Модифицированный алгоритм обратного распространения ошибки

Цель
модификации алгоритма обратного
распространения ошибки – повысить
оперативность обучения ИНС. В основу
модификации была положена идея «упругого
распространения», впервые реализованная
в одноименном алгоритме Rpгop
(Resilent
Propogation
– «упругое распространение») [105]. Суть
идеи Rpгop
состоит в использовании знаков частных
производных для подстройки весовых
коэффициентов. Для определения величины
коррекции используется следующее
правило:


, (4.22)

где

,
а

.

Если
на текущем шаге частная производная по
соответствующему весу wij изменила
знак, то из этого следует, что последнее
изменение было большим и алгоритм
проскочил локальный минимум. Следовательно,
величину изменения необходимо уменьшить
на

 и
вернуть предыдущее значение весового
коэффициента, то есть сделать «откат»
на величину

.

Если
знак частной производной не изменился,
то нужно увеличить величину коррекции
на

 для
достижения более быстрой сходимости.
В результате проведенных экспериментов
(т.е эмпирическим путем) установлено,
что целесообразно выбирать

=1,2,
а

=0,5.
Начальные значения для всех

устанавливались равными 0,1. Для вычисления
значения коррекции весов использовалось
следующее правило:


. (4.23)

Если
производная положительна, т. е. ошибка
возрастает, то весовой коэффициент
уменьшается на величину коррекции, в
противном случае – увеличивается.

Затем
веса подстраивались в соответствии с
выражением:


. (4.24)

Блок-схема
данного алгоритма приведена на рис.
4.24.

Блоки
1,9 используются для пуска и остановки
процесса обратного распространения
ошибок.

В блоке 2 реализован
ввод исходных данных.

Блок
3 обеспечивает инициализацию значений
величин коррекции
.

В
блоке 4 предъявляются все примеры из
выборки и вычисляются частные производные.

Блок
5 рассчитывает новые значения

по формулам (4.22) и (4.23).

В
блоке 6 реализуется корректировка весов
в соответствии с выражением (4.24).

Блок
7 проверяет условие останова данного
процесса. Если условие останова не
выполняется, то управление передается
блоку 4. В противном случае управление
передается блоку 8.

В блоке 8 реализован
вывод полученных результатов.

Совокупность
проведенных экспериментов (более
200), показала, что данный алгоритм
сходится почти в 6 раз быстрее, чем
стандартный алгоритм обратного
распространения ошибок.

    1. 4.12. Эвристическая оптимизация функционирования алгоритма обратного распространения ошибки

Эвристическая
оптимизация функционирования алгоритма
обратного распространения ошибки,
улучшающая его производительность,
проводилась по таким аспектам, как:


выбор режима обучения;


максимизация информативности;


выбор функции активации;


выбор целевых значений функции активации;


выбор начальных значений синаптических
весов и пороговых значений;


реализация обучения по подсказке;


управление параметрами скорости обучения
нейронов.

При
выборе режима обучения было установлено,
что последовательный режим обучения
методом обратного распространения
(использующий последовательное
предоставление примеров эпохи с
обновлением весов на каждом шаге) в
вычислительном плане оказался значительно
быстрее. Это особенно сказалось при
достаточно большом и избыточном обучающем
множестве данных. Причиной этого является
тот факт, что избыточные данные вызывают
вычислительные проблемы при оценке
Якобиана, необходимого для пакетного
режима.

Процедура
максимизации информативности строилась
на следующем правиле: «Каждый обучающий
пример, предоставляемый алгоритму
обратного распространения, должен
выбираться из соображений наибольшей
информационной насыщенности в области
решаемой задачи». С этой целью
использовались, во-первых, примеры,
вызывающие наибольшие ошибки обучения,
и, во-вторых, примеры, которые радикально
отличались от ранее использованных.
Кроме того, при подаче примеров соблюдался
случайный порядок
их следования.

При
выборе функции активации, в интересах
повышения оперативности обучения ИНС,
предпочтение было отдано антисимметричной
функции.

Функция
активации

называется антисимметричной (т.е. четной
функцией cвoeгo apгyмeнтa), если выполняется
условие:


, (4.25)

что
показано на рис. 4.25, а.

Стандартная
логистическая функция не удовлетворяет
этому условию (рис. 4.25, б).

Известным
примером антисимметричной функции
активации является сигмоидальная
нелинейная функция гиперболического
тангенса:


, (4.26)

где
а
и b
— константы. В результате проведенных
экспериментов установлено,
что приемлемыми значениями для констант
а и b
являются следующие [130]: а = 1,7159, b
= 2/3.

Определенная
таким образом функция гиперболического
тангенса имеет ряд полезных свойств.
Например,

(1)
= 1 и

(-1)
= -1.

Кроме
того, в начале координат тaнгeнс угла
наклона (т.е. эффективный угoл) функции
активации близок к единице:

(0) = аb
= 1,7159 х 2/3 = 1,1424.

Вторая
производная

( v)
достигает свoeгo максимального значения
при v
= 1
.

Для
выбора целевых значений функции активации
важно, чтобы они выбирались из области
значений сигмоидальной функции активации.
Более точно, желаемый отклик
dj
нейрона j
выходного слоя многослойного персептрона
должен быть смещен на

некоторую
величину

от границы области значений функции
активации в сторону ее

внутренней
части. В противном случае алгоритм
обратного распространения будет
модифицировать свободные па раметры
сети, устремляя их в бесконечность,
замедляя таким образом процесс обучения
и доводя скрытые нейроны до предела
насыщения. В качестве примера рассмотрим
антисимметричную функцию активации,
показанную на рис. 4.25, а. Для предельного
значения
выберем dj
= а

.
Аналогично, для предельного значения
-a
установим dj
= a +

,
где

соответствующая положительная константа.
Для выбранного ранее значения а
= 1,7159

установим

=
0,7159
.
В этом случае желаемый отклик dj
будет находиться в диапазоне от 1 до +1
(см. рис. 4.25, а).

При
выборе начальных значений синаптических
весов и пороговых значений сети
учитывались следующие правила.

Если
синаптические веса принимают большие
начальные значения, то нейроны быстрее
достигнут режима насыщения. Если такое
случится, то локальные градиенты
алгоритма обратного распространения
будут принимать малые значения, что, в
свою очередь, вызовет торможение процесса
обучения.

Если
же синаптическим весам присвоить малые
начальные значения, алгоритм будет
очень вяло работать в окрестности начала
координат поверхности ошибок. В частности,
это верно для случая антисимметричной
функции активации, такой как гиперболический
тангенс. К сожалению, начало координат
является седловой точкой, т.е. стационарной
точкой, где, образующие поверхности
ошибок вдоль одной оси, имеют положительный
градиент, а вдоль другой — отрицательный.
Поэтому при выборе начальных значений
использовались средние величины. Для
примера рассмотрим многослойный
персептрон, в котором в качестве функции
активации используется гиперболический
тангенс. Пусть пороговое значение,
применяемое к нейронам сети, равно нулю.
Исходя из этого индуцированное локальное
поле нейрона j
можно выразить следующим образом:


. (4.27)

Предположим,
что входные значения, передаваемые
нейронам сети, имеют нулевое среднее
значение и дисперсию, равную единице,
т.е

для
всех i,

для
всех i.

Далее предположим,
что входные сигналы некоррелированны:

и
синаптические веса выбраны из множества
равномерно распределенных чисел с
нулевым средним:


,

и дисперсией:

для
всех пар (j,i).

Следовательно,
математическое ожидание и дисперсию
индуцированного локальнoгo поля можно
выразить так:


(4.28)

где
m
— число синаптических связей нейрона.

На
основании этого результата можно описать
хорошую стратегию инициализации
синаптических весов таким образом,
чтобы стандартное отклонение
индуцировaннoгo локального поля нейрона
лежало в переходной области между
линейной частью сигмоидальной функции
активации и областью насыщения. Например,
для случая гиперболического тангeнca с
параметрами а
и b
(см. определение функции) эта цель
достигается при

в
(4.28). Исходя из этого получим [105]


. (4.29)

Таким
образом, желательно, чтобы равномерное
распределение, из котopoгo выбираются
исходные значения синаптических весов,
имело нулевое среднее значение и
дисперсию, обратную корню квадратному
из количества синаптических связей
нейрона.

Изначально
обучение ИНС реализуется на множестве
примеров, что связано с аппроксимацией
неизвестной функции отображения входного
сигнала на выходной. В процессе обучения
из примеров извлекается информация о
функции f(.)
и строится некоторая аппроксимация
этой функциональной зависимости. Процесс
обучения на примерах можно обобщить,
что и сделано, при добавлении обучения
по подсказке, которое реализуется путем
предоставления некоторой априорной
информации о функции f(.).
Такая информация может включать свойства
инвариантности, симметрии и прочие
знания о функции f
(.)
,
которые можно использовать для ускорения
поиска ее аппроксимации и, что более
важно, для повышения качества конечной
оценки.

Использование
соотношения (4.28) является одним из
примеров тaкoгo подхода.

При
управлении параметрами скорости обучения
нейронов учитывалось следующее.
Теоретически все нейроны многослойного
персептрона должны обучаться с одинаковой
скоростью. На практике оказалось, что
последние слои ИНС имеют более высокие
значения локальных градиентов, чем
начальные. Поэтому параметру скорости
обучения

назначались меньшие значения для
последних слоев сети и большие для
первых. Кроме того, чтобы время обучения
для всех нейронов сети было примерно
одинаковым, нейроны с большим числом
входов имели меньшее значение параметра
обучения, чем нейроны с малым количеством
входов. Величина назначаемого параметра
скорости обучения для каждого нейрона
была обратно пропорциональна квадратному
корню из суммы eгo синаптических связей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

УДК 004.85 Дата подачи статьи: 26.11.18

DOI: 10.15827/0236-235X.126.258-262 2019. Т. 32. № 2. С. 258-262

Модифицированный алгоритм обучения нейронных сетей

В.Н. Зуев 12, зав. лабораторией, аспирант, zvn_tver@m-ail.ru В.К. Кемайкин 2, к..т.н, доцент, vk-kem@m-ail.ru

1 НИИ «Центрпрограммсистем», г. Тверь, 170024, Россия

2 Тверской государственный технический университет, кафедра «Информационные, системы», г. Тверь, 170026, Россия

В статье исследуется эвристическое улучшение алгоритма обратного распространения ошибки с использованием пакетного режима обучения.

Алгоритм обратного распространения ошибки является одним из самых распространенных алгоритмов обучения нейронных сетей. Использование его сопряжено с рядом сложностей, главная из которых — обеспечение приемлемой способности к обобщению нейронной сети. Способность к обобщению полученных знаний является одним из важнейших свойств нейронной сети и заключается в генерации нейронной сетью ожидаемых значений на данных, не участвующих непосредственно в процессе обучения. Однако использование зашумленных и ошибочных данных может привести к переобучению и снижению способности к обобщению обученной нейронной сети.

Рассматриваемые в статье вопросы являются важной частью процесса обучения нейронных сетей. Предложенный метод дает возможность более эффективно рассчитывать значения целевой функции, лежащей в основе алгоритма обратного распространения ошибки, а также игнорировать ошибочные значения в данных для обучения, исключая их на ранних стадиях обучения. Кроме того, метод позволяет использовать для обучения нейронных сетей неоднородные выборки данных, а также учитывать при обучении априорную информацию о ценности отдельных примеров.

В статье приведен алгоритм работы данного метода. Использование метода позволит повысить точность работы нейронной сети для задач классификации и аппроксимации.

Ключевые слова: нейронная сеть, обратное распространение, целевая функция, функция ошибки, алгоритм обучения.

В статье представлен метод отбора примеров в обучающую выборку с учетом их влияния на процесс обучения сети. Показано, что в задаче обучения сети с учителем при использовании пакетного режима [1] скорость обучения и качество работы обученной нейронной сети зависят от величины ошибки на выходе, обусловленной не только уровнем обученности сети, но и характеристиками обучающей выборки: типичностью примеров, их количеством для различных исходов, а также достоверностью. Целью работы является повышение качества обучения сети за счет оценки обучающего множества и формирования обучающей выборки.

Обучение нейронной сети — это процесс минимизации в пространстве обучаемых параметров функции оценки. При использовании метода обратного распространения ошибки корректировка синаптической карты весов нейронной сети выполняется после подачи всех обучающих примеров по усредненному значению градиента целевой функции, формулируемой в виде квадратичной суммы разностей между фактическими и ожидаемыми значениями выходных сигналов [2]:

1 т т

Е(= 11 (Л — ^ )2 , (1)

2 к=1

где у — выходное значение нейронной сети; d -желаемое значение выхода; m — количество нейронов в выходном слое; k — номер нейрона в выходном слое.

Основная идея рассматриваемого в данной работе подхода состоит в том, что используемые для обучения примеры должны получать весовые коэффициенты, улучшающие нейронную сеть, полученную в процессе обучения.

Необходимость использования весов примеров при обучении может быть обусловлена следующими причинами:

1) один из примеров плохо обучается;

2) число примеров разных классов в обучающем множестве сильно отличается;

3) примеры в обучающем множестве имеют различную достоверность [3].

Первая причина актуальна в случае, когда имеется априорная информация о значимости примера и необходимо, чтобы нейронная сеть научилась его воспринимать. Однако в силу своих особенностей пример не учитывается

при обучении нейронной сети обычными методами.

Вторая причина актуальна для случая, когда в обучающей выборке есть классы, число примеров которых мало по сравнению с другими классами. В пакетном режиме обучения ошибка, рассчитанная по этим примерам, может потеряться в суммарной ошибке по всей выборке, в результате чего такие примеры могут быть проигнорированы. Ошибка по этим примерам останется большой, и нейронная сеть не научится их воспринимать. По этой причине существует критика пакетного режима обучения. Так, в работе [4] показывается преимущество online-обучения в контексте объема вычислений, осуществляемых в процессе обучения. Однако последовательный режим обучения не решает данную проблему. Еще одним подходом, используемым для решения данной проблемы, является уменьшение размеров нейронной сети. В работе [5] доказана несостоятельность данного метода.

Третья причина актуальна при наличии в данных ошибочных значений — выбросов, которые могут давать большую ошибку. Пытаясь научиться воспринимать такие значения, нейронная сеть может ухудшить свою способность к обобщению [6].

Для решения проблемы, вызванной первой и второй причинами, обучающим примерам необходимо присвоить весовые коэффициенты. Они будут использоваться при расчете ошибки обучения E и усиливать вклад выбранных примеров в суммарную ошибку обучения.

Для решения третьей проблемы в работе [7] предложена редукция данных, основанная на ограничении диапазона значений признака, однако при данном подходе существует вероятность исключения значимых примеров.

Учитывая все перечисленные особенности, становится очевидной необходимость более эффективного представления обучающей выборки.

Так, в работе [8] предлагается задавать пороговое значение ошибки, при превышении которого пример не должен рассматриваться. Более гибкий подход реализован в Lazy training (ленивое обучение) [9], однако этот алгоритм предназначен исключительно для задач классификации. Его основная идея заключается в том, что для коррекции весов используются только те наблюдения, которые были классифицированы неправильно. Помимо узкой направленности, этот алгоритм имеет и другие недостатки. Для решения проблемы, вызван-

ной третьей причиной, необходим алгоритм, учитывающий описанные недостатки.

Основная идея рассматриваемого подхода состоит в том, что обучающие примеры, ошибки по которым оказываются слишком большими, не должны участвовать в обучении нейронной сети. Однако задание граничного значения ошибки, разделяющего исходное множество на используемые и неиспользуемые примеры, неэффективно. Если использовать для обучения часть примеров, то ошибка выхода по ним будет постепенно уменьшаться. При этом ошибка на неиспользуемых примерах может расти. Таким образом, использование граничного значения может привести к следующему эффекту. Если ошибка, полученная на рассматриваемом примере, меньше заданного значения, то при следующей итерации этот пример не будет использован. При этом ошибка по этому примеру может вырасти и снова преодолеть установленную границу. При очередной итерации данный пример опять будет использован в обучающей выборке. В результате нейронная сеть перестанет обучаться.

Для избежания подобного эффекта предложено использовать два граничных значения ошибки обучения: нижнее (Е^ и верхнее (Е2), которые определяют три области и являются функцией количества циклов обучения. Для каждого примера в зависимости от значения ошибки E и его положения относительно значений E1 и E2 принимается решение о выборе значения весового коэффициента:

— E < E1 — пример не усиливается весовым коэффициентом (получает весовой коэффициент, равный единице);

— E1 < Е < Е2 — пример усиливается весовым коэффициентом;

— Е > Е2 — пример игнорируется (получает нулевой весовой коэффициент).

Весовые коэффициенты рассчитываются индивидуально для каждого примера на каждом шаге обучения.

В начале процесса обучения используются все имеющиеся примеры. Поскольку нейронная сеть перед началом обучения инициализируется случайными значениями, распределение ошибок по используемым примерам равномерно. При этом ошибки по всем примерам не превышают значение Е2. В процессе обучения нейронной сети ошибка обучения приобретает нормальный вид распределения. У большинства примеров ошибка стремится к нулю, у части примеров она остается большой. Попав в интервал Е1 < Е < Е2, пример получает весовой

коэффициент и ошибка по нему начинает уменьшаться быстрее.

Как только ошибка примера пересекает границу Е1, он получает единичный коэффициент. Если при дальнейшем обучении ошибка примера превысит Е1, он снова получит усиливающий весовой коэффициент. Если ошибка примера превысила значение Е2, то пример считается выбросом и не участвует в дальнейшем обучении. Направления изменений ошибок показаны пунктирными стрелками на рисунке 1.

Граничные значения Е1 и Е2 рассчитываются на каждом шаге обучения сети. Для расчета значений Е1 и Е2 используется критерий, основанный на интерквартильном размахе. Метод основан на вычислении трех квартилей, делящих данные на четыре равные группы по

ошибке обучения. Интерквартильный размах [10] считается как разность между первой и третьей квартилями:

т = Qз — 01. (2)

Значения Е1 и Е2 рассчитываются следующим образом:

Е1 = 01, (3)

Е2 = 0з + 0н. (4)

На рисунке 2 показана схема, выражающая эти определения.

Предложенная реализация алгоритма обучения позволяет избежать переобучения нейронной сети, связанного с чрезмерным стремлением достичь нулевой ошибки. При этом данный алгоритм в большей степени учитывает свойства малочисленных групп примеров, чем стандартный алгоритм. Блок-схема алгоритма изображена на рисунке 3.

( Ввод данных Л I для обучения )

Расчет

градиента

Корректировка

синоптических

весов сети

I

Задание примерам весовых коэффициентов

_+

Использование наблюдения для формирования обучающей выборки

Создание обучающей выборки

Рис. 3. Блок-схема алгоритма обучения нейронной сети с использованием адаптивной функции ошибки

Fig. 3. The flowchart of the neural network training algorithm using the adaptive error function

Таким образом, алгоритм будет следующим.

Шаг 1. Формируем обучающую выборку, используя все обучающее множество.

Шаг 2. Вычисляем значение среднего градиента для предоставленной выборки.

Шаг 3. Выполняем корректировку весов нейронной сети.

Рис. 1. Направления изменений ошибок выхода в процессе обучения

Fig. 1. Directions for changing output errors during the learning process

Выбросы

Рис. 2. Диапазоны расположения допустимых значений и экстремальных выбросов

Fig. 2. The ranges of permissible values and extreme emissions

Шаг 4. Устанавливаем веса примерам, используя данные об ошибках выхода. Для этого создается матрица, содержащая флаг для каждого наблюдения. Если ошибка, соответствующая наблюдению, меньше значения ошибки E1, этому наблюдению ставится единичный коэффициент. Если ошибка больше значения ошибки E2, наблюдению ставится нулевой коэффициент. Если ошибка находится в диапазоне E1—E2, наблюдению ставится усиливающий коэффициент.

Шаг 5. Используя полученный набор флагов, разделяем выборку на две части: используемую для следующего уточнения весов нейронной сети и игнорируемую.

Шаг 6. Создаем новую обучающую выборку для следующей итерации.

Шаг 7. Возвращаемся к шагу 2.

Проведенные исследования показали, что применение описанного подхода позволяет повысить качество обучения нейронной сети для классификации и регрессии.

Литература

1. Дьяконов В.П., Круглов В.В. МЛТЬЛБ 6.5 БР1/7/7 БР1/7 8Р2 + БтиИпк 5/6. Инструменты искусственного интеллекта и биоинформатики. М.: Солон-Пресс, 2006. 456 с.

2. Оссовский С. Нейронные сети для обработки информации; [пер. с польск. И.Д. Рудин-ского]. М.: Финансы и статистика, 2004. 344 с.

3. Миркес Е.М. Нейроинформатика. Красноярск: Изд-во КГТУ, 2002. 347 с.

4. Царегородцев В.Г. Общая неэффективность использования суммарного градиента выборки при обучении нейронной сети // Нейроинформатика и ее приложения: матер. XIII Всерос. семинара. 2004. С. 145-151.

5. Царегородцев В.Г. Редукция размеров нейросети не приводит к повышению обобщающей способности // Нейроинформатика и ее приложения: матер. XII Всерос. семинара. Красноярск, 2004. С. 163-165.

6. Хайкин С. Нейронные сети: полный курс; [пер. с англ. Н.Н. Куссуль, А.Ю. Шелестова]. М.: Вильямс, 2006. 1104 с.

7. Царегородцев В.Г. Оптимизация предобработки данных для обучаемой нейросети: критерии оптимальности предобработки // Междунар. конф. по нейрокибернетике: сб. докл. Ростов н/Д, 2005. Т. 2. С. 64-67.

8. Xiao-Ping Zhang. Thresholding neural network for adaptive noise reduction. Proc. IEEE Transactions on Neural Networks, 2001, vol. 12, no. 3, pp. 567-584.

9. Rimer M.E., Anderson T.L. and Martinez T.R. Improving backpropagation ensembles through lazy training. Proc. IEEE IJCNN’01, 2001, pp. 2007-2112.

10. Певзнер М.З. Систематизация, статистический анализ данных, контроль и управление производственными процессами. Киров: Изд-во ВятГУ, 2012. 165 с.

Software & Systems Received 26.11.18

DOI: 10.15827/0236-235X.126.258-262 2019, vol. 32, no. 2, pp. 258-262

An improved neural network training algorithm

V.N. Zuev 1 2, Head of Laboratory, Postgraduate Student, zvn_tver@mail.ru V.K. Kemajkin 2, Ph.D. (Engineering), Associate Professor, vk-kem@mail.ru

1 R&D Institute Centerprogramsystem, Tver, 170024, Russian Federation

2 Tver State Technical University, chair of Information’s Systems, Tver, 170026, Russian Federation

Abstract. The paper describes heuristic modification of backpropagation algorithm using for remote batching.

The backpropagation algorithm is a common algorithm for neural network training. It causes some difficulties. The main problem is enabling the generalizing of a neural network. The ability of generalizing is a most important characteristics of a neural network. It assumes that a neural produces anticipated values on data that is not a part of a training process. However, using of noisy data causes retraining and decreasing of a generalizing ability of a neural network.

The problems considered in the paper are an important part of a neural network training process. The paper describes a method to use objective functions effectively. The proposed method allows more effective calculating of the values of a goal function that is a base of the backpropagation algorithm. It also ignores failure values in training data and excludes them at earlier stages. In addition, the method allows using heterogeneous

data samples for training neural networks, as well as taking into account prior information on the significance of some examples when training.

The paper describes the algorithm of the proposed method. The method will improve the accuracy of a neural network for classification and regression tasks.

Keywords: neural network, backpropagation, objective function, error function, learning algorithm.

References

1. Dyakonov V.P., Kruglov V.V. MatLab 6.5 SP1/7/7 SP1/7 SP2 + Simulink 5/6. Artificial Intelligence and Bioinformatics Tools. Moscow, Solon-Press, 2006, 456 p.

2. Asowsky S. Neural Networks for Information Processing. Moscow, Finansy i statistika Publ., 2004, 344 p.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3. Mirkes E.M. Neuroinformatics. Krasnoyarsk, 2002, 347 p.

4. Tsaregorodtsev V.G. The overall inefficient use of a sample total gradient when training a neural network. Proc. 13th All-Russ. Workshop «Neuroinformatics and Its Applications». Krasnoyarsk, 2004, pp. 145-151 (in Russ.).

5. Tsaregorodtsev V.G. Reducing of neural network sizes does not lead to an increasing generalization ability. Proc. 13th All-Russ. Workshop «Neuroinformatics and Its Applications». Krasnoyarsk, 2004, pp. 163-165 (in Russ.).

6. Khaykin S. Neural Networks: a Comprehensive Foundation. 2nd ed., Moscow, Vilyams Press, 2006. 1104 p.

7. Tsaregorodtsev V.G. Optimization of data preprocessing for a trained neural network: preprocessing optimality criteria. Proc. 14th Intern. Conf. on Neurocybernetics. Rostov-on-Don, 2005, vol. 2, pp. 64-67 (in Russ.).

8. Xiao-Ping Zhang. Thresholding neural network for adaptive noise reduction. Proc. IEEE Trans. on Neural Networks. 2001, vol. 12, no. 3, pp. 567-584.

9. Rimer M.E., Anderson T.L., Martinez T.R. Improving backpropagation ensembles through lazy training. Proc. IEEE Intern. Joint Conf on Neural Networks IJCNN’01. 2001, pp. 2007-2112.

10. Pevzner M.Z. Systematization, Statistical Data Analysis, Control and Management of Manufacturing Processes. Kirov: VyatGU Press, 2012, 165 p.

Для цитирования

Зуев В.Н., Кемайкин В.К. Модифицированный алгоритм обучения нейронных сетей / / Программные продукты и системы. 2019. Т. 32. № 2. С. 258-262. DOI: 10.15827/0236-235X. 126.258-262.

For citation

Zuev V.N., Kemajkin V.K. An improved neural network training algorithm. Software & Systems. 2019, vol. 32, no. 2, pp. 258-262 (in Russ.). DOI: 10.15827/0236-235X.126. 258-262.

Применение алгоритма обратного распространения ошибки — один из известных методов, используемых для глубокого обучения нейронных сетей прямого распространения (такие сети ещё называют многослойными персептронами). Этот метод относят к методу обучения с учителем, поэтому требуется задавать в обучающих примерах целевые значения. В этой статье мы рассмотрим, что собой представляет метод обратного распространения ошибки, как он реализуется, каковы его плюсы и минусы.

Сегодня нейронные сети прямого распространения используются для решения множества сложных задач. Если говорить об обучении нейронных сетей методом обратного распространения, то тут пользуются двумя проходами по всем слоям нейросети: прямым и обратным. При выполнении прямого прохода осуществляется подача входного вектора на входной слой сети, после чего происходит распространение по нейронной сети от слоя к слою. В итоге должна осуществляться генерация набора выходных сигналов — именно он, по сути, является реакцией нейронной сети на этот входной образ. При прямом проходе все синаптические веса нейросети фиксированы. При обратном проходе все синаптические веса настраиваются согласно правил коррекции ошибок, когда фактический выход нейронной сети вычитается из желаемого, что приводит к формированию сигнала ошибки. Такой сигнал в дальнейшем распространяется по сети, причём направление распространения обратно направлению синаптических связей. Именно поэтому соответствующий метод и называют алгоритмом с обратно распространённой ошибкой. Синаптические веса настраивают с целью наибольшего приближения выходного сигнала нейронной сети к желаемому.

Общее описание алгоритма обратного распространения ошибки

К примеру, нам надо обучить нейронную сеть по аналогии с той, что представлена на картинке ниже. Естественно, задачу следует выполнить, применяя алгоритм обратного распространения ошибки:

4-20219-e537a8.png

2-20219-7f9b72.png

В многослойных персептронах в роли активационной функции обычно применяют сигмоидальную активационную функция, в нашем случае — логистическую. Формула:

3-20219-2ac7f4.png

Причём «альфа» здесь означает параметр наклона сигмоидальной функции. Меняя его, мы получаем возможность строить функции с разной крутизной.

Сигмоид может сужать диапазон изменения таким образом, чтобы значение OUT лежало между нулем и единицей. Нейронные многослойные сети характеризуются более высокой представляющей мощностью, если сравнивать их с однослойными, но это утверждение справедливо лишь в случае нелинейности. Нужную нелинейность и обеспечивает сжимающая функция. Но на практике существует много функций, которые можно использовать. Говоря о работе алгоритма обратного распространения ошибки, скажем, что для этого нужно лишь, чтобы функция была везде дифференцируема, а данному требованию как раз и удовлетворяет сигмоид. У него есть и дополнительное преимущество — автоматический контроль усиления. Если речь идёт о слабых сигналах (OUT близко к нулю), то кривая «вход-выход» характеризуется сильным наклоном, дающим большое усиление. При увеличении сигнала усиление падает. В результате большие сигналы будут восприниматься сетью без насыщения, а слабые сигналы будут проходить по сети без чрезмерного ослабления.

Цель обучения сети

Цель обучения нейросети при использовании алгоритма обратного распространения ошибки — это такая подстройка весов нейросети, которая позволит при приложении некоторого множества входов получить требуемое множество выходов нейронов (выходных нейронов). Можно назвать эти множества входов и выходов векторами. В процессе обучения предполагается, что для любого входного вектора существует целевой вектор, парный входному и задающий требуемый выход. Эту пару называют обучающей. Работая с нейросетями, мы обучаем их на многих парах.

Также можно сказать, что алгоритм использует стохастический градиентный спуск и продвигается в многомерном пространстве весов в направлении антиградиента, причём цель — это достижение минимума функции ошибки.

При практическом применении метода обучение продолжают не до максимально точной настройки нейросети на минимум функции ошибки, а пока не будет достигнуто довольно точное его приближение. С одной стороны, это даёт возможность уменьшить количество итераций обучения, с другой — избежать переобучения нейронной сети.

Пошаговая реализация метода обратного распространения ошибки

Необходимо выполнить следующие действия:
1. Инициализировать синаптические веса случайными маленькими значениями.
2. Выбрать из обучающего множества очередную обучающую пару; подать на вход сети входной вектор.
3. Выполнить вычисление выходных значений нейронной сети.
4. Посчитать разность между выходом нейросети и требуемым выходом (речь идёт о целевом векторе обучающей пары).
5. Скорректировать веса сети в целях минимизации ошибки.
6. Повторять для каждого вектора обучающего множества шаги 2-5, пока ошибка обучения нейронной сети на всём множестве не достигнет уровня, который является приемлемым.

Виды обучения сети по методу обратного распространения

Сегодня существует много модификаций алгоритма обратного распространения ошибки. Возможно обучение не «по шагам» (выходная ошибка вычисляется, веса корректируются на каждом примере), а «по эпохам» в offline-режиме (изменения весовых коэффициентов происходит после подачи на вход нейросети всех примеров обучающего множества, а ошибка обучения neural сети усредняется по всем примерам).

Обучение «по эпохам» более устойчиво к выбросам и аномальным значениям целевой переменной благодаря усреднению ошибки по многим примерам. Зато в данном случае увеличивается вероятность «застревания» в локальных минимумах. При обучении «по шагам» такая вероятность меньше, ведь применение отдельных примеров создаёт «шум», «выталкивающий» алгоритм обратного распространения из ям градиентного рельефа.

Преимущества и недостатки метода

К плюсам можно отнести простоту в реализации и устойчивость к выбросам и аномалиям в данных, и это основные преимущества. Но есть и минусы:
• неопределенно долгий процесс обучения;
• вероятность «паралича сети» (при больших значениях рабочая точка функции активации попадает в область насыщения сигмоиды, а производная величина приближается к 0, в результате чего коррекции весов почти не происходят, а процесс обучения «замирает»;
• алгоритм уязвим к попаданию в локальные минимумы функции ошибки.

Значение метода обратного распространения

Появление алгоритма стало знаковым событием и положительно отразилось на развитии нейросетей, ведь он реализует эффективный с точки зрения вычислительных процессов способ обучения многослойного персептрона. В то же самое время, было бы неправильным сказать, что алгоритм предлагает наиболее оптимальное решение всех потенциальных проблем. Зато он действительно развеял пессимизм относительно машинного обучения многослойных машин, который воцарился после публикации в 1969 году работы американского учёного с фамилией Минский.

Источники:
— «Алгоритм обратного распространения ошибки»;
— «Back propagation algorithm».

8.1 Многослойные нейронные сети. Структура

Обсудим алгоритм
обратного распространения ошибки,
который позволяет обучать многослойные
нейронные сети. Этот алгоритм считается
наиболее известным и чаще всего
применяемым в искусственных нейронных
сетях.

На
рисунке 8.1 представлена многослойная
нейронная сеть, состоящая из
слоев.

Рисунок
8.1 – Многослойная нейронная сеть

В
каждом слое расположено
элементов, ,
обозначаемых ,
.
Элементы
будем называть нейронами с нелинейной
функцией активации на выходе. Обсуждаемая
нейронная сеть имеет
входов, на которые подаются сигналы
,
записываемые в векторной форме как

,

(8.1)

Выходной
сигнал i-го
нейрона в
слое обозначается ,
,
.

На
рисунке 8.2 показана детальная структура
i-го
нейрона в
слое.

Нейрон

имеет
входов,
образующих вектор

(8.2)

причем

для
и .
Обратим внимание на факт, что входной
сигнал нейрона
связан с выходным сигналом
слоя следующим образом:

(8.3)

На
рисунке 8.2
обозначает вес связи i-го
нейрона, ,
расположенного в
слое, которая соединяет этот нейрон с

входным сигналом ,
.

Рисунок
8.2 – Структура нейрона

8.2 Вывод основных формул алгоритма обратного распространения ошибки

Вектор
весов нейрона
обозначим

,
,

(8.4)

Выходной
сигнал нейрона
в n
момент времени,
определяется как

,

(8.5)

причем

(8.6)

Отметим,
что выходные сигналы нейронов в L
слое

(8.7)

одновременно
являются выходными сигналами всей сети.
Они сравниваются с так называемыми
эталонными сигналами сети

(8.8)

в результате чего
получаем погрешность

,
.

(8.9)

Можно
сформулировать меру погрешности,
основанную на сравнении сигналов (8.7) и
(8.8), в виде суммы квадратов разностей
(8.9), т.е.

(8.10)

Из
выражений (8.5) и (8.6) следует, что мера
погрешности (8.10) — это функция от весов
сети. Обучение сети основано на адаптивной
коррекции всех весов
таким образом, чтобы минимизировать ее
значение. Для коррекции произвольного
веса можно использовать правило
наискорейшего спуска, которое принимает
вид

(8.11)

где
константа
определяет величину шага коррекции.
Обратим внимание, что

(1.41)

Если ввести
обозначение

(8.13)

то получим равенство

(8.14)

При
этом алгоритм (8.11) принимает вид

(8.15)

Способ
расчета значения ,
заданного выражением (8.13), зависит от
номера слоя. Для последнего слоя получаем

(8.16)

Для
произвольного слоя
получаем

(8.17)

Определим
погрешность в

(не последнем) слое для
-го
нейрона в виде

(8.18)

Если
подставить выражение (8.18) в формулу
(8.17), то получим

(8.19)

В результате
алгоритм обратного распространения
ошибки можно записать в виде

(8.20)

(8.21)

(8.22)

(8.23)

Название
алгоритма связано со способом расчета
погрешностей в конкретных слоях. Вначале
рассчитываются погрешности в последнем
слое (на основе выходных и эталонных
сигналов), далее — в предпоследнем и так
вплоть до первого слоя. Начальные
значения весов, образующих сеть,
выбираются случайным образом и, как
правило, устанавливаются близкими к
нулю. Шаг коррекции
чаще всего принимает большие значения
(близкие единице) на начальных этапах
процесса обучения, но впоследствии его
следует уменьшать по мере того как веса
приближаются к некоторым заранее
определенным значениям. В литературе,
посвященной нейронным сетям, рекомендуются
различные модификации алгоритма
обратного распространения ошибки. Одна
из наиболее известных модификаций
заключается во введении в рекурсию
(8.23) дополнительного члена, называемого
моментом:

(8.24)

в
котором параметр .
Экспериментальные исследования
показывают, что введение момента ускоряет
сходимость алгоритма обратного
распространения ошибки.

Контрольные вопросы

  1. Как выглядит многослойная
    нейронная сеть?

  2. Напишите основные функции
    активации, применяемые в нейронных
    сетях?

  3. Напишите основные формулы
    алгоритма обратного распространения
    ошибки?

  4. Назовите основные модификации
    алгоритма обратного распространения
    ошибки?

  5. По какому алгоритму происходит
    обучение персептрона?

Соседние файлы в папке Методы оптимизации

  • #
  • #

Нейронные сети обучаются с помощью тех или иных модификаций градиентного спуска, а чтобы применять его, нужно уметь эффективно вычислять градиенты функции потерь по всем обучающим параметрам. Казалось бы, для какого-нибудь запутанного вычислительного графа это может быть очень сложной задачей, но на помощь спешит метод обратного распространения ошибки.

Открытие метода обратного распространения ошибки стало одним из наиболее значимых событий в области искусственного интеллекта. В актуальном виде он был предложен в 1986 году Дэвидом Э. Румельхартом, Джеффри Э. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно красноярскими математиками С. И. Барцевым и В. А. Охониным. С тех пор для нахождения градиентов параметров нейронной сети используется метод вычисления производной сложной функции, и оценка градиентов параметров сети стала хоть сложной инженерной задачей, но уже не искусством. Несмотря на простоту используемого математического аппарата, появление этого метода привело к значительному скачку в развитии искусственных нейронных сетей.

Суть метода можно записать одной формулой, тривиально следующей из формулы производной сложной функции: если $f(x) = g_m(g_{m-1}(ldots (g_1(x)) ldots))$, то $frac{partial f}{partial x} = frac{partial g_m}{partial g_{m-1}}frac{partial g_{m-1}}{partial g_{m-2}}ldots frac{partial g_2}{partial g_1}frac{partial g_1}{partial x}$. Уже сейчас мы видим, что градиенты можно вычислять последовательно, в ходе одного обратного прохода, начиная с $frac{partial g_m}{partial g_{m-1}}$ и умножая каждый раз на частные производные предыдущего слоя.

Backpropagation в одномерном случае

В одномерном случае всё выглядит особенно просто. Пусть $w_0$ — переменная, по которой мы хотим продифференцировать, причём сложная функция имеет вид

$$f(w_0) = g_m(g_{m-1}(ldots g_1(w_0)ldots)),$$

где все $g_i$ скалярные. Тогда

$$f'(w_0) = g_m'(g_{m-1}(ldots g_1(w_0)ldots))cdot g’_{m-1}(g_{m-2}(ldots g_1(w_0)ldots))cdotldots cdot g’_1(w_0)$$

Суть этой формулы такова. Если мы уже совершили forward pass, то есть уже знаем

$$g_1(w_0), g_2(g_1(w_0)),ldots,g_{m-1}(ldots g_1(w_0)ldots),$$

то мы действуем следующим образом:

  • берём производную $g_m$ в точке $g_{m-1}(ldots g_1(w_0)ldots)$;

  • умножаем на производную $g_{m-1}$ в точке $g_{m-2}(ldots g_1(w_0)ldots)$;

  • и так далее, пока не дойдём до производной $g_1$ в точке $w_0$.

Проиллюстрируем это на картинке, расписав по шагам дифференцирование по весам $w_i$ функции потерь логистической регрессии на одном объекте (то есть для батча размера 1):

17_1.png

Собирая все множители вместе, получаем:

$$frac{partial f}{partial w_0} = (-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_1} = x_1cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_2} = x_2cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

Таким образом, мы видим, что сперва совершается forward pass для вычисления всех промежуточных значений (и да, все промежуточные представления нужно будет хранить в памяти), а потом запускается backward pass, на котором в один проход вычисляются все градиенты.

Почему же нельзя просто пойти и начать везде вычислять производные?

В главе, посвящённой матричным дифференцированиям, мы поднимаем вопрос о том, что вычислять частные производные по отдельности — это зло, лучше пользоваться матричными вычислениями. Но есть и ещё одна причина: даже и с матричной производной в принципе не всегда хочется иметь дело. Рассмотрим простой пример. Допустим, что $X^r$ и $X^{r+1}$ — два последовательных промежуточных представления $Ntimes M$ и $Ntimes K$, связанных функцией $X^{r+1} = f^{r+1}(X^r)$. Предположим, что мы как-то посчитали производную $frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$ функции потерь $mathcal{L}$, тогда

$$frac{partialmathcal{L}}{partial X^{r}_{st}} = sum_{i,j}frac{partial f^{r+1}_{ij}}{partial X^{r}_{st}}frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$$

И мы видим, что, хотя оба градиента $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ и $frac{partialmathcal{L}}{partial X_{st}^{r}}$ являются просто матрицами, в ходе вычислений возникает «четырёхмерный кубик» $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, даже хранить который весьма болезненно: уж больно много памяти он требует ($N^2MK$ по сравнению с безобидными $NM + NK$, требуемыми для хранения градиентов). Поэтому хочется промежуточные производные $frac{partial f^{r+1}}{partial X^{r}}$ рассматривать не как вычисляемые объекты $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, а как преобразования, которые превращают $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ в $frac{partialmathcal{L}}{partial X_{st}^{r}}$. Целью следующих глав будет именно это: понять, как преобразуется градиент в ходе error backpropagation при переходе через тот или иной слой.

  Вы спросите себя: надо ли мне сейчас пойти и прочитать главу учебника про матричное дифференцирование?

Встречный вопрос. Найдите производную функции по вектору $x$:

$$f(x) = x^TAx, Ain Mat_{n}{mathbb{R}}text{ — матрица размера }ntimes n$$

А как всё поменяется, если $A$ тоже зависит от $x$? Чему равен градиент функции, если $A$ является скаляром? Если вы готовы прямо сейчас взять ручку и бумагу и посчитать всё, то вам, вероятно, не надо читать про матричные дифференцирования. Но мы советуем всё-таки заглянуть в эту главу, если обозначения, которые мы будем дальше использовать, покажутся вам непонятными: единой нотации для матричных дифференцирований человечество пока, увы, не изобрело, и переводить с одной на другую не всегда легко.

Мы же сразу перейдём к интересующей нас вещи: к вычислению градиентов сложных функций.

Градиент сложной функции

Напомним, что формула производной сложной функции выглядит следующим образом:

$$left[D_{x_0} (color{#5002A7}{u} circ color{#4CB9C0}{v}) right](h) = color{#5002A7}{left[D_{v(x_0)} u right]} left( color{#4CB9C0}{left[D_{x_0} vright]} (h)right)$$

Теперь разберёмся с градиентами. Пусть $f(x) = g(h(x))$ – скалярная функция. Тогда

$$left[D_{x_0} f right] (x-x_0) = langlenabla_{x_0} f, x-x_0rangle.$$

С другой стороны,

$$left[D_{h(x_0)} g right] left(left[D_{x_0}h right] (x-x_0)right) = langlenabla_{h_{x_0}} g, left[D_{x_0} hright] (x-x_0)rangle = langleleft[D_{x_0} hright]^* nabla_{h(x_0)} g, x-x_0rangle.$$

То есть $color{#FFC100}{nabla_{x_0} f} = color{#348FEA}{left[D_{x_0} h right]}^* color{#FFC100}{nabla_{h(x_0)}}g$ — применение сопряжённого к $D_{x_0} h$ линейного отображения к вектору $nabla_{h(x_0)} g$.

Эта формула — сердце механизма обратного распространения ошибки. Она говорит следующее: если мы каким-то образом получили градиент функции потерь по переменным из некоторого промежуточного представления $X^k$ нейронной сети и при этом знаем, как преобразуется градиент при проходе через слой $f^k$ между $X^{k-1}$ и $X^k$ (то есть как выглядит сопряжённое к дифференциалу слоя между ними отображение), то мы сразу же находим градиент и по переменным из $X^{k-1}$:

17_2.png

Таким образом слой за слоем мы посчитаем градиенты по всем $X^i$ вплоть до самых первых слоёв.

Далее мы разберёмся, как именно преобразуются градиенты при переходе через некоторые распространённые слои.

Градиенты для типичных слоёв

Рассмотрим несколько важных примеров.

Примеры

  1. $f(x) = u(v(x))$, где $x$ — вектор, а $v(x)$ – поэлементное применение $v$:

    $$vbegin{pmatrix}
    x_1
    vdots
    x_N
    end{pmatrix}
    = begin{pmatrix}
    v(x_1)
    vdots
    v(x_N)
    end{pmatrix}$$

    Тогда, как мы знаем,

    $$left[D_{x_0} fright] (h) = langlenabla_{x_0} f, hrangle = left[nabla_{x_0} fright]^T h.$$

    Следовательно,

    $$begin{multline*}
    left[D_{v(x_0)} uright] left( left[ D_{x_0} vright] (h)right) = left[nabla_{v(x_0)} uright]^T left(v'(x_0) odot hright) =[0.1cm]
    = sumlimits_i left[nabla_{v(x_0)} uright]_i v'(x_{0i})h_i
    = langleleft[nabla_{v(x_0)} uright] odot v'(x_0), hrangle.
    end{multline*},$$

    где $odot$ означает поэлементное перемножение. Окончательно получаем

    $$color{#348FEA}{nabla_{x_0} f = left[nabla_{v(x_0)}uright] odot v'(x_0) = v'(x_0) odot left[nabla_{v(x_0)} uright]}$$

    Отметим, что если $x$ и $h(x)$ — это просто векторы, то мы могли бы вычислять всё и по формуле $frac{partial f}{partial x_i} = sum_jbig(frac{partial z_j}{partial x_i}big)cdotbig(frac{partial h}{partial z_j}big)$. В этом случае матрица $big(frac{partial z_j}{partial x_i}big)$ была бы диагональной (так как $z_j$ зависит только от $x_j$: ведь $h$ берётся поэлементно), и матричное умножение приводило бы к тому же результату. Однако если $x$ и $h(x)$ — матрицы, то $big(frac{partial z_j}{partial x_i}big)$ представлялась бы уже «четырёхмерным кубиком», и работать с ним было бы ужасно неудобно.

  2. $f(X) = g(XW)$, где $X$ и $W$ — матрицы. Как мы знаем,

    $$left[D_{X_0} f right] (X-X_0) = text{tr}, left(left[nabla_{X_0} fright]^T (X-X_0)right).$$

    Тогда

    $$begin{multline*}
    left[ D_{X_0W} g right] left(left[D_{X_0} left( ast Wright)right] (H)right) =
    left[ D_{X_0W} g right] left(HWright)=
    = text{tr}, left( left[nabla_{X_0W} g right]^T cdot (H) W right) =
    =
    text{tr} , left(W left[nabla_{X_0W} (g) right]^T cdot (H)right) = text{tr} , left( left[left[nabla_{X_0W} gright] W^Tright]^T (H)right)
    end{multline*}$$

    Здесь через $ast W$ мы обозначили отображение $Y hookrightarrow YW$, а в предпоследнем переходе использовалось следующее свойство следа:

    $$
    text{tr} , (A B C) = text{tr} , (C A B),
    $$

    где $A, B, C$ — произвольные матрицы подходящих размеров (то есть допускающие перемножение в обоих приведённых порядках). Следовательно, получаем

    $$color{#348FEA}{nabla_{X_0} f = left[nabla_{X_0W} (g) right] cdot W^T}$$

  3. $f(W) = g(XW)$, где $W$ и $X$ — матрицы. Для приращения $H = W — W_0$ имеем

    $$
    left[D_{W_0} f right] (H) = text{tr} , left( left[nabla_{W_0} f right]^T (H)right)
    $$

    Тогда

    $$ begin{multline*}
    left[D_{XW_0} g right] left( left[D_{W_0} left(X astright) right] (H)right) = left[D_{XW_0} g right] left( XH right) =
    = text{tr} , left( left[nabla_{XW_0} g right]^T cdot X (H)right) =
    text{tr}, left(left[X^T left[nabla_{XW_0} g right] right]^T (H)right)
    end{multline*} $$

    Здесь через $X ast$ обозначено отображение $Y hookrightarrow XY$. Значит,

    $$color{#348FEA}{nabla_{X_0} f = X^T cdot left[nabla_{XW_0} (g)right]}$$

  4. $f(X) = g(softmax(X))$, где $X$ — матрица $Ntimes K$, а $softmax$ — функция, которая вычисляется построчно, причём для каждой строки $x$

    $$softmax(x) = left(frac{e^{x_1}}{sum_te^{x_t}},ldots,frac{e^{x_K}}{sum_te^{x_t}}right)$$

    В этом примере нам будет удобно воспользоваться формализмом с частными производными. Сначала вычислим $frac{partial s_l}{partial x_j}$ для одной строки $x$, где через $s_l$ мы для краткости обозначим $softmax(x)_l = frac{e^{x_l}} {sum_te^{x_t}}$. Нетрудно проверить, что

    $$frac{partial s_l}{partial x_j} = begin{cases}
    s_j(1 — s_j), & j = l,
    -s_ls_j, & jne l
    end{cases}$$

    Так как softmax вычисляется независимо от каждой строчки, то

    $$frac{partial s_{rl}}{partial x_{ij}} = begin{cases}
    s_{ij}(1 — s_{ij}), & r=i, j = l,
    -s_{il}s_{ij}, & r = i, jne l,
    0, & rne i
    end{cases},$$

    где через $s_{rl}$ мы обозначили для краткости $softmax(X)_{rl}$.

    Теперь пусть $nabla_{rl} = nabla g = frac{partialmathcal{L}}{partial s_{rl}}$ (пришедший со следующего слоя, уже известный градиент). Тогда

    $$frac{partialmathcal{L}}{partial x_{ij}} = sum_{r,l}frac{partial s_{rl}}{partial x_{ij}} nabla_{rl}$$

    Так как $frac{partial s_{rl}}{partial x_{ij}} = 0$ при $rne i$, мы можем убрать суммирование по $r$:

    $$ldots = sum_{l}frac{partial s_{il}}{partial x_{ij}} nabla_{il} = -s_{i1}s_{ij}nabla_{i1} — ldots + s_{ij}(1 — s_{ij})nabla_{ij}-ldots — s_{iK}s_{ij}nabla_{iK} =$$

    $$= -s_{ij}sum_t s_{it}nabla_{it} + s_{ij}nabla_{ij}$$

    Таким образом, если мы хотим продифференцировать $f$ в какой-то конкретной точке $X_0$, то, смешивая математические обозначения с нотацией Python, мы можем записать:

    $$begin{multline*}
    color{#348FEA}{nabla_{X_0}f =}
    color{#348FEA}{= -softmax(X_0) odot text{sum}left(
    softmax(X_0)odotnabla_{softmax(X_0)}g, text{ axis = 1}
    right) +}
    color{#348FEA}{softmax(X_0)odot nabla_{softmax(X_0)}g}
    end{multline*}
    $$

Backpropagation в общем виде

Подытожим предыдущее обсуждение, описав алгоритм error backpropagation (алгоритм обратного распространения ошибки). Допустим, у нас есть текущие значения весов $W^i_0$ и мы хотим совершить шаг SGD по мини-батчу $X$. Мы должны сделать следующее:

  1. Совершить forward pass, вычислив и запомнив все промежуточные представления $X = X^0, X^1, ldots, X^m = widehat{y}$.
  2. Вычислить все градиенты с помощью backward pass.
  3. С помощью полученных градиентов совершить шаг SGD.

Проиллюстрируем алгоритм на примере двуслойной нейронной сети со скалярным output’ом. Для простоты опустим свободные члены в линейных слоях.

17_3.png Обучаемые параметры – матрицы $U$ и $W$. Как найти градиенты по ним в точке $U_0, W_0$?

$$nabla_{W_0}mathcal{L} = nabla_{W_0}{left({vphantom{frac12}mathcal{L}circ hcircleft[Wmapsto g(XU_0)Wright]}right)}=$$

$$=g(XU_0)^Tnabla_{g(XU_0)W_0}(mathcal{L}circ h) = underbrace{g(XU_0)^T}_{ktimes N}cdot
left[vphantom{frac12}underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes 1}odot
underbrace{nabla_{hleft(vphantom{int_0^1}g(XU_0)W_0right)}mathcal{L}}_{Ntimes 1}right]$$

Итого матрица $ktimes 1$, как и $W_0$

$$nabla_{U_0}mathcal{L} = nabla_{U_0}left(vphantom{frac12}
mathcal{L}circ hcircleft[Ymapsto YW_0right]circ gcircleft[ Umapsto XUright]
right)=$$

$$=X^Tcdotnabla_{XU^0}left(vphantom{frac12}mathcal{L}circ hcirc [Ymapsto YW_0]circ gright) =$$

$$=X^Tcdotleft(vphantom{frac12}g'(XU_0)odot
nabla_{g(XU_0)}left[vphantom{in_0^1}mathcal{L}circ hcirc[Ymapsto YW_0right]
right)$$

$$=ldots = underset{Dtimes N}{X^T}cdotleft(vphantom{frac12}
underbrace{g'(XU_0)}_{Ntimes K}odot
underbrace{left[vphantom{int_0^1}left(
underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes1}odotunderbrace{nabla_{h(vphantom{int_0^1}gleft(XU_0right)W_0)}mathcal{L}}_{Ntimes 1}
right)cdot underbrace{W^T}_{1times K}right]}_{Ntimes K}
right)$$

Итого $Dtimes K$, как и $U_0$

Схематически это можно представить следующим образом:

17_4.gif

Backpropagation для двуслойной нейронной сети

Если вы не уследили за вычислениями в предыдущем примере, давайте более подробно разберём его чуть более конкретную версию (для $g = h = sigma$)Рассмотрим двуслойную нейронную сеть для классификации. Мы уже встречали ее ранее при рассмотрении линейно неразделимой выборки. Предсказания получаются следующим образом:

$$
widehat{y} = sigma(X^1 W^2) = sigmaBig(big(sigma(X^0 W^1 )big) W^2 Big).
$$

Пусть $W^1_0$ и $W^2_0$ — текущее приближение матриц весов. Мы хотим совершить шаг по градиенту функции потерь, и для этого мы должны вычислить её градиенты по $W^1$ и $W^2$ в точке $(W^1_0, W^2_0)$.

Прежде всего мы совершаем forward pass, в ходе которого мы должны запомнить все промежуточные представления: $X^1 = X^0 W^1_0$, $X^2 = sigma(X^0 W^1_0)$, $X^3 = sigma(X^0 W^1_0) W^2_0$, $X^4 = sigma(sigma(X^0 W^1_0) W^2_0) = widehat{y}$. Они понадобятся нам дальше.

Для полученных предсказаний вычисляется значение функции потерь:

$$
l = mathcal{L}(y, widehat{y}) = y log(widehat{y}) + (1-y) log(1-widehat{y}).
$$

Дальше мы шаг за шагом будем находить производные по переменным из всё более глубоких слоёв.

  1. Градиент $mathcal{L}$ по предсказаниям имеет вид

    $$
    nabla_{widehat{y}}l = frac{y}{widehat{y}} — frac{1 — y}{1 — widehat{y}} = frac{y — widehat{y}}{widehat{y} (1 — widehat{y})},
    $$

    где, напомним, $ widehat{y} = sigma(X^3) = sigmaBig(big(sigma(X^0 W^1_0 )big) W^2_0 Big)$ (обратите внимание на то, что $W^1_0$ и $W^2_0$ тут именно те, из которых мы делаем градиентный шаг).

  2. Следующий слой — поэлементное взятие $sigma$. Как мы помним, при переходе через него градиент поэлементно умножается на производную $sigma$, в которую подставлено предыдущее промежуточное представление:

    $$
    nabla_{X^3}l = sigma'(X^3)odotnabla_{widehat{y}}l = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — widehat{y}}{widehat{y} (1 — widehat{y})} =
    $$

    $$
    = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — sigma(X^3)}{sigma(X^3) (1 — sigma(X^3))} =
    y — sigma(X^3)
    $$

  3. Следующий слой — умножение на $W^2_0$. В этот момент мы найдём градиент как по $W^2$, так и по $X^2$. При переходе через умножение на матрицу градиент, как мы помним, умножается с той же стороны на транспонированную матрицу, а значит:

    $$
    color{blue}{nabla_{W^2_0}l} = (X^2)^Tcdot nabla_{X^3}l = (X^2)^Tcdot(y — sigma(X^3)) =
    $$

    $$
    = color{blue}{left( sigma(X^0W^1_0) right)^T cdot (y — sigma(sigma(X^0W^1_0)W^2_0))}
    $$

    Аналогичным образом

    $$
    nabla_{X^2}l = nabla_{X^3}lcdot (W^2_0)^T = (y — sigma(X^3))cdot (W^2_0)^T =
    $$

    $$
    = (y — sigma(X^2W_0^2))cdot (W^2_0)^T
    $$

  4. Следующий слой — снова взятие $sigma$.

    $$
    nabla_{X^1}l = sigma'(X^1)odotnabla_{X^2}l = sigma(X^1)left( 1 — sigma(X^1) right) odot left( (y — sigma(X^2W_0^2))cdot (W^2_0)^T right) =
    $$

    $$
    = sigma(X^1)left( 1 — sigma(X^1) right) odotleft( (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^T right)
    $$

  5. Наконец, последний слой — это умножение $X^0$ на $W^1_0$. Тут мы дифференцируем только по $W^1$:

    $$
    color{blue}{nabla_{W^1_0}l} = (X^0)^Tcdot nabla_{X^1}l = (X^0)^Tcdot big( sigma(X^1) left( 1 — sigma(X^1) right) odot (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^Tbig) =
    $$

    $$
    = color{blue}{(X^0)^Tcdotbig(sigma(X^0W^1_0)left( 1 — sigma(X^0W^1_0) right) odot (y — sigma(sigma(X^0W^1_0)W_0^2))cdot (W^2_0)^Tbig) }
    $$

Итоговые формулы для градиентов получились страшноватыми, но они были получены друг из друга итеративно с помощью очень простых операций: матричного и поэлементного умножения, в которые порой подставлялись значения заранее вычисленных промежуточных представлений.

Автоматизация и autograd

Итак, чтобы нейросеть обучалась, достаточно для любого слоя $f^k: X^{k-1}mapsto X^k$ с параметрами $W^k$ уметь:

  • превращать $nabla_{X^k_0}mathcal{L}$ в $nabla_{X^{k-1}_0}mathcal{L}$ (градиент по выходу в градиент по входу);
  • считать градиент по его параметрам $nabla_{W^k_0}mathcal{L}$.

При этом слою совершенно не надо знать, что происходит вокруг. То есть слой действительно может быть запрограммирован как отдельная сущность, умеющая внутри себя делать forward pass и backward pass, после чего слои механически, как кубики в конструкторе, собираются в большую сеть, которая сможет работать как одно целое.

Более того, во многих случаях авторы библиотек для глубинного обучения уже о вас позаботились и создали средства для автоматического дифференцирования выражений (autograd). Поэтому, программируя нейросеть, вы почти всегда можете думать только о forward-проходе, прямом преобразовании данных, предоставив библиотеке дифференцировать всё самостоятельно. Это делает код нейросетей весьма понятным и выразительным (да, в реальности он тоже бывает большим и страшным, но сравните на досуге код какой-нибудь разухабистой нейросети и код градиентного бустинга на решающих деревьях и почувствуйте разницу).

Но это лишь начало

Метод обратного распространения ошибки позволяет удобно посчитать градиенты, но дальше с ними что-то надо делать, и старый добрый SGD едва ли справится с обучением современной сетки. Так что же делать? О некоторых приёмах мы расскажем в следующей главе.

This article is about the computer algorithm. For the biological process, see neural backpropagation.

Backpropagation can also refer to the way the result of a playout is propagated up the search tree in Monte Carlo tree search.

In machine learning, backpropagation (backprop,[1] BP) is a widely used algorithm for training feedforward artificial neural networks. Generalizations of backpropagation exist for other artificial neural networks (ANNs), and for functions generally. These classes of algorithms are all referred to generically as «backpropagation».[2] In fitting a neural network, backpropagation computes the gradient of the loss function with respect to the weights of the network for a single input–output example, and does so efficiently, unlike a naive direct computation of the gradient with respect to each weight individually. This efficiency makes it feasible to use gradient methods for training multilayer networks, updating weights to minimize loss; gradient descent, or variants such as stochastic gradient descent, are commonly used. The backpropagation algorithm works by computing the gradient of the loss function with respect to each weight by the chain rule, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this is an example of dynamic programming.[3]

The term backpropagation strictly refers only to the algorithm for computing the gradient, not how the gradient is used; however, the term is often used loosely to refer to the entire learning algorithm, including how the gradient is used, such as by stochastic gradient descent.[4] Backpropagation generalizes the gradient computation in the delta rule, which is the single-layer version of backpropagation, and is in turn generalized by automatic differentiation, where backpropagation is a special case of reverse accumulation (or «reverse mode»).[5] The term backpropagation and its general use in neural networks was announced in Rumelhart, Hinton & Williams (1986a), then elaborated and popularized in Rumelhart, Hinton & Williams (1986b), but the technique was independently rediscovered many times, and had many predecessors dating to the 1960s; see § History.[6] A modern overview is given in the deep learning textbook by Goodfellow, Bengio & Courville (2016).[7]

Overview[edit]

Backpropagation computes the gradient in weight space of a feedforward neural network, with respect to a loss function. Denote:

  • x: input (vector of features)
  • y: target output
    For classification, output will be a vector of class probabilities (e.g., {displaystyle (0.1,0.7,0.2)}, and target output is a specific class, encoded by the one-hot/dummy variable (e.g., (0,1,0)).
  • C: loss function or «cost function»[a]
    For classification, this is usually cross entropy (XC, log loss), while for regression it is usually squared error loss (SEL).
  • L: the number of layers
  • {displaystyle W^{l}=(w_{jk}^{l})}: the weights between layer {displaystyle l-1} and l, where {displaystyle w_{jk}^{l}} is the weight between the k-th node in layer {displaystyle l-1} and the j-th node in layer l[b]
  • {displaystyle f^{l}}: activation functions at layer l
    For classification the last layer is usually the logistic function for binary classification, and softmax (softargmax) for multi-class classification, while for the hidden layers this was traditionally a sigmoid function (logistic function or others) on each node (coordinate), but today is more varied, with rectifier (ramp, ReLU) being common.

In the derivation of backpropagation, other intermediate quantities are used; they are introduced as needed below. Bias terms are not treated specially, as they correspond to a weight with a fixed input of 1. For the purpose of backpropagation, the specific loss function and activation functions do not matter, as long as they and their derivatives can be evaluated efficiently. Traditional activation functions include but are not limited to sigmoid, tanh, and ReLU. Since, swish,[8] mish,[9] and other activation functions were proposed as well.

The overall network is a combination of function composition and matrix multiplication:

{displaystyle g(x):=f^{L}(W^{L}f^{L-1}(W^{L-1}cdots f^{1}(W^{1}x)cdots ))}

For a training set there will be a set of input–output pairs, {displaystyle left{(x_{i},y_{i})right}}. For each input–output pair (x_{i},y_{i}) in the training set, the loss of the model on that pair is the cost of the difference between the predicted output {displaystyle g(x_{i})} and the target output y_{i}:

{displaystyle C(y_{i},g(x_{i}))}

Note the distinction: during model evaluation, the weights are fixed, while the inputs vary (and the target output may be unknown), and the network ends with the output layer (it does not include the loss function). During model training, the input–output pair is fixed, while the weights vary, and the network ends with the loss function.

Backpropagation computes the gradient for a fixed input–output pair (x_{i},y_{i}), where the weights {displaystyle w_{jk}^{l}} can vary. Each individual component of the gradient, {displaystyle partial C/partial w_{jk}^{l},} can be computed by the chain rule; however, doing this separately for each weight is inefficient. Backpropagation efficiently computes the gradient by avoiding duplicate calculations and not computing unnecessary intermediate values, by computing the gradient of each layer – specifically, the gradient of the weighted input of each layer, denoted by {displaystyle delta ^{l}} – from back to front.

Informally, the key point is that since the only way a weight in {displaystyle W^{l}} affects the loss is through its effect on the next layer, and it does so linearly, {displaystyle delta ^{l}} are the only data you need to compute the gradients of the weights at layer l, and then you can compute the previous layer {displaystyle delta ^{l-1}} and repeat recursively. This avoids inefficiency in two ways. Firstly, it avoids duplication because when computing the gradient at layer l, you do not need to recompute all the derivatives on later layers {displaystyle l+1,l+2,ldots } each time. Secondly, it avoids unnecessary intermediate calculations because at each stage it directly computes the gradient of the weights with respect to the ultimate output (the loss), rather than unnecessarily computing the derivatives of the values of hidden layers with respect to changes in weights {displaystyle partial a_{j'}^{l'}/partial w_{jk}^{l}}.

Backpropagation can be expressed for simple feedforward networks in terms of matrix multiplication, or more generally in terms of the adjoint graph.

Matrix multiplication[edit]

For the basic case of a feedforward network, where nodes in each layer are connected only to nodes in the immediate next layer (without skipping any layers), and there is a loss function that computes a scalar loss for the final output, backpropagation can be understood simply by matrix multiplication.[c] Essentially, backpropagation evaluates the expression for the derivative of the cost function as a product of derivatives between each layer from right to left – «backwards» – with the gradient of the weights between each layer being a simple modification of the partial products (the «backwards propagated error»).

Given an input–output pair (x,y), the loss is:

{displaystyle C(y,f^{L}(W^{L}f^{L-1}(W^{L-1}cdots f^{2}(W^{2}f^{1}(W^{1}x))cdots )))}

To compute this, one starts with the input x and works forward; denote the weighted input of each hidden layer as {displaystyle z^{l}} and the output of hidden layer l as the activation {displaystyle a^{l}}. For backpropagation, the activation {displaystyle a^{l}} as well as the derivatives {displaystyle (f^{l})'} (evaluated at {displaystyle z^{l}}) must be cached for use during the backwards pass.

The derivative of the loss in terms of the inputs is given by the chain rule; note that each term is a total derivative, evaluated at the value of the network (at each node) on the input x:

{displaystyle {frac {dC}{da^{L}}}circ {frac {da^{L}}{dz^{L}}}cdot {frac {dz^{L}}{da^{L-1}}}circ {frac {da^{L-1}}{dz^{L-1}}}cdot {frac {dz^{L-1}}{da^{L-2}}}circ ldots circ {frac {da^{1}}{dz^{1}}}cdot {frac {partial z^{1}}{partial x}},}

where circ is a Hadamard product, that is an element-wise product.

These terms are: the derivative of the loss function;[d] the derivatives of the activation functions;[e] and the matrices of weights:[f]

{displaystyle {frac {dC}{da^{L}}}circ (f^{L})'cdot W^{L}circ (f^{L-1})'cdot W^{L-1}circ cdots circ (f^{1})'cdot W^{1}.}

The gradient nabla is the transpose of the derivative of the output in terms of the input, so the matrices are transposed and the order of multiplication is reversed, but the entries are the same:

{displaystyle nabla _{x}C=(W^{1})^{T}cdot (f^{1})'circ ldots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C.}

Backpropagation then consists essentially of evaluating this expression from right to left (equivalently, multiplying the previous expression for the derivative from left to right), computing the gradient at each layer on the way; there is an added step, because the gradient of the weights isn’t just a subexpression: there’s an extra multiplication.

Introducing the auxiliary quantity {displaystyle delta ^{l}} for the partial products (multiplying from right to left), interpreted as the «error at level l» and defined as the gradient of the input values at level l:

{displaystyle delta ^{l}:=(f^{l})'circ (W^{l+1})^{T}circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C.}

Note that {displaystyle delta ^{l}} is a vector, of length equal to the number of nodes in level l; each component is interpreted as the «cost attributable to (the value of) that node».

The gradient of the weights in layer l is then:

{displaystyle nabla _{W^{l}}C=delta ^{l}(a^{l-1})^{T}.}

The factor of {displaystyle a^{l-1}} is because the weights {displaystyle W^{l}} between level {displaystyle l-1} and l affect level l proportionally to the inputs (activations): the inputs are fixed, the weights vary.

The {displaystyle delta ^{l}} can easily be computed recursively, going from right to left, as:

{displaystyle delta ^{l-1}:=(f^{l-1})'circ (W^{l})^{T}cdot delta ^{l}.}

The gradients of the weights can thus be computed using a few matrix multiplications for each level; this is backpropagation.

Compared with naively computing forwards (using the {displaystyle delta ^{l}} for illustration):

{displaystyle {begin{aligned}delta ^{1}&=(f^{1})'circ (W^{2})^{T}cdot (f^{2})'circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}Cdelta ^{2}&=(f^{2})'circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C&vdots delta ^{L-1}&=(f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}Cdelta ^{L}&=(f^{L})'circ nabla _{a^{L}}C,end{aligned}}}

there are two key differences with backpropagation:

  1. Computing {displaystyle delta ^{l-1}} in terms of {displaystyle delta ^{l}} avoids the obvious duplicate multiplication of layers l and beyond.
  2. Multiplying starting from {displaystyle nabla _{a^{L}}C} – propagating the error backwards – means that each step simply multiplies a vector ({displaystyle delta ^{l}}) by the matrices of weights {displaystyle (W^{l})^{T}} and derivatives of activations {displaystyle (f^{l-1})'}. By contrast, multiplying forwards, starting from the changes at an earlier layer, means that each multiplication multiplies a matrix by a matrix. This is much more expensive, and corresponds to tracking every possible path of a change in one layer l forward to changes in the layer {displaystyle l+2} (for multiplying {displaystyle W^{l+1}} by {displaystyle W^{l+2}}, with additional multiplications for the derivatives of the activations), which unnecessarily computes the intermediate quantities of how weight changes affect the values of hidden nodes.

Adjoint graph[edit]

[icon]

This section needs expansion. You can help by adding to it. (November 2019)

For more general graphs, and other advanced variations, backpropagation can be understood in terms of automatic differentiation, where backpropagation is a special case of reverse accumulation (or «reverse mode»).[5]

Intuition[edit]

Motivation[edit]

The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to their correct output. The motivation for backpropagation is to train a multi-layered neural network such that it can learn the appropriate internal representations to allow it to learn any arbitrary mapping of input to output.[10]

Learning as an optimization problem[edit]

To understand the mathematical derivation of the backpropagation algorithm, it helps to first develop some intuition about the relationship between the actual output of a neuron and the correct output for a particular training example. Consider a simple neural network with two input units, one output unit and no hidden units, and in which each neuron uses a linear output (unlike most work on neural networks, in which mapping from inputs to outputs is non-linear)[g] that is the weighted sum of its input.

A simple neural network with two input units (each with a single input) and one output unit (with two inputs)

Initially, before training, the weights will be set randomly. Then the neuron learns from training examples, which in this case consist of a set of tuples {displaystyle (x_{1},x_{2},t)} where x_{1} and x_{2} are the inputs to the network and t is the correct output (the output the network should produce given those inputs, when it has been trained). The initial network, given x_{1} and x_{2}, will compute an output y that likely differs from t (given random weights). A loss function {displaystyle L(t,y)} is used for measuring the discrepancy between the target output t and the computed output y. For regression analysis problems the squared error can be used as a loss function, for classification the categorical crossentropy can be used.

As an example consider a regression problem using the square error as a loss:

{displaystyle L(t,y)=(t-y)^{2}=E,}

where E is the discrepancy or error.

Consider the network on a single training case: (1, 1, 0). Thus, the input x_{1} and x_{2} are 1 and 1 respectively and the correct output, t is 0. Now if the relation is plotted between the network’s output y on the horizontal axis and the error E on the vertical axis, the result is a parabola. The minimum of the parabola corresponds to the output y which minimizes the error E. For a single training case, the minimum also touches the horizontal axis, which means the error will be zero and the network can produce an output y that exactly matches the target output t. Therefore, the problem of mapping inputs to outputs can be reduced to an optimization problem of finding a function that will produce the minimal error.

Error surface of a linear neuron for a single training case

However, the output of a neuron depends on the weighted sum of all its inputs:

{displaystyle y=x_{1}w_{1}+x_{2}w_{2},}

where w_{1} and w_{2} are the weights on the connection from the input units to the output unit. Therefore, the error also depends on the incoming weights to the neuron, which is ultimately what needs to be changed in the network to enable learning.

In this example, upon injecting the training data (1, 1, 0), the loss function becomes

{displaystyle E=(t-y)^{2}=y^{2}=(x_{1}w_{1}+x_{2}w_{2})^{2}=(w_{1}+w_{2})^{2}.}

Then, the loss function E takes the form of a parabolic cylinder with its base directed along {displaystyle w_{1}=-w_{2}}. Since all sets of weights that satisfy {displaystyle w_{1}=-w_{2}} minimize the loss function, in this case additional constraints are required to converge to a unique solution. Additional constraints could either be generated by setting specific conditions to the weights, or by injecting additional training data.

One commonly used algorithm to find the set of weights that minimizes the error is gradient descent. By backpropagation, the steepest descent direction is calculated of the loss function versus the present synaptic weights. Then, the weights can be modified along the steepest descent direction, and the error is minimized in an efficient way.

Derivation[edit]

The gradient descent method involves calculating the derivative of the loss function with respect to the weights of the network. This is normally done using backpropagation. Assuming one output neuron,[h] the squared error function is

{displaystyle E=L(t,y)}

where

L is the loss for the output y and target value t,
t is the target output for a training sample, and
y is the actual output of the output neuron.

For each neuron j, its output o_j is defined as

{displaystyle o_{j}=varphi ({text{net}}_{j})=varphi left(sum _{k=1}^{n}w_{kj}o_{k}right),}

where the activation function varphi is non-linear and differentiable over the activation region (the ReLU is not differentiable at one point). A historically used activation function is the logistic function:

{displaystyle varphi (z)={frac {1}{1+e^{-z}}}}

which has a convenient derivative of:

{displaystyle {frac {dvarphi (z)}{dz}}=varphi (z)(1-varphi (z))}

The input {displaystyle {text{net}}_{j}} to a neuron is the weighted sum of outputs o_k of previous neurons. If the neuron is in the first layer after the input layer, the o_k of the input layer are simply the inputs x_{k} to the network. The number of input units to the neuron is n. The variable {displaystyle w_{kj}} denotes the weight between neuron k of the previous layer and neuron j of the current layer.

Finding the derivative of the error[edit]

Diagram of an artificial neural network to illustrate the notation used here

Calculating the partial derivative of the error with respect to a weight w_{ij} is done using the chain rule twice:

{displaystyle {frac {partial E}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}{frac {partial {text{net}}_{j}}{partial w_{ij}}}}

(Eq. 1)

In the last factor of the right-hand side of the above, only one term in the sum {displaystyle {text{net}}_{j}} depends on w_{ij}, so that

{displaystyle {frac {partial {text{net}}_{j}}{partial w_{ij}}}={frac {partial }{partial w_{ij}}}left(sum _{k=1}^{n}w_{kj}o_{k}right)={frac {partial }{partial w_{ij}}}w_{ij}o_{i}=o_{i}.}

(Eq. 2)

If the neuron is in the first layer after the input layer, o_i is just x_{i}.

The derivative of the output of neuron j with respect to its input is simply the partial derivative of the activation function:

{displaystyle {frac {partial o_{j}}{partial {text{net}}_{j}}}={frac {partial varphi ({text{net}}_{j})}{partial {text{net}}_{j}}}}

(Eq. 3)

which for the logistic activation function

{displaystyle {frac {partial o_{j}}{partial {text{net}}_{j}}}={frac {partial }{partial {text{net}}_{j}}}varphi ({text{net}}_{j})=varphi ({text{net}}_{j})(1-varphi ({text{net}}_{j}))=o_{j}(1-o_{j})}

This is the reason why backpropagation requires the activation function to be differentiable. (Nevertheless, the ReLU activation function, which is non-differentiable at 0, has become quite popular, e.g. in AlexNet)

The first factor is straightforward to evaluate if the neuron is in the output layer, because then o_j = y and

{displaystyle {frac {partial E}{partial o_{j}}}={frac {partial E}{partial y}}}

(Eq. 4)

If half of the square error is used as loss function we can rewrite it as

frac{partial E}{partial o_j} = frac{partial E}{partial y} = frac{partial}{partial y} frac{1}{2}(t - y)^2 = y - t

However, if j is in an arbitrary inner layer of the network, finding the derivative E with respect to o_j is less obvious.

Considering E as a function with the inputs being all neurons {displaystyle L={u,v,dots ,w}} receiving input from neuron j,

{displaystyle {frac {partial E(o_{j})}{partial o_{j}}}={frac {partial E(mathrm {net} _{u},{text{net}}_{v},dots ,mathrm {net} _{w})}{partial o_{j}}}}

and taking the total derivative with respect to o_j, a recursive expression for the derivative is obtained:

{displaystyle {frac {partial E}{partial o_{j}}}=sum _{ell in L}left({frac {partial E}{partial {text{net}}_{ell }}}{frac {partial {text{net}}_{ell }}{partial o_{j}}}right)=sum _{ell in L}left({frac {partial E}{partial o_{ell }}}{frac {partial o_{ell }}{partial {text{net}}_{ell }}}{frac {partial {text{net}}_{ell }}{partial o_{j}}}right)=sum _{ell in L}left({frac {partial E}{partial o_{ell }}}{frac {partial o_{ell }}{partial {text{net}}_{ell }}}w_{jell }right)}

(Eq. 5)

Therefore, the derivative with respect to o_j can be calculated if all the derivatives with respect to the outputs {displaystyle o_{ell }} of the next layer – the ones closer to the output neuron – are known. [Note, if any of the neurons in set L were not connected to neuron j, they would be independent of w_{ij} and the corresponding partial derivative under the summation would vanish to 0.]

Substituting Eq. 2, Eq. 3 Eq.4 and Eq. 5 in Eq. 1 we obtain:

{displaystyle {frac {partial E}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}{frac {partial {text{net}}_{j}}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}o_{i}}
{displaystyle {frac {partial E}{partial w_{ij}}}=o_{i}delta _{j}}

with

{displaystyle delta _{j}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}={begin{cases}{frac {partial L(o_{j},t)}{partial o_{j}}}{frac {dvarphi ({text{net}}_{j})}{d{text{net}}_{j}}}&{text{if }}j{text{ is an output neuron,}}(sum _{ell in L}w_{jell }delta _{ell }){frac {dvarphi ({text{net}}_{j})}{d{text{net}}_{j}}}&{text{if }}j{text{ is an inner neuron.}}end{cases}}}

if varphi is the logistic function, and the error is the square error:

{displaystyle delta _{j}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}={begin{cases}(o_{j}-t_{j})o_{j}(1-o_{j})&{text{if }}j{text{ is an output neuron,}}(sum _{ell in L}w_{jell }delta _{ell })o_{j}(1-o_{j})&{text{if }}j{text{ is an inner neuron.}}end{cases}}}

To update the weight w_{ij} using gradient descent, one must choose a learning rate, {displaystyle eta >0}. The change in weight needs to reflect the impact on E of an increase or decrease in w_{ij}. If {displaystyle {frac {partial E}{partial w_{ij}}}>0}, an increase in w_{ij} increases E; conversely, if {displaystyle {frac {partial E}{partial w_{ij}}}<0}, an increase in w_{ij} decreases E. The new {displaystyle Delta w_{ij}} is added to the old weight, and the product of the learning rate and the gradient, multiplied by -1 guarantees that w_{ij} changes in a way that always decreases E. In other words, in the equation immediately below, {displaystyle -eta {frac {partial E}{partial w_{ij}}}} always changes w_{ij} in such a way that E is decreased:

{displaystyle Delta w_{ij}=-eta {frac {partial E}{partial w_{ij}}}=-eta o_{i}delta _{j}}

Second-order gradient descent[edit]

Using a Hessian matrix of second-order derivatives of the error function, the Levenberg-Marquardt algorithm often converges faster than first-order gradient descent, especially when the topology of the error function is complicated.[11][12] It may also find solutions in smaller node counts for which other methods might not converge.[12] The Hessian can be approximated by the Fisher information matrix.[13]

Loss function[edit]

The loss function is a function that maps values of one or more variables onto a real number intuitively representing some «cost» associated with those values. For backpropagation, the loss function calculates the difference between the network output and its expected output, after a training example has propagated through the network.

Assumptions[edit]

The mathematical expression of the loss function must fulfill two conditions in order for it to be possibly used in backpropagation.[14] The first is that it can be written as an average {textstyle E={frac {1}{n}}sum _{x}E_{x}} over error functions {textstyle E_{x}}, for {textstyle n} individual training examples, {textstyle x}. The reason for this assumption is that the backpropagation algorithm calculates the gradient of the error function for a single training example, which needs to be generalized to the overall error function. The second assumption is that it can be written as a function of the outputs from the neural network.

Example loss function[edit]

Let {displaystyle y,y'} be vectors in mathbb {R} ^{n}.

Select an error function {displaystyle E(y,y')} measuring the difference between two outputs. The standard choice is the square of the Euclidean distance between the vectors y and y':

{displaystyle E(y,y')={tfrac {1}{2}}lVert y-y'rVert ^{2}}

The error function over {textstyle n} training examples can then be written as an average of losses over individual examples:

{displaystyle E={frac {1}{2n}}sum _{x}lVert (y(x)-y'(x))rVert ^{2}}

Limitations[edit]

Gradient descent may find a local minimum instead of the global minimum.

  • Gradient descent with backpropagation is not guaranteed to find the global minimum of the error function, but only a local minimum; also, it has trouble crossing plateaus in the error function landscape. This issue, caused by the non-convexity of error functions in neural networks, was long thought to be a major drawback, but Yann LeCun et al. argue that in many practical problems, it is not.[15]
  • Backpropagation learning does not require normalization of input vectors; however, normalization could improve performance.[16]
  • Backpropagation requires the derivatives of activation functions to be known at network design time.

History[edit]

The term backpropagation and its general use in neural networks was announced in Rumelhart, Hinton & Williams (1986a), then elaborated and popularized in Rumelhart, Hinton & Williams (1986b), but the technique was independently rediscovered many times, and had many predecessors dating to the 1960s.[6][17]

The basics of continuous backpropagation were derived in the context of control theory by Henry J. Kelley in 1960,[18] and by Arthur E. Bryson in 1961.[19][20][21][22][23] They used principles of dynamic programming. In 1962, Stuart Dreyfus published a simpler derivation based only on the chain rule.[24] Bryson and Ho described it as a multi-stage dynamic system optimization method in 1969.[25][26] Backpropagation was derived by multiple researchers in the early 60’s[22] and implemented to run on computers as early as 1970 by Seppo Linnainmaa.[27][28][29] Paul Werbos was first in the US to propose that it could be used for neural nets after analyzing it in depth in his 1974 dissertation.[30] While not applied to neural networks, in 1970 Linnainmaa published the general method for automatic differentiation (AD).[28][29] Although very controversial, some scientists believe this was actually the first step toward developing a back-propagation algorithm.[22][23][27][31] In 1973 Dreyfus adapts parameters of controllers in proportion to error gradients.[32] In 1974 Werbos mentioned the possibility of applying this principle to artificial neural networks,[30] and in 1982 he applied Linnainmaa’s AD method to non-linear functions.[23][33]

Later the Werbos method was rediscovered and described in 1985 by Parker,[34][35] and in 1986 by Rumelhart, Hinton and Williams.[17][35][36] Rumelhart, Hinton and Williams showed experimentally that this method can generate useful internal representations of incoming data in hidden layers of neural networks.[10][37][38] Yann LeCun proposed the modern form of the back-propagation learning algorithm for neural networks in his PhD thesis in 1987. In 1993, Eric Wan won an international pattern recognition contest through backpropagation.[22][39]

During the 2000s it fell out of favour[citation needed], but returned in the 2010s, benefitting from cheap, powerful GPU-based computing systems. This has been especially so in speech recognition, machine vision, natural language processing, and language structure learning research (in which it has been used to explain a variety of phenomena related to first[40] and second language learning.[41]).

Error backpropagation has been suggested to explain human brain ERP components like the N400 and P600.[42]

See also[edit]

  • Artificial neural network
  • Neural circuit
  • Catastrophic interference
  • Ensemble learning
  • AdaBoost
  • Overfitting
  • Neural backpropagation
  • Backpropagation through time

Notes[edit]

  1. ^ Use C for the loss function to allow L to be used for the number of layers
  2. ^ This follows Nielsen (2015), and means (left) multiplication by the matrix {displaystyle W^{l}} corresponds to converting output values of layer {displaystyle l-1} to input values of layer l: columns correspond to input coordinates, rows correspond to output coordinates.
  3. ^ This section largely follows and summarizes Nielsen (2015).
  4. ^ The derivative of the loss function is a covector, since the loss function is a scalar-valued function of several variables.
  5. ^ The activation function is applied to each node separately, so the derivative is just the diagonal matrix of the derivative on each node. This is often represented as the Hadamard product with the vector of derivatives, denoted by {displaystyle (f^{l})'odot }, which is mathematically identical but better matches the internal representation of the derivatives as a vector, rather than a diagonal matrix.
  6. ^ Since matrix multiplication is linear, the derivative of multiplying by a matrix is just the matrix: {displaystyle (Wx)'=W}.
  7. ^ One may notice that multi-layer neural networks use non-linear activation functions, so an example with linear neurons seems obscure. However, even though the error surface of multi-layer networks are much more complicated, locally they can be approximated by a paraboloid. Therefore, linear neurons are used for simplicity and easier understanding.
  8. ^ There can be multiple output neurons, in which case the error is the squared norm of the difference vector.

References[edit]

  1. ^ Goodfellow, Bengio & Courville 2016, p. 200, «The back-propagation algorithm (Rumelhart et al., 1986a), often simply called backprop, …»
  2. ^ Goodfellow, Bengio & Courville 2016, p. 200, «Furthermore, back-propagation is often misunderstood as being specific to multi-layer neural networks, but in principle it can compute derivatives of any function»
  3. ^ Goodfellow, Bengio & Courville 2016, p. 214, «This table-filling strategy is sometimes called dynamic programming
  4. ^ Goodfellow, Bengio & Courville 2016, p. 200, «The term back-propagation is often misunderstood as meaning the whole learning algorithm for multilayer neural networks. Backpropagation refers only to the method for computing the gradient, while other algorithms, such as stochastic gradient descent, is used to perform learning using this gradient.»
  5. ^ a b Goodfellow, Bengio & Courville (2016, p. 217–218), «The back-propagation algorithm described here is only one approach to automatic differentiation. It is a special case of a broader class of techniques called reverse mode accumulation
  6. ^ a b Goodfellow, Bengio & Courville (2016, p. 221), «Efficient applications of the chain rule based on dynamic programming began to appear in the 1960s and 1970s, mostly for control applications (Kelley, 1960; Bryson and Denham, 1961; Dreyfus, 1962; Bryson and Ho, 1969; Dreyfus, 1973) but also for sensitivity analysis (Linnainmaa, 1976). … The idea was finally developed in practice after being independently rediscovered in different ways (LeCun, 1985; Parker, 1985; Rumelhart et al., 1986a). The book Parallel Distributed Processing presented the results of some of the first successful experiments with back-propagation in a chapter (Rumelhart et al., 1986b) that contributed greatly to the popularization of back-propagation and initiated a very active period of research in multilayer neural networks.»
  7. ^ Goodfellow, Bengio & Courville (2016, 6.5 Back-Propagation and Other Differentiation Algorithms, pp. 200–220)
  8. ^ Ramachandran, Prajit; Zoph, Barret; Le, Quoc V. (2017-10-27). «Searching for Activation Functions». arXiv:1710.05941 [cs.NE].
  9. ^ Misra, Diganta (2019-08-23). «Mish: A Self Regularized Non-Monotonic Activation Function». arXiv:1908.08681 [cs.LG].
  10. ^ a b Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986a). «Learning representations by back-propagating errors». Nature. 323 (6088): 533–536. Bibcode:1986Natur.323..533R. doi:10.1038/323533a0. S2CID 205001834.
  11. ^ Tan, Hong Hui; Lim, King Han (2019). «Review of second-order optimization techniques in artificial neural networks backpropagation». IOP Conference Series: Materials Science and Engineering. 495 (1): 012003. Bibcode:2019MS&E..495a2003T. doi:10.1088/1757-899X/495/1/012003. S2CID 208124487.
  12. ^ a b Wiliamowski, Bogdan; Yu, Hao (June 2010). «Improved Computation for Levenberg–Marquardt Training» (PDF). IEEE Transactions on Neural Networks and Learning Systems. 21 (6).
  13. ^ Martens, James (August 2020). «New Insights and Perspectives on the Natural Gradient Method» (PDF). Journal of Machine Learning Research (21). arXiv:1412.1193.
  14. ^ Nielsen (2015), «[W]hat assumptions do we need to make about our cost function … in order that backpropagation can be applied? The first assumption we need is that the cost function can be written as an average … over cost functions … for individual training examples … The second assumption we make about the cost is that it can be written as a function of the outputs from the neural network …»
  15. ^ LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (2015). «Deep learning». Nature. 521 (7553): 436–444. Bibcode:2015Natur.521..436L. doi:10.1038/nature14539. PMID 26017442. S2CID 3074096.
  16. ^ Buckland, Matt; Collins, Mark (2002). AI Techniques for Game Programming. Boston: Premier Press. ISBN 1-931841-08-X.
  17. ^ a b Rumelhart; Hinton; Williams (1986). «Learning representations by back-propagating errors» (PDF). Nature. 323 (6088): 533–536. Bibcode:1986Natur.323..533R. doi:10.1038/323533a0. S2CID 205001834.
  18. ^ Kelley, Henry J. (1960). «Gradient theory of optimal flight paths». ARS Journal. 30 (10): 947–954. doi:10.2514/8.5282.
  19. ^ Bryson, Arthur E. (1962). «A gradient method for optimizing multi-stage allocation processes». Proceedings of the Harvard Univ. Symposium on digital computers and their applications, 3–6 April 1961. Cambridge: Harvard University Press. OCLC 498866871.
  20. ^ Dreyfus, Stuart E. (1990). «Artificial Neural Networks, Back Propagation, and the Kelley-Bryson Gradient Procedure». Journal of Guidance, Control, and Dynamics. 13 (5): 926–928. Bibcode:1990JGCD…13..926D. doi:10.2514/3.25422.
  21. ^ Mizutani, Eiji; Dreyfus, Stuart; Nishio, Kenichi (July 2000). «On derivation of MLP backpropagation from the Kelley-Bryson optimal-control gradient formula and its application» (PDF). Proceedings of the IEEE International Joint Conference on Neural Networks.
  22. ^ a b c d Schmidhuber, Jürgen (2015). «Deep learning in neural networks: An overview». Neural Networks. 61: 85–117. arXiv:1404.7828. doi:10.1016/j.neunet.2014.09.003. PMID 25462637. S2CID 11715509.
  23. ^ a b c Schmidhuber, Jürgen (2015). «Deep Learning». Scholarpedia. 10 (11): 32832. Bibcode:2015SchpJ..1032832S. doi:10.4249/scholarpedia.32832.
  24. ^ Dreyfus, Stuart (1962). «The numerical solution of variational problems». Journal of Mathematical Analysis and Applications. 5 (1): 30–45. doi:10.1016/0022-247x(62)90004-5.
  25. ^ Russell, Stuart; Norvig, Peter (1995). Artificial Intelligence : A Modern Approach. Englewood Cliffs: Prentice Hall. p. 578. ISBN 0-13-103805-2. The most popular method for learning in multilayer networks is called Back-propagation. It was first invented in 1969 by Bryson and Ho, but was more or less ignored until the mid-1980s.
  26. ^ Bryson, Arthur Earl; Ho, Yu-Chi (1969). Applied optimal control: optimization, estimation, and control. Waltham: Blaisdell. OCLC 3801.
  27. ^ a b Griewank, Andreas (2012). «Who Invented the Reverse Mode of Differentiation?». Optimization Stories. Documenta Matematica, Extra Volume ISMP. pp. 389–400. S2CID 15568746.
  28. ^ a b Seppo Linnainmaa (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ. Helsinki, 6–7.
  29. ^ a b Linnainmaa, Seppo (1976). «Taylor expansion of the accumulated rounding error». BIT Numerical Mathematics. 16 (2): 146–160. doi:10.1007/bf01931367. S2CID 122357351.
  30. ^ a b The thesis, and some supplementary information, can be found in his book, Werbos, Paul J. (1994). The Roots of Backpropagation : From Ordered Derivatives to Neural Networks and Political Forecasting. New York: John Wiley & Sons. ISBN 0-471-59897-6.
  31. ^ Griewank, Andreas; Walther, Andrea (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. SIAM. ISBN 978-0-89871-776-1.
  32. ^ Dreyfus, Stuart (1973). «The computational solution of optimal control problems with time lag». IEEE Transactions on Automatic Control. 18 (4): 383–385. doi:10.1109/tac.1973.1100330.
  33. ^ Werbos, Paul (1982). «Applications of advances in nonlinear sensitivity analysis» (PDF). System modeling and optimization. Springer. pp. 762–770.
  34. ^ Parker, D.B. (1985). «Learning Logic». Center for Computational Research in Economics and Management Science. Cambridge MA: Massachusetts Institute of Technology.
  35. ^ a b Hertz, John (1991). Introduction to the theory of neural computation. Krogh, Anders., Palmer, Richard G. Redwood City, Calif.: Addison-Wesley. p. 8. ISBN 0-201-50395-6. OCLC 21522159.
  36. ^ Anderson, James Arthur; Rosenfeld, Edward, eds. (1988). Neurocomputing Foundations of research. MIT Press. ISBN 0-262-01097-6. OCLC 489622044.
  37. ^ Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986b). «8. Learning Internal Representations by Error Propagation». In Rumelhart, David E.; McClelland, James L. (eds.). Parallel Distributed Processing : Explorations in the Microstructure of Cognition. Vol. 1 : Foundations. Cambridge: MIT Press. ISBN 0-262-18120-7.
  38. ^ Alpaydin, Ethem (2010). Introduction to Machine Learning. MIT Press. ISBN 978-0-262-01243-0.
  39. ^ Wan, Eric A. (1994). «Time Series Prediction by Using a Connectionist Network with Internal Delay Lines». In Weigend, Andreas S.; Gershenfeld, Neil A. (eds.). Time Series Prediction : Forecasting the Future and Understanding the Past. Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis. Vol. 15. Reading: Addison-Wesley. pp. 195–217. ISBN 0-201-62601-2. S2CID 12652643.
  40. ^ Chang, Franklin; Dell, Gary S.; Bock, Kathryn (2006). «Becoming syntactic». Psychological Review. 113 (2): 234–272. doi:10.1037/0033-295x.113.2.234. PMID 16637761.
  41. ^ Janciauskas, Marius; Chang, Franklin (2018). «Input and Age-Dependent Variation in Second Language Learning: A Connectionist Account». Cognitive Science. 42: 519–554. doi:10.1111/cogs.12519. PMC 6001481. PMID 28744901.
  42. ^ Fitz, Hartmut; Chang, Franklin (2019). «Language ERPs reflect learning through prediction error propagation». Cognitive Psychology. 111: 15–52. doi:10.1016/j.cogpsych.2019.03.002. hdl:21.11116/0000-0003-474D-8. PMID 30921626. S2CID 85501792.

Further reading[edit]

  • Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). «6.5 Back-Propagation and Other Differentiation Algorithms». Deep Learning. MIT Press. pp. 200–220. ISBN 9780262035613.
  • Nielsen, Michael A. (2015). «How the backpropagation algorithm works». Neural Networks and Deep Learning. Determination Press.
  • McCaffrey, James (October 2012). «Neural Network Back-Propagation for Programmers». MSDN Magazine.
  • Rojas, Raúl (1996). «The Backpropagation Algorithm» (PDF). Neural Networks : A Systematic Introduction. Berlin: Springer. ISBN 3-540-60505-3.

External links[edit]

  • Backpropagation neural network tutorial at the Wikiversity
  • Bernacki, Mariusz; Włodarczyk, Przemysław (2004). «Principles of training multi-layer neural network using backpropagation».
  • Karpathy, Andrej (2016). «Lecture 4: Backpropagation, Neural Networks 1». CS231n. Stanford University. Archived from the original on 2021-12-12 – via YouTube.
  • «What is Backpropagation Really Doing?». 3Blue1Brown. November 3, 2017. Archived from the original on 2021-12-12 – via YouTube.
  • Putta, Sudeep Raja (2022). «Yet Another Derivation of Backpropagation in Matrix Form».

This article is about the computer algorithm. For the biological process, see neural backpropagation.

Backpropagation can also refer to the way the result of a playout is propagated up the search tree in Monte Carlo tree search.

In machine learning, backpropagation (backprop,[1] BP) is a widely used algorithm for training feedforward artificial neural networks. Generalizations of backpropagation exist for other artificial neural networks (ANNs), and for functions generally. These classes of algorithms are all referred to generically as «backpropagation».[2] In fitting a neural network, backpropagation computes the gradient of the loss function with respect to the weights of the network for a single input–output example, and does so efficiently, unlike a naive direct computation of the gradient with respect to each weight individually. This efficiency makes it feasible to use gradient methods for training multilayer networks, updating weights to minimize loss; gradient descent, or variants such as stochastic gradient descent, are commonly used. The backpropagation algorithm works by computing the gradient of the loss function with respect to each weight by the chain rule, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this is an example of dynamic programming.[3]

The term backpropagation strictly refers only to the algorithm for computing the gradient, not how the gradient is used; however, the term is often used loosely to refer to the entire learning algorithm, including how the gradient is used, such as by stochastic gradient descent.[4] Backpropagation generalizes the gradient computation in the delta rule, which is the single-layer version of backpropagation, and is in turn generalized by automatic differentiation, where backpropagation is a special case of reverse accumulation (or «reverse mode»).[5] The term backpropagation and its general use in neural networks was announced in Rumelhart, Hinton & Williams (1986a), then elaborated and popularized in Rumelhart, Hinton & Williams (1986b), but the technique was independently rediscovered many times, and had many predecessors dating to the 1960s; see § History.[6] A modern overview is given in the deep learning textbook by Goodfellow, Bengio & Courville (2016).[7]

Overview[edit]

Backpropagation computes the gradient in weight space of a feedforward neural network, with respect to a loss function. Denote:

  • x: input (vector of features)
  • y: target output
    For classification, output will be a vector of class probabilities (e.g., {displaystyle (0.1,0.7,0.2)}, and target output is a specific class, encoded by the one-hot/dummy variable (e.g., (0,1,0)).
  • C: loss function or «cost function»[a]
    For classification, this is usually cross entropy (XC, log loss), while for regression it is usually squared error loss (SEL).
  • L: the number of layers
  • {displaystyle W^{l}=(w_{jk}^{l})}: the weights between layer {displaystyle l-1} and l, where {displaystyle w_{jk}^{l}} is the weight between the k-th node in layer {displaystyle l-1} and the j-th node in layer l[b]
  • {displaystyle f^{l}}: activation functions at layer l
    For classification the last layer is usually the logistic function for binary classification, and softmax (softargmax) for multi-class classification, while for the hidden layers this was traditionally a sigmoid function (logistic function or others) on each node (coordinate), but today is more varied, with rectifier (ramp, ReLU) being common.

In the derivation of backpropagation, other intermediate quantities are used; they are introduced as needed below. Bias terms are not treated specially, as they correspond to a weight with a fixed input of 1. For the purpose of backpropagation, the specific loss function and activation functions do not matter, as long as they and their derivatives can be evaluated efficiently. Traditional activation functions include but are not limited to sigmoid, tanh, and ReLU. Since, swish,[8] mish,[9] and other activation functions were proposed as well.

The overall network is a combination of function composition and matrix multiplication:

{displaystyle g(x):=f^{L}(W^{L}f^{L-1}(W^{L-1}cdots f^{1}(W^{1}x)cdots ))}

For a training set there will be a set of input–output pairs, {displaystyle left{(x_{i},y_{i})right}}. For each input–output pair (x_{i},y_{i}) in the training set, the loss of the model on that pair is the cost of the difference between the predicted output {displaystyle g(x_{i})} and the target output y_{i}:

{displaystyle C(y_{i},g(x_{i}))}

Note the distinction: during model evaluation, the weights are fixed, while the inputs vary (and the target output may be unknown), and the network ends with the output layer (it does not include the loss function). During model training, the input–output pair is fixed, while the weights vary, and the network ends with the loss function.

Backpropagation computes the gradient for a fixed input–output pair (x_{i},y_{i}), where the weights {displaystyle w_{jk}^{l}} can vary. Each individual component of the gradient, {displaystyle partial C/partial w_{jk}^{l},} can be computed by the chain rule; however, doing this separately for each weight is inefficient. Backpropagation efficiently computes the gradient by avoiding duplicate calculations and not computing unnecessary intermediate values, by computing the gradient of each layer – specifically, the gradient of the weighted input of each layer, denoted by {displaystyle delta ^{l}} – from back to front.

Informally, the key point is that since the only way a weight in {displaystyle W^{l}} affects the loss is through its effect on the next layer, and it does so linearly, {displaystyle delta ^{l}} are the only data you need to compute the gradients of the weights at layer l, and then you can compute the previous layer {displaystyle delta ^{l-1}} and repeat recursively. This avoids inefficiency in two ways. Firstly, it avoids duplication because when computing the gradient at layer l, you do not need to recompute all the derivatives on later layers {displaystyle l+1,l+2,ldots } each time. Secondly, it avoids unnecessary intermediate calculations because at each stage it directly computes the gradient of the weights with respect to the ultimate output (the loss), rather than unnecessarily computing the derivatives of the values of hidden layers with respect to changes in weights {displaystyle partial a_{j'}^{l'}/partial w_{jk}^{l}}.

Backpropagation can be expressed for simple feedforward networks in terms of matrix multiplication, or more generally in terms of the adjoint graph.

Matrix multiplication[edit]

For the basic case of a feedforward network, where nodes in each layer are connected only to nodes in the immediate next layer (without skipping any layers), and there is a loss function that computes a scalar loss for the final output, backpropagation can be understood simply by matrix multiplication.[c] Essentially, backpropagation evaluates the expression for the derivative of the cost function as a product of derivatives between each layer from right to left – «backwards» – with the gradient of the weights between each layer being a simple modification of the partial products (the «backwards propagated error»).

Given an input–output pair (x,y), the loss is:

{displaystyle C(y,f^{L}(W^{L}f^{L-1}(W^{L-1}cdots f^{2}(W^{2}f^{1}(W^{1}x))cdots )))}

To compute this, one starts with the input x and works forward; denote the weighted input of each hidden layer as {displaystyle z^{l}} and the output of hidden layer l as the activation {displaystyle a^{l}}. For backpropagation, the activation {displaystyle a^{l}} as well as the derivatives {displaystyle (f^{l})'} (evaluated at {displaystyle z^{l}}) must be cached for use during the backwards pass.

The derivative of the loss in terms of the inputs is given by the chain rule; note that each term is a total derivative, evaluated at the value of the network (at each node) on the input x:

{displaystyle {frac {dC}{da^{L}}}circ {frac {da^{L}}{dz^{L}}}cdot {frac {dz^{L}}{da^{L-1}}}circ {frac {da^{L-1}}{dz^{L-1}}}cdot {frac {dz^{L-1}}{da^{L-2}}}circ ldots circ {frac {da^{1}}{dz^{1}}}cdot {frac {partial z^{1}}{partial x}},}

where circ is a Hadamard product, that is an element-wise product.

These terms are: the derivative of the loss function;[d] the derivatives of the activation functions;[e] and the matrices of weights:[f]

{displaystyle {frac {dC}{da^{L}}}circ (f^{L})'cdot W^{L}circ (f^{L-1})'cdot W^{L-1}circ cdots circ (f^{1})'cdot W^{1}.}

The gradient nabla is the transpose of the derivative of the output in terms of the input, so the matrices are transposed and the order of multiplication is reversed, but the entries are the same:

{displaystyle nabla _{x}C=(W^{1})^{T}cdot (f^{1})'circ ldots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C.}

Backpropagation then consists essentially of evaluating this expression from right to left (equivalently, multiplying the previous expression for the derivative from left to right), computing the gradient at each layer on the way; there is an added step, because the gradient of the weights isn’t just a subexpression: there’s an extra multiplication.

Introducing the auxiliary quantity {displaystyle delta ^{l}} for the partial products (multiplying from right to left), interpreted as the «error at level l» and defined as the gradient of the input values at level l:

{displaystyle delta ^{l}:=(f^{l})'circ (W^{l+1})^{T}circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C.}

Note that {displaystyle delta ^{l}} is a vector, of length equal to the number of nodes in level l; each component is interpreted as the «cost attributable to (the value of) that node».

The gradient of the weights in layer l is then:

{displaystyle nabla _{W^{l}}C=delta ^{l}(a^{l-1})^{T}.}

The factor of {displaystyle a^{l-1}} is because the weights {displaystyle W^{l}} between level {displaystyle l-1} and l affect level l proportionally to the inputs (activations): the inputs are fixed, the weights vary.

The {displaystyle delta ^{l}} can easily be computed recursively, going from right to left, as:

{displaystyle delta ^{l-1}:=(f^{l-1})'circ (W^{l})^{T}cdot delta ^{l}.}

The gradients of the weights can thus be computed using a few matrix multiplications for each level; this is backpropagation.

Compared with naively computing forwards (using the {displaystyle delta ^{l}} for illustration):

{displaystyle {begin{aligned}delta ^{1}&=(f^{1})'circ (W^{2})^{T}cdot (f^{2})'circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}Cdelta ^{2}&=(f^{2})'circ cdots circ (W^{L-1})^{T}cdot (f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}C&vdots delta ^{L-1}&=(f^{L-1})'circ (W^{L})^{T}cdot (f^{L})'circ nabla _{a^{L}}Cdelta ^{L}&=(f^{L})'circ nabla _{a^{L}}C,end{aligned}}}

there are two key differences with backpropagation:

  1. Computing {displaystyle delta ^{l-1}} in terms of {displaystyle delta ^{l}} avoids the obvious duplicate multiplication of layers l and beyond.
  2. Multiplying starting from {displaystyle nabla _{a^{L}}C} – propagating the error backwards – means that each step simply multiplies a vector ({displaystyle delta ^{l}}) by the matrices of weights {displaystyle (W^{l})^{T}} and derivatives of activations {displaystyle (f^{l-1})'}. By contrast, multiplying forwards, starting from the changes at an earlier layer, means that each multiplication multiplies a matrix by a matrix. This is much more expensive, and corresponds to tracking every possible path of a change in one layer l forward to changes in the layer {displaystyle l+2} (for multiplying {displaystyle W^{l+1}} by {displaystyle W^{l+2}}, with additional multiplications for the derivatives of the activations), which unnecessarily computes the intermediate quantities of how weight changes affect the values of hidden nodes.

Adjoint graph[edit]

[icon]

This section needs expansion. You can help by adding to it. (November 2019)

For more general graphs, and other advanced variations, backpropagation can be understood in terms of automatic differentiation, where backpropagation is a special case of reverse accumulation (or «reverse mode»).[5]

Intuition[edit]

Motivation[edit]

The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to their correct output. The motivation for backpropagation is to train a multi-layered neural network such that it can learn the appropriate internal representations to allow it to learn any arbitrary mapping of input to output.[10]

Learning as an optimization problem[edit]

To understand the mathematical derivation of the backpropagation algorithm, it helps to first develop some intuition about the relationship between the actual output of a neuron and the correct output for a particular training example. Consider a simple neural network with two input units, one output unit and no hidden units, and in which each neuron uses a linear output (unlike most work on neural networks, in which mapping from inputs to outputs is non-linear)[g] that is the weighted sum of its input.

A simple neural network with two input units (each with a single input) and one output unit (with two inputs)

Initially, before training, the weights will be set randomly. Then the neuron learns from training examples, which in this case consist of a set of tuples {displaystyle (x_{1},x_{2},t)} where x_{1} and x_{2} are the inputs to the network and t is the correct output (the output the network should produce given those inputs, when it has been trained). The initial network, given x_{1} and x_{2}, will compute an output y that likely differs from t (given random weights). A loss function {displaystyle L(t,y)} is used for measuring the discrepancy between the target output t and the computed output y. For regression analysis problems the squared error can be used as a loss function, for classification the categorical crossentropy can be used.

As an example consider a regression problem using the square error as a loss:

{displaystyle L(t,y)=(t-y)^{2}=E,}

where E is the discrepancy or error.

Consider the network on a single training case: (1, 1, 0). Thus, the input x_{1} and x_{2} are 1 and 1 respectively and the correct output, t is 0. Now if the relation is plotted between the network’s output y on the horizontal axis and the error E on the vertical axis, the result is a parabola. The minimum of the parabola corresponds to the output y which minimizes the error E. For a single training case, the minimum also touches the horizontal axis, which means the error will be zero and the network can produce an output y that exactly matches the target output t. Therefore, the problem of mapping inputs to outputs can be reduced to an optimization problem of finding a function that will produce the minimal error.

Error surface of a linear neuron for a single training case

However, the output of a neuron depends on the weighted sum of all its inputs:

{displaystyle y=x_{1}w_{1}+x_{2}w_{2},}

where w_{1} and w_{2} are the weights on the connection from the input units to the output unit. Therefore, the error also depends on the incoming weights to the neuron, which is ultimately what needs to be changed in the network to enable learning.

In this example, upon injecting the training data (1, 1, 0), the loss function becomes

{displaystyle E=(t-y)^{2}=y^{2}=(x_{1}w_{1}+x_{2}w_{2})^{2}=(w_{1}+w_{2})^{2}.}

Then, the loss function E takes the form of a parabolic cylinder with its base directed along {displaystyle w_{1}=-w_{2}}. Since all sets of weights that satisfy {displaystyle w_{1}=-w_{2}} minimize the loss function, in this case additional constraints are required to converge to a unique solution. Additional constraints could either be generated by setting specific conditions to the weights, or by injecting additional training data.

One commonly used algorithm to find the set of weights that minimizes the error is gradient descent. By backpropagation, the steepest descent direction is calculated of the loss function versus the present synaptic weights. Then, the weights can be modified along the steepest descent direction, and the error is minimized in an efficient way.

Derivation[edit]

The gradient descent method involves calculating the derivative of the loss function with respect to the weights of the network. This is normally done using backpropagation. Assuming one output neuron,[h] the squared error function is

{displaystyle E=L(t,y)}

where

L is the loss for the output y and target value t,
t is the target output for a training sample, and
y is the actual output of the output neuron.

For each neuron j, its output o_j is defined as

{displaystyle o_{j}=varphi ({text{net}}_{j})=varphi left(sum _{k=1}^{n}w_{kj}o_{k}right),}

where the activation function varphi is non-linear and differentiable over the activation region (the ReLU is not differentiable at one point). A historically used activation function is the logistic function:

{displaystyle varphi (z)={frac {1}{1+e^{-z}}}}

which has a convenient derivative of:

{displaystyle {frac {dvarphi (z)}{dz}}=varphi (z)(1-varphi (z))}

The input {displaystyle {text{net}}_{j}} to a neuron is the weighted sum of outputs o_k of previous neurons. If the neuron is in the first layer after the input layer, the o_k of the input layer are simply the inputs x_{k} to the network. The number of input units to the neuron is n. The variable {displaystyle w_{kj}} denotes the weight between neuron k of the previous layer and neuron j of the current layer.

Finding the derivative of the error[edit]

Diagram of an artificial neural network to illustrate the notation used here

Calculating the partial derivative of the error with respect to a weight w_{ij} is done using the chain rule twice:

{displaystyle {frac {partial E}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}{frac {partial {text{net}}_{j}}{partial w_{ij}}}}

(Eq. 1)

In the last factor of the right-hand side of the above, only one term in the sum {displaystyle {text{net}}_{j}} depends on w_{ij}, so that

{displaystyle {frac {partial {text{net}}_{j}}{partial w_{ij}}}={frac {partial }{partial w_{ij}}}left(sum _{k=1}^{n}w_{kj}o_{k}right)={frac {partial }{partial w_{ij}}}w_{ij}o_{i}=o_{i}.}

(Eq. 2)

If the neuron is in the first layer after the input layer, o_i is just x_{i}.

The derivative of the output of neuron j with respect to its input is simply the partial derivative of the activation function:

{displaystyle {frac {partial o_{j}}{partial {text{net}}_{j}}}={frac {partial varphi ({text{net}}_{j})}{partial {text{net}}_{j}}}}

(Eq. 3)

which for the logistic activation function

{displaystyle {frac {partial o_{j}}{partial {text{net}}_{j}}}={frac {partial }{partial {text{net}}_{j}}}varphi ({text{net}}_{j})=varphi ({text{net}}_{j})(1-varphi ({text{net}}_{j}))=o_{j}(1-o_{j})}

This is the reason why backpropagation requires the activation function to be differentiable. (Nevertheless, the ReLU activation function, which is non-differentiable at 0, has become quite popular, e.g. in AlexNet)

The first factor is straightforward to evaluate if the neuron is in the output layer, because then o_j = y and

{displaystyle {frac {partial E}{partial o_{j}}}={frac {partial E}{partial y}}}

(Eq. 4)

If half of the square error is used as loss function we can rewrite it as

frac{partial E}{partial o_j} = frac{partial E}{partial y} = frac{partial}{partial y} frac{1}{2}(t - y)^2 = y - t

However, if j is in an arbitrary inner layer of the network, finding the derivative E with respect to o_j is less obvious.

Considering E as a function with the inputs being all neurons {displaystyle L={u,v,dots ,w}} receiving input from neuron j,

{displaystyle {frac {partial E(o_{j})}{partial o_{j}}}={frac {partial E(mathrm {net} _{u},{text{net}}_{v},dots ,mathrm {net} _{w})}{partial o_{j}}}}

and taking the total derivative with respect to o_j, a recursive expression for the derivative is obtained:

{displaystyle {frac {partial E}{partial o_{j}}}=sum _{ell in L}left({frac {partial E}{partial {text{net}}_{ell }}}{frac {partial {text{net}}_{ell }}{partial o_{j}}}right)=sum _{ell in L}left({frac {partial E}{partial o_{ell }}}{frac {partial o_{ell }}{partial {text{net}}_{ell }}}{frac {partial {text{net}}_{ell }}{partial o_{j}}}right)=sum _{ell in L}left({frac {partial E}{partial o_{ell }}}{frac {partial o_{ell }}{partial {text{net}}_{ell }}}w_{jell }right)}

(Eq. 5)

Therefore, the derivative with respect to o_j can be calculated if all the derivatives with respect to the outputs {displaystyle o_{ell }} of the next layer – the ones closer to the output neuron – are known. [Note, if any of the neurons in set L were not connected to neuron j, they would be independent of w_{ij} and the corresponding partial derivative under the summation would vanish to 0.]

Substituting Eq. 2, Eq. 3 Eq.4 and Eq. 5 in Eq. 1 we obtain:

{displaystyle {frac {partial E}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}{frac {partial {text{net}}_{j}}{partial w_{ij}}}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}o_{i}}
{displaystyle {frac {partial E}{partial w_{ij}}}=o_{i}delta _{j}}

with

{displaystyle delta _{j}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}={begin{cases}{frac {partial L(o_{j},t)}{partial o_{j}}}{frac {dvarphi ({text{net}}_{j})}{d{text{net}}_{j}}}&{text{if }}j{text{ is an output neuron,}}(sum _{ell in L}w_{jell }delta _{ell }){frac {dvarphi ({text{net}}_{j})}{d{text{net}}_{j}}}&{text{if }}j{text{ is an inner neuron.}}end{cases}}}

if varphi is the logistic function, and the error is the square error:

{displaystyle delta _{j}={frac {partial E}{partial o_{j}}}{frac {partial o_{j}}{partial {text{net}}_{j}}}={begin{cases}(o_{j}-t_{j})o_{j}(1-o_{j})&{text{if }}j{text{ is an output neuron,}}(sum _{ell in L}w_{jell }delta _{ell })o_{j}(1-o_{j})&{text{if }}j{text{ is an inner neuron.}}end{cases}}}

To update the weight w_{ij} using gradient descent, one must choose a learning rate, {displaystyle eta >0}. The change in weight needs to reflect the impact on E of an increase or decrease in w_{ij}. If {displaystyle {frac {partial E}{partial w_{ij}}}>0}, an increase in w_{ij} increases E; conversely, if {displaystyle {frac {partial E}{partial w_{ij}}}<0}, an increase in w_{ij} decreases E. The new {displaystyle Delta w_{ij}} is added to the old weight, and the product of the learning rate and the gradient, multiplied by -1 guarantees that w_{ij} changes in a way that always decreases E. In other words, in the equation immediately below, {displaystyle -eta {frac {partial E}{partial w_{ij}}}} always changes w_{ij} in such a way that E is decreased:

{displaystyle Delta w_{ij}=-eta {frac {partial E}{partial w_{ij}}}=-eta o_{i}delta _{j}}

Second-order gradient descent[edit]

Using a Hessian matrix of second-order derivatives of the error function, the Levenberg-Marquardt algorithm often converges faster than first-order gradient descent, especially when the topology of the error function is complicated.[11][12] It may also find solutions in smaller node counts for which other methods might not converge.[12] The Hessian can be approximated by the Fisher information matrix.[13]

Loss function[edit]

The loss function is a function that maps values of one or more variables onto a real number intuitively representing some «cost» associated with those values. For backpropagation, the loss function calculates the difference between the network output and its expected output, after a training example has propagated through the network.

Assumptions[edit]

The mathematical expression of the loss function must fulfill two conditions in order for it to be possibly used in backpropagation.[14] The first is that it can be written as an average {textstyle E={frac {1}{n}}sum _{x}E_{x}} over error functions {textstyle E_{x}}, for {textstyle n} individual training examples, {textstyle x}. The reason for this assumption is that the backpropagation algorithm calculates the gradient of the error function for a single training example, which needs to be generalized to the overall error function. The second assumption is that it can be written as a function of the outputs from the neural network.

Example loss function[edit]

Let {displaystyle y,y'} be vectors in mathbb {R} ^{n}.

Select an error function {displaystyle E(y,y')} measuring the difference between two outputs. The standard choice is the square of the Euclidean distance between the vectors y and y':

{displaystyle E(y,y')={tfrac {1}{2}}lVert y-y'rVert ^{2}}

The error function over {textstyle n} training examples can then be written as an average of losses over individual examples:

{displaystyle E={frac {1}{2n}}sum _{x}lVert (y(x)-y'(x))rVert ^{2}}

Limitations[edit]

Gradient descent may find a local minimum instead of the global minimum.

  • Gradient descent with backpropagation is not guaranteed to find the global minimum of the error function, but only a local minimum; also, it has trouble crossing plateaus in the error function landscape. This issue, caused by the non-convexity of error functions in neural networks, was long thought to be a major drawback, but Yann LeCun et al. argue that in many practical problems, it is not.[15]
  • Backpropagation learning does not require normalization of input vectors; however, normalization could improve performance.[16]
  • Backpropagation requires the derivatives of activation functions to be known at network design time.

History[edit]

The term backpropagation and its general use in neural networks was announced in Rumelhart, Hinton & Williams (1986a), then elaborated and popularized in Rumelhart, Hinton & Williams (1986b), but the technique was independently rediscovered many times, and had many predecessors dating to the 1960s.[6][17]

The basics of continuous backpropagation were derived in the context of control theory by Henry J. Kelley in 1960,[18] and by Arthur E. Bryson in 1961.[19][20][21][22][23] They used principles of dynamic programming. In 1962, Stuart Dreyfus published a simpler derivation based only on the chain rule.[24] Bryson and Ho described it as a multi-stage dynamic system optimization method in 1969.[25][26] Backpropagation was derived by multiple researchers in the early 60’s[22] and implemented to run on computers as early as 1970 by Seppo Linnainmaa.[27][28][29] Paul Werbos was first in the US to propose that it could be used for neural nets after analyzing it in depth in his 1974 dissertation.[30] While not applied to neural networks, in 1970 Linnainmaa published the general method for automatic differentiation (AD).[28][29] Although very controversial, some scientists believe this was actually the first step toward developing a back-propagation algorithm.[22][23][27][31] In 1973 Dreyfus adapts parameters of controllers in proportion to error gradients.[32] In 1974 Werbos mentioned the possibility of applying this principle to artificial neural networks,[30] and in 1982 he applied Linnainmaa’s AD method to non-linear functions.[23][33]

Later the Werbos method was rediscovered and described in 1985 by Parker,[34][35] and in 1986 by Rumelhart, Hinton and Williams.[17][35][36] Rumelhart, Hinton and Williams showed experimentally that this method can generate useful internal representations of incoming data in hidden layers of neural networks.[10][37][38] Yann LeCun proposed the modern form of the back-propagation learning algorithm for neural networks in his PhD thesis in 1987. In 1993, Eric Wan won an international pattern recognition contest through backpropagation.[22][39]

During the 2000s it fell out of favour[citation needed], but returned in the 2010s, benefitting from cheap, powerful GPU-based computing systems. This has been especially so in speech recognition, machine vision, natural language processing, and language structure learning research (in which it has been used to explain a variety of phenomena related to first[40] and second language learning.[41]).

Error backpropagation has been suggested to explain human brain ERP components like the N400 and P600.[42]

See also[edit]

  • Artificial neural network
  • Neural circuit
  • Catastrophic interference
  • Ensemble learning
  • AdaBoost
  • Overfitting
  • Neural backpropagation
  • Backpropagation through time

Notes[edit]

  1. ^ Use C for the loss function to allow L to be used for the number of layers
  2. ^ This follows Nielsen (2015), and means (left) multiplication by the matrix {displaystyle W^{l}} corresponds to converting output values of layer {displaystyle l-1} to input values of layer l: columns correspond to input coordinates, rows correspond to output coordinates.
  3. ^ This section largely follows and summarizes Nielsen (2015).
  4. ^ The derivative of the loss function is a covector, since the loss function is a scalar-valued function of several variables.
  5. ^ The activation function is applied to each node separately, so the derivative is just the diagonal matrix of the derivative on each node. This is often represented as the Hadamard product with the vector of derivatives, denoted by {displaystyle (f^{l})'odot }, which is mathematically identical but better matches the internal representation of the derivatives as a vector, rather than a diagonal matrix.
  6. ^ Since matrix multiplication is linear, the derivative of multiplying by a matrix is just the matrix: {displaystyle (Wx)'=W}.
  7. ^ One may notice that multi-layer neural networks use non-linear activation functions, so an example with linear neurons seems obscure. However, even though the error surface of multi-layer networks are much more complicated, locally they can be approximated by a paraboloid. Therefore, linear neurons are used for simplicity and easier understanding.
  8. ^ There can be multiple output neurons, in which case the error is the squared norm of the difference vector.

References[edit]

  1. ^ Goodfellow, Bengio & Courville 2016, p. 200, «The back-propagation algorithm (Rumelhart et al., 1986a), often simply called backprop, …»
  2. ^ Goodfellow, Bengio & Courville 2016, p. 200, «Furthermore, back-propagation is often misunderstood as being specific to multi-layer neural networks, but in principle it can compute derivatives of any function»
  3. ^ Goodfellow, Bengio & Courville 2016, p. 214, «This table-filling strategy is sometimes called dynamic programming
  4. ^ Goodfellow, Bengio & Courville 2016, p. 200, «The term back-propagation is often misunderstood as meaning the whole learning algorithm for multilayer neural networks. Backpropagation refers only to the method for computing the gradient, while other algorithms, such as stochastic gradient descent, is used to perform learning using this gradient.»
  5. ^ a b Goodfellow, Bengio & Courville (2016, p. 217–218), «The back-propagation algorithm described here is only one approach to automatic differentiation. It is a special case of a broader class of techniques called reverse mode accumulation
  6. ^ a b Goodfellow, Bengio & Courville (2016, p. 221), «Efficient applications of the chain rule based on dynamic programming began to appear in the 1960s and 1970s, mostly for control applications (Kelley, 1960; Bryson and Denham, 1961; Dreyfus, 1962; Bryson and Ho, 1969; Dreyfus, 1973) but also for sensitivity analysis (Linnainmaa, 1976). … The idea was finally developed in practice after being independently rediscovered in different ways (LeCun, 1985; Parker, 1985; Rumelhart et al., 1986a). The book Parallel Distributed Processing presented the results of some of the first successful experiments with back-propagation in a chapter (Rumelhart et al., 1986b) that contributed greatly to the popularization of back-propagation and initiated a very active period of research in multilayer neural networks.»
  7. ^ Goodfellow, Bengio & Courville (2016, 6.5 Back-Propagation and Other Differentiation Algorithms, pp. 200–220)
  8. ^ Ramachandran, Prajit; Zoph, Barret; Le, Quoc V. (2017-10-27). «Searching for Activation Functions». arXiv:1710.05941 [cs.NE].
  9. ^ Misra, Diganta (2019-08-23). «Mish: A Self Regularized Non-Monotonic Activation Function». arXiv:1908.08681 [cs.LG].
  10. ^ a b Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986a). «Learning representations by back-propagating errors». Nature. 323 (6088): 533–536. Bibcode:1986Natur.323..533R. doi:10.1038/323533a0. S2CID 205001834.
  11. ^ Tan, Hong Hui; Lim, King Han (2019). «Review of second-order optimization techniques in artificial neural networks backpropagation». IOP Conference Series: Materials Science and Engineering. 495 (1): 012003. Bibcode:2019MS&E..495a2003T. doi:10.1088/1757-899X/495/1/012003. S2CID 208124487.
  12. ^ a b Wiliamowski, Bogdan; Yu, Hao (June 2010). «Improved Computation for Levenberg–Marquardt Training» (PDF). IEEE Transactions on Neural Networks and Learning Systems. 21 (6).
  13. ^ Martens, James (August 2020). «New Insights and Perspectives on the Natural Gradient Method» (PDF). Journal of Machine Learning Research (21). arXiv:1412.1193.
  14. ^ Nielsen (2015), «[W]hat assumptions do we need to make about our cost function … in order that backpropagation can be applied? The first assumption we need is that the cost function can be written as an average … over cost functions … for individual training examples … The second assumption we make about the cost is that it can be written as a function of the outputs from the neural network …»
  15. ^ LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (2015). «Deep learning». Nature. 521 (7553): 436–444. Bibcode:2015Natur.521..436L. doi:10.1038/nature14539. PMID 26017442. S2CID 3074096.
  16. ^ Buckland, Matt; Collins, Mark (2002). AI Techniques for Game Programming. Boston: Premier Press. ISBN 1-931841-08-X.
  17. ^ a b Rumelhart; Hinton; Williams (1986). «Learning representations by back-propagating errors» (PDF). Nature. 323 (6088): 533–536. Bibcode:1986Natur.323..533R. doi:10.1038/323533a0. S2CID 205001834.
  18. ^ Kelley, Henry J. (1960). «Gradient theory of optimal flight paths». ARS Journal. 30 (10): 947–954. doi:10.2514/8.5282.
  19. ^ Bryson, Arthur E. (1962). «A gradient method for optimizing multi-stage allocation processes». Proceedings of the Harvard Univ. Symposium on digital computers and their applications, 3–6 April 1961. Cambridge: Harvard University Press. OCLC 498866871.
  20. ^ Dreyfus, Stuart E. (1990). «Artificial Neural Networks, Back Propagation, and the Kelley-Bryson Gradient Procedure». Journal of Guidance, Control, and Dynamics. 13 (5): 926–928. Bibcode:1990JGCD…13..926D. doi:10.2514/3.25422.
  21. ^ Mizutani, Eiji; Dreyfus, Stuart; Nishio, Kenichi (July 2000). «On derivation of MLP backpropagation from the Kelley-Bryson optimal-control gradient formula and its application» (PDF). Proceedings of the IEEE International Joint Conference on Neural Networks.
  22. ^ a b c d Schmidhuber, Jürgen (2015). «Deep learning in neural networks: An overview». Neural Networks. 61: 85–117. arXiv:1404.7828. doi:10.1016/j.neunet.2014.09.003. PMID 25462637. S2CID 11715509.
  23. ^ a b c Schmidhuber, Jürgen (2015). «Deep Learning». Scholarpedia. 10 (11): 32832. Bibcode:2015SchpJ..1032832S. doi:10.4249/scholarpedia.32832.
  24. ^ Dreyfus, Stuart (1962). «The numerical solution of variational problems». Journal of Mathematical Analysis and Applications. 5 (1): 30–45. doi:10.1016/0022-247x(62)90004-5.
  25. ^ Russell, Stuart; Norvig, Peter (1995). Artificial Intelligence : A Modern Approach. Englewood Cliffs: Prentice Hall. p. 578. ISBN 0-13-103805-2. The most popular method for learning in multilayer networks is called Back-propagation. It was first invented in 1969 by Bryson and Ho, but was more or less ignored until the mid-1980s.
  26. ^ Bryson, Arthur Earl; Ho, Yu-Chi (1969). Applied optimal control: optimization, estimation, and control. Waltham: Blaisdell. OCLC 3801.
  27. ^ a b Griewank, Andreas (2012). «Who Invented the Reverse Mode of Differentiation?». Optimization Stories. Documenta Matematica, Extra Volume ISMP. pp. 389–400. S2CID 15568746.
  28. ^ a b Seppo Linnainmaa (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ. Helsinki, 6–7.
  29. ^ a b Linnainmaa, Seppo (1976). «Taylor expansion of the accumulated rounding error». BIT Numerical Mathematics. 16 (2): 146–160. doi:10.1007/bf01931367. S2CID 122357351.
  30. ^ a b The thesis, and some supplementary information, can be found in his book, Werbos, Paul J. (1994). The Roots of Backpropagation : From Ordered Derivatives to Neural Networks and Political Forecasting. New York: John Wiley & Sons. ISBN 0-471-59897-6.
  31. ^ Griewank, Andreas; Walther, Andrea (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. SIAM. ISBN 978-0-89871-776-1.
  32. ^ Dreyfus, Stuart (1973). «The computational solution of optimal control problems with time lag». IEEE Transactions on Automatic Control. 18 (4): 383–385. doi:10.1109/tac.1973.1100330.
  33. ^ Werbos, Paul (1982). «Applications of advances in nonlinear sensitivity analysis» (PDF). System modeling and optimization. Springer. pp. 762–770.
  34. ^ Parker, D.B. (1985). «Learning Logic». Center for Computational Research in Economics and Management Science. Cambridge MA: Massachusetts Institute of Technology.
  35. ^ a b Hertz, John (1991). Introduction to the theory of neural computation. Krogh, Anders., Palmer, Richard G. Redwood City, Calif.: Addison-Wesley. p. 8. ISBN 0-201-50395-6. OCLC 21522159.
  36. ^ Anderson, James Arthur; Rosenfeld, Edward, eds. (1988). Neurocomputing Foundations of research. MIT Press. ISBN 0-262-01097-6. OCLC 489622044.
  37. ^ Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986b). «8. Learning Internal Representations by Error Propagation». In Rumelhart, David E.; McClelland, James L. (eds.). Parallel Distributed Processing : Explorations in the Microstructure of Cognition. Vol. 1 : Foundations. Cambridge: MIT Press. ISBN 0-262-18120-7.
  38. ^ Alpaydin, Ethem (2010). Introduction to Machine Learning. MIT Press. ISBN 978-0-262-01243-0.
  39. ^ Wan, Eric A. (1994). «Time Series Prediction by Using a Connectionist Network with Internal Delay Lines». In Weigend, Andreas S.; Gershenfeld, Neil A. (eds.). Time Series Prediction : Forecasting the Future and Understanding the Past. Proceedings of the NATO Advanced Research Workshop on Comparative Time Series Analysis. Vol. 15. Reading: Addison-Wesley. pp. 195–217. ISBN 0-201-62601-2. S2CID 12652643.
  40. ^ Chang, Franklin; Dell, Gary S.; Bock, Kathryn (2006). «Becoming syntactic». Psychological Review. 113 (2): 234–272. doi:10.1037/0033-295x.113.2.234. PMID 16637761.
  41. ^ Janciauskas, Marius; Chang, Franklin (2018). «Input and Age-Dependent Variation in Second Language Learning: A Connectionist Account». Cognitive Science. 42: 519–554. doi:10.1111/cogs.12519. PMC 6001481. PMID 28744901.
  42. ^ Fitz, Hartmut; Chang, Franklin (2019). «Language ERPs reflect learning through prediction error propagation». Cognitive Psychology. 111: 15–52. doi:10.1016/j.cogpsych.2019.03.002. hdl:21.11116/0000-0003-474D-8. PMID 30921626. S2CID 85501792.

Further reading[edit]

  • Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). «6.5 Back-Propagation and Other Differentiation Algorithms». Deep Learning. MIT Press. pp. 200–220. ISBN 9780262035613.
  • Nielsen, Michael A. (2015). «How the backpropagation algorithm works». Neural Networks and Deep Learning. Determination Press.
  • McCaffrey, James (October 2012). «Neural Network Back-Propagation for Programmers». MSDN Magazine.
  • Rojas, Raúl (1996). «The Backpropagation Algorithm» (PDF). Neural Networks : A Systematic Introduction. Berlin: Springer. ISBN 3-540-60505-3.

External links[edit]

  • Backpropagation neural network tutorial at the Wikiversity
  • Bernacki, Mariusz; Włodarczyk, Przemysław (2004). «Principles of training multi-layer neural network using backpropagation».
  • Karpathy, Andrej (2016). «Lecture 4: Backpropagation, Neural Networks 1». CS231n. Stanford University. Archived from the original on 2021-12-12 – via YouTube.
  • «What is Backpropagation Really Doing?». 3Blue1Brown. November 3, 2017. Archived from the original on 2021-12-12 – via YouTube.
  • Putta, Sudeep Raja (2022). «Yet Another Derivation of Backpropagation in Matrix Form».

Метод обратного распространения ошибок (англ. backpropagation) — метод вычисления градиента, который используется при обновлении весов в нейронной сети.

Содержание

  • 1 Обучение как задача оптимизации
  • 2 Дифференцирование для однослойной сети
    • 2.1 Находим производную ошибки
  • 3 Алгоритм
  • 4 Недостатки алгоритма
    • 4.1 Паралич сети
    • 4.2 Локальные минимумы
  • 5 Примечания
  • 6 См. также
  • 7 Источники информации

Обучение как задача оптимизации

Рассмотрим простую нейронную сеть без скрытых слоев, с двумя входными вершинами и одной выходной, в которых каждый нейрон использует линейную функцию активации, (обычно, многослойные нейронные сети используют нелинейные функции активации, линейные функции используются для упрощения понимания) которая является взвешенной суммой входных данных.

Простая нейронная сеть с двумя входными вершинами и одной выходной

Изначально веса задаются случайно. Затем, нейрон обучается с помощью тренировочного множества, которое в этом случае состоит из множества троек где и — это входные данные сети и — правильный ответ. Начальная сеть, приняв на вход и , вычислит ответ , который вероятно отличается от . Общепринятый метод вычисления несоответствия между ожидаемым и получившимся ответом — квадратичная функция потерь:

где ошибка.

В качестве примера, обучим сеть на объекте , таким образом, значения и равны 1, а равно 0. Построим график зависимости ошибки от действительного ответа , его результатом будет парабола. Минимум параболы соответствует ответу , минимизирующему . Если тренировочный объект один, минимум касается горизонтальной оси, следовательно ошибка будет нулевая и сеть может выдать ответ равный ожидаемому ответу . Следовательно, задача преобразования входных значений в выходные может быть сведена к задаче оптимизации, заключающейся в поиске функции, которая даст минимальную ошибку.

График ошибки для нейрона с линейной функцией активации и одним тренировочным объектом

В таком случае, выходное значение нейрона — взвешенная сумма всех его входных значений:

где и — веса на ребрах, соединяющих входные вершины с выходной. Следовательно, ошибка зависит от весов ребер, входящих в нейрон. И именно это нужно менять в процессе обучения. Распространенный алгоритм для поиска набора весов, минимизирующего ошибку — градиентный спуск. Метод обратного распространения ошибки используется для вычисления самого «крутого» направления для спуска.

Дифференцирование для однослойной сети

Метод градиентного спуска включает в себя вычисление дифференциала квадратичной функции ошибки относительно весов сети. Обычно это делается с помощью метода обратного распространения ошибки. Предположим, что выходной нейрон один, (их может быть несколько, тогда ошибка — это квадратичная норма вектора разницы) тогда квадратичная функция ошибки:

где — квадратичная ошибка, — требуемый ответ для обучающего образца, — действительный ответ сети.

Множитель добавлен чтобы предотвратить возникновение экспоненты во время дифференцирования. На результат это не повлияет, потому что позже выражение будет умножено на произвольную величину скорости обучения (англ. learning rate).

Для каждого нейрона , его выходное значение определено как

Входные значения нейрона — это взвешенная сумма выходных значений предыдущих нейронов. Если нейрон в первом слое после входного, то входного слоя — это просто входные значения сети. Количество входных значений нейрона . Переменная обозначает вес на ребре между нейроном предыдущего слоя и нейроном текущего слоя.

Функция активации нелинейна и дифференцируема. Одна из распространенных функций активации — сигмоида:

у нее удобная производная:

Находим производную ошибки

Вычисление частной производной ошибки по весам выполняется с помощью цепного правила:

Только одно слагаемое в зависит от , так что

Если нейрон в первом слое после входного, то — это просто .

Производная выходного значения нейрона по его входному значению — это просто частная производная функции активации (предполагается что в качестве функции активации используется сигмоида):

По этой причине данный метод требует дифференцируемой функции активации. (Тем не менее, функция ReLU стала достаточно популярной в последнее время, хоть и не дифференцируема в 0)

Первый множитель легко вычислим, если нейрон находится в выходном слое, ведь в таком случае и

Тем не менее, если произвольный внутренний слой сети, нахождение производной по менее очевидно.

Если рассмотреть как функцию, берущую на вход все нейроны получающие на вход значение нейрона ,

и взять полную производную по , то получим рекурсивное выражение для производной:

Следовательно, производная по может быть вычислена если все производные по выходным значениям следующего слоя известны.

Если собрать все месте:

и

Чтобы обновить вес используя градиентный спуск, нужно выбрать скорость обучения, . Изменение в весах должно отражать влияние на увеличение или уменьшение в . Если , увеличение увеличивает ; наоборот, если , увеличение уменьшает . Новый добавлен к старым весам, и произведение скорости обучения на градиент, умноженный на , гарантирует, что изменения будут всегда уменьшать . Другими словами, в следующем уравнении, всегда изменяет в такую сторону, что уменьшается:

Алгоритм

  • — скорость обучения
  • — коэффициент инерциальности для сглаживания резких скачков при перемещении по поверхности целевой функции
  • — обучающее множество
  • — количество повторений
  • — функция, подающая x на вход сети и возвращающая выходные значения всех ее узлов
  • — количество слоев в сети
  • — множество нейронов в слое i
  • — множество нейронов в выходном слое
fun BackPropagation:
   init 
   repeat :
       for  =  to :
            =  
           for :
                = 
           for  =  to :
               for :
                    = 
           for :
                = 
                = 
   return 

Недостатки алгоритма

Несмотря на многочисленные успешные применения обратного распространения, оно не является универсальным решением. Больше всего неприятностей приносит неопределённо долгий процесс обучения. В сложных задачах для обучения сети могут потребоваться дни или даже недели, она может и вообще не обучиться. Причиной может быть одна из описанных ниже.

Градиентный спуск может найти локальный минимум вместо глобального

Паралич сети

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших выходных значениях, а производная активирующей функции будет очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть.

Локальные минимумы

Градиентный спуск с обратным распространением ошибок гарантирует нахождение только локального минимума функции; также, возникают проблемы с пересечением плато на поверхности функции ошибки.

Примечания

  • Алгоритм обучения многослойной нейронной сети методом обратного распространения ошибки
  • Neural Nets
  • Understanding backpropagation

См. также

  • Нейронные сети, перцептрон
  • Стохастический градиентный спуск
  • Настройка глубокой сети
  • Практики реализации нейронных сетей

Источники информации

  • https://en.wikipedia.org/wiki/Backpropagation
  • https://ru.wikipedia.org/wiki/Метод_обратного_распространения_ошибки

Применение алгоритма обратного распространения ошибки — один из известных методов, используемых для глубокого обучения нейронных сетей прямого распространения (такие сети ещё называют многослойными персептронами). Этот метод относят к методу обучения с учителем, поэтому требуется задавать в обучающих примерах целевые значения. В этой статье мы рассмотрим, что собой представляет метод обратного распространения ошибки, как он реализуется, каковы его плюсы и минусы.

Сегодня нейронные сети прямого распространения используются для решения множества сложных задач. Если говорить об обучении нейронных сетей методом обратного распространения, то тут пользуются двумя проходами по всем слоям нейросети: прямым и обратным. При выполнении прямого прохода осуществляется подача входного вектора на входной слой сети, после чего происходит распространение по нейронной сети от слоя к слою. В итоге должна осуществляться генерация набора выходных сигналов — именно он, по сути, является реакцией нейронной сети на этот входной образ. При прямом проходе все синаптические веса нейросети фиксированы. При обратном проходе все синаптические веса настраиваются согласно правил коррекции ошибок, когда фактический выход нейронной сети вычитается из желаемого, что приводит к формированию сигнала ошибки. Такой сигнал в дальнейшем распространяется по сети, причём направление распространения обратно направлению синаптических связей. Именно поэтому соответствующий метод и называют алгоритмом с обратно распространённой ошибкой. Синаптические веса настраивают с целью наибольшего приближения выходного сигнала нейронной сети к желаемому.

Общее описание алгоритма обратного распространения ошибки

К примеру, нам надо обучить нейронную сеть по аналогии с той, что представлена на картинке ниже. Естественно, задачу следует выполнить, применяя алгоритм обратного распространения ошибки:

4-20219-e537a8.png

2-20219-7f9b72.png

В многослойных персептронах в роли активационной функции обычно применяют сигмоидальную активационную функция, в нашем случае — логистическую. Формула:

3-20219-2ac7f4.png

Причём «альфа» здесь означает параметр наклона сигмоидальной функции. Меняя его, мы получаем возможность строить функции с разной крутизной.

Сигмоид может сужать диапазон изменения таким образом, чтобы значение OUT лежало между нулем и единицей. Нейронные многослойные сети характеризуются более высокой представляющей мощностью, если сравнивать их с однослойными, но это утверждение справедливо лишь в случае нелинейности. Нужную нелинейность и обеспечивает сжимающая функция. Но на практике существует много функций, которые можно использовать. Говоря о работе алгоритма обратного распространения ошибки, скажем, что для этого нужно лишь, чтобы функция была везде дифференцируема, а данному требованию как раз и удовлетворяет сигмоид. У него есть и дополнительное преимущество — автоматический контроль усиления. Если речь идёт о слабых сигналах (OUT близко к нулю), то кривая «вход-выход» характеризуется сильным наклоном, дающим большое усиление. При увеличении сигнала усиление падает. В результате большие сигналы будут восприниматься сетью без насыщения, а слабые сигналы будут проходить по сети без чрезмерного ослабления.

Цель обучения сети

Цель обучения нейросети при использовании алгоритма обратного распространения ошибки — это такая подстройка весов нейросети, которая позволит при приложении некоторого множества входов получить требуемое множество выходов нейронов (выходных нейронов). Можно назвать эти множества входов и выходов векторами. В процессе обучения предполагается, что для любого входного вектора существует целевой вектор, парный входному и задающий требуемый выход. Эту пару называют обучающей. Работая с нейросетями, мы обучаем их на многих парах.

Также можно сказать, что алгоритм использует стохастический градиентный спуск и продвигается в многомерном пространстве весов в направлении антиградиента, причём цель — это достижение минимума функции ошибки.

При практическом применении метода обучение продолжают не до максимально точной настройки нейросети на минимум функции ошибки, а пока не будет достигнуто довольно точное его приближение. С одной стороны, это даёт возможность уменьшить количество итераций обучения, с другой — избежать переобучения нейронной сети.

Пошаговая реализация метода обратного распространения ошибки

Необходимо выполнить следующие действия:
1. Инициализировать синаптические веса случайными маленькими значениями.
2. Выбрать из обучающего множества очередную обучающую пару; подать на вход сети входной вектор.
3. Выполнить вычисление выходных значений нейронной сети.
4. Посчитать разность между выходом нейросети и требуемым выходом (речь идёт о целевом векторе обучающей пары).
5. Скорректировать веса сети в целях минимизации ошибки.
6. Повторять для каждого вектора обучающего множества шаги 2-5, пока ошибка обучения нейронной сети на всём множестве не достигнет уровня, который является приемлемым.

Виды обучения сети по методу обратного распространения

Сегодня существует много модификаций алгоритма обратного распространения ошибки. Возможно обучение не «по шагам» (выходная ошибка вычисляется, веса корректируются на каждом примере), а «по эпохам» в offline-режиме (изменения весовых коэффициентов происходит после подачи на вход нейросети всех примеров обучающего множества, а ошибка обучения neural сети усредняется по всем примерам).

Обучение «по эпохам» более устойчиво к выбросам и аномальным значениям целевой переменной благодаря усреднению ошибки по многим примерам. Зато в данном случае увеличивается вероятность «застревания» в локальных минимумах. При обучении «по шагам» такая вероятность меньше, ведь применение отдельных примеров создаёт «шум», «выталкивающий» алгоритм обратного распространения из ям градиентного рельефа.

Преимущества и недостатки метода

К плюсам можно отнести простоту в реализации и устойчивость к выбросам и аномалиям в данных, и это основные преимущества. Но есть и минусы:
• неопределенно долгий процесс обучения;
• вероятность «паралича сети» (при больших значениях рабочая точка функции активации попадает в область насыщения сигмоиды, а производная величина приближается к 0, в результате чего коррекции весов почти не происходят, а процесс обучения «замирает»;
• алгоритм уязвим к попаданию в локальные минимумы функции ошибки.

Значение метода обратного распространения

Появление алгоритма стало знаковым событием и положительно отразилось на развитии нейросетей, ведь он реализует эффективный с точки зрения вычислительных процессов способ обучения многослойного персептрона. В то же самое время, было бы неправильным сказать, что алгоритм предлагает наиболее оптимальное решение всех потенциальных проблем. Зато он действительно развеял пессимизм относительно машинного обучения многослойных машин, который воцарился после публикации в 1969 году работы американского учёного с фамилией Минский.

Источники:
— «Алгоритм обратного распространения ошибки»;
— «Back propagation algorithm».

Статья опубликована в выпуске журнала № 2 за 2019 год. [ на стр. 258-262 ]
Аннотация:В статье исследуется эвристическое улучшение алгоритма обратного распространения ошибки с использованием пакетного режима обучения.
Алгоритм обратного распространения ошибки является одним из самых распространенных алгоритмов обучения нейронных сетей. Использование его сопряжено с рядом сложностей, главная из которых – обеспечение приемлемой способности к обобщению нейронной сети. Способность к обобщению полученных знаний является одним из важнейших свойств нейронной сети и заключается в генерации нейронной сетью ожидаемых значений на данных, не участвующих непосредственно в процессе обучения. Однако использование зашумленных и ошибочных данных может привести к переобучению и снижению способности к обобщению обученной нейронной сети.
Рассматриваемые в статье вопросы являются важной частью процесса обучения нейронных сетей. Предложенный метод дает возможность более эффективно рассчитывать значения целевой функции, лежащей в основе алгоритма обратного распространения ошибки, а также игнорировать ошибочные значения в данных для обучения, исключая их на ранних стадиях обучения. Кроме то-го, метод позволяет использовать для обучения нейронных сетей неоднородные выборки данных, а также учитывать при обучении априорную информацию о ценности отдельных примеров.
В статье приведен алгоритм работы данного метода. Использование метода позволит повысить точность работы нейронной сети для задач классификации и аппроксимации.

Abstract:The paper describes heuristic modification of backpropagation algorithm using for remote batching.
The backpropagation algorithm is a common algorithm for neural network training. It causes some difficulties. The main problem is enabling the generalizing of a neural network. The ability of general-izing is a most important characteristics of a neural network. It assumes that a neural produces antici-pated values on data that is not a part of a training process. However, using of noisy data causes re-training and decreasing of a generalizing ability of a neural network.
The problems considered in the paper are an important part of a neural network training process. The paper describes a method to use objective functions effectively. The proposed method allows more effective calculating of the values of a goal function that is a base of the backpropagation algorithm. It also ignores failure values in training data and excludes them at earlier stages. In addition, the method allows using heterogeneous data samples for training neural networks, as well as taking into account prior information on the significance of some examples when training.
The paper describes the algorithm of the proposed method. The method will improve the accuracy of a neural network for classification and regression tasks.

Размер шрифта:
     
Шрифт:

В статье представлен метод отбора примеров в обучающую выборку с учетом их влияния на процесс обучения сети. Показано, что в задаче обучения сети с учителем при использовании пакетного режима [1] скорость обучения и качество работы обученной нейронной сети зависят от величины ошибки на выходе, обусловленной не только уровнем обученности сети, но и характеристиками обучающей выборки: типичностью примеров, их количеством для различных исходов, а также достоверностью. Целью работы является повышение качества обучения сети за счет оценки обучающего множества и формирования обучающей выборки.

Обучение нейронной сети – это процесс минимизации в пространстве обучаемых параметров функции оценки. При использовании метода обратного распространения ошибки корректировка синаптической карты весов нейронной сети выполняется после подачи всех обучающих примеров по усредненному значению градиента целевой функции, формулируемой в виде квадратичной суммы разностей между фактическими и ожидаемыми значениями выходных сигналов [2]:

,                         (1)

где y – выходное значение нейронной сети; d – желаемое значение выхода; m – количество нейронов в выходном слое; k – номер нейрона в выходном слое.

Основная идея рассматриваемого в данной работе подхода состоит в том, что используемые для обучения примеры должны получать весовые коэффициенты, улучшающие нейронную сеть, полученную в процессе обучения.

Необходимость использования весов примеров при обучении может быть обусловлена следующими причинами:

1)   один из примеров плохо обучается;

2)   число примеров разных классов в обучающем множестве сильно отличается;

3)   примеры в обучающем множестве имеют различную достоверность [3].

Первая причина актуальна в случае, когда имеется априорная информация о значимости примера и необходимо, чтобы нейронная сеть научилась его воспринимать. Однако в силу своих особенностей пример не учитывается при обучении нейронной сети обычными методами.

Вторая причина актуальна для случая, когда в обучающей выборке есть классы, число примеров которых мало по сравнению с другими классами. В пакетном режиме обучения ошибка, рассчитанная по этим примерам, может потеряться в суммарной ошибке по всей выборке, в результате чего такие примеры могут быть проигнорированы. Ошибка по этим примерам останется большой, и нейронная сеть не научится их воспринимать. По этой причине существует критика пакетного режима обучения. Так, в работе [4] показывается преимущество online-обучения в контексте объема вычислений, осуществляемых в процессе обучения. Однако последовательный режим обучения не решает данную проблему. Еще одним подходом, используемым для решения данной проблемы, является уменьшение размеров нейронной сети. В работе [5] доказана несостоятельность данного метода.

Третья причина актуальна при наличии в данных ошибочных значений – выбросов, которые могут давать большую ошибку. Пытаясь научиться воспринимать такие значения, нейронная сеть может ухудшить свою способность к обобщению [6].

Для решения проблемы, вызванной первой и второй причинами, обучающим примерам необходимо присвоить весовые коэффициенты. Они будут использоваться при расчете ошибки обучения E и усиливать вклад выбранных примеров в суммарную ошибку обучения.

Для решения третьей проблемы в работе [7] предложена редукция данных, основанная на ограничении диапазона значений признака, однако при данном подходе существует вероятность исключения значимых примеров.

Учитывая все перечисленные особенности, становится очевидной необходимость более эффективного представления обучающей выборки.

Так, в работе [8] предлагается задавать пороговое значение ошибки, при превышении которого пример не должен рассматриваться. Более гибкий подход реализован в Lazy training (ленивое обучение) [9], однако этот алгоритм предназначен исключительно для задач классификации. Его основная идея заключается в том, что для коррекции весов используются только те наблюдения, которые были классифицированы неправильно. Помимо узкой направленности, этот алгоритм имеет и другие недостатки. Для решения проблемы, вызван- ной третьей причиной, необходим алгоритм, учитывающий описанные недостатки.

Основная идея рассматриваемого подхода состоит в том, что обучающие примеры, ошибки по которым оказываются слишком большими, не должны участвовать в обучении нейронной сети. Однако задание граничного значения ошибки, разделяющего исходное множество на используемые и неиспользуемые примеры, неэффективно. Если использовать для обучения часть примеров, то ошибка выхода по ним будет постепенно уменьшаться. При этом ошибка на неиспользуемых примерах может расти. Таким образом, использование граничного значения может привести к следующему эффекту. Если ошибка, полученная на рассматриваемом примере, меньше заданного значения, то при следующей итерации этот пример не будет использован. При этом ошибка по этому примеру может вырасти и снова преодолеть установленную границу. При очередной итерации данный пример опять будет использован в обучающей выборке. В результате нейронная сеть перестанет обучаться.

Для избежания подобного эффекта предложено использовать два граничных значения ошибки обучения: нижнее (E1) и верхнее (E2), которые определяют три области и являются функцией количества циклов обучения. Для каждого примера в зависимости от значения ошибки E и его положения относительно значений E1 и E2 принимается решение о выборе значения весового коэффициента:

—     E < E1 – пример не усиливается весовым коэффициентом (получает весовой коэффициент, равный единице);

—     E1 < E < E2 – пример усиливается весовым коэффициентом;

—     E > E2 – пример игнорируется (получает нулевой весовой коэффициент).

Весовые коэффициенты рассчитываются индивидуально для каждого примера на каждом шаге обучения.

В начале процесса обучения используются все имеющиеся примеры. Поскольку нейронная сеть перед началом обучения инициализируется случайными значениями, распределение ошибок по используемым примерам равномерно. При этом ошибки по всем примерам не превышают значение E2. В процессе обучения нейронной сети ошибка обучения приобретает нормальный вид распределения. У большинства примеров ошибка стремится к нулю, у части примеров она остается большой. Попав в интервал E1 < E < E2, пример получает весовой коэффициент и ошибка по нему начинает уменьшаться быстрее.

Как только ошибка примера пересекает границу E1, он получает единичный коэффициент. Если при дальнейшем обучении ошибка примера превысит E1, он снова получит усиливающий весовой коэффициент. Если ошибка примера превысила значение E2, то пример считается выбросом и не участвует в дальнейшем обучении. Направления изменений ошибок показаны пунктирными стрелками на рисунке 1.

Граничные значения E1 и E2 рассчитываются на каждом шаге обучения сети. Для расчета значений E1 и E2 используется критерий, основанный на интерквартильном размахе. Метод основан на вычислении трех квартилей, делящих данные на четыре равные группы по ошибке обучения. Интерквартильный размах [10] считается как разность между первой и третьей квартилями:

IQR = Q3 – Q1.                                        (2)

Значения E1 и E2 рассчитываются следующим образом:

E1 = Q1,                                                                                   (3)

E2 = Q3 + QR.                                                                   (4)

На рисунке 2 показана схема, выражающая эти определения.

Предложенная реализация алгоритма обучения позволяет избежать переобучения нейронной сети, связанного с чрезмерным стремлением достичь нулевой ошибки. При этом данный алгоритм в большей степени учитывает свойства малочисленных групп примеров, чем стандартный алгоритм. Блок-схема алгоритма изображена на рисунке 3.

Таким образом, алгоритм будет следующим.

Шаг 1. Формируем обучающую выборку, используя все обучающее множество.

Шаг 2. Вычисляем значение среднего градиента для предоставленной выборки.

Шаг 3. Выполняем корректировку весов нейронной сети.

Шаг 4. Устанавливаем веса примерам, используя данные об ошибках выхода. Для этого создается матрица, содержащая флаг для каждого наблюдения. Если ошибка, соответствующая наблюдению, меньше значения ошибки E1, этому наблюдению ставится единичный коэффициент. Если ошибка больше значения ошибки E2, наблюдению ставится нулевой коэффициент. Если ошибка находится в диапазоне E1–E2, наблюдению ставится усиливающий коэффициент.

Шаг 5. Используя полученный набор флагов, разделяем выборку на две части: используемую для следующего уточнения весов нейронной сети и игнорируемую.

Шаг 6. Создаем новую обучающую выборку для следующей итерации.

Шаг 7. Возвращаемся к шагу 2.

Проведенные исследования показали, что применение описанного подхода позволяет повысить качество обучения нейронной сети для классификации и регрессии.

Литература

1.   Дьяконов В.П., Круглов В.В. MATLAB 6.5 SP1/7/7 SP1/7 SP2 + Simulink 5/6. Инструменты искусственного интеллекта и биоинформатики. М.: Солон-Пресс, 2006. 456 с.

2.   Оссовский С. Нейронные сети для обработки информации; [пер. с польск. И.Д. Рудинского]. М.: Финансы и статистика, 2004. 344 с.

3.   Миркес Е.М. Нейроинформатика. Красноярск: Изд-во КГТУ, 2002. 347 с.

4.   Царегородцев В.Г. Общая неэффективность использования суммарного градиента выборки при обучении нейронной сети // Нейроинформатика и ее приложения: матер. XIII Всерос. семинара. 2004. С. 145–151.

5.   Царегородцев В.Г. Редукция размеров нейро­сети не приводит к повышению обобщающей способности // Нейроинформатика и ее приложения: матер. XII Всерос. семинара. Красноярск, 2004. С. 163–165.

6.   Хайкин С. Нейронные сети: полный курс; [пер. с англ. Н.Н. Куссуль, А.Ю. Шелестова]. М.: Вильямс, 2006. 1104 с.

7.   Царегородцев В.Г. Оптимизация предобработки данных для обучаемой нейросети: критерии оптимальности предобработки // Междунар. конф. по нейрокибернетике: сб. докл. Ростов н/Д, 2005. Т. 2. С. 64–67.

8.   Xiao-Ping Zhang. Thresholding neural network for adaptive noise reduction. Proc. IEEE Transactions on Neural Networks, 2001, vol. 12, no. 3, pp. 567–584.

9.   Rimer M.E., Anderson T.L. and Martinez T.R. Improving backpropagation ensembles through lazy training. Proc. IEEE IJCNN’01, 2001, pp. 2007–2112.

10.     Певзнер М.З. Систематизация, статистический анализ данных, контроль и управление производственными процессами. Киров: Изд-во ВятГУ, 2012. 165 с.

References

  1. Dyakonov V.P., Kruglov V.V. MatLab 6.5 SP1/7/7 SP1/7 SP2 + Simulink 5/6. Artificial Intelligence and Bioinformatics Tools. Moscow, Solon-Press, 2006, 456 p.
  2. Asowsky S. Neural Networks for Information Processing. Moscow, Finansy i statistika Publ., 2004,
    344 p.
  3. Mirkes Е.М. Neuroinformatics. Krasnoyarsk, 2002, 347 p.
  4. Tsaregorodtsev V.G. The overall inefficient use of a sample total gradient when training a neural network. Proc. 13th All-Russ. Workshop “Neuroinformatics and Its Applications”. Krasnoyarsk, 2004,
    pp. 145–151 (in Russ.).
  5. Tsaregorodtsev V.G. Reducing of neural network sizes does not lead to an increasing generalization ability. Proc. 13th All-Russ. Workshop “Neuroinformatics and Its Applications”. Krasnoyarsk, 2004,
    pp. 163–165 (in Russ.).
  6. Khaykin S. Neural Networks: a Comprehensive Foundation. 2nd ed., Moscow, Vilyams Press, 2006. 1104 p.
  7. Tsaregorodtsev V.G. Optimization of data preprocessing for a trained neural network: preprocessing optimality criteria. Proc. 14th Intern. Conf. on Neurocybernetics. Rostov-on-Don, 2005, vol. 2, pp. 64–67
    (in Russ.).
  8. Xiao-Ping Zhang. Thresholding neural network for adaptive noise reduction. Proc.  IEEE Trans. on Neural Networks. 2001, vol. 12, no. 3, pp. 567–584.
  9. Rimer M.E., Anderson T.L., Martinez T.R. Improving backpropagation ensembles through lazy training. Proc. IEEE Intern. Joint Conf. on Neural Networks IJCNN’01. 2001, pp. 2007–2112.
  10. Pevzner M.Z. Systematization, Statistical Data Analysis, Control and Management of Manufacturing Processes. Kirov: VyatGU Press, 2012, 165 p.

Нейронные сети обучаются с помощью тех или иных модификаций градиентного спуска, а чтобы применять его, нужно уметь эффективно вычислять градиенты функции потерь по всем обучающим параметрам. Казалось бы, для какого-нибудь запутанного вычислительного графа это может быть очень сложной задачей, но на помощь спешит метод обратного распространения ошибки.

Открытие метода обратного распространения ошибки стало одним из наиболее значимых событий в области искусственного интеллекта. В актуальном виде он был предложен в 1986 году Дэвидом Э. Румельхартом, Джеффри Э. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно красноярскими математиками С. И. Барцевым и В. А. Охониным. С тех пор для нахождения градиентов параметров нейронной сети используется метод вычисления производной сложной функции, и оценка градиентов параметров сети стала хоть сложной инженерной задачей, но уже не искусством. Несмотря на простоту используемого математического аппарата, появление этого метода привело к значительному скачку в развитии искусственных нейронных сетей.

Суть метода можно записать одной формулой, тривиально следующей из формулы производной сложной функции: если $f(x) = g_m(g_{m-1}(ldots (g_1(x)) ldots))$, то $frac{partial f}{partial x} = frac{partial g_m}{partial g_{m-1}}frac{partial g_{m-1}}{partial g_{m-2}}ldots frac{partial g_2}{partial g_1}frac{partial g_1}{partial x}$. Уже сейчас мы видим, что градиенты можно вычислять последовательно, в ходе одного обратного прохода, начиная с $frac{partial g_m}{partial g_{m-1}}$ и умножая каждый раз на частные производные предыдущего слоя.

Backpropagation в одномерном случае

В одномерном случае всё выглядит особенно просто. Пусть $w_0$ — переменная, по которой мы хотим продифференцировать, причём сложная функция имеет вид

$$f(w_0) = g_m(g_{m-1}(ldots g_1(w_0)ldots)),$$

где все $g_i$ скалярные. Тогда

$$f'(w_0) = g_m'(g_{m-1}(ldots g_1(w_0)ldots))cdot g’_{m-1}(g_{m-2}(ldots g_1(w_0)ldots))cdotldots cdot g’_1(w_0)$$

Суть этой формулы такова. Если мы уже совершили forward pass, то есть уже знаем

$$g_1(w_0), g_2(g_1(w_0)),ldots,g_{m-1}(ldots g_1(w_0)ldots),$$

то мы действуем следующим образом:

  • берём производную $g_m$ в точке $g_{m-1}(ldots g_1(w_0)ldots)$;

  • умножаем на производную $g_{m-1}$ в точке $g_{m-2}(ldots g_1(w_0)ldots)$;

  • и так далее, пока не дойдём до производной $g_1$ в точке $w_0$.

Проиллюстрируем это на картинке, расписав по шагам дифференцирование по весам $w_i$ функции потерь логистической регрессии на одном объекте (то есть для батча размера 1):

17_1.png

Собирая все множители вместе, получаем:

$$frac{partial f}{partial w_0} = (-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_1} = x_1cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_2} = x_2cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

Таким образом, мы видим, что сперва совершается forward pass для вычисления всех промежуточных значений (и да, все промежуточные представления нужно будет хранить в памяти), а потом запускается backward pass, на котором в один проход вычисляются все градиенты.

Почему же нельзя просто пойти и начать везде вычислять производные?

В главе, посвящённой матричным дифференцированиям, мы поднимаем вопрос о том, что вычислять частные производные по отдельности — это зло, лучше пользоваться матричными вычислениями. Но есть и ещё одна причина: даже и с матричной производной в принципе не всегда хочется иметь дело. Рассмотрим простой пример. Допустим, что $X^r$ и $X^{r+1}$ — два последовательных промежуточных представления $Ntimes M$ и $Ntimes K$, связанных функцией $X^{r+1} = f^{r+1}(X^r)$. Предположим, что мы как-то посчитали производную $frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$ функции потерь $mathcal{L}$, тогда

$$frac{partialmathcal{L}}{partial X^{r}_{st}} = sum_{i,j}frac{partial f^{r+1}_{ij}}{partial X^{r}_{st}}frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$$

И мы видим, что, хотя оба градиента $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ и $frac{partialmathcal{L}}{partial X_{st}^{r}}$ являются просто матрицами, в ходе вычислений возникает «четырёхмерный кубик» $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, даже хранить который весьма болезненно: уж больно много памяти он требует ($N^2MK$ по сравнению с безобидными $NM + NK$, требуемыми для хранения градиентов). Поэтому хочется промежуточные производные $frac{partial f^{r+1}}{partial X^{r}}$ рассматривать не как вычисляемые объекты $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, а как преобразования, которые превращают $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ в $frac{partialmathcal{L}}{partial X_{st}^{r}}$. Целью следующих глав будет именно это: понять, как преобразуется градиент в ходе error backpropagation при переходе через тот или иной слой.

  Вы спросите себя: надо ли мне сейчас пойти и прочитать главу учебника про матричное дифференцирование?

Встречный вопрос. Найдите производную функции по вектору $x$:

$$f(x) = x^TAx, Ain Mat_{n}{mathbb{R}}text{ — матрица размера }ntimes n$$

А как всё поменяется, если $A$ тоже зависит от $x$? Чему равен градиент функции, если $A$ является скаляром? Если вы готовы прямо сейчас взять ручку и бумагу и посчитать всё, то вам, вероятно, не надо читать про матричные дифференцирования. Но мы советуем всё-таки заглянуть в эту главу, если обозначения, которые мы будем дальше использовать, покажутся вам непонятными: единой нотации для матричных дифференцирований человечество пока, увы, не изобрело, и переводить с одной на другую не всегда легко.

Мы же сразу перейдём к интересующей нас вещи: к вычислению градиентов сложных функций.

Градиент сложной функции

Напомним, что формула производной сложной функции выглядит следующим образом:

$$left[D_{x_0} (color{#5002A7}{u} circ color{#4CB9C0}{v}) right](h) = color{#5002A7}{left[D_{v(x_0)} u right]} left( color{#4CB9C0}{left[D_{x_0} vright]} (h)right)$$

Теперь разберёмся с градиентами. Пусть $f(x) = g(h(x))$ – скалярная функция. Тогда

$$left[D_{x_0} f right] (x-x_0) = langlenabla_{x_0} f, x-x_0rangle.$$

С другой стороны,

$$left[D_{h(x_0)} g right] left(left[D_{x_0}h right] (x-x_0)right) = langlenabla_{h_{x_0}} g, left[D_{x_0} hright] (x-x_0)rangle = langleleft[D_{x_0} hright]^* nabla_{h(x_0)} g, x-x_0rangle.$$

То есть $color{#FFC100}{nabla_{x_0} f} = color{#348FEA}{left[D_{x_0} h right]}^* color{#FFC100}{nabla_{h(x_0)}}g$ — применение сопряжённого к $D_{x_0} h$ линейного отображения к вектору $nabla_{h(x_0)} g$.

Эта формула — сердце механизма обратного распространения ошибки. Она говорит следующее: если мы каким-то образом получили градиент функции потерь по переменным из некоторого промежуточного представления $X^k$ нейронной сети и при этом знаем, как преобразуется градиент при проходе через слой $f^k$ между $X^{k-1}$ и $X^k$ (то есть как выглядит сопряжённое к дифференциалу слоя между ними отображение), то мы сразу же находим градиент и по переменным из $X^{k-1}$:

17_2.png

Таким образом слой за слоем мы посчитаем градиенты по всем $X^i$ вплоть до самых первых слоёв.

Далее мы разберёмся, как именно преобразуются градиенты при переходе через некоторые распространённые слои.

Градиенты для типичных слоёв

Рассмотрим несколько важных примеров.

Примеры

  1. $f(x) = u(v(x))$, где $x$ — вектор, а $v(x)$ – поэлементное применение $v$:

    $$vbegin{pmatrix}
    x_1 \
    vdots\
    x_N
    end{pmatrix}
    = begin{pmatrix}
    v(x_1)\
    vdots\
    v(x_N)
    end{pmatrix}$$

    Тогда, как мы знаем,

    $$left[D_{x_0} fright] (h) = langlenabla_{x_0} f, hrangle = left[nabla_{x_0} fright]^T h.$$

    Следовательно,

    $$
    left[D_{v(x_0)} uright] left( left[ D_{x_0} vright] (h)right) = left[nabla_{v(x_0)} uright]^T left(v'(x_0) odot hright) =\
    $$

    $$
    = sumlimits_i left[nabla_{v(x_0)} uright]_i v'(x_{0i})h_i
    = langleleft[nabla_{v(x_0)} uright] odot v'(x_0), hrangle.
    ,$$

    где $odot$ означает поэлементное перемножение. Окончательно получаем

    $$color{#348FEA}{nabla_{x_0} f = left[nabla_{v(x_0)}uright] odot v'(x_0) = v'(x_0) odot left[nabla_{v(x_0)} uright]}$$

    Отметим, что если $x$ и $h(x)$ — это просто векторы, то мы могли бы вычислять всё и по формуле $frac{partial f}{partial x_i} = sum_jbig(frac{partial z_j}{partial x_i}big)cdotbig(frac{partial h}{partial z_j}big)$. В этом случае матрица $big(frac{partial z_j}{partial x_i}big)$ была бы диагональной (так как $z_j$ зависит только от $x_j$: ведь $h$ берётся поэлементно), и матричное умножение приводило бы к тому же результату. Однако если $x$ и $h(x)$ — матрицы, то $big(frac{partial z_j}{partial x_i}big)$ представлялась бы уже «четырёхмерным кубиком», и работать с ним было бы ужасно неудобно.

  2. $f(X) = g(XW)$, где $X$ и $W$ — матрицы. Как мы знаем,

    $$left[D_{X_0} f right] (X-X_0) = text{tr}, left(left[nabla_{X_0} fright]^T (X-X_0)right).$$

    Тогда

    $$
    left[ D_{X_0W} g right] left(left[D_{X_0} left( ast Wright)right] (H)right) =
    left[ D_{X_0W} g right] left(HWright)=\
    $$ $$
    = text{tr}, left( left[nabla_{X_0W} g right]^T cdot (H) W right) =\
    $$ $$
    =
    text{tr} , left(W left[nabla_{X_0W} (g) right]^T cdot (H)right) = text{tr} , left( left[left[nabla_{X_0W} gright] W^Tright]^T (H)right)
    $$

    Здесь через $ast W$ мы обозначили отображение $Y hookrightarrow YW$, а в предпоследнем переходе использовалось следующее свойство следа:

    $$
    text{tr} , (A B C) = text{tr} , (C A B),
    $$

    где $A, B, C$ — произвольные матрицы подходящих размеров (то есть допускающие перемножение в обоих приведённых порядках). Следовательно, получаем

    $$color{#348FEA}{nabla_{X_0} f = left[nabla_{X_0W} (g) right] cdot W^T}$$

  3. $f(W) = g(XW)$, где $W$ и $X$ — матрицы. Для приращения $H = W — W_0$ имеем

    $$
    left[D_{W_0} f right] (H) = text{tr} , left( left[nabla_{W_0} f right]^T (H)right)
    $$

    Тогда

    $$
    left[D_{XW_0} g right] left( left[D_{W_0} left(X astright) right] (H)right) = left[D_{XW_0} g right] left( XH right) =
    $$ $$
    = text{tr} , left( left[nabla_{XW_0} g right]^T cdot X (H)right) =
    text{tr}, left(left[X^T left[nabla_{XW_0} g right] right]^T (H)right)
    $$

    Здесь через $X ast$ обозначено отображение $Y hookrightarrow XY$. Значит,

    $$color{#348FEA}{nabla_{X_0} f = X^T cdot left[nabla_{XW_0} (g)right]}$$

  4. $f(X) = g(softmax(X))$, где $X$ — матрица $Ntimes K$, а $softmax$ — функция, которая вычисляется построчно, причём для каждой строки $x$

    $$softmax(x) = left(frac{e^{x_1}}{sum_te^{x_t}},ldots,frac{e^{x_K}}{sum_te^{x_t}}right)$$

    В этом примере нам будет удобно воспользоваться формализмом с частными производными. Сначала вычислим $frac{partial s_l}{partial x_j}$ для одной строки $x$, где через $s_l$ мы для краткости обозначим $softmax(x)_l = frac{e^{x_l}} {sum_te^{x_t}}$. Нетрудно проверить, что

    $$frac{partial s_l}{partial x_j} = begin{cases}
    s_j(1 — s_j), & j = l,
    -s_ls_j, & jne l
    end{cases}$$

    Так как softmax вычисляется независимо от каждой строчки, то

    $$frac{partial s_{rl}}{partial x_{ij}} = begin{cases}
    s_{ij}(1 — s_{ij}), & r=i, j = l,
    -s_{il}s_{ij}, & r = i, jne l,
    0, & rne i
    end{cases},$$

    где через $s_{rl}$ мы обозначили для краткости $softmax(X)_{rl}$.

    Теперь пусть $nabla_{rl} = nabla g = frac{partialmathcal{L}}{partial s_{rl}}$ (пришедший со следующего слоя, уже известный градиент). Тогда

    $$frac{partialmathcal{L}}{partial x_{ij}} = sum_{r,l}frac{partial s_{rl}}{partial x_{ij}} nabla_{rl}$$

    Так как $frac{partial s_{rl}}{partial x_{ij}} = 0$ при $rne i$, мы можем убрать суммирование по $r$:

    $$ldots = sum_{l}frac{partial s_{il}}{partial x_{ij}} nabla_{il} = -s_{i1}s_{ij}nabla_{i1} — ldots + s_{ij}(1 — s_{ij})nabla_{ij}-ldots — s_{iK}s_{ij}nabla_{iK} =$$

    $$= -s_{ij}sum_t s_{it}nabla_{it} + s_{ij}nabla_{ij}$$

    Таким образом, если мы хотим продифференцировать $f$ в какой-то конкретной точке $X_0$, то, смешивая математические обозначения с нотацией Python, мы можем записать:

    $$begin{multline*}
    color{#348FEA}{nabla_{X_0}f =}\
    color{#348FEA}{= -softmax(X_0) odot text{sum}left(
    softmax(X_0)odotnabla_{softmax(X_0)}g, text{ axis = 1}
    right) +}\
    color{#348FEA}{softmax(X_0)odot nabla_{softmax(X_0)}g}
    end{multline*}
    $$

Backpropagation в общем виде

Подытожим предыдущее обсуждение, описав алгоритм error backpropagation (алгоритм обратного распространения ошибки). Допустим, у нас есть текущие значения весов $W^i_0$ и мы хотим совершить шаг SGD по мини-батчу $X$. Мы должны сделать следующее:

  1. Совершить forward pass, вычислив и запомнив все промежуточные представления $X = X^0, X^1, ldots, X^m = widehat{y}$.
  2. Вычислить все градиенты с помощью backward pass.
  3. С помощью полученных градиентов совершить шаг SGD.

Проиллюстрируем алгоритм на примере двуслойной нейронной сети со скалярным output’ом. Для простоты опустим свободные члены в линейных слоях.

17_3.png Обучаемые параметры – матрицы $U$ и $W$. Как найти градиенты по ним в точке $U_0, W_0$?

$$nabla_{W_0}mathcal{L} = nabla_{W_0}{left({vphantom{frac12}mathcal{L}circ hcircleft[Wmapsto g(XU_0)Wright]}right)}=$$

$$=g(XU_0)^Tnabla_{g(XU_0)W_0}(mathcal{L}circ h) = underbrace{g(XU_0)^T}_{ktimes N}cdot
left[vphantom{frac12}underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes 1}odot
underbrace{nabla_{hleft(vphantom{int_0^1}g(XU_0)W_0right)}mathcal{L}}_{Ntimes 1}right]$$

Итого матрица $ktimes 1$, как и $W_0$

$$nabla_{U_0}mathcal{L} = nabla_{U_0}left(vphantom{frac12}
mathcal{L}circ hcircleft[Ymapsto YW_0right]circ gcircleft[ Umapsto XUright]
right)=$$

$$=X^Tcdotnabla_{XU^0}left(vphantom{frac12}mathcal{L}circ hcirc [Ymapsto YW_0]circ gright) =$$

$$=X^Tcdotleft(vphantom{frac12}g'(XU_0)odot
nabla_{g(XU_0)}left[vphantom{in_0^1}mathcal{L}circ hcirc[Ymapsto YW_0right]
right)$$

$$=ldots = underset{Dtimes N}{X^T}cdotleft(vphantom{frac12}
underbrace{g'(XU_0)}_{Ntimes K}odot
underbrace{left[vphantom{int_0^1}left(
underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes1}odotunderbrace{nabla_{h(vphantom{int_0^1}gleft(XU_0right)W_0)}mathcal{L}}_{Ntimes 1}
right)cdot underbrace{W^T}_{1times K}right]}_{Ntimes K}
right)$$

Итого $Dtimes K$, как и $U_0$

Схематически это можно представить следующим образом:

17_4.gif

Backpropagation для двуслойной нейронной сети

Подробнее о предыдущих вычисленияхЕсли вы не уследили за вычислениями в предыдущем примере, давайте более подробно разберём его чуть более конкретную версию (для $g = h = sigma$).

Рассмотрим двуслойную нейронную сеть для классификации. Мы уже встречали ее ранее при рассмотрении линейно неразделимой выборки. Предсказания получаются следующим образом:

$$
widehat{y} = sigma(X^1 W^2) = sigmaBig(big(sigma(X^0 W^1 )big) W^2 Big).
$$

Пусть $W^1_0$ и $W^2_0$ — текущее приближение матриц весов. Мы хотим совершить шаг по градиенту функции потерь, и для этого мы должны вычислить её градиенты по $W^1$ и $W^2$ в точке $(W^1_0, W^2_0)$.

Прежде всего мы совершаем forward pass, в ходе которого мы должны запомнить все промежуточные представления: $X^1 = X^0 W^1_0$, $X^2 = sigma(X^0 W^1_0)$, $X^3 = sigma(X^0 W^1_0) W^2_0$, $X^4 = sigma(sigma(X^0 W^1_0) W^2_0) = widehat{y}$. Они понадобятся нам дальше.

Для полученных предсказаний вычисляется значение функции потерь:

$$
l = mathcal{L}(y, widehat{y}) = y log(widehat{y}) + (1-y) log(1-widehat{y}).
$$

Дальше мы шаг за шагом будем находить производные по переменным из всё более глубоких слоёв.

  1. Градиент $mathcal{L}$ по предсказаниям имеет вид

    $$
    nabla_{widehat{y}}l = frac{y}{widehat{y}} — frac{1 — y}{1 — widehat{y}} = frac{y — widehat{y}}{widehat{y} (1 — widehat{y})},
    $$

    где, напомним, $ widehat{y} = sigma(X^3) = sigmaBig(big(sigma(X^0 W^1_0 )big) W^2_0 Big)$ (обратите внимание на то, что $W^1_0$ и $W^2_0$ тут именно те, из которых мы делаем градиентный шаг).

  2. Следующий слой — поэлементное взятие $sigma$. Как мы помним, при переходе через него градиент поэлементно умножается на производную $sigma$, в которую подставлено предыдущее промежуточное представление:

    $$
    nabla_{X^3}l = sigma'(X^3)odotnabla_{widehat{y}}l = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — widehat{y}}{widehat{y} (1 — widehat{y})} =
    $$

    $$
    = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — sigma(X^3)}{sigma(X^3) (1 — sigma(X^3))} =
    y — sigma(X^3)
    $$

  3. Следующий слой — умножение на $W^2_0$. В этот момент мы найдём градиент как по $W^2$, так и по $X^2$. При переходе через умножение на матрицу градиент, как мы помним, умножается с той же стороны на транспонированную матрицу, а значит:

    $$
    color{blue}{nabla_{W^2_0}l} = (X^2)^Tcdot nabla_{X^3}l = (X^2)^Tcdot(y — sigma(X^3)) =
    $$

    $$
    = color{blue}{left( sigma(X^0W^1_0) right)^T cdot (y — sigma(sigma(X^0W^1_0)W^2_0))}
    $$

    Аналогичным образом

    $$
    nabla_{X^2}l = nabla_{X^3}lcdot (W^2_0)^T = (y — sigma(X^3))cdot (W^2_0)^T =
    $$

    $$
    = (y — sigma(X^2W_0^2))cdot (W^2_0)^T
    $$

  4. Следующий слой — снова взятие $sigma$.

    $$
    nabla_{X^1}l = sigma'(X^1)odotnabla_{X^2}l = sigma(X^1)left( 1 — sigma(X^1) right) odot left( (y — sigma(X^2W_0^2))cdot (W^2_0)^T right) =
    $$

    $$
    = sigma(X^1)left( 1 — sigma(X^1) right) odotleft( (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^T right)
    $$

  5. Наконец, последний слой — это умножение $X^0$ на $W^1_0$. Тут мы дифференцируем только по $W^1$:

    $$
    color{blue}{nabla_{W^1_0}l} = (X^0)^Tcdot nabla_{X^1}l = (X^0)^Tcdot big( sigma(X^1) left( 1 — sigma(X^1) right) odot (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^Tbig) =
    $$

    $$
    = color{blue}{(X^0)^Tcdotbig(sigma(X^0W^1_0)left( 1 — sigma(X^0W^1_0) right) odot (y — sigma(sigma(X^0W^1_0)W_0^2))cdot (W^2_0)^Tbig) }
    $$

Итоговые формулы для градиентов получились страшноватыми, но они были получены друг из друга итеративно с помощью очень простых операций: матричного и поэлементного умножения, в которые порой подставлялись значения заранее вычисленных промежуточных представлений.

Автоматизация и autograd

Итак, чтобы нейросеть обучалась, достаточно для любого слоя $f^k: X^{k-1}mapsto X^k$ с параметрами $W^k$ уметь:

  • превращать $nabla_{X^k_0}mathcal{L}$ в $nabla_{X^{k-1}_0}mathcal{L}$ (градиент по выходу в градиент по входу);
  • считать градиент по его параметрам $nabla_{W^k_0}mathcal{L}$.

При этом слою совершенно не надо знать, что происходит вокруг. То есть слой действительно может быть запрограммирован как отдельная сущность, умеющая внутри себя делать forward pass и backward pass, после чего слои механически, как кубики в конструкторе, собираются в большую сеть, которая сможет работать как одно целое.

Более того, во многих случаях авторы библиотек для глубинного обучения уже о вас позаботились и создали средства для автоматического дифференцирования выражений (autograd). Поэтому, программируя нейросеть, вы почти всегда можете думать только о forward-проходе, прямом преобразовании данных, предоставив библиотеке дифференцировать всё самостоятельно. Это делает код нейросетей весьма понятным и выразительным (да, в реальности он тоже бывает большим и страшным, но сравните на досуге код какой-нибудь разухабистой нейросети и код градиентного бустинга на решающих деревьях и почувствуйте разницу).

Но это лишь начало

Метод обратного распространения ошибки позволяет удобно посчитать градиенты, но дальше с ними что-то надо делать, и старый добрый SGD едва ли справится с обучением современной сетки. Так что же делать? О некоторых приёмах мы расскажем в следующей главе.

Время на прочтение
5 мин

Количество просмотров 82K

В первой части были рассмотрены: структура, топология, функции активации и обучающее множество. В этой части попробую объяснить как происходит обучение сверточной нейронной сети.

Обучение сверточной нейронной сети

На начальном этапе нейронная сеть является необученной (ненастроенной). В общем смысле под обучением понимают последовательное предъявление образа на вход нейросети, из обучающего набора, затем полученный ответ сравнивается с желаемым выходом, в нашем случае это 1 – образ представляет лицо, минус 1 – образ представляет фон (не лицо), полученная разница между ожидаемым ответом и полученным является результат функции ошибки (дельта ошибки). Затем эту дельту ошибки необходимо распространить на все связанные нейроны сети.

Таким образом обучение нейронной сети сводится к минимизации функции ошибки, путем корректировки весовых коэффициентов синаптических связей между нейронами. Под функцией ошибки понимается разность между полученным ответом и желаемым. Например, на вход был подан образ лица, предположим, что выход нейросети был 0.73, а желаемый результат 1 (т.к. образ лица), получим, что ошибка сети является разницей, то есть 0.27. Затем веса выходного слоя нейронов корректируются в соответствии с ошибкой. Для нейронов выходного слоя известны их фактические и желаемые значения выходов. Поэтому настройка весов связей для таких нейронов является относительно простой. Однако для нейронов предыдущих слоев настройка не столь очевидна. Долгое время не было известно алгоритма распространения ошибки по скрытым слоям.

Алгоритм обратного распространения ошибки

Для обучения описанной нейронной сети был использован алгоритм обратного распространения ошибки (backpropagation). Этот метод обучения многослойной нейронной сети называется обобщенным дельта-правилом. Метод был предложен в 1986 г. Румельхартом, Макклеландом и Вильямсом. Это ознаменовало возрождение интереса к нейронным сетям, который стал угасать в начале 70-х годов. Данный алгоритм является первым и основным практически применимым для обучения многослойных нейронных сетей.

Для выходного слоя корректировка весов интуитивна понятна, но для скрытых слоев долгое время не было известно алгоритма. Веса скрытого нейрона должны изменяться прямо пропорционально ошибке тех нейронов, с которыми данный нейрон связан. Вот почему обратное распространение этих ошибок через сеть позволяет корректно настраивать веса связей между всеми слоями. В этом случае величина функции ошибки уменьшается и сеть обучается.

Основные соотношения метода обратного распространения ошибки получены при следующих обозначениях:

Величина ошибки определяется по формуле 2.8 среднеквадратичная ошибка:

Неактивированное состояние каждого нейрона j для образа p записывается в виде взвешенной суммы по формуле 2.9:

Выход каждого нейрона j является значением активационной функции

, которая переводит нейрон в активированное состояние. В качестве функции активации может использоваться любая непрерывно дифференцируемая монотонная функция. Активированное состояние нейрона вычисляется по формуле 2.10:

В качестве метода минимизации ошибки используется метод градиентного спуска, суть этого метода сводится к поиску минимума (или максимума) функции за счет движения вдоль вектора градиента. Для поиска минимума движение должно быть осуществляться в направлении антиградиента. Метод градиентного спуска в соответствии с рисунком 2.7.

Градиент функции потери представляет из себя вектор частных производных, вычисляющийся по формуле 2.11:

Производную функции ошибки по конкретному образу можно записать по правилу цепочки, формула 2.12:

Ошибка нейрона обычно записывается в виде символа δ (дельта). Для выходного слоя ошибка определена в явном виде, если взять производную от формулы 2.8, то получим t минус y, то есть разницу между желаемым и полученным выходом. Но как рассчитать ошибку для скрытых слоев? Для решения этой задачи, как раз и был придуман алгоритм обратного распространения ошибки. Суть его заключается в последовательном вычислении ошибок скрытых слоев с помощью значений ошибки выходного слоя, т.е. значения ошибки распространяются по сети в обратном направлении от выхода к входу.

Ошибка δ для скрытого слоя рассчитывается по формуле 2.13:

Алгоритм распространения ошибки сводится к следующим этапам:

  • прямое распространение сигнала по сети, вычисления состояния нейронов;
  • вычисление значения ошибки δ для выходного слоя;
  • обратное распространение: последовательно от конца к началу для всех скрытых слоев вычисляем δ по формуле 2.13;
  • обновление весов сети на вычисленную ранее δ ошибки.

Алгоритм обратного распространения ошибки в многослойном персептроне продемонстрирован ниже:

До этого момента были рассмотрены случаи распространения ошибки по слоям персептрона, то есть по выходному и скрытому, но помимо них, в сверточной нейросети имеются подвыборочный и сверточный.

Расчет ошибки на подвыборочном слое

Расчет ошибки на подвыборочном слое представляется в нескольких вариантах. Первый случай, когда подвыборочный слой находится перед полносвязным, тогда он имеет нейроны и связи такого же типа, как в полносвязном слое, соответственно вычисление δ ошибки ничем не отличается от вычисления δ скрытого слоя. Второй случай, когда подвыборочный слой находится перед сверточным, вычисление δ происходит путем обратной свертки. Для понимания обратно свертки, необходимо сперва понять обычную свертку и то, что скользящее окно по карте признаков (во время прямого распространения сигнала) можно интерпретировать, как обычный скрытый слой со связями между нейронами, но главное отличие — это то, что эти связи разделяемы, то есть одна связь с конкретным значением веса может быть у нескольких пар нейронов, а не только одной. Интерпретация операции свертки в привычном многослойном виде в соответствии с рисунком 2.8.


Рисунок 2.8 — Интерпретация операции свертки в многослойный вид, где связи с одинаковым цветом имеют один и тот же вес. Синим цветом обозначена подвыборочная карта, разноцветным – синаптическое ядро, оранжевым – получившаяся свертка

Теперь, когда операция свертки представлена в привычном многослойном виде, можно интуитивно понять, что вычисление дельт происходит таким же образом, как и в скрытом слое полносвязной сети. Соответственно имея вычисленные ранее дельты сверточного слоя можно вычислить дельты подвыборочного, в соответствии с рисунком 2.9.

Рисунок 2.9 — Вычисление δ подвыборочного слоя за счет δ сверточного слоя и ядра

Обратная свертка – это тот же самый способ вычисления дельт, только немного хитрым способом, заключающийся в повороте ядра на 180 градусов и скользящем процессе сканирования сверточной карты дельт с измененными краевыми эффектами. Простыми словами, нам необходимо взять ядро сверточной карты (следующего за подвыборочным слоем) повернуть его на 180 градусов и сделать обычную свертку по вычисленным ранее дельтам сверточной карты, но так чтобы окно сканирования выходило за пределы карты. Результат операции обратной свертки в соответствии с рисунком 2.10, цикл прохода обратной свертки в соответствии с рисунком 2.11.

Рисунок 2.10 — Результат операции обратной свертки


Рисунок 2.11 — Повернутое ядро на 180 градусов сканирует сверточную карту

Расчет ошибки на сверточном слое

Обычно впередиидущий слой после сверточного это подвыборочный, соответственно наша задача вычислить дельты текущего слоя (сверточного) за счет знаний о дельтах подвыборочного слоя. На самом деле дельта ошибка не вычисляется, а копируется. При прямом распространении сигнала нейроны подвыборочного слоя формировались за счет неперекрывающегося окна сканирования по сверточному слою, в процессе которого выбирались нейроны с максимальным значением, при обратном распространении, мы возвращаем дельту ошибки тому ранее выбранному максимальному нейрону, остальные же получают нулевую дельту ошибки.

Заключение

Представив операцию свертки в привычном многослойном виде (рисунок 2.8), можно интуитивно понять, что вычисление дельт происходит таким же образом, как и в скрытом слое полносвязной сети.

Источники

Алгоритм обратного распространения ошибки для сверточной нейронной сети

Обратное распространение ошибки в сверточных слоях
раз и два

Обратное распространение ошибки в персептроне

Еще можно почитать в РГБ диссертацию Макаренко: АЛГОРИТМЫ И ПРОГРАММНАЯ СИСТЕМА КЛАССИФИКАЦИИ

Метод обратного распространения ошибки — метод обучения многослойного перцептрона. Впервые метод был описан в 1974 г. Полем Дж. Вербосом[1], а также независимо и одновременно А. И. Галушкиным[2]. Далее существенно развит в 1986 г. Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом[3] и независимо и одновременно С. И. Барцевым и В. А. Охониным (Красноярская группа)[4]. Это итеративный градиентный алгоритм, который используется с целью минимизации ошибки работы многослойного перцептрона и получения желаемого выхода.

Основная идея этого метода состоит в распространении сигналов ошибки от выходов сети к её входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Барцев и Охонин предложили сразу общий метод («принцип двойственности»), приложимый к более широкому классу систем, включая системы с запаздыванием, распределённые системы, и т. п.[5]

Для возможноcти применения метода обратного распространения ошибки передаточная функция нейронов должна быть дифференцируема.

Cигмоидальные функции активации[]

Наиболее часто в качестве функций активации используются следующие виды сигмоид:

Функция Ферми (экспоненциальная сигмоида):
{displaystyle f(s)={frac {1}{1+e^{-2alpha s}}}}

Рациональная сигмоида:
{displaystyle f(s)={frac {s}{|s|+alpha }}}

Гиперболический тангенс:
{displaystyle f(s)=th{frac {s}{alpha }}={frac {e^{frac {s}{alpha }}-e^{-{frac {s}{alpha }}}}{e^{frac {s}{alpha }}+e^{-{frac {s}{alpha }}}}}}

где s — выход сумматора нейрона, {displaystyle alpha } — произвольная константа.

Менее всего, сравнительно с другими сигмоидами, процессорного времени требует расчет рациональной сигмоиды. Для вычисления гиперболического тангенса требуется больше всего тактов работы процессора. Если же сравнивать с пороговыми функциями активациями, то сигмоиды расчитываются очень медленно. Если после суммирования в пороговой функции сразу можно начинать сравнение с определенной величиной (порогом), то в случае сигмоидальной функции активации — нужно расчитать сигмоид (затратить время в лучшем случае на три операции: взятие модуля, сложение и деление), и только потом сравнивать с пороговой величиной (например, нулем). Если считать, что все простейшие операции расчитываются процессором за примерно одинаковое время, то работа сигмоидальной функции активации после произведенного суммирования (которое займет одинаковое время) будет медленее пороговой функции активации как 1:4.

Функция оценки работы сети[]

В тех случаях, когда удается оценить работу сети обучение нейронных сетей можно представить как задачу оптимизации. Оценить — означает указать количественно хорошо или плохо сеть решает поставленные ей задачи. Для этого строится функция оценки. Она, как правило, явно зависит от выходных сигналов сети и неявно (через функционирование) — от всех ее параметров. Простейший и самый распространенный пример оценки — сумма квадратов расстояний от выходных сигналов сети до их требуемых значений:
{displaystyle H={frac {1}{2}}sum _{tau in v_{out}}(Z(tau )-Z^{*}(tau ))^{2}},
где {displaystyle Z^{*}(tau )} — требуемое значение выходного сигнала.

Метод наименьших квадратов далеко не всегда является лучшим выбором оценки. Тщательное конструирование функции оценки позволяет на порядок поысить эффективность обучения сети, а также получать дополнительную информацию — «уровень уверенности» сети в даваемом ответе[6].

Описание алгоритма[]

Файл:Neuro.PNG

Архитектура многослойного перцептрона

Алгоритм обратного распространения ошибки применяется для многослойного перцептрона. У сети есть входы {displaystyle x_{1},...,x_{n}}, выходы Outputs и внутренние узлы. Перенумеруем все узлы (включая входы и выходы) числами от 1 до N. Обозначим через {displaystyle w_{i,j}} вес, стоящий на ребре, соединяющем i-ый и j-ый узлы, а через {displaystyle o_{i}} — выход i-го узла. Если у нас m тестовых примеров с целевыми значениями выходов {displaystyle {t_{k}^{d}}}, {displaystyle d=1..m,kin Outputs}, то функция ошибки, полученная по методу наименьших квадратов, выглядит так:

{displaystyle E({w_{i,j}})={cfrac {1}{2}}sum _{d=1}^{m}sum _{kin Outputs}(t_{k}^{d}-o_{k}(x_{1}^{d},...,x_{n}^{d}))^{2}}

Как модифицировать веса? Мы будем реализовывать стохастический градиентный спуск, то есть будем подправлять веса после каждого тестового примера. Нам нужно двигаться в сторону, противоположную градиенту, то есть добавлять к каждому весу {displaystyle w_{i,j}}

{displaystyle Delta w_{i,j}=-eta {frac {partial E^{d}}{partial w_{i,j}}}}

где

{displaystyle E^{d}({w_{i,j}})={cfrac {1}{2}}sum _{kin Outputs}(t_{k}^{d}-o_{k}^{d})^{2}}

Производная считается следующим образом. Пусть сначала {displaystyle jin Outputs}, то есть интересующий нас вес входит в перцептрон последнего уровня. Сначала отметим, что {displaystyle w_{i,j}} влияет на выход перцептрона только как часть суммы {displaystyle S_{j}=sum _{i}w_{i,j}x_{i,j}}, где сумма берется по входам j-го узла. Поэтому

{displaystyle {cfrac {partial E^{d}}{partial w_{i,j}}}={cfrac {partial E^{d}}{partial S_{j}}}{cfrac {partial S_{j}}{partial w_{i,j}}}=x_{i,j}{cfrac {partial E^{d}}{partial S_{j}}}}

Аналогично, {displaystyle S_{j}} влияет на общую ошибку только в рамках выхода j-го узла {displaystyle o_{j}} (напоминаем, что это выход всей сети). Поэтому

{displaystyle {cfrac {partial E^{d}}{partial S_{j}}}={cfrac {partial E^{d}}{partial o_{j}}}{cfrac {partial o_{j}}{partial S_{j}}}=left({cfrac {partial }{partial o_{j}}}{cfrac {1}{2}}sum _{kin Outputs}(t_{k}-o_{k})^{2}right)left({cfrac {partial sigma (S_{j})}{partial S_{j}}}right)=left({cfrac {1}{2}}{cfrac {partial }{partial o_{j}}}(t_{j}-o_{j})^{2}right)(o_{j}(1-o_{j}))=-o_{j}(1-o_{j})(t_{j}-o_{j}).}

Если же j-й узел — не на последнем уровне, то у него есть выходы; обозначим их через Children(j). В этом случае

{displaystyle {cfrac {partial E^{d}}{partial S_{j}}}=sum _{kin Children(j)}{cfrac {partial E^{d}}{partial S_{k}}}{cfrac {partial S_{k}}{partial S_{j}}}},

и

{displaystyle {cfrac {partial S_{k}}{partial S_{j}}}={cfrac {partial S_{k}}{partial o_{j}}}{cfrac {partial o_{j}}{partial S_{j}}}=w_{i,j}{cfrac {partial o_{j}}{partial S_{j}}}=w_{i,j}o_{j}(1-o_{j})}.

Ну а {displaystyle {cfrac {partial E^{d}}{partial S_{k}}}} — это в точности аналогичная поправка, но вычисленная для узла следующего уровня (будем обозначать ее через {displaystyle delta _{k}} — от {displaystyle Delta _{k}} она отличается отсутствием множителя {displaystyle (-eta x_{i,j})}. Поскольку мы научились вычислять поправку для узлов последнего уровня и выражать поправку для узла более низкого уровня через поправки более высокого, можно уже писать алгоритм. Именно из-за этой особенности вычисления
поправок алгоритм называется алгоритмом обратного распространения ошибки (backpropagation). Краткое резюме проделанной работы:

  • для узла последнего уровня

{displaystyle delta _{j}=-o_{j}(1-o_{j})(t_{j}-o_{j})}

  • для внутреннего узла сети

{displaystyle delta _{j}=-o_{j}(1-o_{j})sum _{kin Outputs(j)}delta _{k}w_{j,k}}

  • для всех узлов

{displaystyle Delta w_{i,j}=-eta delta _{j}x_{i,j}}

Получающийся алгоритм представлен ниже. На вход алгоритму, кроме указанных параметров, нужно также подавать в каком-нибудь формате структуру сети. На практике очень хорошие результаты показывают сети достаточно простой структуры, состоящие из двух уровней нейронов — скрытого уровня (hidden units) и нейронов-выходов (output units); каждый вход сети соединен со всеми скрытыми нейронами, а результат работы каждого скрытого нейрона подается на вход каждому из нейронов-выходов. В таком случае достаточно подавать на вход количество нейронов скрытого уровня.

Алгоритм[]

Алгоритм:
BackPropagation {displaystyle (eta ,{x_{i}^{d},t^{d}}_{i=1,d=1}^{n,m},NUMBER_OF_STEPS)}

  1. Инициализировать {displaystyle {w_{ij}}_{i,j}} маленькими случайными значениями.
  2. Повторить NUMBER_OF_STEPS раз:
    Для всех d от 1 до m:
    1. Подать {displaystyle {x_{i}^{d}}} на вход сети и подсчитать выходы {displaystyle o_{i}} каждого узла.
    2. Для всех {displaystyle kin Outputs}
      {displaystyle delta _{k}=o_{k}(1-o_{k})(t_{k}-o_{k})}.
    3. Для каждого уровня l, начиная с предпоследнего:
      Для каждого узла j уровня l вычислить
      {displaystyle delta _{j}=o_{j}(1-o_{j})sum _{kin Children(j)}delta _{k}w_{j,k}}.
    4. Для каждого ребра сети {i, j}
      {displaystyle w_{i,j}=w_{i,j}+eta delta _{j}x_{i,j}}.
  3. Выдать значения {displaystyle w_{ij}}.

Математическая интерпретация обучения нейронной сети[]

На каждой итерации алгоритма обратного распространения весовые коэффициенты нейронной сети модифицируются так, чтобы улучшить решение одного примера. Таким образом, в процессе обучения циклически решаются однокритериальные задачи оптимизации.

Обучение нейронной сети характеризуется четырьмя специфическими ограничениями, выделяющих обучение нейросетей из общих задач оптимизации: астрономическое число параметров, необходимость высокого параллелизма при обучении, многокритериальность решаемых задач, необходимость найти достаточно широкую область, в которой значения всех минимизируемых функций близки к минимальным. В остальном проблему обучения можно, как правило, сформулировать как задачу минимизации оценки. Осторожность предыдущей фразы («как правило») связана с тем, что на самом деле нам неизвестны и никогда не будут известны все возможные задачи для нейронных сетей, и, быть может, где-то в неизвестности есть задачи, которые несводимы к минимизации оценки. Минимизация оценки — сложная проблема: параметров астрономически много (для стандартных примеров, реализуемых на РС — от 100 до 1000000), адаптивный рельеф (график оценки как функции от подстраиваемых параметров) сложен, может содержать много локальных минимумов.

Недостатки алгоритма[]

Несмотря на многочисленные успешные применения обратного распространения, оно не является панацеей. Больше всего неприятностей приносит неопределенно долгий процесс обучения. В сложных задачах для обучения сети могут потребоваться дни или даже недели, она может и вообще не обучиться. Причиной может быть одна из описанных ниже.

Паралич сети[]

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших значениях OUT, в области, где производная сжимающей функции очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть. В теоретическом отношении эта проблема плохо изучена. Обычно этого избегают уменьшением размера шага η, но это увеличивает время обучения. Различные эвристики использовались для предохранения от паралича или для восстановления после него, но пока что они могут рассматриваться лишь как экспериментальные.

Локальные минимумы[]

Обратное распространение использует разновидность градиентного спуска, то есть осуществляет спуск вниз по поверхности ошибки, непрерывно подстраивая веса в направлении к минимуму. Поверхность ошибки сложной сети сильно изрезана и состоит из холмов, долин, складок и оврагов в пространстве высокой размерности. Сеть может попасть в локальный минимум (неглубокую долину), когда рядом имеется гораздо более глубокий минимум. В точке локального минимума все направления ведут вверх, и сеть неспособна из него выбраться. Статистические методы обучения могут помочь избежать этой ловушки, но они медленны.

Размер шага[]

Внимательный разбор доказательства сходимости[3] показывает, что коррекции весов предполагаются бесконечно малыми. Ясно, что это неосуществимо на практике, так как ведет к бесконечному времени обучения. Размер шага должен браться конечным, и в этом вопросе приходится опираться только на опыт. Если размер шага очень мал, то сходимость слишком медленная, если же очень велик, то может возникнуть паралич или постоянная неустойчивость. П. Д. Вассерман[7] описал адаптивный алгоритм выбора шага, автоматически корректирующий размер шага в процессе обучения. В книге А. Н. Горбаня[8] предложена разветвлённая технология оптимизации обучения.

См. также[]

  • Сигмоид
  • Многослойный перцептрон

Литература[]

  1. Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика. — М.: «Мир», 1992.
  1. Хайкин С. Нейронные сети: Полный курс. Пер. с англ. Н. Н. Куссуль, А. Ю. Шелестова. 2-е изд., испр. — М.: Издательский дом Вильямс, 2008, 1103 с.

Внешние ссылки[]

  1. Копосов А.И., Щербаков И.Б., Кисленко Н.А., Кисленко О.П., Варивода Ю.В. и др. Отчет по научно-исследовательской работе «Создание аналитического обзора информационных источников по применению нейронных сетей для задач газовой технологии». — Москва: ВНИИГАЗ, 1995.
  1. Миркес Е. М., Нейроинформатика: Учеб. пособие для студентов с программами для выполнения лабораторных работ. Красноярск: ИПЦ КГТУ, 2002, 347 с. Рис. 58, табл. 59, библиогр. 379 наименований. ISBN 5-7636-0477-6

Примечания[]

  1. Werbos P. J., Beyond regression: New tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University, Cambridge, MA, 1974.
  2. Галушкин А. И. Синтез многослойных систем распознавания образов. — М.: «Энергия», 1974.
  3. 3,0 3,1 Rumelhart D.E., Hinton G.E., Williams R.J., Learning Internal Representations by Error Propagation. In: Parallel Distributed Processing, vol. 1, pp. 318—362. Cambridge, MA, MIT Press. 1986.
  4. Барцев С. И., Охонин В. А. Адаптивные сети обработки информации. Красноярск : Ин-т физики СО АН СССР, 1986. Препринт N 59Б. — 20 с.
  5. Барцев С. И., Гилев С. Е., Охонин В. А., Принцип двойственности в организации адаптивных сетей обработки информации, В кн.: Динамика химических и биологических систем. — Новосибирск: Наука, 1989. — С. 6-55.
  6. Миркес Е. М.,  — Новосибирск: Наука, Сибирская издательская фирма РАН, 1999. — 337 с. ISBN 5-02-031409-9 Другие копии онлайн: [1]
  7. Wasserman P. D. Experiments in translating Chinese characters using backpropagation. Proceedings of the Thirty-Third IEEE Computer Society International Conference.. — Washington: D. C.: Computer Society Press of the IEEE, 1988.
  8. Горбань А. Н. Обучение нейронных сетей.. — Москва: СП ПараГраф, 1990.

Понравилась статья? Поделить с друзьями:
  • Модификация и исправление ошибок
  • Модем ошибка нет несущей
  • Модем ошибка 101
  • Модем мтс ошибка 633
  • Модем или другое устройство сообщило об ошибке ростелеком