Классификация функция ошибки

Этот пост продолжает серию про функции ошибки и функционалы качества в машинном обучении. Сейчас разберёмся с самой простой подтемой — как измерять качество чёткого ответа в задачах бинарной классификации. Уровень для чтения — начальный;)

а1

Предыдущие посты в блоге на эту тему:

  • AUC ROC
  • Джини
  • Логистическая функция ошибки
  • Функции ошибок в задачах регрессии

Рассматриваем задачу классификации на два класса (с метками 0 и 1), на рис. 1 показано её графическое представление.

pic_err12_

Рис. 1.  Иллюстрация задачи с двумя классами и возможного решения.

Пусть классификатор выдаёт метку класса. Используем принятые в этом блоге обозначения: yi – метка i-го объекта, ai – ответ на этом объекте нашего алгоритма, m – число объектов в выборке.

Естественным, простым и распространённым функционалом качества является точность (Accuracy или Mean Consequential Error):

f1

т.е. просто доля (процент) объектов, на которых алгоритм выдал правильные ответы. Недостаток такого функционала очевиден: он плох в случае дисбаланса классов, когда представителей одного из класса существенно больше, чем другого. В этом случае, с точки зрения точности, выгодно почти всегда выдавать метку самого популярного класса. Это может не согласовываться с логикой использования решения задачи. Например, в задаче детектирования очень редкой болезни алгоритм, который всех относит к классу «здоровые», на практике не нужен.

Рассмотрим т.н. матрицу несоответствий / ошибок (confusion matrix) – матрицу размера 2×2, ij-я позиция которой равна числу объектов i-го класса, которым алгоритм присвоил метку j-го класса.

tab1.png

Рис. 2. Матрица несоответствий.

На рис. 2 показана такая матрица для решения рис. 1, также показаны названия элементов матрицы. Два класса делятся на положительный (обычно метка 1) и отрицательный (обычно метка 0 или –1). Объекты, которые алгоритм относит к положительному классу, называются положительными (Positive), те из них, которые на самом деле принадлежат к этому классу – истинно положительными (True Positive), остальные – ложно положительными (False Positive). Аналогичная терминология есть для отрицательного (Negative) класса. Дальше используем естественные сокращения:

  • TP = True Positive,
  • TN = True Negative,
  • FP = False Positive,
  • FN = False Negative.

Замечание. Иногда матрицу ошибок изображают по-другому: в транспонированном виде (ответы алгоритма соответствуют строкам, а правильные метки – столбцам).

Замечание. Стандартная терминология немного нелогична: естественно называть положительными объектами объекты положительного класса, но здесь – объекты, отнесённые алгоритмом к положительному классу (т.е. это даже не свойство объектов, а алгоритма). Но в контексте употребления терминов «истинно положительный» и «ложно положительный» это уже кажется логичным.

f8.png

f9.png

Для точности (Accuracy) справедлива формула:

f2.png

Ошибки классификатора делятся на две группы: первого и второго рода. В идеале (когда точность равна 100%) матрица несоответствий диагональная, ошибки вызывают отличие от нуля двух недиагональных элементов:

ошибка 1 рода (Type I Error) случается, когда объект ошибочно относится к положительному классу (= FP/m).

ошибка 2 рода (Type II Error) случается, когда объект ошибочно относится к отрицательному классу (= FN/m).

На заглавном рис. поста показаны известные шуточные иллюстрации ошибок 1 и 2 рода: ошибка 1 рода (слева) и ошибка 2 рода (справа). Когда я объясняю студентам, всегда привожу такой пример, который позволяет запомнить отличие ошибок 1 и 2 рода. Пусть студент приходит на экзамен. Если он учил и знает, то принадлежит классу с меткой 1, иначе — имеет метку 0 (вполне логично называть знающего студента «положительным»). Пусть экзаменатор выполняет роль классификатора: ставит зачёт (т.е. метку 1) или отправляет на пересдачу (метку 0). Самое желаемое для студента «не учил, но сдал» соответствует ошибке 1 рода, вторая возможная ошибка «учил, но не сдал» – 2 рода.

Через введённые выше обозначения выражаются следующие функции:

Полнота (Sensitivity, True Positive Rate, Recall, Hit Rate) отражает какой процент объектов положительного класса мы правильно классифицировали:

f3

Здесь и далее показан числитель формулы (тёмно синим) и знаменатель (тёмно и светло синим). Слева это сделано для матрицы несоответствий, справа – для множеств: круглое – объекты положительного класса, квадратное – положительные объекты по мнению классификатора.

Точность (Precision, Positive Predictive Value) отражает какой процент положительных объектов (т.е. тех, что мы считаем положительными) правильно классифицирован:

f4.png

Точность и полноту можно неформально называть «ортогональными критериями качества». Легко построить алгоритм со 100%-й полнотой: он все объекты относит к классу 1, но при этом точность может быть очень низкой. Нетрудно построить алгоритм с близкой к 100% точностью: он относит к классу 1 только те объекты, в которых уверен, при этом полнота может быть низкая.

Замечание. Отличайте «Accuracy» и «Precision». К сожалению, по-русски их называют одинаково «точность».

F1-мера (F1 score) является средним гармоническим точности и полноты, максимизация этого функционала приводит к одновременной максимизации этих двух «ортогональных критериев»:

f5.png

Также рассматривают весовое среднее гармоническое точности (P) и полноты (R) – Fβ-меру (Fβ score):

f6

Обратите внимание, что β  здесь не вес в среднем гармоническом:

f7.png

Почему используется среднее гармоническое понятно из рис. 4, на которых показаны линии уровня различных функций усреднения.

f10

Рис. 4. Линии уровня некоторых функций от двух переменных (в первом квадранте).

Видно, что линии уровня среднего гармонического сильно похожи на «уголки», т.е. на линии функции min, что вынуждает при максимизации функционала сильнее «тянуть вверх» меньшее значение. Если, например,  точность очень мала, то увеличение полноты, пусть и в два раза, не сильно меняет значение функционала. Нагляднее это показано на рис. 5: при точности 10% F1-мера не может быть больше 20%.

pic_err2_35

Рис. 5. Зависимость F1-меры от полноты при фиксированной точности.

При использовании Fβ-меры линии уровня «перекашиваются», один из критериев (точность или полнота) становится важнее при оптимизации, см. рис. 6.

f11.png

Рис. 6 Линии уровня F-меры и  F1/3-меры.

Из функционалов качества, которые получаются из матрицы несоответствий, можно также отметить специфичность (Specificity) или TNR – True Negative Rate:

f19.png

т.е. процент правильно классифицированных объектов негативного класса. Полноту иногда называют чувствительностью (Sensitivity) и используют в паре со специфичностью для оценки качества, также часто их усредняют (об этом поговорим дальше). Оба функционала имеют смысл «процент правильно классифицируемых объектов одного из класса». Можно ввести понятие полноты Rk для k-го класса: это полнота, если считать класс k положительным, тогда

f20.png

Также запомним False Positive Rate (FPR, fall-out, false alarm rate):

f14.png

– доля объектов негативного класса, которых мы ошибочно отнесли к положительному (это нужно для понимания функционала AUC ROC).

Коэффициент Мэттьюса (MCC – Matthews correlation coefficient) равен

f16.png

его рекомендуют применять для несбалансированных выборок. Давайте разберёмся, что означает эта «сложная формула». Рассмотрим среднее геометрическое точности и полноты:

f21.png

Теперь возьмём среднее геометрическое точности и полноты класса 0 (т.е. считая это класс положительным), перемножив эти средние геометрические, получим

f22

Логично полученное выражение максимизировать, по аналогии можно выписать выражение для минимизации. Если теперь внимательно посмотреть на формулу MCC, то становится понятным, что она означает и почему её значение лежит на отрезке [–1, +1] (оставляем это как задание читателю).

Каппа Коэна (Cohen’s Kappa)

В задачах классификации часто используют функционал качества Каппа Коэна (Cohen’s Kappa). Его идея довольно простая: поскольку использование точности (Accuracy) вызывает сомнение в задачах с сильном дисбалансом классов, надо её значения немного перенормировать. Делается это с помощью статистики chance adjusted index: мы точность нашего решения (Accuracy) пронормируем с помощью точности, которую можно было получить случайно (Accuracychance). Под случайной здесь понимаем точность решения, которое получено из нашего случайной перестановкой ответов.

f18.png

здесь красным выделена вероятность угадать класс 0, а синим – класс 1. Действительно, класс k угадывается, если алгоритм выдаёт метку k и объект действительно принадлежит этому классу. Предполагаем, что это независимые события (мы же хотим вычислить случайную точность). Вероятность принадлежности к классу k можно оценить по матрице несоответствий как долю объектов класса k. Аналогично, вероятность выдать метку оцениваем как долю таких меток в ответах построенного алгоритма.

Сбалансированная точность (Balanced Accuracy)

В случае дисбаланса классов есть специальный аналог точности – сбалансированная точность:

f17.png

Для простоты запоминания – это среднее полноты всех классов (мы ещё вернёмся к этому определению), ну или в других терминах: среднее чувствительности (Sensitivity) и специфичности (Specificity). Отметим, что чувствительность и специфичность тоже, неформально говоря, «ортогональные критерии». Легко сделать специфичность 100%-й, отнеся все объекты к классу 0, при этом будет 0%-я чувствительность, и наоборот, если отнести все объекты к классу 1, то будет 0%-я специфичность и 100%-я чувствительность.

Если в бинарной задаче классификации представителей двух классов примерно поровну, то TP + FN ≈ TN + FP ≈ m/2 и сбалансированная точность примерно равна точности обычной (Accuracy).

Все указанные функционалы реализованы в библиотеке scikit-learn:

f25

Сравнение функционалов

Рассмотрим модельную задачу, в которой плотности распределения классов на оценках, порождённых алгоритмом, линейные, см. рис. 7 (алгоритм выдаёт оценки принадлежности к классу 1 из отрезка [0, 1], именно на этом отрезке они линейные). На рис. 7 показана конечная небольшая выборка, которая соответствует изображённым плотностям, мы же будем считать, что выборка бесконечная, поскольку плотности простые и позволяют в явном виде вычислить функционалы качества даже в случае такой бесконечной выборки. Будем считать, что классы равновероятны, т.е. наша бесконечная выборка сбалансирована. Выбранная задача очень удобна для исследования и уже использовалась при анализе функционала AUC ROC.

pic_err19.png

Рис. 7. Плотности распределения классов в модельной задаче классификации.

Заметим, что подобные распределения возникают в задаче, показанной на рис. 8 (объекты лежат внутри квадрата [0, 1]×[0, 1], два класса разделяются диагональю квадрата), если алгоритм в качестве оценки выдаст значения первого признака.

pic_err20.png

Рис. 8. Представление модельной задачи в признаковом пространстве.

Изобразив плотности немного по-другому, мы в явном виде можем вычислить элементы матрицы несоответствий при конкретном пороге бинаризации, см. рис. 9. Все они пропорциональны площадям выделенных зон (обратите внимание на масштаб осей):

f23

pic_err21

Рис. 9. Удобное изображение плотностей: пересекая рисунок прямой a = θ, мы получаем значения плотностей в виде длин отрезков, которые попали на соответствующие цветные зоны: синюю — для класса 1, розовую — для класса 0.

Теперь можно вывести формулы для рассмотренных функционалов качества как функции от порога бинаризации:

f24.png

Попробуйте вывести эти формулы сами, кроме того, попробуйте определить пороги бинаризации при которых указанные функционалы максимальны (здесь будет один сюрприз).

Возникает естественный вопрос: на практике у нас нет бесконечных выборок, что изменится, если мы вычислим значения функционалов на конечной, объекты которой сгенерированы в соответствии с указанными распределениями? Частично ответ на этот вопрос показан на рис. 10. Как видно, кривые довольно близки к теоретическим при m=300, при увеличении выборки в 10 раз практически совпадают.

pic_err22.png

Рис.10. Теоретические значения полноты, точности, F1-меры и значения, вычисленные по выборке из 300 объектов.

Рассмотрим теперь графики наших функционалов качества как функций от порога бинаризации, см. рис. 11. Заметим, что кроме F1-меры все они симметричны относительно порога 0.5, но это вполне логично. Теперь рассмотрим ситуацию неравновероятных классов, т.е. когда выборка несбалансированна. На рис. 12 показаны графики функционалов в случае, когда класс 1 в два раза чаще встречается в выборке, чем класс 0. Обратите внимание, что все графики стали несимметричными, кроме графика сбалансированной точности – эта функция не зависит от пропорций классов!

pic_err28.png

Рис. 11. Функционалы качества как функции от порога бинаризации.
pic_err27.png
Рис. 11. Функционалы качества как функции от порога бинаризации при дисбалансе классов (класс 1 в два раза вероятнее класса 0).

Вопросы для самопроверки

В конце серия вопросов с подвохом… если Вы хотите кого-нибудь «завалить» по простой теме «оценка качества в задачах бинарной классификации», то непременно задайте их:

  • у какого функционала качества самый маленький оптимальный порог бинаризации в общем случае, почему? Для справки: ответ «у F1-меры» в общем случае неверный (можно даже простой пример привести).
  • какой функционал качества действительно имеет смысл использовать в задачах с сильным дисбалансом классов (заметим, что стандартные советы: BA, MCC, κ, F1 обладают совершенно разными свойствами)?
  • какой «самый неустойчивый» из перечисленных функционалов (его значения на небольших выборках сильнее отличаются от вычисленных на достаточно больших)?
  • что изменится в примерах выше, если от линейных плотностей перейти к нормальным? Как это сделать корректно (и в чём некорректность описанной модельной задачи)?
  • верно ли, что максимальное значение точности (т.е. значение точности при оптимальном выборе порога) всегда не меньше максимального значения сбалансированной точности?

Что дальше…

По задачам классификации осталось рассказать про все скоринговые функции оценки качества в задачах бинарной классификации, про AUC ROC и LogLoss уже было. А потом — как все рассмотренные функционалы обобщаются на случай многих классов. Соответствующие посты скоро будут.

Традиционное в последнее время видео к материалу поста я залью чуть позже.

На правах рекламы

С сентября чему-то научиться у автора блога можно в этом замечательном проекте: Ozon Masters. Кроме курса по машинному обучению, будет много других с потрясающими преподавателями: Андрей Соболевский, Иван Оселедец, Павел Клеменков, Юрий Дорн, Александр Дайняк.

В предыдущей части мы рассматривали вероятностную постановку задачи машинного обучения, статистические модели, модель регрессии как частный случай и ее обучение методом максимизации правдоподобия.

В данной части рассмотрим метод максимизации правдоподобия в классификации: в чем роль кроссэнтропиифункций сигмоиды и softmax, как кроссэнтропия связана с «расстоянием» между распределениями вероятностей и почему модель регрессии тоже обучается через минимизацию кроссэнтропии. Данная часть содержит много отсылок к формулам и понятиям, введенным в первой части, поэтому рекомендуется читать их последовательно.

В третьей части (статья планируется) перейдем от метода максимизации правдоподобия к байесовскому выводу и его различным приближениям.

Данная серия статей не является введением в машинное обучение и предполагает знакомство читателя с основными понятиями. Задача статей — рассмотреть машинное обучение с точки зрения теории вероятностей, что позволит по новому взглянуть на проблему, понять связь машинного обучения со статистикой и лучше понимать формулы из научных статей. Также на описанном материале строятся более сложные темы, такие как вариационные автокодировщики (Kingma and Welling, 2013), нейробайесовские методы (Müller et al., 2021) и даже некоторые теории сознания (Friston et al., 2022).

Содержание текущей части

  • В первом разделе мы рассмотрим модель классификации, кроссэнтропию и ее связь с методом максимизации правдоподобия, а также ряд несколько фактов про функции softmax и sigmoid.

  • Во втором разделе поговорим о связи минимизации кроссэнтропии с минимизацией расхождения Кульбака-Лейблера, и как минимизация расхождения Кульбака-Лейблера может помочь в более сложных случаях, чем обычная классификация и регрессия.

Звездочкой* отмечены дополнительные разделы, которые не повлияют на понимание дальнейшего материала.

1. Вероятностная модель классификации
        1.1. Модель классификации и функция потерь
        1.2. Функция softmax в классификации
        1.3. Температура softmax и операция hardmax*
        1.4. Функция sigmoid в классификации
2. Кроссэнтропия в вероятностных моделях
        2.1. Разметка с неуверенностью
        2.2. Кроссэнтропия и расхождение Кульбака-Лейблера
        2.3. Кроссэнтропия как максимизация правдоподобия*
        2.4. Кроссэнтропия в задаче регрессии*
        2.5. Кроссэнтропия с точки зрения оптимизации*

1. Вероятностная модель классификации

1.1. Модель классификации и функция потерь

Чтобы задать вероятностную модель, нам нужно определить, в какой форме она будет предсказывать распределение p(y|x). Если задаче регрессии мы ограничивали распределения p(y|x) только нормальными распределениями, то в задаче классификации это будет не оптимальным решением, так как классы по сути представляют собой неупорядоченное множество (хотя на них есть порядок, но лишь технически, и он может быть выбран произвольно). В задаче классификации мы можем предсказывать вероятность для каждого класса, и тогда модель будет выдавать столько чисел, сколько есть классов в Y.

Пусть мы имеем датасет X = {x_i, y_i}_{i=1}^N и предполагаем, что все примеры независимы и взяты и одного и того же распределения (i.i.d., см. предыдущую часть, раздел 3.4). Для обучения модели снова применим метод максимизации правдоподобия, то есть будем искать такие параметры theta_{best} , которые максимизируют p(X|theta). В разделе 2.3 мы уже расписывали формулу, которая получается в результате, но ввиду ее важности повторим ее еще раз. Первое равенство ниже следует из i.i.d.-гипотезы, второе по правилам математики:

begin{split} theta_{best} &= underset{theta}{text{arg max}} p(X, theta) \ &= underset{theta}{text{arg max}} prodlimits_{i=1}^N p(y_i|x_i, theta) \ &= underset{theta}{text{arg min}} sumlimits_{i=1}^N -log p(y_i|x_i, theta) end{split} tag{1}

Таким образом, для максимизации вероятности выборки данных p(X|theta)нам нужно минимизировать сумму величин

-log p(y_i|x_i, theta) tag{2}

для всех обучающих примеров (x_i, y_i).

В модели регрессии эта величина была сведена к квадрату разности предсказания и верного ответа (часть 1, формула 7). Но в задаче классификации на данном этапе считать больше ничего не нужно. Нашей задачей было задать вероятностную модель, определить с ее помощью функцию потерь и таким образом свести обучение к задаче оптимизации, то есть минимизации функции потерь, и мы это уже сделали. Функция потерь (2) называется кроссэнтропией (также перекрестной энтропией, или logloss). Она равна минус логарифму предсказанной вероятности для верного класса y_i.

Категориальная кроссэнтропия

Возьмем произвольный пример и выданные моделью вероятности обозначим за p_{pred}[1], dots, p_{pred}[K], где K — количество классов. К метке класса (эталонному ответу) применим one-hot кодирование, получив вектор p_{true}[1], dots, p_{true}[K], в котором лишь один элемент равен единице, а остальные равны нулю. Тогда выражение (2) можно рассчитать таким образом:

text{CrossEntropy}(p_{true}, p_{pred}) = sumlimits_{i=1}^K p_{true}[i] * ln (p_{pred}[i]) tag{3}

Лишь один элемент суммы будет не равен нулю — тот, который соответствует верному классу. Для него первый множитель будет равен единице, а второй будет логарифмом предсказанной вероятности для верного класса, что соответствует выражению (2).

Примечание. На самом деле формула (3) является определением кроссэнтропии, а формула (2) ее частным случаем, когда p_{true}вырождено и назначает вероятность 1 классу с индексом i. О случае, когда это не так, подробнее поговорим во втором разделе.

Бинарная кроссэнтропия

Если класса всего два, то как правило делают следующим образом: модель выдает лишь одно число p_{pred} от 0 до 1, оно рассматривается как вероятность второго класса, а 1 - p_{pred} рассматривается как вероятность первого класса. Пусть p_{true} равно единице, если первый класс верен, иначе равно нулю. Тогда выражение (3) технически можно вычислить следующим образом:

text{BinaryCrossEntropy}(p_{true}, p_{pred}) = p_{true} * ln (p_{pred}) + (1-p_{true}) * ln (1-p_{pred}) tag{4}

Снова лишь одно слагаемое будет ненулевым, и таким образом мы посчитаем логарифм предсказанной вероятности для верного класса. Формулы (18) и (19) называются категориальной кроссэнтропией (они эквивалентны если p_{true}=1 для одного из классов), формула (18) называется бинарной кроссэнтропией.

В этом разделе мы рассмотрели обучение модели классификации. Часто в классификации упоминают о функции softmax, но почему-то мы о ней ничего не говорили. Складывается ощущение, что мы что-то упустили. В следующем разделе мы поговорим о роли функции softmax в классификации.

1.2. Функция softmax в классификации

В предыдущем разделе мы определили, что модель классификации должна выдавать вероятности для всех классов. Но модель — это не только формат входных и выходных данных, а еще и внутренняя архитектура. Она может быть совершенно разной: для классификации применяются либо нейронные сети, либо решающие деревья, либо машины опорных векторов и так далее.

Рассмотрим для примера нейронную сеть. Пусть мы имеем K классов, и выходной слой нейронной сети выдает K чисел от -infty до +infty. Чтобы вектор из K чисел являлся распределением вероятностей, он должен удовлетворять двум ограничениям:

  1. Вероятность каждого класса не может быть ниже нуля

  2. Сумма вероятностей должна быть равна единице

Для удовлетворения первого ограничения лучше чтобы модель выдавала не вероятности, а их логарифмы: если логарифм некой величины меняется от -infty до +infty, то сама величина меняется от 0 до +infty. Чтобы удовлетворялось второе ограничение, каждую предсказанную вероятность мы можем делить на сумму всех предсказанных вероятностей. Такая операция называется L_1-нормализацией вектора вероятностей.

Отсюда мы можем вывести формулу для операции softmax. Эта операция принимает на вход набор из K чисел от -infty до +infty (они называются логитами, англ. logits) {z_i}_{i=1}^K и возвращает распределение вероятностей из K чисел {p_i}_{i=1}^K. Softmax является последовательностью двух операций: взятия экспоненты и L_1-нормализации:

{p_i}_{i=1}^K = text{softmax}big(big{z_jbig}_{i=1}^Kbig) = bigg{cfrac{exp (z_i)}{sum_{j=i}^K exp (z_i)}bigg}_{i=1}^K tag{5}

Таким образом, softmax — это векторная операция, принимающая вектор из произвольных чисел (логитов) и возвращающая вектор вероятностей, удовлетворяющий свойствам 1 и 2. Она применяется как завершающая операция во многих моделях классификации — таким образом мы можем быть уверены, что выданные моделью числа будут именно распределением вероятностей (т. е. удовлетворять свойствам 1 и 2). Существуют и различные альтернативы функции softmax, например sparsemax (Martins and Astudillo, 2016).

Модель, предсказывающая K логитов, к которым применяется операция softmax, будет обладать только одним ограничением: она не может предсказывать строго нулевые или строго единичные вероятности. Зато такую модель можно обучать градиентным спуском, так как функция softmax дифференцируема.

Технически иногда функция softmax рассматривается как часть модели, иногда как часть функции потерь. Например, в библиотеке Keras мы можем добавить функцию активации 'softmax' в последний слой сети и использовать функцию потерь CategoricalCrossentropy(), а можем наоборот не добавлять функцию активации в последний слой и использовать функцию потерь CategoricalCrossentropy (from_logits=True), которая включает в себя расчет softmax (и ее производной при обратном проходе). С математической точки зрения разницы между этими двумя способами не будет, но погрешность расчета функции потерь и производной во втором случае будет меньше. В PyTorch мы можем применить LogSoftmax вместе с NLLLoss (negative log-likelihood), а можем вместо этого применить torch.nn.functional.cross_entropy, который включает в себя расчет LogSoftmax.

1.3. Температура softmax и операция hardmax*

У функции softmax (5) есть важное свойство: если ко всем логитам z_i прибавить одну и ту же константу C, то вероятности p_i никак не изменятся, так как после применения экспоненты константа из слагаемого превратится в множитель, и множители в числителе и знаменателе сократятся. Однако если все логиты z_i умножить на некую константу C, то тогда вероятности p_i изменятся: если C<1, то вероятности p_i станут ближе друг к другу, что означает меньшую уверенность в предсказании, если же C>1, то наоборот мы получим большую уверенность в предсказании. Этот дополнительный множитель, если он используется, называется «температурой» softmax.

При C to infty тот класс, логит которого был наибольшим, получит вероятность 1, остальные классы — вероятность 0, такую операцию по аналогии часто называют hardmax. Иногда ее упоминают как argmax, потому что hardmax можно считать one-hot кодированием индекса, который возвращает операция argmax.

На этом примере видно то, как употребляются понятия soft и hard в машинном обучении: hard-операции (hardmax, argmax, hard attention, hard labeling, sign) связаны с выбором некоего элемента в множестве, а soft-операции (softmax, soft attention, soft labeling, soft sign) являются их дифференцируемыми аналогами. Например, в softmax можно рассчитать производную каждого выходного элемента по каждому входному. В hardmax или argmax это не имеет смысла: производные всегда будут равны нулю.

Это можно понять даже не прибегая к расчетам, поскольку у дифференцируемости есть очень простая наглядная интерпретация: операция y=f(x) дифференцируема если плавное изменение x приводит к плавному изменению y. Это верно для операции softmax, и благодаря этому мы можем применять градиентный спуск или градиентный бустинг. Но в операции hardmax плавное изменение логитов приводит к тому, что выходные вероятности либо остаются такими же, либо меняются скачкообразно, поэтому (без дополнительных ухищрений) градиентный спуск и градиентный бустинг оказываются неприменимы.

1.4. Функция sigmoid в классификации

Рассмотрим случай бинарной классификации. Представим, что у нас есть 2 класса, и модель выдает 2 логита (z_1, z_2), из которых с помощью softmax получаем вероятности (p_1, p_2), сумма которых равна единице. Но прибавление одной и той же константы к (z_1, z_2) не меняет вероятности, поэтому иметь две «степени свободы» излишне, и имеет смысл зафиксировать z_1 в значении 0. Теперь меняя z_2 модель будет менять вероятности классов (p_1, p_2). Значения z_2 и p_2, согласно (21), будут связаны следующим образом:

p_2 = cfrac{exp(z_2)}{exp(z_1) + exp(z_2)} = cfrac{exp(z_2)}{1 + exp(z_2)}

Такая функция носит название сигмоиды:

sigma(x) = cfrac{e^x}{1+e^x} = cfrac{1}{1+e^{-x}} tag{6}

Примечание. В более широком смысле, сигмоидами называют и другие функции одной переменной, график которых выглядит похожим образом. Для преобразования логита в вероятность вместо sigma(x) можно использовать любую и этих функций, разница между ними не принципиальна. Также сигмоида иногда используется в промежуточных слоях нейронных сетей.

К чему мы в итоге пришли? К тому, что если класса всего два, то иметь два логита в модели не обязательно, достаточно всего одного, к которому применяется сигмоида вместо softmax. Функция потерь при этом становится бинарной кроссэнтропией (4). На самом деле то же рассуждение можно применить и к мультиклассовой классификации: если классов N, то достаточно иметь N-1 логитов, но так обычно не делают.

Теперь запишем функцию, обратную сигмоиде. Эта функция преобразует вероятность обратно в логит и называется logit function:

sigma^{-1}(p) = log cfrac{p}{1-p}

Если p — это вероятность второго класса, а 1-p — вероятность первого класса, то выражение p/(1-p) означает то, во сколько раз второй класс вероятнее первого. Это выражение называется odds ratio. Логит является его логарифмом и называется log odds ratio.

Если мы используем в обучении сигмоиду, то модель непосредственно предсказывает логит sigma^{-1}(p), то есть логарифм того, во сколько раз второй класс вероятнее первого.

2. Кроссэнтропия в вероятностных моделях

2.1. Разметка с неуверенностью

В выражениях для функции потерь в классификации (2) и регрессии (часть 1, формула 7) мы предполагали наличие для каждого примера x_i in X эталонного ответа y_i in Y, к которому модель должна стремиться. Но в более общем случае эталонный ответ y_i может быть не конкретным значением, а распределением вероятностей на множестве Y, так же как и предсказание модели. То есть в разметке датасета значения y_i указаны с определенной степенью неуверенности: если это классификация, то могут быть указаны вероятности для всех классов, если регрессия — то может быть указана погрешность.

Ситуация, когда разметка датасета содержит некую степень неуверенности, не такая уж редкая. Например, в пусть в задаче классификации эмоций по видеозаписи датасет размечен сразу несколькими людьми-аннотаторами, которые иногда дают разные ответы. Например, одно из видео в датасете может быть размечено как «happiness» 11 аннотаторами и как «sadness» 9 аннотаторами. Оставив только «happiness» мы потеряем часть информации. Вместо этого мы можем оставить обе эмоции, считать их распределением вероятностей: p(happiness) = 0.55, p(sadness) = 0.45 и обучать модель выдавать для данного примера такое же распределение вероятностей.

Благодаря разметке с неуверенностью сохраняется больше информации: есть явно выраженные эмоции, а есть сложно определяемые.

Но с другой стороны для каждого видео есть какая-то истинная эмоция: либо «happiness», либо «sadness» — человек не может испытывать обе эти эмоции одновременно. В теории модель могла бы обучиться определять эмоции точнее, чем человек, и разметка с неуверенностью может помешать модели выучиться точнее человека: если человек дает 50% вероятности обоим классам, и мы используем это как эталонный ответ, то модель будет стремиться к нему, даже если она способна определить эмоцию точнее.

2.2. Кроссэнтропия и расхождение Кульбака-Лейблера

Пусть мы имеем датасет из пар (x_i, y_i), в котором эталонный ответ y_i является не конкретным значением признака Y, а распределением вероятностей на множестве Y. Нам каким-то образом нужно «подогнать» предсказанное распределение p(y_i|x_i, theta) под эталонное распределение p_{true}(y_i|x_i).

Пример 1. Если в задаче классификации в эталонном распределении вероятности классов равны 0.7 и 0.3, то мы хотели бы, чтобы в предсказании p(y_i|x_i, theta) они тоже были бы равны 0.7 и 0.3.

Пример 2. Если в задаче регрессии эталонное распределение имеет две моды в значениях 0.5 и 1.5, то нам хотелось бы, чтобы предсказанное распределение вероятностей p(y_i|x_i, theta) тоже имело моды в этих точках. Но если мы моделируем p(y|x)нормальным распределением (как в разделе 2.3 первой части), тогда в нем в любом случае будет только одна мода, и чтобы хоть как-то приблизить предсказание к эталонному ответу, можно расположить моду посередине между точками 0.5 и 1.5 — тогда мат. ожидание ошибки предсказания будет наименьшим.

Как видим, второй пример получился сложнее первого. Если множество Y непрерывно, то задача приближения предсказанного распределения к эталонному означает задачу сближения функций плотности вероятности.

Такая постановка задачи неоднозначна: сблизить функции можно по-разному, так как «расстояние» между функциями можно определять по-разному. Чаще всего для этого используют расхождение Кульбака-Лейблера (относительную энтропию) D_{KL}(p || q) — несимметричную метрику сходства между двумя распределениями вероятностей p и q. Расхождение Кульбака-Лейблера можно расписать как сумму в дискретном случае и как интеграл в непрерывном случае.

Дискретный случай (P, Q — функции вероятности):

D_{KL}(P || Q) = mathop{mathbb{E}}limits_{x sim p} log cfrac{P(x)}{Q(x)} = sumlimits_{x in X} P(x) log cfrac{P(x)}{Q(x)} tag{7}

Непрерывный случай (p, q — функции плотности вероятности):

D_{KL}(p || q) = mathop{mathbb{E}}limits_{x sim p} log cfrac{p(x)}{q(x)} = intlimits_{x in X} P(x) log cfrac{p(x)}{q(x)} dx tag{8}

Пользуясь тем, что log a/b = log a - log b, мы можем расписать расхождение Кульбака-Лейблера как разность двух величин. Для дискретного случая:

D_{KL}(P || Q) = underbrace{sumlimits_{x in X} P(x) log P(x)}_{-H(P)} + underbrace{bigg( - sumlimits_{x in X} P(x) log Q(x) bigg)}_{H(P, Q)} tag{9}

Первое слагаемое со знаком минус называется энтропией распределения P (или дифференциальной энтропией в непрерывном случае) и обозначается как H(P), а второе слагаемое (включая минус) называется кроссэнтропией H(P, Q) между распределениями P и Q. Эти величины можно расписать через мат. ожидание:

H(P) = -mathop{mathbb{E}}limits_{x sim p} log P(x)H(P, Q) = -mathop{mathbb{E}}limits_{x sim p} log Q(x)H(P, Q) = D_{KL}(P || Q) + H(P)

В машинном обучении первым аргументом в D_{KL}(P || Q) обычно ставят эталонное распределение, вторым аргументом — предсказанное. Как видно из формулы (9), первое слагаемое не зависит от Q, поэтому минимизация D_{KL}(P || Q) по Q равносильно минимизации кроссэнтропии между P и Q.

Резюме. Если значения целевого признака в датасете даны как распределения вероятностей, то для обучения модели мы можем минимизировать кроссэнтропию между предсказанными и эталонными распределениями. Мы так уже делали в модели классификации, но там эталонное распределение было вырожденным назначало вероятность 1 одному из классов, поэтому в формуле (3) лишь одно слагаемое было ненулевым. В этом разделе мы рассмотрели более общий случай, когда эталонное распределение невырождено и в (3) может быть много ненулевых слагаемых.

2.3. Кроссэнтропия как максимизация правдоподобия*

Является ли «подгонка» предсказанного распределения p(y_i|x_i, theta) под эталонное распределение p_{true}(y_i|x_i) применением метода максимизации правдоподобия? Для ответа на этот вопрос нужно понять что такое «правдоподобие» в том случае, когда вместо эталонного ответа мы имеем распределение.

Мы можем сделать таким образом. Пусть для i-го примера мы имеем значение x_i и распределение p_{true}(y|x_i). Мысленно сгенерируем из этого примера очень большое (стремящееся к бесконечности) количество примеров (обозначим его K), в которых исходные признаки равны x_i, а целевой признак взят из распределения p(y_i):

text{Set}_i = { (x_i, y_i^{(k)}) }_{k=1}^K,   y_i^{(k)} sim p_{true}(y|x_i)

Объединение text{Set}_1 cup dots cup text{Set}_N нельзя рассматривать как i.i.d.-выборку, потому что при бесконечном количестве примеров мы имеем лишь N уникальных значений x. Но поскольку мы не моделируем распределение p(x), это не является проблемой. Поскольку все y_i^{(k)} независимы:

p(text{Set}_i|x_i, theta) = prodlimits_{k=1}^K p(y_i^{(k)}|x_i, theta)begin{split} -log p(text{Set}_i|x_i, theta) & = -sumlimits_{k=1}^K log p(y_i^{(k)}|x_i, theta) \ & underset{K to infty}{to} -sumlimits_{y in Y} p_{true}(y|x_i) log p(y|x_i, theta) \ & = -mathbb{E}_{y sim p_{true}(y|x_i)} log p(y|x_i, theta) \ & = H(p_{true}(y|x_i), p(y|x_i, theta)) end{split}

В итоге при K to infty минус логарифм правдоподобия text{Set}_i оказался равен кроссэнтропии между эталонным распределением p_{true}(y|x_i) и предсказанным моделью распределением p(y|x_i, theta). Отсюда получается, что минимизация кроссэнтропии (или, что эквивалентно, минимизация расхождения Кульбака-Лейблера) максимизирует правдоподобие.

2.4. Кроссэнтропия в задаче регрессии*

Вернемся к случаю регрессии. Если для обучающей пары (x_i, y_i) точно известен ответ y_i in Y, то его можно представить как распределение вероятностей на Y, имеющее лишь одно возможное значение y_i с вероятностью 1 (такое распределение называют вырожденным, в данном случае его еще называют «эмпирическим»).

Для таких случаев математики придумали специальную функцию, называемую дельта-функцией Дирака delta(x). Она равна нулю во всех точках кроме нуля, в нуле равна бесконечности, а ее интеграл равен единице. Например, если мы возьмем функцию плотности вероятности нормального распределения (часть 1, формула 4) с mu=0 и устремим sigma к нулю, то в пределе получим дельта-функцию.

В случае регрессии эмпирическое распределение можно записать как delta(y - y_{true}). Попробуем, по аналогии с классификацией, минимизировать кроссэнтропию между эталонным и предсказанным распределениями. Пусть модель выдает для y нормальное распределение p(y|x, theta). Распишем кроссэнтропию между эмпирическим и предсказанным распределением:

begin{split} H(delta(y - y_{true}), p(y|x, theta)) & = -displaystyleint_{-infty}^infty delta(y - y_{true}) log p(y|x, theta) ,dy \ & = -log p(y|x, theta) end{split} tag{10}

Обратите внимание, что оба аргумента H являются не числами, а функциями от y, и подынтегральное выражение не равно нулю только в одной точке y_{true}. С помощью формулы (10) мы пришли к тому, что минимизация кроссэнтропии означает минимизацию -log p(y|x, theta), что эквивалентно максимизации p(y|x, theta). Именно это мы и делали в разделе 2. Получается, что модель регрессии тоже обучается с помощью кроссэнтропии, которая по формуле (10) превращается в минимизацию -log p(y|x, theta) и далее в минимизацию среднеквадратичного отклонения (часть1, формула 7), если y моделируется нормальным распределением.

Как видим, мы получаем максимально унифицированный и при этом гибкий подход, который можно применять для задания функции потерь в сложных случаях.

Кроссэнтропия с точки зрения оптимизации*

В задаче регрессии мы рассматривали два подхода к выбору функции потерь: первый подход опирается на здравый смысл, наши представления о метрике сходства на множестве Y и легкость оптимизации. Второй подход опирается на теорию вероятностей и наши представления об условном распределении p(y|x), из которого следует формула для функции потерь (статья 1, формулы 5-7).

Теперь вернемся к задаче классификации. Есть ли здесь аналогичные два подхода? Вероятностный подход, который приводит к кроссэнтропии, мы уже рассматривали. Но хороша ли кроссэнтропия с точки зрения оптимизации, или есть более удобная функция потерь? Например, вместо кроссэнтропии мы могли бы минимизировать среднеквадратичную ошибку между предсказанным распределением вероятностей p_{pred}[1], dots, p_{pred}[K] и эталонным распределением вероятностей p_{true}[1], dots, p_{true}[K], в котором вероятность 1 назначается верному классу:

loss(p_{true}, p_{pred}) = sumlimits_{i=1}^K (p_{true}[i] - p_{pred}[i])^2

Смысл такого выражения с точки зрения теории вероятностей не совсем ясен, но видно, что чем ближе предсказание к истине, тем меньше будет функция потерь. А это и есть то свойство, которое требуется от функции потерь.

Что же лучше: кроссэнтропия или среднеквадратичная ошибка? Чтобы понять, какая из функций потерь лучше подходит для оптимизации градиентным спуском, давайте рассчитаем градиенты этих функций потерь по логитам (то есть тем значениям, которые выдаются до операции softmax или sigmoid). Пусть классификация является бинарной, верный ответом является второй класс, и модель выдала значение логита, равное m. Отсюда вероятность второго класса равна sigma(m), где sigma — операция сигмоиды (6). Рассчитаем производную функции потерь по логиту m.

В случае бинарной кроссэнтропии:

cfrac{partial loss}{partial m} = 1 - sigma(m)

В случае среднеквадратичной ошибки:

cfrac{partial loss}{partial m} = -2 sigma(m) (1 - sigma(m))^2

При m to -infty (то есть когда модель выдает уверенный неправильный ответ) при бинарной кроссэнтропии производная стремится к 1, а при среднеквадратичной ошибке производная стремится к нулю. Это означает, что при сочетении сигмоиды и среднеквадратичной ошибки уверенные неправильные ответы практически не корректируются градиентным спуском (градиент близок к нулю), что может негативно сказаться на качестве обучения. Это аргумент в пользу того, чтобы при использовании сигмоиды выбирать бинарную кроссэнтропию, а не среднеквадратичную ошибку.

Хотя, с другой стороны, этот аргумент не окончательный, ведь уверенные неправильные ответы модели могут на самом деле быть выбросами в данных или ошибками разметки, которые модель не должна выучивать. Поэтому, возможно, в некоторых случаях имеет смысл использовать среднеквадратичную ошибку вместо кроссэнтропии.


Конец части 2. Часть 3, посвященная байесовскому выводу, планируется к публикации. Спасибо@ivankomarovи @yorkoза ценные комментарии, которые были учтены при подготовке статьи.

Гораздо легче что-то измерить, чем понять, что именно вы измеряете

Джон Уильям Салливан

Задачи машинного обучения с учителем как правило состоят в восстановлении зависимости между парами (признаковое описание, целевая переменная) по данным, доступным нам для анализа. Алгоритмы машинного обучения (learning algorithm), со многими из которых вы уже успели познакомиться, позволяют построить модель, аппроксимирующую эту зависимость. Но как понять, насколько качественной получилась аппроксимация?

Почти наверняка наша модель будет ошибаться на некоторых объектах: будь она даже идеальной, шум или выбросы в тестовых данных всё испортят. При этом разные модели будут ошибаться на разных объектах и в разной степени. Задача специалиста по машинному обучению – подобрать подходящий критерий, который позволит сравнивать различные модели.

Перед чтением этой главы мы хотели бы ещё раз напомнить, что качество модели нельзя оценивать на обучающей выборке. Как минимум, это стоит делать на отложенной (тестовой) выборке, но, если вам это позволяют время и вычислительные ресурсы, стоит прибегнуть и к более надёжным способам проверки – например, кросс-валидации (о ней вы узнаете в отдельной главе).

Выбор метрик в реальных задачах

Возможно, вы уже участвовали в соревнованиях по анализу данных. На таких соревнованиях метрику (критерий качества модели) организатор выбирает за вас, и она, как правило, довольно понятным образом связана с результатами предсказаний. Но на практике всё бывает намного сложнее.

Например, мы хотим:

  • решить, сколько коробок с бананами нужно завтра привезти в конкретный магазин, чтобы минимизировать количество товара, который не будет выкуплен и минимизировать ситуацию, когда покупатель к концу дня не находит желаемый продукт на полке;
  • увеличить счастье пользователя от работы с нашим сервисом, чтобы он стал лояльным и обеспечивал тем самым стабильный прогнозируемый доход;
  • решить, нужно ли направить человека на дополнительное обследование.

В каждом конкретном случае может возникать целая иерархия метрик. Представим, например, что речь идёт о стриминговом музыкальном сервисе, пользователей которого мы решили порадовать сгенерированными самодельной нейросетью треками – не защищёнными авторским правом, а потому совершенно бесплатными. Иерархия метрик могла бы иметь такой вид:

  1. Самый верхний уровень: будущий доход сервиса – невозможно измерить в моменте, сложным образом зависит от совокупности всех наших усилий;
  2. Медианная длина сессии, возможно, служащая оценкой радости пользователей, которая, как мы надеемся, повлияет на их желание продолжать платить за подписку – её нам придётся измерять в продакшене, ведь нас интересует реакция настоящих пользователей на новшество;
  3. Доля удовлетворённых качеством сгенерированной музыки асессоров, на которых мы потестируем её до того, как выставить на суд пользователей;
  4. Функция потерь, на которую мы будем обучать генеративную сеть.

На этом примере мы можем заметить сразу несколько общих закономерностей. Во-первых, метрики бывают offline и online (оффлайновыми и онлайновыми). Online метрики вычисляются по данным, собираемым с работающей системы (например, медианная длина сессии). Offline метрики могут быть измерены до введения модели в эксплуатацию, например, по историческим данным или с привлечением специальных людей, асессоров. Последнее часто применяется, когда метрикой является реакция живого человека: скажем, так поступают поисковые компании, которые предлагают людям оценить качество ранжирования экспериментальной системы еще до того, как рядовые пользователи увидят эти результаты в обычном порядке. На самом же нижнем этаже иерархии лежат оптимизируемые в ходе обучения функции потерь.

В данном разделе нас будут интересовать offline метрики, которые могут быть измерены без привлечения людей.

Функция потерь $neq$ метрика качества

Как мы узнали ранее, методы обучения реализуют разные подходы к обучению:

  • обучение на основе прироста информации (как в деревьях решений)
  • обучение на основе сходства (как в методах ближайших соседей)
  • обучение на основе вероятностной модели данных (например, максимизацией правдоподобия)
  • обучение на основе ошибок (минимизация эмпирического риска)

И в рамках обучения на основе минимизации ошибок мы уже отвечали на вопрос: как можно штрафовать модель за предсказание на обучающем объекте.

Во время сведения задачи о построении решающего правила к задаче численной оптимизации, мы вводили понятие функции потерь и, обычно, объявляли целевой функцией сумму потерь от предсказаний на всех объектах обучающей выборке.

Важно понимать разницу между функцией потерь и метрикой качества. Её можно сформулировать следующим образом:

  • Функция потерь возникает в тот момент, когда мы сводим задачу построения модели к задаче оптимизации. Обычно требуется, чтобы она обладала хорошими свойствами (например, дифференцируемостью).

  • Метрика – внешний, объективный критерий качества, обычно зависящий не от параметров модели, а только от предсказанных меток.

В некоторых случаях метрика может совпадать с функцией потерь. Например, в задаче регрессии MSE играет роль как функции потерь, так и метрики. Но, скажем, в задаче бинарной классификации они почти всегда различаются: в качестве функции потерь может выступать кросс-энтропия, а в качестве метрики – число верно угаданных меток (accuracy). Отметим, что в последнем примере у них различные аргументы: на вход кросс-энтропии нужно подавать логиты, а на вход accuracy – предсказанные метки (то есть по сути argmax логитов).

Бинарная классификация: метки классов

Перейдём к обзору метрик и начнём с самой простой разновидности классификации – бинарной, а затем постепенно будем наращивать сложность.

Напомним постановку задачи бинарной классификации: нам нужно по обучающей выборке ${(x_i, y_i)}_{i=1}^N$, где $y_iin{0, 1}$ построить модель, которая по объекту $x$ предсказывает метку класса $f(x)in{0, 1}$.

Первым критерием качества, который приходит в голову, является accuracy – доля объектов, для которых мы правильно предсказали класс:

$$ color{#348FEA}{text{Accuracy}(y, y^{pred}) = frac{1}{N} sum_{i=1}^N mathbb{I}[y_i = f(x_i)]} $$

Или же сопряженная ей метрика – доля ошибочных классификаций (error rate):

$$text{Error rate} = 1 — text{Accuracy}$$

Познакомившись чуть внимательнее с этой метрикой, можно заметить, что у неё есть несколько недостатков:

  • она не учитывает дисбаланс классов. Например, в задаче диагностики редких заболеваний классификатор, предсказывающий всем пациентам отсутствие болезни будет иметь достаточно высокую accuracy просто потому, что больных людей в выборке намного меньше;
  • она также не учитывает цену ошибки на объектах разных классов. Для примера снова можно привести задачу медицинской диагностики: если ошибочный положительный диагноз для здорового больного обернётся лишь ещё одним обследованием, то ошибочно отрицательный вердикт может повлечь роковые последствия.

Confusion matrix (матрица ошибок)

Исторически задача бинарной классификации – это задача об обнаружении чего-то редкого в большом потоке объектов, например, поиск человека, больного туберкулёзом, по флюорографии. Или задача признания пятна на экране приёмника радиолокационной станции бомбардировщиком, представляющем угрозу охраняемому объекту (в противовес стае гусей).

Поэтому класс, который представляет для нас интерес, называется «положительным», а оставшийся – «отрицательным».

Заметим, что для каждого объекта в выборке возможно 4 ситуации:

  • мы предсказали положительную метку и угадали. Будет относить такие объекты к true positive (TP) группе (true – потому что предсказали мы правильно, а positive – потому что предсказали положительную метку);
  • мы предсказали положительную метку, но ошиблись в своём предсказании – false positive (FP) (false, потому что предсказание было неправильным);
  • мы предсказали отрицательную метку и угадалиtrue negative (TN);
  • и наконец, мы предсказали отрицательную метку, но ошиблисьfalse negative (FN). Для удобства все эти 4 числа изображают в виде таблицы, которую называют confusion matrix (матрицей ошибок):

6_1.png

Не волнуйтесь, если первое время эти обозначения будут сводить вас с ума (будем откровенны, даже профи со стажем в них порой путаются), однако логика за ними достаточно простая: первая часть названия группы показывает угадали ли мы с классом, а вторая – какой класс мы предсказали.

6_2.png

Пример

Попробуем воспользоваться введёнными метриками в боевом примере: сравним работу нескольких моделей классификации на Breast cancer wisconsin (diagnostic) dataset.

Объектами выборки являются фотографии биопсии грудных опухолей. С их помощью было сформировано признаковое описание, которое заключается в характеристиках ядер клеток (таких как радиус ядра, его текстура, симметричность). Положительным классом в такой постановке будут злокачественные опухоли, а отрицательным – доброкачественные.

Модель 1. Константное предсказание.

Решение задачи начнём с самого простого классификатора, который выдаёт на каждом объекте константное предсказание – самый часто встречающийся класс.

Зачем вообще замерять качество на такой модели?При разработке модели машинного обучения для проекта всегда желательно иметь некоторую baseline модель. Так нам будет легче проконтролировать, что наша более сложная модель действительно дает нам прирост качества.

from sklearn.datasets 
import load_breast_cancer 
the_data = load_breast_cancer()    

# 0 – "доброкачественный" 
# 1 – "злокачественный" 
relabeled_target = 1 - the_data["target"] 

from sklearn.model_selection import train_test_split 
X = the_data["data"] 
y = relabeled_target 
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) 

from sklearn.dummy import DummyClassifier 
dc_mf = DummyClassifier(strategy="most_frequent") 
dc_mf.fit(X_train, y_train) 

from sklearn.metrics import confusion_matrix 
y_true = y_test y_pred = dc_mf.predict(X_test) 
dc_mf_tn, dc_mf_fp, dc_mf_fn, dc_mf_tp = confusion_matrix(y_true, y_pred, labels = [0, 1]).ravel() 
Прогнозируемый класс + Прогнозируемый класс —
Истинный класс + TP = 0 FN = 53
Истинный класс — FP = 0 TN = 90

Обучающие данные таковы, что наш dummy-классификатор все объекты записывает в отрицательный класс, то есть признаёт все опухоли доброкачественными. Такой наивный подход позволяет нам получить минимальный штраф за FP (действительно, нельзя ошибиться в предсказании, если положительный класс вообще не предсказывается), но и максимальный штраф за FN (в эту группу попадут все злокачественные опухоли).

Модель 2. Случайный лес.

Настало время воспользоваться всем арсеналом моделей машинного обучения, и начнём мы со случайного леса.

from sklearn.ensemble import RandomForestClassifier 
rfc = RandomForestClassifier()       
rfc.fit(X_train, y_train)       
y_true = y_test       
y_pred = rfc.predict(X_test)       
rfc_tn, rfc_fp, rfc_fn, rfc_tp = confusion_matrix(y_true, y_pred, labels = [0, 1]).ravel()
Прогнозируемый класс + Прогнозируемый класс —
Истинный класс + TP = 52 FN = 1
Истинный класс — FP = 4 TN = 86

Можно сказать, что этот классификатор чему-то научился, т.к. главная диагональ матрицы стала содержать все объекты из отложенной выборки, за исключением 4 + 1 = 5 объектов (сравните с 0 + 53 объектами dummy-классификатора, все опухоли объявляющего доброкачественными).

Отметим, что вычисляя долю недиагональных элементов, мы приходим к метрике error rate, о которой мы говорили в самом начале:

$$text{Error rate} = frac{FP + FN}{ TP + TN + FP + FN}$$

тогда как доля объектов, попавших на главную диагональ – это как раз таки accuracy:

$$text{Accuracy} = frac{TP + TN}{ TP + TN + FP + FN}$$

Модель 3. Метод опорных векторов.

Давайте построим еще один классификатор на основе линейного метода опорных векторов.

Не забудьте привести признаки к единому масштабу, иначе численный алгоритм не сойдется к решению и мы получим гораздо более плохо работающее решающее правило. Попробуйте проделать это упражнение.

from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler 
ss = StandardScaler() ss.fit(X_train) 
scaled_linsvc = LinearSVC(C=0.01,random_state=42) 
scaled_linsvc.fit(ss.transform(X_train), y_train) 
y_true = y_test 
y_pred = scaled_linsvc.predict(ss.transform(X_test)) 
tn, fp, fn, tp = confusion_matrix(y_true, y_pred, labels = [0, 1]).ravel() 
Прогнозируемый класс + Прогнозируемый класс —
Истинный класс + TP = 50 FN = 3
Истинный класс — FP = 1 TN = 89

Сравним результаты

Легко заметить, что каждая из двух моделей лучше классификатора-пустышки, однако давайте попробуем сравнить их между собой. С точки зрения error rate модели практически одинаковы: 5/143 для леса против 4/143 для SVM.

Посмотрим на структуру ошибок чуть более внимательно: лес – (FP = 4, FN = 1), SVM – (FP = 1, FN = 3). Какая из моделей предпочтительнее?

Замечание: Мы сравниваем несколько классификаторов на основании их предсказаний на отложенной выборке. Насколько ошибки данных классификаторов зависят от разбиения исходного набора данных? Иногда в процессе оценки качества мы будем получать модели, чьи показатели эффективности будут статистически неразличимыми.

Пусть мы учли предыдущее замечание и эти модели действительно статистически значимо ошибаются в разную сторону. Мы встретились с очевидной вещью: на матрицах нет отношения порядка. Когда мы сравнивали dummy-классификатор и случайный лес с помощью Accuracy, мы всю сложную структуру ошибок свели к одному числу, т.к. на вещественных числах отношение порядка есть. Сводить оценку модели к одному числу очень удобно, однако не стоит забывать, что у вашей модели есть много аспектов качества.

Что же всё-таки важнее уменьшить: FP или FN? Вернёмся к задаче: FP – доля доброкачественных опухолей, которым ошибочно присваивается метка злокачественной, а FN – доля злокачественных опухолей, которые классификатор пропускает. В такой постановке становится понятно, что при сравнении выиграет модель с меньшим FN (то есть лес в нашем примере), ведь каждая не обнаруженная опухоль может стоить человеческой жизни.

Рассмотрим теперь другую задачу: по данным о погоде предсказать, будет ли успешным запуск спутника. FN в такой постановке – это ошибочное предсказание неуспеха, то есть не более, чем упущенный шанс (если вас, конечно не уволят за срыв сроков). С FP всё серьёзней: если вы предскажете удачный запуск спутника, а на деле он потерпит крушение из-за погодных условий, то ваши потери будут в разы существеннее.

Итак, из примеров мы видим, что в текущем виде введенная нами доля ошибочных классификаций не даст нам возможности учесть неравную важность FP и FN. Поэтому введем две новые метрики: точность и полноту.

Точность и полнота

Accuracy — это метрика, которая характеризует качество модели, агрегированное по всем классам. Это полезно, когда классы для нас имеют одинаковое значение. В случае, если это не так, accuracy может быть обманчивой.

Рассмотрим ситуацию, когда положительный класс это событие редкое. Возьмем в качестве примера поисковую систему — в нашем хранилище хранятся миллиарды документов, а релевантных к конкретному поисковому запросу на несколько порядков меньше.

Пусть мы хотим решить задачу бинарной классификации «документ d релевантен по запросу q». Благодаря большому дисбалансу, Accuracy dummy-классификатора, объявляющего все документы нерелевантными, будет близка к единице. Напомним, что $text{Accuracy} = frac{TP + TN}{TP + TN + FP + FN}$, и в нашем случае высокое значение метрики будет обеспечено членом TN, в то время для пользователей более важен высокий TP.

Поэтому в случае ассиметрии классов, можно использовать метрики, которые не учитывают TN и ориентируются на TP.

Если мы рассмотрим долю правильно предсказанных положительных объектов среди всех объектов, предсказанных положительным классом, то мы получим метрику, которая называется точностью (precision)

$$color{#348FEA}{text{Precision} = frac{TP}{TP + FP}}$$

Интуитивно метрика показывает долю релевантных документов среди всех найденных классификатором. Чем меньше ложноположительных срабатываний будет допускать модель, тем больше будет её Precision.

Если же мы рассмотрим долю правильно найденных положительных объектов среди всех объектов положительного класса, то мы получим метрику, которая называется полнотой (recall)

$$color{#348FEA}{text{Recall} = frac{TP}{TP + FN}}$$

Интуитивно метрика показывает долю найденных документов из всех релевантных. Чем меньше ложно отрицательных срабатываний, тем выше recall модели.

Например, в задаче предсказания злокачественности опухоли точность показывает, сколько из определённых нами как злокачественные опухолей действительно являются злокачественными, а полнота – какую долю злокачественных опухолей нам удалось выявить.

Хорошее понимание происходящего даёт следующая картинка: 6_3.png (источник картинки)

Recall@k, Precision@k

Метрики Recall и Precision хорошо подходят для задачи поиска «документ d релевантен запросу q», когда из списка рекомендованных алгоритмом документов нас интересует только первый. Но не всегда алгоритм машинного обучения вынужден работать в таких жестких условиях. Может быть такое, что вполне достаточно, что релевантный документ попал в первые k рекомендованных. Например, в интерфейсе выдачи первые три подсказки видны всегда одновременно и вообще не очень понятно, какой у них порядок. Тогда более честной оценкой качества алгоритма будет «в выдаче D размера k по запросу q нашлись релевантные документы». Для расчёта метрики по всей выборке объединим все выдачи и рассчитаем precision, recall как обычно подокументно.

F1-мера

Как мы уже отмечали ранее, модели очень удобно сравнивать, когда их качество выражено одним числом. В случае пары Precision-Recall существует популярный способ скомпоновать их в одну метрику — взять их среднее гармоническое. Данный показатель эффективности исторически носит название F1-меры (F1-measure).

$$
color{#348FEA}{F_1 = frac{2}{frac{1}{Recall} + frac{1}{Precision}}} = $$

$$ = 2 frac{Recall cdot Precision }{Recall + Precision} = frac
{TP} {TP + frac{FP + FN}{2}}
$$

Стоит иметь в виду, что F1-мера предполагает одинаковую важность Precision и Recall, если одна из этих метрик для вас приоритетнее, то можно воспользоваться $F_{beta}$ мерой:

$$
F_{beta} = (beta^2 + 1) frac{Recall cdot Precision }{Recall + beta^2Precision}
$$

Бинарная классификация: вероятности классов

Многие модели бинарной классификации устроены так, что класс объекта получается бинаризацией выхода классификатора по некоторому фиксированному порогу:

$$fleft(x ; w, w_{0}right)=mathbb{I}left[g(x, w) > w_{0}right].$$

Например, модель логистической регрессии возвращает оценку вероятности принадлежности примера к положительному классу. Другие модели бинарной классификации обычно возвращают произвольные вещественные значения, но существуют техники, называемые калибровкой классификатора, которые позволяют преобразовать предсказания в более или менее корректную оценку вероятности принадлежности к положительному классу.

Как оценить качество предсказываемых вероятностей, если именно они являются нашей конечной целью? Общепринятой мерой является логистическая функция потерь, которую мы изучали раньше, когда говорили об устройстве некоторых методов классификации (например уже упоминавшейся логистической регрессии).

Если же нашей целью является построение прогноза в терминах метки класса, то нам нужно учесть, что в зависимости от порога мы будем получать разные предсказания и разное качество на отложенной выборке. Так, чем ниже порог отсечения, тем больше объектов модель будет относить к положительному классу. Как в этом случае оценить качество модели?

AUC

Пусть мы хотим учитывать ошибки на объектах обоих классов. При уменьшении порога отсечения мы будем находить (правильно предсказывать) всё большее число положительных объектов, но также и неправильно предсказывать положительную метку на всё большем числе отрицательных объектов. Естественным кажется ввести две метрики TPR и FPR:

TPR (true positive rate) – это полнота, доля положительных объектов, правильно предсказанных положительными:

$$ TPR = frac{TP}{P} = frac{TP}{TP + FN} $$

FPR (false positive rate) – это доля отрицательных объектов, неправильно предсказанных положительными:

$$FPR = frac{FP}{N} = frac{FP}{FP + TN}$$

Обе эти величины растут при уменьшении порога. Кривая в осях TPR/FPR, которая получается при варьировании порога, исторически называется ROC-кривой (receiver operating characteristics curve, сокращённо ROC curve). Следующий график поможет вам понять поведение ROC-кривой.

Желтая и синяя кривые показывают распределение предсказаний классификатора на объектах положительного и отрицательного классов соответственно. То есть значения на оси X (на графике с двумя гауссианами) мы получаем из классификатора. Если классификатор идеальный (две кривые разделимы по оси X), то на правом графике мы получаем ROC-кривую (0,0)->(0,1)->(1,1) (убедитесь сами!), площадь под которой равна 1. Если классификатор случайный (предсказывает одинаковые метки положительным и отрицательным объектам), то мы получаем ROC-кривую (0,0)->(1,1), площадь под которой равна 0.5. Поэкспериментируйте с разными вариантами распределения предсказаний по классам и посмотрите, как меняется ROC-кривая.

Чем лучше классификатор разделяет два класса, тем больше площадь (area under curve) под ROC-кривой – и мы можем использовать её в качестве метрики. Эта метрика называется AUC и она работает благодаря следующему свойству ROC-кривой:

AUC равен доле пар объектов вида (объект класса 1, объект класса 0), которые алгоритм верно упорядочил, т.е. предсказание классификатора на первом объекте больше:

$$
color{#348FEA}{operatorname{AUC} = frac{sumlimits_{i = 1}^{N} sumlimits_{j = 1}^{N}mathbb{I}[y_i < y_j] I^{prime}[f(x_{i}) < f(x_{j})]}{sumlimits_{i = 1}^{N} sumlimits_{j = 1}^{N}mathbb{I}[y_i < y_j]}}
$$

$$
I^{prime}left[f(x_{i}) < f(x_{j})right]=
left{
begin{array}{ll}
0, & f(x_{i}) > f(x_{j}) \
0.5 & f(x_{i}) = f(x_{j}) \
1, & f(x_{i}) < f(x_{j})
end{array}
right.
$$

$$
Ileft[y_{i}< y_{j}right]=
left{
begin{array}{ll}
0, & y_{i} geq y_{j} \
1, & y_{i} < y_{j}
end{array}
right.
$$

Чтобы детальнее разобраться, почему это так, советуем вам обратиться к материалам А.Г.Дьяконова.

В каких случаях лучше отдать предпочтение этой метрике? Рассмотрим следующую задачу: некоторый сотовый оператор хочет научиться предсказывать, будет ли клиент пользоваться его услугами через месяц. На первый взгляд кажется, что задача сводится к бинарной классификации с метками 1, если клиент останется с компанией и $0$ – иначе.

Однако если копнуть глубже в процессы компании, то окажется, что такие метки практически бесполезны. Компании скорее интересно упорядочить клиентов по вероятности прекращения обслуживания и в зависимости от этого применять разные варианты удержания: кому-то прислать скидочный купон от партнёра, кому-то предложить скидку на следующий месяц, а кому-то и новый тариф на особых условиях.

Таким образом, в любой задаче, где нам важна не метка сама по себе, а правильный порядок на объектах, имеет смысл применять AUC.

Утверждение выше может вызывать у вас желание использовать AUC в качестве метрики в задачах ранжирования, но мы призываем вас быть аккуратными.

ПодробнееУтверждение выше может вызывать у вас желание использовать AUC в качестве метрики в задачах ранжирования, но мы призываем вас быть аккуратными.» details=»Продемонстрируем это на следующем примере: пусть наша выборка состоит из $9100$ объектов класса $0$ и $10$ объектов класса $1$, и модель расположила их следующим образом:

$$underbrace{0 dots 0}_{9000} ~ underbrace{1 dots 1}_{10} ~ underbrace{0 dots 0}_{100}$$

Тогда AUC будет близка к единице: количество пар правильно расположенных объектов будет порядка $90000$, в то время как общее количество пар порядка $91000$.

Однако самыми высокими по вероятности положительного класса будут совсем не те объекты, которые мы ожидаем.

Average Precision

Будем постепенно уменьшать порог бинаризации. При этом полнота будет расти от $0$ до $1$, так как будет увеличиваться количество объектов, которым мы приписываем положительный класс (а количество объектов, на самом деле относящихся к положительному классу, очевидно, меняться не будет). Про точность же нельзя сказать ничего определённого, но мы понимаем, что скорее всего она будет выше при более высоком пороге отсечения (мы оставим только объекты, в которых модель «уверена» больше всего). Варьируя порог и пересчитывая значения Precision и Recall на каждом пороге, мы получим некоторую кривую примерно следующего вида:

6_4.png (источник картинки)

Рассмотрим среднее значение точности (оно равно площади под кривой точность-полнота):

$$ text { AP }=int_{0}^{1} p(r) d r$$

Получим показатель эффективности, который называется average precision. Как в случае матрицы ошибок мы переходили к скалярным показателям эффективности, так и в случае с кривой точность-полнота мы охарактеризовали ее в виде числа.

Многоклассовая классификация

Если классов становится больше двух, расчёт метрик усложняется. Если задача классификации на $K$ классов ставится как $K$ задач об отделении класса $i$ от остальных ($i=1,ldots,K$), то для каждой из них можно посчитать свою матрицу ошибок. Затем есть два варианта получения итогового значения метрики из $K$ матриц ошибок:

  1. Усредняем элементы матрицы ошибок (TP, FP, TN, FN) между бинарными классификаторами, например $TP = frac{1}{K}sum_{i=1}^{K}TP_i$. Затем по одной усреднённой матрице ошибок считаем Precision, Recall, F-меру. Это называют микроусреднением.
  2. Считаем Precision, Recall для каждого классификатора отдельно, а потом усредняем. Это называют макроусреднением.

Порядок усреднения влияет на результат в случае дисбаланса классов. Показатели TP, FP, FN — это счётчики объектов. Пусть некоторый класс обладает маленькой мощностью (обозначим её $M$). Тогда значения TP и FN при классификации этого класса против остальных будут не больше $M$, то есть тоже маленькие. Про FP мы ничего уверенно сказать не можем, но скорее всего при дисбалансе классов классификатор не будет предсказывать редкий класс слишком часто, потому что есть большая вероятность ошибиться. Так что FP тоже мало. Поэтому усреднение первым способом сделает вклад маленького класса в общую метрику незаметным. А при усреднении вторым способом среднее считается уже для нормированных величин, так что вклад каждого класса будет одинаковым.

Рассмотрим пример. Пусть есть датасет из объектов трёх цветов: желтого, зелёного и синего. Желтого и зелёного цветов почти поровну — 21 и 20 объектов соответственно, а синих объектов всего 4.

6_5.png

Модель по очереди для каждого цвета пытается отделить объекты этого цвета от объектов оставшихся двух цветов. Результаты классификации проиллюстрированы матрицей ошибок. Модель «покрасила» в жёлтый 25 объектов, 20 из которых были действительно жёлтыми (левый столбец матрицы). В синий был «покрашен» только один объект, который на самом деле жёлтый (средний столбец матрицы). В зелёный — 19 объектов, все на самом деле зелёные (правый столбец матрицы).

6_6.png

Посчитаем Precision классификации двумя способами:

  1. С помощью микроусреднения получаем $$
    text{Precision} = frac{dfrac{1}{3}left(20 + 0 + 19right)}{dfrac{1}{3}left(20 + 0 + 19right) + dfrac{1}{3}left(5 + 1 + 0right)} = 0.87
    $$
  2. С помощью макроусреднения получаем $$
    text{Precision} = dfrac{1}{3}left( frac{20}{20 + 5} + frac{0}{0 + 1} + frac{19}{19 + 0}right) = 0.6
    $$

Видим, что макроусреднение лучше отражает тот факт, что синий цвет, которого в датасете было совсем мало, модель практически игнорирует.

Как оптимизировать метрики классификации?

Пусть мы выбрали, что метрика качества алгоритма будет $F(a(X), Y)$. Тогда мы хотим обучить модель так, чтобы $F$ на валидационной выборке была минимальная/максимальная. Лучший способ добиться минимизации метрики $F$ — оптимизировать её напрямую, то есть выбрать в качестве функции потерь ту же $F(a(X), Y)$. К сожалению, это не всегда возможно. Рассмотрим, как оптимизировать метрики иначе.

Метрики precision и recall невозможно оптимизировать напрямую, потому что эти метрики нельзя рассчитать на одном объекте, а затем усреднить. Они зависят от того, какими были правильная метка класса и ответ алгоритма на всех объектах. Чтобы понять, как оптимизировать precision, recall, рассмотрим, как расчитать эти метрики на отложенной выборке. Пусть модель обучена на стандартную для классификации функцию потерь (LogLoss). Для получения меток класса специалист по машинному обучению сначала применяет на объектах модель и получает вещественные предсказания модели ($p_i in left(0, 1right)$). Затем предсказания бинаризуются по порогу, выбранному специалистом: если предсказание на объекте больше порога, то метка класса 1 (или «положительная»), если меньше — 0 (или «отрицательная»). Рассмотрим, что будет с метриками precision, recall в крайних положениях порога.

  1. Пусть порог равен нулю. Тогда всем объектам будет присвоена положительная метка. Следовательно, все объекты будут либо TP, либо FP, потому что отрицательных предсказаний нет, $TP + FP = N$, где $N$ — размер выборки. Также все объекты, у которых метка на самом деле 1, попадут в TP. По формуле точность $text{Precision} = frac{TP}{TP + FP} = frac1N sum_{i = 1}^N mathbb{I} left[ y_i = 1 right]$ равна среднему таргету в выборке. А полнота $text{Recall} = frac{TP}{TP + FN} = frac{TP}{TP + 0} = 1$ равна единице.
  2. Пусть теперь порог равен единице. Тогда ни один объект не будет назван положительным, $TP = FP = 0$. Все объекты с меткой класса 1 попадут в FN. Если есть хотя бы один такой объект, то есть $FN ne 0$, будет верна формула $text{Recall} = frac{TP}{TP + FN} = frac{0}{0+ FN} = 0$. То есть при пороге единица, полнота равна нулю. Теперь посмотрим на точность. Формула для Precision состоит только из счётчиков положительных ответов модели (TP, FP). При единичном пороге они оба равны нулю, $text{Precision} = frac{TP}{TP + FP} = frac{0}{0 + 0}$то есть при единичном пороге точность неопределена. Пусть мы отступили чуть-чуть назад по порогу, чтобы хотя бы несколько объектов были названы моделью положительными. Скорее всего это будут самые «простые» объекты, которые модель распознает хорошо, потому что её предсказание близко к единице. В этом предположении $FP approx 0$. Тогда точность $text{Precision} = frac{TP}{TP + FP} approx frac{TP}{TP + 0} approx 1$ будет близка к единице.

Изменяя порог, между крайними положениями, получим графики Precision и Recall, которые выглядят как-то так:

6_7.png

Recall меняется от единицы до нуля, а Precision от среднего тагрета до какого-то другого значения (нет гарантий, что график монотонный).

Итого оптимизация precision и recall происходит так:

  1. Модель обучается на стандартную функцию потерь (например, LogLoss).
  2. Используя вещественные предсказания на валидационной выборке, перебирая разные пороги от 0 до 1, получаем графики метрик в зависимости от порога.
  3. Выбираем нужное сочетание точности и полноты.

Пусть теперь мы хотим максимизировать метрику AUC. Стандартный метод оптимизации, градиентный спуск, предполагает, что функция потерь дифференцируема. AUC этим качеством не обладает, то есть мы не можем оптимизировать её напрямую. Поэтому для метрики AUC приходится изменять оптимизационную задачу. Метрика AUC считает долю верно упорядоченных пар. Значит от исходной выборки можно перейти к выборке упорядоченных пар объектов. На этой выборке ставится задача классификации: метка класса 1 соответствует правильно упорядоченной паре, 0 — неправильно. Новой метрикой становится accuracy — доля правильно классифицированных объектов, то есть доля правильно упорядоченных пар. Оптимизировать accuracy можно по той же схеме, что и precision, recall: обучаем модель на LogLoss и предсказываем вероятности положительной метки у объекта выборки, считаем accuracy для разных порогов по вероятности и выбираем понравившийся.

Регрессия

В задачах регрессии целевая метка у нас имеет потенциально бесконечное число значений. И природа этих значений, обычно, связана с каким-то процессом измерений:

  • величина температуры в определенный момент времени на метеостанции
  • количество прочтений статьи на сайте
  • количество проданных бананов в конкретном магазине, сети магазинов или стране
  • дебит добывающей скважины на нефтегазовом месторождении за месяц и т.п.

Мы видим, что иногда метка это целое число, а иногда произвольное вещественное число. Обычно случаи целочисленных меток моделируют так, словно это просто обычное вещественное число. При таком подходе может оказаться так, что модель A лучше модели B по некоторой метрике, но при этом предсказания у модели A могут быть не целыми. Если в бизнес-задаче ожидается именно целочисленный ответ, то и оценивать нужно огрубление.

Общая рекомендация такова: оценивайте весь каскад решающих правил: и те «внутренние», которые вы получаете в результате обучения, и те «итоговые», которые вы отдаёте бизнес-заказчику.

Например, вы можете быть удовлетворены, что стали ошибаться не во втором, а только в третьем знаке после запятой при предсказании погоды. Но сами погодные данные измеряются с точностью до десятых долей градуса, а пользователь и вовсе может интересоваться лишь целым числом градусов.

Итак, напомним постановку задачи регрессии: нам нужно по обучающей выборке ${(x_i, y_i)}_{i=1}^N$, где $y_i in mathbb{R}$ построить модель f(x).

Величину $ e_i = f(x_i) — y_i $ называют ошибкой на объекте i или регрессионным остатком.

Весь набор ошибок на отложенной выборке может служить аналогом матрицы ошибок из задачи классификации. А именно, когда мы рассматриваем две разные модели, то, глядя на то, как и на каких объектах они ошиблись, мы можем прийти к выводу, что для решения бизнес-задачи нам выгоднее взять ту или иную модель. И, аналогично со случаем бинарной классификации, мы можем начать строить агрегаты от вектора ошибок, получая тем самым разные метрики.

MSE, RMSE, $R^2$

MSE – одна из самых популярных метрик в задаче регрессии. Она уже знакома вам, т.к. применяется в качестве функции потерь (или входит в ее состав) во многих ранее рассмотренных методах.

$$ MSE(y^{true}, y^{pred}) = frac1Nsum_{i=1}^{N} (y_i — f(x_i))^2 $$

Иногда для того, чтобы показатель эффективности MSE имел размерность исходных данных, из него извлекают квадратный корень и получают показатель эффективности RMSE.

MSE неограничен сверху, и может быть нелегко понять, насколько «хорошим» или «плохим» является то или иное его значение. Чтобы появились какие-то ориентиры, делают следующее:

  • Берут наилучшее константное предсказание с точки зрения MSE — среднее арифметическое меток $bar{y}$. При этом чтобы не было подглядывания в test, среднее нужно вычислять по обучающей выборке

  • Рассматривают в качестве показателя ошибки:

    $$ R^2 = 1 — frac{sum_{i=1}^{N} (y_i — f(x_i))^2}{sum_{i=1}^{N} (y_i — bar{y})^2}.$$

    У идеального решающего правила $R^2$ равен $1$, у наилучшего константного предсказания он равен $0$ на обучающей выборке. Можно заметить, что $R^2$ показывает, какая доля дисперсии таргетов (знаменатель) объяснена моделью.

MSE квадратично штрафует за большие ошибки на объектах. Мы уже видели проявление этого при обучении моделей методом минимизации квадратичных ошибок – там это проявлялось в том, что модель старалась хорошо подстроиться под выбросы.

Пусть теперь мы хотим использовать MSE для оценки наших регрессионных моделей. Если большие ошибки для нас действительно неприемлемы, то квадратичный штраф за них — очень полезное свойство (и его даже можно усиливать, повышая степень, в которую мы возводим ошибку на объекте). Однако если в наших тестовых данных присутствуют выбросы, то нам будет сложно объективно сравнить модели между собой: ошибки на выбросах будет маскировать различия в ошибках на основном множестве объектов.

Таким образом, если мы будем сравнивать две модели при помощи MSE, у нас будет выигрывать та модель, у которой меньше ошибка на объектах-выбросах, а это, скорее всего, не то, чего требует от нас наша бизнес-задача.

История из жизни про бананы и квадратичный штраф за ошибкуИз-за неверно введенных данных метка одного из объектов оказалась в 100 раз больше реального значения. Моделировалась величина при помощи градиентного бустинга над деревьями решений. Функция потерь была MSE.

Однажды уже во время эксплуатации случилось ч.п.: у нас появились предсказания, в 100 раз превышающие допустимые из соображений физического смысла значения. Представьте себе, например, что вместо обычных 4 ящиков бананов система предлагала поставить в магазин 400. Были распечатаны все деревья из ансамбля, и мы увидели, что постепенно число ящиков действительно увеличивалось до прогнозных 400.

Было решено проверить гипотезу, что был выброс в данных для обучения. Так оно и оказалось: всего одна точка давала такую потерю на объекте, что алгоритм обучения решил, что лучше переобучиться под этот выброс, чем смириться с большим штрафом на этом объекте. А в эксплуатации у нас возникли точки, которые плюс-минус попадали в такие же листья ансамбля, что и объект-выброс.

Избежать такого рода проблем можно двумя способами: внимательнее контролируя качество данных или адаптировав функцию потерь.

Аналогично, можно поступать и в случае, когда мы разрабатываем метрику качества: менее жёстко штрафовать за большие отклонения от истинного таргета.

MAE

Использовать RMSE для сравнения моделей на выборках с большим количеством выбросов может быть неудобно. В таких случаях прибегают к также знакомой вам в качестве функции потери метрике MAE (mean absolute error):

$$ MAE(y^{true}, y^{pred}) = frac{1}{N}sum_{i=1}^{N} left|y_i — f(x_i)right| $$

Метрики, учитывающие относительные ошибки

И MSE и MAE считаются как сумма абсолютных ошибок на объектах.

Рассмотрим следующую задачу: мы хотим спрогнозировать спрос товаров на следующий месяц. Пусть у нас есть два продукта: продукт A продаётся в количестве 100 штук, а продукт В в количестве 10 штук. И пусть базовая модель предсказывает количество продаж продукта A как 98 штук, а продукта B как 8 штук. Ошибки на этих объектах добавляют 4 штрафных единицы в MAE.

И есть 2 модели-кандидата на улучшение. Первая предсказывает товар А 99 штук, а товар B 8 штук. Вторая предсказывает товар А 98 штук, а товар B 9 штук.

Обе модели улучшают MAE базовой модели на 1 единицу. Однако, с точки зрения бизнес-заказчика вторая модель может оказаться предпочтительнее, т.к. предсказание продажи редких товаров может быть приоритетнее. Один из способов учесть такое требование – рассматривать не абсолютную, а относительную ошибку на объектах.

MAPE, SMAPE

Когда речь заходит об относительных ошибках, сразу возникает вопрос: что мы будем ставить в знаменатель?

В метрике MAPE (mean absolute percentage error) в знаменатель помещают целевое значение:

$$ MAPE(y^{true}, y^{pred}) = frac{1}{N} sum_{i=1}^{N} frac{ left|y_i — f(x_i)right|}{left|y_iright|} $$

С особым случаем, когда в знаменателе оказывается $0$, обычно поступают «инженерным» способом: или выдают за непредсказание $0$ на таком объекте большой, но фиксированный штраф, или пытаются застраховаться от подобного на уровне формулы и переходят к метрике SMAPE (symmetric mean absolute percentage error):

$$ SMAPE(y^{true}, y^{pred}) = frac{1}{N} sum_{i=1}^{N} frac{ 2 left|y_i — f(x_i)right|}{y_i + f(x_i)} $$

Если же предсказывается ноль, штраф считаем нулевым.

Таким переходом от абсолютных ошибок на объекте к относительным мы сделали объекты в тестовой выборке равнозначными: даже если мы делаем абсурдно большое предсказание, на фоне которого истинная метка теряется, мы получаем штраф за этот объект порядка 1 в случае MAPE и 2 в случае SMAPE.

WAPE

Как и любая другая метрика, MAPE имеет свои границы применимости: например, она плохо справляется с прогнозом спроса на товары с прерывистыми продажами. Рассмотрим такой пример:

Понедельник Вторник Среда
Прогноз 55 2 50
Продажи 50 1 50
MAPE 10% 100% 0%

Среднее MAPE – 36.7%, что не очень отражает реальную ситуацию, ведь два дня мы предсказывали с хорошей точностью. В таких ситуациях помогает WAPE (weighted average percentage error):

$$ WAPE(y^{true}, y^{pred}) = frac{sum_{i=1}^{N} left|y_i — f(x_i)right|}{sum_{i=1}^{N} left|y_iright|} $$

Если мы предсказываем идеально, то WAPE = 0, если все предсказания отдаём нулевыми, то WAPE = 1.

В нашем примере получим WAPE = 5.9%

RMSLE

Альтернативный способ уйти от абсолютных ошибок к относительным предлагает метрика RMSLE (root mean squared logarithmic error):

$$ RMSLE(y^{true}, y^{pred}| c) = sqrt{ frac{1}{N} sum_{i=1}^N left(vphantom{frac12}log{left(y_i + c right)} — log{left(f(x_i) + c right)}right)^2 } $$

где нормировочная константа $c$ вводится искусственно, чтобы не брать логарифм от нуля. Также по построению видно, что метрика пригодна лишь для неотрицательных меток.

Веса в метриках

Все вышеописанные метрики легко допускают введение весов для объектов. Если мы из каких-то соображений можем определить стоимость ошибки на объекте, можно брать эту величину в качестве веса. Например, в задаче предсказания спроса в качестве веса можно использовать стоимость объекта.

Доля предсказаний с абсолютными ошибками больше, чем d

Еще одним способом охарактеризовать качество модели в задаче регрессии является доля предсказаний с абсолютными ошибками больше заданного порога $d$:

$$frac{1}{N} sum_{i=1}^{N} mathbb{I}left[ left| y_i — f(x_i) right| > d right] $$

Например, можно считать, что прогноз погоды сбылся, если ошибка предсказания составила меньше 1/2/3 градусов. Тогда рассматриваемая метрика покажет, в какой доле случаев прогноз не сбылся.

Как оптимизировать метрики регрессии?

Пусть мы выбрали, что метрика качества алгоритма будет $F(a(X), Y)$. Тогда мы хотим обучить модель так, чтобы F на валидационной выборке была минимальная/максимальная. Аналогично задачам классификации лучший способ добиться минимизации метрики $F$ — выбрать в качестве функции потерь ту же $F(a(X), Y)$. К счастью, основные метрики для регрессии: MSE, RMSE, MAE можно оптимизировать напрямую. С формальной точки зрения MAE не дифференцируема, так как там присутствует модуль, чья производная не определена в нуле. На практике для этого выколотого случая в коде можно возвращать ноль.

Для оптимизации MAPE придётся изменять оптимизационную задачу. Оптимизацию MAPE можно представить как оптимизацию MAE, где объектам выборки присвоен вес $frac{1}{vert y_ivert}$.

В машинном обучении различают оценки качества для задачи классификации и регрессии. Причем оценка задачи классификации часто значительно сложнее, чем оценка регрессии.

Содержание

  • 1 Оценки качества классификации
    • 1.1 Матрица ошибок (англ. Сonfusion matrix)
    • 1.2 Аккуратность (англ. Accuracy)
    • 1.3 Точность (англ. Precision)
    • 1.4 Полнота (англ. Recall)
    • 1.5 F-мера (англ. F-score)
    • 1.6 ROC-кривая
    • 1.7 Precison-recall кривая
  • 2 Оценки качества регрессии
    • 2.1 Средняя квадратичная ошибка (англ. Mean Squared Error, MSE)
    • 2.2 Cредняя абсолютная ошибка (англ. Mean Absolute Error, MAE)
    • 2.3 Коэффициент детерминации
    • 2.4 Средняя абсолютная процентная ошибка (англ. Mean Absolute Percentage Error, MAPE)
    • 2.5 Корень из средней квадратичной ошибки (англ. Root Mean Squared Error, RMSE)
    • 2.6 Cимметричная MAPE (англ. Symmetric MAPE, SMAPE)
    • 2.7 Средняя абсолютная масштабированная ошибка (англ. Mean absolute scaled error, MASE)
  • 3 Кросс-валидация
  • 4 Примечания
  • 5 См. также
  • 6 Источники информации

Оценки качества классификации

Матрица ошибок (англ. Сonfusion matrix)

Перед переходом к самим метрикам необходимо ввести важную концепцию для описания этих метрик в терминах ошибок классификации — confusion matrix (матрица ошибок).
Допустим, что у нас есть два класса и алгоритм, предсказывающий принадлежность каждого объекта одному из классов.
Рассмотрим пример. Пусть банк использует систему классификации заёмщиков на кредитоспособных и некредитоспособных. При этом первым кредит выдаётся, а вторые получат отказ. Таким образом, обнаружение некредитоспособного заёмщика () можно рассматривать как «сигнал тревоги», сообщающий о возможных рисках.

Любой реальный классификатор совершает ошибки. В нашем случае таких ошибок может быть две:

  • Кредитоспособный заёмщик распознается моделью как некредитоспособный и ему отказывается в кредите. Данный случай можно трактовать как «ложную тревогу».
  • Некредитоспособный заёмщик распознаётся как кредитоспособный и ему ошибочно выдаётся кредит. Данный случай можно рассматривать как «пропуск цели».

Несложно увидеть, что эти ошибки неравноценны по связанным с ними проблемам. В случае «ложной тревоги» потери банка составят только проценты по невыданному кредиту (только упущенная выгода). В случае «пропуска цели» можно потерять всю сумму выданного кредита. Поэтому системе важнее не допустить «пропуск цели», чем «ложную тревогу».

Поскольку с точки зрения логики задачи нам важнее правильно распознать некредитоспособного заёмщика с меткой , чем ошибиться в распознавании кредитоспособного, будем называть соответствующий исход классификации положительным (заёмщик некредитоспособен), а противоположный — отрицательным (заемщик кредитоспособен ). Тогда возможны следующие исходы классификации:

  • Некредитоспособный заёмщик классифицирован как некредитоспособный, т.е. положительный класс распознан как положительный. Наблюдения, для которых это имеет место называются истинно-положительными (True PositiveTP).
  • Кредитоспособный заёмщик классифицирован как кредитоспособный, т.е. отрицательный класс распознан как отрицательный. Наблюдения, которых это имеет место, называются истинно отрицательными (True NegativeTN).
  • Кредитоспособный заёмщик классифицирован как некредитоспособный, т.е. имела место ошибка, в результате которой отрицательный класс был распознан как положительный. Наблюдения, для которых был получен такой исход классификации, называются ложно-положительными (False PositiveFP), а ошибка классификации называется ошибкой I рода.
  • Некредитоспособный заёмщик распознан как кредитоспособный, т.е. имела место ошибка, в результате которой положительный класс был распознан как отрицательный. Наблюдения, для которых был получен такой исход классификации, называются ложно-отрицательными (False NegativeFN), а ошибка классификации называется ошибкой II рода.

Таким образом, ошибка I рода, или ложно-положительный исход классификации, имеет место, когда отрицательное наблюдение распознано моделью как положительное. Ошибкой II рода, или ложно-отрицательным исходом классификации, называют случай, когда положительное наблюдение распознано как отрицательное. Поясним это с помощью матрицы ошибок классификации:

Истинно-положительный (True Positive — TP) Ложно-положительный (False Positive — FP)
Ложно-отрицательный (False Negative — FN) Истинно-отрицательный (True Negative — TN)

Здесь — это ответ алгоритма на объекте, а — истинная метка класса на этом объекте.
Таким образом, ошибки классификации бывают двух видов: False Negative (FN) и False Positive (FP).
P означает что классификатор определяет класс объекта как положительный (N — отрицательный). T значит что класс предсказан правильно (соответственно F — неправильно). Каждая строка в матрице ошибок представляет спрогнозированный класс, а каждый столбец — фактический класс.

 # код для матрицы ошибок
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.metrics import confusion_matrix
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (англ. Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 # Для расчета матрицы ошибок сначала понадобится иметь набор прогнозов, чтобы их можно было сравнивать с фактическими целями
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 print(confusion_matrix(y_train_5, y_train_pred))
 # array([[53892, 687],
 #        [ 1891, 3530]])

Безупречный классификатор имел бы только истинно-поло­жительные и истинно отрицательные классификации, так что его матрица ошибок содержала бы ненулевые значения только на своей главной диа­гонали (от левого верхнего до правого нижнего угла):

 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.metrics import confusion_matrix
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 y_train_perfect_predictions = y_train_5 # притворись, что мы достигли совершенства
 print(confusion_matrix(y_train_5, y_train_perfect_predictions))
 # array([[54579, 0],
 #        [ 0, 5421]])

Аккуратность (англ. Accuracy)

Интуитивно понятной, очевидной и почти неиспользуемой метрикой является accuracy — доля правильных ответов алгоритма:

Эта метрика бесполезна в задачах с неравными классами, что как вариант можно исправить с помощью алгоритмов сэмплирования и это легко показать на примере.

Допустим, мы хотим оценить работу спам-фильтра почты. У нас есть 100 не-спам писем, 90 из которых наш классификатор определил верно (True Negative = 90, False Positive = 10), и 10 спам-писем, 5 из которых классификатор также определил верно (True Positive = 5, False Negative = 5).
Тогда accuracy:

Однако если мы просто будем предсказывать все письма как не-спам, то получим более высокую аккуратность:

При этом, наша модель совершенно не обладает никакой предсказательной силой, так как изначально мы хотели определять письма со спамом. Преодолеть это нам поможет переход с общей для всех классов метрики к отдельным показателям качества классов.

 # код для для подсчета аккуратности:
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.metrics import accuracy_score
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 # print(confusion_matrix(y_train_5, y_train_pred))
 # array([[53892, 687]
 #        [ 1891, 3530]])
 print(accuracy_score(y_train_5, y_train_pred)) # == (53892 + 3530) / (53892 + 3530  + 1891 +687)
 
 # 0.9570333333333333

Точность (англ. Precision)

Точностью (precision) называется доля правильных ответов модели в пределах класса — это доля объектов действительно принадлежащих данному классу относительно всех объектов которые система отнесла к этому классу.

Именно введение precision не позволяет нам записывать все объекты в один класс, так как в этом случае мы получаем рост уровня False Positive.

Полнота (англ. Recall)

Полнота — это доля истинно положительных классификаций. Полнота показывает, какую долю объектов, реально относящихся к положительному классу, мы предсказали верно.

Полнота (recall) демонстрирует способность алгоритма обнаруживать данный класс вообще.

Имея матрицу ошибок, очень просто можно вычислить точность и полноту для каждого класса. Точность (precision) равняется отношению соответствующего диагонального элемента матрицы и суммы всей строки класса. Полнота (recall) — отношению диагонального элемента матрицы и суммы всего столбца класса. Формально:

Результирующая точность классификатора рассчитывается как арифметическое среднее его точности по всем классам. То же самое с полнотой. Технически этот подход называется macro-averaging.

 # код для для подсчета точности и полноты:
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.metrics import precision_score, recall_score
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 # print(confusion_matrix(y_train_5, y_train_pred))
 # array([[53892, 687]
 #        [ 1891, 3530]])
 print(precision_score(y_train_5, y_train_pred)) # == 3530 / (3530 + 687)
 print(recall_score(y_train_5, y_train_pred)) # == 3530 / (3530 + 1891)
   
 # 0.8370879772350012
 # 0.6511713705958311

F-мера (англ. F-score)

Precision и recall не зависят, в отличие от accuracy, от соотношения классов и потому применимы в условиях несбалансированных выборок.
Часто в реальной практике стоит задача найти оптимальный (для заказчика) баланс между этими двумя метриками. Понятно что чем выше точность и полнота, тем лучше. Но в реальной жизни максимальная точность и полнота не достижимы одновременно и приходится искать некий баланс. Поэтому, хотелось бы иметь некую метрику которая объединяла бы в себе информацию о точности и полноте нашего алгоритма. В этом случае нам будет проще принимать решение о том какую реализацию запускать в производство (у кого больше тот и круче). Именно такой метрикой является F-мера.

F-мера представляет собой гармоническое среднее между точностью и полнотой. Она стремится к нулю, если точность или полнота стремится к нулю.

Данная формула придает одинаковый вес точности и полноте, поэтому F-мера будет падать одинаково при уменьшении и точности и полноты. Возможно рассчитать F-меру придав различный вес точности и полноте, если вы осознанно отдаете приоритет одной из этих метрик при разработке алгоритма:

где принимает значения в диапазоне если вы хотите отдать приоритет точности, а при приоритет отдается полноте. При формула сводится к предыдущей и вы получаете сбалансированную F-меру (также ее называют ).

  • Рис.1 Сбалансированная F-мера,

  • Рис.2 F-мера c приоритетом точности,

  • Рис.3 F-мера c приоритетом полноты,

F-мера достигает максимума при максимальной полноте и точности, и близка к нулю, если один из аргументов близок к нулю.

F-мера является хорошим кандидатом на формальную метрику оценки качества классификатора. Она сводит к одному числу две других основополагающих метрики: точность и полноту. Имея «F-меру» гораздо проще ответить на вопрос: «поменялся алгоритм в лучшую сторону или нет?»

 # код для подсчета метрики F-mera:
 # Пример классификатора, способного проводить различие между всего лишь двумя
 # классами, "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.linear_model import SGDClassifier
 from sklearn.metrics import f1_score
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распознавать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 print(f1_score(y_train_5, y_train_pred))
 
 # 0.7325171197343846

ROC-кривая

Кривая рабочих характеристик (англ. Receiver Operating Characteristics curve).
Используется для анализа поведения классификаторов при различных пороговых значениях.
Позволяет рассмотреть все пороговые значения для данного классификатора.
Показывает долю ложно положительных примеров (англ. false positive rate, FPR) в сравнении с долей истинно положительных примеров (англ. true positive rate, TPR).

ROC 2.png

Доля FPR — это пропорция отрицательных образцов, которые были некорректно классифицированы как положительные.

,

где TNR — доля истинно отрицательных классификаций (англ. Тrие Negative Rate), пред­ставляющая собой пропорцию отрицательных образцов, которые были кор­ректно классифицированы как отрицательные.

Доля TNR также называется специфичностью (англ. specificity). Следовательно, ROC-кривая изображает чувствительность (англ. seпsitivity), т.е. полноту, в срав­нении с разностью 1 — specificity.

Прямая линия по диагонали представляет ROC-кривую чисто случайного классификатора. Хороший классификатор держится от указанной линии настолько далеко, насколько это
возможно (стремясь к левому верхнему углу).

Один из способов сравнения классификаторов предусматривает измере­ние площади под кривой (англ. Area Under the Curve — AUC). Безупречный клас­сификатор будет иметь площадь под ROC-кривой (ROC-AUC), равную 1, тогда как чисто случайный классификатор — площадь 0.5.

 # Код отрисовки ROC-кривой
 # На примере классификатора, способного проводить различие между всего лишь двумя классами
 # "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 from sklearn.metrics import roc_curve
 import matplotlib.pyplot as plt
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5)  # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3, method="decision_function")
 fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)
 def plot_roc_curve(fpr, tpr, label=None):
     plt.plot(fpr, tpr, linewidth=2, label=label)
     plt.plot([0, 1], [0, 1], 'k--') # dashed diagonal
     plt.xlabel('False Positive Rate, FPR (1 - specificity)')
     plt.ylabel('True Positive Rate, TPR (Recall)')
     plt.title('ROC curve')
     plt.savefig("ROC.png")
 plot_roc_curve(fpr, tpr)
 plt.show()

Precison-recall кривая

Чувствительность к соотношению классов.
Рассмотрим задачу выделения математических статей из множества научных статей. Допустим, что всего имеется 1.000.100 статей, из которых лишь 100 относятся к математике. Если нам удастся построить алгоритм , идеально решающий задачу, то его TPR будет равен единице, а FPR — нулю. Рассмотрим теперь плохой алгоритм, дающий положительный ответ на 95 математических и 50.000 нематематических статьях. Такой алгоритм совершенно бесполезен, но при этом имеет TPR = 0.95 и FPR = 0.05, что крайне близко к показателям идеального алгоритма.
Таким образом, если положительный класс существенно меньше по размеру, то AUC-ROC может давать неадекватную оценку качества работы алгоритма, поскольку измеряет долю неверно принятых объектов относительно общего числа отрицательных. Так, алгоритм , помещающий 100 релевантных документов на позиции с 50.001-й по 50.101-ю, будет иметь AUC-ROC 0.95.

Precison-recall (PR) кривая. Избавиться от указанной проблемы с несбалансированными классами можно, перейдя от ROC-кривой к PR-кривой. Она определяется аналогично ROC-кривой, только по осям откладываются не FPR и TPR, а полнота (по оси абсцисс) и точность (по оси ординат). Критерием качества семейства алгоритмов выступает площадь под PR-кривой (англ. Area Under the Curve — AUC-PR)

PR curve.png

 # Код отрисовки Precison-recall кривой
 # На примере классификатора, способного проводить различие между всего лишь двумя классами
 # "пятерка" и "не пятерка" из набора рукописных цифр MNIST
 from sklearn.metrics import precision_recall_curve
 import matplotlib.pyplot as plt
 import numpy as np
 from sklearn.datasets import fetch_openml
 from sklearn.model_selection import cross_val_predict
 from sklearn.linear_model import SGDClassifier
 mnist = fetch_openml('mnist_784', version=1)
 X, y = mnist["data"], mnist["target"]
 y = y.astype(np.uint8)
 X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
 y_train_5 = (y_train == 5) # True для всех пятерок, False для в сех остальных цифр. Задача опознать пятерки
 y_test_5 = (y_test == 5)
 sgd_clf = SGDClassifier(random_state=42) # классификатор на основе метода стохастического градиентного спуска (Stochastic Gradient Descent SGD)
 sgd_clf.fit(X_train, y_train_5) # обучаем классификатор распозновать пятерки на целом обучающем наборе
 y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)
 y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3, method="decision_function")
 precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)
 def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
     plt.plot(recalls, precisions, linewidth=2)
     plt.xlabel('Recall')
     plt.ylabel('Precision')
     plt.title('Precision-Recall curve')
     plt.savefig("Precision_Recall_curve.png")
 plot_precision_recall_vs_threshold(precisions, recalls, thresholds)
 plt.show()

Оценки качества регрессии

Наиболее типичными мерами качества в задачах регрессии являются

Средняя квадратичная ошибка (англ. Mean Squared Error, MSE)

MSE применяется в ситуациях, когда нам надо подчеркнуть большие ошибки и выбрать модель, которая дает меньше больших ошибок прогноза. Грубые ошибки становятся заметнее за счет того, что ошибку прогноза мы возводим в квадрат. И модель, которая дает нам меньшее значение среднеквадратической ошибки, можно сказать, что что у этой модели меньше грубых ошибок.

и

Cредняя абсолютная ошибка (англ. Mean Absolute Error, MAE)

Среднеквадратичный функционал сильнее штрафует за большие отклонения по сравнению со среднеабсолютным, и поэтому более чувствителен к выбросам. При использовании любого из этих двух функционалов может быть полезно проанализировать, какие объекты вносят наибольший вклад в общую ошибку — не исключено, что на этих объектах была допущена ошибка при вычислении признаков или целевой величины.

Среднеквадратичная ошибка подходит для сравнения двух моделей или для контроля качества во время обучения, но не позволяет сделать выводов о том, на сколько хорошо данная модель решает задачу. Например, MSE = 10 является очень плохим показателем, если целевая переменная принимает значения от 0 до 1, и очень хорошим, если целевая переменная лежит в интервале (10000, 100000). В таких ситуациях вместо среднеквадратичной ошибки полезно использовать коэффициент детерминации —

Коэффициент детерминации

Коэффициент детерминации измеряет долю дисперсии, объясненную моделью, в общей дисперсии целевой переменной. Фактически, данная мера качества — это нормированная среднеквадратичная ошибка. Если она близка к единице, то модель хорошо объясняет данные, если же она близка к нулю, то прогнозы сопоставимы по качеству с константным предсказанием.

Средняя абсолютная процентная ошибка (англ. Mean Absolute Percentage Error, MAPE)

Это коэффициент, не имеющий размерности, с очень простой интерпретацией. Его можно измерять в долях или процентах. Если у вас получилось, например, что MAPE=11.4%, то это говорит о том, что ошибка составила 11,4% от фактических значений.
Основная проблема данной ошибки — нестабильность.

Корень из средней квадратичной ошибки (англ. Root Mean Squared Error, RMSE)

Примерно такая же проблема, как и в MAPE: так как каждое отклонение возводится в квадрат, любое небольшое отклонение может значительно повлиять на показатель ошибки. Стоит отметить, что существует также ошибка MSE, из которой RMSE как раз и получается путем извлечения корня.

Cимметричная MAPE (англ. Symmetric MAPE, SMAPE)

Средняя абсолютная масштабированная ошибка (англ. Mean absolute scaled error, MASE)

MASE является очень хорошим вариантом для расчета точности, так как сама ошибка не зависит от масштабов данных и является симметричной: то есть положительные и отрицательные отклонения от факта рассматриваются в равной степени.
Обратите внимание, что в MASE мы имеем дело с двумя суммами: та, что в числителе, соответствует тестовой выборке, та, что в знаменателе — обучающей. Вторая фактически представляет собой среднюю абсолютную ошибку прогноза. Она же соответствует среднему абсолютному отклонению ряда в первых разностях. Эта величина, по сути, показывает, насколько обучающая выборка предсказуема. Она может быть равна нулю только в том случае, когда все значения в обучающей выборке равны друг другу, что соответствует отсутствию каких-либо изменений в ряде данных, ситуации на практике почти невозможной. Кроме того, если ряд имеет тенденцию к росту либо снижению, его первые разности будут колебаться около некоторого фиксированного уровня. В результате этого по разным рядам с разной структурой, знаменатели будут более-менее сопоставимыми. Всё это, конечно же, является очевидными плюсами MASE, так как позволяет складывать разные значения по разным рядам и получать несмещённые оценки.

Недостаток MASE в том, что её тяжело интерпретировать. Например, MASE=1.21 ни о чём, по сути, не говорит. Это просто означает, что ошибка прогноза оказалась в 1.21 раза выше среднего абсолютного отклонения ряда в первых разностях, и ничего более.

Кросс-валидация

Хороший способ оценки модели предусматривает применение кросс-валидации (cкользящего контроля или перекрестной проверки).

В этом случае фиксируется некоторое множество разбиений исходной выборки на две подвыборки: обучающую и контрольную. Для каждого разбиения выполняется настройка алгоритма по обучающей подвыборке, затем оценивается его средняя ошибка на объектах контрольной подвыборки. Оценкой скользящего контроля называется средняя по всем разбиениям величина ошибки на контрольных подвыборках.

Примечания

  1. [1] Лекция «Оценивание качества» на www.coursera.org
  2. [2] Лекция на www.stepik.org о кросвалидации
  3. [3] Лекция на www.stepik.org о метриках качества, Precison и Recall
  4. [4] Лекция на www.stepik.org о метриках качества, F-мера
  5. [5] Лекция на www.stepik.org о метриках качества, примеры

См. также

  • Оценка качества в задаче кластеризации
  • Кросс-валидация

Источники информации

  1. [6] Соколов Е.А. Лекция линейная регрессия
  2. [7] — Дьяконов А. Функции ошибки / функционалы качества
  3. [8] — Оценка качества прогнозных моделей
  4. [9] — HeinzBr Ошибка прогнозирования: виды, формулы, примеры
  5. [10] — egor_labintcev Метрики в задачах машинного обучения
  6. [11] — grossu Методы оценки качества прогноза
  7. [12] — К.В.Воронцов, Классификация
  8. [13] — К.В.Воронцов, Скользящий контроль

Классификация — одна из наиболее популярных технологий интеллектуального анализа данных. С необходимостью построения классификаторов рано или поздно сталкивается любой аналитик. Но даже построив модель, необходимо прежде всего убедиться в ее работоспособности. Для этого разработано большое количество мер качества. Наиболее популярные из них рассматриваются в данной статье.

Для классификационных моделей, как и для моделей регрессии, актуальна задача оценки их качества для определения работоспособности моделей и их сравнения. Однако решение этой задачи для моделей классификации вообще, и бинарной классификации в частности, сложнее, чем для регрессии. Связано это с тем, что целевая переменная (метка класса) является категориальным (дискретным) значением, и, следовательно, ошибка классификации не может быть выражена числовым значением.

Поэтому в основе оценки качества классификационных моделей лежит статистика результатов классификации обучающих примеров. С ее помощью вычисляются метрики качества — показатели, которые зависят от результатов классификации и не зависят от внутреннего состояния модели.

Среди наиболее популярных методов оценки качества классификаторов можно выделить следующие:

  1. Матрица ошибок (Сonfusion matrix).
  2. Меткость (Accuracy).
  3. Точность (Precision).
  4. Полнота (Recall).
  5. Специфичность (Specificity).
  6. F1-мера (F1-score).
  7. Метрика P4 .
  8. Площадь под ROC-кривой (Area under ROC-curve, AUC-ROC).
  9. Площадь под кривой полнота-точность (Area under precision-recall curve, AUC-PR).
  10. Коэффициент корреляции Мэтьюса (Matthews correlation coefficient, MCC).
  11. Функция потерь логистической регрессии (Logistic loss function, Log Loss).

Матрица ошибок

Прежде чем переходить к описанию собственно метрик качества бинарных классификаторов, рассмотрим методику описания этих метрик в терминах ошибок классификации. Пусть заданы два класса y=left { 0,1 right } и алгоритм, предсказывающий принадлежность каждого объекта одному из классов. Эта задача анализа известна как бинарная классификация.

Приведем пример. Пусть в страховой компании используется аналитическая платформа для поддержки принятия решений о целесообразности страхования того или иного объекта. Если риск наступления страхового события выше определенного порога, то такие объекты страховать нецелесообразно. Именно выявление таких объектов и является целью анализа. Тогда для объектов, страхование которых целесообразно, система должна установить класс 0, а объектам, в страховании которых отказано, — класс 1.

Любой реальный классификатор совершает ошибки. В нашем случае таких ошибок может быть две:

  • класс 0 распознается классификатором как класс 1, что можно интерпретировать как «ложную тревогу»;
  • класс 1 распознается как класс 0, что можно трактовать как «пропуск цели».

Очевидно, что приведенные ошибки неравноценны по связанным с ними издержкам классификации. В случае «ложной тревоги» компания потеряет только потенциальную страховую премию, т.е. будет иметь место всего лишь упущенная выгода. В случае «пропуска цели» возможна потеря значительной суммы из-за наступления страхового случая. Поэтому важнее не допустить «пропуск цели», чем «ложную тревогу».

Иными словами, важнее правильно определить объект, нежелательный для страхования из-за высокого риска, чем ошибиться в распознавании желательного. Будем называть соответствующий исход классификации положительным (объект не подлежит страхованию y=1), а противоположный — отрицательным (объект подлежит страхованию y=0). Тогда возможны следующие исходы классификации:

  1. Объект, нежелательный для страхования, классифицирован как нежелательный, т.е. «положительный» класс распознан как положительный. Такой исход классификации (а также пример, для которого он получен) называют истинноположительным.
  2. Объект, желательный для страхования, распознан как желательный, т.е. «отрицательный» класс распознан как отрицательный. Такой исход классификации называют истинноотрицательными.
  3. Объект, желаемый для страхования, классифицирован как не желаемый, т.е. имела место ошибка, в результате которой отрицательный класс был распознан как положительный. Данный исход классификации называют ложноположительным, а ошибка классификации называется ошибкой I рода.
  4. Нежелательный объект распознан как желательный, т.е. имела место ошибка, в результате которой положительный класс был распознан как отрицательный. Такой исход классификации называется ложноотрицательным, а ошибка классификации — ошибкой II рода.

Таким образом, ошибка I рода, или ложноположительный исход классификации, имеет место, когда пример, с которым связано отрицательное событие распознан моделью как положительный. Ошибкой II рода, или ложноотрицательным исходом классификации, называют случай, когда пример, с которым связано положительное событие, распознан как отрицательный. Поясним это с помощью матрицы ошибок классификации, называемой также таблицей сопряженности:

  y=0 y=1
widehat{y}=0 Истинноположительный (True Positive — TP) Ложноположительный (False Positive — FP)
widehat{y}=1 Ложноотрицательный (False Negative — FN) Истинноотрицательный (True Negative — TN)

Здесь widehat{y} — отклик модели, а y — фактическое значение. Таким образом, ошибки классификации бывают двух видов: False Negative (FN) и False Positive (FP). В данном случае P означает, что классификатор определяет класс объекта как положительный, а N как — отрицательный. T значит, что класс предсказан правильно, соответственно, F — неправильно. Каждая строка в матрице ошибок представляет предсказанный класс, а каждый столбец — фактически наблюдаемый класс.

Идеальный классификатор, если бы он существовал, выдавал бы только истиннополо­жительные и истинноотрицательные классификации, и его матрица ошибок содержала бы значения, отличные от нуля, только на главной диа­гонали.

Меткость

Представляет собой долю правильных классификаций модели:

ACC=frac{TP+TN}{TP+TN+FP+FN}.

Несложно увидеть, что сумма в знаменателе формулы представляет собой общее число классифицируемых примеров. Графически это можно интерпретировать следующим образом:

Рисунок 1. Меткость

В английском языке этот термин обозначается как «accuracy», поэтому в интернете он часто упоминается как «аккуратность», хотя это слово и не передает смыслового значения данной величины.

Несмотря на то, что эта мера хорошо интерпретируется, на практике она используется достаточно редко, поскольку плохо работает в случае дисбаланса классов в обучающей выборке.

Поясним это на примере кредитного скоринга. Пусть требуется классифицировать заемщиков на добросовестных (не допустивших просрочку) и недобросовестных (допустивших просрочку). Целью является выявление недобросовестных заемщиков, поскольку связанные с ними издержки выше. Следовательно, классификация заемщика как недобросовестного является положительным событием, а как добросовестного — отрицательным.

Выборка содержит 1000 добросовестных заемщиков, 900 из которых классификатор предсказал правильно (TN=900FP=100), и 100 недобросовестных, 50 из которых классификатор также определил верно (TP=50FN=50).

Несложно вычислить, что:

ACC=frac{50+900}{50+900+100+50}=0.866.

Однако, если построить «наивную» модель, которая просто будет классифицировать всех клиентов, как добросовестных (на основании того, что таковых большинство), то меткость такой модели окажется:

ACC=frac{0+1000}{0+1000+0+100}=0.909.

Таким образом, оказалось, что меткость «бесполезной» модели, не имеющей предсказательной силы, выше, чем «рабочей» модели. Это противоречит здравому смыслу. Поэтому на практике стараются использовать альтернативные меры качества.

Точность

Точность равна доле истинноположительных классификаций к общему числу положительных классификаций. Данная величина часто упоминается как positive predictive value (PPV) или положительное прогностическое значение:

Pr=PPV=frac{TP}{TP+FP}.

Поясним данное выражение с помощью рисунка:

Рисунок 2. Точность

Несложно увидеть, что попытка отнести все объекты к одному классу неизбежно приведет к росту FP и уменьшению значения точности.

Полнота

Полнота, известная еще как чувствительность или доля истинноположительных примеров (TPR — true positive rate), определяется как число истинноположительных классификаций относительно общего числа положительных наблюдений:

Re=TPR=frac{TP}{TP+FN}.

Таким образом, полноту можно рассматривать как способность классификатора обнаруживать определенный класс. Графически полноту можно проиллюстрировать с помощью рисунка:

Рисунок 3. Полнота

Точность и полноту для каждого класса легко определять с помощью матрицы ошибок. Точность равна отношению соответствующего диагонального элемента матрицы и суммы элементов всей строки класса, а полнота — отношению диагонального элемента матрицы и суммы элементов всего столбца класса.

PPV_{c}=frac{A_{cc}}{sumlimits_{i=1}^{n}A_{ci}},

TPR_{c}=frac{A_{cc}}{sumlimits_{i=1}^{n}A_{ic}},

где c — класс, n — число элементов столбца (равно числу классов), i — номер элемента в столбце, A — элемент матрицы ошибок.

Специфичность

Специфичность классификатора — это доля истинноотрицательных (True Negative Rate — TNR) классификаций в общем числе отрицательных классификаций:

Sp=TNR=frac{TN}{TN+FP}.

TNR показывает, насколько хорошо модель классифицирует отрицательные примеры. Поясним это с помощью рисунка.

Рисунок 4. Специфичность

Очевидно, что если все отрицательные примеры классифицированы правильно (т.е. число ложноположительных случаев равно 0), то TPR=1.

F1-мера

Точность и полнота, в отличие от меткости, не зависят от соотношения классов и, следовательно, могут применяться в условиях несбалансированных выборок. На практике часто встречается задача поиска оптимального баланса между точностью и полнотой. Действительно, улучшая настройку модели на один класс, например, путем изменения дискриминационного порога, мы тем самым ухудшаем настройку на другой.

Чем выше точность и полнота, тем лучше модель. Но на практике их максимальные значения одновременно недостижимы, поэтому приходится искать баланс между ними. Для этого используется метрика, объединяющая в себе информацию о точности и полноте. Она называется F1-мера и вычисляется следующим образом:

F1=frac{2cdot PPVcdot TPR}{PPV+TPR}=frac{2cdot TP}{2cdot TP+FP+FN}.

В данном выражении точность PPV и полнота TPR имеют одинаковый вес, поэтому при их уменьшении F1-мера сокращается пропорционально.

Однако на практике чаще используется сбалансированная F1-мера, в которой точности и полноте присваиваются разные веса с целью найти оптимальный баланс между данными метриками. Для этого в формулу для F1-меры вводится дополнительный балансировочный параметр, обозначаемый β. Сбалансированная F1-мера вычисляется следующим образом:

F1=frac{(1-beta ^{2})cdot PPVcdot TPR}{beta ^{2}cdot PPV+TPR}.

Если параметр принимает значения из диапазона 0< beta < 1, то приоритет имеет точность, а если beta> 1, то полнота.

Еще одним источником критики F1-меры является отсутствие симметрии. Это означает, что она может изменить свое значение при инверсии положительного и отрицательного классов.

Метрика P4

Метрика P_{4} была разработана как расширение F1-меры, обладающее симметрией относительно инверсии классов. Вычисляется по формуле:

P_{4}=frac{4cdot TPcdot TN}{4cdot TPcdot TN+(TP+TN)cdot (FP+FN)}.

Метрика P_{4} изменяется в диапазоне от 0 до 1. Чем ближе значение метрики к 1, тем лучше работает модель. Очевидно, что значение меры стремится к 0, если хотя бы один из множителей в числителе становится равным нулю, т.е. когда модель теряет способность правильно распознавать положительные или отрицательные примеры.

AUC-ROC

ROC-кривая, или кривая рабочих характеристик приемника (Receiver Operating Characteristics curve), позволяет не только оценить качество работы классификатора, но и исследовать его поведение при различных значениях дискриминационного порога. Технология оценки качества моделей бинарной классификации с помощью ROC-кривых известна как ROC-анализ.

Рассмотрим совместно TPR и TNR классификатора. TPR показывает, насколько хорошо модель классифицирует положительные примеры. Очевидно, что если все положительные примеры классифицированы правильно (т.е. число ложноотрицательных случаев равно 0), то TPR=1TNR показывает, насколько хорошо модель классифицирует отрицательные примеры. Очевидно, что если все отрицательные примеры классифицированы правильно (т.е. число ложноположительных случаев равно 0), то TPR=1.

Таким образом, по отдельности TPR и TNR характеризуют способность модели распознавать только один из классов. Но их совместное использование помогает создать метрику, которая позволяет выбирать значение дискриминационного порога, который оптимально балансирует модель между способностью распознавать положительные и отрицательные примеры. Именно эта задача и решается с помощью ROC-кривой.

Действительно, если изменять дискриминационный порог от 0 до 1 и наносить по оси абсцисс точки 1−TNR, а по оси ординат TPR, то полученный график и будет ROC-кривой. Величину 1−TNR называют долей ложноположительных классификаций (false positive rate) или показателем ложной тревоги. Она вычисляется следующим образом:

1-TNR=FPR=frac{FP}{FP+TN}.

При пороге, равном 1, все примеры будут классифицированы как отрицательные (FPR=1, TPR=1), а при пороге, равном 0, — как положительные (FPR=0, TPR=0). Поэтому ROC-кривая всегда идет от точки (0,0) до точки (1,1).

Рисунок 5. ROC-кривая

Несложно увидеть, что для идеальной модели ROC-кривая превращается в ломаную, проходящую через точки (0,0), (0,1) и (1,1). При этом площадь под ROC-кривой (AUC — Area Under Curve) окажется равной 1. Площадь под кривой выделена на рисунке светло-серым цветом.

Точка (0,1) соответствует идеальному состоянию модели, в котором и TPR, и TNR одновременно равны 1. Т.е. модель одинаково хорошо «научилась» работать как с положительными, так и с отрицательными примерами при существующем в обучающей выборке балансе классов.

Идеальная модель является скорее гипотетической и на практике, как правило, недостижима. Поэтому обычно приходится иметь дело с ROC-кривыми, которые не проходят через точку (0,1), а приближаются к ней на определенное расстояние. Соответственно и AUC−ROC оказывается меньше 1.

Таким образом показатель AUC−ROC является удобной мерой качества классификатора относительно идеального. Принята следующая шкала оценки качества.

AUC Оценка
0.9 — 1 Отличное
0.8 — 0.9 Очень хорошее
0.7 — 0.8 Хорошее
0.6 — 0.7 Удовлетворительное
0.5 — 0.7 Плохое

Если AUC-ROC=0.5, то ROC-кривая превращается в линию, проходящую через точки (0,0) и (1,1), которая соответствует бесполезному классификатору, работающему как случайный предсказатель. Если AUC-ROC< 0.5, то получается модель, которая работает хуже случайного предсказателя и от ее использования следует отказаться.

AUC-PR

PR-кривые определяются аналогично ROC-кривым, но только по оси абсцисс у них откладываются значения полноты, а по оси ординат — точности.

Точность и полнота — две наиболее важные метрики, на которые следует обращать внимание при оценке качества модели бинарной классификации в условиях несбалансированности классов. Они помогают увидеть, какая часть фактически положительных наблюдений была классифицирована правильно, и какие среди классифицированных как положительные, были истинноположительными.

Если точность равна 1, то ложноположительные классификации отсутствуют. Но это ничего не говорит о том, были ли распознаны все положительные примеры. Если полнота равна 1, то все положительные объекты были распознаны правильно, а ложноотрицательные классификации отсутствуют. При этом ничего не говорится о том, сколько было допущено ложноположительных классификаций.

Таким образом, точность и полнота не особенно полезны для оценки качества классификатора, если их использовать по отдельности. В задаче классификации оценка точности, равная 1 для класса C, означает, что каждый элемент, помеченный как принадлежащий классу C, действительно принадлежит к классу C, но ничего не говорит о количестве элементов из класса
C, которые не были правильно классифицированы. Тогда как полнота, равная 1, означает, что каждый элемент из класса C был помечен как принадлежащий к классу C, но ничего не говорит о том, сколько элементов из других классов были также неправильно классифицированы как принадлежащие к классу C.

Обычно показатели точности и полноты не используются по отдельности. Вместо этого либо значения одной меры сравниваются с фиксированным уровнем другой (например, точность на уровне полноты 0.75), либо обе меры объединяются в один показатель. Примерами такой комбинации и является F1-мера — взвешенное гармоническое среднее точности и полноты.

Еще одним способом комбинирования точности и полноты в задаче оценки качества классификации являются так называемые кривые полнота-точность, которые строятся в системе координат, где по оси абсцисс откладывается полнота, а по оси ординат — точность. Кривая точность-полнота показывает, как выбор порога влияет на точность классификатора, а также помогает выбрать лучшее значение дискриминационного порога для определенного баланса классов.

Рисунок 6. Кривая точность-полнота

Каждая точка PR-кривой представляет определенное значение дискриминационного порога, а ее расположение соответствует результирующей точности и полноте, когда этот порог выбран. Точка 1 на рисунке соответствует значению дискриминационного порога, равному 1, а точка 3 — значению порога 0. Точка 2 соответствует идеальному классификатору и совпадает с координатами (1,1), а точка 4 — оптимальному значению порога (точка кривой, наиболее близкая к идеальной точке (1,1)).

Преимущества PR-кривой по сравнению с ROC:

  1. ROC-кривая, как правило, дает чрезмерно оптимистичную картину в условиях несбалансированности классов.
  2. При изменении распределения классов ROC-кривая не меняется, а PR-кривая отражает изменение.

Аналогично ROC-кривой, площадь под PR-кривой (для отличия от ROC ее часто называют PR−AUC) отражает качество классификатора и позволяет сравнивать кривые, соответствующие различным балансам классов и значениям порога. Чем выше площадь, тем лучше работает модель.

Пунктирная линия внизу графика соответствует бесполезному классификатору (no-skill model — модель без навыков, или базовая модель), уровень которой изменяется при изменении баланса классов. Такая модель будет присваивать рейтинг 0.5 для любого примера.

На рисунке ниже представлена линия, соответствующая балансу классов, когда положительные примеры составляют 10% от обучающей выборки.

Рисунок 7. Кривая точность-полнота при фиксированном балансе классов

На рисунке точка 1 соответствует порогу 0.5, точка 2 соответствует порогу [0, 0.5). Для порогов (0.5, 1] точность не определена из-за деления на ноль. Можно увидеть, что точность здесь является константой, то есть PPV=0.1 (соответствует доле положительного класса), PR−AUC=0.1.

Таким образом, полнота базовой модели лежит в диапазоне (0.5, 1] независимо от дисбаланса классов, а точность равна доле положительного класса в обучающей выборке.

На следующем рисунке представлена PR-кривая для идеальной модели. На ней точка 1 соответствует порогу (0, 1], точка 2 соответствует порогу 0. Очевидно, что PR−AUC=1.

Рисунок 8. Кривая точность-полнота для идеальной модели

И, наконец, на рисунке ниже отображена PR-кривая (красная линия) для модели, которая работает хуже, чем базовая модель «без навыков» (синяя пунктирная линия). Она расположена ниже линии базовой модели.

Рисунок 9. Кривая точность-полнота для модели хуже бесполезной

Очевидный способ повысить качество «плохой» модели без каких-либо настроек — просто инвертировать классы (класс 0 изменить на класс 1). Это автоматически приведет к повышению точности по сравнению с базовой моделью.

Обычно «плохая» PR-кривая классификатора указывает на то, что в обучающих данных присутствуют проблемы: они содержат шум или классы в них плохо выражены (модель не может выявить закономерность, в соответствии с которой один класс отличается от другого). В этом случае PR−AUC не превышает доли положительных примеров обучающей выборке.

Возможен гибридный случай, когда «плохая» модель работает лучше, чем модель «без навыков», но для определенных пороговых значений.

Коэффициент корреляции Мэтьюса

Коэффициент используется в качестве показателя качества бинарных классификаторов. Он учитывает истинные и ложные классификации и обычно рассматривается как сбалансированная мера, которую можно использовать даже в условиях сильного дисбаланса классов.

MCC, по сути, коэффициент корреляции между фактическими и предсказанными моделью бинарными классификациями. Он изменяется в диапазоне от -1 до 1. MCC=1 указывает на идеальную классификацию, когда фактические и предсказанные классы совпадают для всех обучающих примеров (т.е. ложноположительные и ложноотрицательные классификации отсутствуют). Модель, для которой MCC=0, соответствует случайному предсказателю. MCC=−1 указывает на полное расхождение между фактом и предсказанием (т.е. вместо положительного класса модель всегда предсказывает отрицательный, и наоборот), следовательно, истинноположительные и истинноотрицательные классификации отсутствуют.

Формула для расчета MCC имеет вид:

MCC=frac{TPcdot TN-FPcdot FN}{sqrt{(TP+FP)(TP+FN)(TN+FP)(TN+FN)}}.

Несложно увидеть, что если в этой формуле обнулить все ложные классификации, то MCC=1, что соответствует ранее сделанным заключениям. Если число истинных и ложных классификаций равны, то числитель формулы становится равным 0 и MCC=0. И, наконец, если число истинных классификаций равно нулю, то числитель становится отрицательным, и делает таковым результат формулы.

Если какая-либо из четырех сумм в знаменателе равна нулю, знаменатель можно произвольно установить равным единице, это приводит к нулевому коэффициенту корреляции Мэтьюса.

Функция потерь логистической регрессии (Logistic loss function, Log Loss).

Функция потерь в задачах классификации показывает, какую «цену» придется заплатить за неточность предсказаний классификационной модели. Для логистической регрессии, решающей задачу бинарной классификации, она может быть вычислена следующим образом:

Log Loss=-frac{1}{l}sumlimits_{i=1}^{l}(y_{i}cdot log(widehat{y_{i}})+(1-y_{i})cdot log(1-widehat{y_{i}})),

где l — размер выборки, y_{i}=left { 0,1 right } — бинарная метка класса, заданная в примере, widehat{y_{i}} — предсказание модели.

Несложно увидеть, что функция потерь получается путем суммирования логарифма потерь на каждом примере. Потери на каждом примере определяются следующим образом: если предсказанный класс совпадает с фактическим, то потери равны 0, в противном случае потери равны 1. Очевидно, чем больше будет неправильных классификаций, тем больше будет значение LogLoss и тем хуже будет модель. Таким образом, чтобы получить лучшую модель, нужно минимизировать функцию потерь.

Преимуществом метрики LogLoss является устойчивость к выбросам и аномальным значениям в данных и простота вычисления. Недостатком — сложность интерпретации из-за нелинейного характера.

Сравнение метрик

Подведем итоги, кратко резюмируя преимущества и недостатки рассмотренных мер качества классификационных моделей.

Мера Преимущества Недостатки
Меткость Хорошо интерпретируется. Чувствительна к дисбалансу классов. Неадекватно отражает точность классификации.
Точность Не чувствительна к дисбалансу классов. Отражает качество классификации только для положительного класса.
Полнота Не чувствительна к дисбалансу классов. Не учитывает отрицательные классификации.
Специфичность Просто вычисляется и интерпретируется. Характеризует способность модели распознавать только один класс.
F1-мера Позволяет найти баланс между точностью и полнотой. Чувствительность к дисбалансу, отсутствие симметрии.
P4 Симметрична относительно инверсии классов. Чувствительность к дисбалансу классов.
AUC-ROC Наглядна, хорошо интерпретируется. В условиях дисбаланса классов завышает качество модели. Не отражает изменения баланса классов.
AUC-PR Наглядна, хорошо интерпретируется. Не учитывает отрицательные классификации.
Коэффициент Мэтьюса Более информативен, поскольку использует все типы результатов классификации. Не может применяться, если один из множителей в знаменателе обращается в 0.
LogLoss Устойчивость к выбросам в данных, простота вычисления. Сложность интерпретации из-за нелинейного характера.

В статье рассмотрены наиболее общие меры оценки качества моделей бинарной классификации, отмечены их преимущества и недостатки. Однако в литературе авторы предлагают и другие подходы, которые показали хорошие результаты при решении конкретных задач и не претендующие на универсальность.

Другие материалы по теме:

Метрики качества линейных регрессионных моделей

Отбор переменных в моделях линейной регрессии

Репрезентативность выборочных данных

Понравилась статья? Поделить с друзьями:
  • Классификация ошибок условные обозначения
  • Клинер не удаляет ошибку реестра
  • Климатроник пассат б5 сброс ошибок
  • Климатроник как сбросить ошибки
  • Климат контроль шкода октавия тур коды ошибок