Многослойные нейронные сети алгоритм обратного распространения ошибки

Время на прочтение
19 мин

Количество просмотров 285K

Тема нейронных сетей была уже ни раз освещена на хабре, однако сегодня я бы хотел познакомить читателей с алгоритмом обучения многослойной нейронной сети методом обратного распространения ошибки и привести реализацию данного метода.

Сразу хочу оговориться, что не являюсь экспертом в области нейронных сетей, поэтому жду от читателей конструктивной критики, замечаний и дополнений.

Теоретическая часть

Данный материал предполагает знакомство с основами нейронных сетей, однако я считаю возможным ввести читателя в курс темы без излишних мытарств по теории нейронных сетей. Итак, для тех, кто впервые слышит словосочетание «нейронная сеть», предлагаю воспринимать нейронную сеть в качестве взвешенного направленного графа, узлы ( нейроны ) которого расположены слоями. Кроме того, узел одного слоя имеет связи со всеми узлами предыдущего слоя. В нашем случае у такого графа будут иметься входной и выходной слои, узлы которых выполняют роль входов и
выходов соответственно. Каждый узел ( нейрон ) обладает активационной функцией — функцией, ответственной за вычисление сигнала на выходе узла ( нейрона ). Также существует понятие смещения, представляющего из себя узел, на выходе которого всегда появляется единица. В данной статье мы будем рассматривать процесс обучения нейронной сети, предполагающий наличие «учителя», то есть процесс обучения, при котором обучение происходит путем предоставления сети последовательности обучающих примеров с правильными откликами.

Как и в случае с большинством нейронных сетей, наша цель состоит в обучении сети таким образом, чтобы достичь баланса между способностью сети давать верный отклик на входные данные, использовавшиеся в процессе обучения ( запоминания ), и способностью выдавать правильные результаты в ответ на входные данные, схожие, но неидентичные тем, что были использованы при обучении ( принцип обобщения). Обучение сети методом обратного распространения ошибки включает в себя три этапа: подачу на вход данных, с последующим распространением данных в направлении выходов, вычисление и обратное распространение соответствующей ошибки и корректировку весов. После обучения предполагается лишь подача на вход сети данных и распространение их в направлении выходов. При этом, если обучение сети может являться довольно длительным процессом, то непосредственное вычисление результатов обученной сетью происходит очень быстро. Кроме того, существуют многочисленные вариации метода обратного распространения ошибки, разработанные с целью увеличения скорости протекания
процесса обучения.
Также стоит отметить, что однослойная нейронная сеть существенно ограничена в том, обучению каким шаблонам входных данных она подлежит, в то время, как многослойная сеть ( с одним или более скрытым слоем ) не имеет такого недостатка. Далее будет дано описание стандартной нейронной сети с обратным распространением ошибки.

Архитектура

На рисунке 1 показана многослойная нейронная сеть с одним слоем скрытых нейронов ( элементы Z ).

image
Нейроны, представляющие собой выходы сети ( обозначены ), и скрытые нейроны могут иметь смещение( как показано на изображении ). Смещение, соответствующий выходу обозначен, скрытому элементу . Эти смещения служат в качестве весов на связях, исходящих от нейронов, на выходе которых всегда появляется 1 ( на рисунке 1 они показаны, но обычно явно не отображаются, подразумеваясь). Кроме того, на рисунке 1 стрелками показано перемещение информации в ходе фазы распространения данных от входов к выходам. В процессе обучения сигналы распространяются в обратном направлении.

Описание алгоритма

Алгоритм, представленный далее, применим к нейронной сети с одним скрытым слоем, что является допустимой и адекватной ситуацией для большинства приложений. Как уже было сказано ранее, обучение сети включает в себя три стадии: подача на входы сети обучающих данных, обратное распространение ошибки и корректировка весов. В ходе первого этапа каждый входной нейрон получает сигнал и широковещательно транслирует его каждому из скрытых нейронов . Каждый скрытый нейрон затем вычисляет результат его активационной функции ( сетевой функции ) и рассылает свой сигнал всем выходным нейронам. Каждый выходной нейрон , в свою очередь, вычисляет результат своей активационной функции , который представляет собой ничто иное, как выходной сигнал данного нейрона для соответствующих входных данных. В процессе обучения, каждый нейрон на выходе сети сравнивает вычисленное значение с предоставленным учителем ( целевым значением ), определяя соответствующее значение ошибки для данного входного шаблона. На основании этой ошибки вычисляется . используется при распространении ошибки от до всех элементов сети предыдущего слоя ( скрытых нейронов, связанных с ), а также позже при изменении весов связей между выходными нейронами и скрытыми. Аналогичным образом вычисляется для каждого скрытого нейрона . Несмотря на то, что распространять ошибку до входного слоя необходимости нет, используется для изменения весов связей между нейронами скрытого слоя и входными нейронами. После того как все были определены, происходит одновременная корректировка весов всех связей.

Обозначения:

В алгоритме обучения сети используются следующие обозначения:

Входной вектор обучающих данных
Вектор целевых выходных значений, предоставляемых учителем
Составляющая корректировки весов связей , соответствующая ошибке выходного нейрона ; также, информация об ошибке нейрона , которая распространяется тем нейронам скрытого слоя, которые связаны с .
Составляющая корректировки весов связей, соответствующая распространяемой от выходного слоя к скрытому нейрону информации об ошибке.
Скорость обучения.
Нейрон на входе с индексом i. Для входных нейронов входной и выходной сигналы одинаковы — .
Смещение скрытого нейрона j.
Скрытый нейрон j; Суммарное значение подаваемое на вход скрытого элемента обозначается :
Сигнал на выходе ( результат применения к активационной функции ) обозначается :
Смещение нейрона на выходе.
Нейрон на выходе под индексом k; Суммарное значение подаваемое на вход выходного элемента обозначается : . Сигнал на выходе ( результат применения к активационной функции ) обозначается :

Функция активации

Функция активация в алгоритме обратного распространения ошибки должна обладать несколькими важными характеристиками: непрерывностью, дифференцируемостью и являться монотонно неубывающей. Более того, ради эффективности вычислений, желательно, чтобы ее производная легко находилась. Зачастую, активационная функция также является функцией с насыщением. Одной из наиболее часто используемых активационных функций является бинарная сигмоидальная функция с областью значений в ( 0, 1 ) и определенная как:



Другой широко распространенной активационной функцией является биполярный сигмоид с областью значений ( -1, 1 ) и определенный как:


Алгоритм обучения

Алгоритм обучения выглядит следующим образом:

Шаг 0.

Инициализация весов ( веса всех связей инициализируются случайными небольшими значениями ).

Шаг 1.

До тех пор пока условие прекращения работы алгоритма неверно, выполняются шаги 2 — 9.

Шаг 2.

Для каждой пары { данные, целевое значение } выполняются шаги 3 — 8.

Распространение данных от входов к выходам:

Шаг 3.

Каждый входной нейрон отправляет полученный сигнал всем нейронам в следующем слое ( скрытом ).

Шаг 4.

Каждый скрытый нейрон суммирует взвешенные входящие сигналы: и применяет активационную функцию: После чего посылает результат всем элементам следующего слоя ( выходного ).

Шаг 5.

Каждый выходной нейрон суммирует взвешенные входящие сигналы: и применяет активационную функцию, вычисляя выходной сигнал:

Обратное распространение ошибки:

Шаг 6.

Каждый выходной нейрон получает целевое значение — то выходное значение, которое является правильным для данного входного сигнала, и вычисляет ошибку: , так же вычисляет величину, на которую изменится вес связи : . Помимо этого, вычисляет величину корректировки смещения: и посылает нейронам в предыдущем слое.

Шаг 7.

Каждый скрытый нейрон суммирует входящие ошибки ( от нейронов в последующем слое ) и вычисляет величину ошибки, умножая полученное значение на производную активационной функции: , так же вычисляет величину, на которую изменится вес связи : . Помимо этого, вычисляет величину корректировки смещения:

Шаг 8. Изменение весов.

Каждый выходной нейрон изменяет веса своих связей с элементом смещения и скрытыми нейронами:
Каждый скрытый нейрон изменяет веса своих связей с элементом смещения и выходными нейронами:

Шаг 9.

Проверка условия прекращения работы алгоритма.

Условием прекращения работы алгоритма может быть как достижение суммарной квадратичной ошибкой результата на выходе сети предустановленного заранее минимума в ходе процесса обучения, так и выполнения определенного количества итераций алгоритма. В основе алгоритма лежит метод под названием градиентный спуск. В зависимости от знака, градиент функции ( в данном случае значение функции — это ошибка, а параметры — это веса связей в сети ) дает направление, в котором значения функции возрастают (или убывают) наиболее стремительно.

Выбор первоначальных весов и смещения

Случайная инициализация. Выбор начальных весов окажет влияние на то, сумеет ли сеть достичь глобального ( или только локального) минимума ошибки, и насколько быстро этот процесс будет происходить. Изменение весов между двумя нейронами связано с производной активационной функции нейрона из последующего слоя и активационной функции нейрона слоя предыдущего. В связи с этим, важно избегать выбора таких начальных весов, которые обнулят активационную функцию или ее производную. Также начальные веса не должны быть слишком большими ( или входные сигнал для каждого скрытого или выходного нейрона скорее всего попадут в регион очень малых значений сигмоида ( регион насыщения ) ). С другой стороны, если начальные веса будут слишком маленькими, то входной сигнал на скрытые или выходные нейроны будет близок к нулю, что также приведет к очень низкой скорости обучения. Стандартная процедура инициализации весов состоит в присвоении им случайных значений в интервале ( -0,5; 0,5). Значения могут быть как положительными, так и отрицательными, так как конечные веса, получающиеся после обучения сети, могут быть обоих знаков. Инициализация Nguyen – Widrow. Представленная далее простая модификация стандартной процедуру инициализации способствует более быстрому обучению: Веса связей скрытых и выходных нейронов, а также смещение выходного слоя инициализируются также, как и в стандартной процедуре — случайными значениями из интервала ( -0,5; 0,5).

Введем обозначения:
количество входных нейронов
количество скрытых нейронов
фактор масштабирования:

Процедура состоит из следующих простых шагов:
Для каждого скрытого нейрона :
инициализировать его вектор весов ( связей с входными нейронами ):

вычислить
переинициализировать веса:
задать значение смещения:

Практическая часть

Начну с реализации концепции нейрона. Было решено представить нейроны входного слоя базовым классом, а скрытые и выходные как декораторы базового класса. Кроме того, нейрон хранит в себе информацию об исходящих и входящих связях, а также каждый нейрон композиционно имеет в своем составе активационную функцию.

Интерфейс нейрона

/**
 *	Neuron base class.
 *	Represents a basic element of neural network, node in the net's graph.
 *	There are several possibilities for creation an object of type Neuron, different constructors suites for
 *	different situations.
*/

template <typename T>
class Neuron
{
public:

	 /**
	 * 		A default Neuron constructor.
	 * 		- Description:		Creates a Neuron; general purposes.
	 * 		- Purpose:			Creates a Neuron, linked to nothing, with a Linear network function.
	 * 		- Prerequisites:	None.
	 */

						Neuron( ) : mNetFunc( new Linear ), mSumOfCharges( 0.0 ) { };

	 /**
	 * 		A Neuron constructor based on NetworkFunction.
	 * 		- Description:		Creates a Neuron; mostly designed to create an output kind of neurons.
	 * 			@param inNetFunc - a network function which is producing neuron's output signal;
	 * 		- Purpose:			Creates a Neuron, linked to nothing, with a specific network function.
	 * 		- Prerequisites:	The existence of NetworkFunction object.
	 */

						Neuron( NetworkFunction * inNetFunc ) : mNetFunc( inNetFunc ), mSumOfCharges( 0.0 ){ };

						Neuron( std::vector<NeuralLink<T > *>& inLinksToNeurons, NetworkFunction * inNetFunc ) :
							mNetFunc( inNetFunc ),
							mLinksToNeurons(inLinksToNeurons),
							mSumOfCharges(0.0){ };

	 /**
	 * 		A Neuron constructor based on layer of Neurons.
	 * 		- Description:		Creates a Neuron; mostly designed to create an input and hidden kinds of neurons.
	 * 			@param inNeuronsLinkTo - a vector of pointers to Neurons which is representing a layer;
	 * 			@param inNetFunc - a network function which is producing neuron's output signal;
	 * 		- Purpose:			Creates a Neuron, linked to every Neuron in provided layer.
	 * 		- Prerequisites:	The existence of std::vector<Neuron *> and NetworkFunction.
	 */

									Neuron( std::vector<Neuron *>& inNeuronsLinkTo, NetworkFunction * inNetFunc );

	virtual					                ~Neuron( );

	virtual std::vector<NeuralLink<T > *>& GetLinksToNeurons( ){ return mLinksToNeurons; };
	virtual NeuralLink<T> * at( const int& inIndexOfNeuralLink ) { return mLinksToNeurons[ inIndexOfNeuralLink ]; };

	virtual void SetLinkToNeuron( NeuralLink<T> * inNeuralLink ){ mLinksToNeurons.push_back( inNeuralLink ); };

	virtual void Input( double inInputData ){ mSumOfCharges += inInputData; };
	virtual double Fire( );
	virtual int GetNumOfLinks( ) { return mLinksToNeurons.size( ); };
	virtual double GetSumOfCharges( );
	virtual void ResetSumOfCharges( ){ mSumOfCharges = 0.0; };
	virtual double Process( ) { return mNetFunc->Process( mSumOfCharges ); };
	virtual double Process( double inArg ){ return mNetFunc->Process( inArg ); };
	virtual double Derivative( ){ return mNetFunc->Derivative( mSumOfCharges ); };

	virtual void SetInputLink( NeuralLink<T> * inLink ){ mInputLinks.push_back( inLink ); };
	virtual std::vector<NeuralLink<T > *>& GetInputLink( ){ return mInputLinks; };



	virtual double PerformTrainingProcess( double inTarget );
	virtual void PerformWeightsUpdating( );

	virtual void ShowNeuronState( );
protected:
	NetworkFunction * mNetFunc;
	std::vector<NeuralLink<T > *> mInputLinks;
	std::vector<NeuralLink<T > *> mLinksToNeurons;

	double mSumOfCharges;
};

template <typename T>
class OutputLayerNeuronDecorator : public Neuron<T>
{
public:
						          OutputLayerNeuronDecorator( Neuron<T> * inNeuron ){ mOutputCharge = 0; mNeuron = inNeuron; };
	virtual					~OutputLayerNeuronDecorator( );

	virtual std::vector<NeuralLink<T > *>& GetLinksToNeurons( ){ return mNeuron->GetLinksToNeurons( ) ;};
	virtual NeuralLink<T> * at( const int& inIndexOfNeuralLink ){ return ( mNeuron->at( inIndexOfNeuralLink ) ) ;};
	virtual void SetLinkToNeuron( NeuralLink<T> * inNeuralLink ){ mNeuron->SetLinkToNeuron( inNeuralLink ); };
	virtual double GetSumOfCharges( ) { return mNeuron->GetSumOfCharges( ); };

	virtual void ResetSumOfCharges( ){ mNeuron->ResetSumOfCharges( ); };
	virtual void Input( double inInputData ){ mNeuron->Input( inInputData ); };
	virtual double Fire( );
	virtual int GetNumOfLinks( ) { return mNeuron->GetNumOfLinks( ); };


	virtual double Process( ) { return mNeuron->Process( ); };
	virtual double Process( double inArg ){ return mNeuron->Process( inArg ); };

	virtual double Derivative( ) { return mNeuron->Derivative( ); };

	virtual void SetInputLink( NeuralLink<T> * inLink ){ mNeuron->SetInputLink( inLink ); };
	virtual std::vector<NeuralLink<T > *>&	GetInputLink( ) { return mNeuron->GetInputLink( ); };

	virtual double PerformTrainingProcess( double inTarget );
	virtual void PerformWeightsUpdating( );
	virtual void ShowNeuronState( ) { mNeuron->ShowNeuronState( ); };
protected:
	double mOutputCharge;
	Neuron<T> *	 mNeuron;

};

template <typename T>
class HiddenLayerNeuronDecorator : public Neuron<T>
{
public:
						          HiddenLayerNeuronDecorator( Neuron<T> * inNeuron ) { mNeuron = inNeuron; };
	virtual					~HiddenLayerNeuronDecorator( );

	virtual std::vector<NeuralLink<T > *>&	GetLinksToNeurons( ){ return mNeuron->GetLinksToNeurons( ); };
	virtual void SetLinkToNeuron( NeuralLink<T> * inNeuralLink ){ mNeuron->SetLinkToNeuron( inNeuralLink ); };
	virtual double GetSumOfCharges( ){ return mNeuron->GetSumOfCharges( ) ;};

	virtual void ResetSumOfCharges( ){mNeuron->ResetSumOfCharges( ); };
	virtual void Input( double inInputData ){ mNeuron->Input( inInputData ); };
	virtual double Fire( );
	virtual int GetNumOfLinks( ){ return mNeuron->GetNumOfLinks( ); };
	virtual NeuralLink<T> * ( const int& inIndexOfNeuralLink ){ return ( mNeuron->at( inIndexOfNeuralLink) ); };

	virtual double Process( ){ return mNeuron->Process( ); };
	virtual double Process( double inArg ){ return mNeuron->Process( inArg ); };

	virtual double Derivative( ){ return mNeuron->Derivative( ); };

	virtual void SetInputLink( NeuralLink<T> * inLink ){ mNeuron->SetInputLink( inLink ); };
	virtual std::vector<NeuralLink<T > *>& GetInputLink( ){ return mNeuron->GetInputLink( ); };

	virtual double PerformTrainingProcess( double inTarget );
	virtual void PerformWeightsUpdating( );

	virtual void ShowNeuronState( ){ mNeuron->ShowNeuronState( ); };
protected:


	Neuron<T> *	 mNeuron;

};

Интерфейс нейронных связей представлен ниже, каждая связь хранит вес и указатель на нейрон:

Интерфейс нейронной связи

template <typename T>
class Neuron;



template <typename T>
class NeuralLink
{
public:
                                       NeuralLink( ) : mWeightToNeuron( 0.0 ),
                                                                  mNeuronLinkedTo( 0 ), 
                                                                  mWeightCorrectionTerm( 0 ), 
                                                                  mErrorInformationTerm( 0 ),  
                                                                  mLastTranslatedSignal( 0 ){ };

                                       NeuralLink( Neuron<T> * inNeuronLinkedTo, double inWeightToNeuron = 0.0 ) : 
                                                                 mWeightToNeuron( inWeightToNeuron ), 
                                                                 mNeuronLinkedTo( inNeuronLinkedTo ), 
                                                                 mWeightCorrectionTerm( 0 ),
                                                                 mErrorInformationTerm( 0 ), 
                                                                 mLastTranslatedSignal( 0 ){ };
  
  void SetWeight( const double& inWeight ){ mWeightToNeuron = inWeight; };
  const double& GetWeight( ){ return mWeightToNeuron; };
  
  void SetNeuronLinkedTo( Neuron<T> * inNeuronLinkedTo ){ mNeuronLinkedTo = inNeuronLinkedTo; };
  Neuron<T> * GetNeuronLinkedTo( ){ return mNeuronLinkedTo; };
  
  void SetWeightCorrectionTerm( double inWeightCorrectionTerm ){ mWeightCorrectionTerm = inWeightCorrectionTerm; };
  double GetWeightCorrectionTerm( ){ return mWeightCorrectionTerm; };
  
  void UpdateWeight( ){ mWeightToNeuron = mWeightToNeuron + mWeightCorrectionTerm; };
  
  double GetErrorInFormationTerm( ){ return mErrorInformationTerm; };
  void SetErrorInFormationTerm( double inEITerm ){ mErrorInformationTerm = inEITerm; };
  
  void SetLastTranslatedSignal( double inLastTranslatedSignal ){ mLastTranslatedSignal = inLastTranslatedSignal; };
  double GetLastTranslatedSignal( ){ return mLastTranslatedSignal; };
protected:
  double mWeightToNeuron;
  Neuron<T> * mNeuronLinkedTo;
  double mWeightCorrectionTerm;
  double mErrorInformationTerm;
  double mLastTranslatedSignal;
};

Каждая активационная функция наследует от абстрактного класса, реализуя саму функцию и производную:

Интерфейс активационной функции


class NetworkFunction {
public:
  NetworkFunction(){};
  virtual ~NetworkFunction(){};
  virtual double 	Process( double inParam ) = 0;
  virtual double 	Derivative( double inParam ) = 0;
};

class Linear : public NetworkFunction {
public:
  Linear(){};
  virtual ~Linear(){};
  virtual double 	Process( double inParam ){ return inParam; };
  virtual double 	Derivative( double inParam ){ return 0; };
};


class Sigmoid : public NetworkFunction {
public:
  Sigmoid(){};
  virtual ~Sigmoid(){};
  virtual double 	Process( double inParam ){ return ( 1 / ( 1 + exp( -inParam ) ) ); };
  virtual double 	Derivative( double inParam ){ return ( this->Process(inParam)*(1 - this->Process(inParam)) );};
};

class BipolarSigmoid : public NetworkFunction {
public:
  BipolarSigmoid(){};
  virtual ~BipolarSigmoid(){};
  virtual double 	Process( double inParam ){ return ( 2 / ( 1 + exp( -inParam ) ) - 1 ) ;};
  virtual double 	Derivative( double inParam ){ return ( 0.5 * ( 1 + this->Process( inParam ) ) * ( 1 - this->Process( inParam ) ) ); };
};

За производство нейронов ответственна нейронная фабрика:

Интерфейс нейронной фабрики


template <typename T>
class NeuronFactory
{
public:
		    NeuronFactory(){};
	virtual ~NeuronFactory(){};
	virtual Neuron<T> * CreateInputNeuron( std::vector<Neuron<T > *>& inNeuronsLinkTo, NetworkFunction * inNetFunc ) = 0;
	virtual Neuron<T> * CreateOutputNeuron( NetworkFunction * inNetFunc ) = 0;
	virtual Neuron<T> * CreateHiddenNeuron( std::vector<Neuron<T > *>& inNeuronsLinkTo, NetworkFunction * inNetFunc ) = 0;

};

template <typename T>
class PerceptronNeuronFactory : public NeuronFactory<T>
{
public:
		    PerceptronNeuronFactory(){};
	virtual ~PerceptronNeuronFactory(){};
	virtual Neuron<T> * CreateInputNeuron( std::vector<Neuron<T > *>& inNeuronsLinkTo, NetworkFunction * inNetFunc ){ return new Neuron<T>( inNeuronsLinkTo, inNetFunc ); };
	virtual Neuron<T> * CreateOutputNeuron( NetworkFunction * inNetFunc ){ return new OutputLayerNeuronDecorator<T>( new Neuron<T>( inNetFunc ) ); };
	virtual Neuron<T> *  CreateHiddenNeuron( std::vector<Neuron<T > *>& inNeuronsLinkTo, NetworkFunction * inNetFunc ){ return new HiddenLayerNeuronDecorator<T>( new Neuron<T>( inNeuronsLinkTo, inNetFunc ) ); };
};

Сама нейронная сеть хранит указатели на нейроны, организованные
слоями ( вообще, указатели на нейроны хранятся в векторах, которые
нужно заменить на объекты-слои ), включает в себя абстрактную
фабрику нейронов, а также алгоритм обучения сети.

Интерфейс нейронной сети

template <typename T>
class TrainAlgorithm;

/**
 *	Neural network class.
 *	An object of that type represents a neural network of several types:
 *	- Single layer perceptron;
 *	- Multiple layers perceptron.
 *
 * 	There are several training algorithms available as well:
 * 	- Perceptron;
 * 	- Backpropagation.
 *
 * 	How to use this class:
 * 	To be able to use neural network , you have to create an instance of that class, specifying
 * 	a number of input neurons, output neurons, number of hidden layers and amount of neurons in hidden layers.
 * 	You can also specify a type of neural network, by passing a string with a name of neural network, otherwise
 * 	MultiLayerPerceptron will be used. ( A training algorithm can be changed via public calls);
 *
 * 	Once the neural network was created, all u have to do is to set the biggest MSE required to achieve during
 * 	the training phase ( or u can skip this step, then mMinMSE will be set to 0.01 ),
 * 	train the network by providing a training data with target results.
 * 	Afterwards u can obtain the net response by feeding the net with data;
 *
*/

template <typename T>
class NeuralNetwork
{

public:

	 /**
	 * 		A Neural Network constructor.
	 * 		- Description:		A template constructor. T is a data type, all the nodes will operate with. Create a neural network by providing it with:
	 * 							@param inInputs - an integer argument - number of input neurons of newly created neural network;
	 * 							@param inOutputs- an integer argument - number of output neurons of newly created neural network;
	 * 							@param inNumOfHiddenLayers - an integer argument - number of hidden layers of newly created neural network, default is 0;
	 * 							@param inNumOfNeuronsInHiddenLayers - an integer argument - number of neurons in hidden layers of newly created neural network ( note that every hidden layer has the same amount of neurons), default is 0;
	 * 							@param inTypeOfNeuralNetwork - a const char * argument - a type of neural network, we are going to create. The values may be:
	 * 							<UL>
	 * 								<LI>MultiLayerPerceptron;</LI>
	 * 								<LI>Default is MultiLayerPerceptron.</LI>
	 *							</UL>
	 * 		- Purpose:			Creates a neural network for solving some interesting problems.
	 * 		- Prerequisites:	The template parameter has to be picked based on your input data.
	 *
	 */
					NeuralNetwork( const int& inInputs,
						const int& inOutputs,
						const int& inNumOfHiddenLayers = 0,
						const int& inNumOfNeuronsInHiddenLayers = 0,
						const char * inTypeOfNeuralNetwork = "MultiLayerPerceptron"
					);

					~NeuralNetwork( );

	 /**
	 * 		Public method Train.
	 *		- Description:		Method for training the network.
	 *		- Purpose:			Trains a network, so the weights on the links adjusted in the way to be able to solve problem.
	 *		- Prerequisites:
	 *			@param inData 	- a vector of vectors with data to train with;
	 *			@param inTarget - a vector of vectors with target data;
	 *					  		- the number of data samples and target samples has to be equal;
	 *					  		- the data and targets has to be in the appropriate order u want the network to learn.
	 */

	bool Train( const std::vector<std::vector<T > >& inData,
		 const std::vector<std::vector<T > >& inTarget );

	 /**
	 * 		Public method GetNetResponse.
	 *		- Description:		Method for actually get response from net by feeding it with data.
	 *		- Purpose:			By calling this method u make the network evaluate the response for u.
	 *		- Prerequisites:
	 *			@param inData 	- a vector data to feed with.
	 */

	std::vector<int> GetNetResponse( const std::vector<T>& inData );

	 /**
	 * 		Public method SetAlgorithm.
	 *		- Description:		Setter for algorithm of training the net.
	 *		- Purpose:			Can be used for dynamic change of training algorithm.
	 *		- Prerequisites:
	 *			@param inTrainingAlgorithm 	- an existence of already created object  of type TrainAlgorithm.
	 */

	void	 SetAlgorithm( TrainAlgorithm<T> * inTrainingAlgorithm )		{ mTrainingAlgoritm = inTrainingAlgorithm; };

	 /**
	 * 		Public method SetNeuronFactory.
	 *		- Description:		Setter for the factory, which is making neurons for the net.
	 *		- Purpose:			Can be used for dynamic change of neuron factory.
	 *		- Prerequisites:
	 *			@param inNeuronFactory 	- an existence of already created object  of type NeuronFactory.
	 */

	void	 SetNeuronFactory( NeuronFactory<T> * inNeuronFactory )		{ mNeuronFactory = inNeuronFactory; };

	 /**
	 * 		Public method ShowNetworkState.
	 *		- Description:		Prints current state to the standard output: weight of every link.
	 *		- Purpose:			Can be used for monitoring the weights change during training of the net.
	 *		- Prerequisites:	None.
	 */

	void	 ShowNetworkState( );

	 /**
	 * 		Public method GetMinMSE.
	 *		- Description:		Returns the biggest MSE required to achieve during the training phase.
	 *		- Purpose:			Can be used for getting the biggest MSE required to achieve during the training phase.
	 *		- Prerequisites:	None.
	 */

	const double& GetMinMSE( ){ return mMinMSE; };

	 /**
	 * 		Public method SetMinMSE.
	 *		- Description:		Setter for the biggest MSE required to achieve during the training phase.
	 *		- Purpose:			Can be used for setting the biggest MSE required to achieve during the training phase.
	 *		- Prerequisites:
	 *			@param inMinMse 	- double value, the biggest MSE required to achieve during the training phase.
	 */

	void	 SetMinMSE( const double& inMinMse ){ mMinMSE = inMinMse; };

	/**
	* 		Friend class.
	*/

	friend class Hebb<T>;

	/**
	* 		Friend class.
	*/

	friend class Backpropagation<T>;

protected:

	 /**
	 * 		Protected method GetLayer.
	 *		- Description:		Getter for the layer by index of that layer.
	 *		- Purpose:			Can be used by inner implementation for getting access to neural network's layers.
	 *		- Prerequisites:
	 *			@param inInd 	-  an integer index of layer.
	 */

	std::vector<Neuron<T > *>& GetLayer( const int& inInd ){ return mLayers[inInd]; };

	/**
	 * 		Protected method size.
	 *		- Description:		Returns the number of layers in the network.
	 *		- Purpose:			Can be used by inner implementation for getting number of layers in the network.
	 *		- Prerequisites:	None.
	 */

	unsigned int size( ){ return mLayers.size( ); };

	/**
	 * 		Protected method GetNumOfOutputs.
	 *		- Description:		Returns the number of units in the output layer.
	 *		- Purpose:			Can be used by inner implementation for getting number of units in the output layer.
	 *		- Prerequisites:	None.
	 */

	std::vector<Neuron<T > *>& GetOutputLayer( ){ return mLayers[mLayers.size( )-1]; };

	/**
	 * 		Protected method GetInputLayer.
	 *		- Description:		Returns the input layer.
	 *		- Purpose:			Can be used by inner implementation for getting the input layer.
	 *		- Prerequisites:	None.
	 */

	std::vector<Neuron<T > *>& GetInputLayer( ){ return mLayers[0]; };

	/**
	 * 		Protected method GetBiasLayer.
	 *		- Description:		Returns the vector of Biases.
	 *		- Purpose:			Can be used by inner implementation for getting vector of Biases.
	 *		- Prerequisites:	None.
	 */

	std::vector<Neuron<T > *>& GetBiasLayer( )	{ return mBiasLayer; };

	/**
	 * 		Protected method UpdateWeights.
	 *		- Description:		Updates the weights of every link between the neurons.
	 *		- Purpose:			Can be used by inner implementation for updating the weights of links between the neurons.
	 *		- Prerequisites:	None, but only makes sense, when its called during the training phase.
	 */

	void	 UpdateWeights( );

	/**
	 * 		Protected method ResetCharges.
	 *		- Description:		Resets the neuron's data received during iteration of net training.
	 *		- Purpose:			Can be used by inner implementation for reset the neuron's data between iterations.
	 *		- Prerequisites:	None, but only makes sense, when its called during the training phase.
	 */

	void	 ResetCharges( );

	/**
	 * 		Protected method AddMSE.
	 *		- Description:		Changes MSE during the training phase.
	 *		- Purpose:			Can be used by inner implementation for changing MSE during the training phase.
	 *		- Prerequisites:
	 *			@param inInd 	-  a double amount of MSE to be add.
	 */

	void	 AddMSE( double inPortion ){ mMeanSquaredError += inPortion; };

	/**
	 * 		Protected method GetMSE.
	 *		- Description:		Getter for MSE value.
	 *		- Purpose:			Can be used by inner implementation for getting access to the MSE value.
	 *		- Prerequisites:	None.
	 */

	double GetMSE( ){ return mMeanSquaredError; };

	/**
	 * 		Protected method ResetMSE.
	 *		- Description:		Resets MSE value.
	 *		- Purpose:			Can be used by inner implementation for resetting MSE value.
	 *		- Prerequisites:	None.
	 */

	void ResetMSE( )	{ mMeanSquaredError = 0; };


	NeuronFactory<T> * mNeuronFactory; /*!< Member, which is responsible for creating neurons @see SetNeuronFactory */
	TrainAlgorithm<T> * mTrainingAlgoritm;  /*!< Member, which is responsible for the way the network will trained @see SetAlgorithm */
	std::vector<std::vector<Neuron<T > *> >  mLayers; /*!< Inner representation of neural networks */
	std::vector<Neuron<T > *>  mBiasLayer; /*!< Container for biases */
	unsigned int mInputs, mOutputs, mHidden; /*!< Number of inputs, outputs and hidden units */
	double mMeanSquaredError; /*!< Mean Squared Error which is changing every iteration of the training*/
	double mMinMSE; /*!< The biggest Mean Squared Error required for training to stop*/
};


И, наконец, сам интерфейс класса, ответственного за обучение сети:

Интерфейс алгоритма обучения


template <typename T>
class NeuralNetwork;

template <typename T>
class TrainAlgorithm
{
public:
	virtual ~TrainAlgorithm(){};
	virtual double Train(const std::vector<T>& inData, const std::vector<T>& inTarget) = 0;
	virtual void WeightsInitialization() = 0;
protected:
};

template <typename T>
class Hebb : public TrainAlgorithm<T>
{
public:
		   Hebb(NeuralNetwork<T> * inNeuralNetwork) : mNeuralNetwork(inNeuralNetwork){};
	virtual ~Hebb(){};
	virtual double Train(const std::vector<T>& inData, const std::vector<T>& inTarget);
	virtual void WeightsInitialization();
protected:
	NeuralNetwork<T> * mNeuralNetwork;
};

template <typename T>
class Backpropagation : public TrainAlgorithm<T>
{
public:
		    Backpropagation(NeuralNetwork<T> * inNeuralNetwork);
	virtual ~Backpropagation(){};
	virtual double Train(const std::vector<T>& inData, const std::vector<T>& inTarget);
	virtual void WeightsInitialization();
protected:
	void	 NguyenWidrowWeightsInitialization();
	void	 CommonInitialization();
	NeuralNetwork<T> * mNeuralNetwork;
};

Весь код доступен на github: Sovietmade/NeuralNetworks

В качестве заключения, хотелось бы отметить, что тема нейронных сетей на данный момент не разработана полностью, вновь и вновь мы видим на страницах хабра упоминания о новых достижениях ученых в области нейронных сетей, новых удивительных разработках. С моей стороны,
эта статья была первым шагом освоения интереснейшей технологии, и я надеюсь для кого — то она окажется небесполезной.

Использованная литература:

Алгоритм обучения нейронной сети был взят из изумительной книги:
Laurene V. Fausett “Fundamentals of Neural Networks: Architectures, Algorithms And Applications”.

Нейронные сети обучаются с помощью тех или иных модификаций градиентного спуска, а чтобы применять его, нужно уметь эффективно вычислять градиенты функции потерь по всем обучающим параметрам. Казалось бы, для какого-нибудь запутанного вычислительного графа это может быть очень сложной задачей, но на помощь спешит метод обратного распространения ошибки.

Открытие метода обратного распространения ошибки стало одним из наиболее значимых событий в области искусственного интеллекта. В актуальном виде он был предложен в 1986 году Дэвидом Э. Румельхартом, Джеффри Э. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно красноярскими математиками С. И. Барцевым и В. А. Охониным. С тех пор для нахождения градиентов параметров нейронной сети используется метод вычисления производной сложной функции, и оценка градиентов параметров сети стала хоть сложной инженерной задачей, но уже не искусством. Несмотря на простоту используемого математического аппарата, появление этого метода привело к значительному скачку в развитии искусственных нейронных сетей.

Суть метода можно записать одной формулой, тривиально следующей из формулы производной сложной функции: если $f(x) = g_m(g_{m-1}(ldots (g_1(x)) ldots))$, то $frac{partial f}{partial x} = frac{partial g_m}{partial g_{m-1}}frac{partial g_{m-1}}{partial g_{m-2}}ldots frac{partial g_2}{partial g_1}frac{partial g_1}{partial x}$. Уже сейчас мы видим, что градиенты можно вычислять последовательно, в ходе одного обратного прохода, начиная с $frac{partial g_m}{partial g_{m-1}}$ и умножая каждый раз на частные производные предыдущего слоя.

Backpropagation в одномерном случае

В одномерном случае всё выглядит особенно просто. Пусть $w_0$ — переменная, по которой мы хотим продифференцировать, причём сложная функция имеет вид

$$f(w_0) = g_m(g_{m-1}(ldots g_1(w_0)ldots)),$$

где все $g_i$ скалярные. Тогда

$$f'(w_0) = g_m'(g_{m-1}(ldots g_1(w_0)ldots))cdot g’_{m-1}(g_{m-2}(ldots g_1(w_0)ldots))cdotldots cdot g’_1(w_0)$$

Суть этой формулы такова. Если мы уже совершили forward pass, то есть уже знаем

$$g_1(w_0), g_2(g_1(w_0)),ldots,g_{m-1}(ldots g_1(w_0)ldots),$$

то мы действуем следующим образом:

  • берём производную $g_m$ в точке $g_{m-1}(ldots g_1(w_0)ldots)$;

  • умножаем на производную $g_{m-1}$ в точке $g_{m-2}(ldots g_1(w_0)ldots)$;

  • и так далее, пока не дойдём до производной $g_1$ в точке $w_0$.

Проиллюстрируем это на картинке, расписав по шагам дифференцирование по весам $w_i$ функции потерь логистической регрессии на одном объекте (то есть для батча размера 1):

17_1.png

Собирая все множители вместе, получаем:

$$frac{partial f}{partial w_0} = (-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_1} = x_1cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_2} = x_2cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

Таким образом, мы видим, что сперва совершается forward pass для вычисления всех промежуточных значений (и да, все промежуточные представления нужно будет хранить в памяти), а потом запускается backward pass, на котором в один проход вычисляются все градиенты.

Почему же нельзя просто пойти и начать везде вычислять производные?

В главе, посвящённой матричным дифференцированиям, мы поднимаем вопрос о том, что вычислять частные производные по отдельности — это зло, лучше пользоваться матричными вычислениями. Но есть и ещё одна причина: даже и с матричной производной в принципе не всегда хочется иметь дело. Рассмотрим простой пример. Допустим, что $X^r$ и $X^{r+1}$ — два последовательных промежуточных представления $Ntimes M$ и $Ntimes K$, связанных функцией $X^{r+1} = f^{r+1}(X^r)$. Предположим, что мы как-то посчитали производную $frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$ функции потерь $mathcal{L}$, тогда

$$frac{partialmathcal{L}}{partial X^{r}_{st}} = sum_{i,j}frac{partial f^{r+1}_{ij}}{partial X^{r}_{st}}frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$$

И мы видим, что, хотя оба градиента $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ и $frac{partialmathcal{L}}{partial X_{st}^{r}}$ являются просто матрицами, в ходе вычислений возникает «четырёхмерный кубик» $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, даже хранить который весьма болезненно: уж больно много памяти он требует ($N^2MK$ по сравнению с безобидными $NM + NK$, требуемыми для хранения градиентов). Поэтому хочется промежуточные производные $frac{partial f^{r+1}}{partial X^{r}}$ рассматривать не как вычисляемые объекты $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, а как преобразования, которые превращают $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ в $frac{partialmathcal{L}}{partial X_{st}^{r}}$. Целью следующих глав будет именно это: понять, как преобразуется градиент в ходе error backpropagation при переходе через тот или иной слой.

  Вы спросите себя: надо ли мне сейчас пойти и прочитать главу учебника про матричное дифференцирование?

Встречный вопрос. Найдите производную функции по вектору $x$:

$$f(x) = x^TAx, Ain Mat_{n}{mathbb{R}}text{ — матрица размера }ntimes n$$

А как всё поменяется, если $A$ тоже зависит от $x$? Чему равен градиент функции, если $A$ является скаляром? Если вы готовы прямо сейчас взять ручку и бумагу и посчитать всё, то вам, вероятно, не надо читать про матричные дифференцирования. Но мы советуем всё-таки заглянуть в эту главу, если обозначения, которые мы будем дальше использовать, покажутся вам непонятными: единой нотации для матричных дифференцирований человечество пока, увы, не изобрело, и переводить с одной на другую не всегда легко.

Мы же сразу перейдём к интересующей нас вещи: к вычислению градиентов сложных функций.

Градиент сложной функции

Напомним, что формула производной сложной функции выглядит следующим образом:

$$left[D_{x_0} (color{#5002A7}{u} circ color{#4CB9C0}{v}) right](h) = color{#5002A7}{left[D_{v(x_0)} u right]} left( color{#4CB9C0}{left[D_{x_0} vright]} (h)right)$$

Теперь разберёмся с градиентами. Пусть $f(x) = g(h(x))$ – скалярная функция. Тогда

$$left[D_{x_0} f right] (x-x_0) = langlenabla_{x_0} f, x-x_0rangle.$$

С другой стороны,

$$left[D_{h(x_0)} g right] left(left[D_{x_0}h right] (x-x_0)right) = langlenabla_{h_{x_0}} g, left[D_{x_0} hright] (x-x_0)rangle = langleleft[D_{x_0} hright]^* nabla_{h(x_0)} g, x-x_0rangle.$$

То есть $color{#FFC100}{nabla_{x_0} f} = color{#348FEA}{left[D_{x_0} h right]}^* color{#FFC100}{nabla_{h(x_0)}}g$ — применение сопряжённого к $D_{x_0} h$ линейного отображения к вектору $nabla_{h(x_0)} g$.

Эта формула — сердце механизма обратного распространения ошибки. Она говорит следующее: если мы каким-то образом получили градиент функции потерь по переменным из некоторого промежуточного представления $X^k$ нейронной сети и при этом знаем, как преобразуется градиент при проходе через слой $f^k$ между $X^{k-1}$ и $X^k$ (то есть как выглядит сопряжённое к дифференциалу слоя между ними отображение), то мы сразу же находим градиент и по переменным из $X^{k-1}$:

17_2.png

Таким образом слой за слоем мы посчитаем градиенты по всем $X^i$ вплоть до самых первых слоёв.

Далее мы разберёмся, как именно преобразуются градиенты при переходе через некоторые распространённые слои.

Градиенты для типичных слоёв

Рассмотрим несколько важных примеров.

Примеры

  1. $f(x) = u(v(x))$, где $x$ — вектор, а $v(x)$ – поэлементное применение $v$:

    $$vbegin{pmatrix}
    x_1 \
    vdots\
    x_N
    end{pmatrix}
    = begin{pmatrix}
    v(x_1)\
    vdots\
    v(x_N)
    end{pmatrix}$$

    Тогда, как мы знаем,

    $$left[D_{x_0} fright] (h) = langlenabla_{x_0} f, hrangle = left[nabla_{x_0} fright]^T h.$$

    Следовательно,

    $$
    left[D_{v(x_0)} uright] left( left[ D_{x_0} vright] (h)right) = left[nabla_{v(x_0)} uright]^T left(v'(x_0) odot hright) =\
    $$

    $$
    = sumlimits_i left[nabla_{v(x_0)} uright]_i v'(x_{0i})h_i
    = langleleft[nabla_{v(x_0)} uright] odot v'(x_0), hrangle.
    ,$$

    где $odot$ означает поэлементное перемножение. Окончательно получаем

    $$color{#348FEA}{nabla_{x_0} f = left[nabla_{v(x_0)}uright] odot v'(x_0) = v'(x_0) odot left[nabla_{v(x_0)} uright]}$$

    Отметим, что если $x$ и $h(x)$ — это просто векторы, то мы могли бы вычислять всё и по формуле $frac{partial f}{partial x_i} = sum_jbig(frac{partial z_j}{partial x_i}big)cdotbig(frac{partial h}{partial z_j}big)$. В этом случае матрица $big(frac{partial z_j}{partial x_i}big)$ была бы диагональной (так как $z_j$ зависит только от $x_j$: ведь $h$ берётся поэлементно), и матричное умножение приводило бы к тому же результату. Однако если $x$ и $h(x)$ — матрицы, то $big(frac{partial z_j}{partial x_i}big)$ представлялась бы уже «четырёхмерным кубиком», и работать с ним было бы ужасно неудобно.

  2. $f(X) = g(XW)$, где $X$ и $W$ — матрицы. Как мы знаем,

    $$left[D_{X_0} f right] (X-X_0) = text{tr}, left(left[nabla_{X_0} fright]^T (X-X_0)right).$$

    Тогда

    $$
    left[ D_{X_0W} g right] left(left[D_{X_0} left( ast Wright)right] (H)right) =
    left[ D_{X_0W} g right] left(HWright)=\
    $$ $$
    = text{tr}, left( left[nabla_{X_0W} g right]^T cdot (H) W right) =\
    $$ $$
    =
    text{tr} , left(W left[nabla_{X_0W} (g) right]^T cdot (H)right) = text{tr} , left( left[left[nabla_{X_0W} gright] W^Tright]^T (H)right)
    $$

    Здесь через $ast W$ мы обозначили отображение $Y hookrightarrow YW$, а в предпоследнем переходе использовалось следующее свойство следа:

    $$
    text{tr} , (A B C) = text{tr} , (C A B),
    $$

    где $A, B, C$ — произвольные матрицы подходящих размеров (то есть допускающие перемножение в обоих приведённых порядках). Следовательно, получаем

    $$color{#348FEA}{nabla_{X_0} f = left[nabla_{X_0W} (g) right] cdot W^T}$$

  3. $f(W) = g(XW)$, где $W$ и $X$ — матрицы. Для приращения $H = W — W_0$ имеем

    $$
    left[D_{W_0} f right] (H) = text{tr} , left( left[nabla_{W_0} f right]^T (H)right)
    $$

    Тогда

    $$
    left[D_{XW_0} g right] left( left[D_{W_0} left(X astright) right] (H)right) = left[D_{XW_0} g right] left( XH right) =
    $$ $$
    = text{tr} , left( left[nabla_{XW_0} g right]^T cdot X (H)right) =
    text{tr}, left(left[X^T left[nabla_{XW_0} g right] right]^T (H)right)
    $$

    Здесь через $X ast$ обозначено отображение $Y hookrightarrow XY$. Значит,

    $$color{#348FEA}{nabla_{X_0} f = X^T cdot left[nabla_{XW_0} (g)right]}$$

  4. $f(X) = g(softmax(X))$, где $X$ — матрица $Ntimes K$, а $softmax$ — функция, которая вычисляется построчно, причём для каждой строки $x$

    $$softmax(x) = left(frac{e^{x_1}}{sum_te^{x_t}},ldots,frac{e^{x_K}}{sum_te^{x_t}}right)$$

    В этом примере нам будет удобно воспользоваться формализмом с частными производными. Сначала вычислим $frac{partial s_l}{partial x_j}$ для одной строки $x$, где через $s_l$ мы для краткости обозначим $softmax(x)_l = frac{e^{x_l}} {sum_te^{x_t}}$. Нетрудно проверить, что

    $$frac{partial s_l}{partial x_j} = begin{cases}
    s_j(1 — s_j), & j = l,
    -s_ls_j, & jne l
    end{cases}$$

    Так как softmax вычисляется независимо от каждой строчки, то

    $$frac{partial s_{rl}}{partial x_{ij}} = begin{cases}
    s_{ij}(1 — s_{ij}), & r=i, j = l,
    -s_{il}s_{ij}, & r = i, jne l,
    0, & rne i
    end{cases},$$

    где через $s_{rl}$ мы обозначили для краткости $softmax(X)_{rl}$.

    Теперь пусть $nabla_{rl} = nabla g = frac{partialmathcal{L}}{partial s_{rl}}$ (пришедший со следующего слоя, уже известный градиент). Тогда

    $$frac{partialmathcal{L}}{partial x_{ij}} = sum_{r,l}frac{partial s_{rl}}{partial x_{ij}} nabla_{rl}$$

    Так как $frac{partial s_{rl}}{partial x_{ij}} = 0$ при $rne i$, мы можем убрать суммирование по $r$:

    $$ldots = sum_{l}frac{partial s_{il}}{partial x_{ij}} nabla_{il} = -s_{i1}s_{ij}nabla_{i1} — ldots + s_{ij}(1 — s_{ij})nabla_{ij}-ldots — s_{iK}s_{ij}nabla_{iK} =$$

    $$= -s_{ij}sum_t s_{it}nabla_{it} + s_{ij}nabla_{ij}$$

    Таким образом, если мы хотим продифференцировать $f$ в какой-то конкретной точке $X_0$, то, смешивая математические обозначения с нотацией Python, мы можем записать:

    $$begin{multline*}
    color{#348FEA}{nabla_{X_0}f =}\
    color{#348FEA}{= -softmax(X_0) odot text{sum}left(
    softmax(X_0)odotnabla_{softmax(X_0)}g, text{ axis = 1}
    right) +}\
    color{#348FEA}{softmax(X_0)odot nabla_{softmax(X_0)}g}
    end{multline*}
    $$

Backpropagation в общем виде

Подытожим предыдущее обсуждение, описав алгоритм error backpropagation (алгоритм обратного распространения ошибки). Допустим, у нас есть текущие значения весов $W^i_0$ и мы хотим совершить шаг SGD по мини-батчу $X$. Мы должны сделать следующее:

  1. Совершить forward pass, вычислив и запомнив все промежуточные представления $X = X^0, X^1, ldots, X^m = widehat{y}$.
  2. Вычислить все градиенты с помощью backward pass.
  3. С помощью полученных градиентов совершить шаг SGD.

Проиллюстрируем алгоритм на примере двуслойной нейронной сети со скалярным output’ом. Для простоты опустим свободные члены в линейных слоях.

17_3.png Обучаемые параметры – матрицы $U$ и $W$. Как найти градиенты по ним в точке $U_0, W_0$?

$$nabla_{W_0}mathcal{L} = nabla_{W_0}{left({vphantom{frac12}mathcal{L}circ hcircleft[Wmapsto g(XU_0)Wright]}right)}=$$

$$=g(XU_0)^Tnabla_{g(XU_0)W_0}(mathcal{L}circ h) = underbrace{g(XU_0)^T}_{ktimes N}cdot
left[vphantom{frac12}underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes 1}odot
underbrace{nabla_{hleft(vphantom{int_0^1}g(XU_0)W_0right)}mathcal{L}}_{Ntimes 1}right]$$

Итого матрица $ktimes 1$, как и $W_0$

$$nabla_{U_0}mathcal{L} = nabla_{U_0}left(vphantom{frac12}
mathcal{L}circ hcircleft[Ymapsto YW_0right]circ gcircleft[ Umapsto XUright]
right)=$$

$$=X^Tcdotnabla_{XU^0}left(vphantom{frac12}mathcal{L}circ hcirc [Ymapsto YW_0]circ gright) =$$

$$=X^Tcdotleft(vphantom{frac12}g'(XU_0)odot
nabla_{g(XU_0)}left[vphantom{in_0^1}mathcal{L}circ hcirc[Ymapsto YW_0right]
right)$$

$$=ldots = underset{Dtimes N}{X^T}cdotleft(vphantom{frac12}
underbrace{g'(XU_0)}_{Ntimes K}odot
underbrace{left[vphantom{int_0^1}left(
underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes1}odotunderbrace{nabla_{h(vphantom{int_0^1}gleft(XU_0right)W_0)}mathcal{L}}_{Ntimes 1}
right)cdot underbrace{W^T}_{1times K}right]}_{Ntimes K}
right)$$

Итого $Dtimes K$, как и $U_0$

Схематически это можно представить следующим образом:

17_4.gif

Backpropagation для двуслойной нейронной сети

Подробнее о предыдущих вычисленияхЕсли вы не уследили за вычислениями в предыдущем примере, давайте более подробно разберём его чуть более конкретную версию (для $g = h = sigma$).

Рассмотрим двуслойную нейронную сеть для классификации. Мы уже встречали ее ранее при рассмотрении линейно неразделимой выборки. Предсказания получаются следующим образом:

$$
widehat{y} = sigma(X^1 W^2) = sigmaBig(big(sigma(X^0 W^1 )big) W^2 Big).
$$

Пусть $W^1_0$ и $W^2_0$ — текущее приближение матриц весов. Мы хотим совершить шаг по градиенту функции потерь, и для этого мы должны вычислить её градиенты по $W^1$ и $W^2$ в точке $(W^1_0, W^2_0)$.

Прежде всего мы совершаем forward pass, в ходе которого мы должны запомнить все промежуточные представления: $X^1 = X^0 W^1_0$, $X^2 = sigma(X^0 W^1_0)$, $X^3 = sigma(X^0 W^1_0) W^2_0$, $X^4 = sigma(sigma(X^0 W^1_0) W^2_0) = widehat{y}$. Они понадобятся нам дальше.

Для полученных предсказаний вычисляется значение функции потерь:

$$
l = mathcal{L}(y, widehat{y}) = y log(widehat{y}) + (1-y) log(1-widehat{y}).
$$

Дальше мы шаг за шагом будем находить производные по переменным из всё более глубоких слоёв.

  1. Градиент $mathcal{L}$ по предсказаниям имеет вид

    $$
    nabla_{widehat{y}}l = frac{y}{widehat{y}} — frac{1 — y}{1 — widehat{y}} = frac{y — widehat{y}}{widehat{y} (1 — widehat{y})},
    $$

    где, напомним, $ widehat{y} = sigma(X^3) = sigmaBig(big(sigma(X^0 W^1_0 )big) W^2_0 Big)$ (обратите внимание на то, что $W^1_0$ и $W^2_0$ тут именно те, из которых мы делаем градиентный шаг).

  2. Следующий слой — поэлементное взятие $sigma$. Как мы помним, при переходе через него градиент поэлементно умножается на производную $sigma$, в которую подставлено предыдущее промежуточное представление:

    $$
    nabla_{X^3}l = sigma'(X^3)odotnabla_{widehat{y}}l = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — widehat{y}}{widehat{y} (1 — widehat{y})} =
    $$

    $$
    = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — sigma(X^3)}{sigma(X^3) (1 — sigma(X^3))} =
    y — sigma(X^3)
    $$

  3. Следующий слой — умножение на $W^2_0$. В этот момент мы найдём градиент как по $W^2$, так и по $X^2$. При переходе через умножение на матрицу градиент, как мы помним, умножается с той же стороны на транспонированную матрицу, а значит:

    $$
    color{blue}{nabla_{W^2_0}l} = (X^2)^Tcdot nabla_{X^3}l = (X^2)^Tcdot(y — sigma(X^3)) =
    $$

    $$
    = color{blue}{left( sigma(X^0W^1_0) right)^T cdot (y — sigma(sigma(X^0W^1_0)W^2_0))}
    $$

    Аналогичным образом

    $$
    nabla_{X^2}l = nabla_{X^3}lcdot (W^2_0)^T = (y — sigma(X^3))cdot (W^2_0)^T =
    $$

    $$
    = (y — sigma(X^2W_0^2))cdot (W^2_0)^T
    $$

  4. Следующий слой — снова взятие $sigma$.

    $$
    nabla_{X^1}l = sigma'(X^1)odotnabla_{X^2}l = sigma(X^1)left( 1 — sigma(X^1) right) odot left( (y — sigma(X^2W_0^2))cdot (W^2_0)^T right) =
    $$

    $$
    = sigma(X^1)left( 1 — sigma(X^1) right) odotleft( (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^T right)
    $$

  5. Наконец, последний слой — это умножение $X^0$ на $W^1_0$. Тут мы дифференцируем только по $W^1$:

    $$
    color{blue}{nabla_{W^1_0}l} = (X^0)^Tcdot nabla_{X^1}l = (X^0)^Tcdot big( sigma(X^1) left( 1 — sigma(X^1) right) odot (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^Tbig) =
    $$

    $$
    = color{blue}{(X^0)^Tcdotbig(sigma(X^0W^1_0)left( 1 — sigma(X^0W^1_0) right) odot (y — sigma(sigma(X^0W^1_0)W_0^2))cdot (W^2_0)^Tbig) }
    $$

Итоговые формулы для градиентов получились страшноватыми, но они были получены друг из друга итеративно с помощью очень простых операций: матричного и поэлементного умножения, в которые порой подставлялись значения заранее вычисленных промежуточных представлений.

Автоматизация и autograd

Итак, чтобы нейросеть обучалась, достаточно для любого слоя $f^k: X^{k-1}mapsto X^k$ с параметрами $W^k$ уметь:

  • превращать $nabla_{X^k_0}mathcal{L}$ в $nabla_{X^{k-1}_0}mathcal{L}$ (градиент по выходу в градиент по входу);
  • считать градиент по его параметрам $nabla_{W^k_0}mathcal{L}$.

При этом слою совершенно не надо знать, что происходит вокруг. То есть слой действительно может быть запрограммирован как отдельная сущность, умеющая внутри себя делать forward pass и backward pass, после чего слои механически, как кубики в конструкторе, собираются в большую сеть, которая сможет работать как одно целое.

Более того, во многих случаях авторы библиотек для глубинного обучения уже о вас позаботились и создали средства для автоматического дифференцирования выражений (autograd). Поэтому, программируя нейросеть, вы почти всегда можете думать только о forward-проходе, прямом преобразовании данных, предоставив библиотеке дифференцировать всё самостоятельно. Это делает код нейросетей весьма понятным и выразительным (да, в реальности он тоже бывает большим и страшным, но сравните на досуге код какой-нибудь разухабистой нейросети и код градиентного бустинга на решающих деревьях и почувствуйте разницу).

Но это лишь начало

Метод обратного распространения ошибки позволяет удобно посчитать градиенты, но дальше с ними что-то надо делать, и старый добрый SGD едва ли справится с обучением современной сетки. Так что же делать? О некоторых приёмах мы расскажем в следующей главе.

Введение

  • В последнее время, с ростом популярности этих двух методов появилось много библиотек на Matlab, R, Python, C ++ и т.д., которые получают на вход обучающий набор и автоматически создают соответствующую нейронную сеть для вашей задачи.
  • Однако при использовании готовых библиотек бывает сложно понять, что именно происходит и как мы получаем оптимизированную сеть. А ведь знание основ решения важно для дальнейшего развития этих методов. Итак, в данной статье мы создадим очень простую структуру для алгоритма нейронной сети.
  • Мы постараемся понять, как работает базовый тип нейронной сети — перцептрон с одним нейроном и многослойный перцептрон — замечательный алгоритм, который отвечает за обучение сети (градиентный спуск и обратное распространение). Эти сетевые модели будут основой для более сложных моделей, существующих на сегодняшний день.

Краткий обзор истории

  • Первая нейронная сеть была задумана Уорренном Маккалоком и Уолтером Питтсом в 1943 году. Они написали великолепную статью о том, как должны работать нейроны, а затем построили модель на основе своих идей — создали простую нейронную сеть с электрическими цепями.
  • Исследования в области искусственного интеллекта быстро развивались, и в 1980 году Кунихико Фукусима разработал первую настоящую многослойную нейронную сеть.
  • Первоначальной целью нейронной сети было создание компьютерной системы, способной решать проблемы подобно тому, как это делает человеческий мозг. Однако, со временем исследователи сменили фокус и начали использовать нейронные сети для решения особенных задач. С тех пор нейронные сети выполняют самые разнообразные задачи, включая компьютерное зрение, распознавание голоса, машинный перевод, фильтрацию социальных сетей, настольные игры или видеоигры, медицинскую диагностику, прогноз погоды, прогнозирование временных рядов, распознавание (изображения, текста, голоса) и др.

Компьютерная модель нейрона: перцептрон

Перцептрон

Перцептрон вдохновлен идеей обработки информации единственной нервной клетки, называемой нейроном. Нейрон принимает на вход сигналы через свои дендриты, которые передают электрический сигнал телу клетки. Точно так же перцептрон получает входные сигналы из примеров обучающих данных, которые предварительно взвесили и объединили в линейное уравнение, называемое активацией.

  • z = sum(weight_i * x_i) + bias

Где weight — это вес сети, X — это входное значение, i — индекс веса или входные данные, а смещение — это специальный вес, который не имеет множитель в виде входного значения (можем считать, что входные данные всегда равны 1.0).

Затем активация преобразуется в выходное (прогнозируемое) значение с помощью передаточной функции (функция активации).

  • y = 1.0 если z >= 0.0, иначе 0.0

Таким образом, перцептрон представляет собой алгоритм классификации проблем с двумя классами (двоичный классификатор), где для разделения двух классов может использоваться линейное уравнение.

Это тесно связано с линейной регрессией и логистической регрессией, которые осуществляют прогнозы аналогичным образом (например, взвешенная сумма входов).

Алгоритм перцептрона — простейший вид искусственной нейронной сети. Это модель одного нейрона, которая может использоваться в задачах классификации двух классов и обеспечивает основу для дальнейшего развития гораздо более крупных сетей.

Входы нейронов представлены вектором x = [x1, x2, x3,…, xN], который может соответствовать, к примеру, ряду торговых цен актива, значениям технических индикаторов, числовой последовательности в пикселях изображения. Когда они попадают к нейрону, они умножаются на соответствующие синаптические веса, которые являются элементами вектора w = [w1, w2, w3, …, wN], и таким образом генерируют значение z, обычно называемое потенциалом активации, согласно выражению:

b обеспечивает более высокую степень свободы и не зависит от входа в это выражение, что обычно соответствует нейрону смещения (склонности). Затем z-значение проходит через функцию активации σ, которая отвечает за ограничение этого значения определенным интервалом (например, 0 — 1), что дает окончательное выходное значение и значение нейрона. Некоторые используемые триггерные функции: шаг, сигмоид, гиперболический тангенс, softmax и ReLU («rectified linear unit»).

Чтобы проиллюстрировать процесс, направленный на достижение предела разделимости классов, ниже мы показываем две ситуации, которые демонстрируют их сближение к стабилизации с учетом только двух входов {x1 и x2}

Веса алгоритма перцептрона следует оценивать на основе данных обучения с использованием стохастического градиентного спуска.

Стохастический градиент

Градиентный спуск — это процесс минимизации функции в направлении градиента функции стоимости.

Это подразумевает знание формулы стоимости, а также производной, чтобы с определенной точки мы могли узнать наклон и могли двигаться в этом направлении, например, вниз по направлению к минимальному значению.

В машинном обучении мы можем использовать метод, который оценивает и обновляет веса для каждой итерации, называемый стохастическим градиентным спуском, чтобы минимизировать ошибку модели в наших обучающих данных.

Принцип работы этого алгоритма оптимизации заключается в том, что каждый обучающий экземпляр показывается модели по одному. Модель делает прогноз для обучающего экземпляра, вычисляет ошибку и обновляет модель, чтобы уменьшить ошибку для следующего прогноза.

Эту процедуру можно использовать для поиска набора весов в модели, который дает наименьшую ошибку для модели в обучающих данных.

Для алгоритма перцептрона на каждой итерации веса w обновляются с использованием уравнения:

  • w = w + learning_rate * (expected — predicted) * x

Где w оптимизируется, learning_rate — это скорость обучения, которую мы должны установить (например, 0.1), (expected — predicted) — ошибка прогнозирования для модели в обучающих данных, относящихся к весу, а x — входное значение.

Для стохастического градиентного спуска требуются два параметра:

  • Коэффициент обучения: используется для ограничения размера корректировки веса при каждом его обновлении.
  • Эпохи — сколько раз обучающие данные должны выполняться при обновлении веса.

Они вместе с обучающими данными будут аргументами для функции.

Нам нужно выполнить 3 цикла в функции:

1. Цикл для каждой эпохи.

2. Цикл для каждой строки в обучающих данных для эпохи.

3. Цикл для каждого веса, который обновляется для одной строке в одной эпохи.

Веса обновляются в зависимости от ошибки, допущенной моделью. Ошибка рассчитывается как разница между фактическим значением и прогнозом, сделанным с помощью весов.

Для каждого входного атрибута есть свой вес, и они постоянно обновляются, например:

  • w(t+1)= w(t) + learning_rate * (expected(t) — predicted(t)) * x(t)

Смещение обновляется аналогичным образом, только без входа, поскольку оно не связано с конкретным входным значением:

  • bias(t+1) = bias(t) + learning_rate * (expected(t) — predicted(t)).

Применение модели нейрона:

Теперь перейдем к практическому применению.

Этот урок разделен на 2 части:

1. Делаем прогнозы

2. Оптимизация веса сети

Эти шаги обеспечат основу для реализации и применения алгоритма перцептрона к другим задачам классификации.

Нам нужно определить количество столбцов в нашем наборе X, для этого мы определяем константу

#define nINPUT 3

В MQL5 многомерный массив может быть статическим или динамическим только для первого измерения, а поскольку все остальные измерения будут статическими, при объявлении массива необходимо указать размер.

1. Делаем прогнозы

Первый шаг — разработать функцию, которая может делать прогнозы.

Это будет необходимо как при оценке значений весов кандидатов при стохастическом градиентном спуске, так и после завершения модели. Прогнозы надо делать и на тестовых данных, и на новых.

Ниже приведена функция predict, которая прогнозирует выходное значение для строки исходя от определенного набора весов.

Первый вес всегда является смещением, поскольку он автономен и не работает с конкретным входным значением.

template <typename Array>
double predict(const Array &X[][nINPUT], const Array &weights[], const int row=0)
  {
   double z = weights[0];
   for(int i=0; i<ArrayRange(X, 1)-1; i++)
     {
      z+=weights[i+1]*X[row][i];
     }
   return activation(z);
  }

Перенос нейронов:

Как только нейрон активирован, нам нужно передать активацию, чтобы увидеть, каковы на самом деле выходные данные нейрона.



double activation(const double activation) 
  {
   return activation>=0.0?1.0:0.0;
  }

Мы получаем в качестве аргумента в функции прогнозирования входной набор X, массив с весами (W) и строку, для которой прогнозируется входной набор X.

Мы можем придумать небольшой набор данных, чтобы проверить нашу функцию прогнозирования.

Мы также можем использовать заранее подготовленные веса, чтобы делать прогнозы для этого набора данных.

double weights[] = {-0.1, 0.20653640140000007, -0.23418117710000003};

После того, как мы собрали все это вместе, мы можем протестировать нашу функцию прогнозирования ниже.

#define nINPUT 3



void OnStart()
  {

   random.seed(42);
   double dataset[][nINPUT] = {     
                               {2.7810836,2.550537003,0},
                               {1.465489372,2.362125076,0},
                               {3.396561688,4.400293529,0},
                               {1.38807019,1.850220317,0},
                               {3.06407232,3.005305973,0},
                               {7.627531214,2.759262235,1},
                               {5.332441248,2.088626775,1},
                               {6.922596716,1.77106367,1},
                               {8.675418651,-0.242068655,1},
                               {7.673756466,3.508563011,1}
                              };
   double weights[] = {-0.1, 0.20653640140000007, -0.23418117710000003};
   for(int row=0; row<ArrayRange(dataset, 0); row++)
     {
      double predict = predict(dataset, weights, row);
      printf("Expected=%.1f, Predicted=%.1f", dataset[row][nINPUT-1], predict);
     }
  }


template <typename Array>
double predict(const Array &X[][nINPUT], const Array &weights[], const int row=0)
  {
   double z = weights[0];
   for(int i=0; i<ArrayRange(X, 1)-1; i++)
     {
      z+=weights[i+1]*X[row][i];
     }
   return activation(z);
  }



double activation(const double activation) 
  {
   return activation>=0.0?1.0:0.0;
  }

Есть два входных значения (X1 и X2) и три коэффициента веса (bias, w1 и w2). Уравнение активации, которое мы моделируем для данной проблемы, выглядит так:

activation = (w1 * X1) + (w2 * X2) + b

Или с конкретными значениями веса, мы вручную выбираем как:

activation = (0.206 * X1) + (-0.234 * X2) + -0.1

После завершения работы функции мы получаем прогнозы, которые соответствуют ожидаемым выходным значениям y.

Теперь можем реализовать стохастический градиентный спуск для оптимизации значений веса.

2. Оптимизируем веса сети

Веса для наших обучающих данных можно оценить, используя стохастический градиентный спуск, как было сказано ранее.

Ниже приведена функция train_weights(), которая вычисляет значения веса для набора обучающих данных с использованием стохастического градиентного спуска.

В MQL5 мы не можем получить возврат из этого массива с данными обученных весов, потому что, в отличие от переменных, массивы могут быть переданы в функцию только по ссылке. Это означает, что функция не создает собственный экземпляр массива, а вместо этого работает напрямую с переданным ей массивом. Таким образом, все изменения, осуществляемые в этом массиве внутри функции влияют на исходный массив.



template <typename Array>
void train_weights(Array &weights[], const Array &X[][nINPUT], double l_rate=0.1, int n_epoch=5)
  {
   ArrayResize(weights, ArrayRange(X, 1));
   for(int i=0; i<ArrayRange(X, 1); i++)
     {
      weights[i]=random.random();
     }
     
   for(int epoch=0; epoch<n_epoch; epoch++)
     {
      double sum_error = 0.0;
      for(int row=0; row<ArrayRange(X, 0); row++)
        {
         double y = predict(X, weights, row);
         double error = X[row][nINPUT-1] - y;
         sum_error += pow(error, 2);
         weights[0] = weights[0] + l_rate * error;

         for(int i=0; i<ArrayRange(X, 1)-1; i++)
           {
            weights[i+1] = weights[i+1] + l_rate * error * X[row][i];
           }
        }
      printf(">epoch=%d, lrate=%.3f, error=%.3f",epoch, l_rate, sum_error);
     }
  }

На каждой эпохе мы отслеживаем сумму квадратичной ошибки (положительное значение), чтобы отслеживать уменьшение ошибки. Это позволяет наблюдать как алгоритм минимизирует ошибку на каждой эпохе.

Давайте протестируем нашу функцию с одним и тем же набором данных, представленным выше.

#define nINPUT 3



void OnStart()
  {

   random.seed(42);
   double dataset[][nINPUT] = {     
                               {2.7810836,2.550537003,0},
                               {1.465489372,2.362125076,0},
                               {3.396561688,4.400293529,0},
                               {1.38807019,1.850220317,0},
                               {3.06407232,3.005305973,0},
                               {7.627531214,2.759262235,1},
                               {5.332441248,2.088626775,1},
                               {6.922596716,1.77106367,1},
                               {8.675418651,-0.242068655,1},
                               {7.673756466,3.508563011,1}
                              };
   double weights[];
   train_weights(weights, dataset);
   ArrayPrint(weights, 20);
   for(int row=0; row<ArrayRange(dataset, 0); row++)
     {
      double predict = predict(dataset, weights, row);
      printf("Expected=%.1f, Predicted=%.1f", dataset[row][nINPUT-1], predict);
     }
  }


template <typename Array>
double predict(const Array &X[][nINPUT], const Array &weights[], const int row=0)
  {
   double z = weights[0];
   for(int i=0; i<ArrayRange(X, 1)-1; i++)
     {
      z+=weights[i+1]*X[row][i];
     }
   return activation(z);
  }



double activation(const double activation) 
  {
   return activation>=0.0?1.0:0.0;
  }



template <typename Array>
void train_weights(Array &weights[], const Array &X[][nINPUT], double l_rate=0.1, int n_epoch=5)
  {
   ArrayResize(weights, ArrayRange(X, 1));
   ArrayInitialize(weights, 0);
     
   for(int epoch=0; epoch<n_epoch; epoch++)
     {
      double sum_error = 0.0;
      for(int row=0; row<ArrayRange(X, 0); row++)
        {
         double y = predict(X, weights, row);
         double error = X[row][nINPUT-1] - y;
         sum_error += pow(error, 2);
         weights[0] = weights[0] + l_rate * error;

         for(int i=0; i<ArrayRange(X, 1)-1; i++)
           {
            weights[i+1] = weights[i+1] + l_rate * error * X[row][i];
           }
        }
      printf(">epoch=%d, lrate=%.3f, error=%.3f",epoch, l_rate, sum_error);
     }
  }

Мы используем скорость обучения 0,1 и обучаем модель только для 5 эпох или 5 показов весов для всего набора обучающих данных.

При выполнении примера для каждой эпохи печатается сообщение с суммой квадратичной ошибки для этой эпохи и окончательным набором весов.

Мы видим, как быстро алгоритм выучивает проблему.

Этот тест можно найти в файле PerceptronScript.mq5.

Многослойный перцептрон

  • Объединеняем нейроны в слои

   С одним нейроном мало что можно сделать, но мы можем объединить их в многоуровневую структуру, каждый с разным количеством нейронов, и сформировать нейронную сеть, называемую многослойным перцептроном («multi layer perceptron, MLP»). Вектор входных значений X проходит через начальный слой, выходные значения которого связаны со входами следующего уровня, и так далее, пока сеть не предоставит выходные значения последнего слоя в качестве результата. Сеть может быть организована в несколько слоев, что делает ее глубокой и способной выучить все более сложные отношения.

Обучение MLP

   Для того, чтобы такая сеть работала, ее нужно обучать. Это как учить ребенка читать. Обучение MLP происходит в контексте машинного обучения с учителем, но как это работает?

Обучение с учителем:

  • Нам дается набор отмеченных данных, для которых мы уже знаем какой именно является нашим правильным выходом, и он должен быть аналогичен набору, имея представление о том, что существует связь между входом и выходом.
  • Задачи обучения с учителем подразделяются на задачи «регрессии» и «классификации». В задачах регрессии мы пытаемся предсказать результаты на непрерывном выходе, что означает, что мы пытаемся сопоставить входные переменные с некоторой непрерывной функцией. В задачах классификации мы стараемся предсказать результаты на дискретном выходе. Другими словами, мы пытаемся сопоставить входные переменные по разным категориям.

Пример 1:

  • Учитывая набор данных о размерах домов на рынке недвижимости, попробуйте спрогнозировать их цену. Цена в зависимости от размера — это непрерывный результат, так что это проблема регрессии.
  • Мы могли бы также превратить этот пример в задачу классификации, чтобы прогнозировать о том, «продастся ли дом дороже или дешевле, чем запрашиваемая цена». Здесь мы рассортируем дома по цене на две разные категории.

Обратное распространение

Обратное распространение, без сомнений, является самым важным алгоритмом в истории нейронных сетей — без (эффективного) обратного распространения, было бы невозможно обучить сети глубокого обучения так, как мы это делаем сегодня. Обратное распространение можно считать краеугольным камнем современных нейронных сетей и глубокого обучения.

Разве мы не учимся на ошибках?

Идея алгоритма обратного распространения ошибки состоит в том, чтобы на основе расчетной ошибки, полученной на выходном слое нейронной сети, пересчитать значение весов вектора W последнего слоя нейронов. Затем мы переходим к предыдущему слою и так далее, от конца к началу, то есть, он состоит из обновления всех весов W слоев, от последнего до достижения входного слоя сети путем обратного распространения ошибки, полученной сетью. Другими словами, ошибка вычисляется между тем, что предсказала сеть, и тем, что она была на самом деле (фактический 1, предсказанный 0; у нас есть ошибка!), поэтому мы пересчитываем значения всех весов, начиная с последнего слоя и переходя к первому, всегда обращая внимание на уменьшение этой ошибки.

Алгоритм обратного распространения ошибки состоит из двух этапов:

1. Прямой проход («forward pass»), при котором наши входы проходят через сеть и получают прогнозы выхода (этот шаг также известен как фаза распространения).

2. Обратный проход («backward pass»), при котором мы вычисляем градиент функции потерь на последнем слое (то есть слое прогнозирования) сети и используем этот градиент для рекурсивного применения цепного правила («chain rule») для обновления весов в нашей сети (также известного как стадия обновления веса или обратное распространение)

Рассмотрим сеть выше со слоем скрытых нейронов и выходным нейроном. Когда входной вектор распространяется по сети, для текущего набора весов существует выходной Pred(y). Цель обучения с учителем — настроить веса так, чтобы уменьшить разницу между Pred(y) сети и требуемым выходным Req(y). Для этого требуется алгоритм, который уменьшает абсолютную ошибку, что аналогично уменьшению квадратичной ошибки, где:

(1)

Сетевая ошибка = Pred — Req

      = E

Алгоритм должен регулировать веса, чтобы минимизировать E². Обратное распространение — это алгоритм, который выполняет минимизацию градиентного спуска E². Чтобы минимизировать E², необходимо рассчитать его чувствительность к каждому весу. Другими словами, нам нужно знать, какое влияние будет иметь изменение каждого веса на E². Если нам будет известно, веса можно будет отрегулировать в направлении, уменьшающем абсолютную ошибку. Последующее описание правила обратного распространения основано на такой диаграмме:

Пунктирная линия представляет нейрон B, который может быть скрытым или выходным нейроном. Выходы n нейронов (O 1 … O n) на предыдущем слое являются взодами для нейрона B. Если нейрон B находится в скрытом слое, он просто является входным вектором. Эти выходы умножаются на соответствующие веса (W1B … WnB), где WnB — вес, соединяющий нейрон n и нейрону B. Функция суммы складывает все эти произведения для получения входных данных, IB, который обрабатывается функцией триггера f(.) нейрона B. f (IB) это выход OB нейрона B. Рассмотрим пример. Назовем нейрон 1 нейроном A и рассмотрим вес WAB между двумя нейронами. Подход, используемый для изменения веса, определяется правилом дельты:

(2)

где — параметр скорости обучения, который определяет скорость обучения, а

является чувствительностью ошибки E² к весу WAB и определяет направление поиска в пространстве весов для нового веса WAB (новый), как изображено на рисунке ниже.

Чтобы минимизировать E², правило дельты обеспечивает необходимое направление изменения веса.

Ключевой концепцией приведенного выше уравнения является вычисление выражения ∂E² /∂WAB которое состоит в вычислении частных производных функции ошибок по отношению к каждому весу вектора W.

Дифференцирование сложной функции:

(3)

и

(4)

поскольку остальные входы нейрона B не зависят от веса WAB. Таким образом, исходя из уравнений (3) и (4), уравнение (2) становится

(5)

и изменение веса WAB зависит от чувствительности квадрата ошибки E² на входе IB, единицы B и входного сигнала OА.

Возможны две ситуации:

1. B — выходной нейрон;

2. B — скрытый нейрон.

Рассмотриваем первый случай:

Поскольку B является выходным нейроном, изменение квадрата ошибки из-за настроки WAB просто является изменением квадрата ошибки выходного сигнала B.

(6)

объединяя уравнение (5) и уравнение (6), получаем

(7)

Правило изменения весов, когда нейрон B является выходным нейроном, если выходная функция активации, f (.), является логистической функцией:

(8)

Дифференцируем уравнение (8) по аргументу x:

(9)

Но,

(10)

при вставке (10) в (9) получаем:

(11)

таким же образом для функции tanh

или для линейной функции (identity)

Так мы получаем:

Рассматривая второй случай:

B это скрытый нейрон

(12)

где O представляет выходной нейрон

(13)

где p это индекс, который охватывает все нейроны, включая нейрон B, который обеспечивает входные сигналы для выходного нейрона. Расширяем правую часть уравнения (13),

(14)

поскольку веса других нейронов WpO (p! = B) не имеют зависимости от OB.

При вставке (13) и (13) в (12):

(15)

Следовательно, теперь это выражается как функция от , вычисляемая, как описано в уравнении (6).

Полное правило изменения веса WAB между нейроном A, который посылает сигнал нейрону B, является таким:

(16)

где

где fo (.) и fh (.) это скрытые функции активации и выхода соответственно.

Пример

Выход из сети = [tanh(I T .WI)] . WO

HID = [Tanh(I T.WI)] T— выходы скрытых нейронов

ERROR = (выход из сети — нужный выход)

LR = коеффициент обучения

Обновления веса становятся

нейроном с линейным выходом

(17)

WO = WO — ( LR x ERROR x HID )

скрытым нейроном

(18)

WI = WI — { LR x [ERROR x WO x (1- HID 2)] . I T } T

Уравнения 17 и 18 показывают, что изменение веса — это входной сигнал, умноженный на локальный градиент. Это обеспечивает направление, величина которого также зависит от величины ошибки. Если берем направление без величины, все изменения будут одинакового размера, и это будет зависеть от темпа обучения. Вышеуказанный алгоритм является упрощенной версией, так как имеется только один выходной нейрон. В исходном алгоритме допускается более одного выхода, а уменьшение градиента минимизирует общую квадратную ошибку всех выходов. Есть много алгоритмов, которые произошли от исходного алгоритма для увеличения скорости обучения. Они кратко изложены в:

« Back Propagation family album» — Technical report C/TR96-05, Department of Computing, Macquarie University, NSW, Australia».

Обратное распространение — это элегантный и умелый алгоритм. Современные модели глубокого обучения, такие как сверточные нейронные сети, хотя и более совершенные, чем MLP, показали себя намного лучше в таких задачах, как классификация изображений и используют обратное распространение в качестве метода обучения, а также так называемые рекуррентные нейронные сети в условиях естественной языковой обработки, которые также используют этот алгоритм. Самое невероятное, что таким моделям удается находить ненаблюдаемые и непонятные закономерности для нас, людей, что удивляет и позволяет нам считать, что скоро мы получим помощь глубокого обучения для решения многих основных проблем, с которыми сталкивается человечество.

Применение модели MLP

Этот урок разделен на 5 частей:

1.       Инициализация сети.

2.       Прямое распространение (FeedForward).

3.       Обратное распространение.

4.       Обучение сети.

5.       Прогноз.

Для нашей разработки мы реализуем применение на чистом MQL. Нам уже известно, что существуют библиотеки на других языках, которые уже являются гораздо более сложными, и настоятельно рекомендуется использовать их из практических соображений и соображений производительности, но, как уже было сказано в начале, важно понимать внутреннее устройство таких библиотек, чтобы иметь больший контроль над всем процессом. Мы также не использовали ООП в нашем тесте, поскольку это всего лишь алгоритм для иллюстрации предыдущих уравнений, в нем нет необходимости. Однако в реальных случаях гораздо практичнее использовать ООП, поскольку оно обеспечивает масштабируемость проекта.

1. Инициализация сети

У каждого нейрона есть набор весов, которые необходимо поддерживать. Вес для каждого входного соединения и дополнительный вес для смещения.

Рекомендуем инициализировать веса сети для небольших случайных чисел. В этом случае мы будем использовать случайные числа в диапазоне от 0 до 1. Для этого мы создали функцию для генерации случайных чисел.

double random(void)
  {
   return ((double)rand())/(double)SHORT_MAX;
  }

Ниже представлена ​​функция под названием initialize_network(), которая создает веса нашей нейронной сети.

void forward_propagate(void)
  {


   int i = 0;
   for(i = 0; i<numHidden; i++)
     {
      hiddenVal[i] = 0.0;
      for(int j = 0; j<numInputs; j++)
        {
         hiddenVal[i] += (X[patNum][j] * weightsIH[j][i]);
        }
      hiddenVal[i] = tanh(hiddenVal[i]);
     }


   outPred = 0.0;
   for(i = 0; i<numHidden; i++)
     {
      outPred += hiddenVal[i] * weightsHO[i];
     }

   errThisPat = outPred - y[patNum];
  }

3. Обратное распространение

Алгоритм обратного распространения назван в честь способа обучения весов

Ошибка вычисляется между ожидаемыми выходами и выходными сигналами сети прямого распространения. Затем эти ошибки передаются обратно по сети от выходного слоя к скрытому слою, перекладывая ответственность за ошибку и обновляя веса по мере их поступления.

Математика ошибки обратного распространения была объяснена выше.



void backward_propagate_error(void)
  {

   for(int k = 0; k<numHidden; k++)
     {
      double weightChange = LR_HO * errThisPat * hiddenVal[k];
      weightsHO[k] -= weightChange;
      
      regularisationWeights(weightsHO[k]);
     }

   for(int i = 0; i<numHidden; i++)
     {
      for(int k = 0; k<numInputs; k++)
        {
         double x = 1 - pow(hiddenVal[i],2);
         x = x * weightsHO[i] * errThisPat * LR_IH;
         x = x * X[patNum][k];
         double weightChange = x;
         weightsIH[k][i] -= weightChange;
        }
     }
  }

метод regularizationWeights был создан только для регуляризации весов в диапазоне от -5 до 5.

void regularisationWeights(double &weight)
  {
   weight<-5?weight=-5:weight>5?weight=5:weight=weight;
  }

4. Обучение сети

Сеть обучается методом стохастического градиентного спуска.

Это включает в себя несколько итераций, раскрывающих набор обучающих данных в сети, и для каждой строки данных прямое распространение входных данных, обратное распространение ошибки и обновление весов сети.

//# Train a network for a fixed number of epochs
void train(void)
  {
   for(int j = 0; j <= numEpochs; j++)
     {
      for(int i = 0; i<numPatterns; i++)
        {
         
         patNum = rand()%numPatterns;
         
         
         forward_propagate();
         backward_propagate_error();
        }
      
      
      calcOverallError();
      printf("epoch = %d RMS Error = %f",j,RMSerror);
     }
  }

5. Прогноз

Делать прогнозы с помощью обученной нейронной сети довольно просто.

Мы уже видели, как распространить паттерн входа для получения выходных данных. Это все, что нам нужно сделать, чтобы осуществить прогноз. Мы можем использовать выходные значения напрямую как вероятность принадлежности паттерна к каждому выходному классу.

void predict(void)
  {
   for(int i = 0; i<numPatterns; i++)
     {
      patNum = i;
      forward_propagate();
      printf("real = %d predict = %f",y[patNum],outPred);
     }
  }

Полный пример можно найти в файле MLP_Script.mq5.

Заключение

Мы занимались вычислениями, задействованными в процессе развития нейрона перцептрона, а также сети нейронов перцептрона, называемой «multi layer perceptron, MLP». В данном процессе мы поняли, как осуществляется обучение этого типа сетей с использованием обратного распространения ошибки и градиентного спуска.

Метод обратного распространения ошибок (англ. backpropagation) — метод вычисления градиента, который используется при обновлении весов в нейронной сети.

Содержание

  • 1 Обучение как задача оптимизации
  • 2 Дифференцирование для однослойной сети
    • 2.1 Находим производную ошибки
  • 3 Алгоритм
  • 4 Недостатки алгоритма
    • 4.1 Паралич сети
    • 4.2 Локальные минимумы
  • 5 Примечания
  • 6 См. также
  • 7 Источники информации

Обучение как задача оптимизации

Рассмотрим простую нейронную сеть без скрытых слоев, с двумя входными вершинами и одной выходной, в которых каждый нейрон использует линейную функцию активации, (обычно, многослойные нейронные сети используют нелинейные функции активации, линейные функции используются для упрощения понимания) которая является взвешенной суммой входных данных.

Простая нейронная сеть с двумя входными вершинами и одной выходной

Изначально веса задаются случайно. Затем, нейрон обучается с помощью тренировочного множества, которое в этом случае состоит из множества троек где и — это входные данные сети и — правильный ответ. Начальная сеть, приняв на вход и , вычислит ответ , который вероятно отличается от . Общепринятый метод вычисления несоответствия между ожидаемым и получившимся ответом — квадратичная функция потерь:

где ошибка.

В качестве примера, обучим сеть на объекте , таким образом, значения и равны 1, а равно 0. Построим график зависимости ошибки от действительного ответа , его результатом будет парабола. Минимум параболы соответствует ответу , минимизирующему . Если тренировочный объект один, минимум касается горизонтальной оси, следовательно ошибка будет нулевая и сеть может выдать ответ равный ожидаемому ответу . Следовательно, задача преобразования входных значений в выходные может быть сведена к задаче оптимизации, заключающейся в поиске функции, которая даст минимальную ошибку.

График ошибки для нейрона с линейной функцией активации и одним тренировочным объектом

В таком случае, выходное значение нейрона — взвешенная сумма всех его входных значений:

где и — веса на ребрах, соединяющих входные вершины с выходной. Следовательно, ошибка зависит от весов ребер, входящих в нейрон. И именно это нужно менять в процессе обучения. Распространенный алгоритм для поиска набора весов, минимизирующего ошибку — градиентный спуск. Метод обратного распространения ошибки используется для вычисления самого «крутого» направления для спуска.

Дифференцирование для однослойной сети

Метод градиентного спуска включает в себя вычисление дифференциала квадратичной функции ошибки относительно весов сети. Обычно это делается с помощью метода обратного распространения ошибки. Предположим, что выходной нейрон один, (их может быть несколько, тогда ошибка — это квадратичная норма вектора разницы) тогда квадратичная функция ошибки:

где — квадратичная ошибка, — требуемый ответ для обучающего образца, — действительный ответ сети.

Множитель добавлен чтобы предотвратить возникновение экспоненты во время дифференцирования. На результат это не повлияет, потому что позже выражение будет умножено на произвольную величину скорости обучения (англ. learning rate).

Для каждого нейрона , его выходное значение определено как

Входные значения нейрона — это взвешенная сумма выходных значений предыдущих нейронов. Если нейрон в первом слое после входного, то входного слоя — это просто входные значения сети. Количество входных значений нейрона . Переменная обозначает вес на ребре между нейроном предыдущего слоя и нейроном текущего слоя.

Функция активации нелинейна и дифференцируема. Одна из распространенных функций активации — сигмоида:

у нее удобная производная:

Находим производную ошибки

Вычисление частной производной ошибки по весам выполняется с помощью цепного правила:

Только одно слагаемое в зависит от , так что

Если нейрон в первом слое после входного, то — это просто .

Производная выходного значения нейрона по его входному значению — это просто частная производная функции активации (предполагается что в качестве функции активации используется сигмоида):

По этой причине данный метод требует дифференцируемой функции активации. (Тем не менее, функция ReLU стала достаточно популярной в последнее время, хоть и не дифференцируема в 0)

Первый множитель легко вычислим, если нейрон находится в выходном слое, ведь в таком случае и

Тем не менее, если произвольный внутренний слой сети, нахождение производной по менее очевидно.

Если рассмотреть как функцию, берущую на вход все нейроны получающие на вход значение нейрона ,

и взять полную производную по , то получим рекурсивное выражение для производной:

Следовательно, производная по может быть вычислена если все производные по выходным значениям следующего слоя известны.

Если собрать все месте:

и

Чтобы обновить вес используя градиентный спуск, нужно выбрать скорость обучения, . Изменение в весах должно отражать влияние на увеличение или уменьшение в . Если , увеличение увеличивает ; наоборот, если , увеличение уменьшает . Новый добавлен к старым весам, и произведение скорости обучения на градиент, умноженный на , гарантирует, что изменения будут всегда уменьшать . Другими словами, в следующем уравнении, всегда изменяет в такую сторону, что уменьшается:

Алгоритм

  • — скорость обучения
  • — коэффициент инерциальности для сглаживания резких скачков при перемещении по поверхности целевой функции
  • — обучающее множество
  • — количество повторений
  • — функция, подающая x на вход сети и возвращающая выходные значения всех ее узлов
  • — количество слоев в сети
  • — множество нейронов в слое i
  • — множество нейронов в выходном слое
fun BackPropagation:
   init 
   repeat :
       for  =  to :
            =  
           for :
                = 
           for  =  to :
               for :
                    = 
           for :
                = 
                = 
   return 

Недостатки алгоритма

Несмотря на многочисленные успешные применения обратного распространения, оно не является универсальным решением. Больше всего неприятностей приносит неопределённо долгий процесс обучения. В сложных задачах для обучения сети могут потребоваться дни или даже недели, она может и вообще не обучиться. Причиной может быть одна из описанных ниже.

Градиентный спуск может найти локальный минимум вместо глобального

Паралич сети

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших выходных значениях, а производная активирующей функции будет очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть.

Локальные минимумы

Градиентный спуск с обратным распространением ошибок гарантирует нахождение только локального минимума функции; также, возникают проблемы с пересечением плато на поверхности функции ошибки.

Примечания

  • Алгоритм обучения многослойной нейронной сети методом обратного распространения ошибки
  • Neural Nets
  • Understanding backpropagation

См. также

  • Нейронные сети, перцептрон
  • Стохастический градиентный спуск
  • Настройка глубокой сети
  • Практики реализации нейронных сетей

Источники информации

  • https://en.wikipedia.org/wiki/Backpropagation
  • https://ru.wikipedia.org/wiki/Метод_обратного_распространения_ошибки

Применение алгоритма обратного распространения ошибки — один из известных методов, используемых для глубокого обучения нейронных сетей прямого распространения (такие сети ещё называют многослойными персептронами). Этот метод относят к методу обучения с учителем, поэтому требуется задавать в обучающих примерах целевые значения. В этой статье мы рассмотрим, что собой представляет метод обратного распространения ошибки, как он реализуется, каковы его плюсы и минусы.

Сегодня нейронные сети прямого распространения используются для решения множества сложных задач. Если говорить об обучении нейронных сетей методом обратного распространения, то тут пользуются двумя проходами по всем слоям нейросети: прямым и обратным. При выполнении прямого прохода осуществляется подача входного вектора на входной слой сети, после чего происходит распространение по нейронной сети от слоя к слою. В итоге должна осуществляться генерация набора выходных сигналов — именно он, по сути, является реакцией нейронной сети на этот входной образ. При прямом проходе все синаптические веса нейросети фиксированы. При обратном проходе все синаптические веса настраиваются согласно правил коррекции ошибок, когда фактический выход нейронной сети вычитается из желаемого, что приводит к формированию сигнала ошибки. Такой сигнал в дальнейшем распространяется по сети, причём направление распространения обратно направлению синаптических связей. Именно поэтому соответствующий метод и называют алгоритмом с обратно распространённой ошибкой. Синаптические веса настраивают с целью наибольшего приближения выходного сигнала нейронной сети к желаемому.

Общее описание алгоритма обратного распространения ошибки

К примеру, нам надо обучить нейронную сеть по аналогии с той, что представлена на картинке ниже. Естественно, задачу следует выполнить, применяя алгоритм обратного распространения ошибки:

4-20219-e537a8.png

2-20219-7f9b72.png

В многослойных персептронах в роли активационной функции обычно применяют сигмоидальную активационную функция, в нашем случае — логистическую. Формула:

3-20219-2ac7f4.png

Причём «альфа» здесь означает параметр наклона сигмоидальной функции. Меняя его, мы получаем возможность строить функции с разной крутизной.

Сигмоид может сужать диапазон изменения таким образом, чтобы значение OUT лежало между нулем и единицей. Нейронные многослойные сети характеризуются более высокой представляющей мощностью, если сравнивать их с однослойными, но это утверждение справедливо лишь в случае нелинейности. Нужную нелинейность и обеспечивает сжимающая функция. Но на практике существует много функций, которые можно использовать. Говоря о работе алгоритма обратного распространения ошибки, скажем, что для этого нужно лишь, чтобы функция была везде дифференцируема, а данному требованию как раз и удовлетворяет сигмоид. У него есть и дополнительное преимущество — автоматический контроль усиления. Если речь идёт о слабых сигналах (OUT близко к нулю), то кривая «вход-выход» характеризуется сильным наклоном, дающим большое усиление. При увеличении сигнала усиление падает. В результате большие сигналы будут восприниматься сетью без насыщения, а слабые сигналы будут проходить по сети без чрезмерного ослабления.

Цель обучения сети

Цель обучения нейросети при использовании алгоритма обратного распространения ошибки — это такая подстройка весов нейросети, которая позволит при приложении некоторого множества входов получить требуемое множество выходов нейронов (выходных нейронов). Можно назвать эти множества входов и выходов векторами. В процессе обучения предполагается, что для любого входного вектора существует целевой вектор, парный входному и задающий требуемый выход. Эту пару называют обучающей. Работая с нейросетями, мы обучаем их на многих парах.

Также можно сказать, что алгоритм использует стохастический градиентный спуск и продвигается в многомерном пространстве весов в направлении антиградиента, причём цель — это достижение минимума функции ошибки.

При практическом применении метода обучение продолжают не до максимально точной настройки нейросети на минимум функции ошибки, а пока не будет достигнуто довольно точное его приближение. С одной стороны, это даёт возможность уменьшить количество итераций обучения, с другой — избежать переобучения нейронной сети.

Пошаговая реализация метода обратного распространения ошибки

Необходимо выполнить следующие действия:
1. Инициализировать синаптические веса случайными маленькими значениями.
2. Выбрать из обучающего множества очередную обучающую пару; подать на вход сети входной вектор.
3. Выполнить вычисление выходных значений нейронной сети.
4. Посчитать разность между выходом нейросети и требуемым выходом (речь идёт о целевом векторе обучающей пары).
5. Скорректировать веса сети в целях минимизации ошибки.
6. Повторять для каждого вектора обучающего множества шаги 2-5, пока ошибка обучения нейронной сети на всём множестве не достигнет уровня, который является приемлемым.

Виды обучения сети по методу обратного распространения

Сегодня существует много модификаций алгоритма обратного распространения ошибки. Возможно обучение не «по шагам» (выходная ошибка вычисляется, веса корректируются на каждом примере), а «по эпохам» в offline-режиме (изменения весовых коэффициентов происходит после подачи на вход нейросети всех примеров обучающего множества, а ошибка обучения neural сети усредняется по всем примерам).

Обучение «по эпохам» более устойчиво к выбросам и аномальным значениям целевой переменной благодаря усреднению ошибки по многим примерам. Зато в данном случае увеличивается вероятность «застревания» в локальных минимумах. При обучении «по шагам» такая вероятность меньше, ведь применение отдельных примеров создаёт «шум», «выталкивающий» алгоритм обратного распространения из ям градиентного рельефа.

Преимущества и недостатки метода

К плюсам можно отнести простоту в реализации и устойчивость к выбросам и аномалиям в данных, и это основные преимущества. Но есть и минусы:
• неопределенно долгий процесс обучения;
• вероятность «паралича сети» (при больших значениях рабочая точка функции активации попадает в область насыщения сигмоиды, а производная величина приближается к 0, в результате чего коррекции весов почти не происходят, а процесс обучения «замирает»;
• алгоритм уязвим к попаданию в локальные минимумы функции ошибки.

Значение метода обратного распространения

Появление алгоритма стало знаковым событием и положительно отразилось на развитии нейросетей, ведь он реализует эффективный с точки зрения вычислительных процессов способ обучения многослойного персептрона. В то же самое время, было бы неправильным сказать, что алгоритм предлагает наиболее оптимальное решение всех потенциальных проблем. Зато он действительно развеял пессимизм относительно машинного обучения многослойных машин, который воцарился после публикации в 1969 году работы американского учёного с фамилией Минский.

Источники:
— «Алгоритм обратного распространения ошибки»;
— «Back propagation algorithm».

Понравилась статья? Поделить с друзьями:
  • Многословие это лексическая ошибка
  • Многословие это какая ошибка
  • Мод который исправляет ошибки
  • Многоборье легкая атлетика ошибки
  • Мод клуба романтики выдает ошибку