Lenze ошибка 1030

Ошибки частотного преобразователя Lenze SMDЧастотные преобразователи относятся к сложной промышленной электронике достаточно дорогой и в тоже время широко распространенной по всему миру. На сегодняшний день трудно себе даже представить какое-либо производство, на котором бы не работало данное промышленное оборудование.

К сожалению, в процессе эксплуатации выходит из строя даже самое надежное промышленное оборудование. В данной статье мы разберем частотный преобразователь Lenze, а точнее коды ошибок частотного преобразователя Lenze 8200 SMD и TMD, коды ошибок и их расшифровка. Частотники в наше время нашли широкое применения в абсолютно всех сферах промышленности управляя как мини моторами в оргтехнике, так и гигантскими двигателями в горнодобывающей промышленности.

Ошибки частотного преобразователя Lenze TMDДля простоты общения со столь сложной электроникой все частотные преобразователи оснащены небольшими дисплеями с помощью которых выводятся информационные сообщения с кодами ошибок, расшифровав которые можно сразу же узнать причину ее возникновения. Если учесть распространенность данной промышленной электроники, то появляется острая нужда в расшифровке кодов ошибок частотных преобразователей.

Коды ошибок частотных преобразователей у каждого производителя свои при этом коды ошибок могут отличатся даже у одного и того же производителя, разные принципы работы или серия ЧП.

Существует несколько видов ошибок, некоторые из них можно устранить автоматически, а некоторые возможно исправить только, обратившись в специализированный сервисный центр. В таблицах ниже приведены все коды ошибок частотного преобразователя Lenze и их расшифровка, то есть причина по которой возникла та или иная ошибка.

Коды ошибок частотного преобразователя Lenze серии SMD

Коды ошибок частотного преобразователя Lenze SMD, информирующие о состоянии привода.

Сообщение об ошибке

Причина

Исправление

Код ошибки

Описание ошибки

50.0

Выходная частота.

Безаварийная работа.

OFF

Стоп.

На выходных клеммах U,V,W нет напряжения.

Низкий уровень на клемме 28.

Inh

Блокировка преобразователя частоты.

На выходных клеммах U,V,W нет напряжения.

Привод настроен на управление от удаленного пульта или через последовательный порт.

  • Запустите привод через пульт или последовательный порт.

StP

Выходная частота 0Гц.

На выходных клеммах U,V,W нет напряжения.

Заданная частота равна 0 (С31 = 0).

  • Изменить задание отличным от 0.

Активирована функция «Быстрый останов»

  • Деактивировать функцию «Быстрый останов»

br

Торможение постоянным током.

Активирована функция «Торможение DC»

  • Деактивировать функцию «Торможение DC»
  • Дискретный вход = LOW
  • Автоматически по истечению времени с06.

CL

Достигнут предел ограничения тока.

Контролируемая перегрузка.

  • Автоматически.

LU

Недостаточное напряжение.

Слишком низкое напряжение питающей сети.

  • Проверьте напряжение питающей сети.

dEC

Перенапряжение при Торможении.

Слишком интенсивное торможение или большая нагрузка.

  • Если перенапряжение длится более 1 секунды привод переходит в состояние OU.

nEd

Нет доступа к кодам.

Выйти из этого режима можно только остановив привод.

  • Подать на клемму 28 сигнал низкого уровня.

rC

Активен удаленный пульт.

Попытка использовать кнопку на панели контроллера.

  • При использовании удаленного пульта управления кнопки на частотном преобразователе не активны.

В отличии от верхней таблицы коды которой больше показывают состояние привода, в нижней таблице представлены все коды ошибок ЧП Lenze с подробными пояснениями по их устранению.

Коды ошибок частотного преобразователя Lenze SMD и их расшифровка.

Сообщение об ошибке

Причина

Исправление

Код ошибки

Описание ошибки

cF

Ошибка данных

Неверные данные.

  • Откорректируйте данные.
  • Вернитесь к заводским настройкам.

CF

Ошибка данных.

FI

Ошибка EPM

ЕРМ «завис» либо неисправен.

  • Выключите питание и замените ЕРМ

CFG

Неоднозначная конфигурация

Входам E1…E3 присвоены одинаковые функции.

  • Каждая функция может быть назначена только 1 раз

Включена функция или UP или DOWN.

  • Проверьте правильность подключения цепей управления

dF

Ошибка динамического торможения

Перегрев резистора динамического торможения.

  • Увеличьте время замедления.

EEr

Внешняя ошибка

Триггер «Авария» активен СЕ1..3 = 10.

  • Устраните внешнюю ошибку.

F2

FO

Внутренняя ошибка

  • Возвратите частотный преобразователь для диагностики и ремонта.

FС3

Ошибка коммуникации

Вышло время ожидания таймера.

  • Проверьте соединения.

FС5

Ошибка коммуникации

Ошибка последовательного соединения.

  • Возвратите частотный преобразователь для диагностики и ремонта.

JF

Ошибка удаленного пульта

Пульт не подсоединён.

  • Проверьте соединение пульта.

LC

Блокировка автоматического пуска

c42 = 0.

  • Измените потенциал клеммы 28 с LOW на HI.

OC1

Короткое замыкание или перегрузка частотного преобразователя

Короткое замыкание.

  • Устраните причину короткого замыкания и проверьте кабель.

Слишком высокое емкостное сопротивление кабеля двигателя.

  • Используйте более короткий кабель двигателя либо кабель с меньшей погонной емкостью.

Задано слишком малое время

разгона C12.

  • Увеличьте время разгона. Неправильно выбран преобразователь частоты.

Дефекты кабеля двигателя.

  • Замените кабель.

Неисправность двигателя.

  • Замените двигатель.

Частая и длительная перегрузка.

  • Неправильно выбран преобразователь частоты.

OC2

Замыкание на землю

Замыкание на землю на выходе преобразователя частоты.

  • Проверьте кабель двигателя.
  • Проверьте изоляцию обмоток двигателя.

OC6

Перегрузка двигателя

Перегрузка из-за слишком большого значения I2t. Слишком частые или длительные режимы торможения и ускорения.

  • Неправильно выбран частотный преобразователь.
  • Перед повторным пуском охладите двигатель.

OH

Перегрев частотного преобразователя

Повышенная температура преобразователя частоты.

  • Уменьшите нагрузку на частотный преобразователь.
  • Улучшите охлаждение преобразователя частоты.

OU

Перегрузка по цепям постоянного тока

Сетевое напряжение завышено.

  • Проверьте напряжение питания.

Слишком маленькое время торможения.

  • Увеличьте время торможения.

rSt

Невозможен автоматический сброс триггера «Авария»

Более 8 ошибок за 10 мин.

  • В зависимости от сообщений об ошибках

SdS

Потеря сигнала 4-20мА

Сигнал менее 2мА при 4 – 20мА.

  • Проверьте сигнал / сигнальные провода.

SF

Обрыв одной фазы

Обрыв питающей фазы.

  • Проверьте напряжение питания.

В некоторых случаях могут понадобится принципиальные схемы по подключению частотного преобразователя Lenze это особенно актуально по прошествии определенного времени, когда данное оборудование производитель снимет с производства и в случае отсутствия документации взять информацию буде неоткуда.

Коды ошибок частотного преобразователя Lenze серии TMD

Как уже было описано выше коды шибок частотных преобразователей могут отличаться даже у одного и тогоже производителя, в данном случае Lenze и преобразователи отличаются серией, выше была описана серия SMD сейчас мы рассмотрим коды ошибок частотного преобразователя Lenze серии TMD.

Коды ошибок частотного преобразователя Lenze TMD, информирующие о состоянии привода.

Сообщение об ошибке

Причина

Исправление

Код ошибки

Описание ошибки

e.g.50.0

Выходная частота.

Безаварийная работа.

OFF

Стоп.

Низкий уровень на клемме 28.

Inh

Запрет по выходам U,V,W.

Отсутствует установка задания.

StP

Выходная частота 0Гц.

Заданная частота равна 0.

  • Изменить задание отличным от 0.

Активирована функция «Быстрый останов»

  • Деактивировать функцию «Быстрый останов»

FSt

Попытка быстрого рестарта после ошибки.

c42 = 2, 3

br

Торможение постоянным током.

Активирована функция «Торможение DC»

  • Деактивировать функцию «Торможение DC»

CAL

Процесс автонастройки.

с48 = 1 и клемма 28 = HIGH

  • Только при С14 = 4..7

CL, FCL

Достигнут предел ограничения тока.

Контролируемая перегрузка.

  • Автоматически.

LU

Низкое напряжение.

Слишком низкое напряжение питающей сети.

Проверьте напряжение питающей сети.

dEC

Перенапряжение при Торможении.

Слишком интенсивное торможение или большая нагрузка.

  • Если перенапряжение длится более 1 секунды привод переходит в состояние OU.

nEd

Нет доступа к кодам.

Выйти из этого режима можно только остановив привод.

  • Подать на клемму 28 сигнал низкого уровня.

rC

Активен удаленный пульт.

Попытка использовать кнопку на панели контроллера.

  • При использовании удаленного пульта управления кнопки на частотном преобразователе не активны.

В отличии от верхней таблицы коды которой больше показывают состояние привода, в нижней таблице представлены все коды ошибок ЧП Lenze с подробными пояснениями по их устранению.

Коды ошибок частотного преобразователя Lenze TMD и их расшифровка.

Сообщение об ошибке

Причина

Исправление

Код ошибки

Описание ошибки

Ad

Ошибка частотного преобразователя A/D

  • Обратитесь в сервисный ценрт.

bF

Ошибка идентификации.

Данные С93 не соответствуют приводу.

  • Откорректируйте данные.
  • Вернитесь к заводским установкам.

cF

Ошибка данных.

Неверные данные

CF

Ошибка данных

GF

Данные с ПК неверны

FI

Ошибка привода.

Частотный преобразователь «завис» / неисправен.

  • Выключите питание и перезапустите частотный преобразователь.
  • Замените ПЧ (ЕРМ).

CFG

Неоднозначная конфигурация.

Входам E1…E4 присвоены одинаковые функции.

  • Каждая функция может быть назначена только 1 раз.

Включена функция UP или DOWN

  • Проверьте правильность подключения цепей управления.

dF

Ошибка динамического торможения.

Перегрев резистора динамического торможения.

  • Увеличьте время замедления.

LC

Блокировка автоматического пуска

c42 = 0

  • Изменить потенциал клеммы 28 с 0 на 1

EEr

Внешняя ошибка

Триггер «Авария» активен.

  • Устраните внешнюю ошибку.

F2..FO

Внутренняя ошибка

  • Возвратите ПЧ для диагностики и ремонта.

FC3, FC5

Ошибка коммуникации.

  • Проверьте соединения.

JF

Ошибка в удаленной клавиатуре.

Клавиатура не подключена.

  • Проверьте соединение.

nId

Ошибка автонастройки.

Попытка автонастройки перед установкой параметров С86..С91.

  • Вначале устанавливаются параметры С86..С91 а затем производится автонастройка.

OC1

Короткое замыкание или перегрузка частотного преобразователя.

Короткое замыкание.

  • Найдите и устраните причину короткого замыкания.

Задано слишком малое время разгона C12.

  • Увеличьте время разгона. Неправильно выбран частотный преобразователь.

Дефекты кабеля двигателя.

  • Замените кабель.

Неисправность двигателя.

  • Замените двигатель.

Частая и длительная перегрузка.

  • Неправильно выбран частотный преобразователь.

OC2

Замыкание на землю.

Замыкание на землю на выходе преобразователя частоты.

  • Проверьте соединительные кабели между ПЧ и двигателем.
  • Проверьте изоляцию двигателя.

OC6

Перегрузка двигателя.

Перегрузка из-за слишком большого значения I2t.

Слишком частые или длительные режимы торможения и ускорения.

  • Проверьте настройку тепловой защиты и нагрузку двигателя. Перед повторным пуском охладите двигатель.

LP1

Обрыв фазы мотора.

Разомкнутая цепь на выходе привода.

  • Проверьте кабель мотора.

OH

Перегрев частотного преобразователя.

Повышенная температура преобразователя частоты.

  • Уменьшите нагрузку на преобразователь частоты.
  • Улучшите охлаждение частотного преобразователя.

OU

Перегрузка по цепям

Завышенное сетевое напряжение.

  • Проверьте напряжение питания постоянного тока.

Малое время торможения.

  • Увеличьте время торможения.

rF

Ошибка подхвата

Привод не может синхронизироваться с мотором во время подхвата.

  • Проверьте мотор.

rSt

Невозможен автоматический сброс триггера «Авария»

Более 8 ошибок за 10 мин.

  • В зависимости от сообщений об ошибках.

SdS

Ошибка токового задания

Аналоговый сигнал < 2 мА (С34 = 5).

  • Проверьте сигнал/ сигнальный провод.

SF

Обрыв одной фазы

Обрыв фазы питания.

  • Проверьте напряжение питания.

Сброс ошибок и Ремонт частотников в сервисном центре

Компания «Кернел» производит ремонт промышленной электроники и оборудования с 2002 года. За это время мы накопили колоссальный опыт в том числе опыт в ремонте частотных преобразователей Lenze серии SMD и TMD. Логотип компании 'Кернел'Ремонт подобной промышленной электроники ответственное и сложное занятие, требующие максимальной отдачи, профессионализма и максимально полной материальной базе.

Специалисты нашего сервисного центра уделяют максимальное внимание к качеству исполнения ремонта, программирования и настройке промышленного преобразователя частоты, не зависимо от производителя данного промышленного оборудования. Именно поэтому мы смело даем гарантию на все выполненные работы шесть месяцев.

Ремонт промышленной электроники производится исключительно с использованием оригинальных запасных частей, на компонентном уровне с применением высокотехнологичного оборудования, квалифицированным персоналом с инженерным образованием.

Если на вашем производстве появились проблемы с частотным преобразователем, которые вы не можете решить самостоятельно, мы всегда рады вам помочь. Обращайтесь в сервисный центр «Кернел». Специалисты нашей компании в минимальные сроки проведут глубокую диагностику и последующий ремонт частотного преобразователя. Оставьте заказ на ремонт оборудования используя форму на сайте, либо свяжетесь с нашими менеджерами, сделать это очень просто.

Как с нами связаться

У вас остались вопросы, связанные с ремонтом, программированием и настройкой частотного преобразователя Lenze? Задайте их нашим менеджерам. Связаться с ними можно несколькими способами:

Наши контакты

  • Заказав обратный звонок (кнопка в правом нижнем углу сайта)
  • Посредством чата (кнопка расположена с левой стороны сайта)
  • Позвонив по номеру телефона:
    • +7(8482) 79-78-54;
    • +7(8482) 55-96-39;
    • +7(917) 121-53-01
  • Написав на электронную почту: 89171215301@mail.ru

Далеко не полный список производителей промышленной электроники и оборудования, ремонтируемой в нашей компании.

Ошибки частотного преобразователя Lenze SMDЧастотные преобразователи относятся к сложной промышленной электронике достаточно дорогой и в тоже время широко распространенной по всему миру. На сегодняшний день трудно себе даже представить какое-либо производство, на котором бы не работало данное промышленное оборудование.

К сожалению, в процессе эксплуатации выходит из строя даже самое надежное промышленное оборудование. В данной статье мы разберем частотный преобразователь Lenze, а точнее коды ошибок частотного преобразователя Lenze 8200 SMD и TMD, коды ошибок и их расшифровка. Частотники в наше время нашли широкое применения в абсолютно всех сферах промышленности управляя как мини моторами в оргтехнике, так и гигантскими двигателями в горнодобывающей промышленности.

Ошибки частотного преобразователя Lenze TMDДля простоты общения со столь сложной электроникой все частотные преобразователи оснащены небольшими дисплеями с помощью которых выводятся информационные сообщения с кодами ошибок, расшифровав которые можно сразу же узнать причину ее возникновения. Если учесть распространенность данной промышленной электроники, то появляется острая нужда в расшифровке кодов ошибок частотных преобразователей.

Коды ошибок частотных преобразователей у каждого производителя свои при этом коды ошибок могут отличатся даже у одного и того же производителя, разные принципы работы или серия ЧП.

Существует несколько видов ошибок, некоторые из них можно устранить автоматически, а некоторые возможно исправить только, обратившись в специализированный сервисный центр. В таблицах ниже приведены все коды ошибок частотного преобразователя Lenze и их расшифровка, то есть причина по которой возникла та или иная ошибка.

Коды ошибок частотного преобразователя Lenze серии SMD

Коды ошибок частотного преобразователя Lenze SMD, информирующие о состоянии привода.

Сообщение об ошибке

Причина

Исправление

Код ошибки

Описание ошибки

50.0

Выходная частота.

Безаварийная работа.

OFF

Стоп.

На выходных клеммах U,V,W нет напряжения.

Низкий уровень на клемме 28.

Inh

Блокировка преобразователя частоты.

На выходных клеммах U,V,W нет напряжения.

Привод настроен на управление от удаленного пульта или через последовательный порт.

  • Запустите привод через пульт или последовательный порт.

StP

Выходная частота 0Гц.

На выходных клеммах U,V,W нет напряжения.

Заданная частота равна 0 (С31 = 0).

  • Изменить задание отличным от 0.

Активирована функция «Быстрый останов»

  • Деактивировать функцию «Быстрый останов»

br

Торможение постоянным током.

Активирована функция «Торможение DC»

  • Деактивировать функцию «Торможение DC»
  • Дискретный вход = LOW
  • Автоматически по истечению времени с06.

CL

Достигнут предел ограничения тока.

Контролируемая перегрузка.

  • Автоматически.

LU

Недостаточное напряжение.

Слишком низкое напряжение питающей сети.

  • Проверьте напряжение питающей сети.

dEC

Перенапряжение при Торможении.

Слишком интенсивное торможение или большая нагрузка.

  • Если перенапряжение длится более 1 секунды привод переходит в состояние OU.

nEd

Нет доступа к кодам.

Выйти из этого режима можно только остановив привод.

  • Подать на клемму 28 сигнал низкого уровня.

rC

Активен удаленный пульт.

Попытка использовать кнопку на панели контроллера.

  • При использовании удаленного пульта управления кнопки на частотном преобразователе не активны.

В отличии от верхней таблицы коды которой больше показывают состояние привода, в нижней таблице представлены все коды ошибок ЧП Lenze с подробными пояснениями по их устранению.

Коды ошибок частотного преобразователя Lenze SMD и их расшифровка.

Сообщение об ошибке

Причина

Исправление

Код ошибки

Описание ошибки

cF

Ошибка данных

Неверные данные.

  • Откорректируйте данные.
  • Вернитесь к заводским настройкам.

CF

Ошибка данных.

FI

Ошибка EPM

ЕРМ «завис» либо неисправен.

  • Выключите питание и замените ЕРМ

CFG

Неоднозначная конфигурация

Входам E1…E3 присвоены одинаковые функции.

  • Каждая функция может быть назначена только 1 раз

Включена функция или UP или DOWN.

  • Проверьте правильность подключения цепей управления

dF

Ошибка динамического торможения

Перегрев резистора динамического торможения.

  • Увеличьте время замедления.

EEr

Внешняя ошибка

Триггер «Авария» активен СЕ1..3 = 10.

  • Устраните внешнюю ошибку.

F2

FO

Внутренняя ошибка

  • Возвратите частотный преобразователь для диагностики и ремонта.

FС3

Ошибка коммуникации

Вышло время ожидания таймера.

  • Проверьте соединения.

FС5

Ошибка коммуникации

Ошибка последовательного соединения.

  • Возвратите частотный преобразователь для диагностики и ремонта.

JF

Ошибка удаленного пульта

Пульт не подсоединён.

  • Проверьте соединение пульта.

LC

Блокировка автоматического пуска

c42 = 0.

  • Измените потенциал клеммы 28 с LOW на HI.

OC1

Короткое замыкание или перегрузка частотного преобразователя

Короткое замыкание.

  • Устраните причину короткого замыкания и проверьте кабель.

Слишком высокое емкостное сопротивление кабеля двигателя.

  • Используйте более короткий кабель двигателя либо кабель с меньшей погонной емкостью.

Задано слишком малое время

разгона C12.

  • Увеличьте время разгона. Неправильно выбран преобразователь частоты.

Дефекты кабеля двигателя.

  • Замените кабель.

Неисправность двигателя.

  • Замените двигатель.

Частая и длительная перегрузка.

  • Неправильно выбран преобразователь частоты.

OC2

Замыкание на землю

Замыкание на землю на выходе преобразователя частоты.

  • Проверьте кабель двигателя.
  • Проверьте изоляцию обмоток двигателя.

OC6

Перегрузка двигателя

Перегрузка из-за слишком большого значения I2t. Слишком частые или длительные режимы торможения и ускорения.

  • Неправильно выбран частотный преобразователь.
  • Перед повторным пуском охладите двигатель.

OH

Перегрев частотного преобразователя

Повышенная температура преобразователя частоты.

  • Уменьшите нагрузку на частотный преобразователь.
  • Улучшите охлаждение преобразователя частоты.

OU

Перегрузка по цепям постоянного тока

Сетевое напряжение завышено.

  • Проверьте напряжение питания.

Слишком маленькое время торможения.

  • Увеличьте время торможения.

rSt

Невозможен автоматический сброс триггера «Авария»

Более 8 ошибок за 10 мин.

  • В зависимости от сообщений об ошибках

SdS

Потеря сигнала 4-20мА

Сигнал менее 2мА при 4 – 20мА.

  • Проверьте сигнал / сигнальные провода.

SF

Обрыв одной фазы

Обрыв питающей фазы.

  • Проверьте напряжение питания.

В некоторых случаях могут понадобится принципиальные схемы по подключению частотного преобразователя Lenze это особенно актуально по прошествии определенного времени, когда данное оборудование производитель снимет с производства и в случае отсутствия документации взять информацию буде неоткуда.

Коды ошибок частотного преобразователя Lenze серии TMD

Как уже было описано выше коды шибок частотных преобразователей могут отличаться даже у одного и тогоже производителя, в данном случае Lenze и преобразователи отличаются серией, выше была описана серия SMD сейчас мы рассмотрим коды ошибок частотного преобразователя Lenze серии TMD.

Коды ошибок частотного преобразователя Lenze TMD, информирующие о состоянии привода.

Сообщение об ошибке

Причина

Исправление

Код ошибки

Описание ошибки

e.g.50.0

Выходная частота.

Безаварийная работа.

OFF

Стоп.

Низкий уровень на клемме 28.

Inh

Запрет по выходам U,V,W.

Отсутствует установка задания.

StP

Выходная частота 0Гц.

Заданная частота равна 0.

  • Изменить задание отличным от 0.

Активирована функция «Быстрый останов»

  • Деактивировать функцию «Быстрый останов»

FSt

Попытка быстрого рестарта после ошибки.

c42 = 2, 3

br

Торможение постоянным током.

Активирована функция «Торможение DC»

  • Деактивировать функцию «Торможение DC»

CAL

Процесс автонастройки.

с48 = 1 и клемма 28 = HIGH

  • Только при С14 = 4..7

CL, FCL

Достигнут предел ограничения тока.

Контролируемая перегрузка.

  • Автоматически.

LU

Низкое напряжение.

Слишком низкое напряжение питающей сети.

Проверьте напряжение питающей сети.

dEC

Перенапряжение при Торможении.

Слишком интенсивное торможение или большая нагрузка.

  • Если перенапряжение длится более 1 секунды привод переходит в состояние OU.

nEd

Нет доступа к кодам.

Выйти из этого режима можно только остановив привод.

  • Подать на клемму 28 сигнал низкого уровня.

rC

Активен удаленный пульт.

Попытка использовать кнопку на панели контроллера.

  • При использовании удаленного пульта управления кнопки на частотном преобразователе не активны.

В отличии от верхней таблицы коды которой больше показывают состояние привода, в нижней таблице представлены все коды ошибок ЧП Lenze с подробными пояснениями по их устранению.

Коды ошибок частотного преобразователя Lenze TMD и их расшифровка.

Сообщение об ошибке

Причина

Исправление

Код ошибки

Описание ошибки

Ad

Ошибка частотного преобразователя A/D

  • Обратитесь в сервисный ценрт.

bF

Ошибка идентификации.

Данные С93 не соответствуют приводу.

  • Откорректируйте данные.
  • Вернитесь к заводским установкам.

cF

Ошибка данных.

Неверные данные

CF

Ошибка данных

GF

Данные с ПК неверны

FI

Ошибка привода.

Частотный преобразователь «завис» / неисправен.

  • Выключите питание и перезапустите частотный преобразователь.
  • Замените ПЧ (ЕРМ).

CFG

Неоднозначная конфигурация.

Входам E1…E4 присвоены одинаковые функции.

  • Каждая функция может быть назначена только 1 раз.

Включена функция UP или DOWN

  • Проверьте правильность подключения цепей управления.

dF

Ошибка динамического торможения.

Перегрев резистора динамического торможения.

  • Увеличьте время замедления.

LC

Блокировка автоматического пуска

c42 = 0

  • Изменить потенциал клеммы 28 с 0 на 1

EEr

Внешняя ошибка

Триггер «Авария» активен.

  • Устраните внешнюю ошибку.

F2..FO

Внутренняя ошибка

  • Возвратите ПЧ для диагностики и ремонта.

FC3, FC5

Ошибка коммуникации.

  • Проверьте соединения.

JF

Ошибка в удаленной клавиатуре.

Клавиатура не подключена.

  • Проверьте соединение.

nId

Ошибка автонастройки.

Попытка автонастройки перед установкой параметров С86..С91.

  • Вначале устанавливаются параметры С86..С91 а затем производится автонастройка.

OC1

Короткое замыкание или перегрузка частотного преобразователя.

Короткое замыкание.

  • Найдите и устраните причину короткого замыкания.

Задано слишком малое время разгона C12.

  • Увеличьте время разгона. Неправильно выбран частотный преобразователь.

Дефекты кабеля двигателя.

  • Замените кабель.

Неисправность двигателя.

  • Замените двигатель.

Частая и длительная перегрузка.

  • Неправильно выбран частотный преобразователь.

OC2

Замыкание на землю.

Замыкание на землю на выходе преобразователя частоты.

  • Проверьте соединительные кабели между ПЧ и двигателем.
  • Проверьте изоляцию двигателя.

OC6

Перегрузка двигателя.

Перегрузка из-за слишком большого значения I2t.

Слишком частые или длительные режимы торможения и ускорения.

  • Проверьте настройку тепловой защиты и нагрузку двигателя. Перед повторным пуском охладите двигатель.

LP1

Обрыв фазы мотора.

Разомкнутая цепь на выходе привода.

  • Проверьте кабель мотора.

OH

Перегрев частотного преобразователя.

Повышенная температура преобразователя частоты.

  • Уменьшите нагрузку на преобразователь частоты.
  • Улучшите охлаждение частотного преобразователя.

OU

Перегрузка по цепям

Завышенное сетевое напряжение.

  • Проверьте напряжение питания постоянного тока.

Малое время торможения.

  • Увеличьте время торможения.

rF

Ошибка подхвата

Привод не может синхронизироваться с мотором во время подхвата.

  • Проверьте мотор.

rSt

Невозможен автоматический сброс триггера «Авария»

Более 8 ошибок за 10 мин.

  • В зависимости от сообщений об ошибках.

SdS

Ошибка токового задания

Аналоговый сигнал < 2 мА (С34 = 5).

  • Проверьте сигнал/ сигнальный провод.

SF

Обрыв одной фазы

Обрыв фазы питания.

  • Проверьте напряжение питания.

Сброс ошибок и Ремонт частотников в сервисном центре

Компания «Кернел» производит ремонт промышленной электроники и оборудования с 2002 года. За это время мы накопили колоссальный опыт в том числе опыт в ремонте частотных преобразователей Lenze серии SMD и TMD. Логотип компании'Кернел'Ремонт подобной промышленной электроники ответственное и сложное занятие, требующие максимальной отдачи, профессионализма и максимально полной материальной базе.

Специалисты нашего сервисного центра уделяют максимальное внимание к качеству исполнения ремонта, программирования и настройке промышленного преобразователя частоты, не зависимо от производителя данного промышленного оборудования. Именно поэтому мы смело даем гарантию на все выполненные работы шесть месяцев.

Ремонт промышленной электроники производится исключительно с использованием оригинальных запасных частей, на компонентном уровне с применением высокотехнологичного оборудования, квалифицированным персоналом с инженерным образованием.

Если на вашем производстве появились проблемы с частотным преобразователем, которые вы не можете решить самостоятельно, мы всегда рады вам помочь. Обращайтесь в сервисный центр «Кернел». Специалисты нашей компании в минимальные сроки проведут глубокую диагностику и последующий ремонт частотного преобразователя. Оставьте заказ на ремонт оборудования используя форму на сайте, либо свяжетесь с нашими менеджерами, сделать это очень просто.

Как с нами связаться

У вас остались вопросы, связанные с ремонтом, программированием и настройкой частотного преобразователя Lenze? Задайте их нашим менеджерам. Связаться с ними можно несколькими способами:

Наши контакты

  • Заказав обратный звонок (кнопка в правом нижнем углу сайта)
  • Посредством чата (кнопка расположена с левой стороны сайта)
  • Либо позвонив по номеру: +7(8482) 79-78-54; +7(917) 121-53-01
  • Написав на электронную почту: 89171215301@mail.ru

Далеко не полный список производителей промышленной электроники и оборудования, ремонтируемой в нашей компании.

Diagnostics and fault elimination

17.6

Error codes, causes and remedies

The following table contains the most important error codes of the inverter in ascending

order.

Clicking the error code shows you a detailed description of the error message.

If the inverter indicates an «internal error» that is not listed here, restart the inverter. If the

error persists, make a note of the error code and contact the manufacturer.

Error code

Error message

8784

0x2250

CiA: Continuous over current (internal)

8992

0x2320

CiA: Short circuit/earth leakage (internal)

9024

0x2340

CiA: Short circuit (device internal)

9040

0x2350

CiA: i²*t overload (thermal state)

9090

0x2382

I*t error

9091

0x2383

I*t warning

9095

0x2387

Imax: Clamp responded too often

9096

0x2388

SL-PSM stall detection active

9098

0x238A

Maximum current reached

12576

0x3120

Mains phase fault

12672

0x3180

UPS operation active

12816

0x3210

DC bus overvoltage

12817

0x3211

DC bus overvoltage warning

12832

0x3220

DC bus undervoltage

12833

0x3221

DC bus undervoltage warning

12834

0x3222

DC-bus voltage to low for power up

16912

0x4210

PU: overtemperature fault

17024

0x4280

Heat sink temperature sensor fault

17025

0x4281

Heat sink fan warning

17029

0x4285

PU overtemperature warning

17168

0x4310

Motor temperature error

20754

0x5112

24 V supply critical

20864

0x5180

Overload 24 V supply

21376

0x5380

OEM hardware incompatible

24970

0x618A

Internal fan warning

25216

0x6280

Trigger/functions connected incorrectly

25217

0x6281

User-defined fault 1

25218

0x6282

User-defined fault 2

25232

0x6290

Warning invert rotation

25233

0x6291

Maximuml allowed troubles exceeded

25248

0x62A0

User-defined fault (LECOM)

25249

0x62A1

Network: user fault 1

25250

0x62A2

Network: user fault 2

25265

0x62B1

NetWordIN1 configuration incorrect

25505

0x63A1

CU: load error ID tag

25506

0x63A2

PU: load error ID tag

25507

0x63A3

Power unit unknown

28800

0x7080

Assertion level monitoring (Low/High)

28801

0x7081

Analog input 1 fault

28802

0x7082

Analog input 2 fault

28803

0x7083

HTL input fault

28833

0x70A1

Analog output 1 fault

28834

0x70A2

Analog output 2 fault

28961

0x7121

Pole position identification fault

29056

0x7180

Motor overcurrent

29445

0x7305

Encoder open circuit

29573

0x7385

Feedback system: speed limit

30336

0x7680

Memory module is full

616

Error type

Configurable in

Fault

Fault

Fault

Fault

0x2D4B:003 (P308.03)

Fault

0x2D40:005 (P135.05)

Warning

Fault

Trouble

Information

Fault

Warning

Fault

Warning

Trouble

Warning

Warning

Fault

Fault

Warning

Warning

Fault

0x2D49:002 (P309.02)

Warning

Warning

Fault

Warning

Trouble

Fault

Fault

Warning

Fault

Fault

Fault

Fault

Trouble

Fault

Fault

Fault

Fault

Fault

0x2636:010 (P430.10)

Fault

0x2637:010 (P431.10)

No response

0x2641:006 (P416.06)

Warning

Warning

Fault

0x2C60

Fault

0x2D46:002 (P353.02)

Warning

0x2C45 (P342.00)

Warning

Warning

Частотные преобразователи немецкого производителя Lenze разработаны для массового применения, для той части применений, где двигатели уже нуждаются в регулировании, но еще нет недорогих и практичных решений. Lenze как раз и заполнили эту часть рынка. Достаточно всего одного примера: конвейер. Это механизм, который должен плавно набирать скорость и плавно останавливаться.

До сих пор он требовал или сложной кинематики, или привода постоянного тока, или приходилось мириться с его резкими толчками. Применение частотного преобразователя Lenze полностью решает проблему. При простом механизме легко обеспечить высокие характеристики машин в широком диапазоне мощностей. Достаточно сделать настройку преобразователя.

Содержание

  1. Принципы работы
  2. Характеристики преобразователя Lenze 8200 SMD
  3. Характеристики преобразователя Lenze 8200 TMD
  4. Сменный модуль памяти
  5. Эксплуатация и неисправности
  6. Диагностика и ремонт
  7. Сервис

Принципы работы

В предыдущие годы схемотехника частотных преобразователей не позволяла таких возможностей, какие имеются сегодня. Современные преобразователи частоты содержат на входе одно- или трехфазный выпрямитель (однофазный у моделей небольшой мощности), затем емкостный фильтр, а на выходе – трехфазный мост на мощных IGBT-транзисторных ключах.

Эти ключи дают возможность переключать значительные токи с высокой модулирующей частотой, формируя синусоиды с частотами практически от 0 до сотен Гц. Теоретически это дает возможность раскручивать асинхронные двигатели до 6000 об/мин, а на практике в 2-3 раза. Возможно осуществлять динамическое торможение, в том числе и длительное, если подключить внешние тормозные резисторы для тормозного тока.

Преобразователи серии smd рассчитаны на обычное управление по линейному или квадратичному закону V/f, а в tmd применяется векторное управление.

Характеристики преобразователя Lenze 8200 SMD

Он предназначен для работы с асинхронными двигателями в широком диапазоне мощностей. Это изделие разрабатывалось для регулирования привода по линейной или квадратичной функции. Преобразователь не использует векторного управления.

Частотный преобразователь lenze

Рисунок: схема lenze smd.

Для подавляющего большинства простых операций с двигателями малой и небольшой мощности при небольших нагрузках этого и не требуется. Гораздо выше ценятся: простота настройки, удобство обслуживания, малые габариты преобразователя. Все это lenze smd предлагает своему потребителю в полной мере:

  • регулирование скорости;
  • изменение направления вращения;
  • раздельная настройка ускорения и торможения;
  • защита и безопасность;
  • малые вес и размеры;
  • возможность перегрузки в 1.5 раз до одной минуты.

Характеристики преобразователя Lenze 8200 TMD

Этот преобразователь предназначен для работы с асинхронными двигателями, установленными в механизмах, где предпочтителен векторный или моментный способ управления.

Такими машинами являются нагруженные конвейеры, краны, подъемники, мельницы, дробилки, шнеки с периодической подачей. В этих случаях применяется векторное управление. В тех случаях, когда электродвигатель работает в станках для вытяжки проволоки или намотки рулонов пленки или бумаги и т.д. требуется хорошая стабильность крутящего момента в значительном диапазоне мощностей. Для этого предусмотрен моментный режим регулирования. (Стабилизация момента вращения может позволить уменьшить массу маховиков или совсем отказаться от них во многих механизмах.) Свойства tmd преобразователей с векторным управлением:

  • управление скоростью;
  • реверс;
  • управление крутящим моментом;
  • ПИД-регулятор;
  • линейное и квадратичное скалярное управление;
  • векторное управление;
  • четыре постоянные скорости на выбор;
  • защита и безопасность.

Все модели lenze 8200 имеют аналоговые и цифровые входы для управления, а также (только трехфазные по входу модели) интерфейс RS-485, на котором используются протоколы Modbus или Lecom B. Степень защиты IP20.

Серия 8200 smd состоит из устройств на следующие мощности (несколько примеров для представления. Преобразователи tmd имеют такие же мощности):

ESMD251X2SFA 0.25 квт 1 фаза
ESMD751X2SFA 0.75 квт 1
ESMD222X2SFA 2.2 квт 1
ESMD371L4TXA 0.37 квт 3 фазы
ESMD222L4TXA 2.2 квт 3
ESMD752L4TXA 7.5 квт 3
ESMD223L4TXA 22 квт 3

Все преобразователи частоты имеют аналоговый вход для задания скорости (выходной частоты) при помощи напряжения или токовой петли, программируемый релейный выход для сигнализации о состоянии преобразователя. Имеются дискретные входы с большим выбором функций. Логические контроллеры или релейные схемы автоматики, работающие с этими входами могут помочь в автоматизации любых процессов, связанных у потребителя с управляемым двигателем.

Сменный модуль памяти

В преобразователях lenze было применено очень практичное решение, относящееся к настройкам. Конфигурация преобразователя хранится в чипе EEPROM, который вставляется в специальное гнездо на передней панели преобразователя. Среди принадлежностей имеется программатор и копировщик данных для таких модулей. С его помощью легче записывать конфигурацию, чем делать это на самом преобразователе.

В случае неисправности, преобразователь снимается и отдается в ремонт. При этом модуль памяти извлекается и тут же устанавливается в новый или запасной преобразователь. Полностью отпадает необходимость заново набирать значения параметров повторно. Это экономит время в производственных условиях.

Модуль памяти извлекается при помощи специального ключа, а вставляется простым нажатием и фиксируется в своем гнезде. Гнездо можно заклеить пленкой и опечатать при необходимости.

Эксплуатация и неисправности

Преобразователь lenze smd выполнен в небольших габаритах и работает в относительно мощных цепях. Это заставило разработчиков принять меры по его охлаждению. Преобразователь не только имеет ребристый алюминиевый радиатор сзади, но и многочисленные вентиляционные щели в корпусе. Поэтому следует всячески оберегать его от брызг, конденсата, металлических стружек и опилок, и даже от обычной пыли, во избежании выхода из строя. Недопустимо превышать температуру окружающей среды выше указанной в инструкции по эксплуатации. Преобразователи имеют степень защиты IP20. Выбирать кабели следует не меньшего сечения, чем требуется для номинального тока двигателя.

Для электродвигателей, работающих в инерционных механизмах (например, подъемниках), в любом диапазоне мощностей, может потребоваться внешний тормозной резистор. Иначе, в цепи постоянного тока может оказаться недопустимо высокое напряжение и мосты выпрямителя или инвертора окажутся пробитыми. В таком случае сгорает предохранитель, но после его замены устройство не работает, а предохранитель горит снова. В других случаях возможен взрыв электролитических конденсаторов фильтра. По этим причинам, использовать преобразователи частоты в пожароопасных помещениях строго запрещено без специальных герметичных боксов.

Недопустимо останавливать моторы отключением питания преобразователя. Делать это надлежит только предусмотренной командой останова. Иначе преобразователь может выйти из строя. Особенно это относится к случаям инерционных приводов, которые используют встроенные тормозные резисторы.

После отключения преобразователя, на конденсаторах фильтра сохраняется опасное напряжение! Необходимо выждать, пока не разрядятся конденсаторы. Это занимает несколько минут. (Напряжение между B+ и B-).

Диагностика и ремонт

При слишком низком напряжении питающей сети преобразователь не может “вытянуть” заданные параметры и работает на пределе оперативного запаса регулирования. На дисплее отображается LU (Low Voltage). При повышенном напряжении возникает риск пробоя диодов и особенно конденсаторов фильтра. В этом случае преобразователь показывает OU (Overvoltage). То же происходит и при слишком резком торможении двигателя. В случае перегрева дисплей показывает OH (Overheat). Потребитель часто игнорирует такие жалобы преобразователя из-за слабой работы инженеров КИП, которые должны подробно инструктировать персонал, который непосредственно работает вблизи преобразователя.

Индикация SF (Supply Fault) означает пропадание одной из фаз питания. Это недопустимый режим, особенно при повышенной нагрузке на двигатель. Если же преобразователь показывает что-то вроде: F2…FO, или Ad то он нуждается в квалифицированном ремонте, и желательно в сервисе, связанном с компанией Lenze.

Сервис

В условиях производства у потребителей практически невозможно выполнить ремонт отказавшего преобразователя smd или tmd. Даже если имеется вполне квалифицированный сотрудник, то могут возникнуть трудности с приборами и паяльным оборудованием, а самое главное – с принципиальной схемой, не говоря уже о прошивках контроллеров и их исходных кодах (наверняка проприетарных). В случае сложных неисправностей, а других неисправностей в силовой импульсной технике почти не бывает, все это может понадобиться в любую минуту.

Поэтому ремонт лучше всего делать у официального представителя Lenze. Это, например, “Шеллинг + Сервис”. Это никоим образом не реклама, а просто рекомендация. Там можно получить наиболее быструю и надежную техническую поддержку. Специалисты оттуда могут выехать к потребителю и оказать помощь на месте, выполнить любой ремонт силовой части или управления. Кроме всего прочего, они имеют возможность удаленной диагностики из своего офиса. Это дает то преимущество, что потребитель быстро узнает стоимость ремонта и получит все консультации по своим возможным эксплуатационным ошибкам.

Переключение параметров двигателей при работе от одного преобразователя частоты Lenze 8400 Vector

Lenze EVS9322-ES Operating Instructions Manual

  • Contents

  • Table of Contents

  • Troubleshooting

  • Bookmarks

Quick Links

DATASHEET

LENZE

EVS9323-ESV004

OTHER SYMBOLS:

EVS9323ESV004, EVS9323 ESV004, EVS9323-ESV004

RGB ELEKTRONIKA AGACIAK CIACIEK

SPÓŁKA JAWNA

Jana Dlugosza 2-6 Street

51-162 Wrocław

Poland

biuro@rgbelektronika.pl

+48 71 325 15 05

www.rgbautomatyka.pl

www.rgbelektronika.pl

www.rgbelektronika.pl

www.rgbautomatyka.pl

loading

Related Manuals for Lenze EVS9322-ES

Summary of Contents for Lenze EVS9322-ES

  • Page 1
    DATASHEET LENZE EVS9323-ESV004 OTHER SYMBOLS: EVS9323ESV004, EVS9323 ESV004, EVS9323-ESV004 RGB ELEKTRONIKA AGACIAK CIACIEK SPÓŁKA JAWNA Jana Dlugosza 2-6 Street 51-162 Wrocław www.rgbelektronika.pl Poland biuro@rgbelektronika.pl +48 71 325 15 05 www.rgbautomatyka.pl www.rgbautomatyka.pl www.rgbelektronika.pl…
  • Page 2
    YOUR PARTNER IN MAINTENANCE Repair this product with RGB ELEKTRONIKA ORDER A DIAGNOSIS LINEAR ENCODERS SYSTEMS INDUSTRIAL COMPUTERS ENCODERS CONTROLS SERVO AMPLIFIERS MOTORS MACHINES OUR SERVICES POWER SUPPLIERS OPERATOR SERVO PANELS DRIVERS At our premises in Wrocław, we have a fully equipped servicing facility. Here we perform all the repair works and test each later sold unit.
  • Page 3
    EDB9300UES 00414796 Operating Instructions Global Drive 9300 servo…
  • Page 4
    2000 Lenze GmbH & Co KG No part of this documentation may be reproduced or made accessible to third parties without written consent by Lenze GmbH & Co KG. We have thoroughly collected all specifications in this documentation and have checked it for compliance with the described hardware and software. Howe- ver, differences cannot be excluded completely.
  • Page 5
    S c r e e n p l a t e m a i n s c o n n e c t i o n M a i n s c o n n e c t i o n a n d D C c o n n e c t i o n + U G — U G…
  • Page 6
    …………2.1 Safety and application notes for Lenze controllers .
  • Page 7: Table Of Contents

    Contents 4 Installation …………4.1 Mechanical installation .

  • Page 8
    Contents 6 During operation …………6.1 Status indications .
  • Page 9
    Contents 9 Troubleshooting and fault elimination ……..9.1 Troubleshooting .
  • Page 10
    • 1 servo inverter type 93XX After receipt of the delivery, check immediately whether the items delivered match • the accompanying papers. Lenze does not accept any liability for deficiencies 1 book of Operating Instructions • claimed subsequently. 1 accessory kit (bits and pieces for mechanical and…
  • Page 11: Preface And General Information

    • The specifications, processes, and circuitry described in these instructions are for guidance only and must be adapted to your own specific application. Lenze does not take responsibility for the suitability of the process and circuit proposals. • The specifications in these Instructions describe the product features without guaranteeing them.

  • Page 12
    Safety information Safety information Safety and application notes for Lenze controllers (to: Low-Voltage Directive 73/23/EEC) 1. General 4. Installation During operation, drive controllers may have live, bare, in some The units must be installed and cooled according to the regulations cases also movable or rotating parts as well as hot surfaces, given in the corresponding documentation.
  • Page 13
    Safety information Layout of the safety information • All safety information have a uniform layout: – The icon characterizes the type of danger. – The signal word characterizes the severity of danger. – The note text describes the danger and gives information on how to prevent dangerous situations.
  • Page 14
    Technical data Technical data Features • Single axis in narrow design – thus space-saving installation • Power range: 370 W to 75 kW – uniform control module and thus uniform connection for the control cables over the complete power range •…
  • Page 15
    Technical data General data/ operating conditions Field Values Vibration resistance Germanischer Lloyd, general conditions Permissible moisture Humidity class F without condensation (average relative humidity 85 %) Permissible temperature ranges during transport: -25 °C … + 70 °C during storage of the controller: -25 °C …
  • Page 16
    Technical data Rated data 3.3.1 Types 9321 to 9325 Type EVS9321-ES EVS9322-ES EVS9323-ES EVS9324-ES EVS9325-ES Order No. EVS9321-ES EVS9322-ES EVS9323-ES EVS9324-ES EVS9325-ES Type EVS9321-CS EVS9322-CS EVS9323-CS EVS9324-CS EVS9325-CS Order No. EVS9321-CS EVS9322-CS EVS9323-CS EVS9324-CS EVS9325-CS 320 V — 0 % ≤ V ≤…
  • Page 17
    Technical data 3.3.2 Types 9321 to 9324 with 200 % overcurrent Type EVS9321-ES EVS9322-ES EVS9323-ES EVS9324-ES Ratings for operation at a mains: 3 AC / 400V / 50Hz/60Hz Motor power (4-pole ASM) [kW] 0.37 0.75 [hp] Output power U, V, W (8 kHz)
  • Page 18
    Technical data 3.3.3 Types 9326 to 9332 Type EVS9326-ES EVS9327-ES EVS9328-ES EVS9329-ES EVS9330-ES EVS9331-ES EVS9332-ES Order No. EVS9326-ES EVS9327-ES EVS9328-ES EVS9329-ES EVS9330-ES EVS9331-ES EVS9332-ES Type EVS9326-CS EVS9327-CS EVS9328-CS Order No. EVS9326-CS EVS9327-CS EVS9328-CS 320 V — 0 % ≤ V ≤…
  • Page 19
    Technical data 3.3.4 Fuses and cable cross-sections Type Mains input L1, L2, L3, PE/motor connection U, V, W Input + UG, -UG Operation without mains filter Operation with mains filter Fuse E.l.c.b. Cable cross-section Fuse E.l.c.b. Cable Fuse Cable cross-section cross-section 9321 M 6A…
  • Page 20
    Technical data 3.3.5 Mains filter Rated data (uk ≈ 6%) Type Lenze order number Mains current Inductance for RFI degree A for RFI degree B 9321 1.5 A 24 mH EZN3A2400H002 EZN3B2400H002 9322 2.5 A 15 mH EZN3A1500H003 EZN3B1500H003 9323…
  • Page 21
    Technical data BA9300SU EN 2.1…
  • Page 22: Installation

    Installation Installation Mechanical installation 4.1.1 Important notes • Use the controllers only as built-in devices! • If the cooling air contains pollutants (dust, fluff, grease, aggressive gases): – Take suitable preventive measures , e.g. separate air duct, installation of filters, regular cleaning, etc.

  • Page 23: Standard Assembly With Fixing Rails Or Fixing Brackets

    Installation 4.1.2 Standard assembly with fixing rails or fixing brackets K35.0001b Fig. 4-1 Dimensions for assembly with fixing rails/fixing brackets Type Fig. 9321, 9322 9323, 9324 48.5 9325, 9326 21.5 9327, 9328, 9329 9330 28,5 9331, 9332 748.5 30.5 When using a plug-on fieldbus module: Observe the free space required for the connection cables All dimensions in mm Controllers 9321 to 9326…

  • Page 24: Assembly With Thermally Separated Power Stage («Punching»)

    The heat sink of the controllers 9321 … 9329 can be mounted outside the control cabinet to reduce the heat generated in the control cabinet. For this, you need an assembly frame with seal (can be ordered from Lenze). •…

  • Page 25
    Installation Dimensions of the types 9321 to 9326 Lenze Fig. 4-2 Dimensions for assembly with thermally separated power stage Type 9321, 9322 112.5 385.5 95.5 365.5 105.5 9323, 9324 131.5 385.5 114.5 365.5 105.5 9325, 9226 385.5 137.5 365.5 105.5…
  • Page 26
    Installation Dimensions of the types 9327 to 9329 K35.0017 Fig. 4-3 Dimensions for assembly with thermally separated power stage Type 9327, 9328, 9329 280 Cut-out Z Type Height Width 338 ± 1 238 ± 1 20 ± 2 259 ± 2 20 ±…
  • Page 27: Assembly Of Variants

    Assembly of variants Variant EVS932X-Cx (”Cold plate”) For installation in control cabinets together with other heat sinks in ”Cold plate technology” (x = order abbreviation; see inner Instructions cover). Dimensions for types 9321-Cx bis 9326-Cx Lenze Lenze Lenze K35.0059 Fig. 4-4 Dimensions for assembly in ”…

  • Page 28
    Installation Dimensions of the types 9327-Cx and 9328-Cx K35.0056 Fig. 4-5 Dimensions for assembly in ” Cold Plate technique” Type 9327-Cx 9328-Cx When using an attachable fieldbus module: Observe the free space required for the connection cables All dimensions in mm BA9300SU EN 2.1…
  • Page 29
    Installation • Observe the following points to comply with the technical data: – Ensure sufficient ventilation of the heat sink. – The free space behind the control cabinet back panel must be at least 500 mm. • If you install several controllers in the control cabinet: –…
  • Page 30: Electrical Installation

    Installation Electrical installation For information about the installation according to EMC, see chapter 4.3. 4-34) 4.2.1 Protection of persons Danger! All power terminals carry voltage up to 3 minutes after mains disconnection. 4.2.1.1 Residual-current circuit breakers Labelling of RCCBs Meaning AC-sensitive residual-current circuit breaker (RCCB, type AC) Pulse-current sensitive residual-current circuit breaker (RCCB, type A) All-current sensitive residual-current circuit breaker (RCCB, type B)

  • Page 31: Insulation

    Installation 4.2.1.2 Insulation The controllers have an electrical isolation (insulating distance) between the power terminals and the control terminals as well as to the housing: • Terminals X1 and X5 have a double basic insulation (double insulating distance, safe mains isolation to VDE0160, EN50178).

  • Page 32: Protection Of The Controller

    – We recommend the use of PTC thermistors or thermostats with PTC characteristic to monitor the motor temperature. Stop! As standard Lenze three-phase AC motors are equipped with PTC thermistors. If motors from other manufacturers are used, carry out all steps required for the adaptation to the controller. 4-28) •…

  • Page 33: Mains Types/Conditions

    With grounded phase Operation is only possible with one variant Contact Lenze DC-supply via + U The DC voltage must be symmetrical to PE. The controller will be destroyed when grounding + U 4.2.5…

  • Page 34: Power Connections

    Installation 4.2.7 Power connections Controller Preparations for the power connection • 9321 … 9326 Remove the covers of the power connections: – Unlatch to the front by gentle pressure. – Pull upwards (mains connection) or downwards (motor connection). • 9327 … 9332 Remove cover: –…

  • Page 35
    Cable and controller protection on the DC side By means of recommended DC fuses. • (+ UG, -UG) The fuses/fuse holders recommended by Lenze are UL approved. For DC group drives or supply using a DC Observe the information given in Part F of the Manual. source:…
  • Page 36: Motor Connection

    Installation 4.2.7.2 Motor connection We recommend the use of screened motor cables only, because of the EMC safety. Note! The screening of the motor cable is only required to comply with existing standards (e.g. VDE 0160, EN 50178). Types 9321 to 9326 Correct screen connection with screened cables (required parts in the accessory kit): €…

  • Page 37
    Installation Types 9330 and 9331 € • Strain relief by using cable binders • Correct screen connection with screened cables: – Apply motor cable screen to the screening plate using ó clamp and screws M5x12 – Fix the screen of the thermal contact (see 4-28 ) at the stud PE net to the motor connection with a surface as large as possible.
  • Page 38: Connection Of A Brake Unit

    Installation • Observe the max. permissible motor cable length: = 400 V (+ 10%) = 480 V (+ 10%) Type = 8 kHz = 16 kHz = 8 kHz = 16 kHz chop chop chop chop 9321/9322 up to 50 m up to 45 m up to 50 m up to 25 m…

  • Page 39: Dc Bus Connection Of Several Drives

    Installation 4.2.7.4 DC bus connection of several drives Decentralized supply with brake module O F F F 1 0 + U G — U G R B 1 R B 2 + U G — U G + U G — U G 9 3 5 2 9 3 2 X — 9 3 3 X…

  • Page 40
    Installation Central supply with supply module • When connecting the supply module, the corresponding operating instructions must be observed. + U G — U G + U G — U G + U G — U G 9 3 2 X — 9 3 3 X 9 3 4 1 — 9 3 4 3 9 3 2 X — 9 3 3 X K35.0114…
  • Page 41: Control Connections

    Installation 4.2.8 Control connections 4.2.8.1 Control cables • Connect control cables to the screw terminals: Max. permissible cable cross-section Screw-tightening torques 1.5 mm 0.5 … 0.6 Nm (4.4 … 5.3 lbin) • We recommend a single-ended screening of all cables for analog signals to avoid signal distortion.

  • Page 42
    Installation Terminal Level Data (Default setting is printed in bold) Analog 1, 2 Difference input master voltage -10 V to + 10 V Resolution: inputs (Main speed setpoint) 5 mV (11 bit + sign) Jumper X3 Difference input master current -20 mA to + 20 mA Resolution: 20 µ…
  • Page 43: Connection Diagrams

    Installation 4.2.8.3 Connection diagrams Connection of analog signals Analog signals are connected via the 2 x 4-pole terminal block X6. Depending on the use of the analog input, the jumper of X3 must be set accordingly. Connection for external voltage supply STOP! •…

  • Page 44
    Installation Connection of digital signals Analog signals are connected via the 2 x 7-pole terminal block X5. The levels of the digital inputs and outputs are PLC compatible. Only use relays with low-current contacts for the switching of the signal cables (recommendation: relays with gold-plated contacts).
  • Page 45
    Digital frequency input (X9) / Digital frequency output (X10) Note! Use prefabricated Lenze cables for the connection to the digital frequency input (X9) or digital frequency output (X10). Otherwise, use cables with twisted pairs and screened wires (A, O / B, B / Z, Z) (see diagram).
  • Page 46
    Installation STATE-BUS (X5/ ST) The state bus is a controller-specific bus system for simple monitoring in a network of drives: • Controls all drives connected to the network according to the preselected state. • Up to 20 controllers can be connected (total cable length STATE-BUS < 5m). •…
  • Page 47
    Installation System bus connection (X4) F2 F3 F2 F3 F2 F3 +UG -UG +UG -UG 932X — 933X 932X — 933X 932X — 933X HI LO K35.0123 Fig. 4-13 Wiring system bus RA1, RA2 Bus terminating resistors 120 (included in the accessory kit) •…
  • Page 48
    Signal level according to ISO 11898 • Up to 63 bus devices are possible • Access to all Lenze parameters • Master functions are integrated into the controller – Data exchange possible between controllers without participation of a master system (current ratio control, speed synchronization, etc.)
  • Page 49: Motor Temperature Monitoring

    – Thermostat/normally closed contact Other monitoring KTY , PTC and TKO do not offer full protection. To improve the monitoring, Lenze recommends a bimetal relay. Alternative monitoring Comparators (CMP1 … CMP3) monitor and a time element (TRANS1 … TRANS4) limits the motor current for small speeds or motor standstill.

  • Page 50: User-Specific Characteristic For A Ptc Thermistor

    Connection of a thermistor or PTC thermistor to terminals T1 and T2 and internal connection Note! • In the prefabricated Lenze system cables for Lenze servo motors the cable for the temperature feedback is already included. The cables are designed for wiring according to EMC.

  • Page 51: Feedback Systems

    • The feedback system is activated under C0025. Sensorless control SSC The sensorless controller (SSC) should not be used for new drive solutions (C0025 = 1). Instead use a vector control EVF 9300 or contact Lenze. 4-30 BA9300SU EN 2.1…

  • Page 52
    • In all configurations predefined under C0005, a resolver can be used as feedback system. An adjustment is not necessary. Note! Use pre-cut Lenze system cables to connect the resolver. Please contact Lenze before you use other resolvers. Features: •…
  • Page 53
    Encoder connection (X8) An incremental encoder or a sin/cos encoder can be connected to this input. Note! Use pre-cut Lenze system cables to connect the encoder. • The encoder supply voltage V can be adjusted in the range from 5 V to 8 V under C0421 CC5_E –…
  • Page 54
    Installation Incremental encoder Features: • Incremental encoders with two 5 V complementary signals which are shifted by 90 • (TTL encoder) can be connected. – The zero track can be connected (as option). • 9-pole Sub-D female connector • Input frequency: 0 — 500 kHz •…
  • Page 55: Installation Of A Ce-Typical Drive System

    Installation Installation of a CE-typical drive system • General notes The electromagnetic compatibility of a machine depends on the type of installation and care taken. Please observe: – Assembly – Filters – Shielding – Grounding • For diverging installations, the conformity to the CE EMC Directive requires a check of the machine or system regarding the EMC limit values.

  • Page 56
    Installation F1 … F3 F4 F5 932X — 933X 9351 E1 E2 E3 E4 E5 A1 A2 K35.0124 Fig. 4-17 Example for wiring in accordance with EMC regulations F1…F5 Protection, see “Cable protection” ( 3-6 ) / “Mains connection” ( 4-13 ) Mains contactor For mains filter “A”…
  • Page 57
    Installation 4-36 BA9300SU EN 2.1…
  • Page 58: Commissioning

    Commissioning Commissioning Initial switch-on Stop! Prior to initial switch-on of the controller, check the wiring for completeness, short-circuit, and earth fault: • Power connection: – Supply via terminals L1, L2 and L3 (direct mains connection) or alternatively via terminals +UG, -UG (DC bus connection, network of drives) •…

  • Page 59: Switch-On Sequence

    480 V 800 V with brake unit 5. Enter motor data: – For drives with Lenze motor: select motor under C0086. – For drives with other motors: see Chapter 5.2. 6. Select feedback system: – Drives with resolver: no changes required.

  • Page 60
    Commissioning 11.Apply setpoint: – Apply a voltage > 0 V (max. 10 V) at X6/1, X6/2. – Do not activate a JOG setpoint (X5/E3 LOW). 12.Check whether the controller is ready for operation: – When the green LED is flashing: Controller is ready for operation, continue with 13.
  • Page 61
    ”Geber” (encoder”) under C0416 when using motors with resolvers (optional). • If the motor type is not listed under C0086, select a similar Lenze motor under C0088 C0086 (see Chapter 11.3; Code table or Chapter 11.5; Motor selection list). You have to change the following motor data manually: –…
  • Page 62: Operation With Synchronous Motors Made By Other Manufacturers

    Commissioning 5.2.1 Operation with synchronous motors made by other manufacturers Note! If you use a Lenze synchronous motor with encoder feedback, you may skip this chapter. Stop! Please use single pole resolvers and single-turn or multi-turn sin/cos encoders only. 5.2.1.1…

  • Page 63
    Commissioning Optimise the current controller Preparations • Go to the submenu of the code list (GDC) to code C0292 (SSC I — setpoint) and enter the rated current of your drive • Set the feedback of the drive to ’1’ under C0025 (i.e. drive without feedback) •…
  • Page 64
    Commissioning Stop! After the optimisation has been completed, the original values must be re-entered under C0292 and C0025. Rotor adjustment 1. Inhibit controller (e.g. with terminal X5/28 = LOW) 2. Unload motor mechanically (separate motor from gearbox or machine). 9300std203 Fig.
  • Page 65
    Commissioning Controller enable • The controller is enabled only after all sources of controller inhibit have been reset (series connection of all sources). – When the controller is enabled, the green LED on the controller is illuminated. • The active sources of the controller inhibit are displayed under C0183 (see also menu: Diagnostic;…
  • Page 66
    Commissioning Quick stop Using the quick stop function (QSP), you can stop the drive for a time to be set, independently of the setpoint input. In the factory setting, the quick stop function is active: • If, during mains connection –…
  • Page 67: Change Of The Terminal Assignment

    Commissioning Change of the terminal assignment (see also Chapter 8.3 ”Working with function blocks”) If the configuration is changed via C0005, the assignment of all inputs and outputs will be overwritten with the corresponding basic assignment. If necessary, the function assignment must be adapted to the wiring.

  • Page 68
    Commissioning Example: Menu ”Terminal I/ O; DIGIN” (terminal-I/ O; digital inputs) Here are the most important aims for digital inputs Valid for the basic configuration C0005 = 1000. Code controlled by Note Subcode Signal name Signal (interface) Selection list 2 C0885 R/L/Q-R DIGIN1…
  • Page 69: Freely Assignable Digital Outputs

    Commissioning 5.7.2 Freely assignable digital outputs Four freely assignable digital outputs are available (X5/A1 … X5/A4). It is possible to determine the polarity for each input, i.e. the input is HIGH active or LOW active. The most important codes are listed in the submenu: DIGOUT (digital outputs) Change assignment: 1.

  • Page 70: During Operation

    During operation During operation Status indications 6.1.1 In Global Drive Control 1. Click on the ”Control” button in the ”Basic settings” dialog box. 2. Click on the ”Diagnostics” button in the ”Control” dialog box. Fig. 6-1 Dialog box ”Diagnostics 9300” Type of fault Actual speed Actual motor voltage…

  • Page 71: Information On Operation

    During operation Information on operation When operating the controller, please observe the following notes: Stop! • Cyclic connection and disconnection of the controller supply voltage at L1, L2, L3 or +U may overload the internal input current load: – Allow at least 3 minutes between disconnection and reconnection. •…

  • Page 72: Controller Protection By Current Derating

    During operation 6.2.2 Controller protection by current derating Valid for the types 9326 to 9332. For field frequencies < 5 Hz the controller automatically derates the maximum permissible output current. • For operation with chopping frequency = 8 kHz (C0018=1, optimum power): –…

  • Page 73
    During operation BA9300SU EN 2.1…
  • Page 74: Parameter Setting

    Parameter setting Parameter setting • The parameter setting of the controller is used to adapt the drive to your applications. • The complete parameter set is organised in codes which are consecutively numbered and begin with ”C”. (see code table, chapter 11.3). •…

  • Page 75: Structure Of A Parameter Set

    Parameter setting 7.1.1 Structure of a parameter set To simplify operation, the keypad 9371BB and the PC programs GLOBAL DRIVE CONTROL and LEMOC2 consist of menu levels which will guide you rapidly to the desired codes: • Main menu – contains submenus –…

  • Page 76: List Of Selection Menus

    Parameter setting 7.1.2 List of selection menus Keypad 9371 BB Global Drive Control or LEMOC2 Main menu Submenu Main menu Submenu USER menu USER menu Code list Code list Load / Store Parameter set management Diagnostic Diagnostics Actual info Momentary operation History History Short setup…

  • Page 77
    Parameter setting Keypad 9371 BB Global Drive Control or LEMOC2 Main menu Submenu Main menu Submenu LECOM/AIF LECOM/AIF interface LECOM-A/B LECOM-A/B AIF interface AIF-data interface Status word Status word System bus System bus Management CAN management CAN-IN1 CAN-IN1 Input block 1 CAN-OUT1 CAN-OUT1 Output block 1 CAN-IN2…
  • Page 78
    Parameter setting Keypad 9371 BB Global Drive Control or LEMOC2 Main menu Submenu Main menu Submenu CFG-FB CFG FB configuration CMP1 CMP1 Analog comparator CMP2 CMP2 Analog comparator CMP3 CMP3 Analog comparator CONV1 CONV1 Converter CONV3 CONV3 Converter CONV4 CONV4 Converter CONV5 CONV5 Converter CONV6…
  • Page 79
    Parameter setting Keypad 9371 BB Global Drive Control or LEMOC2 Main menu Submenu Main menu Submenu PCTRL PCTRL Process controller PHADD1 PHADD1 32-bit adding element PHCMP1 PHCMP1 Phase comparator PHCMP2 PHCMP2 Phase comparator PHCMP3 PHCMP3 Phase comparator PHDIFF1 PHDIFF1 32 bit setpoint/act. value comparison PHDIV1 PHDIV1 Phase division PHINT1…
  • Page 80: Parameter Setting Using The Keypad

    Parameter setting Parameter setting using the keypad 7.2.1 Keypad (Order no.: EMZ9371BB) The keypad can also be plugged into the X1 interface and removed during operation. When the keypad is plugged into the controller, the module is initialized. The keypad is ready to operate after ”GLOBAL DRIVE READY”…

  • Page 81
    Parameter setting Segments and status indications of the LCD display: Segment Explanation Code number Four-digit code number Subcode number Two-digit subcode number Parameter Parameter value with max. twelve digits Text Help text with max. 13 digits; In operating level: status information of C0183 or contents of C0004 SH PRG SH PRG : Parameter is only accepted with SHIFT + PRG (OFFLINE)
  • Page 82
    Parameter setting Operating level From the parameter level, you reach the operating level by pressing PRG. • In the operating level, additional status information or the additional display value specified under C0004 is displayed (presetting: actual speed C0051). – When selecting the USER menu, the first code level of the USER menu is displayed in the first line.
  • Page 83: Change Parameters

    Parameter setting 7.2.2 Change parameters Tip! The parameter set changed must be saved, if you do not want to loose the modifications after mains disconnection (see chapter 7.2.3). Basic procedure 1. Change to the code level from the menus using the arrow keys change to the code level.

  • Page 84: Save Parameter Set

    Parameter setting 7.2.3 Save parameter set You have to save the modified parameters, if you do not want to loose them after mains disconnection. • You can establish up to four parameter sets, e.g. if you process different materials on a machine or if this is required by different operating states (setup mode, ”stand-by”).

  • Page 85: Load Parameter Set

    Parameter setting 7.2.4 Load parameter set (Only possible when the controller is inhibited) Warning! • When a new parameter set is loaded, the controller is reinitialized and acts as if it was connected to the mains: – System configurations and terminal assignments may be changed.Ensure, that your wiring and drive configuration correspond to the settings of the parameter set.

  • Page 86
    Parameter setting Terminal control You can change to other parameter sets via e.g. the digital inputs X5/E1 … X5/E5. After mains connection the controller reads parameter set 1 first. Then, the terminals are evaluated and the desired parameter set is loaded. A LOW-HIGH edge at input DCTRL-PAR-LOAD (”Load parameter set”) is not necessary in this case: •…
  • Page 87: Parameter Set Transfer

    Parameter setting 7.2.5 Parameter set transfer (possible only when the controller is inhibited) Warning! During parameter set transfer, the control terminals of the 9300 servo can have undefined states! Therefore, the plugs X5 and X6 must be removed before transfer. Thus, it is ensured that the controller is inhibited and all control terminals have the defined state ”LOW”.

  • Page 88
    Parameter setting Tip! You can also copy individual parameter sets from the keypad to controller 2: • For this, use the parameters 11, 12, 14 or 14 instead of parameter 20 in step 15., to copy the parameter sets 1, 2, 3 or 4 to controller 2. •…
  • Page 89: Password Protection

    Parameter setting 7.2.6 Password protection You can restrict the code access via the keypad using the password protection in C0094. • Reading C0094 using the keypad: – C0094 = 0: password protection is not activated. – C0094 = 9999: password protection is activated. •…

  • Page 90: Configuration

    Configuration Configuration Every practical application demands certain application-specific configurations (programs). For this, function blocks are available which can be connected for the corresponding application. The function blocks are linked via codes. 8-4) Predefined configurations Basic configurations are already defined for standard applications of the controller. These basic configurations can be selected via code C0005.

  • Page 91: Operating Modes

    Configuration Operating modes Determine the operating mode, the interface you want to use for parameter setting or control of the controller, by choosing an operating module. 8.2.1 Parameter setting Parameters can be set with one of the following modules: • Communication module –…

  • Page 92: Configuration With Global Drive Control

    2. Assign a free control code via a selection number. – e.g. 19515 (control code C0141) The main speed setpoint is now controlled by C0141. 8.2.3 Configuration with Global Drive Control With the PC program Global Drive Control (GDC) LENZE offers • an easy to understand, • well structured, •…

  • Page 93: Working With Function Blocks

    Configuration Working with function blocks The signal flow of the controller can be configured by connecting function blocks. The controller can thus be easily adapted to diverse applications. 8.3.1 Signal types Every function block has inputs and outputs for connection with corresponding signal types for each function: •…

  • Page 94: Elements Of A Function Block

    Configuration 8.3.2 Elements of a function block Parameterization code Input name Name of the function block FCNT1 C1100 FCNT1-CLKUP FCNT1-OUT C1102/1 C1104/1 FCNT1-CLKDWN Output symbol C1102/2 C1104/2 CTRL FCNT1-EQUAL Input symbol FCNT1-LD-VAL C1101/1 C1103/1 FCNT1-LOAD C1102/3 C1104/3 FCNT1-CMP-VAL C1101/2 C1103/2 Configuration code Function Display code…

  • Page 95: Connection Of Function Blocks

    Existing connections, which are not desired, must be removed by reconfiguration. Otherwise, the drive cannot perform the desired function. Tip! Lenze offers a net-list generator for the visualization of existing connections (see accessories: PC program GDC). 11-1) BA9300SU EN 2.1…

  • Page 96
    Configuration NOT1 AND1-IN1 AND1 C0820/1 NOT1-IN NOT1-OUT C0840 C0821/1 & C0841 AND1-IN2 AND1-OUT C0820/2 NOT2 C0821/2 NOT2-IN NOT2-OUT AND1-IN3 C0842 C0820/3 C0843 C0821/3 DIGDEL1 OR1-IN1 C0720 C0830/1 C0721 C0831/1 OR1-IN2 DIGDEL1-IN OR1-OUT DIGDEL1-OUT C0830/2 C0723 C0724 C0831/2 OR1-IN3 C0830/3 C0831/3 Possible connection Connection not possible Fig.
  • Page 97
    Configuration Create connections 1. Determine the signal source for ARIT2-IN1: – Change to the code level using the arrow keys – Select C0601/1 using – Change to the parameter level using PRG. – Select output AIN2/OUT (selection number 55) using –…
  • Page 98
    Configuration Remove connections • Since a source can have several targets, there may be some unwanted signal connections. • Example: – In the factory setting of the basic configuration C0005 = 1000 (speed control), ASW1-IN1 and AIN2-OUT are connected. – This connection is not automatically removed by the settings described above! If you do not want this connection, it must be removed.
  • Page 99: Entries Into The Processing Table

    Configuration 8.3.4 Entries into the processing table The 93XX controller provides a certain time for calculating the processing time of FBs. Since the type and number of FBs to be used depends on the application and can vary strongly, not all available FBs are permanently calculated.

  • Page 100
    Configuration 5. The entries in C0465 are: – Position 10: AND1 10500 – Position 11: OR1 10550 – Position 12: AND2 10505 This example was started with position 10, because these positions are not assigned in the default setting. FBs need not to be entered into the processing table one after the other. Empty positions in the processing table are permissible.
  • Page 101: Description Of Function Blocks

    Configuration Description of function blocks Function blocks Function block Description CPU time used in basic configuration C0005 [ µ s] 1000 4000 5000 6000 7000 • • ABS1 Absolute value generator • ADD1 Addition block • • • • • AIF-OUT Field bus •…

  • Page 102
    Configuration Function block Function block Description Description CPU time CPU time used in basic configuration C0005 [ µ s] [ µ s] 1000 4000 5000 6000 7000 FEVAN1 Free analog input variable FEVAN2 Free analog input variable FIXSET1 Fixed setpoints •…
  • Page 103
    Configuration Function block Function block Description Description CPU time CPU time used in basic configuration C0005 [ µ s] [ µ s] 1000 4000 5000 6000 7000 • FCODE 37 • • • • • • • FCODE 108/1 • •…
  • Page 104: Monitoring

    Configuration Monitoring Various monitoring functions protect the drive from impermissible operating conditions. 8-17) If a monitoring function is activated, • a reaction to protect the drive will be activated (configuration 8-16) • a digital output is set, if it is assigned to the corresponding reaction. •…

  • Page 105: Set Reactions

    Configuration 8.5.2 Set reactions 1. Click on the ”Parameter menu” button in the ”Basic settings” dialog box. 2. Open the ”Dialog Diagnostics” menu by a double-click. Fig. 8-6 Dialog box ”Diagnostic 9300” 3. Click the button ”Monitorings…”. Fig. 8-7 ”Monitoring configuration 93xx” dialog box 4.

  • Page 106: Monitoring Functions

    Configuration 8.5.3 Monitoring functions Overview of the fault sources detected by the controller, and the corresponding reactions Display Meaning TRIP Meldung Warning FAIL-QSP Code • System error á á • Communication error (AIF) C0126 á á • Communication error at the process data input object C0591 CAN-IN1 (time monitoring can be set under C0357/1) á…

  • Page 107: Fault Indication Via Digital Output

    Configuration Display Meaning TRIP Meldung Warning FAIL-QSP Code á á • Encoder fault at X6/1 X6/2 (C0034 = 1) C0598 á á • Sensor fault: motor temperature (X7 or X8) C0594 á • Fault in the absolute value encoder at X8 C0025 Configuration •…

  • Page 108: Troubleshooting And Fault Elimination

    Troubleshooting and fault elimination Troubleshooting and fault elimination • You can recognize immediately whether a fault has occurred from the display elements or status information. 9-1, chapter “Troubleshooting”) • You can analyze the fault – by means of the history buffer 9-3) –…

  • Page 109: Troubleshooting And Fault Elimination

    Troubleshooting and fault elimination Display via the LECOM status word C0150 Meaning FREE 0 freely combinable IMP (pulse inhibit) 0 = Pulses enabled for power stage 1 = Pulses inhibited for power stage FREE 2 freely combinable FREE 3 freely combinable FREE 4 freely combinable FREE 5…

  • Page 110: Troubleshooting

    Troubleshooting and fault elimination Fault analysis with the history buffer • The history buffer is used to trace faults. • Fault messages are stored in the order of their occurrence. Double click ”Dialog Diagnostic” in the parameter menu of the GDC to open the dialog box Diagnostic 9300 : History buffer 9.2.1…

  • Page 111: Working With The History Buffer

    Troubleshooting and fault elimination 9.2.2 Working with the history buffer € ó ì ú ö Fault recognition and reaction € • Contains the fault recognition for every memory unit and the reaction to the fault. – e. g. ”OH3 TRIP” –…

  • Page 112: Fault Indications

    External fault (TRIP-Set) A digital input assigned to the TRIP-Set function has Check external encoder been activated. Internal error Contact Lenze Incorrect power stage During initialization of the controller, an incorrect Contact Lenze power stage was detected Sensor fault heat sink…

  • Page 113
    Troubleshooting and fault elimination Fault No.: — TRIP — Message Display Error Cause Remedy — Warning — FAIL-QSP Short-circuit Short-circuit. Find out cause of short-circuit; check cable. Excessive capacitive charging current of the motor Use motor cable which is shorter or of lower cable.
  • Page 114
    Troubleshooting and fault elimination Fault No.: — TRIP — Message Display Error Cause Remedy — Warning — FAIL-QSP PS Absolute mode An absolute PS (C1311) was performed during Perform one of the following functions and restart: • instead of relative mode. relative positioning (position mode C1210).
  • Page 115
    Drive cannot follow the digital frequency (I limit). Check drive dimensioning. Program fault A fault in the program was detected. Send controller with data (on diskette) to Lenze. • Initializing error A fault was detected during transfer of Correct parameter set.
  • Page 116: Reset Of Fault Messages

    Troubleshooting and fault elimination Reset of fault messages Reaction on Measures for re-commissioning Danger notes operating errors • TRIP/ FAIL-QSP After the error has been eliminated, the drive can be restarted when an acknowledgement has been sent. • TRIP / FAIL-QSP acknowledgement by: –…

  • Page 117
    Troubleshooting and fault elimination 9-10 BA9300SU EN 2.1…
  • Page 118: Maintenance

    Maintenance Maintenance • The controller is free of maintenance if the prescribed conditions of operation are observed. 3-2) • If the ambient air is polluted, the air vents of the controller may be obstructed. Therefore, check the air vents periodically (depending on the degree of pollution approx. every four weeks): Free the obstructed air vents using a vacuum cleaner.

  • Page 119
    Maintenance 10-2 BA9300SU EN 2.1…
  • Page 120: Appendix

    Appendix Appendix 11.1 Accessories For the controllers, Lenze offers the following accessories: • Mains filter • Fuses • Fuse holders • System cable for resolver • System cable for digital frequency coupling A PC can be connected to the controller via the field bus module LECOM A/B (RS232, RS485 or fibre optics).

  • Page 121: Application Examples

    BB or in the menu: ”Short commissioning / Speed operation” of Global Drive Control or LEMOC 2. Input motor type (contains all nameplate data of the motor) C0173 Enter UG limit (mains voltage) C0086 Enter LENZE motor type Enter maximum motor current C0022 xxxA Determine Imax…

  • Page 122
    Ramp generator main setpoint NSET-CINH-VAL NSET MCTRL-NACT C0784 C0798/1 R/L/Q NSET-RFG-STOP FIXED0 C0790 DIGIN1 DIGIN C0799/13 NSET-RFG-0 DIGIN2 C0789 C0114/1…5 shape Linking of DIGIN3 C0799/12 NSET-N-INV main and C0781 DIGIN4 TRIP-SET CINH additional setpoint C0182 C0190 C0799/1 DIGIN5 TRIP-RESET NSET-N C0780 200% C0039/1…
  • Page 123
    Appendix Main switch Fuses for cable protection Mains contactor Mains choke F1 F2 +UG -UG 93XX 9352 28 E1 E2 E3 E4 E5 A1 A2 A3 A4 59 TRIP-SET Motor 9300std016 Fig. 11-2 Connection diagram of configuration 1000 Note! A brake unit is required only if the DC bus voltage of the 93XX servo inverter in the generator mode exceeds the upper switch-off threshold set under C0173 (activation of the OU monitoring function).
  • Page 124: Torque Control With Speed Limitation

    BB or in the menu: ”Short commissioning / Torque operation” of Global Drive Control or LEMOC 2. Input motor type (contains all nameplate data of the motor) C0173 Enter UG limit (mains voltage) C0086 Enter LENZE motor type Enter maximum motor current C0022 xxxA Determine Imax…

  • Page 125
    Appendix 9300std023 Fig. 11-3 Signal flow chart of configuration 4000 11-6 BA9300SU EN 2.1…
  • Page 126: Digital Frequency — Master — Drive

    ”Short commissioning / Digital frequency master” of Global Drive Control or LEMOC Input motor type (contains all nameplate data of the motor) C0173 Enter UG limit (mains voltage) C0086 Enter LENZE motor type Enter maximum motor current C0022 xxxA Determine Imax…

  • Page 127
    NSET-CINH-VAL NSET MCTRL-NACT C0784 C0798/1 NSET-RFG-STOP C0790 C0799/13 NSET-RFG-0 FIXED0 C0789 C0799/12 AIN1 NSET-N-INV C0030 C0034 DFOUT C0781 C0540 CINH C0182 C0190 DFOUT-DF-IN DFOUT-OUT C0799/1 FIXEDPHI-0 C0542 NSET-N C0780 200% C0549 C0039/1 C0046 NSET-NOUT DFOUT-AN-IN C0039/2 C0541 DMUX x/(1-y) C0039/15 NSET-JOG*1 C0547 C0026/1…
  • Page 128
    MCTRL C0472/3 DCTRL-QSP MCTRL-QSP-OUT MCTRL-QSP DIGIN1 C0900 C0042 C0907/3 MCTRL-HI-M-LIM C0893 ANEG Current controller C0906/4 MCTRL-LO-M-LIM AOUT2 C439/1 C0892 MCTRL-NSET2 AOUT2-IN C0906/3 C0436 MCTRL-N/M-SWT C0899 FIXED0 AOUT2-GAIN C0050 C0108/2 C0438 MCTRL-MMAX C0907/2 C0439/3 MCTRL-I-LOAD MCTRL-MSET2 FIXED0 C0902 AOUT2-OFFSET C0109/2 C0437 C0056 C0907/4 MCTRL-I-SET…
  • Page 129: Digital Frequency Bus — Slave — Drive

    BB or in the menu ”Short commissioning / Digital frequency slave line” of Global Drive Control or LEMOC 2. Input motor type (contains all nameplate data of the motor) C0173 Enter UG limit (mains voltage) C0086 Enter LENZE motor type Enter maximum motor current C0022 xxxA Determine Imax Enter controller configuration…

  • Page 130
    Appendix 9300std025 Fig. 11-5 Signal flow chart of configuration 6000 11-11 BA9300SU EN 2.1…
  • Page 131: Digital Frequency Cascade — Slave — Drive

    BB or in the menu: ”Short commissioning / Digital frequency slave cascade” of Global Drive Control or LEMOC 2. Input motor type (contains all nameplate data of the motor) C0173 Enter UG limit (mains voltage) C0086 Enter LENZE motor type Enter maximum motor current C0022 xxxA Determine Imax Enter controller configuration…

  • Page 132
    Appendix 9300std026 Fig. 11-6 Signal flow chart for configuration 7000 11-13 BA9300SU EN 2.1…
  • Page 133
    S t r e t c h u n i t 2 S t r e t c h u n i t 1 P u l l — o f f u n i t ( m a s t e r d r i v e ) v = 8 0 m / m i n v = 1 1 0 m / m i n v = 5 0 m / m i n…
  • Page 134: Code Table

    Parameter value of the code can only be modified when the controller is inhibited Keypad LCD • Display of the short text, e.g. 3$5 /2$’ Lenze Factory setting of the code The row ”Important” contains further information Codes only display values. They cannot be configured. Choice…

  • Page 135
    Appendix Code Code Possible settings Important Important Lenze Choice [C0005] 1000 Signal configuration 6,*1$/ &)* (Predefined basic configurations) The digit indicates the predefined controller control • xxx1: RS232, RS485 or fiber-optics • xxx3: InterBus-S or Profibus • xxx5: Systembus (CAN)
  • Page 136
    Appendix Code Code Possible settings Important Important Lenze Choice 5000 DF mst Master for digital frequency coupling 5001 DF mst 1 5003 DF mst 3 5005 DF mst 5 5010 DF mst 10 5011 DF mst 11 5013 DF mst 13…
  • Page 137
    > 1.5 I possible [C0025] COMMON Feedback )((‘%$&. 7<3( no feedback Input of the encoder specified on the nameplate of the Lenze motor: RSx (Resolver) C0025 a tomatically changes C0420 C0490 C0025 automatically changes C0420, C0490, IT 512 5V IT-512-5V C0495 IT-1024-5V •…
  • Page 138
    Appendix Code Code Possible settings Important Important Lenze Choice C0030 {1 inc/rev} DFOUT constant ‘)287 &2167 Constant for the digital frequency output in increments per revolution 1024 2048 4096 8192 16384 C0032 -32767 32767 FCODE (gearbox factor numerator) )&2′( *($5%2;…
  • Page 139
    C0070, C0071, C0081, C0084, C0085, C0087, C0088, C0089, C0090, C0091 to the assigned default setting COMMON no Lenze motor New generation Lenze asynchronous servo motors New generation Lenze asynchronous servo with integrated temperature monitoring via resolver or encoder motors cable.
  • Page 140
    : 85Hz DFVA112-120 DFVAXX112-22, f : 120Hz DSVA112-140 DSVAXX112-22, f : 140Hz New generation Lenze synchronous servo motors New generation Lenze synchronous servo motors with integrated temperature monitoring via resolver or encoder cable. with integrated temperature monitoring via • resolver or encoder cable.
  • Page 141
    Code Code Possible settings Important Important Lenze Choice Lenze inverter motor in star connection Lenze inverter motor in star connection • • The temperature monitoring via resolver or encoder cable is The temperature monitoring via resolver or deactivated automatically, i.e.:…
  • Page 142
    Appendix Code Code Possible settings Important Important Lenze Choice [C0095] inactive Rotor position adjustment of a synchronous 5OSO5 POR D’K active motor C0058 displays the zero angle of the rotor C0095 = 1 starts position adjustment [C0096] /1: AIF access protection…
  • Page 143
    Appendix Code Code Possible settings Important Important Lenze Choice C0126 Trip Conf. CE0 021,7 &( Warning Configuration communication error monitoring with automation interface CE0 C0130 NSET actual Ti times DES 7J C0134 NSET RFG characteristic 5)* EID5DE Ramp characteristic for main setpoint…
  • Page 144
    Appendix Code Code Possible settings Important Important Lenze Choice C0169 corresponding mains switch-on time History buffer • List of times when the faults have occurred )DJMSJNF DES under C0168 )DJMSJNF OM’ • related to C0179 )DJMSJNF OM’ Occurrence of the faults…
  • Page 145
    Appendix Code Code Possible settings Important Important Lenze Choice C0183 Drive diagnostics ‘JDH1ORSJER • indicates fault or status information • if several items or fault or status information are to be shown, the information with the smallest number is displayed…
  • Page 146
    Appendix Code Code Possible settings Important Important Lenze Choice C0222 {0.1} 500.0 PCTRL Vp gain 3&75/ 9P Process controller gain V C0223 {1 ms} 99998 PCTRL Tn integral component 3&75/ 71 99999 ms switched off C0224 {0.1} PCTRL Kd differential component 3&75/ .’…
  • Page 147
    Appendix Code Code Possible settings Important Important Lenze Choice C0325 {0.1} 500.0 PCTRL Adaptation Vp2 9P D’DPS Process controller adaptation gain (V C0326 {0.1} 500.0 PCTRL Adaptation Vp3 9P D’DPS Process controller adaptation gain (V C0327 100.00 0.00 {0.01 %} 100.00…
  • Page 148
    Appendix Code Code Possible settings Important Important Lenze Choice C0356 {1 ms} 65000 CAN bus time settings 3000 1: CAN Boot-Up &$1 %227 83 2: CAN-OUT2 cycle 287 EWEMF 3: CAN-OUT3 cycle 287 EWEMF 4: CAN OUT 2/3 delay time &$1 ‘(/$<…
  • Page 149
    C0409 -199.99 {0.01 %} 199.99 Input signals of AIN2 OGGRFS HDJ1 [C0416] 99999999 Correction Resolver fault for Lenze motors 5FROMTF5 D’K • Read resolver error from the nameplate [C0420] {1 inc/rev} 8192 Encoder input (TTL)X8 / (HTL)X9 (1EO’F5 EO1RS Encoder constant for encoder input X8 in…
  • Page 150
    Appendix Code Code Possible settings Important Important Lenze Choice → Selection list 1 [C0450] 1000 FIXED 0 % Configuration analog input of BRK1 → Selection list 2 [C0451] 1000 FIXED 0 Digital input of BRK1 → Selection list 1 [C0452]…
  • Page 151
    Appendix Code Code Possible settings Important Important Lenze Choice C0472 -199.99 {0.01 %} 199.99 Used for relative analog signals 0.00 )&2′( D1DMOH 0.00 )&2′( D1DMOH 100.00 )&2′( D1DMOH 0.00 )&2′( D1DMOH 0.00 )&2′( D1DMOH C0473 -32767 32767 Used for absolute analog signals )&2′( D%R…
  • Page 152
    Appendix Code Code Possible settings Important Important Lenze Choice → Selection list 2 [C0525] 1000 FIXED 0 Configuration one-time zero pulse activation P8MRF → Selection list 2 [C0526] 1000 FIXED0 DFSET-RESET 5(6(7 Reset integrators → Selection list 2 [C0527]…
  • Page 153
    Appendix Code Code Possible settings Important Important Lenze Choice → Selection list 1 [C0561] 1000 FIXED 0 % Configuration analog input of FIXSET1 → Selection list 2 [C0562] 1000 FIXED 0 Configuration of digital inputs C0563 -199.99 {0.01 %} 199.99 Display of C0561 &…
  • Page 154
    Appendix Code Code Possible settings Important Important Lenze Choice C0597 Trip Configuration monitoring motor phase failure 021,7 /3 Warning C0598 Trip Configuration monitoring master current at 021,7 6′ X5/1.2 < 2mA Warning C0599 {0.1} 10.0 Current limit for motor phase failure monitoring…
  • Page 155
    Appendix Code Code Possible settings Important Important Lenze Choice C0676 -199.99 {0.01 %} 199.99 Display of C0673 & C0674 & C0677 Display of C0675 & C0680 CMP1 comparator function )81ESJO1 Compares the inputs IN1 and IN2 IN1 = IN 2 IN 1 >…
  • Page 156
    Appendix Code Code Possible settings Important Important Lenze Choice C0711 0.001 0.001 {0.001 s} 60.000 Pulse time of TRANS1 38MRF 7 → Selection list 2 [C0713] 1000 FIXED 0 Digital input of TRANS1 C0714 Display of C0713 & C0715 Transition evaluation TRANS2…
  • Page 157
    Appendix Code Code Possible settings Important Important Lenze Choice C0738 Selection of the scanning period $%SDRSPF5JO’F 1 ms 2 ms 5 ms 10 ms 20 ms 50 msec 100 ms 200 ms 500 ms 2 sec 10 s 20 s…
  • Page 158
    Appendix Code Code Possible settings Important Important Lenze Choice C0750 1 / 2 / 4 / 8 / 16 / 32 / 64 / 128 / 256 / 512 / 1024 / 2048 / DFRFG1 Vp denominator position 9P ‘F1ON…
  • Page 159
    Appendix Code Code Possible settings Important Important Lenze Choice → Selection list 2 [C0786] 5001 MCTRL-QSP-OUT Digital input (load ramp function generator) MOD’ → Selection list 2 [C0787] Configuration JOG selection and JOG activation DIGIN3 Binary interpretation KOH
    1000 FIXED0…
  • Page 160
    Appendix Code Code Possible settings Important Important Lenze Choice C0821 Display of C0820 & → Selection list 2 [C0822] 1000 FIXED0 Digital inputs AND2 C0823 Display of C0822 & → Selection list 2 [C0824] 1000 FIXED0 Digital inputs AND3 C0825 Display of C0824 &…
  • Page 161
    Appendix Code Code Possible settings Important Important Lenze Choice → Selection list 1 [C0850] 1000 FIXED 0 % Configuration process output words for automation interface AIF (X1) O8S: 28S: O8S: → Selection list 3 [C0851] 1000 FIXED 0INC Configuration 32-bit phase information…
  • Page 162
    Appendix Code Code Possible settings Important Important Lenze Choice C0866 -32768.00 {0.01%} 32767.00 Display parameter CAN-IN1.W1 (analog) ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: ,1: C0867 Display parameter CAN-IN1.D1(angle) ,1′ ,1′ ,1′ C0868 -199.99 {0.01%} 199.99 287:…
  • Page 163
    Appendix Code Code Possible settings Important Important Lenze Choice → Selection list 1 [C0890] Speed setpoint input 1 RFS 5050 NSET-NOUT → Selection list 1 [C0891] 1000 FIXED0% Configuration torque setpoint input 0 D» → Selection list 1 [C0892] 5700…
  • Page 164
    Appendix Code Code Possible settings Important Important Lenze Choice C0932 Homing mode 5() NO’F Mode 0 Mode 1 Mode 6 Mode 7 Mode 8 Mode 9 Mode 20 Mode 21 C0933 Reference signal transition 5() S5D1R Rising trans rising transition…
  • Page 165
    Appendix Code Code Possible settings Important Important Lenze Choice C0982 2.000 0.001 {0.001 s} 16.000 MFAIL Tir (acceleration time) C0983 1.000 0.001 {0.001 s} 60.000 MFAIL retrigger time C0988 -199.99 {0.01 %} 199.99 Display of & & & & & &…
  • Page 166
    Appendix Code Code Possible settings Important Important Lenze Choice C1099 Display of C1097 & C1100 Return )81LSJO1 Hold → Selection list 1 [C1101] 1000 FIXED0% Configuration analog inputs /’ 9$/ &03 9$/ → Selection list 2 [C1102] 1000 FIXED0 Digital inputs &/.83…
  • Page 167
    Appendix Code Code Possible settings Important Important Lenze Choice C1158 Display of C1154 & C1159 -2147483647 2147483647 Display of C1155 & → Selection list 1 [C1160] 1000 FIXED0% Analog inputs ASW3 → Selection list 2 [C1161] 1000 FIXED0 Digital input ASW3 C1162 -199.99…
  • Page 168
    Appendix Code Code Possible settings Important Important Lenze Choice → Selection list 4 [C1211] 1000 FIXEDPHI-0 Configuration inputs of STORE1 0$6., → Selection list 3 [C1212] 1000 FIXED0INC Configuration input of STORE1 0$6.9 C1215 Display of C1210 & …
  • Page 169
    Appendix Code Code Possible settings Important Important Lenze Choice C1503 100000 Numerator of FEVAN2 18NF5DSO5 C1504 0.0001 0.0001 {0.0001} 100000.0000 FEVAN2 denominator ‘F1ONJDSO5 C1505 1000000000 Offset von FEVAN2 2GGRFS → Selection list 1 [C1506] 1000 FIXED0% Configuration analog input of FEVAN2 →…
  • Page 170: Selection Lists Of Signal Links

    Appendix 11.4 Selection lists of signal links Selection list 1, analog output signals ( 000050 AIN1-OUT 010000 BRK-M-SET 020101 CAN-IN1.W1 000055 AIN2-OUT 015028 UTILIZATION 020102 CAN-IN1.W2 000100 DFSET-NOUT 019500 FCODE-17 020103 CAN-IN1.W3 001000 FIXED0% 019502 FCODE-26/1 020201 CAN-IN2.W1 001006 FIXED100% 019503 FCODE-26/2 020202…

  • Page 171
    Appendix Selection list 2, digital output signals ( 000051 DIGIN1 010000 BRK1-OUT 015000 DCTRL-TRIP 019500 FCODE-250 000052 DIGIN2 010001 BRK1-CINH 015001 DCTRL-MESS 019521 FCODE-471.B0 000053 DIGIN3 010002 BRK1-QSP 015002 DCTRL-WARN 019522 FCODE-471.B1 000054 DIGIN4 010003 BRK1-M-STORE 015003 DCTRL-FAIL 019523 FCODE-471.B2 000055 DIGIN5 010250…
  • Page 172
    Appendix Selection list 2, digital output signals ( ), continued 020001 CAN-CTRL.B0 020201 CAN-IN2.B0 020301 CAN-IN3.B0 025001 AIF-CTRL.B0 020002 CAN-CTRL.B1 020202 CAN-IN2.B1 020302 CAN-IN3.B1 025002 AIF-CTRL.B1 020003 CAN-CTRL.B2 020203 CAN-IN2.B2 020303 CAN-IN3.B2 025003 AIF-CTRL.B2 020005 CAN-CTRL.B4 020204 CAN-IN2.B3 020304 CAN-IN3.B3 025005 AIF-CTRL.B4 020006…
  • Page 173
    Appendix Selection list 3, Selection list 4, Selection list 5, Phase signals ( Phase difference signals ( Function blocks 000100 DFSET-PSET 000050 DFIN-OUT 000000 empty 010000 BRK1 000101 DFSET-PSET2 000100 DFSET-POUT 000050 AIN1 010250 R/L/Q 001000 FIXED0INC 000250 DFOUT-OUT 000055 AIN2 010500 AND1…
  • Page 174
    Appendix Selection list 10, error list 000000 No fail 000105 H05 trip 000011 OC1 trip 000107 H07 trip 000012 OC2 trip 000110 H10 trip 000015 OC5 trip 000111 H11 trip 000022 LUQ trip 000153 P03 trip 000032 LP1 trip 000163 P13 trip 000050 OH trip…
  • Page 175: Motor Selection List

    Example: “161”. The motor designation behind this number is shown in the display ”DSKS56-33-200”. If the code value is > 269: See Reference List for servo motors 9300std201 C0086 Lenze motor type C0081 C0087 C0088 C0089 C0090 Motor type Thermal sensor…

  • Page 176
    Appendix C0086 Lenze motor type C0081 C0087 C0088 C0089 C0090 Motor type Thermal sensor Value Name [kW] [rpm] [Hz] DSVA56-140 DSVAXX056-22 0.80 3950 DFVA71-120 DFVAXX071-22 2.20 3410 DSVA71-140 DSVAXX071-22 1.70 4050 DFVA80-60 DFVAXX080-22 2.10 1635 DSVA80-70 DSVAXX080-22 1.40 2000 DFVA80-120 DFVAXX080-22 3.90…
  • Page 177
    Appendix Reference List for servo motors Tip! The motors listed under “Nameplate data” are available with GDC and unit software. 1. Please enter the value stated for your motor under C0086 in GDC or the keypad. 2. Then check all codes listed in the table. Overwrite the entry in GDC or the keypad with the values indicated in the table.
  • Page 178: Three-Phase Asynchronous Motors

    Appendix 11.5.2 Three-phase asynchronous motors Tip! If the code is > 269: See Reference List for motor types MDXMA Types DXRAXX GDC / Display Nameplate C0081 C0087 C0088 C0089 C0090 Motor type Thermal sensor Valu Name [kW] [rpm] [Hz] DXRAXX071-12-50 DXRAXX071-12 0.25 1410…

  • Page 179
    Appendix GDC / Display Nameplate C0081 C0087 C0088 C0089 C0090 Motor type Thermal sensor Valu Name [kW] [rpm] [Hz] DXRAXX071-12-87 DXRAXX071-12 0.43 2525 DXRAXX071-22-87 DXRAXX071-22 0.64 2515 DXRAXX080-12-87 DXRAXX080-12 0.95 2515 DXRAXX080-22-87 DXRAXX080-22 2525 DXRAXX090-12-87 DXRAXX090-12 2535 DXRAXX090-32-87 DXRAXX090-32 2530 DXRAXX100-22-87 DXRAXX100-22 2535…
  • Page 180
    Appendix Data entry Nameplate Nameplate C0022 C0081 C0084 C0085 C0087 C0088 C0089 C0090 C0091 C0070 C0071 C0075 C0076 C0086 C0086 L σ Field: Field: Imax cos ϕ [Hz] [ Ω] Motor type [kW] [rpm] [mH] MDXMAXM-090-32 9.15 2.70 27.70 2530 6.10 0.78 MDXMAXM-100-12…
  • Page 181
    Appendix Data entry Nameplate Nameplate C0022 C0081 C0084 C0085 C0087 C0088 C0089 C0090 C0091 C0070 C0071 C0075 C0076 C0086 C0086 L σ Field: Field: Imax cos ϕ [Hz] [ Ω] Motor type [kW] [rpm] [mH] 1051 MDXMAXM-225-12 108.0 37.00 0.15 2.00 1460 72.00…
  • Page 182: Glossary

    Ctrl. inhibit Controller inhibit ( = Controller enable ) Fieldbus For data exchange between superimposed control and positioning control, e.g. InterBus-S or PROFIBUS DP Global Drive Control (PC-program (Windows) for Lenze controllers) INTERBUS Industrial communication standard to DIN E19258 LECOM…

  • Page 183: Table Of Keywords

    Appendix 11.7 Table of keywords Cable cross-sections, 3-6, 4-14 Control cables, 4-20 Acceleration time, 11-17, 11-26 Mains connection, 4-13 Motor connection, 4-17 Accessories, 11-1 Cable specification, 4-12 Accessory kit, 1-1 CAN bus identifier, 11-28 CANopen, 4-26 Actual motor current, 11-19 Code table, 11-15 Collective screen plate, 4-20 Actual motor voltage, 11-19…

  • Page 184
    Appendix FAIL-QSP , 8-15 DC-bus voltage, 11-19 Fault elimination, 9-1 Fault message, Reset, 9-9 Deceleration time, 11-17, 11-26 Feedback signals, 4-30 Encoder connection, 4-32 Definitions, 1-1 Resolver connection, 4-31 Temperature monitoring, 4-28 Dimensions, 3-7 Field controller, 11-20 Standard units, 4-2 Free space, 4-1 Function blocks, 8-4 Display, Actual values, 7-16…
  • Page 185
    Appendix Mains conditions, 4-12 Information on operation, 6-2 Mains connection, 4-13 Inputs Protection, 4-14 Analog, 4-21 Mains filter, 3-7 Digital, 4-21 Mains types, 4-12 Installation Maintenance, 10-1 CE-typical drive system, 4-34 Assembly, 4-34 Manufacturer, 1-2 Filters, 4-34 Grounding, 4-34 Maximum speed, 11-17 Shielding, 4-34 Mechanical installation, 4-1 Cold plate, 4-6…
  • Page 186: Packing List

    Appendix Rated data Packing list, 1-1 200 % overcurrent, 3-4 Cable cross-sections, 3-6 Parameter Fuses, 3-6 Change, 7-10 Mains filter, 3-7 Copy parameter sets. See Parameter set transfer Types 9321 to 9325, 3-3 Keypad, 7-7 Types 9326 to 9332, 3-5 Load parameter set, 7-12 Rated motor power, 11-20 Parameter classes, 7-2…

  • Page 187
    Appendix Technical data, 3-1 Use, as directed, 1-2 Dimensions, 3-7 User menu, 7-9 Electrical data, 3-3 Features, 3-1 General data/application conditions, 3-2 Temperature monitoring, 4-28 Vibrations, 4-1 Thermal separation , 4-3 Voltage drop, 4-14 Tightening torques Vpi current controller, 11-20 Control terminals, 4-20 Vpn speed controller, 11-20 Power terminals, 4-13, 4-17…
  • Page 188
    Appendix 11-69 BA9300SU EN 2.1…
  • Page 189
    Appendix 11-70 BA9300SU EN 2.1…

9.3

Note!

If the fault indication is requested by a fieldbus (C0168/x), the fault indication is represented by a

fault number in column 2 of the table.

q

Fault No.:

xxx

— TRIP

Display

— Message

— Warning

— FAIL-QSP

No fault

q

CCr

071

System error

q

CDA

220

Data error

q

221

Data error warning

q

CE0

061

Communication error

q

CE1

062

Communication error at

the process data input

object CAN_IN_1

q

CE2

063

Communication error at

the process data input

object CAN_IN_2

q

CE3

064

Communication error at

the process data input

object CAN_IN_3

q

CE4

065

BUS-OFF state

q

EEr

091

External fault (TRIP-Set)

q

H05

105

Internal error

q

H07

107

Incorrect power stage

q

H10

110

Sensor fault heat sink

temperature

q

H11

111

Senso fault indoor

temperature

q

LP1

032

Motor phase failure

q

LU

030

Undervoltage

q

r

200

Max. speed exceeded

MAX

(C0596)

Troubleshooting and fault elimination

Error

Strong interference on control cables

For 9300 cam profiler:

Selection of too many points

Ground or earth loops in the wiring

Attempt to accept faulty data

The checksum of the data transferred is not

correct.

Interference during transmission of control

commands via automation interface X1

CAN_IN_1 object receives faulty data, or

communication is interrupted

CAN_IN_2 object receives faulty data, or

communication is interrupted

CAN_IN_3 object receives faulty data, or

communication is interrupted

Controller has received too many incorrect

telegrams via system bus X4, and has disconnected

from the bus

A digital input assigned to the TRIP-Set function has

been activated.

During initialization of the controller, an incorrect

power stage was detected

Sensor for heat sink temperature detection

indicates indefinite values

Sensor for indoor temperature detection indicates

indefinite values

A current-carrying motor phase has failed

The current limit is set too high

This monitoring is not suitable for:

Synchronous servo motors

at field frequencies > 480 Hz

DC bus voltage is smaller than the value fixed under

C0173

Active load (e.g. for hoists) too high

Drive is not speed-controlled, torque excessively

limited.

BA9300SU EN 2.1

Cause

Screen control cables

For 9300 cam profiler:

Reduce number of points to max. 2 points per ms)

PE wiring.

New data transfer.

New data transfer and check.

Plug in automation module firmly, bolt down, if

necessary

Check cable at X4

Check transmitter

Increase monitoring time under C0357/1 if

necessary

Check cable at X4

Check transmitter

Increase monitoring time under C0357/2 if

necessary

Check cable at X4

Check transmitter

Increase monitoring time under C0357/3 if

necessary

Check wiring

Check bus termination (if any)

Check screen contact of the cables

Check PE connection

Check bus load:

Reduce baud rate (observe cable length)

Check external encoder

Contact Lenze

Contact Lenze

Contact Lenze

Contact Lenze

Check motor

Check supply module

Set a lower current limit value under C0599

Deactivate monitoring with C0597= 3

Check mains voltage

Check supply cable

Check drive dimensioning.

Increase torque limit if necessary.

Remedy

^

4-34

9-5

Обновлено: 26 мая 2023 г. 16:15

При работе промышленной электроники Lenze в системах вентиляции, теплоснабжения или автоматизированном производственном оборудовании часто возникают неисправности, распознать которые можно считав коды ошибок и произведя расшифровку этих кодов по инструкции на конкретную модель электронного оборудования. Своевременная расшифровка ошибок может значительно ускорить диагностику и ремонт преобразователей частоты, подробнее об этом написано здесь.

Частотные преобразователи Lenze имеют следующие распространенные ошибки:

Наиболее частые ошибки преобразователей Lenze SMD 8200:

Ошибка CF (error CF) — ошибка данных;
Ошибка FI (error FI) — ошибка EPM;
Ошибка CFG (error CFG) — неправильная конфигурация;
Ошибка dF (error dF) — ошибка динамического торможения;
Ошибка EEr (error EEr) — внешняя ошибка;
Ошибка F2 (error F2) — внутренняя ошибка;
Ошибка F0 (error F0) — внутренняя ошибка;
Ошибка FC3 (error FC3) — ошибка коммуникации;
Ошибка FC5 (error FC5) — ошибка коммуникации;
Ошибка JF (error JF) — ошибка удаленного пульта;
Ошибка LC (error LC) — блокировка автоматического пуска;
Ошибка OC1 (error OC1) — короткое замыкание или перегрузка преобразователя;
Ошибка OC2 (error OC2) — короткое замыкание на землю;
Ошибка OC6 (error OC6) — перегрузка двигателя;
Ошибка OH (error OH) — перегрев ПЧ;
Ошибка OU (error OU) — перегрузка по цепям постоянного тока;
Ошибка rSt (error rSt) — невозможен автоматический сброс триггера «Авария»;
Ошибка SdS (error SdS) — потеря аналогового сигнала 4-20 мА;
Ошибка SF (error SF) — обрыв фазы.

Похожие статьи:

  • Регулирование скорости вращения двигателей постоянного тока
  • Ремонт коронаторов
  • Среда графического языка программирования LabVIEW
  • ESQ ошибки — расшифровка кодов неисправностей ПЧ
  • VACON ошибки — расшифровка кодов неисправностей ПЧ

Время выполнения запроса: 0,00439810752869 секунды.

Понравилась статья? Поделить с друзьями:
  • Lenovo b590 ошибка fan error
  • Lenovo a536 ошибка 4032
  • Lenovo a536 ошибка 1041
  • Lenkrad bewegen ошибка фольксваген
  • Length wider than 21 bit minecraft ошибка