Finally — выполняется всегда

  • Else — выполняется когда исключение не было вызвано

  • Несколько блоков except

  • Несколько типов исключений в одном блоке except

  • Raise — самостоятельный вызов исключений

  • Как пропустить ошибку

  • Исключения в lambda функциях
  • 20 типов встроенных исключений в Python
  • Как создать свой тип Exception

Программа, написанная на языке Python, останавливается сразу как обнаружит ошибку. Ошибки могут быть (как минимум) двух типов:

  • Синтаксические ошибки — возникают, когда написанное выражение не соответствует правилам языка (например, написана лишняя скобка);
  • Исключения — возникают во время выполнения программы (например, при делении на ноль).

Синтаксические ошибки исправить просто (если вы используете IDE, он их подсветит). А вот с исключениями всё немного сложнее — не всегда при написании программы можно сказать возникнет или нет в данном месте исключение. Чтобы приложение продолжило работу при возникновении проблем, такие ошибки нужно перехватывать и обрабатывать с помощью блока try/except.

Как устроен механизм исключений

В Python есть встроенные исключения, которые появляются после того как приложение находит ошибку. В этом случае текущий процесс временно приостанавливается и передает ошибку на уровень вверх до тех пор, пока она не будет обработано. Если ошибка не будет обработана, программа прекратит свою работу (а в консоли мы увидим Traceback с подробным описанием ошибки).

💁‍♂️ Пример: напишем скрипт, в котором функция ожидает число, а мы передаём сроку (это вызовет исключение «TypeError»):

def b(value):
print("-> b")
print(value + 1) # ошибка тут

def a(value):
print("-> a")
b(value)

a("10")

> -> a
> -> b
> Traceback (most recent call last):
> File "test.py", line 11, in <module>
> a("10")
> File "test.py", line 8, in a
> b(value)
> File "test.py", line 3, in b
> print(value + 1)
> TypeError: can only concatenate str (not "int") to str

В данном примере мы запускаем файл «test.py» (через консоль). Вызывается функция «a«, внутри которой вызывается функция «b«. Все работает хорошо до сточки print(value + 1). Тут интерпретатор понимает, что нельзя конкатенировать строку с числом, останавливает выполнение программы и вызывает исключение «TypeError».

Далее ошибка передается по цепочке в обратном направлении: «b» → «a» → «test.py«. Так как в данном примере мы не позаботились обработать эту ошибку, вся информация по ошибке отобразится в консоли в виде Traceback.

Traceback (трассировка) — это отчёт, содержащий вызовы функций, выполненные в определенный момент. Трассировка помогает узнать, что пошло не так и в каком месте это произошло.

Traceback лучше читать снизу вверх ↑

Пример Traceback в Python

В нашем примере Traceback содержится следующую информацию (читаем снизу вверх):

  1. TypeError — тип ошибки (означает, что операция не может быть выполнена с переменной этого типа);
  2. can only concatenate str (not "int") to str — подробное описание ошибки (конкатенировать можно только строку со строкой);
  3. Стек вызова функций (1-я линия — место, 2-я линия — код). В нашем примере видно, что в файле «test.py» на 11-й линии был вызов функции «a» со строковым аргументом «10». Далее был вызов функции «b». print(value + 1) это последнее, что было выполнено — тут и произошла ошибка.
  4. most recent call last — означает, что самый последний вызов будет отображаться последним в стеке (в нашем примере последним выполнился print(value + 1)).

В Python ошибку можно перехватить, обработать, и продолжить выполнение программы — для этого используется конструкция try ... except ....

Как обрабатывать исключения в Python (try except)

В Python исключения обрабатываются с помощью блоков try/except. Для этого операция, которая может вызвать исключение, помещается внутрь блока try. А код, который должен быть выполнен при возникновении ошибки, находится внутри except.

Например, вот как можно обработать ошибку деления на ноль:

try:
a = 7 / 0
except:
print('Ошибка! Деление на 0')

Здесь в блоке try находится код a = 7 / 0 — при попытке его выполнить возникнет исключение и выполнится код в блоке except (то есть будет выведено сообщение «Ошибка! Деление на 0»). После этого программа продолжит свое выполнение.

💭 PEP 8 рекомендует, по возможности, указывать конкретный тип исключения после ключевого слова except (чтобы перехватывать и обрабатывать конкретные исключения):

try:
a = 7 / 0
except ZeroDivisionError:
print('Ошибка! Деление на 0')

Однако если вы хотите перехватывать все исключения, которые сигнализируют об ошибках программы, используйте тип исключения Exception:

try:
a = 7 / 0
except Exception:
print('Любая ошибка!')

As — сохраняет ошибку в переменную

Перехваченная ошибка представляет собой объект класса, унаследованного от «BaseException». С помощью ключевого слова as можно записать этот объект в переменную, чтобы обратиться к нему внутри блока except:

try:
file = open('ok123.txt', 'r')
except FileNotFoundError as e:
print(e)

> [Errno 2] No such file or directory: 'ok123.txt'

В примере выше мы обращаемся к объекту класса «FileNotFoundError» (при выводе на экран через print отобразится строка с полным описанием ошибки).

У каждого объекта есть поля, к которым можно обращаться (например если нужно логировать ошибку в собственном формате):

import datetime

now = datetime.datetime.now().strftime("%d-%m-%Y %H:%M:%S")

try:
file = open('ok123.txt', 'r')
except FileNotFoundError as e:
print(f"{now} [FileNotFoundError]: {e.strerror}, filename: {e.filename}")

> 20-11-2021 18:42:01 [FileNotFoundError]: No such file or directory, filename: ok123.txt

Finally — выполняется всегда

При обработке исключений можно после блока try использовать блок finally. Он похож на блок except, но команды, написанные внутри него, выполняются обязательно. Если в блоке try не возникнет исключения, то блок finally выполнится так же, как и при наличии ошибки, и программа возобновит свою работу.

Обычно try/except используется для перехвата исключений и восстановления нормальной работы приложения, а try/finally для того, чтобы гарантировать выполнение определенных действий (например, для закрытия внешних ресурсов, таких как ранее открытые файлы).

В следующем примере откроем файл и обратимся к несуществующей строке:

file = open('ok.txt', 'r')

try:
lines = file.readlines()
print(lines[5])
finally:
file.close()
if file.closed:
print("файл закрыт!")

> файл закрыт!
> Traceback (most recent call last):
> File "test.py", line 5, in <module>
> print(lines[5])
> IndexError: list index out of range

Даже после исключения «IndexError», сработал код в секции finally, который закрыл файл.

p.s. данный пример создан для демонстрации, в реальном проекте для работы с файлами лучше использовать менеджер контекста with.

Также можно использовать одновременно три блока try/except/finally. В этом случае:

  • в try — код, который может вызвать исключения;
  • в except — код, который должен выполниться при возникновении исключения;
  • в finally — код, который должен выполниться в любом случае.

def sum(a, b):
res = 0

try:
res = a + b
except TypeError:
res = int(a) + int(b)
finally:
print(f"a = {a}, b = {b}, res = {res}")

sum(1, "2")

> a = 1, b = 2, res = 3

Else — выполняется когда исключение не было вызвано

Иногда нужно выполнить определенные действия, когда код внутри блока try не вызвал исключения. Для этого используется блок else.

Допустим нужно вывести результат деления двух чисел и обработать исключения в случае попытки деления на ноль:

b = int(input('b = '))
c = int(input('c = '))
try:
a = b / c
except ZeroDivisionError:
print('Ошибка! Деление на 0')
else:
print(f"a = {a}")

> b = 10
> c = 1
> a = 10.0

В этом случае, если пользователь присвоит переменной «с» ноль, то появится исключение и будет выведено сообщение «‘Ошибка! Деление на 0′», а код внутри блока else выполняться не будет. Если ошибки не будет, то на экране появятся результаты деления.

Несколько блоков except

В программе может возникнуть несколько исключений, например:

  1. Ошибка преобразования введенных значений к типу float («ValueError»);
  2. Деление на ноль («ZeroDivisionError»).

В Python, чтобы по-разному обрабатывать разные типы ошибок, создают несколько блоков except:

try:
b = float(input('b = '))
c = float(input('c = '))
a = b / c
except ZeroDivisionError:
print('Ошибка! Деление на 0')
except ValueError:
print('Число введено неверно')
else:
print(f"a = {a}")

> b = 10
> c = 0
> Ошибка! Деление на 0

> b = 10
> c = питон
> Число введено неверно

Теперь для разных типов ошибок есть свой обработчик.

Несколько типов исключений в одном блоке except

Можно также обрабатывать в одном блоке except сразу несколько исключений. Для этого они записываются в круглых скобках, через запятую сразу после ключевого слова except. Чтобы обработать сообщения «ZeroDivisionError» и «ValueError» в одном блоке записываем их следующим образом:

try:
b = float(input('b = '))
c = float(input('c = '))
a = b / c
except (ZeroDivisionError, ValueError) as er:
print(er)
else:
print('a = ', a)

При этом переменной er присваивается объект того исключения, которое было вызвано. В результате на экран выводятся сведения о конкретной ошибке.

Raise — самостоятельный вызов исключений

Исключения можно генерировать самостоятельно — для этого нужно запустить оператор raise.

min = 100
if min > 10:
raise Exception('min must be less than 10')

> Traceback (most recent call last):
> File "test.py", line 3, in <module>
> raise Exception('min value must be less than 10')
> Exception: min must be less than 10

Перехватываются такие сообщения точно так же, как и остальные:

min = 100

try:
if min > 10:
raise Exception('min must be less than 10')
except Exception:
print('Моя ошибка')

> Моя ошибка

Кроме того, ошибку можно обработать в блоке except и пробросить дальше (вверх по стеку) с помощью raise:

min = 100

try:
if min > 10:
raise Exception('min must be less than 10')
except Exception:
print('Моя ошибка')
raise

> Моя ошибка
> Traceback (most recent call last):
> File "test.py", line 5, in <module>
> raise Exception('min must be less than 10')
> Exception: min must be less than 10

Как пропустить ошибку

Иногда ошибку обрабатывать не нужно. В этом случае ее можно пропустить с помощью pass:

try:
a = 7 / 0
except ZeroDivisionError:
pass

Исключения в lambda функциях

Обрабатывать исключения внутри lambda функций нельзя (так как lambda записывается в виде одного выражения). В этом случае нужно использовать именованную функцию.

20 типов встроенных исключений в Python

Иерархия классов для встроенных исключений в Python выглядит так:

BaseException
SystemExit
KeyboardInterrupt
GeneratorExit
Exception
ArithmeticError
AssertionError
...
...
...
ValueError
Warning

Все исключения в Python наследуются от базового BaseException:

  • SystemExit — системное исключение, вызываемое функцией sys.exit() во время выхода из приложения;
  • KeyboardInterrupt — возникает при завершении программы пользователем (чаще всего при нажатии клавиш Ctrl+C);
  • GeneratorExit — вызывается методом close объекта generator;
  • Exception — исключения, которые можно и нужно обрабатывать (предыдущие были системными и их трогать не рекомендуется).

От Exception наследуются:

1 StopIteration — вызывается функцией next в том случае если в итераторе закончились элементы;

2 ArithmeticError — ошибки, возникающие при вычислении, бывают следующие типы:

  • FloatingPointError — ошибки при выполнении вычислений с плавающей точкой (встречаются редко);
  • OverflowError — результат вычислений большой для текущего представления (не появляется при операциях с целыми числами, но может появиться в некоторых других случаях);
  • ZeroDivisionError — возникает при попытке деления на ноль.

3 AssertionError — выражение, используемое в функции assert неверно;

4 AttributeError — у объекта отсутствует нужный атрибут;

5 BufferError — операция, для выполнения которой требуется буфер, не выполнена;

6 EOFError — ошибка чтения из файла;

7 ImportError — ошибка импортирования модуля;

8 LookupError — неверный индекс, делится на два типа:

  • IndexError — индекс выходит за пределы диапазона элементов;
  • KeyError — индекс отсутствует (для словарей, множеств и подобных объектов);

9 MemoryError — память переполнена;

10 NameError — отсутствует переменная с данным именем;

11 OSError — исключения, генерируемые операционной системой:

  • ChildProcessError — ошибки, связанные с выполнением дочернего процесса;
  • ConnectionError — исключения связанные с подключениями (BrokenPipeError, ConnectionResetError, ConnectionRefusedError, ConnectionAbortedError);
  • FileExistsError — возникает при попытке создания уже существующего файла или директории;
  • FileNotFoundError — генерируется при попытке обращения к несуществующему файлу;
  • InterruptedError — возникает в том случае если системный вызов был прерван внешним сигналом;
  • IsADirectoryError — программа обращается к файлу, а это директория;
  • NotADirectoryError — приложение обращается к директории, а это файл;
  • PermissionError — прав доступа недостаточно для выполнения операции;
  • ProcessLookupError — процесс, к которому обращается приложение не запущен или отсутствует;
  • TimeoutError — время ожидания истекло;

12 ReferenceError — попытка доступа к объекту с помощью слабой ссылки, когда объект не существует;

13 RuntimeError — генерируется в случае, когда исключение не может быть классифицировано или не подпадает под любую другую категорию;

14 NotImplementedError — абстрактные методы класса нуждаются в переопределении;

15 SyntaxError — ошибка синтаксиса;

16 SystemError — сигнализирует о внутренне ошибке;

17 TypeError — операция не может быть выполнена с переменной этого типа;

18 ValueError — возникает когда в функцию передается объект правильного типа, но имеющий некорректное значение;

19 UnicodeError — исключение связанное с кодирование текста в unicode, бывает трех видов:

  • UnicodeEncodeError — ошибка кодирования;
  • UnicodeDecodeError — ошибка декодирования;
  • UnicodeTranslateError — ошибка перевода unicode.

20 Warning — предупреждение, некритическая ошибка.

💭 Посмотреть всю цепочку наследования конкретного типа исключения можно с помощью модуля inspect:

import inspect

print(inspect.getmro(TimeoutError))

> (<class 'TimeoutError'>, <class 'OSError'>, <class 'Exception'>, <class 'BaseException'>, <class 'object'>)

📄 Подробное описание всех классов встроенных исключений в Python смотрите в официальной документации.

Как создать свой тип Exception

В Python можно создавать свои исключения. При этом есть одно обязательное условие: они должны быть потомками класса Exception:

class MyError(Exception):
def __init__(self, text):
self.txt = text

try:
raise MyError('Моя ошибка')
except MyError as er:
print(er)

> Моя ошибка


С помощью try/except контролируются и обрабатываются ошибки в приложении. Это особенно актуально для критически важных частей программы, где любые «падения» недопустимы (или могут привести к негативным последствиям). Например, если программа работает как «демон», падение приведет к полной остановке её работы. Или, например, при временном сбое соединения с базой данных, программа также прервёт своё выполнение (хотя можно было отловить ошибку и попробовать соединиться в БД заново).

Вместе с try/except можно использовать дополнительные блоки. Если использовать все блоки описанные в статье, то код будет выглядеть так:

try:
# попробуем что-то сделать
except (ZeroDivisionError, ValueError) as e:
# обрабатываем исключения типа ZeroDivisionError или ValueError
except Exception as e:
# исключение не ZeroDivisionError и не ValueError
# поэтому обрабатываем исключение общего типа (унаследованное от Exception)
# сюда не сходят исключения типа GeneratorExit, KeyboardInterrupt, SystemExit
else:
# этот блок выполняется, если нет исключений
# если в этом блоке сделать return, он не будет вызван, пока не выполнился блок finally
finally:
# этот блок выполняется всегда, даже если нет исключений else будет проигнорирован
# если в этом блоке сделать return, то return в блоке

Подробнее о работе с исключениями в Python можно ознакомиться в официальной документации.

Raise, return, and how to never fail silently in Python.

I hear this question a lot: “Do I raise or return this error in Python?”

The right answer will depend on the goals of your application logic. You want to ensure your Python code doesn’t fail silently, saving you and your teammates from having to hunt down deeply entrenched errors.

Here’s the difference between raise and return when handling failures in Python.

When to raise

The raise statement allows the programmer to force a specific exception to occur. (8.4 Raising Exceptions)

Use raise when you know you want a specific behavior, such as:

raise TypeError("Wanted strawberry, got grape.")

Raising an exception terminates the flow of your program, allowing the exception to bubble up the call stack. In the above example, this would let you explicitly handle TypeError later. If TypeError goes unhandled, code execution stops and you’ll get an unhandled exception message.

Raise is useful in cases where you want to define a certain behavior to occur. For example, you may choose to disallow certain words in a text field:

if "raisins" in text_field:
    raise ValueError("That word is not allowed here")

Raise takes an instance of an exception, or a derivative of the Exception class. Here are all of Python’s built-in exceptions.

Raise can help you avoid writing functions that fail silently. For example, this code will not raise an exception if JAM doesn’t exist:

import os


def sandwich_or_bust(bread: str) -> str:
    jam = os.getenv("JAM")
    return bread + str(jam) + bread


s = sandwich_or_bust("U0001F35E")
print(s)
# Prints "🍞None🍞" which is not very tasty.

To cause the sandwich_or_bust() function to actually bust, add a raise:

import os


def sandwich_or_bust(bread: str) -> str:
    jam = os.getenv("JAM")
    if not jam:
        raise ValueError("There is no jam. Sad bread.")
    return bread + str(jam) + bread


s = sandwich_or_bust("U0001F35E")
print(s)
# ValueError: There is no jam. Sad bread.

Any time your code interacts with an external variable, module, or service, there is a possibility of failure. You can use raise in an if statement to help ensure those failures aren’t silent.

Raise in try and except

To handle a possible failure by taking an action if there is one, use a tryexcept statement.

try:
    s = sandwich_or_bust("U0001F35E")
    print(s)
except ValueError:
    buy_more_jam()
    raise

This lets you buy_more_jam() before re-raising the exception. If you want to propagate a caught exception, use raise without arguments to avoid possible loss of the stack trace.

If you don’t know that the exception will be a ValueError, you can also use a bare except: or catch any derivative of the Exception class with except Exception:. Whenever possible, it’s better to raise and handle exceptions explicitly.

Use else for code to execute if the try does not raise an exception. For example:

try:
    s = sandwich_or_bust("U0001F35E")
    print(s)
except ValueError:
    buy_more_jam()
    raise
else:
    print("Congratulations on your sandwich.")

You could also place the print line within the try block, however, this is less explicit.

When to return

When you use return in Python, you’re giving back a value. A function returns to the location it was called from.

While it’s more idiomatic to raise errors in Python, there may be occasions where you find return to be more applicable.

For example, if your Python code is interacting with other components that do not handle exception classes, you may want to return a message instead. Here’s an example using a tryexcept statement:

from typing import Union


def share_sandwich(sandwich: int) -> Union[float, Exception]:
    try:
        bad_math = sandwich / 0
        return bad_math
    except Exception as e:
        return e


s = share_sandwich(1)
print(s)
# Prints "division by zero"

Note that when you return an Exception class object, you’ll get a representation of its associated value, usually the first item in its list of arguments. In the example above, this is the string explanation of the exception. In some cases, it may be a tuple with other information about the exception.

You may also use return to give a specific error object, such as with HttpResponseNotFound in Django. For example, you may want to return a 404 instead of a 403 for security reasons:

if object.owner != request.user:
    return HttpResponseNotFound

Using return can help you write appropriately noisy code when your function is expected to give back a certain value, and when interacting with outside elements.

The most important part

Silent failures create some of the most frustrating bugs to find and fix. You can help create a pleasant development experience for yourself and your team by using raise and return to ensure that errors are handled in your Python code.

I write about good development practices and how to improve productivity as a software developer. You can get these tips right in your inbox by signing up below!

Уровень сложности
Средний

Время на прочтение
8 мин

Количество просмотров 6.1K

Люди, которые пишут код, часто воспринимают работу с исключениями как необходимое зло. Но освоение системы обработки исключений в Python способно повысить профессиональный уровень программиста, сделать его эффективнее. В этом материале я разберу следующие темы, изучение которых поможет всем желающим раскрыть потенциал Python через разумный подход к обработке исключений:

  • Что такое обработка исключений?

  • Разница между оператором if и обработкой исключений.

  • Использование разделов else и finally блока try-except для организации правильного обращения с ошибками.

  • Определение пользовательских исключений.

  • Рекомендации по обработке исключений.

Что такое обработка исключений?

Обработка исключений — это процесс написания кода для перехвата и обработки ошибок или исключений, которые могут возникать при выполнении программы. Это позволяет разработчикам создавать надёжные программы, которые продолжают работать даже при возникновении неожиданных событий или ошибок. Без системы обработки исключений подобное обычно приводит к фатальным сбоям.

Когда возникают исключения — Python выполняет поиск подходящего обработчика исключений. После этого, если обработчик будет найден, выполняется его код, в котором предпринимаются уместные действия. Это может быть логирование данных, вывод сообщения, попытка восстановить работу программы после возникновения ошибки. В целом можно сказать, что обработка исключения помогает повысить надёжность Python-приложений, улучшает возможности по их поддержке, облегчает их отладку.

Различия между оператором if и обработкой исключений

Главные различия между оператором if и обработкой исключений в Python произрастают из их целей и сценариев использования.

Оператор if — это базовый строительный элемент структурного программирования. Этот оператор проверяет условие и выполняет различные блоки кода, основываясь на том, истинно проверяемое условие или ложно. Вот пример:

temperature = int(input("Please enter temperature in Fahrenheit: "))
if temperature > 100:
    print("Hot weather alert! Temperature exceeded 100°F.")
elif temperature >= 70:
    print("Warm day ahead, enjoy sunny skies.")
else:
    print("Bundle up for chilly temperatures.")

Обработка исключений, с другой стороны, играет важную роль в написании надёжных и отказоустойчивых программ. Эта роль раскрывается через работу с неожиданными событиями и ошибками, которые могут возникать во время выполнения программы.

Исключения используются для подачи сигналов о проблемах и для выявления участков кода, которые нуждаются в улучшении, отладке, или в оснащении их дополнительными механизмами для проверки ошибок. Исключения позволяют Python достойно справляться с ситуациями, в которых возникают ошибки. В таких ситуациях исключения дают возможность продолжать выполнение скрипта вместо того, чтобы резко его останавливать.

Рассмотрим следующий код, демонстрирующий пример того, как можно реализовать обработку исключений и улучшить ситуацию с потенциальными отказами, связанными с делением на ноль:

# Определение функции, которая пытается поделить число на ноль
def divide(x, y):
    result = x / y
    return result
# Вызов функции divide с передачей ей x=5 и y=0
result = divide(5, 0)
print(f"Result of dividing {x} by {y}: {result}")

Вывод:

Traceback (most recent call last):
  File "<stdin>", line 8, in <module>
ZeroDivisionError: division by zero attempted

После того, как было сгенерировано исключение, программа, не дойдя до инструкции print, сразу же прекращает выполняться.

Вышеописанное исключение можно обработать, обернув вызов функции divide в блок try-except:

# Определение функции, которая пытается поделить число на ноль
def divide(x, y):
    result = x / y
    return result
# Вызов функции divide с передачей ей x=5 и y=0
try:
    result = divide(5, 0)
    print(f"Result of dividing {x} by {y}: {result}")
except ZeroDivisionError:
    print("Cannot divide by zero.")

Вывод:

Cannot divide by zero.

Сделав это, мы аккуратно обработали исключение ZeroDivisionError, предотвратили аварийное завершение остального кода из-за необработанного исключения.

Подробности о других встроенных Python-исключениях можно найти здесь.

Использование разделов else и finally блока try-except для организации правильного обращения с ошибками

При работе с исключениями в Python рекомендуется включать в состав блоков try-except и раздел else, и раздел finally. Раздел else позволяет программисту настроить действия, производимые в том случае, если при выполнении кода, который защищают от проблем, не было вызвано исключений. А раздел finally позволяет обеспечить обязательное выполнение неких заключительных операций, вроде освобождения ресурсов, независимо от факта возникновения исключений (вот и вот — полезные материалы об этом).

Например — рассмотрим ситуацию, когда нужно прочитать данные из файла и выполнить какие-то действия с этими данными. Если при чтении файла возникнет исключение — программист может решить, что надо залогировать ошибку и остановить выполнение дальнейших операций. Но в любом случае файл нужно правильно закрыть.

Использование разделов else и finally позволяет поступить именно так — обработать данные обычным образом в том случае, если исключений не возникло, либо обработать любые исключения, но, как бы ни развивались события, в итоге закрыть файл. Без этих разделов код страдал бы уязвимостями в виде утечки ресурсов или неполной обработки ошибок. В результате оказывается, что else и finally играют важнейшую роль в создании устойчивых к ошибкам и надёжных программ.

try:
    # Открытие файла в режиме чтения
    file = open("file.txt", "r")
    print("Successful opened the file")
except FileNotFoundError:
    # Обработка ошибки, возникающей в том случае, если файл не найден
    print("File Not Found Error: No such file or directory")
    exit()
except PermissionError:
    # Обработка ошибок, связанных с разрешением на доступ к файлу
    print("Permission Denied Error: Access is denied")
else:
    # Всё хорошо - сделать что-то с данными, прочитанными из файла
    content = file.read().decode('utf-8')
    processed_data = process_content(content)
    
# Прибираемся после себя даже в том случае, если выше возникло исключение
finally:
    file.close()

В этом примере мы сначала пытаемся открыть файл file.txt для чтения (в подобной ситуации можно использовать выражение with, которое гарантирует правильное автоматическое закрытие объекта файла после завершения работы). Если в процессе выполнения операций файлового ввода/вывода возникают ошибки FileNotFoundError или PermissionError — выполняются соответствующие разделы except. Здесь, ради простоты, мы лишь выводим на экран сообщения об ошибках и выходим из программы в том случае, если файл не найден.

В противном случае, если в блоке try исключений не возникло, мы продолжаем работу, обрабатывая содержимое файла в ветви else. И наконец — выполняется «уборка» — файл закрывается независимо от возникновения исключения. Это обеспечивает блок finally (подробности смотрите здесь).

Применяя структурированный подход к обработке исключений, напоминающий вышеописанный, можно поддерживать свой код в хорошо организованном состоянии и обеспечивать его читабельность. При этом код будет рассчитан на борьбу с потенциальными ошибками, которые могут возникнуть при взаимодействии с внешними системами или входными данными.

Определение пользовательских исключений

В Python можно определять пользовательские исключения путём создания подклассов встроенного класса Exception или любых других классов, являющихся прямыми наследниками Exception.

Для того чтобы определить собственное исключение — нужно создать новый класс, являющийся наследником одного из подходящих классов, и оснастить этот класс атрибутами, соответствующими нуждам программиста. Затем новый класс можно использовать в собственном коде, работая с ним так же, как работают со встроенными классами исключений.

Вот пример определения пользовательского исключения, названного InvalidEmailAddress:

class InvalidEmailAddress(ValueError):
    def __init__(self, message):
        super().__init__(message)
        self.msgfmt = message

Это исключение является наследником ValueError. Его конструктор принимает необязательный аргумент message (по умолчанию он устанавливается в значение invalid email address).

Вызвать это исключение можно в том случае, если в программе встретился адрес электронной почты, имеющий некорректный формат:

def send_email(address):
    if isinstance(address, str) == False:
        raise InvalidEmailAddress("Invalid email address")
# Отправка электронного письма

Теперь, если функции send_email() будет передана строка, содержащая неправильно оформленный адрес, то, вместо сообщения стандартной ошибки TypeError, будет выдано настроенное заранее сообщение об ошибке, которое чётко указывает на возникшую проблему. Например, это может выглядеть так:

>>> send_email(None)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/path/to/project/main.py", line 8, in send_email
    raise InvalidEmailAddress("Invalid email address")
InvalidEmailAddress: Invalid email address

Рекомендации по обработке исключений

Вот несколько рекомендаций, относящихся к обработке ошибок в Python:

  1. Проектируйте код в расчёте на возможное возникновение ошибок. Заранее планируйте устройство кода с учётом возможных сбоев и проектируйте программы так, чтобы они могли бы достойно обрабатывать эти сбои. Это означает — предугадывать возможные пограничные случаи и реализовывать подходящие обработчики ошибок.

  2. Используйте содержательные сообщения об ошибках. Сделайте так, чтобы программа выводила бы, на экран, или в файл журнала, подробные сообщения об ошибках, которые помогут пользователям понять — что и почему пошло не так. Старайтесь не применять обобщённые сообщения об ошибках, наподобие Error occurred или Something bad happened. Вместо этого подумайте об удобстве пользователя и покажите сообщение, в котором будет дан совет по решению проблемы или будет приведена ссылка на документацию. Постарайтесь соблюсти баланс между выводом подробных сообщений и перегрузкой пользовательского интерфейса избыточными данными.

  3. Минимизируйте побочные эффекты. Постарайтесь свести к минимуму последствия сбойных операций, изолируя проблемные разделы кода посредством конструкции try-finally или try с использованием with. Сделайте так, чтобы после выполнения кода, было ли оно удачным или нет, обязательно выполнялись бы «очистительные» операции.

  4. Тщательно тестируйте код. Обеспечьте корректное поведение обработчиков ошибок в различных сценариях использования программы, подвергнув код всеобъемлющему тестированию.

  5. Регулярно выполняйте рефакторинг кода. Выполняйте рефакторинг фрагментов кода, подверженных ошибкам, чтобы улучшить их надёжность и производительность. Постарайтесь, чтобы ваша кодовая база была бы устроена по модульному принципу, чтобы её отдельные части слабо зависели бы друг от друга. Это позволяет независимым частям код самостоятельно эволюционировать, не оказывая негативного воздействия на другие его части.

  6. Логируйте важные события. Следите за интересными событиями своего приложения, записывая сведения о них в файл журнала или выводя в консоль. Это поможет вам выявлять проблемы на ранних стадиях их возникновения, не тратя время на длительный анализ большого количества неструктурированных логов.

Итоги

Написание кода обработки ошибок — это неотъемлемая часть индустрии разработки ПО, и, в частности — разработки на Python. Это позволяет разработчикам создавать более надёжные и стабильные программы. Следуя индустриальным стандартам и рекомендациям по обработке исключений, разработчик может сократить время, необходимое на отладку кода, способен обеспечить написание качественных программ и сделать так, чтобы пользователям было бы приятно работать с этими программами.

О, а приходите к нам работать? 🤗 💰

Мы в wunderfund.io занимаемся высокочастотной алготорговлей с 2014 года. Высокочастотная торговля — это непрерывное соревнование лучших программистов и математиков всего мира. Присоединившись к нам, вы станете частью этой увлекательной схватки.

Мы предлагаем интересные и сложные задачи по анализу данных и low latency разработке для увлеченных исследователей и программистов. Гибкий график и никакой бюрократии, решения быстро принимаются и воплощаются в жизнь.

Сейчас мы ищем плюсовиков, питонистов, дата-инженеров и мл-рисерчеров.

Присоединяйтесь к нашей команде.

Обработка исключений

При выполнении заданий к главам вы, скорее всего, нередко сталкивались с возникновением различных ошибок. В этой главе мы изучим подход, который позволяет обрабатывать ошибки после их возникновения.

Напишем программу, которая будет считать обратные значения для целых чисел из заданного диапазона и выводить их в одну строку с разделителем ‘;’. Один из вариантов кода для решения этой задачи выглядит так:

print(";".join(str(1 / x) for x in range(int(input()), int(input()) + 1)))

Программа получилась в одну строчку за счёт использования списочных выражений. Однако при вводе диапазона чисел, включающего в себя 0 (например, от -1 до 1), программа выдаст следующую ошибку:

ZeroDivisionError: division by zero

В программе произошла ошибка «деление на ноль». Такая ошибка, возникающая при выполнении программы и останавливающая её работу, называется исключением.

Попробуем в нашей программе избавиться от возникновения исключения деления на ноль. Пусть при попадании 0 в диапазон чисел обработка не производится и выводится сообщение «Диапазон чисел содержит 0». Для этого нужно проверить до списочного выражения наличие нуля в диапазоне:

interval = range(int(input()), int(input()) + 1)
if 0 in interval:
    print("Диапазон чисел содержит 0.")
else:
    print(";".join(str(1 / x) for x in interval))

Теперь для диапазона, включающего в себя 0, например от -2 до 2, исключения ZeroDivisionError не возникнет. Однако при вводе строки, которую невозможно преобразовать в целое число (например, «a»), будет вызвано другое исключение:

ValueError: invalid literal for int() with base 10: 'a'

Произошло исключение ValueError. Для борьбы с этой ошибкой нам придётся проверить, что строка состоит только из цифр. Сделать это нужно до преобразования в число. Тогда наша программа будет выглядеть так:

start = input()
end = input()
# Метод lstrip("-"), удаляющий символы "-" в начале строки, нужен для учёта
# отрицательных чисел, иначе isdigit() вернёт для них False
if not (start.lstrip("-").isdigit() and end.lstrip("-").isdigit()):
    print("
    ввести два числа.")
else:
    interval = range(int(start), int(end) + 1)
    if 0 in interval:
        print("Диапазон чисел содержит 0.")
    else:
        print(";".join(str(1 / x) for x in interval))

Теперь наша программа работает без ошибок и при вводе строк, которые нельзя преобразовать в целое число.

Подход, который был нами применён для предотвращения ошибок, называется Look Before You Leap (LBYL), или «Посмотри перед прыжком». В программе, реализующей такой подход, проверяются возможные условия возникновения ошибок до исполнения основного кода.

Подход LBYL имеет недостатки. Программу из примера стало сложнее читать из-за вложенного условного оператора. Проверка условия, что строка может быть преобразована в число, выглядит даже сложнее, чем списочное выражение. Вложенный условный оператор не решает поставленную задачу, а только лишь проверяет входные данные на корректность. Легко заметить, что решение основной задачи заняло меньше времени, чем составление условий проверки корректности входных данных.

Существует другой подход для работы с ошибками: Easier to Ask Forgiveness than Permission (EAFP), или «Проще попросить прощения, чем разрешения». В этом подходе сначала исполняется код, а в случае возникновения ошибок происходит их обработка. Подход EAFP реализован в Python в виде обработки исключений.

Исключения в Python являются классами ошибок. В Python есть много стандартных исключений. Они имеют определённую иерархию за счёт механизма наследования классов. В документации Python версии 3.10.8 приводится следующее дерево иерархии стандартных исключений:

BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
      +-- StopIteration
      +-- StopAsyncIteration
      +-- ArithmeticError
      |    +-- FloatingPointError
      |    +-- OverflowError
      |    +-- ZeroDivisionError
      +-- AssertionError
      +-- AttributeError
      +-- BufferError
      +-- EOFError
      +-- ImportError
      |    +-- ModuleNotFoundError
      +-- LookupError
      |    +-- IndexError
      |    +-- KeyError
      +-- MemoryError
      +-- NameError
      |    +-- UnboundLocalError
      +-- OSError
      |    +-- BlockingIOError
      |    +-- ChildProcessError
      |    +-- ConnectionError
      |    |    +-- BrokenPipeError
      |    |    +-- ConnectionAbortedError
      |    |    +-- ConnectionRefusedError
      |    |    +-- ConnectionResetError
      |    +-- FileExistsError
      |    +-- FileNotFoundError
      |    +-- InterruptedError
      |    +-- IsADirectoryError
      |    +-- NotADirectoryError
      |    +-- PermissionError
      |    +-- ProcessLookupError
      |    +-- TimeoutError
      +-- ReferenceError
      +-- RuntimeError
      |    +-- NotImplementedError
      |    +-- RecursionError
      +-- SyntaxError
      |    +-- IndentationError
      |         +-- TabError
      +-- SystemError
      +-- TypeError
      +-- ValueError
      |    +-- UnicodeError
      |         +-- UnicodeDecodeError
      |         +-- UnicodeEncodeError
      |         +-- UnicodeTranslateError
      +-- Warning
           +-- DeprecationWarning
           +-- PendingDeprecationWarning
           +-- RuntimeWarning
           +-- SyntaxWarning
           +-- UserWarning
           +-- FutureWarning
           +-- ImportWarning
           +-- UnicodeWarning
           +-- BytesWarning
           +-- EncodingWarning
           +-- ResourceWarning

Для обработки исключения в Python используется следующий синтаксис:

try:
    <код , который может вызвать исключения при выполнении>
except <классисключения_1>:
    <код обработки исключения>
except <классисключения_2>:
    <код обработки исключения>
...
else:
    <код выполняется, если не вызвано исключение в блоке try>
finally:
    <код , который выполняется всегда>

Блок try содержит код, в котором нужно обработать исключения, если они возникнут.
При возникновении исключения интерпретатор последовательно проверяет, в каком из блоков except обрабатывается это исключение.
Исключение обрабатывается в первом блоке except, обрабатывающем класс этого исключения или базовый класс возникшего исключения.
Необходимо учитывать иерархию исключений для определения порядка их обработки в блоках except. Начинать обработку исключений следует с более узких классов исключений. Если начать с более широкого класса исключения, например Exception, то всегда при возникновении исключения будет срабатывать первый блок except.
Сравните два следующих примера. В первом порядок обработки исключений указан от производных классов к базовым, а во втором — наоборот.

Первый пример:

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")

При вводе значений «0» и «a» получим ожидаемый, соответствующий возникающим исключениям вывод:

Невозможно преобразовать строку в число.

и

Ошибка деления на ноль.

Второй пример:

try:
    print(1 / int(input()))
except Exception:
    print("Неизвестная ошибка.")
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")

При вводе значений «0» и «a» получим в обоих случаях неинформативный вывод:

Неизвестная ошибка.

Необязательный блок else выполняет код в случае, если в блоке try не вызвано исключение. Добавим блок else в пример для вывода сообщения об успешном выполнении операции:

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")
else:
    print("Операция выполнена успешно.")

Теперь при вводе корректного значения, например «5», вывод программы будет следующим:

2.0
Операция выполнена успешно.

Блок finally выполняется всегда, даже если возникло какое-то исключение, не учтённое в блоках except, или код в этих блоках сам вызвал какое-либо исключение. Добавим в нашу программу вывод строки «Программа завершена» в конце программы даже при возникновении исключений:

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")
else:
    print("Операция выполнена успешно.")
finally:
    print("Программа завершена.")

Перепишем код, созданный с применением подхода LBYL, для первого примера из этой главы с использованием обработки исключений:

try:
    print(";".join(str(1 / x) for x in range(int(input()), int(input()) + 1)))
except ZeroDivisionError:
    print("Диапазон чисел содержит 0.")
except ValueError:
    print("Необходимо ввести два числа.")

Теперь наша программа читается намного легче. При этом создание кода для обработки исключений не заняло много времени и не потребовало проверки сложных условий.

Исключения можно принудительно вызывать с помощью оператора raise. Этот оператор имеет следующий синтаксис:

raise <класс исключения>(параметры)

В качестве параметра можно, например, передать строку с сообщением об ошибке.

Создание собственных исключений

В Python можно создавать свои собственные исключения. Синтаксис создания исключения такой же, как и у создания класса. При создании исключения его необходимо наследовать от какого-либо стандартного класса-исключения.

Напишем программу, которая выводит сумму списка целых чисел и вызывает исключение, если в списке чисел есть хотя бы одно чётное или отрицательное число. Создадим свои классы исключений:

  • NumbersError — базовый класс исключения;
  • EvenError — исключение, которое вызывается при наличии хотя бы одного чётного числа;
  • NegativeError — исключение, которое вызывается при наличии хотя бы одного отрицательного числа.
class NumbersError(Exception):
    pass


class EvenError(NumbersError):
    pass


class NegativeError(NumbersError):
    pass


def no_even(numbers):
    if all(x % 2 != 0 for x in numbers):
        return True
    raise EvenError("В списке не должно быть чётных чисел")


def no_negative(numbers):
    if all(x >= 0 for x in numbers):
        return True
    raise NegativeError("В списке не должно быть отрицательных чисел")


def main():
    print("Введите числа в одну строку через пробел:")
    try:
        numbers = [int(x) for x in input().split()]
        if no_negative(numbers) and no_even(numbers):
            print(f"Сумма чисел равна: {sum(numbers)}.")
    except NumbersError as e:  # обращение к исключению как к объекту
        print(f"Произошла ошибка: {e}.")
    except Exception as e:
        print(f"Произошла непредвиденная ошибка: {e}.")

        
if __name__ == "__main__":
    main()

Модули

Обратите внимание: в программе основной код выделен в функцию main. А код вне функций содержит только условный оператор и вызов функции main при выполнении условия __name__ == "__main__". Это условие проверяет, запущен ли файл как самостоятельная программа или импортирован как модуль.

Любая программа, написанная на языке программирования Python, может быть импортирована как модуль в другую программу. В идеологии Python импортировать модуль — значит полностью его выполнить. Если основной код модуля содержит вызовы функций, ввод или вывод данных без использования указанного условия __name__ == "__main__", то произойдёт полноценный запуск программы. А это не всегда удобно, если из модуля нужна только отдельная функция или какой-либо класс.

При изучении модуля itertools мы говорили о том, как импортировать модуль в программу. Покажем ещё раз два способа импорта на примере собственного модуля.

Для импорта модуля из файла, например example_module.py, нужно указать его имя, если он находится в той же папке, что и импортирующая его программа:

import example_module

Если требуется отдельный компонент модуля, например функция или класс, то импорт можно осуществить так:

from example_module import some_function, ExampleClass

Обратите внимание: при втором способе импортированные объекты попадают в пространство имён новой программы. Это означает, что они будут объектами новой программы и в программе не должно быть других объектов с такими же именами.

Рассмотрим написанное выше на примере. Пусть имеется программа module_hello.py, в которой находится функция hello(name), возвращающая строку приветствия пользователя по имени. В самой программе кроме функции присутствует вызов этой функции и печать результата её работы. Импортируем из модуля module_hello.py функцию hello(name) в другую программу program.py и также используем для вывода приветствия пользователя.

Код программы module_hello.py:

def hello(name):
    return f"Привет, {name}!"


print(hello(input("Введите своё имя: ")))

Код программы program.py:

from module_hello import hello

print(hello(input("Добрый день. Введите имя: ")))

При выполнении program.py нас ожидает неожиданное действие. Программа сначала запросит имя пользователя, а затем сделает это ещё раз, но с приветствием из program.py.

Введите своё имя: Андрей
Привет, Андрей!
Добрый день. Введите имя: Андрей
Привет, Андрей!

Наша ошибка заключается в том, что программа module_hello.py выполняется полностью, включая основной код с вызовом функции и выводом результата. Исправим программу module_hello.py, добавив проверку, запущена программа или импортирована как модуль:

def hello(name):
    return f"Привет, {name}!"


if __name__ == "__main__":
    print(hello(input("Введите своё имя: ")))

Теперь при импорте модуля module_hello.py код в теле условного оператора выполняться не будет. А основной код этой программы выполнится только при запуске файла как отдельной программы.
Для большего удобства обычно в теле указанного условного оператора вызывают функцию main(), а основной код программы оформляют уже внутри этой функции.
Тогда наш модуль можно переписать так:

def hello(name):
    return f"Привет, {name}!"


def main():
    print(hello(input("Введите своё имя: ")))


if __name__ == "__main__":
    main()

Обратите внимание: при импорте модуля мы можем с помощью символа * указать, что необходимо импортировать все объекты. Например, так:

from some_module import *

Однако делать так крайне не рекомендуется, потому что все объекты модуля добавляются в пространство имён нашей программы, что может приводить к конфликтам.

Понравилась статья? Поделить с друзьями:
  • Казань экспресс ошибка при оплате
  • Казань экспресс ошибка 403
  • Казаки последний довод королей ошибка
  • Казаки ошибка экрана
  • Казаки ошибка не удается установить драйвер