Какой может быть ошибка определения постоянной временной систематической

I вариант.

1. Что изучает аналитическая химия?
а) Изучает соединения с углеродом различных элементов, а также их свойства и методы определения
б) Это наука о методах идентификации и обнаружения элементов и их соединений+
в) Наука о законах строения, структуры и превращения химических веществ

2. Что из перечисленного не является химическим методом анализа?
а) Гравиметрия
б) Титриметрия
в) Рентгенография+

3. В чем состоит особенность сильных электролитов?
а) Степень диссоциации более 30 % +
б) Степень диссоциации стремиться к нулю
в) Степень диссоциации находится в пределах 5-30 %

4. Чему равно ионное произведение воды?
а) 10-14 +
б) 14
в) < 1

5. Что такое буферная емкость раствора?
а) Это предельное количество воды, которые можно прибавить к данному буферу, с изменения его рН не более, чем на 1
б) Это предельное количество кислоты или основания, которые можно прибавить к данному буферу с изменением рН не более 10 %
в) Это предельное количество кислоты или основания, которые можно прибавить к данному буферу без изменения его рН +

6. Какая из приведенных формул соответствует расчету рН?
а) pH = 14 -[OH–]
б) pH= -lg[H+] +
в) рН= -lg[OH–]

7. Гидролиз – это процесс:
а) растворения в воде
б) взаимодействия ионов растворенных в воде соли с ионами воды +
в) растворения в воде под действием тока

8. Как снизить ошибку титрования?
а) Максимально растянуть величину скачка и правильно подобрать индикатор +
б) Сделать несколько раз титрование
в) При титровании применять более концентрированные растворы

9. Что такое конечная точка титрования?
а) Момент или точка титрования, в которой некоторое свойство раствора (например, окраска) претерпевает заметное изменение +
б) Это точка титрования, при которой добавлен избыток титранта
в) Это точка титрования, при которой достигнут рН=7

10. Условие, при котором выпадает осадок:
а) Если ионное произведение меньше величины произведения растворимости
б) Если ионное произведение превышает величину произведения растворимости +
в) Если ионное произведение равно величине произведения растворимости

11. Что такое декантация?
а) Укрепление дисперсных частиц, с последующим перенесением на фильтр
б) Промывание осадка, перенесенного на фильтр
в) Промывание осадка в стакане с отстаиванием и сливанием жидкости с раствора +

12. В каком из ниже перечисленных методов рабочим раствором является раствор соли ртути?
а) Аргентометрия
б) Роданометрия
в) Меркуриметрия +

13. Какое из ниже приведенных названий не соответствует трилону Б?
а) Хелатон III
б) Комплексон II +
в) ЭДТА

14. Что из перечисленного не является металлоиндикатором?
а) Мурексид
б) Метиленовый голубой +
в) Эрихром чёрный Т

15. Какой из реагентов не используют при щелочном сплавлении?
а) Пиросульфат калия +
б) Едкий натр
в) Кальцинированную соду

16. Что такое маскирование?
а) Осаждение мешающих веществ с последующим отделением осадка
б) Перевод определяемого вещества в более удобную для анализа форму
в) Устранение влияния присутствующих в растворе веществ на определение какого-либо элемента+

17. Какой может быть ошибка определения?
а) Постоянной
б) Временной
в) Систематической+

18. Что такое точность анализа?
а) Близость результатов друг к другу из выборки n
б) Это значение, до которого необходимо округлить полученный результат
в) Это качественная характеристика близости к нулю всех видов ошибок+

19. Что такое воспроизводимость?
а) Эта мера того, как повторяются результаты при многократном проведении анализа+
б) Параметр, характеризующий близость экспериментальных и истинных значений измеряемой величины
в) Это минимальное расхождение между результатами, полученными при испытании одной пробы

20. В каком из случаев используют метод добавок?
а) При больших концентрациях элементов
б) При малых концентрациях элементов+
в) При невозможности использования метода сравнения

II вариант.

1. Как выбрать длину волны при проведении фотометрических определений?
а) Измерения проводят при длине волны, соответствующей максимуму поглощения+
б) Измерения проводят при длине волны, соответствующей минимуму поглощения
в) Измерения проводят при любой длине волны при условии, что прибор измерит данную оптическую плотность

2. В каких координатах строят калибровочный график?
а) Оптическая плотность – длина волны
б) Аналитический сигнал – концентрация+
в) Объем раствора – концентрация

3. Какая из горючих смесей, используемых в атомно-абсорбционной спектроскопии, дает наибольшую температуру?
а) Ацетилен – воздух
б) Закись азота – ацетилен+
в) Пропан – воздух

4. Что определяют методом пламенно-эмиссионной спектрометрии?
а) Содержание тугоплавких элементов
б) Содержание тяжелых металлов
в) Содержание щелочных металлов+

5. На чем основан потенциометрический метод?
а) На измерении разности потенциалов между электродами+
б) На измерении ЭДС
в) На измерении концентрации определяемого иона в растворе

6. Что такое хроматография?
а) Метод определения массы вещества, полученного на погруженном в раствор электроде
б) Метод анализа, основанный на исследовании взаимодействия излучения с атомами и молекулами вещества
в) Метод разделения веществ, основанный на распределении компонентов между двумя фазами подвижной и неподвижной+

7. Фактор пересчета в гравиметрическом анализе – это:
а) пересчет определяемого вещества на сухое состояние
б) сколько граммов определяемого вещества содержится в 1 г осадка+
в) отличие количества полученного осадка от теоретического выхода

8. Какой крепости получится кислота при смешении 2 кг 50% H2SO4 и 1 кг 20%?
а) 40 %+
б) 35 %
в) 45 %

9. Что такое стандартизация раствора?
а) Это установление его точной концентрации+
б) Приготовление раствора из стандарта
в) Установление срока годности раствора

10. Пробу массой m высушили и масса высушенной пробы m1, какой формулой воспользоваться для расчета влаги в %:
а) m1*100/ m
б) m*100/ m1
в) (m – m1)*100/ m+

11. У.Бергман:
а) основатель качественного анализа
б) основатель химической науки
в) основатель количественного анализа
г) предложил колориметрический метод анализа
д) разработал основы систематического анализа катионов металлов+

12. Что такое инструментальные индикаторы?
а) средства качественного определения степени мешающего влияния сопутствующих веществ на определение данного вещества
б) предельная селективность
в) количественная характеристика селективности
г)приборы, фиксирующие рН, окислительно-восстановительный потенциал, электрическую проводимость раствора или другие свойства среды.+

13. Пробоотборным устройством является:
а) биосенсор
б) барометр
в) батометр+
г) фотометр

14. Что из представленного является методом проведения качественного анализа?
а) дробный анализ+
б) гравиметрический метод
в) титрования
г) биохимический

15. Что такое относительная масса структурного элемента вещества, эквивалентная в химической реакций одному атому водорода или одному электрону?
а) молярная атомная масса
б) моль
в) относительная эквивалентная масса (эквивалент)+
г) молярная эквивалентная масса (грамм/эквивалент)

16. Отметьте метод количественного анализа, не используемый в хромотографии:
а) абсолютная калибровка
б) внутренняя нормализация
в) внутренного стандарта
г) метод осаждения+

17. Что служит индикатором в йодометрии?
а) свежеприготовленный 3% раствор гидроксида меди (II)
б) свежеприготовленный 1% раствор уксусной кислоты
в) свежеприготовленный 2% раствор гидроксида кальция (II)
г) свежеприготовленный 1% раствор крахмала+

18. Какое соединение образуется в результате двух процессов комплексообразования и адсорбции в йодометрии?
а) красного цвета
б) синего цвета+
в) зеленого цвета
г) фиолетового цвета

19. Выберите типы стандартных рабочих растворов используют в титриметрическом анализе:
а) вторичный/третичный
б) первичный/третичный
в) первичный/четвертичный
г) первичный/вторичный+

20.Условная или реальная частица, которая может присоединять, высвобождать, замещать один ион водорода в кислотно-основных реакциях или быть эквивалентна одному электрону в окислительно-восстановительных реакциях это:
а) эквивалент+
б) моль
в) титрант
г) аликвот

Систематические погрешности при повторных измерениях остаются постоянными или изменяются по определенному закону.

Когда судят о погрешности, подразумевают не значение, а интервал значений, в котором с заданной вероятностью находится истинное значение. Поэтому говорят об оценке погрешности. Если бы погрешность оказалась измеренной, т.е. стали бы известны её знак и значение, то её можно было бы исключить из действительного значения измеряемой физической величины и получить истинное значение.

Для получения результатов, минимально отличающихся от истинного значения измеряемой физической величины, проводят многократные наблюдения и проводят математическую обработку полученного массива с целью определения и минимизации случайной составляющей погрешности.

Минимизация систематической погрешности в процессе наблюдений выполняется следующими методами: метод замещения (состоит в замещении измеряемой величины мерой), метод противопоставления (состоит в двух поочерёдных измерениях при замене местами меры и измеряемого объекта), метод компенсации погрешности по знаку (состоит в двух поочерёдных измерениях, при которых влияющая величина становится противоположной).

При многократных наблюдениях возможно апостериорное (после выполнения наблюдений) исключение систематической погрешности в результате анализа рядов наблюдений. Рассмотрим графический анализ. При этом результаты последовательных наблюдений представляются функцией времени либо ранжируются в порядке возрастания погрешности.

Рассмотрим временную зависимость. Будем проводить наблюдения через одинаковые интервалы времени. Результаты последовательных наблюдений являются случайной функцией времени. В серии экспериментов, состоящих из ряда последовательных наблюдений, получаем одну реализацию этой функции. При повторении серии получаем новую реализацию, отличающуюся от первой.

Реализации отличаются преимущественно из-за влияния факторов, определяющих случайную погрешность, а факторы, определяющие систематическую погрешность, одинаково проявляются для соответствующих моментов времени в каждой реализации. Значение, соответствующее каждому моменту времени, называется сечением случайной функции времени. Для каждого сечения можно найти среднее по всем реализациям значение. Очевидно, что эта составляющая и определяет систематическую погрешность. Если через значения систематической погрешности для всех моментов времени провести плавную кривую, то она будет характеризовать временную закономерность изменения погрешности. Зная закономерность изменения, можем определить поправку для исключения систематической погрешности. После исключения систематической погрешности получаем «исправленный ряд результатов наблюдений».

Известен ряд способов исключения систематических погрешностей, которые условно можно разделить па 4 основные группы:

  •  устранение источников погрешностей до начала измерений;
  •  исключение почетностей в процессе измерения способами замещения, компенсации погрешностей по знаку, противопоставления, симметричных наблюдений;
  •  внесение известных поправок в результат измерения (исключение погрешностей начислением);
  •  оценка границ систематических погрешностей, если их нельзя ис­ключить.

По характеру проявления систематические погрешности подразделяют на постоянные, прогрессивные и периодические.

Постоянные систематические погрешности сохраняют свое значение в течение всего времени измерений (например, погрешность в градуировке шкалы прибора переносится на все результаты измерений).

Прогрессивные погрешности – погрешности, которые в процессе из­мерении подрастают или убывают (например, погрешности, возникающие вследствие износа контактирующих деталей средств измерения).

И группу систематических погрешностей можно отнести: инструментальные погрешности; погрешности из-за неправильной установки измерительного устройства; погрешности, возникающие вследствие внешних влияний; погрешности метода измерения (теоретические погрешности); субъективные погрешности.

Систематической погрешностью называется составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях одной и той же величины. При этом предполагается, что систематические погрешности представляют собой определенную функцию неслучайных факторов, состав которых зависит от физических, конструкционных и технологических особенностей средств измерений, условий их применения, а также индивидуальных качеств наблюдателя. Сложные детерминированные закономерности, которым подчиняются систематические погрешности, определяются либо при создании средств измерений и комплектации измерительной аппаратуры, либо непосредственно при подготовке измерительного эксперимента и в процессе его проведения. Совершенствование методов измерения, использование высококачественных материалом, прогрессивная технология — все это позволяет на практике устранить систематические погрешности настолько, что при обработке результатов наблюдений с их наличием зачастую не приходится считаться.

Систематические погрешности принято классифицировать в зависимости от причин их возникновения и по характеру их проявления при измерениях.

В зависимости от причин возникновения рассматриваются четыре вида систематических погрешностей.

1. Погрешности метода, или теоретические погрешности, проистекающие от ошибочности или недостаточной разработки принятой теории метода измерений в целом или от допущенных упрощений при проведении измерений.

Погрешности метода возникают также при экстраполяции свойства, измеренного на ограниченной части некоторого объекта, на весь объект, если последний не обладает однородностью измеряемого свойства. Так, считая диаметр цилиндрического вала равным результату, полученному при измерении в одном сечении и в одном направлении, мы допускаем систематическую погрешность, полностью определяемую отклонениями формы исследуемого вала. При определении плотности вещества по измерениям массы и объема некоторой пробы возникает систематическая погрешность, если проба содержала некоторое количество примесей, а результат измерения принимается за характеристику данного вещества -вообще.

К погрешностям метода следует отнести также те погрешности, которые возникают вследствие влияния измерительной аппаратуры на измеряемые свойства объекта. Подобные явления возникают, например, при измерении длин, когда измерительное усилие используемых приборов достаточно велико, при регистрации быстропротекаюших процессов недостаточно быстродействующей аппаратурой, при измерениях температур жидкостными или газовыми термометрами и т.д.

2. Инструментальные погрешности, зависящие от погрешностей применяемых средств измерений.. Среди инструментальных погрешностей в отдельную группу выделяются погрешности схемы, не связанные с неточностью изготовления средств измерения и обязанные своим происхождением самой структурной схеме средств измерений. Исследование инструментальных погрешностей является предметом специальной дисциплины — теории точности измерительных устройств.

3.   Погрешности, обусловленные неправильной установкой и взаимным расположением средств измерения, являющихся частью единого комплекса, несогласованностью их характеристик, влиянием внешних температурных, гравитационных, радиационных и других полей, нестабильностью источников питания, несогласованностью входных и выходных параметров электрических цепей приборов и т.д.

4. Личные погрешности, обусловленные индивидуальными особенностями наблюдателя. Такого рода погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией, возникающей при установке штриха посередине между двумя рисками.

По характеру своего поведения в процессе измерения систематические погрешности подразделяются на постоянные и переменные.

Постоянные систематические погрешности возникают, например, при неправильной установке начала отсчета, неправильной градуировке и юстировке средств измерения и остаются постоянными при всех повторных наблюдениях. Поэтому, если уж они возникли, их очень трудно обнаружить в результатах наблюдений.

Среди переменных систематических погрешностей принято выделять прогрессивные и периодические.

Прогрессивная погрешность возникает, например, при взвешивании, когда одно из коромысел весов находится ближе к источнику тепла, чем другое, поэтому быстрее нагревается и

удлиняется. Это приводит к систематическому сдвигу начала отсчета и к монотонному изменению показаний весов.

Периодическая погрешность присуща измерительным приборам с круговой шкалой, если ось вращения указателя не совпадает с осью шкалы.

Все остальные виды систематических погрешностей принято называть погрешностями, изменяющимися по сложному закону.

В тех случаях, когда при создании средств измерений, необходимых для данной измерительной установки, не удается устранить влияние систематических погрешностей, приходится специально организовывать измерительный процесс и осуществлять математическую обработку результатов. Методы борьбы с систематическими погрешностями заключаются в их обнаружении и последующем исключении путем полной или частичной компенсации. Основные трудности, часто непреодолимые, состоят именно в обнаружении систематических погрешностей, поэтому иногда приходится довольствоваться приближенным их анализом.

Способы обнаружения систематических погрешностей. Результаты наблюдений, полученные при наличии систематических погрешностей, будем называть неисправленными и в отличие от исправленных снабжать штрихами их обозначения (например, Х1, Х2 и т.д.). Вычисленные в этих условиях средние арифметические значения и отклонения от результатов наблюдений будем также называть неисправленными и ставить штрихи у символов этих величин. Таким образом,

Поскольку неисправленные результаты наблюдений включают в себя систематические погрешности, сумму которых для каждого /-го наблюдения будем обозначать через 8., то их математическое ожидание не совпадает с истинным значением измеряемой величины и отличается от него на некоторую величину 0, называемую систематической погрешностью неисправленного среднего арифметического. Действительно,

Если систематические погрешности постоянны, т.е. 0/ = 0, /=1,2, …, п, то неисправленные отклонения могут быть непосредственно использованы для оценки рассеивания ряда наблюдений. В противном случае необходимо предварительно исправить отдельные результаты измерений, введя в них так называемые поправки, равные систематическим погрешностям по величине и обратные им по знаку:

q = -Oi.

Таким образом, для нахождения исправленного среднего арифметического и оценки его рассеивания относительно истинного значения измеряемой величины необходимо обнаружить систематические погрешности и исключить их путем введения поправок или соответствующей каждому конкретному случаю организации самого измерения. Остановимся подробнее на некоторых способах обнаружения систематических погрешностей.

Постоянные систематические погрешности не влияют на значения случайных отклонений результатов наблюдений от средних арифметических, поэтому никакая математическая обработка результатов наблюдений не может привести к их обнаружению. Анализ таких погрешностей возможен только на основании некоторых априорных знаний об этих погрешностях, получаемых, например, при поверке средств измерений. Измеряемая величина при поверке обычно воспроизводится образцовой мерой, действительное значение которой известно. Поэтому разность между средним арифметическим результатов наблюдения и значением меры с точностью, определяемой погрешностью аттестации меры и случайными погрешностями измерения, равна искомой систематической погрешности.

Одним из наиболее действенных способов обнаружения систематических погрешностей в ряде результатов наблюдений является построение графика последовательности неисправленных значений случайных отклонений результатов наблюдений от средних арифметических.

Рассматриваемый способ обнаружения постоянных систематических погрешностей можно сформулировать следующим образом: если неисправленные отклонения результатов наблюдений резко изменяются при изменении условий наблюдений, то данные результаты содержат постоянную систематическую погрешность, зависящую от условий наблюдений.

Систематические погрешности являются детерминированными величинами, поэтому в принципе всегда могут быть вычислены и исключены из результатов измерений. После исключения систематических погрешностей получаем исправленные средние арифметические и исправленные отклонения результатов наблюдении, которые позволяют оценить степень рассеивания результатов.

Для исправления результатов наблюдений их складывают с поправками, равными систематическим погрешностям по величине и обратными им по знаку. Поправку определяют экспериментально при поверке приборов или в результате специальных исследований, обыкновенно с некоторой ограниченной точностью.

Поправки могут задаваться также в виде формул, по которым они вычисляются для каждого конкретного случая. Например, при измерениях и поверках с помощью образцовых манометров следует вводить поправки к их показаниям на местное значение ускорения свободного падения

где Р — измеряемое давление.

Введением поправки устраняется влияние только одной вполне определенной систематической погрешности, поэтому в результаты измерения зачастую приходится вводить очень большое число поправок. При этом вследствие ограниченной точности определения поправок накапливаются случайные погрешности и дисперсия результата измерения увеличивается.

Систематическая погрешность, остающаяся после введения поправок на ее наиболее существенные составляющие включает в себя ряд элементарных составляющих, называемых неисключенными остатками систематической погрешности. К их числу относятся погрешности:

•   определения поправок;

•   зависящие от точности измерения влияющих величин, входящих в формулы для определения поправок;

•   связанные с колебаниями влияющих величин (температуры окружающей среды, напряжения питания и т.д.).

Перечисленные погрешности малы, и поправки на них не вводятся.

Систематические
погрешности не изменяются при увеличении
числа измерений, поскольку согласно
определению остаются постоянными или
изменяются по определенному закону в
процессе измерения. Систематические
погрешности могут быть выявлены на
основе теоретических оценок результатов,
путем сопоставления результатов,
полученных разными методами, на разных
приборах. Имеются возможности определить
систематические погрешности путем
тщательного исследования средства или
метода измерений путем построения
зависимости результатов от какого-либо
изменяющегося параметра, например
времени, климатических условий,
электромагнитных полей, напряжения
питания и т.д. В ряде случаев необходимо
выполнить большой объем исследовательской
работы для того, чтобы выявить условия,
создающие систематические погрешности
и, соответственно, представить либо
график, либо таблицу поправок, либо
определить аналитическую зависимость
систематической погрешности от
какого-либо параметра.

На
результат измерения влияют несколько
факторов, каждый из которых вызывает
свою систематическую погрешность. В
этом случае выявление аналитического
вида погрешности значительно усложняется,
приходится проводить трудоемкие
тщательные исследования, которые иногда
оканчиваются неудачей. Тем не менее,
необнаруженная систематическая
погрешность опаснее случайной, т.к.
последняя может быть минимизирована
соответствующей методикой измерения,
а систематическая невыявленная
погрешность исказит результат
непредсказуемо.

Особую
категорию систематических погрешностей
составляют измеренные с недостаточной
точностью фундаментальные и физические
константы, используемые в процессе
измерения. То же самое относится к
неточностям в стандартных справочных
данных, или к недостаточно точной
аттестации стандартных образцов.
Появление более точных справочных
данных требует пересчета результатов
всех измерений с их использованием, или
переградуировки шкал приборов. Например,
получение более точных данных о давлении
насыщающих паров индивидуальных веществ
может привести к необходимости
переградуировки термометров, манометров,
приборов для измерения концентраций и
т. д.

Уточнения
постоянной
Авогадро приводят к переградуировке
шкал всех приборов в физико-химических
измерениях. Новые исследования свойств
воды могут изменить результаты измерения
огромного числа приборов, т. к. на этих
постоянных строится температурная
шкала, шкала плотности, шкала вязкости.

Рассмотрим
группы систематических погрешностей,
отличающихся одна от другой причиной
возникновения. В основном различают
следующие группы:

  1. Инструментальные
    погрешности, связанные с несовершенством
    конструкции прибора, неправильностью
    технологии его изготовления.

  2. Погрешности
    внешних влияний. Особенно часто в
    измерительной практике приходится
    сталкиваться с влиянием климатических
    условий — температуры, давления,
    влажности. Кроме того, весьма
    распространенным источником такого
    рода погрешностей является влияние
    внешних электромагнитных полей и
    изменения в напряжении сети питания
    измерительных приборов.

  3. Погрешности
    метода измерения. Этот вид погрешности
    может быть связан как с неточностью
    знания свойства объекта измерения, так
    и с одинаковым влиянием разных факторов
    на датчик измерительного прибора. Сюда
    же можно отнести погрешности
    пробоподготовки в определении состава
    веществ и материалов.

  4. Субъективные
    погрешности, связанные либо с недостаточным
    вниманием, либо с невысокой квалификацией
    персонала, обслуживающего прибор.
    Особенно большое значение этот вид
    погрешности имеет при пользовании
    приборами с визуальным отсчетом. Большая
    часть промахов также может быть связана
    с субъективными погрешностями.

Инструментальная
погрешность

Инструментальная
погрешность — это составляющая погрешности,
зависящая от погрешности (класса
точности) средства измерения. Такие
погрешности могут быть выявлены либо
теоретически на основании механического,
электрического, теплового, оптического
расчета конструкции прибора, либо
опытным путем на основе контроля его
показаний по образцовым мерам, по
стандартным образцам, а также
компарированием показаний прибора с
аналогичными измерениями на других
приборах.

Инструментальные
погрешности, присущие конструкции
прибора, могут быть легко выявлены из
рассмотрения кинематической, электрической
или оптической схемы. Например, взвешивание
на весах с коромыслом обязательно
содержит погрешность, связанную с
неравенством длин коромысла от точек
подвеса чашек до средней точки опоры
коромысла. В электрических измерениях
на переменном токе обязательно будут
погрешности от сдвига фаз, который
появляется в любой электрической цепи.
В оптических приборах наиболее частыми
источниками систематической погрешности
являются аберрации оптических систем
и явления параллакса. Общим источником
погрешностей в большинстве приборов
является трение и связанные с ним наличие
люфтов, мертвого хода, свободного хода,
проскальзывания.

Способы
устранения или учета инструментальных
погрешностей достаточно хорошо известны
для каждого типа прибора. В метрологии
процедуры аттестации или испытаний
часто включают в себя исследования
инструментальных погрешностей. В ряде
случаев инструментальную погрешность
можно учесть и устранить за счет методики
измерений. Например, неравноплечесть
весов можно установить, поменяв местами
объект и гири. Аналогичные приемы
существуют практически во всех видах
измерения.

Инструментальные
погрешности, часто связанные с
несовершенством технологии изготовления
измерительного прибора. Особенно это
касается серийных приборов, выпускаемых
большими партиями. При сборке может
иметь место отличие в сигналах с датчиков,
отличие в установке шкал. Подвижные
части приборов могут собираться с разным
натягом, механические детали могут
иметь разные значения допусков и посадок
даже в пределах установленной нормы. В
оптических приборах огромное значение
имеет качество сборки или юстировка
оптической измерительной системы.
Современные оптические приборы могут
иметь десятки и сотни сборочных единиц,
а допуски при сборке составляют дол и
длины волны оптического излучения (λ =
0,4 — 0,7 мкм).

Методы
выявления таких погрешностей чаще всего
состоят в индивидуальной градуировке
измерительного прибора по образцовым
мерам или по образцовым приборам. В
современных приборах коррекция показаний
может быть выполнена не только
переградуировкой шкалы, но и коррекцией
электрического сигнала или компьютерной
обработкой результата. Естественно,
что во всех случаях коррекции должно
предшествовать исследование показаний
прибора.

Инструментальные
погрешности, связанные с износом или
старением средства измерения, имеют
определенные характерные особенности.
Процесс износа, как правило, проявляется
в погрешностях измерения постепенно.
Изменяются зазоры в сопрягаемых деталях,
соприкасающиеся поверхности покрываются
коррозией, изменяются упругости пружин
и т. д. Изменяется масса гирь, уменьшаются
размеры образцовых мер, изменяются
электрические и физико-химические
свойства узлов и деталей приборов, и
все это приводит к изменению показаний
приборов. Старение приборов — это, как
правило, следствие изменений структуры
материалов, из которых сделан прибор.
Изменяются не только механические
характеристики, но и электрические,
оптические, физико-химические. Стареют
металлы и сплавы, изменяя исходную
намагниченность, стареет оптика,
приобретая дополнительное светорассеяние
или центры окраски, стареют датчики
состава веществ. Последнее хорошо
известно тем, кто профессионально
работал с химреактивами, которые могут
сорбировать воду, реагировать с окружающей
средой и с примесями. Использование
химических веществ в измерительной
технике всегда необходимо с учетом
срока годности реактива.

Устранение
погрешностей приборов от старения или
износа, как правило, проводится по
результатам поверки, когда устанавливается
погрешность по истечении какого-либо
длительного времени хранения или
эксплуатации. В ряде случаев достаточно
почистить прибор, но иногда требуется
ремонт или перекалибровка шкалы.
Например, при появлении систематических
погрешностей во взвешивании на весах
удается вернуть им работоспособность
обычным техническим обслуживанием —
регулировкой и смазкой. При более
серьезном старении приходится
переполировывать трущиеся детали или
заменять сопрягаемые детали.

Особенно
важно выявить систематическую погрешность
у приборов, предназначенных для поверки
средств измерений — у образцовых приборов.
Как правило, на образцовых приборах
выполняется меньший объем работы, чем
на рабочих приборах, и по этой причине
систематический временной «уход»
показаний может не так наглядно
проявляться. Вместе с тем невыявленная
в образцовых приборах погрешность
передается другим приборам, которые по
данному образцовому прибору поверяются.

С
целью уменьшения влияния процессов
старения на измерительную технику в
ряде случаев прибегают к искусственному
старению наиболее ответственных узлов.
У оптических приборов — рефрактометров,
интерферометров, гониометров — старение
проявляется часто в том, что несущие
конструкции «ведет», т. е. они изменяют
форму, особенно в тех местах, где есть
сварка или обработка металла резанием.
Для того чтобы свести к минимуму влияние
такого старения, готовые узлы выдерживаются
какое-то время в жестких климатических
условиях или в специальных камерах, где
процесс старения можно ускорить, изменив
температуру, давление или влажность.

Отдельное
место в инструментальных погрешностях
занимает неправильная установка и
исходная регулировка средства измерения.
Многие приборы имеют встроенные указатели
уровня. Это значит, что перед измерением
нужно отгоризонтировать прибор. Причем,
такие требования предъявляются не
только к средствам измерений высокой
точности, но и к рутинным приборам
массового использования. Например,
неправильно установленные весы будут
систематически «обвешивать» покупателя,
на гониометре невозможно работать без
тщательного горизонтирования отсчетного
устройства. В приборах для измерения
магнитного поля весьма существенным
может оказаться ориентация его
относительно силовых линий поля Земли.
Озонометры нужно очень тщательно
ориентировать по Солнцу. Многие приборы
требуют установки по уровню или по
отвесу. Если двухплечие весы не установлены
горизонтально, нарушаются соотношения
длин между коромыслами. Если маятниковые
механизмы или грузопоршневые манометры
установлены не по отвесу, то показания
таких приборов будут сильно отличаться
от истинных.

Погрешности,
возникающие вследствие внешних влияний

Под
категорией
погрешностей,
возникающих вследствие внешних влияний,
обычно понимают изменение показаний
приборов под воздействием температуры,
влажности и давления. Тем не менее, это
лишь часть причин, приводящих к появлению
систематических погрешностей. Сюда же
следует отнести влияние вибраций,
постоянных и переменных ускорений,
влияние электромагнитного поля и
различных излучений: рентгеновского,
ультрафиолетового, ионизирующих
излучений, гамма-излучения. По мере
развития техники и науки появилась
возможность и необходимость проводить
измерения в нестандартных условиях,
например в Космосе или внутри подводной
лодки. Специфичность условий измерения
может доходить до высших категорий,
если ставить задачу измерения погодных
условий на Марсе или на Венере. Такие
же особенности могут иметь место в
реальных жизненно важных для нас
ситуациях. Если речь идет о контроле
параметров ядерного реактора, то условия,
в которых работает измерительный прибор,
могут значительно отличаться от
стандартных.

Влияние
температуры
— наиболее распространенный источник
погрешности при измерениях. Поскольку
от температуры зависит длина тел,
сопротивление проводников, объем
определенного количества газа, давление
насыщенного пара индивидуальных веществ,
то сигналы со всех видов датчиков, где
используются упомянутые физические
явления, будут изменяться с изменением
температуры. Существенно, что сигнал
сдатчика не только зависит от абсолютного
значения температуры, но от градиента
температуры в том месте, где расположен
датчик. Еще одна из причин появления
«температурной» систематической
погрешности — это изменение температуры
в процессе измерения. Указанные причины
существенны при косвенных измерениях,
т. е. в тех случаях, когда нет
необходимости измерять температуру
как физическую величину. Тем не менее
в собственно температурных измерениях
необходимо тщательно исследовать
показания приборов в различных
температурных интервалах. Например,
результаты измерения теплоемкости,
теплопроводности, теплотворной
способности топлива могут сильно
искажаться от различного рода температурных
воздействий.

Учитывая
большое влияние температуры на физические
свойства материалов и, соответственно,
на показания приборов, особое внимание
следует обращать на температурные
условия в тех комнатах, лабораториях и
зданиях, где проводятся градуировочнные
или поверочные работы. Здесь необходимо
тщательно следить за отсутствием
тепловых потоков, градиентов температуры,
однородностью температуры окружающей
среды и измерительного прибора. Для
того чтобы избежать влияния этих факторов
на измерения, приборы длительное время
выдерживают в термостатированном
помещении, прежде чем начинать какие-либо
работы. Для особо точных измерений
иногда используют дистанционные
манипуляторы, чтобы исключить тепловые
помехи, создаваемые операторами.

Для
большинства приборов при испытаниях
на право серийного выпуска программа
испытаний обязательно содержит
исследование показаний прибора (одного
или нескольких образцов) в зависимости
от температуры.

Влияние
магнитных или электрических полей
сказывается не только на средствах
измерения электромагнитных величин. В
зависимости от принципа действия прибора
наведенная ЭДС или токи Фуко могут
исказить показания любого датчика,
выходным сигналом которого служит
напряжение, ток, сопротивление или
электрическая емкость. Таких приборов
существует великое множество, особенно
в тех случаях, когда приборы имеют
цифровой выход. Аналогово-цифровые
преобразователи иногда начинают
регистрировать сигналы радиочастотных
или еще каких-либо электрических полей.
Очень часто электромагнитные помехи
попадают в прибор по сети питания.
Выяснить причины появления таких ложных
сигналов, научиться вводить поправки
в измерения при наличии электромагнитных
помех — это одна из важных проблем
метрологии и измерительной техники.

Особенно
важен рассматриваемый фактор появления
систематических погрешностей в больших
городах, где хорошо поставлена связь,
телевидение, радиовещание и т.п. Уровень
электромагнитного излучения бывает
настолько высоким, что, например, вблизи
мощного телецентра может загореться
низковольтная лампочка, если ее соединить
с проволочным контуром без источника
питания. Тот же эффект можно наблюдать
в зоне действия радиолокаторов вблизи
какого-либо аэропорта. О том, что этот
фактор может существенно влиять на
показания измерительных приборов,
свидетельствует тот факт, что буквально
за последние несколько лет появились
возможности уверенной радиотелефонной
связи, а также уверенного приема
спутникового телевидения. Это означает,
что уровень сигнала в окружающем нас
пространстве достаточно высок и легко
регистрируется соответствующей техникой.
Этот же сигнал будет накладываться на
сигналы, поступающие с датчиков
измерительных приборов.

Еще
один интересный случай появления
систематических погрешностей при
измерениях связан с измерительными
приборами на кораблях. Много лет назад
опытными мореплавателями было установлено,
что если корабль идет долгое время
курсом «норд» или «зюйд» некоторые
приборы начинают показывать неверные
результаты, т. е. приобретают какую-то
систематическую погрешность. Причина
этого была выяснена довольно точно:
корабль намагничивается от магнитного
поля Земли и при дальнейшем изменении
курса сохраняет остаточную намагниченность.
В наше время это хорошо исследованный
эффект. Во время мировой войны суда
специально размагничивали, чтобы
избежать срабатывания магнитных мин.
Сейчас в ряде стран, в том числе и у нас,
созданы корабли науки, которые либо
делаются из немагнитных материалов,
либо персонал тщательно следит за
намагниченностью корпуса. Такие суда
осуществляют дальнюю и космическую
связь, занимаются экологическими
измерениями, исследуют озоновый слой
Земли, исследуют прохождения радиоволн
и выполняют еще целый ряд необходимых
функций.

Влияние
второго климатического фактора — давления
— распространяется на несколько более
узкий круг измерений, чем температура,
но существует целый ряд очень важных
видов измерения, где данные об атмосферном
или внешнем давлении практически
определяют уровень точности измерений.
Так же, как в предыдущем случае, имеет
смысл отдельно рассматривать собственно
показания датчиков в других видах
измерения. Многие типы манометров по
сути своей являются дифференциальными,
т. е. измеряют разность давлений между
двумя различными точками какой-либо
системы. В этом случае любая погрешность
определения абсолютной величины давления
в той точке, относительно которой
измеряется давление, аддитивно
накладывается на результат измерения.

Влияние
давления на сигналы датчиков очень
существенны в рефрактометрии — измерении
показателя преломления — воздуха и
газов. Это относится собственно к
измерениям рефракции, а также к измерениям
с использованием соответствующих
датчиков, например при измерении
концентрации газов и газовых смесей.
От изменения давления меняется не только
показатель преломления газа, но и другие
характеристики, такие как диэлектрическая
постоянная. Соответственно, может
измениться сигнал с любого емкостного
датчика.

В
измерении массы информация о давлении
весьма существенна в связи с тем, что
при точных измерениях массы основной
вклад в систематическую погрешность
дает архимедова сила, выталкивающая
гирю. Силы Архимеда зависят от плотности
среды (плотности воздуха) и, следовательно,
непосредственно зависят от давления,
поскольку число молекул газа в единице
объема

(3.6)

где
n0
— постоянная, называемая числом Лошмита;
р — давление; Т — температура; a p0
и T0
— нормальные значения давления и
температуры.

(3.7)

В
метрологических справочниках всегда
можно найти данные о поправках, которые
необходимо ввести при взвешивании для
учета
силы
Архимеда. Нетрудно показать, что
выталкивающая сила, действующая на
гирю, выражается формулой

(3.8)

где
ρ — плотность воздуха; ρT
— плотность материала взвешиваемого
тела; mT
— масса тела. Масса взвешиваемого тела
будет равна:

(3.9)

где
ρГ
— плотность материала гири. Если плотность
воздуха считать много меньшей плотности
материалов тела и гири, то массу
взвешиваемого тела можно выразить через
действительную массу гири плюс некоторая
поправка на силу Архимеда

(3.10)

Из
приведенныхформул следует, что при
взвешивании гирями из материала большой
плотности систематическая погрешность
от силы Архимеда меньше, чем при
взвешивании гирями из легкого материала.
В табл. 3.1 представлены поправки на силы
Архимеда, которые необходимо учитывать
при взвешивании для тела массой 100 г.

Таблица
3.1

Поправки
на силы Архимеда, которые нужно делать
при
взвешивании гирями для тела массой 100
г.

Плотность
материала
взвешиваемого тела, г/см3

0,5

1

1,5

2

4

6

8

Поправка
на силу
Архимеда (mr*ε),
мг

230

100

70

50

15

6

0,7

Отдельно
следует рассматривать систематические
погрешности при измерении давления в
условиях вакуума. Здесь наиболее
существенным источником погрешностей
является селективность процесса
откачивания воздуха насосами с различными
принципами действия. Этот вопрос очень
сложен с точки зрения анализа физической
сущности процесса вакуумирования.
Насосы ротационные, сорбционные,
магниторазрядные, турбо-молекулярные
создают совершенно разный состав
остаточных газов. В итоге в каждом
отдельном случае при оценке погрешностей
измерения
вакуума
нужно анализировать совместные искажения,
вносимые в состав остаточного газа
насосом, и искажения, вносимые тем или
иным датчиком давления. В ряде случаев
для прояснения картины недостаточна
даже дополнительная калибровка, т. к.
создать достаточно точно ту среду по
составу, в которой будет работать датчик,
очень трудно.

Проблема
создания вакуума и измерения давления
остаточного вакуума является одной из
ключевых проблем современной техники
и науки. Уверенно можно утверждать, что
уровень вакуумной техники определяет
уровень многих технологий, например
технологии изготовления микросхем и
микросборок.

То
же самое относится к наукоемким видам
измерения —
масс-спектометрии
или ЯМР спектометрии. Все метрологические
категории этих видов измерения напрямую
зависят от того, насколько «чистый»
вакуум удается создать и с какой точностью
удается этот вакуум измерить.

Третий
климатический фактор, вносящий
систематические погрешности во многие
измерения, — это влажность, т. е. содержание
молекул воды в том или ином месте
расположения измерительного прибора.
При оценке такой погрешности можно
рассматривать гигрометрию как вид
измерения, т. е. возможные систематические
погрешности в измерении влагосодержания
(абсолютная влажность) и Благосостояния
(относительная влажность). Можно также
оценивать погрешность как следствие
влияния влаги на показания других типов
приборов. Например, наличие влаги
изменяет проводимость или емкость
электрических элементов датчиков. Влага
ухудшает изоляционные свойства
материалов, вызывая токи утечки. Влага
изменяет структуру многих химических
соединений, трансформируясь из свободной
влаги в кристаллизационную и обратно.

С
учетом этого становится очевидным
всеобъемлющий характер учета влажности
при оценке систематических погрешностей.

На
эти трудности накладываются еще
неоднозначности в выражении измеряемых
в гигрометрии величин и единиц. По одной
из версий исходным моментом в гигрометрии
является упругость насыщенного водяного
пара при фиксированной температуре. В
этом случае любое уточнение термодинамических
свойств воды должно привести к пересчету
всех результатов измерений. По другой
версии исходным моментом в
гигрометрии
должно являться число молекул воды в
единице объема. Эти измерения наиболее
точно выполняются радиочастотными
методами, возможности которых и определяют
погрешности гигрометрии.

Вся
проблема влияния влажности на
систематические погрешности в измерениях
обозначена во многих странах и
международных организациях как одна
из наиболее существенных. По этой причине
влияние влажности на показания любого
прибора являются обязательным элементом
любых испытаний и исследований на
предмет выявления систематической
погрешности.

Погрешности
метода измерения или теоретические
погрешности

Любое
измерение имеет предел точности. Какой
бы мы не создали измерительный инструмент,
всегда будут существовать рамки возможной
точности, превзойти которые созданием
совершенных измерительных устройств
невозможно. Всегда при измерениях идут
на допущения, отклонения от идеальных
ситуаций, от функциональных зависимостей,
ограничивая трудоемкость процесса на
основании принципа достаточности
точности измерения для решения
практической задачи. Такие допущения
приходится делать во всех видах измерений.

В
механических измерениях на практике
постоянно присутствующей систематической
погрешностью является сила Архимеда,
по разному действующая на взвешиваемый
предмет и на гири. Учет
силы
Архимеда делается только при взвешивании
на высшем уровне точности при аттестации
мер высшего разряда. Во всех практических
измерениях массы такие поправки не
делаются, ограничивая тем самым точность
определения массы.

В
электрических измерениях постоянным
источником систематической погрешности
являются собственные сопротивления
приборов, собственная распределенная
емкость и индуктивность проводников.
При использовании законов для цепей
постоянного и переменного тока как
правило собственные электрические
параметры не учитываются. Не учитываются
в большинстве случаев и возможные
термоЭДС в цепи или образования
гальванических пар. Можно свести эти
погрешности к минимуму тщательным
исследованием цепей, но в реальных
случаях стремятся работать в таких
ситуациях, когда влияние перечисленных
причин ничтожно в сравнении с необходимой
и достаточной точностью измерений.

Измерения
физико-химических величин в каждой
конкретной задаче имеет определенные
систематические погрешности, специфические
для данного вида измерения. Прежде всего
это порог чувствительности датчика
концентрации какого-либо вещества.
Детектирование отдельных атомов, т. е.
отсутствие порога чувствительности,
имеет место только для весьма специфических
методов и для очень узкого класса
веществ. Второй фактор — вещество,
например вода, может входить как в виде
собственно молекул воды, так и в виде
кристаллизационной воды. Особенно
сложно выявить фактор многообразия
различных форм существования измеряемого
компонента в случае элементного анализа.
Так, водород может встречаться в газе
или в воздухе в виде молекул водорода
Н^, может входить в состав паров воды, в
состав углеводородов и т. д. Если при
измерениях используется метод с
предварительной атомизацией пробы, то
информацию о содержании водорода в
составе какого-либо соединения можно
получить только с использованием
дополнительных усилий, например с
использованием хроматографической
колонки, которая разделит компоненты
пробы по массам.

В
температурных измерениях всегда
существуют погрешности, связанные с
температурными
градиентами, т. е. с неоднородностью
температурного поля. Практически
невозможно реализовать такую ситуацию,
когда все части термометра будут
находиться в одинаковых температурных
условиях, а это приведет к тому, что в
жидкостных термометрах не весь объем
жидкости примет измеряемую температуру,
а термопарный термометр кроме полезного
сигнала зарегистрирует все влияния
температурных градиентов на ЭДС
термопары.

В
оптических измерениях, особенно в
измерении характеристик светового
потока — фотометрии, постоянный источник
систематических погрешностей — это
рассеянный свет в измерительных приборах.
Поскольку не существует идеально
отражающих и идеально поглощающих
поверхностей, в любой ситуации внутри
каждого прибора существует некий
постоянный фон паразитной подсветки.
В прецизионных оптических прибоpax
принимаются специальные меры борьбы с
рассеянным светом: устанавливаются
светофильтры, предварительные
монохроматизаторы излучения,
изготавливаются специфические
дифракционные решетки (голографические).Тем
не менее на каком-то уровне рассеянный
свет присутствует в оптических измерениях
всегда.

В
приборах для измерения показателей
преломления —
рефрактометрах
— систематическая погрешность обычно
связана с влиянием показателя преломления
воздуха. Чтобы исключить эту погрешность,
рефрактометры высокой точности иногда
вакуумируют, т. е. откачивают из объема
прибора воздух. Эта процедура делает
прибор громоздким и дорогим, поэтому
по такому пути идут только при крайней
необходимости. Чаще просто вносят
поправки на преломление воздуха,
используя таблицы показателя преломления
при различных температурах и давлениях.

В
магнитных измерениях источником
систематической погрешности служит,
как уже указывалось, магнитное поле
Земли, а также электромагнитные поля,
создаваемые теле- и радиопередатчиками,
системами связи, линиями электропередач.
В зависимости от расстояния между
измерительным прибором и источником
помех такого рода влияние может быть
очень сильным. Методы борьбы с такими
погрешностями достаточно хорошо освоены:
это либо защита измерительных приборов
экранами, либо измерение уровня помех
другими, более чувствительными и более
точными специальными приборами.

К
систематическим погрешностям метода
измерения относятся не только перечисленные
погрешности, которые можно назвать
инструментальными, поскольку они есть
следствие влияния каких-либо причин на
измерительный прибор, но и систематические
погрешности метода или процедуры
приготовления объекта к измерениям.
Особенно наглядно это видно в измерениях
состава веществ и материалов. Например,
существует распространенный метод
определения влажности зерна путем
взвешивания определенного его количества
до и после сушки. При этом полагается,
во-первых, что испаряется вся влага и,
во-вторых, что ничего, кроме воды, не
испаряется. Понятно, что и то и другое
справедливо только с какими-то допущениями.
Другой пример — измерение содержания
двуокиси серы в дымовых газах. Если в
пробозаборном тракте есть следы влаги,
а сам зонд находится при комнатной
температуре, то сернистый газ по пути
транспортировки от трубы до измерительного
прибора прореагирует с парами воды с
образованием серной кислоты. Естественно,
что прибор покажет неверное, заниженное
значение концентрации двуокиси серы.

Еще
один источник систематической погрешности,
связанный с несовершенством методов
измерения, имеет место в тех случаях,
когда приходится пользоваться при
измерениях какими-либо таблицами или
справочными данными. Любые данные в
справочниках получены с определенной
погрешностью, которая переносится на
объект измерения автоматически. Такого
же рода погрешности появляются при
использовании стандартных образцов.
Погрешности в аттестации стандартного
образца непосредственно ограничиваютточность
измерения в любом методе, когда
используются при калибровке и градуировке
стандартные образцы.

После
перечисления многочисленных причин
появления систематических погрешностей,
заключенных в методе измерения, может
показаться, что точно вообще ничего
измерить невозможно. На самом деле в
большинстве случаев обеспечивается
достаточный запас точности, или проводятся
специальные исследования по выявлению
причин систематических погрешностей.
После этого вносятся поправки либо в
показания шкал приборов, либо в методику
измерений.

Субъективные
систематические погрешности

На
результаты измерений непосредственное
влияние оказывает квалификация персонала
и индивидуальные особенности человека,
работающего на приборе. Для полной
реализации возможностей измерительного
прибора или метода предела для
совершенствования не существует. В
главе, посвященной эталонам, изложена
история совершенствования эталона
длины. На таком уровне обычных инженерных
знаний недостаточно, по этой причине
процесс измерения ставят рядом с
искусством. Понятно, что получить
информацию о результатах измерений
состава атмосферы на Венере, расшифровать
ее и оценить погрешность может только
очень квалифицированный человек. С
другой стороны, некоторые измерения,
например температуры тела человека,
может выполнить любой, даже неграмотный
человек.

На
субъективные погрешности измерений
влияют самые разнообразные особенности
человека. Известно, что время реакции
на звук, на свет, на запах, на тепло у
каждого человека разное. Хорошо известно,
что дискретные кадры в кино или в
телевизоре, следующие 25 раз в секунду,
воспринимаются наблюдателем как
непрерывная картина. Из этого следует,
что между откликом прибора и реакцией
человека временной интервал в 1/25 секунды
не может быть зарегистрирован.

Еще
одним наглядным примером влияния
оператора на результат измерения служат
измерения цвета. Человеческий глаз
имеет два аппарата зрения — дневной и
сумеречный. Дневной аппарат представляет
собой комбинацию из красных, зеленых и
синих рецепторов. У большой части людей
наблюдаются отклонения от средних
статистических характеристик — хорошо
известный дефект, называемый в обиходе
дальтонизмом. У человека может ненормально
функционировать либо какой-нибудь
рецептор, либо какой-нибудь аппарат
зрения. Принято проверять на правильность
цветовосприятия только водителей
транспорта. Обычный персонал, занимающийся
измерениями, никто на цветовосприятие
не проверяет. Это может привести к
неверным измерениям координат цвета
или температуры пирометром, т. е. в тех
случаях, когда используются визуальные
методы оценки яркости или цвета. Известно
также, что у человека цветовосприятие
может измениться с возрастом. Это связано
с тем, что стекловидное тело глаза с
возрастом желтеет, в результате чего
цвет одним и тем же человеком воспринимается
с годами по-разному. Некоторые художники,
восстанавливавшие свои собственные
картины через десятки лет, изображали
все в синих тонах.

Субъективное
восприятие человеком результата
измерения в большой степени определяется
также опытом работы. Например, при
измерении состава сплавов визуальным
стилометром опыт работы является
определяющим в получении достоверного
и точного результата. Опытный оператор
по появлению спектральных линий в поле
зрения прибора может определить не
только тип сплава, но и количественное
содержание в нем многих элементов.

From Wikipedia, the free encyclopedia

«Systematic bias» redirects here. For the sociological and organizational phenomenon, see Systemic bias.

Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.[1] In statistics, an error is not necessarily a «mistake». Variability is an inherent part of the results of measurements and of the measurement process.

Measurement errors can be divided into two components: random and systematic.[2]
Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Systematic errors are errors that are not determined by chance but are introduced by repeatable processes inherent to the system.[3] Systematic error may also refer to an error with a non-zero mean, the effect of which is not reduced when observations are averaged.[citation needed]

Measurement errors can be summarized in terms of accuracy and precision.
Measurement error should not be confused with measurement uncertainty.

Science and experiments[edit]

When either randomness or uncertainty modeled by probability theory is attributed to such errors, they are «errors» in the sense in which that term is used in statistics; see errors and residuals in statistics.

Every time we repeat a measurement with a sensitive instrument, we obtain slightly different results. The common statistical model used is that the error has two additive parts:

  1. Systematic error which always occurs, with the same value, when we use the instrument in the same way and in the same case.
  2. Random error which may vary from observation to another.

Systematic error is sometimes called statistical bias. It may often be reduced with standardized procedures. Part of the learning process in the various sciences is learning how to use standard instruments and protocols so as to minimize systematic error.

Random error (or random variation) is due to factors that cannot or will not be controlled. One possible reason to forgo controlling for these random errors is that it may be too expensive to control them each time the experiment is conducted or the measurements are made. Other reasons may be that whatever we are trying to measure is changing in time (see dynamic models), or is fundamentally probabilistic (as is the case in quantum mechanics — see Measurement in quantum mechanics). Random error often occurs when instruments are pushed to the extremes of their operating limits. For example, it is common for digital balances to exhibit random error in their least significant digit. Three measurements of a single object might read something like 0.9111g, 0.9110g, and 0.9112g.

Characterization[edit]

Measurement errors can be divided into two components: random error and systematic error.[2]

Random error is always present in a measurement. It is caused by inherently unpredictable fluctuations in the readings of a measurement apparatus or in the experimenter’s interpretation of the instrumental reading. Random errors show up as different results for ostensibly the same repeated measurement. They can be estimated by comparing multiple measurements and reduced by averaging multiple measurements.

Systematic error is predictable and typically constant or proportional to the true value. If the cause of the systematic error can be identified, then it usually can be eliminated. Systematic errors are caused by imperfect calibration of measurement instruments or imperfect methods of observation, or interference of the environment with the measurement process, and always affect the results of an experiment in a predictable direction. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

The Performance Test Standard PTC 19.1-2005 “Test Uncertainty”, published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.

Random error can be caused by unpredictable fluctuations in the readings of a measurement apparatus, or in the experimenter’s interpretation of the instrumental reading; these fluctuations may be in part due to interference of the environment with the measurement process. The concept of random error is closely related to the concept of precision. The higher the precision of a measurement instrument, the smaller the variability (standard deviation) of the fluctuations in its readings.

Sources[edit]

Sources of systematic error[edit]

Imperfect calibration[edit]

Sources of systematic error may be imperfect calibration of measurement instruments (zero error), changes in the environment which interfere with the measurement process and sometimes imperfect methods of observation can be either zero error or percentage error. If you consider an experimenter taking a reading of the time period of a pendulum swinging past a fiducial marker: If their stop-watch or timer starts with 1 second on the clock then all of their results will be off by 1 second (zero error). If the experimenter repeats this experiment twenty times (starting at 1 second each time), then there will be a percentage error in the calculated average of their results; the final result will be slightly larger than the true period.

Distance measured by radar will be systematically overestimated if the slight slowing down of the waves in air is not accounted for. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

Systematic errors may also be present in the result of an estimate based upon a mathematical model or physical law. For instance, the estimated oscillation frequency of a pendulum will be systematically in error if slight movement of the support is not accounted for.

Quantity[edit]

Systematic errors can be either constant, or related (e.g. proportional or a percentage) to the actual value of the measured quantity, or even to the value of a different quantity (the reading of a ruler can be affected by environmental temperature). When it is constant, it is simply due to incorrect zeroing of the instrument. When it is not constant, it can change its sign. For instance, if a thermometer is affected by a proportional systematic error equal to 2% of the actual temperature, and the actual temperature is 200°, 0°, or −100°, the measured temperature will be 204° (systematic error = +4°), 0° (null systematic error) or −102° (systematic error = −2°), respectively. Thus the temperature will be overestimated when it will be above zero and underestimated when it will be below zero.

Drift[edit]

Systematic errors which change during an experiment (drift) are easier to detect. Measurements indicate trends with time rather than varying randomly about a mean. Drift is evident if a measurement of a constant quantity is repeated several times and the measurements drift one way during the experiment. If the next measurement is higher than the previous measurement as may occur if an instrument becomes warmer during the experiment then the measured quantity is variable and it is possible to detect a drift by checking the zero reading during the experiment as well as at the start of the experiment (indeed, the zero reading is a measurement of a constant quantity). If the zero reading is consistently above or below zero, a systematic error is present. If this cannot be eliminated, potentially by resetting the instrument immediately before the experiment then it needs to be allowed by subtracting its (possibly time-varying) value from the readings, and by taking it into account while assessing the accuracy of the measurement.

If no pattern in a series of repeated measurements is evident, the presence of fixed systematic errors can only be found if the measurements are checked, either by measuring a known quantity or by comparing the readings with readings made using a different apparatus, known to be more accurate. For example, if you think of the timing of a pendulum using an accurate stopwatch several times you are given readings randomly distributed about the mean. Hopings systematic error is present if the stopwatch is checked against the ‘speaking clock’ of the telephone system and found to be running slow or fast. Clearly, the pendulum timings need to be corrected according to how fast or slow the stopwatch was found to be running.

Measuring instruments such as ammeters and voltmeters need to be checked periodically against known standards.

Systematic errors can also be detected by measuring already known quantities. For example, a spectrometer fitted with a diffraction grating may be checked by using it to measure the wavelength of the D-lines of the sodium electromagnetic spectrum which are at 600 nm and 589.6 nm. The measurements may be used to determine the number of lines per millimetre of the diffraction grating, which can then be used to measure the wavelength of any other spectral line.

Constant systematic errors are very difficult to deal with as their effects are only observable if they can be removed. Such errors cannot be removed by repeating measurements or averaging large numbers of results. A common method to remove systematic error is through calibration of the measurement instrument.

Sources of random error[edit]

The random or stochastic error in a measurement is the error that is random from one measurement to the next. Stochastic errors tend to be normally distributed when the stochastic error is the sum of many independent random errors because of the central limit theorem. Stochastic errors added to a regression equation account for the variation in Y that cannot be explained by the included Xs.

Surveys[edit]

The term «observational error» is also sometimes used to refer to response errors and some other types of non-sampling error.[1] In survey-type situations, these errors can be mistakes in the collection of data, including both the incorrect recording of a response and the correct recording of a respondent’s inaccurate response. These sources of non-sampling error are discussed in Salant and Dillman (1994) and Bland and Altman (1996).[4][5]

These errors can be random or systematic. Random errors are caused by unintended mistakes by respondents, interviewers and/or coders. Systematic error can occur if there is a systematic reaction of the respondents to the method used to formulate the survey question. Thus, the exact formulation of a survey question is crucial, since it affects the level of measurement error.[6] Different tools are available for the researchers to help them decide about this exact formulation of their questions, for instance estimating the quality of a question using MTMM experiments. This information about the quality can also be used in order to correct for measurement error.[7][8]

Effect on regression analysis[edit]

If the dependent variable in a regression is measured with error, regression analysis and associated hypothesis testing are unaffected, except that the R2 will be lower than it would be with perfect measurement.

However, if one or more independent variables is measured with error, then the regression coefficients and standard hypothesis tests are invalid.[9]: p. 187  This is known as attenuation bias.[10]

See also[edit]

  • Bias (statistics)
  • Cognitive bias
  • Correction for measurement error (for Pearson correlations)
  • Errors and residuals in statistics
  • Error
  • Replication (statistics)
  • Statistical theory
  • Metrology
  • Regression dilution
  • Test method
  • Propagation of uncertainty
  • Instrument error
  • Measurement uncertainty
  • Errors-in-variables models
  • Systemic bias

References[edit]

  1. ^ a b Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 978-0-19-920613-1
  2. ^ a b John Robert Taylor (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. p. 94, §4.1. ISBN 978-0-935702-75-0.
  3. ^ «Systematic error». Merriam-webster.com. Retrieved 2016-09-10.
  4. ^ Salant, P.; Dillman, D. A. (1994). How to conduct your survey. New York: John Wiley & Sons. ISBN 0-471-01273-4.
  5. ^ Bland, J. Martin; Altman, Douglas G. (1996). «Statistics Notes: Measurement Error». BMJ. 313 (7059): 744. doi:10.1136/bmj.313.7059.744. PMC 2352101. PMID 8819450.
  6. ^ Saris, W. E.; Gallhofer, I. N. (2014). Design, Evaluation and Analysis of Questionnaires for Survey Research (Second ed.). Hoboken: Wiley. ISBN 978-1-118-63461-5.
  7. ^ DeCastellarnau, A. and Saris, W. E. (2014). A simple procedure to correct for measurement errors in survey research. European Social Survey Education Net (ESS EduNet). Available at: http://essedunet.nsd.uib.no/cms/topics/measurement Archived 2019-09-15 at the Wayback Machine
  8. ^ Saris, W. E.; Revilla, M. (2015). «Correction for measurement errors in survey research: necessary and possible» (PDF). Social Indicators Research. 127 (3): 1005–1020. doi:10.1007/s11205-015-1002-x. hdl:10230/28341. S2CID 146550566.
  9. ^ Hayashi, Fumio (2000). Econometrics. Princeton University Press. ISBN 978-0-691-01018-2.
  10. ^ Angrist, Joshua David; Pischke, Jörn-Steffen (2015). Mastering ‘metrics : the path from cause to effect. Princeton, New Jersey. p. 221. ISBN 978-0-691-15283-7. OCLC 877846199. The bias generated by this sort of measurement error in regressors is called attenuation bias.

Further reading[edit]

  • Cochran, W. G. (1968). «Errors of Measurement in Statistics». Technometrics. 10 (4): 637–666. doi:10.2307/1267450. JSTOR 1267450.

From Wikipedia, the free encyclopedia

«Systematic bias» redirects here. For the sociological and organizational phenomenon, see Systemic bias.

Observational error (or measurement error) is the difference between a measured value of a quantity and its true value.[1] In statistics, an error is not necessarily a «mistake». Variability is an inherent part of the results of measurements and of the measurement process.

Measurement errors can be divided into two components: random and systematic.[2]
Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Systematic errors are errors that are not determined by chance but are introduced by repeatable processes inherent to the system.[3] Systematic error may also refer to an error with a non-zero mean, the effect of which is not reduced when observations are averaged.[citation needed]

Measurement errors can be summarized in terms of accuracy and precision.
Measurement error should not be confused with measurement uncertainty.

Science and experiments[edit]

When either randomness or uncertainty modeled by probability theory is attributed to such errors, they are «errors» in the sense in which that term is used in statistics; see errors and residuals in statistics.

Every time we repeat a measurement with a sensitive instrument, we obtain slightly different results. The common statistical model used is that the error has two additive parts:

  1. Systematic error which always occurs, with the same value, when we use the instrument in the same way and in the same case.
  2. Random error which may vary from observation to another.

Systematic error is sometimes called statistical bias. It may often be reduced with standardized procedures. Part of the learning process in the various sciences is learning how to use standard instruments and protocols so as to minimize systematic error.

Random error (or random variation) is due to factors that cannot or will not be controlled. One possible reason to forgo controlling for these random errors is that it may be too expensive to control them each time the experiment is conducted or the measurements are made. Other reasons may be that whatever we are trying to measure is changing in time (see dynamic models), or is fundamentally probabilistic (as is the case in quantum mechanics — see Measurement in quantum mechanics). Random error often occurs when instruments are pushed to the extremes of their operating limits. For example, it is common for digital balances to exhibit random error in their least significant digit. Three measurements of a single object might read something like 0.9111g, 0.9110g, and 0.9112g.

Characterization[edit]

Measurement errors can be divided into two components: random error and systematic error.[2]

Random error is always present in a measurement. It is caused by inherently unpredictable fluctuations in the readings of a measurement apparatus or in the experimenter’s interpretation of the instrumental reading. Random errors show up as different results for ostensibly the same repeated measurement. They can be estimated by comparing multiple measurements and reduced by averaging multiple measurements.

Systematic error is predictable and typically constant or proportional to the true value. If the cause of the systematic error can be identified, then it usually can be eliminated. Systematic errors are caused by imperfect calibration of measurement instruments or imperfect methods of observation, or interference of the environment with the measurement process, and always affect the results of an experiment in a predictable direction. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

The Performance Test Standard PTC 19.1-2005 “Test Uncertainty”, published by the American Society of Mechanical Engineers (ASME), discusses systematic and random errors in considerable detail. In fact, it conceptualizes its basic uncertainty categories in these terms.

Random error can be caused by unpredictable fluctuations in the readings of a measurement apparatus, or in the experimenter’s interpretation of the instrumental reading; these fluctuations may be in part due to interference of the environment with the measurement process. The concept of random error is closely related to the concept of precision. The higher the precision of a measurement instrument, the smaller the variability (standard deviation) of the fluctuations in its readings.

Sources[edit]

Sources of systematic error[edit]

Imperfect calibration[edit]

Sources of systematic error may be imperfect calibration of measurement instruments (zero error), changes in the environment which interfere with the measurement process and sometimes imperfect methods of observation can be either zero error or percentage error. If you consider an experimenter taking a reading of the time period of a pendulum swinging past a fiducial marker: If their stop-watch or timer starts with 1 second on the clock then all of their results will be off by 1 second (zero error). If the experimenter repeats this experiment twenty times (starting at 1 second each time), then there will be a percentage error in the calculated average of their results; the final result will be slightly larger than the true period.

Distance measured by radar will be systematically overestimated if the slight slowing down of the waves in air is not accounted for. Incorrect zeroing of an instrument leading to a zero error is an example of systematic error in instrumentation.

Systematic errors may also be present in the result of an estimate based upon a mathematical model or physical law. For instance, the estimated oscillation frequency of a pendulum will be systematically in error if slight movement of the support is not accounted for.

Quantity[edit]

Systematic errors can be either constant, or related (e.g. proportional or a percentage) to the actual value of the measured quantity, or even to the value of a different quantity (the reading of a ruler can be affected by environmental temperature). When it is constant, it is simply due to incorrect zeroing of the instrument. When it is not constant, it can change its sign. For instance, if a thermometer is affected by a proportional systematic error equal to 2% of the actual temperature, and the actual temperature is 200°, 0°, or −100°, the measured temperature will be 204° (systematic error = +4°), 0° (null systematic error) or −102° (systematic error = −2°), respectively. Thus the temperature will be overestimated when it will be above zero and underestimated when it will be below zero.

Drift[edit]

Systematic errors which change during an experiment (drift) are easier to detect. Measurements indicate trends with time rather than varying randomly about a mean. Drift is evident if a measurement of a constant quantity is repeated several times and the measurements drift one way during the experiment. If the next measurement is higher than the previous measurement as may occur if an instrument becomes warmer during the experiment then the measured quantity is variable and it is possible to detect a drift by checking the zero reading during the experiment as well as at the start of the experiment (indeed, the zero reading is a measurement of a constant quantity). If the zero reading is consistently above or below zero, a systematic error is present. If this cannot be eliminated, potentially by resetting the instrument immediately before the experiment then it needs to be allowed by subtracting its (possibly time-varying) value from the readings, and by taking it into account while assessing the accuracy of the measurement.

If no pattern in a series of repeated measurements is evident, the presence of fixed systematic errors can only be found if the measurements are checked, either by measuring a known quantity or by comparing the readings with readings made using a different apparatus, known to be more accurate. For example, if you think of the timing of a pendulum using an accurate stopwatch several times you are given readings randomly distributed about the mean. Hopings systematic error is present if the stopwatch is checked against the ‘speaking clock’ of the telephone system and found to be running slow or fast. Clearly, the pendulum timings need to be corrected according to how fast or slow the stopwatch was found to be running.

Measuring instruments such as ammeters and voltmeters need to be checked periodically against known standards.

Systematic errors can also be detected by measuring already known quantities. For example, a spectrometer fitted with a diffraction grating may be checked by using it to measure the wavelength of the D-lines of the sodium electromagnetic spectrum which are at 600 nm and 589.6 nm. The measurements may be used to determine the number of lines per millimetre of the diffraction grating, which can then be used to measure the wavelength of any other spectral line.

Constant systematic errors are very difficult to deal with as their effects are only observable if they can be removed. Such errors cannot be removed by repeating measurements or averaging large numbers of results. A common method to remove systematic error is through calibration of the measurement instrument.

Sources of random error[edit]

The random or stochastic error in a measurement is the error that is random from one measurement to the next. Stochastic errors tend to be normally distributed when the stochastic error is the sum of many independent random errors because of the central limit theorem. Stochastic errors added to a regression equation account for the variation in Y that cannot be explained by the included Xs.

Surveys[edit]

The term «observational error» is also sometimes used to refer to response errors and some other types of non-sampling error.[1] In survey-type situations, these errors can be mistakes in the collection of data, including both the incorrect recording of a response and the correct recording of a respondent’s inaccurate response. These sources of non-sampling error are discussed in Salant and Dillman (1994) and Bland and Altman (1996).[4][5]

These errors can be random or systematic. Random errors are caused by unintended mistakes by respondents, interviewers and/or coders. Systematic error can occur if there is a systematic reaction of the respondents to the method used to formulate the survey question. Thus, the exact formulation of a survey question is crucial, since it affects the level of measurement error.[6] Different tools are available for the researchers to help them decide about this exact formulation of their questions, for instance estimating the quality of a question using MTMM experiments. This information about the quality can also be used in order to correct for measurement error.[7][8]

Effect on regression analysis[edit]

If the dependent variable in a regression is measured with error, regression analysis and associated hypothesis testing are unaffected, except that the R2 will be lower than it would be with perfect measurement.

However, if one or more independent variables is measured with error, then the regression coefficients and standard hypothesis tests are invalid.[9]: p. 187  This is known as attenuation bias.[10]

See also[edit]

  • Bias (statistics)
  • Cognitive bias
  • Correction for measurement error (for Pearson correlations)
  • Errors and residuals in statistics
  • Error
  • Replication (statistics)
  • Statistical theory
  • Metrology
  • Regression dilution
  • Test method
  • Propagation of uncertainty
  • Instrument error
  • Measurement uncertainty
  • Errors-in-variables models
  • Systemic bias

References[edit]

  1. ^ a b Dodge, Y. (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 978-0-19-920613-1
  2. ^ a b John Robert Taylor (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. p. 94, §4.1. ISBN 978-0-935702-75-0.
  3. ^ «Systematic error». Merriam-webster.com. Retrieved 2016-09-10.
  4. ^ Salant, P.; Dillman, D. A. (1994). How to conduct your survey. New York: John Wiley & Sons. ISBN 0-471-01273-4.
  5. ^ Bland, J. Martin; Altman, Douglas G. (1996). «Statistics Notes: Measurement Error». BMJ. 313 (7059): 744. doi:10.1136/bmj.313.7059.744. PMC 2352101. PMID 8819450.
  6. ^ Saris, W. E.; Gallhofer, I. N. (2014). Design, Evaluation and Analysis of Questionnaires for Survey Research (Second ed.). Hoboken: Wiley. ISBN 978-1-118-63461-5.
  7. ^ DeCastellarnau, A. and Saris, W. E. (2014). A simple procedure to correct for measurement errors in survey research. European Social Survey Education Net (ESS EduNet). Available at: http://essedunet.nsd.uib.no/cms/topics/measurement Archived 2019-09-15 at the Wayback Machine
  8. ^ Saris, W. E.; Revilla, M. (2015). «Correction for measurement errors in survey research: necessary and possible» (PDF). Social Indicators Research. 127 (3): 1005–1020. doi:10.1007/s11205-015-1002-x. hdl:10230/28341. S2CID 146550566.
  9. ^ Hayashi, Fumio (2000). Econometrics. Princeton University Press. ISBN 978-0-691-01018-2.
  10. ^ Angrist, Joshua David; Pischke, Jörn-Steffen (2015). Mastering ‘metrics : the path from cause to effect. Princeton, New Jersey. p. 221. ISBN 978-0-691-15283-7. OCLC 877846199. The bias generated by this sort of measurement error in regressors is called attenuation bias.

Further reading[edit]

  • Cochran, W. G. (1968). «Errors of Measurement in Statistics». Technometrics. 10 (4): 637–666. doi:10.2307/1267450. JSTOR 1267450.

Систематическая погрешность (или, на физическом жаргоне, систематика) характеризует неточность измерительного инструмента или метода обработки данных. Если точнее, то она показывает наше ограниченное знание этой неточности: ведь если инструмент «врет», но мы хорошо знаем, насколько именно, то мы сможем скорректировать его показания и устранить инструментальную неопределенность результата. Слово «систематическая» означает, что вы можете повторять какое-то измерение на этой установке миллионы раз, но если у нее «сбит прицел», то вы систематически будете получать значение, отличающееся от истинного.

Конечно, систематические погрешности хочется взять под контроль. Поскольку это чисто инструментальный эффект, ответственность за это целиком лежит на экспериментаторах, собиравших, настраивавших и работающих на этой установке. Они прилагают все усилия для того, чтобы, во-первых, корректно определить эти погрешности, а во-вторых, их минимизировать. Собственно, они этим начинают заниматься с самых первых дней работы установки, даже когда еще собственно научная программа исследований и не началась.

Возможные источники систематических погрешностей

Современный коллайдерный эксперимент очень сложен. В нём есть место огромному количеству источников систематических погрешностей на самых разных стадиях получения экспериментального результата. Вот некоторые из них.

Погрешности могут возникать на уровне «железа», при получении сырых данных:

  • дефектные или неработающие отдельные регистрирующие компоненты или считывающие элементы. В детекторе миллионы отдельных компонентов, и даже если 1% из них оказался дефектным, это может ухудшить «зоркость» детектора и четкость регистрации сигналов. Надо подчеркнуть, что, даже если при запуске детектор работает на все 100%, постоянное детектирование частиц (это же жесткая радиация!) с течением времени выводит из строя отдельные компоненты, так что следить за поведением детектора абсолютно необходимо;
  • наличие «слепых зон» детектора; например, если частица вылетает близко к оси пучков, то она улетит в трубу и детектор ее просто не заметит.

Погрешности могут возникать на этапе распознавания сырых данных и их превращение в физическое событие:

  • погрешность при измерении энергии частиц в калориметре;
  • погрешность при измерении траектории частиц в трековых детекторах, из-за которой неточно измеряется точка вылета и импульс частицы;
  • неправильная идентификация типа частицы (например, система неудачно распознала след от π-мезона и приняла его за K-мезон). Более тонкий вариант: неправильное объединение адронов в одну адронную струю и неправильная оценка ее энергии;
  • неправильный подсчет числа частиц (две частицы случайно вылетели так близко друг к другу, что детектор «увидел» только один след и посчитал их за одну).

Наконец, новые систематические погрешности добавляются на этапе позднего анализа события:

  • неточность в измерении светимости пучков, которая влияет на пересчет числа событий в сечение процесса;
  • наличие посторонних процессов рождения частиц, которые отличаются с физической точки зрения, но, к сожалению, выглядят для детектора одинаковыми. Такие процессы порождают неустранимый фон, который часто мешает разглядеть искомый эффект;
  • необходимость моделировать процессы (в особенности, адронизацию, превращение кварков в адроны), опираясь частично на теорию, частично на прошлые эксперименты. Несовершенство того и другого привносит неточности и в новый экспериментальный результат. По этой причине теоретическую погрешность тоже часто относят к систематике.

В отдельных случаях встречаются источники систематических погрешностей, которые умудряются попасть сразу во все категории, они совмещают в себе и свойства детекторного «железа», и методы обработки и интерпретации данных. Например, если вы хотите сравнить друг с другом количество рожденных частиц и античастиц какого-то сорта (например, мюонов и антимюонов), то вам не стоит забывать, что ваш детектор состоит из вещества, а не из антивещества! Этот «перекос» в сторону вещества может привести к тому, что детектор будет видеть мюонов меньше, чем антимюонов, подробности см. в заметке Немножко про CP-нарушение, или Как жаль, что у нас нет детекторов из антивещества!.

Всю эту прорву источников потенциальных проблем надо распознать и оценить их влияние на выполняемый анализ. Здесь никаких абсолютно универсальных алгоритмов нет; исследователь должен сам понять, на какие погрешности надо обращать внимание и как грамотно их оценить. Конечно, тут на помощь приходят разные калибровочные измерения, выполненные в первые год-два работы детектора, и программы моделирования, которые позволяют виртуально протестировать поведение детектора в тех или иных условиях. Но главным в этом искусстве всё же является физическое чутье экспериментатора, его квалификация и накопленный опыт.

Почему важна грамотная оценка систематики

Беспечная оценка систематических погрешностей может привести к двум крайностям, причем обе очень нежелательны.

Заниженная погрешность — то есть неоправданная уверенность экспериментатора в том, что погрешности в его детекторе маленькие, хотя они на самом деле намного больше, — исключительно опасна, поскольку она может привести к совершенно неправильным научным выводам. Например, экспериментатор может на их основании решить, что измерения отличаются от теоретических предсказаний на уровне статистической значимости 10 стандартных отклонений (сенсация!), хотя истинная причина расхождения может просто состоять в том, что он проглядел источник ошибок, в 10 раз увеличивающий неопределенность измерения, и никакого расхождения на самом деле нет.

В борьбе с этой опасностью есть соблазн впасть в другую крайность: «А вдруг там есть еще какие-то погрешности? Может, я что-то не учел? Давай-ка я на всякий случай увеличу погрешности измерения в 10 раз для пущей безопасности.» Такая крайность плоха тем, что она обессмысливает измерение. Неоправданно завышая погрешность, вы рискуете получить результат, который будет, конечно, правильным, но очень неопределенным, ничем не лучше тех результатов, которые уже были получены до вас на гораздо более скромных установках. Такой подход, фактически, перечеркивает всю работу по разработке технологий, по изготовлению компонентов, по сборке детектора, все затраты на его работу и на анализ результатов.

Грамотный и ответственный анализ систематики должен удерживать оптимальный баланс (максимальная достоверность при максимальной научной ценности), не допуская таких крайностей. Это очень тонкая и сложная работа, и первые страницы в большинстве современных экспериментальных статей по физике частиц посвящены тщательному обсуждению систематических (а также статистических) погрешностей.

Мы не будем обсуждать подробности того, как обсчитывать систематические погрешности. Подчеркнем только, что это серьезная наука с множеством тонкостей и подводных камней. В качестве примера умеренно простого обсуждения некоторых вопросов см. статью Systematic Errors: facts and fictions.


Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

Видео: Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

Содержание

  • Как рассчитать систематическую ошибку?
  • Постоянство и соразмерность
  • Систематическая ошибка в химии
  • Систематическая ошибка в физический
  • Примеры eсистематическая ошибка
  • Ссылки

В систематическая ошибка Это одна из составляющих ошибок эксперимента или наблюдений (ошибок измерения), которая влияет на точность результатов. Это также известно как детерминированная ошибка, поскольку в большинстве случаев ее можно обнаружить и устранить, не повторяя эксперименты.

Важной характеристикой систематической ошибки является постоянство ее относительной величины; то есть он не зависит от размера выборки или толщины данных. Например, предполагая, что его относительное значение составляет 0,2%, если измерения повторяются в тех же условиях, ошибка всегда будет оставаться 0,2%, пока не будет исправлена.

Как правило, систематическая ошибка возникает из-за неправильного обращения с приборами или из-за технической неисправности аналитика или ученого. Его легко обнаружить, если сравнить экспериментальные значения со стандартным или сертифицированным значением.

Примеры экспериментальной ошибки этого типа возникают, когда аналитические весы, термометры и спектрофотометры не откалиброваны; или в случаях, когда не выполняется хорошее чтение правил, верньеров, градуированных цилиндров или бюреток.

Как рассчитать систематическую ошибку?

Систематическая ошибка влияет на точность, в результате чего экспериментальные значения могут быть выше или ниже фактических результатов. Под реальным результатом или значением понимается результат, который был исчерпывающе проверен многими аналитиками и лабораториями и зарекомендовал себя в качестве эталона сравнения.

Таким образом, сравнивая экспериментальное значение с реальным, получается разница. Чем больше эта разница, тем больше абсолютное значение систематической ошибки.

Например, предположим, что в аквариуме насчитывается 105 рыб, но известно заранее или из других источников, что истинное число составляет 108. Таким образом, систематическая ошибка составляет 3 (108-105). Мы сталкиваемся с систематической ошибкой, если, повторяя подсчет рыб, мы снова и снова получаем 105 рыб.

Однако более важным, чем вычисление абсолютного значения этой ошибки, является определение ее относительного значения:

Относительная погрешность = (108-105) ÷ 108

= 0,0277

Если выражать в процентах, то получается 2,77%. То есть ошибка подсчета имеет вес 2,77% от истинного количества рыбы. Если в аквариуме теперь есть 1000 рыб, и он будет считать их с той же систематической ошибкой, то будет на 28 рыб меньше, чем ожидалось, а не на 3, как это происходит с меньшим аквариумом.

Постоянство и соразмерность

Систематическая ошибка обычно постоянная, аддитивная и пропорциональная. В приведенном выше примере ошибка 2,77% останется постоянной до тех пор, пока измерения будут повторяться в одних и тех же условиях, независимо от размера аквариума (уже соприкасающегося с аквариумом).

Также обратите внимание на пропорциональность систематической ошибки: чем больше размер выборки или толщина данных (или объем аквариума и количество рыб в нем), тем больше систематическая ошибка. Если в аквариуме теперь 3500 рыб, ошибка будет 97 рыб (3500 x 0,0277); абсолютная погрешность увеличивается, но ее относительное значение неизменно, постоянно.

Если число удвоить, на этот раз с 7000 рыб, то ошибка будет 194 рыбы. Таким образом, систематическая ошибка постоянна и пропорциональна.

Это не означает, что необходимо повторить подсчет рыбы: достаточно знать, что определенное количество соответствует 97,23% от общего количества рыбы (100–2,77%). Отсюда истинное количество рыбы можно рассчитать, умножив на коэффициент 100 / 97,23.

Например, если было подсчитано 5200 рыб, то фактическое количество было бы 5 348 рыб (5200 x 100 / 97,23).

Систематическая ошибка в химии

В химии систематические ошибки обычно возникают из-за неправильного взвешивания из-за некалиброванных весов или из-за неправильного считывания объемов стеклянных материалов. Хотя они могут показаться не такими, как это, они влияют на точность результатов, потому что чем их больше, тем больше их негативных эффектов.

Например, если весы плохо откалиброваны, и при определенном анализе необходимо провести несколько взвешиваний, то окончательный результат будет все дальше и дальше от ожидаемого; это будет более неточно. То же самое происходит, если анализ постоянно измеряет объемы бюреткой, показания которой неверны.

Помимо весов и стеклянных материалов, химики также могут ошибаться в обращении с термометрами и pH-метрами, в скорости перемешивания, во времени, необходимом для протекания реакции, в калибровке весов. спектрофотометры, если предполагается высокая чистота образца или реагента и т. д.

Другие систематические ошибки в химии могут быть связаны с изменением порядка добавления реагентов, нагревом реакционной смеси до температуры выше, чем рекомендованная методом, или неправильной перекристаллизацией продукта синтеза.

Систематическая ошибка в физический

В физических лабораториях систематические ошибки носят еще более технический характер: любое оборудование или инструмент без надлежащей калибровки, неправильное поданное напряжение, неправильное расположение зеркал или деталей в эксперименте, добавление слишком большого момента к объекту, который должен упасть. из-за эффекта гравитации, среди других экспериментов.

Обратите внимание на то, что есть систематические ошибки, которые происходят из инструментального несовершенства, а другие, скорее, операционного типа, являются результатом ошибки со стороны аналитика, ученого или отдельного человека, который выполняет какое-либо действие.

Примеры eсистематическая ошибка

Ниже будут упомянуты другие примеры систематических ошибок, которые не обязательно должны происходить в лаборатории или в научной сфере:

— Поместите булочки в нижнюю часть духовки, поджаривая их больше, чем хотелось бы.

-Плохая осанка при сидении

-Закройте горшок для мокко только из-за недостатка прочности

-Не очищайте пароварки кофемашин сразу после текстурирования или нагрева молока.

-Используйте чашки разных размеров, когда вы следуете или хотите повторить определенный рецепт

-Хотите дозировать солнечную радиацию в тенистые дни

— Выполняйте подтягивания на перекладине, подняв плечи к ушам.

-Играйте несколько песен на гитаре без предварительной настройки струн

-Жарить оладьи с недостаточным количеством масла в казане

-Проведите последующее объемное титрование без повторной стандартизации раствора титранта

Ссылки

  1. Дэй Р. и Андервуд А. (1986). Количественная аналитическая химия. (Пятое изд.). ПИРСОН Прентис Холл.
  2. Хельменстин, Энн Мари, доктор философии (11 февраля 2020 г.). Случайная ошибка vs. Систематическая ошибка. Получено с: thinkco.com
  3. Bodner Research Web. (н.д.). Ошибки. Получено с: chemed.chem.purdue.edu
  4. Elsevier B.V. (2020). Систематическая ошибка. ScienceDirect. Получено с: sciencedirect.com
  5. Сепульведа, Э. (2016). Систематические ошибки. Получено из Physics Online: fisicaenlinea.com
  6. Мария Ирма Гарсиа Ордас. (н.д.). Проблемы с ошибкой измерения. Автономный университет штата Идальго. Получено с: uaeh.edu.mx
  7. Википедия. (2020). Ошибка наблюдения. Получено с: en.wikipedia.org
  8. Джон Спейси. (2018, 18 июля). 7 видов систематической ошибки. Получено с: simplicable.com

6.1
Классификация
систематических погрешностей

Напомним,
что систематической погрешностью
называется составляющая погрешности
измерения, остающаяся постоянной или
закономерно изменяющаяся при повторных
измерениях одной и той же величины.
Следовательно, исходя из определения,
по характеру проявления систематические
погрешности подразделяются на постоянные
и переменные.

Постоянные
систематические погрешности возникают,
например, при неправильной установке
начала отсчета, неправильной градуировке
средств измерений и остаются постоянными
по своему значению и знаку в течение
всего времени измерений.

Переменные
систематические погрешности в свою
очередь делятся на прогрессирующие,
периодические и изменяющиеся по сложному
закону.

Прогрессирующими
называются погрешности, которые в
процессе измерений постепенно убывают
или возрастают. Например, причинами
возникновения прогрессирующих
погрешностей могут быть разрядка
источников питания, старение резисторов,
конденсаторов, деформация механических
деталей и т.п.

Периодическими
называют погрешности, периодически
изменяющие значение и знак. В качестве
примера можно привести средства измерений
с круговой шкалой, стрелка которых при
измерении совершает несколько оборотов
(секундомеры, индикаторы часового типа
и т.п.). Периодическая погрешность в
показаниях
таких устройств возникает в тех случаях,
когда ось вращения стрелки не совпадает
с центром окружности шкалы. Другой
пример — наложение
гармонической помехи, источником которой
является напряжение сети, на измеряемое
с помощью вольтметра напряжение
постоянного тока.

Погрешности,
изменяющиеся
по сложному закону,
могут
быть выражены в
виде
кривой или в виде формулы. В качестве
примера можно привести погрешность
меры длины, возникающую при отклонении
температуры от нормальной, т.е. той, при
которой была определена длина меры. Эти
погрешности выражаются следующей
формулой: Δlt=(a·Δt+b·Δt2),
где Δlt
– погрешность меры длины, возникающая
при изменении температуры на Δt;
1H
– длина меры при нормальной температуре;
Δt
= tИ
– tH

отклонение температуры от нормальной;
tH
– нормальная температура; tИ
– температура при применении меры
длины; а, b
— коэффициенты, определенные при
проведении совместных измерений.

Наличие
систематических погрешностей устойчиво
искажает результаты измерений, а
отсутствие или близость их к нулю
определяет правильность
измерений.
Таким образом, задача определения
правильности измерений должна
предусматривать обнаружение, оценку и
уменьшение (либо полное исключение)
систематических погрешностей. Те
систематические погрешности, которые
остались в результатах измерений после
этих операций, называются неис-ключенными
остатками
систематических
погрешностей. Например, при измерении
сопротивления резистора вносится
поправка на влияние температуры.
Систематическая погрешность была бы
полностью устранена, если бы мы точно
знали температурные коэффициенты
резистора и температуру. И то, и другое
мы знаем с ограниченной точностью и
поэтому полностью данную погрешность
не устраним, останется ее неисключенный
остаток. Он может быть малым или большим,
это мы можем оценить, но его действительное
значение остается неизвестным. Тем не
менее эта остаточная погрешность имеет
какое-то определенное значение, остающееся
постоянным при повторных измерениях,
и поэтому является систематической.
Неисключенные остатки систематических
погрешностей при обработке результатов
наблюдений суммируются со случайными
погрешностями, т.е. они переходят при
суммировании в разряд случайных.

6.2
Способы
обнаружения и оценки систематических
погрешностей

Задача
обнаружения и оценки систематических
погрешностей относится к числу достаточно
сложных метрологических задач и не
всегда разрешима. Применяемые способы
обнаружения и оценки систематических
погрешностей можно условно разбить на
две группы: теоретические и экспериментальные.

Теоретические
способы
возможны
и эффективны тогда, когда известно или
может быть получено аналитическое
выражение для искомой погрешности на
основании определенной информации.
Характерным примером является обнаружение
и оценка методических погрешностей,
которые возникают при введении различных
упрощений и допущений (например,
методическая погрешность измерения
электрического сопротивления при помощи
амперметра и вольтметра, рассмотренная
выше).

Экспериментальные
способы
также
предполагают наличие определенной
априорной информации об исследуемых
погрешностях, но эта информация носит
лишь качественный характер. Обнаружение
и оценка систематических погрешностей
в таких случаях возможны после проведения
специальных экспериментальных
исследований и обработки их результатов.

Результаты
наблюдений, полученные при наличии
систематических погрешностей, называются
неисправленными
и
в отличие от исправленных (не содержащих
систематические погрешности) снабжены
штрихами при их обозначении: x1’,…,xn’.
Вычисленные в этих условиях средние
арифметические
значения
и отклонения от них результатов наблюдений
будем также называть неисправленными
и ставить штрихи у символов этих величин.
Таким образом,


(6.1)

Поскольку
неисправленные результаты наблюдений
включают в себя систематические
погрешности, сумму которых для каждого
i-ro
наблюдения будем обозначать через Δsi,
то их математическое ожидание не
совпадает с истинным значением измеряемой
величины и отличается от него на некоторую
величину Δs
, называемую систематической погрешностью
среднего арифметического. Действительно,

(6.2)

Случайные
отклонения результатов наблюдений от
средних арифметических отличаются от
неисправленных отклонений

(6.3)

Если
систематические погрешности постоянны,
т.е. Δsi
= Δs,
i
= 1, …, n,
то vi=vi
и
неисправленные отклонения могут быть
непосредственно использованы для оценки
рассеивания ряда наблюдений. В противном
случае необходимо предварительно
исправить отдельные результаты
наблюдений, введя в них так называемые
поправки,
равные
систематическим погрешностям по величине
и обратные по знаку:

qi=–Δsi.
(6.4)

Таким
образом, для нахождения исправленного
среднего арифметического и оценки его
рассеивания относительно истинного
значения измеряемой величины необходимо
обнаружить систематические погрешности
и исключить их путем введения поправок
или соответствующей каждому конкретному
случаю организации самого измерения.
Остановимся подробнее на некоторых
способах обнаружения систематических
погрешностей.

Постоянные
систематические погрешности, определяемые
при эксперименте, не влияют на значения
случайных отклонений результатов
наблюдений от средних арифметических,
поэтому никакая математическая обработка
результатов наблюдений не может привести
к их обнаружению. Анализ таких погрешностей
возможен только на основании некоторых
априорных знаний об этих погрешностях,
получаемых, например, при поверке средств
измерений. Измеряемая величина при
поверке обычно воспроизводится образцовой
мерой, действительное значение которой
известно. Поэтому разность между средним
арифметическим результатов наблюдения
и значением меры равна искомой
систематической погрешности.

Для
обнаружения постоянных систематических
погрешностей, зависящих от внешних
влияющих величин, необходимо изменять
значения этих влияющих величин. Если
средние арифметические результатов
наблюдений резко изменяются при изменении
влияющих величин, то данные результаты
содержат постоянную систематическую
погрешность, зависящую от влияющих
величин.

При
прогрессирующей систематической
погрешности последовательность
неисправленных отклонений результатов
наблюдений обнаруживает тенденцию к
возрастанию или убыванию. Если же в ряде
результатов наблюдений присутствует
периодическая систематическая
погрешность, то группы знаков «плюс»
и «минус» в последовательности
неисправленных отклонений результатов
наблюдений могут периодически сменять
друг друга, если, конечно, случайные
погрешности меньше систематических.

Одним из наиболее действенных способов
обнаружения систематических погрешностей
в ряде результатов наблюдений является
построение графика погрешности
неисправленных значений случайных
отклонений результатов наблюдений от
средних арифметических. Разумеется,
сделанные по результатам анализа таких
графиков выводы носят лишь качественный
характер и объективны лишь в тех случаях,
когда сопутствующие случайные погрешности
значительно меньше искомой систематической.

6.3
Способы
уменьшения систематических погрешностей

Так
как систематические погрешности являются
детерминированными величинами, уменьшение
или даже полное исключение их возможно
на всех этапах измерительного эксперимента.
Способы исключения систематических
погрешностей можно разделить на три
основные группы:

устранение
источников систематических погрешностей
до начала измерений (профилактика
систематических погрешностей);

исключение
систематических погрешностей в процессе
измерения с использованием специальных
методов (экспериментальное исключение
систематических погрешностей);

внесение
известных поправок в результат измерения
(исключение систематических погрешностей
математическим путем).

Рассмотрим эти
способы.

Устранение
источников систематических погрешностей
до начала измерений
.
Этот
способ исключения систематических
погрешностей является наиболее
рациональным, так как он полностью или
частично освобождает от необходимости
устранять погрешности в процессе
измерения или вычислять результат с
учетом поправок. Другими словами,
устранение источников систематических
погрешностей существенно упрощает и
ускоряет процесс измерения.

Способ
может включать в себя: выбор таких
методов, средств измерений, планов
проведения экспериментов, которые
обеспечивали бы минимальные систематические
погрешности; тщательную установку
нулевых показаний и калибровку средств
измерений; прогрев средств измерений
в течение времени, указанного в инструкции
по эксплуатации; применение при сборке
коротких
соединительных
проводов, а на сверхвысоких частотах —
коаксиальных кабелей; применение в
необходимых случаях экранирования и
термостатирования; правильное размещение
средства измерений (установка в рабочее
положение, размещение вдали от источников
тепла и электромагнитных полей и т.п.);
применение только предварительно
поверенных средств измерений и т.д.

Исключение
систематических погрешностей в процессе
измерений
.
Этот
способ является эффективным путем
исключения ряда систематических
погрешностей. При этом нет необходимости
применять какие-либо специальные
установки и приспособления. Как правило,
это методы измерений, позволяющие не
только исключать систематические
погрешности, но и оценить их.

Метод
замещения.
Этот
метод измерений является одной из
модификаций метода сравнения, которые
рассмотрены в 3.2.

Метод
компенсации погрешности по знаку
.
Этот
метод исключения систематических
погрешностей заключается в том, что
измерение проводят дважды так, чтобы
известная по природе, но неизвестная
по размеру погрешность входила в
результаты с противоположными знаками.
Погрешность исключается при вычислении
среднего значения. В алгебраической
форме это можно выразить следующим
образом.

Пусть x1 и x2 — результаты двух измерений;
Δs — систематическая погрешность, природа
которой известна, но неизвестно ее
значение; хд — значение измеряемой
величины, свободное от данной погрешности.
Тогда х1 = хд + Δs; x2 = хд — Δs. Среднее значение
равно

(6.5)

Этот
метод применяется ограниченно. Его
используют для исключения только
таких погрешностей, источники которых
имеют направленное действие.

Одним
из характерных примеров является
исключение погрешности, обусловленной
влиянием магнитного поля Земли. Для
этого используют средство
измерений,
о котором известно, что под действием
магнитного поля Земли в его показаниях
могут возникнуть систематические
погрешности.

Первое
измерение можно проводить, когда средство
измерений находится в любом положении.
Перед тем как выполнить второе измерение,
средство измерений поворачивают в
горизонтальной плоскости на 180 град.
Если в первом случае магнитное поле
Земли, складываясь с полем средства
измерений, вызывает положительную
погрешность, то при повороте его на 180
град магнитное поле Земли будет оказывать
противоположное действие и вызовет
отрицательную погрешность по размеру,
равную первой.

Пользуясь
методом компенсации погрешности по
знаку, можно исключить систематические
погрешности, вызванные явлениями
гистерезисного характера (магнитный
гистерезис в ферромагнитных материалах,
механический гистерезис в упругих
материалах и т.п.).

Метод
изменения знака входной величины.
Этот
метод основан на том, что величина и
знак систематической погрешности не
изменяются при смене знака измеряемой
величины на противоположный. Так же,
как и в предыдущем методе, измерения
проводятся дважды, и погрешность
исключается при вычислении среднего
значения разности двух показаний. В
алгебраической форме это можно выразить
следующим образом:

x1=xдs
; x2=
-xдs
;

(6.6)

Метод,
например, может применяться в компенсаторах
постоянного тока для
исключения погрешности от термо- и
контактных э.д.с. Здесь используется
то
обстоятельство, что знак термо- и
контактных э.д.с. не зависит от знака
измеряемого и питающего напряжений.

Метод
противопоставления
.
Этот
метод имеет большое сходство с методом
компенсации погрешности по знаку. Он
заключается в том, что измерения
проводят два
раза, причем так, чтобы причина, вызывающая
погрешность при первом измерении,
оказала противоположное действие на
результат второго.

В
качестве примера может служить взвешивание
на равноплечих весах (способ, предложенный
Гауссом для исключения погрешности
вследствие остаточной неравноплечести).

При
первом взвешивании массу Мх,
помещенную на одну чашку весов,
уравновешивают гирями с общей массой
M1,
помещенными на другую чашку. Тогда

,
(6.7)

где
l2/l1
— действительное отношение плеч.

Затем
взвешиваемую массу перемещают на ту
чашку, где находились гири, а гири — на
ту, где находилась масса. Так как отношение
плеч l2/l1
не точно равно единице, равновесие
нарушится и для уравновешивания массы
Мх
придется использовать гири с общей
массой М2:

.
(6.8)

Разделив равенство
(6.7) на выражение (6.8), получим

Mx=M1·M2
(6.9)

или,
если Ml
и М2
лишь немногим отличаются друг от друга,

.
(6.10)

Это выражение и равенство (6.5) одинаковы.
Однако равенство (6.5), получаемое для
метода компенсации погрешности по
знаку, точно отражает сущность исключения
погрешности. В данном же случае формула
является приближенной.

Если
сравнить оба метода в их математическом
выражении, то можно обнаружить, что в
способе компенсации погрешности по
знаку погрешность, подмостах
для измерения параметров электрических
цепей, главным образом, при измерении
электрического сопротивления на
постоянном токе.

Метод
периодических наблюдений.
В
случае
периодических погрешностей действенным
методом исключения последних является
метод периодических наблюдений,
основанный на наблюдениях четного числа
раз через полупериоды. Периодическая
погрешность изменяется по закону

Δs(t)
= A·sin(2·π·t/T),

(6.11)

где
Т — период изменения погрешности; t
— независимая переменная, от которой
зависит погрешность (время, угол поворота
стрелки прибора и т.п.).

Пусть
при t
= to
значение погрешности

Δs(t0)
= A·sin(2·π·t0/T).

Найдем
значение этой погрешности для t
= t0
+ Δt,
где интервал Δt
такой,
что Δs(t0
+ Δt)
= -Δs(t0).
Определим значение интервала Δt.
Имеем

2·π·(t0+Δt)/T=2·π·t0/T+π

откуда

2·π·Δt/T=π
и Δt=T/2
. (6.12)

В этом случае

s(t0)
+ Δs(t0
+ Δt)]
= 0 . (6.13)

Следовательно,
периодическая погрешность исключается,
если взять среднее из двух наблюдений,
произведенных одно за другим через
интервал, равный полупериоду независимой
переменной t,
определяющей значение периодической
погрешности. То же будет и для множества
пар подобного рода наблюдений.

Например,
применение этого метода в цифровых
вольтметрах постоянного тока с двухтактным
интегрированием позволяет высокую
помехозащищенность таких вольтметров,
Это достигается благодаря тому, что
время интегрирования измеряемого
напряжения равно четному числу
полупериодов помех от напряжения сети.

Метод
симметричных наблюдений. Используется
для исключения прогрессирующей
погрешности, которая изменяется по
линейному закону, например, пропорционально
времени.

Такой
характер имеет погрешность измерения
напряжения с помощью потенциометра,
если происходит заметное падение
напряжения источника, создающего рабочий
ток. Формально, если известно, что рабочий
ток потенциометра изменяется линейно
во времени, то для устранения возникающей
погрешности достаточно двух наблюдений,
выполненных с фиксацией времени после
регулировки рабочего тока по нормальному
элементу. Пусть

E1=Ux+k·t1
; E2=Ux+k·t2
, (6.14)

где
t1
и t2
— интервалы времени между регулировкой
рабочего тока и наблюдениями;

k
– коэффициент пропорциональности между
погрешностью измерения и временем, E1
и Е2
— результаты наблюдений.

Отсюда

.
(6.15)

Однако
при точных измерениях целесообразно
пользоваться более сложным алгоритмом,
который состоит в том, что несколько
наблюдений выполняют через равные
промежутки времени и затем вычисляют
средние арифметические симметрично
расположенных наблюдений.

Метод
рандомизации
.
Эффективным способом уменьшения
систематических погрешностей является
их рандомизация, т.е. перевод в случайные.
Пусть, например, имеется n
однотипных приборов с систематической
погрешностью одинакового происхождения.
Если для данного прибора эта погрешность
постоянна,
то от прибора к прибору она изменяется
случайным образом. Поэтому измерение
одной и той же величины всеми приборами
и усреднение результатов полученных
наблюдений позволяют значительно
уменьшить эту погрешность. Того же
эффекта можно добиться, изменяя методику
и условия эксперимента или те параметры,
от которых не зависит значение измеряемой
величины, но зависят систематические
погрешности ее измерения.

Внесение
известных поправок в результат измерения
.
Систематические
погрешности являются детерминированными
величинами, поэтому в принципе могут
быть вычислены и исключены из результатов
измерения. Для исправления результатов
наблюдений их складывают с поправками,
равными систематическим погрешностям
по величине и обратными им по знаку:

,
(6.16)

где
xi,
x’i
— соответственно исправленный и
неисправленный результаты наблюдений.

Иногда
результаты наблюдений умножают на
поправочные
множители

(η):

. (6.17)

ЛИТЕРАТУРА

1 Бурдун Г.Д., Марков
Б.Н. Основы метрологии: Учеб. пособие
для вузов.- М.: Изд-во стандартов, 1975.

2
Тюрин Н.И. Введение в метрологию: Учеб.
пособие. — М.: Изд-во стандартов, 1985.

3
Короткое В.П., Тайц Б.А. Основы метрологии
и теории точности измерительных
устройств: Учеб. пособие для вузов. — М.:
Изд-во стандартов, 1978.

4
Шишкин И.Ф. Метрология, стандартизация
и управление качеством: Учеб. пособие
для вузов. — М.: Изд-во стандартов, 1990.

5 Рабинович С.Г.
Погрешности измерений. — Л.: Энергия,
1978.

6
Новицкий П.В., Зограф И.А. Оценка
погрешностей результатов измерений. —
Л.: Энергоатомиздат, 1985.

4

Систематические погрешности при повторных измерениях остаются постоянными или изменяются по определенному закону.

Когда судят о погрешности, подразумевают не значение, а интервал значений, в котором с заданной вероятностью находится истинное значение. Поэтому говорят об оценке погрешности. Если бы погрешность оказалась измеренной, т.е. стали бы известны её знак и значение, то её можно было бы исключить из действительного значения измеряемой физической величины и получить истинное значение.

Для получения результатов, минимально отличающихся от истинного значения измеряемой физической величины, проводят многократные наблюдения и проводят математическую обработку полученного массива с целью определения и минимизации случайной составляющей погрешности.

Минимизация систематической погрешности в процессе наблюдений выполняется следующими методами: метод замещения (состоит в замещении измеряемой величины мерой), метод противопоставления (состоит в двух поочерёдных измерениях при замене местами меры и измеряемого объекта), метод компенсации погрешности по знаку (состоит в двух поочерёдных измерениях, при которых влияющая величина становится противоположной).

При многократных наблюдениях возможно апостериорное (после выполнения наблюдений) исключение систематической погрешности в результате анализа рядов наблюдений. Рассмотрим графический анализ. При этом результаты последовательных наблюдений представляются функцией времени либо ранжируются в порядке возрастания погрешности.

Рассмотрим временную зависимость. Будем проводить наблюдения через одинаковые интервалы времени. Результаты последовательных наблюдений являются случайной функцией времени. В серии экспериментов, состоящих из ряда последовательных наблюдений, получаем одну реализацию этой функции. При повторении серии получаем новую реализацию, отличающуюся от первой.

Реализации отличаются преимущественно из-за влияния факторов, определяющих случайную погрешность, а факторы, определяющие систематическую погрешность, одинаково проявляются для соответствующих моментов времени в каждой реализации. Значение, соответствующее каждому моменту времени, называется сечением случайной функции времени. Для каждого сечения можно найти среднее по всем реализациям значение. Очевидно, что эта составляющая и определяет систематическую погрешность. Если через значения систематической погрешности для всех моментов времени провести плавную кривую, то она будет характеризовать временную закономерность изменения погрешности. Зная закономерность изменения, можем определить поправку для исключения систематической погрешности. После исключения систематической погрешности получаем «исправленный ряд результатов наблюдений».

Известен ряд способов исключения систематических погрешностей, которые условно можно разделить па 4 основные группы:

  •  устранение источников погрешностей до начала измерений;
  •  исключение почетностей в процессе измерения способами замещения, компенсации погрешностей по знаку, противопоставления, симметричных наблюдений;
  •  внесение известных поправок в результат измерения (исключение погрешностей начислением);
  •  оценка границ систематических погрешностей, если их нельзя ис­ключить.

По характеру проявления систематические погрешности подразделяют на постоянные, прогрессивные и периодические.

Постоянные систематические погрешности сохраняют свое значение в течение всего времени измерений (например, погрешность в градуировке шкалы прибора переносится на все результаты измерений).

Прогрессивные погрешности – погрешности, которые в процессе из­мерении подрастают или убывают (например, погрешности, возникающие вследствие износа контактирующих деталей средств измерения).

И группу систематических погрешностей можно отнести: инструментальные погрешности; погрешности из-за неправильной установки измерительного устройства; погрешности, возникающие вследствие внешних влияний; погрешности метода измерения (теоретические погрешности); субъективные погрешности.

В технических измерениях к систематическим погрешностям относят те погрешности, независимо от их природы и источника, величина которых может быть определена или спрогнозирована еще до проведения измерений.

Определение и исключение систематической погрешности является одной из главных задач на всех стадиях планирования и проведения измерений.

При проведении технических измерений возможны систематические погрешности, которые могут быть выявлены и учтены только при глубоком понимании сущности объекта измерений, методики и средств измерений. Особенно это свойственно измерениям, которые производятся на крупных технических агрегатах, в сложных технологических процессах, например, металлургических.

Применительно к задачам автоматизации это предполагает, что расчет ожидаемой систематической погрешности должен начинаться еще на этапе проектирования САУ. На этом этапе необходимо:

· выбрать методы и средства измерений, адекватные поставленной задаче, определить и, при необходимости, подтвердить метрологические характеристики средств измерений:

· выявить потенциальные источники погрешностей и принять меры по их устранению или минимизации воздействия на результат измерений,

· провести оценку ожидаемой систематической погрешности.

Эта предварительная работа выполняется методами теоретического анализа, математического, имитационного и физического моделирования процесса измерений. Однако, все эти действия не позволяют абсолютно уверенно оценить и (или) исключить систематическую погрешность. Поэтому особое значение приобретает этап наладки средств автоматизации, включая средства и методы измерений, в ходе которого реальные значения и источники погрешностей выявляются экспериментально.

Для исключения и (или) оценки систематических погрешностей в процессе подготовки измерений применяются самые различные способы. В том числе:

Способ замещения
— измеряемый объект заменяется известной мерой. Такой мерой может служить образцовый объект, имеющим туже природу, что и измеряемый, но характеристики которого заранее известны с высокой точностью.

Способ последовательных наблюдений
— последовательные измерения через равные промежутки времени, что позволяет определить и учесть скорость изменения прогрессирующих систематических погрешностей

Метод рандомизации
— искусственная трансформация систематической погрешности в случайную. Например, для измерения физической величины одновременно используются несколько разнотипных приборов с последующим усреднением их показаний; применяют наложение известных периодических возмущений (изменение методики и условий измерений, параметров внешней среды и т.п.), которые не влияют на измеряемую величину, но могут изменить систематическую погрешность ее измерения.

Повторные и многократные измерения
при измененяемых внешних условиях, при других методиках и технических средствах измерений. Сопоставление результатов, полученных в различных условиях измерений, позволяет минимизировать систематические ошибки, обусловленные неизвестными и (или) не формализуемыми причинами. В том числе:

· особенностями эксплуатации оборудования,

· влиянием окружающей среды;

· влиянием различных процессов, которые протекают в объекте измерений, но прямо не влияют на измеряемую величину.

В результате выполнения всех этих действий часть источников систематической погрешности вообще может быть устранена. Оставшаяся часть систематической погрешности должна быть выявлена, а ее величина должна учитываться в результатах измерений в виде поправок.

§ Поправкой
называется величина, одноименная с измеряемой, добавление которой к результату измерений исключает систематическую погрешность.

§ Поправочный множитель
(поправочный коэффициент) это число, на которое умножается результат измерений с целью исключения систематической погрешности.

Поправки и поправочные коэффициенты в виде графиков, таблиц или формул прилагаются к паспорту прибора, методике измерений, стандарту предприятия или другому документу, регламентирующую данную процедуру технических измерений.

Большинство поправок не может быть точно определено ни расчетным путем, ни экспериментально, т.е. тоже содержат погрешность.

Ø Все методы определения систематической погрешности в свою очередь содержат погрешность. Поэтому поправки также содержат погрешность и в принципе не могут полностью компенсировать систематическую составляющую погрешности.

Поэтому в результатах измерений всегда присутствует некоторая остаточная величина систематической погрешности, которая называется неисключенным остатком систематической погрешности илинеисключенной систематической погрешностью (НСП).

При небольшом числе источников погрешности (n
£

3)

верхняя граница НСП результата измерений qопределяется по максимуму:

где q i – граница i
-той составляющей НСП. Такая оценка величины НСП явно является завышенной, т.к. маловероятно, чтобы все компоненты НСП одно­временно имели максимальное значение одного знака.

При значительном числе источников систематической погрешности,
4, величину НСП оценивают с вероятностно-статистической точки зрения. При этом полагается, что величина НСП может равновероятно принимать любые значения в пределах своего максимального значения (нижней и верхней границ), Т.е. неустраненная систематическая погрешность рассматривается как случайная величина, подчиняющаюся нормальному закону распределения. Тогда при n
³

4 граница НСП результата измерений с вероятностью 0,95 принимают равной:

(17)

а с вероятностью 0,99 равной:

(18)

При большом количестве поправок, каждая из которых имеет конечную погрешность, необходимо, чтобы значение поправок не увеличивало общей погрешности измерений.

Погрешность средства измерений
— разность между показанием средства измерений и истинным (действительным) значением измеряемой физической величины.

Погрешность меры —
разность между номинальным значением меры и действительным значением воспроизводимой ею величины. Поскольку истинное значение физической величины неизвестно, то на практике пользуются ее действительным значением, которое воспроизводится образцовым средством измерений или мерой. Для самой меры показанием является ее номинальное значение.

На рисунке 3.1 показана классификация погрешностей средств измерений, в которой они условно разбиты на пять групп в зависимости от природы их происхождения.

Рисунок 3.1 — Классификация погрешностей средств измерений

Систематическая погрешность средства измерений
— составляющая погрешности измерения, которая при повторении равноточных измерений остаётся постоянной или закономерно изменяется. Эту погрешность можно исключить или вносить соответствующие поправки.

Систематическая погрешность конкретного средства измерений, как правило, будет отличаться от систематической погрешности другого экземпляра средства измерений этого же типа, вследствие чего для группы однотипных средств измерений систематическая погрешность может иногда рассматриваться как случайная погрешность. Причины возникновения систематических погрешностей и их классификация будут рассмотрены отдельно.

Случайная погрешность средства измерений
(случайная погрешность) — составляющая погрешности измерения, которая изменяется случайным образом. случайная погрешность может быть обнаружена при повторных измерениях одной и той же величины, когда получаются неодинаковые результаты. Её нельзя исключить, но их влияние на результата измерения может быть теоретически учтено методами теории вероятности и математической статистики.

Промах —
погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда. Иногда вместо термина «промах» применяют термин грубая погрешность измерений.

Промахи связаны с резким нарушением условий испытаний при отдельном наблюдении: толчки, неисправности измерительной аппаратуры, неправильные действия наблюдателя. Результаты измерений, содержащие промахи, должны быть отброшены как недостоверные.

Основная погрешность средства измерений
(основная погрешность) — погрешность средства измерений, применяемого в нормальных условиях.

Дополнительная погрешность средства измерений
(дополнительная погрешность) — составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы нормальной области значений.

Статическая погрешность средства измерений
(статическая погрешность) — погрешность средства измерений, применяемого при измерении физической величины, принимаемой за неизменную.

Динамическая погрешность средства измерений
(динамическая погрешность) — погрешность средства измерений, возникающая при измерении изменяющейся (в процессе измерений) физической величины.

Абсолютная погрешность средства измерений
(абсолютная погрешность) — погрешность средства измерений, выраженная в единицах измеряемой физической величины

D = х изм
х д,
(3.1)

где х изм
— измеренное значение, х д
— действительное значение измеряемой величины.

Абсолютное значение погрешности —
значение погрешности без учета ее знака (модуль погрешности). Необходимо различать термины абсолютная погрешность
и абсолютное значение погрешности.

Относительная погрешность средства измерений
(относительная погрешность) — погрешность средства измерений, выраженная отношением абсолютной погрешности средства измерений к результату измерений или к действительному значению измеренной физической величины

. (3.2*)

Приведенная погрешность средства измерения
(приведенная погрешность) — относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, по-

стоянному во всем диапазоне измерений или в части диапазона

, (3.3)

где — нормирующее значение.Часто за нормирующее значение принимают верхний предел измерений.

Аддитивная погрешность

(по лат. — получаемая путем сложения
) — погрешность, не зависящая от измеряемой величины. По закономерности проявления аддитивные погрешности могут быть случайными или систематическими.

Случайная аддитивная погрешность, например, вызываемая трением в опорах измерительного механизма, контактными сопротивлениями, дрейфом нуля и др., при изменении измеряемой величины принимать произвольное, но не зависящее от измеряемой величины значения. Её предельные значения образуют на характеристике полосу постоянной величины (рисунок 3.2,а). Точно такая же картина будет, если погрешность представляется как приведенная, поскольку знаменатель в выражении (3.3) не изменяется на протяжении всей шкалы независимо от значения измеряемой величины.

Примером систематической аддитивной погрешности является смещение нуля характеристики аналогового средства измерения (рисунок 3.2,б).

1 — фактическая характеристика, смещенная влево на длину О-О ¢ ; 2 — номинальная характеристика прибора; D с — значение систематической погрешности;

D 0 пр — предельное значение случайной погрешности

Рисунок 3.2 — Смещение характеристик аналогового измерительного прибора под влиянием аддитивных систематической (а) и случайной (б) погрешностей

Мультипликативная погрешность
(по лат. — получаемая путем умножения
) — погрешность, величина которой изменяется прямо пропорционально измеряемой величине.

Пример
— Источники мультипликативной погрешности — действие влияющих величин на параметры элементов и узлов СИ, например, изменение собственного сопротивления амперметра и встроенного в него шунта при изменении температуры окружающей среды.

В этом случае результат измерения определяется по формуле:

Поскольку при изменении температуры окружающей среды сопротивления и изменяются неодинаково, т.к. сделаны из разных материалов, погрешность измерения будет изменяться пропорционально соотношению этих сопротивлений.

Погрешность нелинейности

имеет нелинейную зависимость от измеряемой величины. Чаще всего возникает как систематическая погрешность, связанная с линеаризацией номинальной статической характеристики.

Вариация
имеет нелинейную зависимость от измеряемой величины, появляется вследствие гистерезисных явлений, вариации, проявляющейся при подходе к измеряемой точке со стороны меньших и больших значений; проявляется как систематическая погрешность (рисунок 3.3).

Рисунок 3.3 — Графическое представление вариации

Учёт всех нормируемых метрологических характеристик средств измерений является сложной и трудоёмкой процедурой. На практике такая точность не нужна. Поэтому для средств измерений, используемых в повседневной практике, принято деление на классы точности.

Класс точности средств измерений
(класс точности) — обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, выражаемая нормируемыми метрологическими характеристиками.

Класс точности дает возможность судить о том, в каких пределах находится погрешность средства измерений одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих средств. Это важно при выборе средств измерений в зависимости от заданной точности измерений. Класс точности средств измерений конкретного типа устанавливают в стандартах технических требований (условий) или в других нормативных документах.

Нормируемые метрологические характеристики типа средства измерений
(нормируемые метрологические характеристики) — совокупность метрологических характеристик данного типа средств измерений, устанавливаемая нормативными документами на средства измерений

Требования к нормируемым метрологическим характеристикам устанавливаются в стандартах на средства измерений конкретного типа.

Например, для электроизмерительных приборов нормируют:

Пределы допускаемых погрешностей и соответствующие рабочие области влияющих величин;

Пределы допускаемых дополнительных погрешностей и соответствующие рабочие области влияющих величин;

Пределы допускаемой вариации показаний;

Невозвращение указателей к нулевой отметке.

Предел допускаемой погрешности средства измерений
(предел допускаемой погрешности, предел погрешности) — наибольшее значение погрешности средств измерений, устанавливаемое нормативным документом для данного типа средств измерений, при котором оно еще признается годным к применению.

Должны быть округлены до чисел из ряда (3.6).

Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств. Классы точности присваиваются средствам измерений с учётом результатов государственных приёмочных испытаний.

Общие положения о делении средств измерений на классы точности и способы нормирования метрологических характеристик регламентированы ГОСТ 8.401—80. Однако этот стандарт не устанавливает классы точности средств измерения, для которых предусмотрены нормы отдельно для систематической и случайной составляющих погрешности, а также если необходимо учитывать динамические характеристики.

Если класс точности прибора установлен по пределу допускаемой относительной основной погрешности, т.е по значению погрешности чувствительности [см. формулу (3.7)] и форма полосы погрешности принята чисто мультипликативной, обозначаемое на шкале значение класса точности обводится кружком.

Пример
обозначает, что
= 1,5 %.

Если же полоса погрешности принята аддитивной и прибор нормируется по пределу допускаемой приведенной основной погрешности [см. формулу (3.5)], т.е. по значению погрешности нуля (таких приборов большинство), то класс точности указывается на шкале без каких-либо подчеркиваний.

Пример
1,5 обозначает, что = 1,5 %.

Если шкала прибора неравномерная (например, у омметров), предел допускаемой основной приведенной погрешности выражается формулой (3.5), а нормирующее значение принято равным длине шкалы или ее части, класс точности обозначается на шкале одним числом, помещенным между двумя линиями, расположенными под углом.

Пример
обозначает, что = 0,5 %.

Если средство измерений обладает как аддитивной, так и мультипликативной полосой погрешности, а пределы допускаемой относительной погрешности в процентах устанавливаются формулой (3.8), классы точности обозначают числами с и d (в процентах), разделяя их косой чертой.

Пример
— Если установлено, что для средства измерения , где с = 0,02; d = 0,01, то обозначение в документации будет «класс точности 0,02/0,01», а на приборе 0,02/0,01.

Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме абсолютных погрешностей по формуле (3.4), классы точности обозначают прописными буквами латинского алфавита или римскими цифрами. Чем дальше буква от начала алфавита, тем больше погрешность. Расшифровка соответствия букв значению абсолютной погрешности осуществляется в технической документации на средство измерения.

Для всех рассмотренных случаев вместе с условным обозначением класса точности на шкале, щитке или корпусе средств измерений наносится номер стандарта или технических условий, устанавливающих технические требования на эти средства измерений. Таким образом, обозначение класса точности средства измерений дает достаточно полную информацию для вычисления приближенной оценки погрешностей результатов измерений.

Примеры обозначения классов точности на шкалах приборов приведены на рисунке 3.4.

а
— вольтметр класса точности 0,5 с равномерной шкалой;

б
— амперметр класса точности 1,5 с равномерной шкалой; в
— амперметр класса точности 0,02/0,01 с равномерной шкалой; г
— мегаомметр класса точности 2,5 с неравномерной шкалой.

Рисунок 3.4 — Лицевые панели приборов

Результаты наблюдений, полученные при наличии систематической погрешности, называются неисправленными.
При проведении измерений стараются в максимальной степени исключить или учесть влияние систематических погрешностей. Это может быть достигнуто следующими путями:

Устранением источников погрешностей до начала измерений. В большинстве областей измерений известны главные источники систематических погрешностей и разработаны методы, исключающие их возникновение или устраняющие их влияние на результат измерения. В связи с этим в практике измерений стараются устранить систематические погрешности не путем обработки экспериментальных данных, а применением СИ, реализующих соответствующие методы измерений;

Определением поправок и внесением их в результат измерения;

Оценкой границ неисключенных систематических погрешностей.

Постоянная систематическая погрешность не может быть найдена методами совместной обработки результатов измерений. Однако она не искажает ни показатели точности измерений, характеризующие случайную погрешность, ни результат нахождения переменной составляющей систематической погрешности. Действительно, результат одного измерения

где х и — истинное значение измеряемой величины; D i — i-я случайная погрешность; q i — i-я систематическая погрешность.

После усреднения результатов многократных измерений получаем среднее арифметическое значение измеряемой величины

Если систематическая погрешность постоянна во всех измерениях, т.е.

Таким образом, постоянная систематическая погрешность не устраняется при многократных измерениях.

Постоянные систематические погрешности могут быть обнаружены лишь путем сравнения результатов измерений с другими, полученными с помощью более высокоточных методов и средств. Иногда эти погрешности могут быть устранены специальными приемами проведения процесса измерений. Эти методы рассмотрены ниже.

Наличие существенной переменной систематической погрешности искажает оценки характеристик случайной погрешности и аппроксимацию ее распределения. Поэтому она должна обязательно выявляться и исключаться из результатов измерений.

Для устранения постоянных систематических погрешностей применяют следующие методы:

Метод замещения,
представляющий собой разновидность метода сравнения, когда сравнение осуществляется заменой измеряемой величины известной величиной, причем так, что при этом в состоянии и действии всех используемых средств измерений не происходит никаких изменений. Этот метод дает наиболее полное решение задачи. Для его реализации необходимо иметь регулируемую меру, величина которой однородна измеряемой. Например, взвешивание по методу Борда , измерение сопротивления посредством моста постоянного тока и мер сопротивления .

Метод противопоставления,
являющийся разновидностью метода сравнения, при котором измерение выполняется дважды и проводится так, чтобы в обоих случаях причина постоянной погрешности оказывала разные, но известные по закономерности воздействия на результаты наблюдений. Например, способ взвешивания Гаусса .

Пример 5.1. Измерить сопротивление с помощью одинарного моста методом противопоставления.

Сначала измеряемое сопротивление R x уравновешивают известным сопротивлением R 1 , включенным в плечо сравнения моста. При этом R x = R 1 R 3 /R 4 , где R 3 , R 4 — сопротивления плеч моста. Затем резисторы R x и R 1 меняют местами и вновь уравновешивают мост, регулируя сопротивление резистора R 1 . В этом случае R x = R¢ 1 R 3 /R 4 .

Из двух последних уравнений исключается отношение R 3 /R 4 . Тогда

Метод компенсации погрешности по знаку
(метод изменения знака систематической погрешности), предусматривающий измерение с двумя наблюдениями, выполняемыми так, чтобы постоянная систематическая погрешность входила в результат каждого из них с разными знаками.

При выполнении одного измерения получаем ЭДС E 1 . Затем меняем полярность измеряемой ЭДС и направление тока в потенциометре. Вновь проводим его уравновешивание — получаем значение Е 2 . Если термоЭДС дает погрешность DЕ и Е 1 =Е Х + DЕ, то Е 2 = Е Х — DЕ. Отсюда Е х = (Е 1 + Е 2)/2.
Следовательно, систематическая погрешность, обусловленная действием термоЭДС, устранена.

Метод рандомизации
— наиболее универсальный способ исключения неизвестных постоянных систематических погрешностей. Суть его состоит в том, что одна и та же величина измеряется различными методами (приборами). Систематические погрешности каждого из них для всей совокупности являются разными случайными величинами. Вследствие этого при увеличении числа используемых методов (приборов) систематические погрешности взаимно компенсируются.

Для устранения переменных и монотонно изменяющихся систематических погрешностей применяют следующие приемы и методы.

Анализ знаков неисправленных случайных погрешностей.
Если знаки неисправленных случайных погрешностей чередуются с какой-либо закономерностью, то наблюдается переменная систематическая погрешность. Если последовательность знаков «+» у случайных погрешностей сменяется последовательностью знаков «-» или наоборот, то присутствует монотонно изменяющаяся систематическая погрешность. Если группы знаков «+» и «-» у случайных погрешностей чередуются, то присутствует периодическая систематическая погрешность.

Графический метод.
Он является одним из наиболее простых способов обнаружения переменной систематической погрешности в ряду результатов наблюдений и заключается в построении графика последовательности неисправленных значений результатов наблюдений. На графике через построенные точки проводят плавную кривую, которая выражает тенденцию результата измерения, если она существует. Если тенденция не прослеживается, то переменную систематическую погрешность считают практически отсутствующей.

Метод симметричных наблюдений.
Рассмотрим сущность этого метода на примере измерительного преобразователя, передаточная функция которого имеет вид y = kx + y 0 , где х, у — входная и выходная величины преобразователя; k — коэффициент, погрешность которого изменяется во времени по линейному закону; у 0 — постоянная.

Для устранения систематической погрешности трижды измеряется выходная величина у через равные промежутки времени Dt. При первом и третьем измерениях на вход преобразователя подается сигнал х 0 от образцовой меры. В результате измерений получается система уравнений:

Ее решение позволяет получить значение х, свободное от переменной систематической погрешности, обусловленной изменением коэффициента k:

Специальные статистические методы. К
ним относятся способ последовательных разностей, дисперсионный анализ, и др. Рассмотрим подробнее некоторые из них.

Способ последовательных разностей (критерий Аббе). Применяется для обнаружения изменяющейся во времени систематической погрешности и состоит в следующем. Дисперсию результатов наблюдений можно оценить двумя способами: обычным

и вычислением суммы квадратов последовательных (в порядке проведения измерений) разностей (х i +1 — x i) 2

Если в процессе измерений происходило смещение центра группирования результатов наблюдений, т.е. имела место переменная систематическая погрешность, то s 2 [х] дает преувеличенную оценку дисперсии результатов наблюдений. Это объясняется тем, что на s 2 [х] влияют вариации х. В то же время изменения центра группирования х весьма мало сказываются на значениях последовательных разностей d i = (х i +1 — x i), поэтому смещения х̅ почти не отразятся на значении Q 2 [x].

Отношение v = Q 2 [x]/s 2 [x] является критерием для обнаружения систематических смещений центра группирования результатов наблюдений. Критическая область для этого критерия (критерия Аббе) определяется как P(v <
v q) = q, где q = 1- Р — уровень значимости, Р — доверительная вероятность. Значения v q для различных уровней значимости q и числа наблюдений п приведены в табл. 5.1. Если полученное значение критерия Аббе меньше v при заданных q и n, то гипотеза о постоянстве центра группирования результатов наблюдений отвергается, т.е. обнаруживается переменная систематическая погрешность результатов измерений.

Таблица 5.1

Значения критерия Аббе v q

n V q при q, равном n V q при q, равном
0.001 0.01 0,05 0,001 0.01 0,05
0,295 0,313 0,390 0,295 0,431 0,578
0.208 0,269 0,410 0,311 0,447 0,591
0,182 0,281 0,445 0.327 0.461 0,603
0,185 О.ЗОТ 0,468 0,341 0.474 0,614
0,202 0,331 0.491 0,355 0,487 0,624
0,221 0,354 0,512 0,368 0,499 0.633
0,241 0,376 0,531 0,381 0.510 0,642
0.260 0,396 0,548 0,393 0,520 0,650
0,278 0,414 0,564

Пример 5.3. Испольая способ последовательных разностей, определить, присутствует ли систематическая погрешность в ряду результатов наблюдений, приведенных во втором столбце табл. 5.2.

Таблица 5.2

Результаты наблюдений

n x i d i = x i+1 — x i d 2 i v i = x i — x̅ v 2 i
13,4 -0,6 0,36
13,3 -0,1 0,01 -0,7 0,49
14,5 +1,2 1,44 +0,5 0,25
13,8 -0,7 0,49 -0,2 0,04
14,5 +0,7 0,49 +0,5 0,25
14,6 +0,1 0,01 +0,6 0,36
14,1 -0,5 0,25 +0,1 0,01
14,3 +0,2 0,04 +0,3 0,09
14,0 +0,3 0,09 0,0 0,0
14,3 +0,3 0,09 +0,3 0,09
13,2 -1,1 1,21 -0,8 0,64
å 1154,0 -0,2 4,12 0,0 2,58

Для приведенного ряда результатов вычисляем: среднее арифметическое х̅ = 154,0/11 = 14; оценку дисперсии s 2 [х] = 2,58/10 = 0,258; значение Q 2 [x] = 4,12/(2×10) = 0,206; критерий Аббе v = 0,206/0,258 = 0,8.

Как видно из табл. 5.1, для всех уровней значимости (q = 0,001; 0,01 и 0,05) при n = 11 имеем v > v q , т.е. подтверждается нулевая гипотеза о постоянстве центра группирования. Следовательно, условия измерений для приведенного ряда оставались неизменными и систематических расхождений между результатами наблюдений нет.

Дисперсионный анализ (критерий Фишера). В практике измерений часто бывает необходимо выяснить наличие систематической погрешности результатов наблюдений, обусловленной влиянием какого-либо постоянно действующего фактора, или определить, вызывают ли изменения этого фактора систематическое смещение результатов измерений. В данном случае проводят многократные измерения, состоящие из достаточного числа еерий, каждая из которых соответствует определенным (пусть неизвестным, но различным) значениям влияющего фактора. Влияющими факторами, по которым производится объединение результатов наблюдений по сериям, могут быть внешние условия (температура, давление и т.д.), временная последовательность проведения измерений и т.п.

После проведения N измерений их разбивают на s серий (s > 3) по n j результатов наблюдений (sn j = N) в каждой серии и затем устанавливают, имеется или отсутствует систематическое расхождение между результатами наблюдений в различных сериях. При этом должно быть установлено, что результаты в сериях распределены нормально. Рассеяние результатов наблюдений в пределах каждой серии отражает только случайные влияния, характеризует лишь случайные погрешности измерений в пределах этой серии.

Характеристикой совокупности случайных внутрисерийных погрешностей будет средняя сумма дисперсий результатов наблюдений, вычисленных раздельно для каждой серии, т.е.

где — результат i-го измерения в j-й серии.

Внутрисерийнаядисперсия s 2 вс характеризует случайные погрешности измерений, так как только случайные влияния обусловливают те различия (отклонения результатов наблюдений), на которых она основана. В то же время рассеяние Xj различных серий обусловливается не только случайными погрешностями измерений, но и систематическими различиями (если они существуют) между результатами наблюдений, сгруппированными по сериям. Следовательно, усредненная межсерийная дисперсия

где , выражает силу действия фактора, вызывающего систематические различия между сериями.

Таким образом, характеризует долю дисперсии всех результатов наблюдений, обусловленную наличием случайных погрешностей измерений, а — долю дисперсии, обусловленную межсерийными различиями результатов наблюдений.

Первую из них называют коэффициентом ошибки,
вторую — показателем дифференциации.
Чем больше отношение показателя дифференциации к коэффициенту ошибки, тем сильнее действие фактора ло которому группировались серии, и тем больше систематическое различие между ними.

Критерием оценки наличия систематических погрешностей в данном случае является дисперсионный критерий Фишера . Критическая область для критерия Фишера соответствует P(F > F q) = q.

Значения F q для различных уровней значимости q, числа измерений N и числа серий s приведены в приложении 1, где k 2 = N-s, k 1 = s — 1. Если полученное значение критерия Фишера больше F q (при заданных q, N и s), то гипотеза об отсутствии систематических смещений результатов наблюдений по сериям отвергается, т.е. обнаруживается систематическая погрешность, вызываемая тем фактором, по которому группировались результаты наблюдений.

Пример 5.4. Было сделано 38 измерений диаметра детали восемью различными штангенциркулями. Каждым из них проводились по пять измерений. Внутрисерийная дисперсия равна 0,054 мм 2 , межсерийная — 0,2052 мм 2 . Оп-ределить наличие систематической погрешности измерения диаметра детали.

Расчетное значение критерия Фишера F = 0,2052/0,054 = 3,8. Для s-1 =

7, N-s = 30 по табл. П1.3 приложения 1 имеем при q = 0,05 F 0,05 = 2,3 и при q = 0,01 F 0,01 = 3,3. Полученное значение F больше, чем 2,2 и 2,9. Следовательно, в результатах наблюдений обнаруживается наличие систематических погрешностей.

Из всех рассмотренных способов обнаружения систематических погрешностей дисперсионный анализ является наиболее эффективным и достоверным, так как позволяет не только установить факт наличия погрешности, но и дает возможность проанализировать источники ее возникновения.

Критерий Вилкоксона. Если закон распределения результатов измерений неизвестен, то для обнаружения систематической погрешности применяют статистический критерий Вилкоксона.

Из двух групп результатов измерений х 1 , х 2 ,…, х n и у 1, у 2 ,…, у m , где n ³ m ³ 5, составляется вариационный ряд, в котором все n+m значений х 1 , х 2 ,…, х n ; у 1 , у 2 ,…у m располагают в порядке их возрастания и приписывают им ранги — порядковые номера членов вариационного ряда. Различие средних значений каждого из рядов можно считать допустимым, если выполняется неравенство

где R ; — ранг (номер) члена x i , равный его номеру в вариационном ряду; T q — и Т q + — нижнее и верхнее критические значения для выбранного уровня значимости q. При m < 15 эти критические значения определяются по табл. 5.3. При m >15 они рассчитываются по формулам:

где z p — квантиль нормированной функции Лапласа.

Таблица 5.3

Критические значения T q — и Т q + при q = 0,005 и 0,01

n m q = 0,05 q = 0,01
T q — Т q + T q — Т q +
9 15

Более полная таблица значений критических значений T q — и Т q + приведена в рекомендации МИ 2091-90 «ГСИ. Измерения физических величин. Общие требования».

Исключение систематических погрешностей путем введения поправок. В ряде случаев систематические погрешности могут быть вычислены и исключены из результата измерения. Для этого используются поправки. Поправка
С j -величина, одноименная измеряемой, которая вводится в результат измерения х i = х¢ i + q j + C j с целью исключения составляющих систематической погрешности q j . При C j = — q j j-я составляющая систематической погрешности полностью устраняется из результата измерения. Поправки определяются экспериментально или в результате специальных теоретических исследований. Они задаются в виде таблиц, графиков или формул. Введением одной поправки устраняется влияние только одной составляющей систематической погрешности. Для устранения всех составляющих в результат измерения приходится вводить множество поправок. При этом вследствие ограниченной точности определения поправок случайные погрешности результата измерения накапливаются и его дисперсия увеличивается. Так как поправка известна с определенной точностью, то она характеризуется статистически — средним значением поправки С и СКО S c . При исправлении результата х¢ j путем введения поправок C j , где j=l, 2,…, m, по формуле

дисперсия исправленного результата

где S 2 н — оценка дисперсии неисправленного результата; S cj 2 — оценка дисперсии j-й поправки. Как видно, с одной стороны, уточняется результат измерения, а с другой — увеличивается разброс за счет роста дисперсии. Следовательно, необходимо найти оптимум.

Пусть при измерении постоянной величины Q получено (рис.5.1) значение Q =х̅» ± t p S , где х̅»- оценка среднего арифметического неисправленного результата измерений; t p — коэффициент Стьюдента.

Рис.5.1. Устранение систематической погрешности путем

введения поправки

После введения поправки С ± t p S c результат измерения

где

Максимальные доверительные значения погрешности результата измерения до и после введения поправки равны соответственно

Поправку имеет смысл вводить до тех пор, пока D 1 < D 2 . Отсюда следует, что

Если S C /S << 1, то, раскладывая уравнение в степенной ряд, получим С > 0,5 S 2 c / S 2 . Из этого неравенства видно, что если оценка среднего квадратического отклонения поправки S c ® 0, то поправку имеет смысл вводить всегда.

В практических расчетах погрешность результата обычно выражается не более чем двумя значащими цифрами, поэтому поправка, если она меньше пяти единиц младшего разряда, следующего за последним десятичным разрядом погрешности результата, все равно будет потеряна при округлении и вводить ее не имеет смысла.

Пример 5.5. Напряжение источника ЭДС U x с внутренним сопротивлением rj = 60±10 Ом измерено вольтметром класса точности 0,5. Сопротивление вольтметра R v =5 кОм и известно с погрешностью ±0,5% . Показание вольтметра U v = 12,35 В. Найти поправку, которую нужно внести в показание прибора для определения действительного значения напряжения источника ЭДС.

Показания вольтметра соответствуют падению напряжения на нем:

Относительная систематическая методическая погрешность, обусловленная ограниченным значением сопротивления R v ,

Поправка равна абсолютной погрешности, взятой с обратным знаком:

D c = 0,012×12,35 = 0,146 В. Погрешность полученного значения поправки определяется погрешностью, с которой известно сопротивление R i . Ее предельное значение составит 10/60 = 0,167. Погрешностью из-за неточности оценки R v , равной 0,005, можно пренебречь. Следовательно, погрешность определения поправки D = ±0,167×0,146 » 0,03 В.

Таким образом, поправка, которую необходимо ввести в показания вольтметра с учетом округления DU = + 0,15 В. Тогда исправленное значение

U¢ x = 12,35 + 0,15 = 12,50 В. Этот результат имеет определенную погрешность, в том числе неисключенный остаток систематической погрешности D = ± 0,03 В или d = ± 0,24% из-за потребления некоторой мощности вольтметром.

Контрольные вопросы

1.
Что такое систематическая погрешность? Приведите примеры.

2. Дайте определение исправленного результата измерений.

3. Каким образом классифицируются систематические погрешности?

4. Назовите способы выявления постоянных систематических погрешностей.

5. Назовите способы выявления переменных систематических погрешностей.

6. В чем состоит суть критерия Аббе?

7. Что такое дисперсионный анализ и как он применяется для устранения систематических погрешностей?

8. Как обнаружить систематическую погрешность при помощи критерия Вилкоксона?

9. Каким образом оценивается целесообразность введения поправки для устранения систематической погрешности?

Природа и происхождение систематических погрешностей обычно обусловлены спецификой конкретного эксперимента. Поэтому обнаружение и исключение систематических погрешностей во многом зависит от мастерства экспериментатора, от того, насколько глубоко он изучил конкретные условия проведения измерений и особенности применяемых им средств и методов. Вместе с тем существуют некоторые общие причины возникновения систематических погрешностей, в соответствии с которыми их подразделяют на методические, инструментальные и субъективные.

Методические погрешности
происходят от несовершенства метода измерения, использования упрощающих предположений и допущений при выводе применяемых формул, влияния измерительного прибора на объект измерения. Например, измерение температуры с помощью термопары может содержать методическую погрешность, вызванную нарушением температурного режима исследуемого объекта (вследствие внесения термопары).

Инструментальные погрешности
зависят от погрешностей применяемых средств измерений. Неточность градуировки, конструктивные несовершенства, изменения характеристик прибора в процессе эксплуатации и т. д. являются причинами инструментальных погрешностей. Эта погрешность в свою очередь подразделяется на основную и дополнительную.

Основная погрешность
средства измерений — это погрешность в условиях, принятых за нормальные, т. е. при нормальных значениях всех величин, влияющих на результат измерения (температуры, влажности, напряжения питания и т. п.).

Дополнительная погрешность
средства измерений — погрешность, дополнительно возникающая при отличии значений влияющих величин от нормальных. Обычно различают отдельные составляющие дополнительной погрешности, например температурную погрешность, погрешность из-за изменения напряжения питания и т. п.

Все эти погрешности отличают от инструментальных (ГОСТ 8.009-84), поскольку они связаны не столько с самими средствами измерений, сколько с условиями, при которых они работают. Их устранение производится иными способами, нежели устранение инструментальных погрешностей.

Субъективные погрешности
вызываются неправильными отсчетами показаний прибора человеком (оператором). Это может случиться, например, из-за неправильного направления взгляда при наблюдении за показаниями стрелочного прибора (погрешность от параллакса). Использование цифровых приборов и автоматических методов измерения позволяет исключить такого рода погрешности.

Обнаружение причин и источников систематических погрешностей позволяет принять меры к их устранению или исключению посредством введения поправки.

Поправкой

называется значение величины, одноименной с измеряемой, которое нужно прибавить к полученному при измерении значению величины с целью исключения систематической погрешности.

В некоторых случаях используют поправочный множитель
— число, на которое умножают результат измерения для исключения систематической погрешности.

Поправка или поправочный множитель определяется при помощи поверки технических средства, составления и использования соответствующих таблиц и графиков. Применяются также расчетные способы нахождения поправочных значений.

Существуют специальные методы организации измерений, устраняющие систематические погрешности. К ним относятся, например, метод замещения и метод компенсации погрешности по знаку. Метод замещения

заключается в том, что измеряемая величина замещается известной величиной, получаемой при помощи регулируемой меры. Если такое замещение производится без каких-либо других изменений в экспериментальной установке и после замещения установлены те же показания приборов, то измеряемая величина равняется известной величине, значение которой отсчитывается по указателю регулируемой меры. Этот прием позволяет исключить постоянные систематические погрешности. Погрешность измерения при использовании метода замещения определяется погрешностью меры и погрешностью, возникающей при отсчете значения величины, замещающей неизвестную.

Метод компенсации погрешности по знаку
применяется для исключения систематических погрешностей, которые в зависимости от условий измерения могут входить в результат измерения с тем или иным знаком (погрешность от термо-ЭДС, от влияния напряженности постоянного электрического или магнитного поля и др.). В этом случае можно провести измерения дважды так, чтобы погрешность входила в результаты измерений один раз с одним знаком, а другой раз — с обратным. Среднее значение из двух полученных результатов является окончательным результатом измерения, свободным от указанных выше систематических погрешностей.

При проведении автоматических измерений широко используются схемные методы коррекции систематических погрешностей. Компенсационное включение преобразователей, различные цепи температурной и частотной коррекции являются примерами их реализации.

Новые возможности появились в результате внедрения в измерительную технику средств, содержащих микропроцессорные системы. С помощью последних удается производить исключение или коррекцию многих видов систематических погрешностей. Особенно это относится к инструментальным погрешностям. Автоматическое введение поправок, связанных с неточностями градуировки, расчет и исключение дополнительных погрешностей, исключение погрешностей, обусловленных смещением нуля — это и другие корректировки позволяют существенно повысить точность измерений.

Следует, однако, заметить, что какая-то часть систематической погрешности, несмотря на все усилия, остается неисключенной. Эта часть входит в результат измерения и искажает его. Она может быть оценена исходя из сведений о метрологических характеристиках использованных технических средств. Если таких сведений недостаточно, то может быть полезным сравнение измеренных значений с аналогичными результатами, полученными в других лабораториях другими лицами.

Систематической погрешностью
называется составляющая погрешности измерения, остающаяся постоянной или закономерно меняющаяся при повторных измерениях
одной и той же величины. Совершенствование методов измерения, использование высококачественных материалов, прогрессивная технология – все это позволяет на
практике устранить систематические погрешности настолько, что при обработке результатов наблюдений с их наличием зачастую не приходится
считаться.

Систематические погрешности принято классифицировать в зависимости от причин их возникновения и по характеру их проявления при измерениях. В
зависимости от причин возникновения рассматриваются четыре вида систематических погрешностей.

Погрешности метода
– теоретические погрешности,
проистекающие от ошибочности или недостаточной разработки принятой теории метода измерений в целом или от допущенных упрощений при проведении
измерений.

Погрешности метода возникают также при экстраполяции свойства, измеренного на ограниченной части некоторого объекта, на весь объект, если
последний не обладает однородностью измеряемого свойства. При определении плотности вещества по измерениям массы и объема некоторой пробы возникает
систематическая погрешность, если проба содержала некоторое количество примесей, а результат измерения принимается за характеристику данного вещества
вообще.

К погрешностям метода следует отнести также те погрешности, которые возникают вследствие влияния измерительной аппаратуры на измеряемые свойства
объекта. Подобные явления возникают, например, при измерении длин, когда измерительное усилие используемых приборов достаточно велико, при регистрации
быстропротекающих процессов недостаточно быстро действующей аппаратуры, при измерениях температур жидкостными или газовыми термометрами и т. д.

Инструментальные погрешности,
зависящие от погрешностей применяемых средств измерений. Среди инструментальных погрешностей в отдельную группу
выделяются погрешности схемы, не связанные с неточностью изготовления средств измерения и обязанные своим происхождением самой структурной схеме средств
измерений. Исследование инструментальных погрешностей является предметом специальной дисциплины – теории точности измерительныхустройств.

Погрешности,
обусловленные неправильной установкой и взаимным расположением средств измерения,
являющихся частью единого комплекса, несогласованностью их
характеристик, влиянием внешних температурных, гравитационных, радиационных и других полей, нестабильностью источников питания, несогласованностью входных и
выходных параметров электрических цепей приборов и т. д.

Личные погрешности,
обусловленные индивидуальными особенностями наблюдателя. Такого рода
погрешности вызываются, например, запаздыванием или опережением при регистрации сигнала, неправильным отсчетом десятых долей деления шкалы, асимметрией,
возникающей при установке штриха посередине между двумя рисками.

По характеру своего поведения в процессе измерения систематические погрешности
подразделяются на постоянные и переменные.

Понравилась статья? Поделить с друзьями:
  • Какой метод бережливого производства содержит принцип нулевой ошибки
  • Какой логической ошибки не существует противоречивость
  • Какую клемму надо снять чтобы сбросить ошибку
  • Какую клемму надо скинуть чтобы сбросить ошибки
  • Какую клемму на аккумуляторе снимать чтобы убрать ошибки