Нейросети формула ошибки

Знакомимся с методом обратного распространения ошибки

Время на прочтение
6 мин

Количество просмотров 44K

Всем привет! Новогодние праздники подошли к концу, а это значит, что мы вновь готовы делиться с вами полезным материалом. Перевод данной статьи подготовлен в преддверии запуска нового потока по курсу «Алгоритмы для разработчиков».

Поехали!


Метод обратного распространения ошибки – вероятно самая фундаментальная составляющая нейронной сети. Впервые он был описан в 1960-е и почти 30 лет спустя его популяризировали Румельхарт, Хинтон и Уильямс в статье под названием «Learning representations by back-propagating errors».

Метод используется для эффективного обучения нейронной сети с помощью так называемого цепного правила (правила дифференцирования сложной функции). Проще говоря, после каждого прохода по сети обратное распространение выполняет проход в обратную сторону и регулирует параметры модели (веса и смещения).

В этой статья я хотел бы подробно рассмотреть с точки зрения математики процесс обучения и оптимизации простой 4-х слойной нейронной сети. Я считаю, что это поможет читателю понять, как работает обратное распространение, а также осознать его значимость.

Определяем модель нейронной сети

Четырехслойная нейронная сеть состоит из четырех нейронов входного слоя, четырех нейронов на скрытых слоях и 1 нейрона на выходном слое.


Простое изображение четырехслойной нейронной сети.

Входной слой

На рисунке нейроны фиолетового цвета представляют собой входные данные. Они могут быть простыми скалярными величинами или более сложными – векторами или многомерными матрицами.


Уравнение, описывающее входы xi.

Первый набор активаций (а) равен входным значениям. «Активация» — это значение нейрона после применения функции активации. Подробнее смотрите ниже.

Скрытые слои

Конечные значения в скрытых нейронах (на рисунке зеленого цвета) вычисляются с использованием zl – взвешенных входов в слое I и aI активаций в слое L. Для слоев 2 и 3 уравнения будут следующими:

Для l = 2:

Для l = 3:

W2 и W3 – это веса на слоях 2 и 3, а b2 и b3 – смещения на этих слоях.

Активации a2 и a3 вычисляются с помощью функции активации f. Например, эта функция f является нелинейной (как сигмоид, ReLU и гиперболический тангенс) и позволяет сети изучать сложные паттерны в данных. Мы не будем подробно останавливаться на том, как работают функции активации, но, если вам интересно, я настоятельно рекомендую прочитать эту замечательную статью.

Присмотревшись внимательно, вы увидите, что все x, z2, a2, z3, a3, W1, W2, b1 и b2 не имеют нижних индексов, представленных на рисунке четырехслойной нейронной сети. Дело в том, что мы объединили все значения параметров в матрицы, сгруппированные по слоям. Это стандартный способ работы с нейронными сетями, и он довольно комфортный. Однако я пройдусь по уравнениям, чтобы не возникло путаницы.

Давайте возьмем слой 2 и его параметры в качестве примера. Те же самые операции можно применить к любому слою нейронной сети.
W1 – это матрица весов размерности (n, m), где n – это количество выходных нейронов (нейронов на следующем слое), а m – число входных нейронов (нейронов в предыдущем слое). В нашем случае n = 2 и m = 4.

Здесь первое число в нижнем индексе любого из весов соответствует индексу нейрона в следующем слое (в нашем случае – это второй скрытый слой), а второе число соответствует индексу нейрона в предыдущем слое (в нашем случае – это входной слой).

x – входной вектор размерностью (m, 1), где m – число входных нейронов. В нашем случае m = 4.

b1 – это вектор смещения размерности (n, 1), где n – число нейронов на текущем слое. В нашем случае n = 2.

Следуя уравнению для z2 мы можем использовать приведенные выше определения W1, x и b1 для получения уравнения z2:

Теперь внимательно посмотрите на иллюстрацию нейронной сети выше:

Как видите, z2 можно выразить через z12 и z22, где z12 и z22 – суммы произведений каждого входного значения xi на соответствующий вес Wij1.

Это приводит к тому же самому уравнению для z2 и доказывает, что матричные представления z2, a2, z3 и a3 – верны.

Выходной слой

Последняя часть нейронной сети – это выходной слой, который выдает прогнозируемое значение. В нашем простом примере он представлен в виде одного нейрона, окрашенного в синий цвет и рассчитываемого следующим образом:

И снова мы используем матричное представление для упрощения уравнения. Можно использовать вышеприведенные методы, чтобы понять лежащую в их основе логику.

Прямое распространение и оценка

Приведенные выше уравнения формируют прямое распространение по нейронной сети. Вот краткий обзор:

(1) – входной слой
(2) – значение нейрона на первом скрытом слое
(3) – значение активации на первом скрытом слое
(4) – значение нейрона на втором скрытом слое
(5) – значение активации на втором скрытом уровне
(6) – выходной слой

Заключительным шагом в прямом проходе является оценка прогнозируемого выходного значения s относительно ожидаемого выходного значения y.

Выходные данные y являются частью обучающего набора данных (x, y), где x – входные данные (как мы помним из предыдущего раздела).

Оценка между s и y происходит через функцию потерь. Она может быть простой как среднеквадратичная ошибка или более сложной как перекрестная энтропия.

Мы назовем эту функцию потерь С и обозначим ее следующим образом:

Где cost может равняться среднеквадратичной ошибке, перекрестной энтропии или любой другой функции потерь.

Основываясь на значении С, модель «знает», насколько нужно скорректировать ее параметры, чтобы приблизиться к ожидаемому выходному значению y. Это происходит с помощью метода обратного распространения ошибки.

Обратное распространение ошибки и вычисление градиентов

Опираясь на статью 1989 года, метод обратного распространения ошибки:

Постоянно настраивает веса соединений в сети, чтобы минимизировать меру разности между фактическим выходным вектором сети и желаемым выходным вектором.
и
…дает возможность создавать полезные новые функции, что отличает обратное распространение от более ранних и простых методов…

Другими словами, обратное распространение направлено на минимизацию функции потерь путем корректировки весов и смещений сети. Степень корректировки определяется градиентами функции потерь по отношению к этим параметрам.

Возникает один вопрос: Зачем вычислять градиенты?

Чтобы ответить на этот вопрос, нам сначала нужно пересмотреть некоторые понятия вычислений:

Градиентом функции С(x1, x2, …, xm) в точке x называется вектор частных производных С по x.

Производная функции С отражает чувствительность к изменению значения функции (выходного значения) относительно изменения ее аргумента х (входного значения). Другими словами, производная говорит нам в каком направлении движется С.

Градиент показывает, насколько необходимо изменить параметр x (в положительную или отрицательную сторону), чтобы минимизировать С.

Вычисление этих градиентов происходит с помощью метода, называемого цепным правилом.
Для одного веса (wjk)l градиент равен:

(1) Цепное правило
(2) По определению m – количество нейронов на l – 1 слое
(3) Вычисление производной
(4) Окончательное значение
Аналогичный набор уравнений можно применить к (bj)l
:

(1) Цепное правило
(2) Вычисление производной
(3) Окончательное значение

Общая часть в обоих уравнениях часто называется «локальным градиентом» и выражается следующим образом:

«Локальный градиент» можно легко определить с помощью правила цепи. Этот процесс я не буду сейчас расписывать.

Градиенты позволяют оптимизировать параметры модели:

Пока не будет достигнут критерий остановки выполняется следующее:

Алгоритм оптимизации весов и смещений (также называемый градиентным спуском)

  • Начальные значения w и b выбираются случайным образом.
  • Эпсилон (e) – это скорость обучения. Он определяет влияние градиента.
  • w и b – матричные представления весов и смещений.
  • Производная C по w или b может быть вычислена с использованием частных производных С по отдельным весам или смещениям.
  • Условие завершение выполняется, как только функция потерь минимизируется.

Заключительную часть этого раздела я хочу посвятить простому примеру, в котором мы рассчитаем градиент С относительно одного веса (w22)2.

Давайте увеличим масштаб нижней части вышеупомянутой нейронной сети:

Визуальное представление обратного распространения в нейронной сети
Вес (w22)2 соединяет (a2)2 и (z2)2, поэтому вычисление градиента требует применения цепного правила на (z3)2 и (a3)2:

Вычисление конечного значения производной С по (a2)3 требует знания функции С. Поскольку С зависит от (a2)3, вычисление производной должно быть простым.

Я надеюсь, что этот пример сумел пролить немного света на математику, стоящую за вычислением градиентов. Если захотите узнать больше, я настоятельно рекомендую вам посмотреть Стэндфордскую серию статей по NLP, где Ричард Сочер дает 4 замечательных объяснения обратного распространения.

Заключительное замечание

В этой статье я подробно объяснил, как обратное распространение ошибки работает под капотом с помощью математических методов, таких как вычисление градиентов, цепное правило и т.д. Знание механизмов этого алгоритма укрепит ваши знания о нейронных сетях и позволит вам чувствовать себя комфортно при работе с более сложными моделями. Удачи вам в путешествии по глубокому обучению!

На этом все. Приглашаем всех на бесплатный вебинар по теме «Дерево отрезков: просто и быстро».

Нейронные сети обучаются с помощью тех или иных модификаций градиентного спуска, а чтобы применять его, нужно уметь эффективно вычислять градиенты функции потерь по всем обучающим параметрам. Казалось бы, для какого-нибудь запутанного вычислительного графа это может быть очень сложной задачей, но на помощь спешит метод обратного распространения ошибки.

Открытие метода обратного распространения ошибки стало одним из наиболее значимых событий в области искусственного интеллекта. В актуальном виде он был предложен в 1986 году Дэвидом Э. Румельхартом, Джеффри Э. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно красноярскими математиками С. И. Барцевым и В. А. Охониным. С тех пор для нахождения градиентов параметров нейронной сети используется метод вычисления производной сложной функции, и оценка градиентов параметров сети стала хоть сложной инженерной задачей, но уже не искусством. Несмотря на простоту используемого математического аппарата, появление этого метода привело к значительному скачку в развитии искусственных нейронных сетей.

Суть метода можно записать одной формулой, тривиально следующей из формулы производной сложной функции: если $f(x) = g_m(g_{m-1}(ldots (g_1(x)) ldots))$, то $frac{partial f}{partial x} = frac{partial g_m}{partial g_{m-1}}frac{partial g_{m-1}}{partial g_{m-2}}ldots frac{partial g_2}{partial g_1}frac{partial g_1}{partial x}$. Уже сейчас мы видим, что градиенты можно вычислять последовательно, в ходе одного обратного прохода, начиная с $frac{partial g_m}{partial g_{m-1}}$ и умножая каждый раз на частные производные предыдущего слоя.

Backpropagation в одномерном случае

В одномерном случае всё выглядит особенно просто. Пусть $w_0$ — переменная, по которой мы хотим продифференцировать, причём сложная функция имеет вид

$$f(w_0) = g_m(g_{m-1}(ldots g_1(w_0)ldots)),$$

где все $g_i$ скалярные. Тогда

$$f'(w_0) = g_m'(g_{m-1}(ldots g_1(w_0)ldots))cdot g’_{m-1}(g_{m-2}(ldots g_1(w_0)ldots))cdotldots cdot g’_1(w_0)$$

Суть этой формулы такова. Если мы уже совершили forward pass, то есть уже знаем

$$g_1(w_0), g_2(g_1(w_0)),ldots,g_{m-1}(ldots g_1(w_0)ldots),$$

то мы действуем следующим образом:

  • берём производную $g_m$ в точке $g_{m-1}(ldots g_1(w_0)ldots)$;

  • умножаем на производную $g_{m-1}$ в точке $g_{m-2}(ldots g_1(w_0)ldots)$;

  • и так далее, пока не дойдём до производной $g_1$ в точке $w_0$.

Проиллюстрируем это на картинке, расписав по шагам дифференцирование по весам $w_i$ функции потерь логистической регрессии на одном объекте (то есть для батча размера 1):

17_1.png

Собирая все множители вместе, получаем:

$$frac{partial f}{partial w_0} = (-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_1} = x_1cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

$$frac{partial f}{partial w_2} = x_2cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$

Таким образом, мы видим, что сперва совершается forward pass для вычисления всех промежуточных значений (и да, все промежуточные представления нужно будет хранить в памяти), а потом запускается backward pass, на котором в один проход вычисляются все градиенты.

Почему же нельзя просто пойти и начать везде вычислять производные?

В главе, посвящённой матричным дифференцированиям, мы поднимаем вопрос о том, что вычислять частные производные по отдельности — это зло, лучше пользоваться матричными вычислениями. Но есть и ещё одна причина: даже и с матричной производной в принципе не всегда хочется иметь дело. Рассмотрим простой пример. Допустим, что $X^r$ и $X^{r+1}$ — два последовательных промежуточных представления $Ntimes M$ и $Ntimes K$, связанных функцией $X^{r+1} = f^{r+1}(X^r)$. Предположим, что мы как-то посчитали производную $frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$ функции потерь $mathcal{L}$, тогда

$$frac{partialmathcal{L}}{partial X^{r}_{st}} = sum_{i,j}frac{partial f^{r+1}_{ij}}{partial X^{r}_{st}}frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$$

И мы видим, что, хотя оба градиента $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ и $frac{partialmathcal{L}}{partial X_{st}^{r}}$ являются просто матрицами, в ходе вычислений возникает «четырёхмерный кубик» $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, даже хранить который весьма болезненно: уж больно много памяти он требует ($N^2MK$ по сравнению с безобидными $NM + NK$, требуемыми для хранения градиентов). Поэтому хочется промежуточные производные $frac{partial f^{r+1}}{partial X^{r}}$ рассматривать не как вычисляемые объекты $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, а как преобразования, которые превращают $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ в $frac{partialmathcal{L}}{partial X_{st}^{r}}$. Целью следующих глав будет именно это: понять, как преобразуется градиент в ходе error backpropagation при переходе через тот или иной слой.

  Вы спросите себя: надо ли мне сейчас пойти и прочитать главу учебника про матричное дифференцирование?

Встречный вопрос. Найдите производную функции по вектору $x$:

$$f(x) = x^TAx, Ain Mat_{n}{mathbb{R}}text{ — матрица размера }ntimes n$$

А как всё поменяется, если $A$ тоже зависит от $x$? Чему равен градиент функции, если $A$ является скаляром? Если вы готовы прямо сейчас взять ручку и бумагу и посчитать всё, то вам, вероятно, не надо читать про матричные дифференцирования. Но мы советуем всё-таки заглянуть в эту главу, если обозначения, которые мы будем дальше использовать, покажутся вам непонятными: единой нотации для матричных дифференцирований человечество пока, увы, не изобрело, и переводить с одной на другую не всегда легко.

Мы же сразу перейдём к интересующей нас вещи: к вычислению градиентов сложных функций.

Градиент сложной функции

Напомним, что формула производной сложной функции выглядит следующим образом:

$$left[D_{x_0} (color{#5002A7}{u} circ color{#4CB9C0}{v}) right](h) = color{#5002A7}{left[D_{v(x_0)} u right]} left( color{#4CB9C0}{left[D_{x_0} vright]} (h)right)$$

Теперь разберёмся с градиентами. Пусть $f(x) = g(h(x))$ – скалярная функция. Тогда

$$left[D_{x_0} f right] (x-x_0) = langlenabla_{x_0} f, x-x_0rangle.$$

С другой стороны,

$$left[D_{h(x_0)} g right] left(left[D_{x_0}h right] (x-x_0)right) = langlenabla_{h_{x_0}} g, left[D_{x_0} hright] (x-x_0)rangle = langleleft[D_{x_0} hright]^* nabla_{h(x_0)} g, x-x_0rangle.$$

То есть $color{#FFC100}{nabla_{x_0} f} = color{#348FEA}{left[D_{x_0} h right]}^* color{#FFC100}{nabla_{h(x_0)}}g$ — применение сопряжённого к $D_{x_0} h$ линейного отображения к вектору $nabla_{h(x_0)} g$.

Эта формула — сердце механизма обратного распространения ошибки. Она говорит следующее: если мы каким-то образом получили градиент функции потерь по переменным из некоторого промежуточного представления $X^k$ нейронной сети и при этом знаем, как преобразуется градиент при проходе через слой $f^k$ между $X^{k-1}$ и $X^k$ (то есть как выглядит сопряжённое к дифференциалу слоя между ними отображение), то мы сразу же находим градиент и по переменным из $X^{k-1}$:

17_2.png

Таким образом слой за слоем мы посчитаем градиенты по всем $X^i$ вплоть до самых первых слоёв.

Далее мы разберёмся, как именно преобразуются градиенты при переходе через некоторые распространённые слои.

Градиенты для типичных слоёв

Рассмотрим несколько важных примеров.

Примеры

  1. $f(x) = u(v(x))$, где $x$ — вектор, а $v(x)$ – поэлементное применение $v$:

    $$vbegin{pmatrix}
    x_1 \
    vdots\
    x_N
    end{pmatrix}
    = begin{pmatrix}
    v(x_1)\
    vdots\
    v(x_N)
    end{pmatrix}$$

    Тогда, как мы знаем,

    $$left[D_{x_0} fright] (h) = langlenabla_{x_0} f, hrangle = left[nabla_{x_0} fright]^T h.$$

    Следовательно,

    $$
    left[D_{v(x_0)} uright] left( left[ D_{x_0} vright] (h)right) = left[nabla_{v(x_0)} uright]^T left(v'(x_0) odot hright) =\
    $$

    $$
    = sumlimits_i left[nabla_{v(x_0)} uright]_i v'(x_{0i})h_i
    = langleleft[nabla_{v(x_0)} uright] odot v'(x_0), hrangle.
    ,$$

    где $odot$ означает поэлементное перемножение. Окончательно получаем

    $$color{#348FEA}{nabla_{x_0} f = left[nabla_{v(x_0)}uright] odot v'(x_0) = v'(x_0) odot left[nabla_{v(x_0)} uright]}$$

    Отметим, что если $x$ и $h(x)$ — это просто векторы, то мы могли бы вычислять всё и по формуле $frac{partial f}{partial x_i} = sum_jbig(frac{partial z_j}{partial x_i}big)cdotbig(frac{partial h}{partial z_j}big)$. В этом случае матрица $big(frac{partial z_j}{partial x_i}big)$ была бы диагональной (так как $z_j$ зависит только от $x_j$: ведь $h$ берётся поэлементно), и матричное умножение приводило бы к тому же результату. Однако если $x$ и $h(x)$ — матрицы, то $big(frac{partial z_j}{partial x_i}big)$ представлялась бы уже «четырёхмерным кубиком», и работать с ним было бы ужасно неудобно.

  2. $f(X) = g(XW)$, где $X$ и $W$ — матрицы. Как мы знаем,

    $$left[D_{X_0} f right] (X-X_0) = text{tr}, left(left[nabla_{X_0} fright]^T (X-X_0)right).$$

    Тогда

    $$
    left[ D_{X_0W} g right] left(left[D_{X_0} left( ast Wright)right] (H)right) =
    left[ D_{X_0W} g right] left(HWright)=\
    $$ $$
    = text{tr}, left( left[nabla_{X_0W} g right]^T cdot (H) W right) =\
    $$ $$
    =
    text{tr} , left(W left[nabla_{X_0W} (g) right]^T cdot (H)right) = text{tr} , left( left[left[nabla_{X_0W} gright] W^Tright]^T (H)right)
    $$

    Здесь через $ast W$ мы обозначили отображение $Y hookrightarrow YW$, а в предпоследнем переходе использовалось следующее свойство следа:

    $$
    text{tr} , (A B C) = text{tr} , (C A B),
    $$

    где $A, B, C$ — произвольные матрицы подходящих размеров (то есть допускающие перемножение в обоих приведённых порядках). Следовательно, получаем

    $$color{#348FEA}{nabla_{X_0} f = left[nabla_{X_0W} (g) right] cdot W^T}$$

  3. $f(W) = g(XW)$, где $W$ и $X$ — матрицы. Для приращения $H = W — W_0$ имеем

    $$
    left[D_{W_0} f right] (H) = text{tr} , left( left[nabla_{W_0} f right]^T (H)right)
    $$

    Тогда

    $$
    left[D_{XW_0} g right] left( left[D_{W_0} left(X astright) right] (H)right) = left[D_{XW_0} g right] left( XH right) =
    $$ $$
    = text{tr} , left( left[nabla_{XW_0} g right]^T cdot X (H)right) =
    text{tr}, left(left[X^T left[nabla_{XW_0} g right] right]^T (H)right)
    $$

    Здесь через $X ast$ обозначено отображение $Y hookrightarrow XY$. Значит,

    $$color{#348FEA}{nabla_{X_0} f = X^T cdot left[nabla_{XW_0} (g)right]}$$

  4. $f(X) = g(softmax(X))$, где $X$ — матрица $Ntimes K$, а $softmax$ — функция, которая вычисляется построчно, причём для каждой строки $x$

    $$softmax(x) = left(frac{e^{x_1}}{sum_te^{x_t}},ldots,frac{e^{x_K}}{sum_te^{x_t}}right)$$

    В этом примере нам будет удобно воспользоваться формализмом с частными производными. Сначала вычислим $frac{partial s_l}{partial x_j}$ для одной строки $x$, где через $s_l$ мы для краткости обозначим $softmax(x)_l = frac{e^{x_l}} {sum_te^{x_t}}$. Нетрудно проверить, что

    $$frac{partial s_l}{partial x_j} = begin{cases}
    s_j(1 — s_j), & j = l,
    -s_ls_j, & jne l
    end{cases}$$

    Так как softmax вычисляется независимо от каждой строчки, то

    $$frac{partial s_{rl}}{partial x_{ij}} = begin{cases}
    s_{ij}(1 — s_{ij}), & r=i, j = l,
    -s_{il}s_{ij}, & r = i, jne l,
    0, & rne i
    end{cases},$$

    где через $s_{rl}$ мы обозначили для краткости $softmax(X)_{rl}$.

    Теперь пусть $nabla_{rl} = nabla g = frac{partialmathcal{L}}{partial s_{rl}}$ (пришедший со следующего слоя, уже известный градиент). Тогда

    $$frac{partialmathcal{L}}{partial x_{ij}} = sum_{r,l}frac{partial s_{rl}}{partial x_{ij}} nabla_{rl}$$

    Так как $frac{partial s_{rl}}{partial x_{ij}} = 0$ при $rne i$, мы можем убрать суммирование по $r$:

    $$ldots = sum_{l}frac{partial s_{il}}{partial x_{ij}} nabla_{il} = -s_{i1}s_{ij}nabla_{i1} — ldots + s_{ij}(1 — s_{ij})nabla_{ij}-ldots — s_{iK}s_{ij}nabla_{iK} =$$

    $$= -s_{ij}sum_t s_{it}nabla_{it} + s_{ij}nabla_{ij}$$

    Таким образом, если мы хотим продифференцировать $f$ в какой-то конкретной точке $X_0$, то, смешивая математические обозначения с нотацией Python, мы можем записать:

    $$begin{multline*}
    color{#348FEA}{nabla_{X_0}f =}\
    color{#348FEA}{= -softmax(X_0) odot text{sum}left(
    softmax(X_0)odotnabla_{softmax(X_0)}g, text{ axis = 1}
    right) +}\
    color{#348FEA}{softmax(X_0)odot nabla_{softmax(X_0)}g}
    end{multline*}
    $$

Backpropagation в общем виде

Подытожим предыдущее обсуждение, описав алгоритм error backpropagation (алгоритм обратного распространения ошибки). Допустим, у нас есть текущие значения весов $W^i_0$ и мы хотим совершить шаг SGD по мини-батчу $X$. Мы должны сделать следующее:

  1. Совершить forward pass, вычислив и запомнив все промежуточные представления $X = X^0, X^1, ldots, X^m = widehat{y}$.
  2. Вычислить все градиенты с помощью backward pass.
  3. С помощью полученных градиентов совершить шаг SGD.

Проиллюстрируем алгоритм на примере двуслойной нейронной сети со скалярным output’ом. Для простоты опустим свободные члены в линейных слоях.

17_3.png Обучаемые параметры – матрицы $U$ и $W$. Как найти градиенты по ним в точке $U_0, W_0$?

$$nabla_{W_0}mathcal{L} = nabla_{W_0}{left({vphantom{frac12}mathcal{L}circ hcircleft[Wmapsto g(XU_0)Wright]}right)}=$$

$$=g(XU_0)^Tnabla_{g(XU_0)W_0}(mathcal{L}circ h) = underbrace{g(XU_0)^T}_{ktimes N}cdot
left[vphantom{frac12}underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes 1}odot
underbrace{nabla_{hleft(vphantom{int_0^1}g(XU_0)W_0right)}mathcal{L}}_{Ntimes 1}right]$$

Итого матрица $ktimes 1$, как и $W_0$

$$nabla_{U_0}mathcal{L} = nabla_{U_0}left(vphantom{frac12}
mathcal{L}circ hcircleft[Ymapsto YW_0right]circ gcircleft[ Umapsto XUright]
right)=$$

$$=X^Tcdotnabla_{XU^0}left(vphantom{frac12}mathcal{L}circ hcirc [Ymapsto YW_0]circ gright) =$$

$$=X^Tcdotleft(vphantom{frac12}g'(XU_0)odot
nabla_{g(XU_0)}left[vphantom{in_0^1}mathcal{L}circ hcirc[Ymapsto YW_0right]
right)$$

$$=ldots = underset{Dtimes N}{X^T}cdotleft(vphantom{frac12}
underbrace{g'(XU_0)}_{Ntimes K}odot
underbrace{left[vphantom{int_0^1}left(
underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes1}odotunderbrace{nabla_{h(vphantom{int_0^1}gleft(XU_0right)W_0)}mathcal{L}}_{Ntimes 1}
right)cdot underbrace{W^T}_{1times K}right]}_{Ntimes K}
right)$$

Итого $Dtimes K$, как и $U_0$

Схематически это можно представить следующим образом:

17_4.gif

Backpropagation для двуслойной нейронной сети

Подробнее о предыдущих вычисленияхЕсли вы не уследили за вычислениями в предыдущем примере, давайте более подробно разберём его чуть более конкретную версию (для $g = h = sigma$).

Рассмотрим двуслойную нейронную сеть для классификации. Мы уже встречали ее ранее при рассмотрении линейно неразделимой выборки. Предсказания получаются следующим образом:

$$
widehat{y} = sigma(X^1 W^2) = sigmaBig(big(sigma(X^0 W^1 )big) W^2 Big).
$$

Пусть $W^1_0$ и $W^2_0$ — текущее приближение матриц весов. Мы хотим совершить шаг по градиенту функции потерь, и для этого мы должны вычислить её градиенты по $W^1$ и $W^2$ в точке $(W^1_0, W^2_0)$.

Прежде всего мы совершаем forward pass, в ходе которого мы должны запомнить все промежуточные представления: $X^1 = X^0 W^1_0$, $X^2 = sigma(X^0 W^1_0)$, $X^3 = sigma(X^0 W^1_0) W^2_0$, $X^4 = sigma(sigma(X^0 W^1_0) W^2_0) = widehat{y}$. Они понадобятся нам дальше.

Для полученных предсказаний вычисляется значение функции потерь:

$$
l = mathcal{L}(y, widehat{y}) = y log(widehat{y}) + (1-y) log(1-widehat{y}).
$$

Дальше мы шаг за шагом будем находить производные по переменным из всё более глубоких слоёв.

  1. Градиент $mathcal{L}$ по предсказаниям имеет вид

    $$
    nabla_{widehat{y}}l = frac{y}{widehat{y}} — frac{1 — y}{1 — widehat{y}} = frac{y — widehat{y}}{widehat{y} (1 — widehat{y})},
    $$

    где, напомним, $ widehat{y} = sigma(X^3) = sigmaBig(big(sigma(X^0 W^1_0 )big) W^2_0 Big)$ (обратите внимание на то, что $W^1_0$ и $W^2_0$ тут именно те, из которых мы делаем градиентный шаг).

  2. Следующий слой — поэлементное взятие $sigma$. Как мы помним, при переходе через него градиент поэлементно умножается на производную $sigma$, в которую подставлено предыдущее промежуточное представление:

    $$
    nabla_{X^3}l = sigma'(X^3)odotnabla_{widehat{y}}l = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — widehat{y}}{widehat{y} (1 — widehat{y})} =
    $$

    $$
    = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — sigma(X^3)}{sigma(X^3) (1 — sigma(X^3))} =
    y — sigma(X^3)
    $$

  3. Следующий слой — умножение на $W^2_0$. В этот момент мы найдём градиент как по $W^2$, так и по $X^2$. При переходе через умножение на матрицу градиент, как мы помним, умножается с той же стороны на транспонированную матрицу, а значит:

    $$
    color{blue}{nabla_{W^2_0}l} = (X^2)^Tcdot nabla_{X^3}l = (X^2)^Tcdot(y — sigma(X^3)) =
    $$

    $$
    = color{blue}{left( sigma(X^0W^1_0) right)^T cdot (y — sigma(sigma(X^0W^1_0)W^2_0))}
    $$

    Аналогичным образом

    $$
    nabla_{X^2}l = nabla_{X^3}lcdot (W^2_0)^T = (y — sigma(X^3))cdot (W^2_0)^T =
    $$

    $$
    = (y — sigma(X^2W_0^2))cdot (W^2_0)^T
    $$

  4. Следующий слой — снова взятие $sigma$.

    $$
    nabla_{X^1}l = sigma'(X^1)odotnabla_{X^2}l = sigma(X^1)left( 1 — sigma(X^1) right) odot left( (y — sigma(X^2W_0^2))cdot (W^2_0)^T right) =
    $$

    $$
    = sigma(X^1)left( 1 — sigma(X^1) right) odotleft( (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^T right)
    $$

  5. Наконец, последний слой — это умножение $X^0$ на $W^1_0$. Тут мы дифференцируем только по $W^1$:

    $$
    color{blue}{nabla_{W^1_0}l} = (X^0)^Tcdot nabla_{X^1}l = (X^0)^Tcdot big( sigma(X^1) left( 1 — sigma(X^1) right) odot (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^Tbig) =
    $$

    $$
    = color{blue}{(X^0)^Tcdotbig(sigma(X^0W^1_0)left( 1 — sigma(X^0W^1_0) right) odot (y — sigma(sigma(X^0W^1_0)W_0^2))cdot (W^2_0)^Tbig) }
    $$

Итоговые формулы для градиентов получились страшноватыми, но они были получены друг из друга итеративно с помощью очень простых операций: матричного и поэлементного умножения, в которые порой подставлялись значения заранее вычисленных промежуточных представлений.

Автоматизация и autograd

Итак, чтобы нейросеть обучалась, достаточно для любого слоя $f^k: X^{k-1}mapsto X^k$ с параметрами $W^k$ уметь:

  • превращать $nabla_{X^k_0}mathcal{L}$ в $nabla_{X^{k-1}_0}mathcal{L}$ (градиент по выходу в градиент по входу);
  • считать градиент по его параметрам $nabla_{W^k_0}mathcal{L}$.

При этом слою совершенно не надо знать, что происходит вокруг. То есть слой действительно может быть запрограммирован как отдельная сущность, умеющая внутри себя делать forward pass и backward pass, после чего слои механически, как кубики в конструкторе, собираются в большую сеть, которая сможет работать как одно целое.

Более того, во многих случаях авторы библиотек для глубинного обучения уже о вас позаботились и создали средства для автоматического дифференцирования выражений (autograd). Поэтому, программируя нейросеть, вы почти всегда можете думать только о forward-проходе, прямом преобразовании данных, предоставив библиотеке дифференцировать всё самостоятельно. Это делает код нейросетей весьма понятным и выразительным (да, в реальности он тоже бывает большим и страшным, но сравните на досуге код какой-нибудь разухабистой нейросети и код градиентного бустинга на решающих деревьях и почувствуйте разницу).

Но это лишь начало

Метод обратного распространения ошибки позволяет удобно посчитать градиенты, но дальше с ними что-то надо делать, и старый добрый SGD едва ли справится с обучением современной сетки. Так что же делать? О некоторых приёмах мы расскажем в следующей главе.

Рад снова всех приветствовать, и сегодня продолжим планомерно двигаться в выбранном направлении. Речь, конечно, о масштабном разборе искусственных нейронных сетей для решения широкого спектра задач. Продолжим ровно с того момента, на котором остановились в предыдущей части, и это означает, что героем данного поста будет ключевой процесс — обучение нейронных сетей.

  • Градиентный спуск
  • Функция ошибки
  • Метод обратного распространения ошибки
  • Пример расчета

Тема эта крайне важна, поскольку именно процесс обучения позволяет сети начать выполнять задачу, для которой она, собственно, и предназначена. То есть нейронная сеть функционирует не по какому-либо жестко заданному на этапе проектирования алгоритму, она совершенствуется в процессе анализа имеющихся данных. Этот процесс и называется обучением нейронной сети. Математически суть процесса обучения заключается в корректировке значений весов синапсов (связей между имеющимися нейронами). Изначально значения весов задаются случайно, затем производится обучение, результатом которого будут новые значения синаптических весов. Это все мы максимально подробно разберем как раз в этой статье.

На своем сайте я всегда придерживаюсь концепции, при которой теоретические выкладки по максимуму сопровождаются практическими примерами для максимальной наглядности. Так мы поступим и сейчас 👍

Итак, суть заключается в следующем. Пусть у нас есть простейшая нейронная сеть, которую мы хотим обучить (продолжаем рассматривать сети прямого распространения):

Обучение нейронных сетей.

То есть на входы нейронов I1 и I2 мы подаем какие-либо числа, а на выходе сети получаем соответственно новое значение. При этом нам необходима некая выборка данных, включающая в себя значения входов и соответствующее им, правильное, значение на выходе:

bold{I_1} bold{I_2} bold{O_{net}}
x_{11} x_{12} y_{1}
x_{21} x_{22} y_{2}
x_{31} x_{32} y_{3}
x_{N1} x_{N2} y_{N}

Допустим, сеть выполняет суммирование значений на входе, тогда данный набор данных может быть таким:

bold{I_1} bold{I_2} bold{O_{net}}
1 4 5
2 7 9
3 5 8
1000 1500 2500

Эти значения и используются для обучения сети. Как именно — рассмотрим чуть ниже, пока сконцентрируемся на идее процесса в целом. Для того, чтобы иметь возможность тестировать работу сети в процессе обучения, исходную выборку данных делят на две части — обучающую и тестовую. Пусть имеется 1000 образцов, тогда можно 900 использовать для обучения, а оставшиеся 100 — для тестирования. Эти величины взяты исключительно ради наглядности и демонстрации логики выполнения операций, на практике все зависит от задачи, размер обучающей выборки может спокойно достигать и сотен тысяч образцов.

Итак, итог имеем следующий — обучающая выборка прогоняется через сеть, в результате чего происходит настройка значений синаптических весов. Один полный проход по всей выборке называется эпохой. И опять же, обучение нейронной сети — это процесс, требующий многократных экспериментов, анализа результатов и творческого подхода. Все перечисленные параметры (размер выборки, количество эпох обучения) могут иметь абсолютно разные значения для разных задач и сетей. Четкого правила тут просто нет, в этом и кроется дополнительный шарм и изящность )

Возвращаемся к разбору, и в результате прохода обучающей выборки через сеть мы получаем сеть с новыми значениями весов синапсов.

Далее мы через эту, уже обученную в той или иной степени, сеть прогоняем тестовую выборку, которая не участвовала в обучении. При этом сеть выдает нам выходные значения для каждого образца, которые мы сравниваем с теми верными значениями, которые имеем.

Анализируем нашу гипотетическую выборку:

Обучающая выборка.

Таким образом, для тестирования подаем на вход сети значения x_{(M+1)1}, x_{(M+1)2} и проверяем, чему равен выход, ожидаем очевидно значение y_{(M+1)}. Аналогично поступаем и для оставшихся тестовых образцов. После чего мы можем сделать вывод, успешно или нет работает сеть. Например, сеть дает правильный ответ для 90% тестовых данных, дальше уже встает вопрос — устраивает ли нас данная точность или процесс обучения необходимо повторить, либо провести заново, изменив какие-либо параметры сети.

В этом и заключается суть обучения нейронных сетей, теперь перейдем к деталям и конкретным действиям, которые необходимо осуществить для выполнения данного процесса. Двигаться снова будем поэтапно, чтобы сформировать максимально четкую и полную картину. Поэтому начнем с понятия градиентного спуска, который используется при обучении по методу обратного распространения ошибки. Обо всем этом далее…

Обучение нейронных сетей. Градиентный спуск.

Рассмотрев идею процесса обучения в целом, на данном этапе мы можем однозначно сформулировать текущую цель — необходимо определить математический алгоритм, который позволит рассчитать значения весовых коэффициентов таким образом, чтобы ошибка сети была минимальна. То есть грубо говоря нам необходима конкретная формула для вычисления:

Здесь Delta w_{ij} — величина, на которую необходимо изменить вес синапса, связывающего нейроны i и j нашей сети. Соответственно, зная это, необходимо на каждом этапе обучения производить корректировку весов связей между всеми элементами нейронной сети. Задача ясна, переходим к делу.

Пусть функция ошибки от веса имеет следующий вид:

Для удобства рассмотрим зависимость функции ошибки от одного конкретного веса:

График ошибки.

В начальный момент мы находимся в некоторой точке кривой, а для минимизации ошибки попасть мы хотим в точку глобального минимума функции:

Минимизация ошибки при обучении нейронной сети.

Нанесем на график вектора градиентов в разных точках. Длина векторов численно равна скорости роста функции в данной точке, что в свою очередь соответствует значению производной функции по данной точке. Исходя из этого, делаем вывод, что длина вектора градиента определяется крутизной функции в данной точке:

Градиентный спуск.

Вывод прост — величина градиента будет уменьшаться по мере приближения к минимуму функции. Это важный вывод, к которому мы еще вернемся. А тем временем разберемся с направлением вектора, для чего рассмотрим еще несколько возможных точек:

Алгоритм обратного распространения ошибки.

Находясь в точке 1, целью является перейти в точку 2, поскольку в ней значение ошибки меньше (E_2 < E_1), а глобальная задача по-прежнему заключается в ее минимизации. Для этого необходимо изменить величину w на некое значение Delta w (Delta w = w_2 — w_1 > 0). При всем при этом в точке 1 градиент отрицательный. Фиксируем данные факты и переходим к точке 3, предположим, что мы находимся именно в ней.

Тогда для уменьшения ошибки наш путь лежит в точку 4, а необходимое изменение значения: Delta w = w_4 — w_3 < 0. Градиент же в точке 3 положителен. Этот факт также фиксируем.

А теперь соберем воедино эту информацию в виде следующей иллюстрации:

Переход bold{Delta w} Знак bold{Delta w} Градиент
1 rArr 2 w_2 — w_1 +
3 rArr 4 w_4 — w_3 +

Вывод напрашивается сам собой — величина, на которую необходимо изменить значение w, в любой точке противоположна по знаку градиенту. И, таким образом, представим эту самую величину в виде:

Delta w = -alpha cdot frac{dE}{dw}

Имеем в наличии:

  • Delta w — величина, на которую необходимо изменить значение w.
  • frac{dE}{dw} — градиент в этой точке.
  • alpha — скорость обучения.

Собственно, логика метода градиентного спуска и заключается в данном математическом выражении, а именно в том, что для минимизации ошибки необходимо изменять w в направлении противоположном градиенту. В контексте нейронных сетей имеем искомый закон для корректировки весов синаптических связей (для синапса между нейронами i и j):

Delta w_{ij} = -alpha cdot frac{dE}{dw_{ij}}

Более того, вспомним о важном свойстве, которое мы отдельно пометили. И заключается оно в том, что величина градиента будет уменьшаться по мере приближения к минимуму функции. Что это нам дает? А то, что в том случае, если наша текущая дислокация далека от места назначения, то величина, корректирующая вес связи, будет больше. А это обеспечит скорейшее приближение к цели. При приближении к целевому пункту, величина frac{dE}{dw_{ij}} будет уменьшаться, что поможет нам точнее попасть в нужную точку, а кроме того, не позволит нам ее проскочить. Визуализируем вышеописанное:

Скорость обучения.

Скорость же обучения несет в себе следующий смысл. Она определяет величину каждого шага при поиске минимума ошибки. Слишком большое значение приводит к тому, что точка может «перепрыгнуть» через нужное значение и оказаться по другую сторону от цели:

Норма обучения.

Если же величина будет мала, то это приведет к тому, что спуск будет осуществляться очень медленно, что также является нежелательным эффектом. Поэтому скорость обучения, как и многие другие параметры нейронной сети, является очень важной величиной, для которой нет единственно верного значения. Все снова зависит от конкретного случая и оптимальная величина определяется исключительно исходя из текущих условий.

И даже на этом еще не все, здесь присутствует один важный нюанс, который в большинстве статей опускается, либо вовсе не упоминается. Реальная зависимость может иметь совсем другой вид:

Локальные минимумы при обучении нейронных сетей.

Из чего вытекает потенциальная возможность попадания в локальный минимум, вместо глобального, что является большой проблемой. Для предотвращения данного эффекта вводится понятие момента обучения и формула принимает следующий вид:

Delta w_{ij} = -alpha cdot frac{dE}{dw_{ij}} + gamma cdot Delta w_{ij}^{t - 1}

То есть добавляется второе слагаемое, которое представляет из себя произведение момента на величину корректировки веса на предыдущем шаге.

Итого, резюмируем продвижение к цели:

  • Нашей задачей было найти закон, по которому необходимо изменять величину весов связей между нейронами.
  • Наш результат — Delta w_{ij} = -alpha cdot frac{dE}{dw_{ij}} + gamma cdot Delta w_{ij}^{t — 1} — именно то, что и требовалось 👍

И опять же, полученный результат логичным образом перенаправляет нас на следующий этап, ставя вопросы — что из себя представляет функция ошибки, и как определить ее градиент.

Обучение нейронных сетей. Функция ошибки.

Начнем с того, что определимся с тем, что у нас в наличии, для этого вернемся к конкретной нейронной сети. Пусть вид ее таков:

Пример нейронной сети.

Интересует нас, в первую очередь, часть, относящаяся к нейронам выходного слоя. Подав на вход определенные значения, получаем значения на выходе сети: O_{net, 1} и O_{net, 2}. Кроме того, поскольку мы ведем речь о процессе обучения нейронной сети, то нам известны целевые значения: O_{correct, 1} и O_{correct, 2}. И именно этот набор данных на этом этапе является для нас исходным:

  • Известно: O_{net, 1}, O_{net, 2}, O_{correct, 1} и O_{correct, 2}.
  • Необходимо определить величины Delta w_{ij} для корректировки весов, для этого нужно вычислить градиенты (frac{dE}{dw_{ij}}) для каждого из синапсов.

Полдела сделано — задача четко сформулирована, начинаем деятельность по поиску решения.

В плане того, как определять ошибку, первым и самым очевидным вариантом кажется простая алгебраическая разность. Для каждого из выходных нейронов:

E_k = O_{correct, k} - O_{net, k}

Дополним пример числовыми значениями:

Нейрон bold{O_{net}} bold{O_{correct}} bold{E}
1 0.9 0.5 -0.4
2 0.2 0.6 0.4

Недостатком данного варианта является то, что в том случае, если мы попытаемся просуммировать ошибки нейронов, то получим:

E_{sum} = e_1 + e_2 = -0.4 + 0.4 = 0

Что не соответствует действительности (нулевая ошибка, говорит об идеальной работе нейронной сети, по факту оба нейрона дали неверный результат). Так что вариант с разностью откидываем за несостоятельностью.

Вторым, традиционно упоминаемым, методом вычисления ошибки является использование модуля разности:

E_k = | O_{correct, k} - O_{net, k} |

Тут в действие вступает уже проблема иного рода:

График модуля.

Функция, бесспорно, симпатична, но при приближении к минимуму ее градиент является постоянной величиной, скачкообразно меняясь при переходе через точку минимума. Это нас также не устраивает, поскольку, как мы обсуждали, концепция заключалась в том числе в том, чтобы по мере приближения к минимуму значение градиента уменьшалось.

В итоге хороший результат дает зависимость (для выходного нейрона под номером k):

E_k = (O_{correct, k} - O_{net, k})^2

Функция по многим своим свойствам идеально удовлетворяет нуждам обучения нейронной сети, так что выбор сделан, остановимся на ней. Хотя, как и во многих аспектах, качающихся нейронных сетей, данное решение не является единственно и неоспоримо верным. В каких-то случаях лучше себя могут проявить другие зависимости, возможно, что какой-то вариант даст большую точность, но неоправданно высокие затраты производительности при обучении. В общем, непаханное поле для экспериментов и исследований, это и привлекательно.

Краткий вывод промежуточного шага, на который мы вышли:

  • Имеющееся: frac{dE}{dw_{jk}} = frac{d}{d w_{jk}}(O_{correct, k} — O_{net, k})^2.
  • Искомое по-прежнему: Delta w_{jk}.

Несложные диффернциально-математические изыскания выводят на следующий результат:

frac{dE}{d w_{jk}} = -(O_{correct, k} - O_{net, k}) cdot f{Large{prime}}(sum_{j}w_{jk}O_j) cdot O_j

Здесь эти самые изыскания я все-таки решил не вставлять, дабы не перегружать статью, которая и так выходит объемной. Но в случае необходимости и интереса, отпишите в комментарии, я добавлю вычисления и закину их под спойлер, как вариант.

Освежим в памяти структуру сети:

Пример обучения нейронных сетей.

Формулу можно упростить, сгруппировав отдельные ее части:

  • (O_{correct, k} — O_{net, k}) cdot f{Large{prime}}(sum_{j}w_{jk}O_j) — ошибка нейрона k.
  • O_j — тут все понятно, выходной сигнал нейрона j.

f{Large{prime}}(sum_{j}w_{jk}O_j) — значение производной функции активации. Причем, обратите внимание, что sum_{j}w_{jk}O_j — это не что иное, как сигнал на входе нейрона k (I_{k}). Тогда для расчета ошибки выходного нейрона: delta_k = (O_{correct, k} — O_{net, k}) cdot f{Large{prime}}(I_k).

Итог: frac{dE}{d w_{jk}} = -delta_k cdot O_j.

Одной из причин популярности сигмоидальной функции активности является то, что ее производная очень просто выражается через саму функцию:

f{'}(x) = f(x)medspace (1medspace-medspace f(x))

Данные алгебраические вычисления справедливы для корректировки весов между скрытым и выходным слоем, поскольку для расчета ошибки мы используем просто разность между целевым и полученным результатом, умноженную на производную.

Для других слоев будут незначительные изменения, касающиеся исключительно первого множителя в формуле:

frac{dE}{d w_{ij}} = -delta_j cdot O_i

Который примет следующий вид:

delta_j = (sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_j)

То есть ошибка для элемента слоя j получается путем взвешенного суммирования ошибок, «приходящих» к нему от нейронов следующего слоя и умножения на производную функции активации. В результате:

frac{dE}{d w_{ij}} = -(sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_j) cdot O_i

Снова подводим промежуточный итог, чтобы иметь максимально полную и структурированную картину происходящего. Вот результаты, полученные нами на двух этапах, которые мы успешно миновали:

  • Ошибка:
    • выходной слой: delta_k = (O_{correct, k} — O_{net, k}) cdot f{Large{prime}}(I_k)
    • скрытые слои: delta_j = (sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_j)
  • Градиент: frac{dE}{d w_{ij}} = -delta_j cdot O_i
  • Корректировка весовых коэффициентов: Delta w_{ij} = -alpha cdot frac{dE}{dw_{ij}} + gamma cdot Delta w_{ij}^{t — 1}

Преобразуем последнюю формулу:

Delta w_{ij} = alpha cdot delta_j cdot O_i + gamma cdot Delta w_{ij}^{t - 1}

Из этого мы делаем вывод, что на данный момент у нас есть все, что необходимо для того, чтобы произвести обучение нейронной сети. И героем следующего подраздела будет алгоритм обратного распространения ошибки.

Метод обратного распространения ошибки.

Данный метод является одним из наиболее распространенных и популярных, чем и продиктован его выбор для анализа и разбора. Алгоритм обратного распространения ошибки относится к методам обучение с учителем, что на деле означает необходимость наличия целевых значений в обучающих сетах.

Суть же метода подразумевает наличие двух этапов:

  • Прямой проход — входные сигналы двигаются в прямом направлении, в результате чего мы получаем выходной сигнал, из которого в дальнейшем рассчитываем значение ошибки.
  • Обратный проход — обратное распространение ошибки — величина ошибки двигается в обратном направлении, в результате происходит корректировка весовых коэффициентов связей сети.

Начальные значения весов (перед обучением) задаются случайными, есть ряд методик для выбора этих значений, я опишу в отдельном материале максимально подробно. Пока вот можно полистать — ссылка.

Вернемся к конкретному примеру для явной демонстрации этих принципов:

Обратное распространение ошибки.

Итак, имеется нейронная сеть, также имеется набор данных обучающей выборки. Как уже обсудили в начале статьи — обучающая выборка представляет из себя набор образцов (сетов), каждый из которых состоит из значений входных сигналов и соответствующих им «правильных» значений выходных величин.

Процесс обучения нейронной сети для алгоритма обратного распространения ошибки будет таким:

  1. Прямой проход. Подаем на вход значения I_1, I_2, I_3 из обучающей выборки. В результате работы сети получаем выходные значения O_{net, 1}, O_{net, 2}. Этому целиком и полностью был посвящен предыдущий манускрипт.
  2. Рассчитываем величины ошибок для всех слоев:
    • для выходного: delta_k = (O_{correct, k} — O_{net, k}) cdot f{Large{prime}}(I_k)
    • для скрытых: delta_j = (sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_j)
  3. Далее используем полученные значения для расчета Delta w_{ij} = alpha cdot delta_j cdot O_i + gamma cdot Delta w_{ij}^{t — 1}
  4. И финишируем, рассчитывая новые значения весов: w_{ij medspace new} = w_{ij} + Delta w_{ij}
  5. На этом один цикл обучения закончен, данные шаги 1 — 4 повторяются для других образцов из обучающей выборки.

Обратный проход завершен, а вместе с ним и одна итерация процесса обучения нейронной сети по данному методу. Собственно, обучение в целом заключается в многократном повторении этих шагов для разных образцов из обучающей выборки. Логику мы полностью разобрали, при повторном проведении операций она остается в точности такой же.

Таким образом, максимально подробно концентрируясь именно на сути и логике процессов, мы в деталях разобрали метод обратного распространения ошибки. Поэтому переходим к завершающей части статьи, в которой разберем практический пример, произведя полностью все вычисления для конкретных числовых величин. Все в рамках продвигаемой мной концепции, что любая теоретическая информация на порядок лучше может быть осознана при применении ее на практике.

Пример расчетов для метода обратного распространения ошибки.

Возьмем нейронную сеть и зададим начальные значения весов:

Пример расчетов для метода обратного распространения ошибки.

Здесь я задал значения не в соответствии с существующими на сегодняшний день методами, а просто случайным образом для наглядности примера.

В качестве функции активации используем сигмоиду:

f(x) = frac{1}{1 + e^{-x}}

И ее производная:

f{Large{prime}}(x) = f(x)medspace (1medspace-medspace f(x))

Берем один образец из обучающей выборки, пусть будут такие значения:

  • Входные: I_1 = 0.6, I_1 = 0.7.
  • Выходное: O_{correct} = 0.9.

Скорость обучения alpha пусть будет равна 0.3, момент — gamma = 0.1. Все готово, теперь проведем полный цикл для метода обратного распространения ошибки, то есть прямой проход и обратный.

Прямой проход.

Начинаем с выходных значений нейронов 1 и 2, поскольку они являются входными, то:

O_1 = I_1 = 0.6 \
O_2 = I_2 = 0.7

Значения на входе нейронов 3, 4 и 5:

I_3 = O_1 cdot w_{13} + O_2 cdot w_{23} = 0.6 cdot (-1medspace) + 0.7 cdot 1 = 0.1 \
I_4 = 0.6 cdot 2.5 + 0.7 cdot 0.4 = 1.78 \
I_5 = 0.6 cdot 1 + 0.7 cdot (-1.5medspace) = -0.45

На выходе этих же нейронов первого скрытого слоя:

O_3 = f(I3medspace) = 0.52 \
O_4 = 0.86\
O_5 = 0.39

Продолжаем аналогично для следующего скрытого слоя:

I_6 = O_3 cdot w_{36} + O_4 cdot w_{46} + O_5 cdot w_{56} = 0.52 cdot 2.2 + 0.86 cdot (-1.4medspace) + 0.39 cdot 0.56 = 0.158 \
I_7 = 0.52 cdot 0.34 + 0.86 cdot 1.05 + 0.39 cdot 3.1 = 2.288 \
O_6 = f(I_6) = 0.54 \
O_7 = 0.908

Добрались до выходного нейрона:

I_8 = O_6 cdot w_{68} + O_7 cdot w_{78} = 0.54 cdot 0.75 + 0.908 cdot (-0.22medspace) = 0.205 \
O_8 = O_{net} = f(I_8) = 0.551

Получили значение на выходе сети, кроме того, у нас есть целевое значение O_{correct} = 0.9. То есть все, что необходимо для обратного прохода, имеется.

Обратный проход.

Как мы и обсуждали, первым этапом будет вычисление ошибок всех нейронов, действуем:

delta_8 = (O_{correct} - O_{net}) cdot f{Large{prime}}(I_8) = (O_{correct} - O_{net}) cdot f(I_8) cdot (1-f(I_8)) = (0.9 - 0.551medspace) cdot 0.551 cdot (1-0.551medspace) = 0.0863 \
delta_7 = (sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_7) = (delta_8 cdot w_{78}) cdot f{Large{prime}}(I_7) = 0.0863 cdot (-0.22medspace) cdot 0.908 cdot (1 - 0.908medspace) = -0.0016 \
delta_6 = 0.086 cdot 0.75 cdot 0.54 cdot (1 - 0.54medspace) = 0.016 \
delta_5 = (sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_5) = (delta_7 cdot w_{57} + delta_6 cdot w_{56}) cdot f{Large{prime}}(I_7) = (-0.0016 cdot 3.1 + 0.016 cdot 0.56) cdot 0.39 cdot (1 - 0.39medspace) = 0.001 \
delta_4 = (-0.0016 cdot 1.05 + 0.016 cdot (-1.4)) cdot 0.86 cdot (1 - 0.86medspace) = -0.003 \
delta_3 = (-0.0016 cdot 0.34 + 0.016 cdot 2.2) cdot 0.52 cdot (1 - 0.52medspace) = -0.0087

С расчетом ошибок закончили, следующий этап — расчет корректировочных величин для весов всех связей. Для этого мы вывели формулу:

Delta w_{ij} = alpha cdot delta_j cdot O_i + gamma cdot Delta w_{ij}^{t - 1}

Как вы помните, Delta w_{ij}^{t — 1} — это величина поправки для данного веса на предыдущей итерации. Но поскольку у нас это первый проход, то данное значение будет нулевым, соответственно, в данном случае второе слагаемое отпадает. Но забывать о нем нельзя. Продолжаем калькулировать:

Delta w_{78} = alpha cdot delta_8 cdot O_7 = 0.3 cdot 0.0863 cdot 0.908 = 0.0235 \
Delta w_{68} = 0.3 cdot 0.0863 cdot 0.54= 0.014 \
Delta w_{57} = alpha cdot delta_7 cdot O_5 = 0.3 cdot (−0.0016medspace) cdot 0.39= -0.00019 \
Delta w_{47} = 0.3 cdot (−0.0016medspace) cdot 0.86= -0.0004 \
Delta w_{37} = 0.3 cdot (−0.0016medspace) cdot 0.52= -0.00025 \
Delta w_{56} = alpha cdot delta_6 cdot O_5 = 0.3 cdot 0.016 cdot 0.39= 0.0019 \
Delta w_{46} = 0.3 cdot 0.016 cdot 0.86= 0.0041 \
Delta w_{36} = 0.3 cdot 0.016 cdot 0.52= 0.0025 \
Delta w_{25} = alpha cdot delta_5 cdot O_2 = 0.3 cdot 0.001 cdot 0.7= 0.00021 \
Delta w_{15} = 0.3 cdot 0.001 cdot 0.6= 0.00018 \
Delta w_{24} = alpha cdot delta_4 cdot O_2 = 0.3 cdot (-0.003medspace) cdot 0.7= -0.00063 \
Delta w_{14} = 0.3 cdot (-0.003medspace) cdot 0.6= -0.00054 \
Delta w_{23} = alpha cdot delta_3 cdot O_2 = 0.3 cdot (−0.0087medspace) cdot 0.7= -0.00183 \
Delta w_{13} = 0.3 cdot (−0.0087medspace) cdot 0.6= -0.00157

И самый что ни на есть заключительный этап — непосредственно изменение значений весовых коэффициентов:

w_{78 medspace new} = w_{78} + Delta w_{78} = -0.22 + 0.0235 = -0.1965 \
w_{68 medspace new} = 0.75+ 0.014 = 0.764 \
w_{57 medspace new} = 3.1 + (−0.00019medspace) = 3.0998\
w_{47 medspace new} = 1.05 + (−0.0004medspace) = 1.0496\
w_{37 medspace new} = 0.34 + (−0.00025medspace) = 0.3398\
w_{56 medspace new} = 0.56 + 0.0019 = 0.5619 \
w_{46 medspace new} = -1.4 + 0.0041 = -1.3959 \
w_{36 medspace new} = 2.2 + 0.0025 = 2.2025 \
w_{25 medspace new} = -1.5 + 0.00021 = -1.4998 \
w_{15 medspace new} = 1 + 0.00018 = 1.00018 \
w_{24 medspace new} = 0.4 + (−0.00063medspace) = 0.39937 \
w_{14 medspace new} = 2.5 + (−0.00054medspace) = 2.49946 \
w_{23 medspace new} = 1 + (−0.00183medspace) = 0.99817 \
w_{13 medspace new} = -1 + (−0.00157medspace) = -1.00157\

И на этом данную масштабную статью завершаем, конечно же, не завершая на этом деятельность по использованию нейронных сетей. Так что всем спасибо за прочтение, любые вопросы пишите в комментариях и на форуме, ну и обязательно следите за обновлениями и новыми материалами, до встречи!

    • обратное распространение

      Обратное распространение ошибки — это способ обучения нейронной сети. Цели обратного распространения просты: отрегулировать каждый вес пропорционально тому, насколько он способствует общей ошибке. Если мы будем итеративно уменьшать ошибку каждого веса, в конце концов у нас будет ряд весов, которые дают хорошие прогнозы.

      Обновление правила цепочки

      Прямое распространение можно рассматривать как длинный ряд вложенных уравнений. Если вы так думаете о прямом распространении, то обратное распространение — это просто приложение правила цепочки (дифференцирования сложной функции) для поиска производных потерь по любой переменной во вложенном уравнении. С учётом функции прямого распространения:

      f(x)=A(B(C(x)))

      A, B, и C — функции активации на различных слоях. Пользуясь правилом цепочки, мы легко вычисляем производную f(x) по x:

      f′(x)=f′(A)⋅A′(B)⋅B′(C)⋅C′(x)

      Что насчёт производной относительно B? Чтобы найти производную по B, вы можете сделать вид, что B (C(x)) является константой, заменить ее переменной-заполнителем B, и продолжить поиск производной по B стандартно.

      f′(B)=f′(A)⋅A′(B)

      Этот простой метод распространяется на любую переменную внутри функции, и позволяет нам в точности определить влияние каждой переменной на общий результат.

      Применение правила цепочки

      Давайте используем правило цепочки для вычисления производной потерь по любому весу в сети. Правило цепочки поможет нам определить, какой вклад каждый вес вносит в нашу общую ошибку и направление обновления каждого веса, чтобы уменьшить ошибку. Вот уравнения, которые нужны, чтобы сделать прогноз и рассчитать общую ошибку или потерю:

      обратное распространение ошибки

      Учитывая сеть, состоящую из одного нейрона, общая потеря нейросети может быть рассчитана как:

      Cost=C(R(Z(XW)))

      Используя правило цепочки, мы легко можем найти производную потери относительно веса W.

      C′(W)=C′(R)⋅R′(Z)⋅Z′(W)=(y^−y)⋅R′(Z)⋅X

      Теперь, когда у нас есть уравнение для вычисления производной потери по любому весу, давайте обратимся к примеру с нейронной сетью:

      обратное распространение ошибки нейронная сеть

      Какова производная от потери по Wo?

      C′(WO)=C′(y^)⋅y^′(ZO)⋅Z′O(WO)=(y^−y)⋅R′(ZO)⋅H

      А что насчет Wh? Чтобы узнать это, мы просто продолжаем возвращаться в нашу функцию, рекурсивно применяя правило цепочки, пока не доберемся до функции, которая имеет элемент Wh.

      C′(Wh)=C′(y^)⋅O′(Zo)⋅Z′o(H)⋅H′(Zh)⋅Z′h(Wh)=(y^−y)⋅R′(Zo)⋅Wo⋅R′(Zh)⋅X

      И просто забавы ради, что, если в нашей сети было бы 10 скрытых слоев. Что такое производная потери для первого веса w1?

      C(w1)=(dC/dy^)⋅(dy^/dZ11)⋅(dZ11/dH10)⋅(dH10/dZ10)⋅(dZ10/dH9)⋅(dH9/dZ9)⋅(dZ9/dH8)⋅(dH8/dZ8)⋅(dZ8/dH7)⋅(dH7/dZ7)⋅(dZ7/dH6)⋅(dH6/dZ6)⋅(dZ6/dH5)⋅(dH5/dZ5)⋅(dZ5/dH4)⋅(dH4/dZ4)⋅(dZ4/dH3)⋅(dH3/dZ3)⋅(dZ3/dH2)⋅(dH2/dZ2)⋅(dZ2/dH1)⋅(dH1/dZ1)⋅(dZ1/dW1)

      Заметили закономерность? Количество вычислений, необходимых для расчёта производных потерь, увеличивается по мере углубления нашей сети. Также обратите внимание на избыточность в наших расчетах производных. Производная потерь каждого слоя добавляет два новых элемента к элементам, которые уже были вычислены слоями над ним. Что, если бы был какой-то способ сохранить нашу работу и избежать этих повторяющихся вычислений?

      Сохранение работы с мемоизацией

      Мемоизация — это термин в информатике, имеющий простое значение: не пересчитывать одно и то же снова и снова. В мемоизации мы сохраняем ранее вычисленные результаты, чтобы избежать пересчета одной и той же функции. Это удобно для ускорения рекурсивных функций, одной из которых является обратное распространение. Обратите внимание на закономерность в уравнениях производных приведённых ниже.

      уравнение обратного распространения

      Каждый из этих слоев пересчитывает одни и те же производные! Вместо того, чтобы выписывать длинные уравнения производных для каждого веса, можно использовать мемоизацию, чтобы сохранить нашу работу, так как мы возвращаем ошибку через сеть. Для этого мы определяем 3 уравнения (ниже), которые вместе выражают в краткой форме все вычисления, необходимые для обратного распространения. Математика та же, но уравнения дают хорошее сокращение, которое мы можем использовать, чтобы отслеживать те вычисления, которые мы уже выполнили, и сохранять нашу работу по мере продвижения назад по сети.

      уравнение

      Для начала мы вычисляем ошибку выходного слоя и передаем результат на скрытый слой перед ним. После вычисления ошибки скрытого слоя мы передаем ее значение обратно на предыдущий скрытый слой. И так далее и тому подобное. Возвращаясь назад по сети, мы применяем 3-ю формулу на каждом слое, чтобы вычислить производную потерь по весам этого слоя. Эта производная говорит нам, в каком направлении регулировать наши веса, чтобы уменьшить общие потери.

      Примечание: термин ошибка слоя относится к производной потерь по входу в слой. Он отвечает на вопрос: как изменяется выход функции потерь при изменении входа в этот слой?

      Ошибка выходного слоя

      Для расчета ошибки выходного слоя необходимо найти производную потерь по входу выходному слою, Zo. Это отвечает на вопрос: как веса последнего слоя влияют на общую ошибку в сети?  Тогда производная такова:

      C′(Zo)=(y^−y)⋅R′(Zo)

      Чтобы упростить запись, практикующие МО обычно заменяют последовательность (y^−y)∗R'(Zo) термином Eo. Итак, наша формула для ошибки выходного слоя равна:

      Eo=(y^−y)⋅R′(Zo)

      Ошибка скрытого слоя

      Для вычисления ошибки скрытого слоя нужно найти производную потерь по входу скрытого слоя, Zh.

      C′(Zh)=(y^−y)⋅R′(Zo)⋅Wo⋅R′(Zh)

      Далее мы можем поменять местами элемент Eo выше, чтобы избежать дублирования и создать новое упрощенное уравнение для ошибки скрытого слоя:

      Eh=Eo⋅Wo⋅R′(Zh)

      Эта формула лежит в основе обратного распространения. Мы вычисляем ошибку текущего слоя и передаем взвешенную ошибку обратно на предыдущий слой, продолжая процесс, пока не достигнем нашего первого скрытого слоя. Попутно мы обновляем веса, используя производную потерь по каждому весу.

      Производная потерь по любому весу

      Вернемся к нашей формуле для производной потерь по весу выходного слоя Wo.

      C′(WO)=(y^−y)⋅R′(ZO)⋅H

      Мы знаем, что можем заменить первую часть уравнением для ошибки выходного слоя EhH представляет собой активацию скрытого слоя.

      C′(Wo)=Eo⋅H

      Таким образом, чтобы найти производную потерь по любому весу в нашей сети, мы просто умножаем ошибку соответствующего слоя на его вход (выход предыдущего слоя).

      C′(w)=CurrentLayerError⋅CurrentLayerInput

      Примечание: вход относится к активации с предыдущего слоя, а не к взвешенному входу, Z.

      Подводя итог

      Вот последние 3 уравнения, которые вместе образуют основу обратного распространения.

      основа обратного распространения

      Вот процесс, визуализированный с использованием нашего примера нейронной сети выше:

      _images/backprop_visually.png

      Обратное распространение: пример кода

      def relu_prime(z):
      if z > 0:
      return 1
      return 0
      
      def cost(yHat, y):
      return 0.5 * (yHat - y)**2
      
      def cost_prime(yHat, y):
      return yHat - y
      
      def backprop(x, y, Wh, Wo, lr):
      yHat = feed_forward(x, Wh, Wo)
      
      # Layer Error
      Eo = (yHat - y) * relu_prime(Zo)
      Eh = Eo * Wo * relu_prime(Zh)
      
      # Cost derivative for weights
      dWo = Eo * H
      dWh = Eh * x
      
      # Update weights
      Wh -= lr * dWh
      Wo -= lr * dWo

      В предыдущей части мы учились рассчитывать изменения сигнала при проходе по нейросети. Мы познакомились с матрицами, их произведением и вывели простые формулы для расчетов.

      В 6 части перевода выкладываю сразу 4 раздела книги. Все они посвящены одной из самых важных тем в области нейросетей — методу обратного распространения ошибки. Вы научитесь рассчитывать погрешность всех нейронов нейросети основываясь только на итоговой погрешности сети и весах связей.

      Материал сложный, так что смело задавайте свои вопросы на форуме.

      Вы можете скачать PDF версию перевода.

      Приятного чтения!

      Оглавление

      1 Глава. Как они работают.

      • 1.1   Легко для меня, тяжело для тебя
      • 1.2   Простая предсказательная машина
      • 1.3   Классификация это почти что предсказание
      • 1.4   Тренировка простого классификатора
      • 1.5   Иногда одного классификатора недостаточно
      • 1.6   Нейроны — природные вычислительные машины
      • 1.7   Проход сигнала через нейросеть
      • 1.8   Умножать матрицы полезно… Серьезно!
      • 1.9   Трехслойная нейросеть и произведение матриц
      • 1.10 Калибровка весов нескольких связей
      • 1.11 Обратное распространение ошибки от выходных нейронов
      • 1.12 Обратное распространение ошибки на множество слоев
      • 1.13 Обратное распространение ошибки и произведение матриц

      1.10 Калибровка весов нескольких связей

      Ранее мы настраивали линейный классификатор с помощью изменения постоянного коэффициента уравнения прямой. Мы использовали погрешность, разность между полученным и желаемым результатами, для настройки классификатора.

      Все те операции были достаточно простые, так как сама связь между погрешностью и величины, на которую надо было изменить коэффициент прямой оказалось очень простой.

      Но как нам калибровать веса связей, когда на получаемый результат, а значит и на погрешность, влияют сразу несколько нейронов? Рисунок ниже демонстрирует проблему:

      Очень легко работать с погрешностью, когда вход у нейрона всего один. Но сейчас уже два нейрона подают сигналы на два входа рассматриваемого нейрона. Что же делать с погрешностью?

      Нет никакого смысла использовать погрешность целиком для корректировки одного веса, потому что в этом случае мы забываем про второй вес. Ведь оба веса задействованы в создании полученного результата, а значит оба веса виновны в итоговой погрешности.

      Конечно, существует очень маленькая вероятность того, что только один вес внес погрешность, а второй был идеально откалиброван. Но даже если мы немного поменяем вес, который и так не вносит погрешность, то в процессе дальнейшего обучения сети он все равно придет в норму, так что ничего страшного.

      Можно попытаться разделить погрешность одинаково на все нейроны:

      Классная идея. Хотя я никогда не пробовал подобный вариант использования погрешности в реальных нейросетях, я уверен, что результаты вышли бы очень достойными.

      Другая идея тоже заключается в разделении погрешности, но не поровну между всеми нейронами. Вместо этого мы кладем большую часть ответственности за погрешность на нейроны с большим весом связи. Почему? Потому что за счет своего большего веса они внесли больший вклад в выход нейрона, а значит и в погрешность.

      На рисунке изображены два нейрона, которые подают сигналы третьему, выходному нейрону. Веса связей: ​( 3 )​ и ​( 1 )​. Согласно нашей идее о переносе погрешности на нейроны мы используем ​( frac{3}{4} )​ погрешности на корректировку первого (большего) веса и ​( frac{1}{4} )​ на корректировку второго (меньшего) веса.

      Идею легко развить до любого количества нейронов. Пусть у нас есть 100 нейронов и все они соединены с результирующим нейроном. В таком случае, мы распределяем погрешность на все 100 связей так, чтобы на каждую связь пришлась часть погрешности, соответствующая ее весу.

      Как видно, мы используем веса связей для двух задач. Во-первых, мы используем веса в процессе распространения сигнала от входного до выходного слоя. Мы уже разобрались, как это делается. Во-вторых, мы используем веса для распространения ошибки в обратную сторону: от выходного слоя к входному. Из-за этого данный метод использования погрешности называют методом обратного распространения ошибки.

      Если у нашей сети 2 нейрона выходного слоя, то нам пришлось бы использовать этот метод еще раз, но уже для связей, которые повлияли на выход второго нейрона выходного слоя. Рассмотрим эту ситуацию подробнее.

      1.11 Обратное распространение ошибки от выходных нейронов

      На диаграмме ниже изображена нейросеть с двумя нейронами во входном слое, как и в предыдущем примере. Но теперь у сети имеется два нейрона и в выходном слое.

      Оба выхода сети могут иметь погрешность, особенно в тех случаях, когда сеть еще не натренирована. Мы должны использовать полученные погрешности для настройки весов связей. Можно использовать метод, который мы получили в предыдущем разделе — больше изменяем те нейроны, которые сделали больший вклад в выход сети.

      То, что сейчас у нас больше одного выходного нейрона по сути ни на что не влияет. Мы просто используем наш метод дважды: для первого и второго нейронов. Почему так просто? Потому что связи с конкретным выходным нейроном никак не влияют на остальные выходные нейроны. Их изменение повлияет только на конкретный выходной нейрон. На диаграмме выше изменение весов ​( w_{1,2} )​ и ​( w_{2,2} )​ не повлияет на результат ​( o_1 )​.

      Погрешность первого нейрона выходного слоя мы обозначили за ​( e_1 )​. Погрешность равна разнице между желаемым выходом нейрона ​( t_1 )​, который мы имеем в обучающей выборке и полученным реальным результатом ​( o_1 )​.

      [ e_1 = t_1 — o_1 ]

      Погрешность второго нейрона выходного слоя равна ​( e_2 )​.

      На диаграмме выше погрешность ​( e_1 )​ разделяется на веса ​( w_{1,1} )​ и ​( w_{2,1} )​ соответственно их вкладу в эту погрешность. Аналогично, погрешность ​( e_2 )​ разделяется на веса ​( w_{1,2} )​ и ​( w_{2,2} )​.

      Теперь надо определить, какой вес оказал большее влияние на выход нейрона. Например, мы можем определить, какая часть ошибки ​( e_1 )​ пойдет на исправление веса ​( w_{1,1} )​:

      [ frac{w_{1,1}}{w_{1,1}+w_{2,1}} ]

      А вот так находится часть ​( e_1 )​, которая пойдет на корректировку веса ​( w_{2,1} )​:

      [ frac{w_{2,1}}{w_{1,1} + w_{2,1}} ]

      Теперь разберемся, что означают два этих выражения выше. Изначально наша идея заключается в том, что мы хотим сильнее изменить связи с большим весом и слегка изменить связи с меньшим весом.

      А как нам понять величину веса относительно всех остальных весов? Для этого мы должны сравнить какой-то конкретный вес (например ​( w_{1,1} )​) с абстрактной «общей» суммой всех весов, повлиявших на выход нейрона. На выход нейрона повлияли два веса: ​( w_{1,1} )​ и ​( w_{2,1} )​. Мы складываем их и смотрим, какая часть от общего вклада приходится на ​( w_{1,1} )​ с помощью деления этого веса на полученную ранее общую сумму:

      [ frac{w_{1,1}}{w_{1,1}+w_{2,1}} ]

      Пусть ​( w_{1,1} )​ в два раза больше, чем ​( w_{2,1} )​: ​( w_{1,1} = 6 )​ и ​( w_{2,1} = 3 )​. Тогда имеем ​( 6/(6+3) = 6/9 = 2/3 )​, а значит ​( 2/3 )​ погрешности ​( e_1 )​ пойдет на корректировку ​( w_{1,1} )​, а ​( 1/3 )​ на корректировку ​( w_{2,1} )​.

      В случае, когда оба веса равны, то каждому достанется по половине погрешности. Пусть ​( w_{1,1} = 4 )​ и ​( w_{2,1}=4 )​. Тогда имеем ​( 4/(4+4)=4/8=1/2 )​, а значит на каждый вес пойдет ​( 1/2 )​ погрешности ​( e_1 )​.

      Прежде чем мы двинемся дальше, давайте на секунду остановимся и посмотрим, чего мы достигли. Нам нужно что-то менять в нейросети для уменьшения получаемой погрешности. Мы решили, что будем менять веса связей между нейронами. Мы также нашли способ, как распределять полученную на выходном слое сети погрешность между весами связей. В этом разделе мы получили формулы для вычисления конкретной части погрешности для каждого веса. Отлично!

      Но есть еще одна проблема. Сейчас мы знаем, что делать с весами связей слое, который находится прямо перед выходным слоем сети. А что если наша нейросеть имеет больше 2 слоев? Что делать с весами связей в слоях, которые находятся за предпоследним слоем сети?

      1.12 Обратное распространение ошибки на множество слоев

      На диаграмме ниже изображена простая трехслойная нейросеть с входным, скрытым и выходным слоями.

      Сейчас мы наблюдаем процесс, который обсуждался в разделе выше. Мы используем погрешность выходного слоя для настройки весов связей, которые соединяют предпоследний слой с выходным слоем.

      Для простоты обозначения были обобщены. Погрешности нейронов выходного слоя мы в целом назвали ​( e_{text{out}} )​, а все веса связей между скрытым и выходным слоем обозначили за ​( w_{text{ho}} )​.

      Еще раз повторю, что для корректировки весов ​( w_{text{ho}} )​ мы распределяем погрешность нейрона выходного слоя по всем весам в зависимости от их вклада в выход нейрона.

      Как видно из диаграммы ниже, для корректировки весов связей между входным и скрытым слоем нам надо повторить ту же операцию еще раз. Мы берем погрешности нейронов скрытого слоя ​( e_{text{hi}} )​ и распределяем их по весам связей между входным и скрытым слоем ​( w_{text{ih}} )​:

      Если бы у нас было бы больше слоев, то мы бы и дальше повторяли этот процесс корректировки, распространяющийся от выходного ко входному слою. И снова вы видите, почему этот способ называется методом обратного распространения ошибки.

      Для корректировки связей между предпоследним и выходным слоем мы использовали погрешность выходов сети ​( e_{text{out}} )​. А чему же равна погрешность выходов нейронов скрытых слоев ​( e_{text{hi}} )​? Это отличный вопрос потому что сходу на этот вопрос ответить трудно. Когда сигнал распространяется по сети от входного к выходному слою мы точно знаем значения выходных нейронов скрытых слоев. Мы получали эти значения с помощью функции активации, у которой в качестве аргумента использовалась сумма взвешенных сигналов, поступивших на вход нейрона. Но как из выходного значения нейрона скрытого слоя получить его погрешность?

      У нас нет никаких ожидаемых или заранее подготовленных правильных ответов для выходов нейронов скрытого слоя. У нас есть готовые правильные ответы только для выходов нейронов выходного слоя. Эти выходы мы сравниваем с заранее правильными ответами из обучающей выборки и получаем погрешность. Давайте вновь проанализируем диаграмму выше.

      Мы видим, что из первого нейрона скрытого слоя выходят две связи с двумя нейронами выходного слоя. В предыдущем разделе мы научились распределять погрешность на веса связей. Поэтому мы можем получить две погрешности для обоих весов этих связей, сложить их и получить общую погрешность данного нейрона скрытого слоя. Наглядная демонстрация:

      Уже из рисунка можно понять, что делать дальше. Но давайте все-таки еще раз пройдемся по всему алгоритму. Нам нужно получить погрешность выхода нейрона скрытого слоя для того, чтобы скорректировать веса связей между текущим и предыдущим слоями. Назовем эту погрешность ​( e_{text{hi}} )​. Но мы не можем получить значение погрешности напрямую. Погрешность равна разности между ожидаемым и полученным значениями, но проблема заключается в том, что у нас есть ожидаемые значения только для нейронов выходного слоя нейросети.

      В невозможности прямого нахождения погрешности нейронов скрытого слоя и заключается основная сложность.

      Но выход есть. Мы умеем распределять погрешность нейронов выходного слоя по весам связей. Значит на каждый вес связи идет часть погрешности. Поэтому мы складываем части погрешностей, которые относятся к весам связей, исходящих из данного скрытого нейрона. Полученная сумма и будем считать за погрешность выхода данного нейрона. На диаграмме выше часть погрешности ​( e_{text{out 1}} )​ идет на вес ​( w_{1,1} )​, а часть погрешности ​( e_{text{out 2}} )​ идет на вес ​( w_{1,2} )​. Оба этих веса относятся к связям, исходящим из первого нейрона скрытого слоя. А значит мы можем найти его погрешность:

      [ e_{text{hi 1}} = text{сумма частей погрешностей для весов } w_{1,1} text{ и } w_{1,2} ]

      [ e_{text{hi 1}} = left(e_{text{out 1}}cdotfrac{w_{1,1}}{w_{1,1} + w_{2,1}}right) + left(e_{text{out 2}}cdotfrac{w_{1,2}}{w_{1,2} + w_{2,2}}right) ]

      Рассмотрим алгоритм на реальной трехслойной нейросети с двумя нейронами в каждом слое:

      Давайте отследим обратное распространение одной ошибки/погрешности. Погрешность второго выходного нейрона равна ​( 0.5 )​ и она распределяется на два веса. На вес ​( w_{12} )​ идет погрешность ​( 0.1 )​, а на вес ​( w_{22} )​ идет погрешность ​( 0.4 )​. Дальше у нас идет второй нейрон скрытого слоя. От него отходят две связи с весами ​( w_{21} )​ и ​( w_{22} )​. На эти веса связей также распределяется погрешность как от ​( e_1 )​, так и от ​( e_2 )​. На вес ​( w_{21} )​ идет погрешность ​( 0.9 )​, а на вес ​( w_{22} )​ идет погрешность ​( 0.4 )​. Сумма этих погрешностей и дает нам погрешность выхода второго нейрона скрытого слоя: ​( 0.4 + 0.9 = 1.3 )​.

      Но это еще не конец. Теперь надо распределить погрешность нейронов выходного слоя на веса связей между входным и скрытым слоями. Проиллюстрируем этот процесс дальнейшего распространения ошибки:

      Ключевые моменты

      • Обучение нейросетей заключается в корректировки весов связей. Корректировка зависит от погрешности — разности между ожидаемым ответом из обучающей выборки и реально полученным результатами.
      • Погрешность для нейронов выходного слоя рассчитывается как разница между желаемым и полученным результатами.
      • Однако, погрешность скрытых нейронов определить напрямую нельзя. Одно из популярных решений — сначала необходимо распределить известную погрешность на все веса связей, а затем сложить те части погрешностей, которые относятся к связям, исходящим из одного нейрона. Сумма этих частей погрешностей и будет являться общей погрешностью этого нейрона.

      1.13 Обратное распространение ошибки и произведение матриц

      А можно ли использовать матрицы для упрощения всех этих трудных вычислений? Они ведь помогли нам ранее, когда мы рассчитывали проход сигнала по сети от входного к выходному слою.

      Если бы мы могли выразить обратное распространение ошибки через произведение матриц, то все наши вычисления разом бы уменьшились, а компьютер бы сделал всю грязную и повторяющуюся работу за нас.

      Начинаем мы с самого конца нейросети — с матрицы погрешностей ее выходов. В примере выше у нас имеется две погрешности сети: ​( e_1 )​ и ​( e_2 )​.

      [ mathbf{E}_{text{out}} = left(begin{matrix}e_1 \ e_2end{matrix}right) ]

      Теперь нам надо получить матрицу погрешностей выходов нейронов скрытого слоя. Звучит довольно жутко, поэтому давайте действовать по шагам. Из предыдущего раздела вы помните, что погрешность нейрона скрытого слоя высчитывается как сумма частей погрешностей весов связей, исходящих из этого нейрона.

      Сначала рассматриваем первый нейрон скрытого слоя. Как было показано в предыдущем разделе, погрешность этого нейрона высчитывается так:

      [ e_{text{hi 1}} = left(e_1cdotfrac{w_{11}}{w_{11} + w_{21}}right) + left(e_2cdotfrac{w_{12}}{w_{12} + w_{22}}right) ]

      Погрешность второго нейрона скрытого слоя высчитывается так:

      [ e_{text{hi 2}} = left(e_1cdotfrac{w_{21}}{w_{11} + w_{21}}right) + left(e_2cdotfrac{w_{22}}{w_{12} + w_{22}}right) ]

      Получаем матрицу погрешностей скрытого слоя:

      [ mathbf{E}_{text{hid}} = left(begin{matrix}e_{text{hid 1}} \ e_{text{hid 2}}end{matrix}right) = left(begin{matrix} e_1cdotdfrac{w_{11}}{w_{11} + w_{21}} hspace{5pt} + hspace{5pt} e_2cdotdfrac{w_{12}}{w_{12} + w_{22}} \ e_1cdotdfrac{w_{21}}{w_{11} + w_{21}} hspace{5pt} + hspace{5pt} e_2cdotdfrac{w_{22}}{w_{12} + w_{22}} end{matrix}right) ]

      Многие из вас уже заметили произведение матриц:

      [ mathbf{E}_{text{hid}} = left(begin{matrix} dfrac{w_{11}}{w_{11} + w_{21}} & dfrac{w_{12}}{w_{12} + w_{22}} \ dfrac{w_{21}}{w_{11} + w_{21}} & dfrac{w_{22}}{w_{12} + w_{22}} end{matrix}right)times left(begin{matrix} e_1 \ e_2 end{matrix}right) ]

      Таким образом, мы смогли выразить вычисление матрицы погрешностей нейронов выходного слоя через произведение матриц. Однако выражение выше получилось немного сложнее, чем мне хотелось бы.

      В формуле выше мы используем большую и неудобную матрицу, в которой делим каждый вес связи на сумму весов, приходящих в данный нейрон. Мы самостоятельно сконструировали эту матрицу.

      Было бы очень удобно записать произведение из уже имеющихся матриц. А имеются у нас только матрицы весов связей, входных сигналов и погрешностей выходного слоя.

      К сожалению, формулу выше никак нельзя записать в мега-простом виде, который мы получили для прохода сигнала в предыдущих разделах. Вся проблема заключается в жутких дробях, с которыми трудно что-то поделать.

      Но нам очень нужно получить простую формулу для удобного и быстрого расчета матрицы погрешностей.

      Пора немного пошалить!

      Вновь обратим взор на формулу выше. Можно заметить, что самым главным является умножение погрешности выходного нейрона ​( e_n )​ на вес связи ​( w_{ij} )​, которая к этому выходному нейрону подсоединена. Чем больше вес, тем большую погрешность получит нейрон скрытого слоя. Эту важную деталь мы сохраняем. А вот знаменатели дробей служат лишь нормализующим фактором. Если их убрать, то мы лишимся масштабирования ошибки на предыдущие слои, что не так уж и страшно. Таким образом, мы можем избавиться от знаменателей:

      [ e_1cdot frac{w_{11}}{w_{11} + w_{21}} hspace{5pt} longrightarrow hspace{5pt} e_1 cdot w_{11} ]

      Запишем теперь формулу для получения матрицы погрешностей, но без знаменателей в левой матрице:

      [ mathbf{E}_{text{hid}} = left(begin{matrix} w_{11} & w_{12} \ w_{21} & w_{22} end{matrix}right)times left(begin{matrix} e_1 \ e_2 end{matrix}right) ]

      Так гораздо лучше!

      В разделе по использованию матриц при расчетах прохода сигнала по сети мы использовали следующую матрицу весов:

      [ left(begin{matrix} w_{11} & w_{21} \ w_{12} & w_{22} end{matrix}right) ]

      Сейчас, для расчета матрицы погрешностей мы используем такую матрицу:

      [ left(begin{matrix} w_{11} & w_{12} \ w_{21} & w_{22} end{matrix}right) ]

      Можно заметить, что во второй матрице элементы как бы отражены относительно диагонали матрицы, идущей от левого верхнего до правого нижнего края матрицы: ​( w_{21} )​ и ​( w_{12} )​ поменялись местами. Такая операция над матрицами существует и называется она textbf{транспонированием} матрицы. Ранее мы использовали матрицу весов ​( mathbf{W} )​. Транспонированные матрицы имеют специальный значок справа сверху: ​( ^intercal )​. В расчете матрицы погрешностей мы используем транспонированную матрицу весов: ​( mathbf{W}^intercal )​.

      Вот два примера для иллюстрации транспонирования матриц. Заметьте, что данную операцию можно выполнять даже для матриц, в которых число столбцов и строк различно.

      [ left(begin{matrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 end{matrix}right)^intercal = left(begin{matrix} 1 & 4 & 7 \ 2 & 5 & 8 \ 3 & 6 & 9 end{matrix}right) ]

      [ left(begin{matrix} 1 & 2 & 3 \ 4 & 5 & 6 end{matrix}right)^intercal = left(begin{matrix} 1 & 4 \ 2 & 5 \ 3 & 6 end{matrix}right) ]

      Мы получили то, что хотели — простую формулу для расчета матрицы погрешностей нейронов скрытого слоя:

      [ mathbf{E}_{text{hid}} = mathbf{W}^intercal times mathbf{E}_{text{out}} ]

      Это все конечно отлично, но правильно ли мы поступили, просто проигнорировав знаменатели? Да.

      Дело в том, что сеть обучается не мгновенно, а проходит через множество шагов обучения. Таким образом она постепенно калибрует и корректирует собственные веса до приемлемого значения. Поэтому способ, с помощью которого мы находим погрешность не так важен. Я уже упоминал ранее, что мы могли бы разделить всю погрешность просто пополам между всеми весами, вносящими вклад в выход нейрона и даже тогда, по окончанию обучения, сеть выдавала бы неплохие результаты.

      Безусловно, игнорирование знаменателей повлияет на процесс обучения сети, но рано или поздно, через сотни и тысячи шагов обучения, она дойдет до правильных результатов что со знаменателями, что без них.

      Убрав знаменатели, мы сохранили общую суть обратного распространения ошибки — чем больше вес, тем больше его надо скорректировать. Мы просто убрали смягчающий фактор.

      Ключевые моменты

      • Обратное распространение ошибки может быть выражено через произведение матриц.
      • Это позволяет нам удобно и эффективно производить расчеты вне зависимости от размеров нейросети.
      • Получается что и прямой проход сигнала по нейросети и обратно распространение ошибки можно выразить через матрицы с помощью очень похожих формул.

      Сделайте перерыв. Вы его заслужили. Следующие несколько разделов будут финальными и очень крутыми. Но их надо проходить на свежую голову.

      Формулы обучения и обратное распространение для многослойных перцептронов

      Добавлено 8 января 2020 в 18:22

      В данной статье представлены формулы, которые мы используем при выполнении вычислений для обновления весовых коэффициентов, а также мы обсудим концепцию обратного распространения.

      Добро пожаловать в серию статей по машинному обучению. С остальными статьями серии вы можете ознакомиться в меню с содержанием в начале статьи.

      Мы достигли того момента, когда нам нужно тщательно рассмотреть фундаментальную тему теории нейронных сетей: вычислительную процедуру, которая позволяет нам точно настроить веса многослойного перцептрона (MLP, multilayer perceptron), чтобы он мог точно классифицировать входные выборки. Это приведет нас к концепции «обратного распространения», которая также является важным аспектом проектирования нейронных сетей.

      Обновление весов

      Информационная среда обучения для MLP сложна. Что еще хуже, онлайн-ресурсы используют различную терминологию и обозначения, и, похоже, они даже дают разные результаты. Однако я не уверен, что результаты действительно разные или просто представляют одну и ту же информацию по-разному.

      Формулы, содержащиеся в этой статье, основаны на выводах и объяснениях, предоставленных доктором Дастином Стэнсбери в этом посте в блоге. Его объяснение – лучшее, что я нашел, и это отличное место для начала, если вы хотите углубиться в математические и базовые детали градиентного спуска и обратного распространения.

      Следующая диаграмма представляет архитектуру, которую мы реализуем в программном обеспечении, и приведенные ниже формулы соответствуют этой архитектуре, которая более подробно обсуждается в следующей статье.

      Рисунок 1 Архитектура рассматриваемой нейронной сети

      Рисунок 1 – Архитектура рассматриваемой нейронной сети

      Терминология

      Эта тема быстро станет неуправляемой, если мы не будем придерживаться четкой терминологии. Я буду использовать следующие термины:

      • Преактивация (сокращенно (S_{preA})): Это относится к сигналу (на самом деле это просто число в контексте одной обучающей итерации), который служит входным для функции активации узла. Он рассчитывается путем выполнения скалярного произведения массива, содержащего веса, и массива, содержащего значения, исходящие из узлов в предыдущем слое. Скалярное произведение эквивалентно выполнению поэлементного умножения двух массивов и затем суммированию элементов массив, полученного в результате этого умножения.
      • Постактивация (сокращенно (S_{postA})): Это относится к сигналу (опять же, просто число в контексте отдельной итерации), который выходит из узла. Он создается путем применения функции активации к сигналу преактивации. Я предпочитаю обозначение функции активации (f_{A}()), это логистическая сигмоидная функция.
      • В коде на Python вы увидите весовые матрицы, помеченные как ItoH и HtoO. Я использую эти идентификаторы, потому что фраза «веса скрытого слоя» будет неоднозначной – это будут веса, которые применяются до или после скрытого слоя? В моей схеме ItoH указывает веса, которые применяются к значениям, передаваемым из входных узлов в скрытые узлы (ItoHInput toHidden), а HtoO определяет веса, которые применяются к значениям, передаваемым из скрытых узлов в выходной узел (HtoOHidden toOutput).
      • Правильное выходное значение для обучающей выборки называется целью и обозначается буквой T (Target).
      • Скорость обучения сокращенно обозначается как LR (Learning Rate).
      • Конечная ошибка (FEFinal Error) – это разница между сигналом постактивации от выходного узла ((S_{postA,O})) и целью, рассчитывается как (FE = S_{postA,O}-T).
      • Сигнал ошибки ((S_{ошибки})) – это последняя ошибка, распространяемая обратно к скрытому слою через функцию активации выходного узла.
      • Градиент представляет вклад заданного веса в сигнал ошибки. Мы изменяем веса, вычитая этот вклад (умноженный на скорость обучения, если необходимо).

      Некоторые из этих терминов показаны на следующей диаграмме конфигурации нейросети. Я знаю, это выглядит как разноцветный бардак. Приношу извинения. Это насыщенная информацией диаграмма, и, если вы внимательно ее изучите, я думаю, что вы найдете ее очень полезной.

      Рисунок 2 Демонстрация терминов на диаграмме конфигурации нейросети

      Рисунок 2 – Демонстрация терминов на диаграмме конфигурации нейросети

      Формулы обновления весовых коэффициентов получаются путем взятия частной производной функции ошибки (мы используем среднюю квадратичную ошибку) относительно веса, который необходимо изменить. Если вы хотите посмотреть математику, обратитесь к посту доктора Стэнсбери; в данной статье мы перейдем непосредственно к результатам. Для весов от скрытых узлов к выходным узлам (HtoO) мы имеем следующее:

      [S_{ошибки} = FE times {f_A}'(S_{preA,O})]

      [градиент_{HtoO}= S_{ошибки}times S_{postA,H}]

      [вес_{HtoO} = вес_{HtoO}- (LR times градиент_{HtoO})]

      Мы рассчитываем сигнал ошибки путем умножения конечной ошибки на значение, которое получается, когда мы берем производную функции активации по сигналу преактивации, доставляемому на выходной узел (обратите внимание на штрих, который означает первую производную, в ({f_A}'(S_{preA,O}))). Затем вычисляется градиент путем умножения сигнала ошибки на сигнал постактивации из скрытого слоя. Наконец, мы обновляем вес, вычитая этот градиент из текущего значения веса, и, если мы хотим изменить размер шага, то можем умножить градиент на скорость обучения.

      Для весов от входных узлов к скрытым узлам (ItoH) мы имеем следующее:

      [градиент_{ItoH} = FE times {f_A}'(S_{preA,O})times вес_{HtoO} times {f_A}'(S_{preA,H}) times вход]

      [Rightarrow градиент_{ItoH} = S_{ошибки} times вес_{HtoO} times {f_A}'(S_{preA,H})times вход]

      [вес_{ItoH} = вес_{ItoH} — (LR times градиент_{ItoH})]

      Для весов от входных узлов к скрытым узлам ошибка должна распространяться обратно через дополнительный слой, и мы делаем это путем умножения сигнала ошибки на вес между скрытым и выходным узлами, соединенный с интересующим скрытым узлом. Таким образом, если мы обновляем вес между входным и скрытым узлами, который ведет к первому скрытому узлу, мы умножаем сигнал ошибки на вес, который соединяет первый скрытый узел с выходным узлом. Затем мы завершаем вычисление, выполняя умножения, аналогичные умножениям обновления весов между скрытыми и выходными узлами: мы берем производную функции активации по сигналу преактивации скрытого узла, а «входное» значение можно рассматривать как сигнал постактивации от входного узла.

      Обратное распространение

      Приведенное выше объяснение уже коснулось концепции обратного распространения. Я просто хочу кратко подкрепить эту концепцию, а также убедиться, что вы точно познакомились с этим термином, часто появляющимся в обсуждениях нейронных сетей.

      Обратное распространение позволяет нам преодолеть дилемму скрытого узла, упоминаемую в восьмой статье. Нам необходимо обновить веса между входными и скрытыми узлами на основе разницы между сгенерированным выходным сигналом нейросети и целевыми выходными значениями, предоставленными обучающими данными, но эти веса влияют на сгенерированное выходное значение косвенно.

      Обратное распространение относится к способу, с помощью которого мы отправляем сигнал ошибки обратно к одному или нескольким скрытым слоям и масштабируем этот сигнал ошибки, используя как веса, идущие из скрытого узла, так и производную функции активации скрытого узла. Итоговая процедура служит способом обновления веса на основе вклада этого веса в выходную ошибку, даже если этот вклад скрыт косвенной связью между весом между входным и скрытым узлами и сгенерированным выходным значением.

      Заключение

      Мы рассмотрели много важных материалов. Я думаю, что в этой статье у нас есть действительно ценная информация об обучении нейронным сетям, и надеюсь, что вы согласны. Серия станет еще более интересной, поэтому следите за обновлениями.

      Теги

      MLP, Multilayer Perceptron / Многослойный перцептронИскусственный интеллект, ИИ / Artificial Intelligence, AIМашинное обучение / Machine LearningНейросеть / Нейронная сетьПерцептрон / PerceptronСкорость обучения

      Нейронные сети для начинающих. Часть 2 +38

      Алгоритмы, Машинное обучение


      Рекомендация: подборка платных и бесплатных курсов таргетированной рекламе — https://katalog-kursov.ru/

      Добро пожаловать во вторую часть руководства по нейронным сетям. Сразу хочу принести извинения всем кто ждал вторую часть намного раньше. По определенным причинам мне пришлось отложить ее написание. На самом деле я не ожидал, что у первой статьи будет такой спрос и что так много людей заинтересует данная тема. Взяв во внимание ваши комментарии, я постараюсь предоставить вам как можно больше информации и в то же время сохранить максимально понятный способ ее изложения. В данной статье, я буду рассказывать о способах обучения/тренировки нейросетей (в частности метод обратного распространения) и если вы, по каким-либо причинам, еще не прочитали первую часть, настоятельно рекомендую начать с нее. В процессе написания этой статьи, я хотел также рассказать о других видах нейросетей и методах тренировки, однако, начав писать про них, я понял что это пойдет вразрез с моим методом изложения. Я понимаю, что вам не терпится получить как можно больше информации, однако эти темы очень обширны и требуют детального анализа, а моей основной задачей является не написать очередную статью с поверхностным объяснением, а донести до вас каждый аспект затронутой темы и сделать статью максимально легкой в освоении. Спешу расстроить любителей “покодить”, так как я все еще не буду прибегать к использованию языка программирования и буду объяснять все “на пальцах”. Достаточно вступления, давайте теперь продолжим изучение нейросетей.

      Что такое нейрон смещения?

      Перед тем как начать нашу основную тему, мы должны ввести понятие еще одного вида нейронов — нейрон смещения. Нейрон смещения или bias нейрон — это третий вид нейронов, используемый в большинстве нейросетей. Особенность этого типа нейронов заключается в том, что его вход и выход всегда равняются 1 и они никогда не имеют входных синапсов. Нейроны смещения могут, либо присутствовать в нейронной сети по одному на слое, либо полностью отсутствовать, 50/50 быть не может (красным на схеме обозначены веса и нейроны которые размещать нельзя). Соединения у нейронов смещения такие же, как у обычных нейронов — со всеми нейронами следующего уровня, за исключением того, что синапсов между двумя bias нейронами быть не может. Следовательно, их можно размещать на входном слое и всех скрытых слоях, но никак не на выходном слое, так как им попросту не с чем будет формировать связь.

      Для чего нужен нейрон смещения?


      Нейрон смещения нужен для того, чтобы иметь возможность получать выходной результат, путем сдвига графика функции активации вправо или влево. Если это звучит запутанно, давайте рассмотрим простой пример, где есть один входной нейрон и один выходной нейрон. Тогда можно установить, что выход O2 будет равен входу H1, умноженному на его вес, и пропущенному через функцию активации (формула на фото слева). В нашем конкретном случае, будем использовать сигмоид.

      Из школьного курса математики, мы знаем, что если взять функцию y = ax+b и менять у нее значения “а”, то будет изменяться наклон функции (цвета линий на графике слева), а если менять “b”, то мы будем смещать функцию вправо или влево (цвета линий на графике справа). Так вот “а” — это вес H1, а “b” — это вес нейрона смещения B1. Это грубый пример, но примерно так все и работает (если вы посмотрите на функцию активации справа на изображении, то заметите очень сильное сходство между формулами). То есть, когда в ходе обучения, мы регулируем веса скрытых и выходных нейронов, мы меняем наклон функции активации. Однако, регулирование веса нейронов смещения может дать нам возможность сдвинуть функцию активации по оси X и захватить новые участки. Иными словами, если точка, отвечающая за ваше решение, будет находиться, как показано на графике слева, то ваша НС никогда не сможет решить задачу без использования нейронов смещения. Поэтому, вы редко встретите нейронные сети без нейронов смещения.

      Также нейроны смещения помогают в том случае, когда все входные нейроны получают на вход 0 и независимо от того какие у них веса, они все передадут на следующий слой 0, но не в случае присутствия нейрона смещения. Наличие или отсутствие нейронов смещения — это гиперпараметр (об этом чуть позже). Одним словом, вы сами должны решить, нужно ли вам использовать нейроны смещения или нет, прогнав НС с нейронами смешения и без них и сравнив результаты.

      ВАЖНО знать, что иногда на схемах не обозначают нейроны смещения, а просто учитывают их веса при вычислении входного значения например:

      input = H1*w1+H2*w2+b3
      b3 = bias*w3

      Так как его выход всегда равен 1, то можно просто представить что у нас есть дополнительный синапс с весом и прибавить к сумме этот вес без упоминания самого нейрона.

      Как сделать чтобы НС давала правильные ответы?

      Ответ прост — нужно ее обучать. Однако, насколько бы прост не был ответ, его реализация в плане простоты, оставляет желать лучшего. Существует несколько методов обучения НС и я выделю 3, на мой взгляд, самых интересных:

      • Метод обратного распространения (Backpropagation)
      • Метод упругого распространения (Resilient propagation или Rprop)
      • Генетический Алгоритм (Genetic Algorithm)

      Об Rprop и ГА речь пойдет в других статьях, а сейчас мы с вами посмотрим на основу основ — метод обратного распространения, который использует алгоритм градиентного спуска.

      Что такое градиентный спуск?

      Это способ нахождения локального минимума или максимума функции с помощью движения вдоль градиента. Если вы поймете суть градиентного спуска, то у вас не должно возникнуть никаких вопросов во время использования метода обратного распространения. Для начала, давайте разберемся, что такое градиент и где он присутствует в нашей НС. Давайте построим график, где по оси х будут значения веса нейрона(w) а по оси у — ошибка соответствующая этому весу(e).

      Посмотрев на этот график, мы поймем, что график функция f(w) является зависимостью ошибки от выбранного веса. На этом графике нас интересует глобальный минимум — точка (w2,e2) или, иными словами, то место где график подходит ближе всего к оси х. Эта точка будет означать, что выбрав вес w2 мы получим самую маленькую ошибку — e2 и как следствие, самый лучший результат из всех возможных. Найти же эту точку нам поможет метод градиентного спуска (желтым на графике обозначен градиент). Соответственно у каждого веса в нейросети будет свой график и градиент и у каждого надо найти глобальный минимум.

      Так что же такое, этот градиент? Градиент — это вектор который определяет крутизну склона и указывает его направление относительно какой либо из точек на поверхности или графике. Чтобы найти градиент нужно взять производную от графика по данной точке (как это и показано на графике). Двигаясь по направлению этого градиента мы будем плавно скатываться в низину. Теперь представим что ошибка — это лыжник, а график функции — гора. Соответственно, если ошибка равна 100%, то лыжник находиться на самой вершине горы и если ошибка 0% то в низине. Как все лыжники, ошибка стремится как можно быстрее спуститься вниз и уменьшить свое значение. В конечном случае у нас должен получиться следующий результат:

      Представьте что лыжника забрасывают, с помощью вертолета, на гору. На сколько высоко или низко зависит от случая (аналогично тому, как в нейронной сети при инициализации веса расставляются в случайном порядке). Допустим ошибка равна 90% и это наша точка отсчета. Теперь лыжнику нужно спуститься вниз, с помощью градиента. На пути вниз, в каждой точке мы будем вычислять градиент, что будет показывать нам направление спуска и при изменении наклона, корректировать его. Если склон будет прямым, то после n-ого количества таких действий мы доберемся до низины. Но в большинстве случаев склон (график функции) будет волнистый и наш лыжник столкнется с очень серьезной проблемой — локальный минимум. Я думаю все знают, что такое локальный и глобальный минимум функции, для освежения памяти вот пример. Попадание в локальный минимум чревато тем, что наш лыжник навсегда останется в этой низине и никогда не скатиться с горы, следовательно мы никогда не сможем получить правильный ответ. Но мы можем избежать этого, снарядив нашего лыжника реактивным ранцем под названием момент (momentum). Вот краткая иллюстрация момента:

      Как вы уже наверное догадались, этот ранец придаст лыжнику необходимое ускорение чтобы преодолеть холм, удерживающий нас в локальном минимуме, однако здесь есть одно НО. Представим что мы установили определенное значение параметру момент и без труда смогли преодолеть все локальные минимумы, и добраться до глобального минимума. Так как мы не можем просто отключить реактивный ранец, то мы можем проскочить глобальный минимум, если рядом с ним есть еще низины. В конечном случае это не так важно, так как рано или поздно мы все равно вернемся обратно в глобальный минимум, но стоит помнить, что чем больше момент, тем больше будет размах с которым лыжник будет кататься по низинам. Вместе с моментом в методе обратного распространения также используется такой параметр как скорость обучения (learning rate). Как наверняка многие подумают, чем больше скорость обучения, тем быстрее мы обучим нейросеть. Нет. Скорость обучения, также как и момент, является гиперпараметром — величина которая подбирается путем проб и ошибок. Скорость обучения можно напрямую связать со скоростью лыжника и можно с уверенностью сказать — тише едешь дальше будешь. Однако здесь тоже есть определенные аспекты, так как если мы совсем не дадим лыжнику скорости то он вообще никуда не поедет, а если дадим маленькую скорость то время пути может растянуться на очень и очень большой период времени. Что же тогда произойдет если мы дадим слишком большую скорость?

      Как видите, ничего хорошего. Лыжник начнет скатываться по неправильному пути и возможно даже в другом направлении, что как вы понимаете только отдалит нас от нахождения правильного ответа. Поэтому во всех этих параметрах нужно находить золотую середину чтобы избежать не сходимости НС (об этом чуть позже).

      Что такое Метод Обратного Распространения (МОР)?

      Вот мы и дошли до того момента, когда мы можем обсудить, как же все таки сделать так, чтобы ваша НС могла правильно обучаться и давать верные решения. Очень хорошо МОР визуализирован на этой гифке:

      А теперь давайте подробно разберем каждый этап. Если вы помните то в предыдущей статье мы считали выход НС. По другому это называется передача вперед (Forward pass), то есть мы последовательно передаем информацию от входных нейронов к выходным. После чего мы вычисляем ошибку и основываясь на ней делаем обратную передачу, которая заключается в том, чтобы последовательно менять веса нейронной сети, начиная с весов выходного нейрона. Значение весов будут меняться в ту сторону, которая даст нам наилучший результат. В моих вычисления я буду пользоваться методом нахождения дельты, так как это наиболее простой и понятный способ. Также я буду использовать стохастический метод обновления весов (об этом чуть позже).

      Теперь давайте продолжим с того места, где мы закончили вычисления в предыдущей статье.

      Данные задачи из предыдущей статьи

      Данные: I1=1, I2=0, w1=0.45, w2=0.78 ,w3=-0.12 ,w4=0.13 ,w5=1.5 ,w6=-2.3.

      H1input = 1*0.45+0*-0.12=0.45
      H1output = sigmoid(0.45)=0.61

      H2input = 1*0.78+0*0.13=0.78
      H2output = sigmoid(0.78)=0.69

      O1input = 0.61*1.5+0.69*-2.3=-0.672
      O1output = sigmoid(-0.672)=0.33

      O1ideal = 1 (0xor1=1)

      Error = ((1-0.33)^2)/1=0.45

      Результат — 0.33, ошибка — 45%.

      Так как мы уже подсчитали результат НС и ее ошибку, то мы можем сразу приступить к МОРу. Как я уже упоминал ранее, алгоритм всегда начинается с выходного нейрона. В таком случае давайте посчитаем для него значение ? (дельта) по формуле 1.
      Так как у выходного нейрона нет исходящих синапсов, то мы будем пользоваться первой формулой (? output), следственно для скрытых нейронов мы уже будем брать вторую формулу (? hidden). Тут все достаточно просто: считаем разницу между желаемым и полученным результатом и умножаем на производную функции активации от входного значения данного нейрона. Прежде чем приступить к вычислениям я хочу обратить ваше внимание на производную. Во первых как это уже наверное стало понятно, с МОР нужно использовать только те функции активации, которые могут быть дифференцированы. Во вторых чтобы не делать лишних вычислений, формулу производной можно заменить на более дружелюбную и простую формула вида:

      Таким образом наши вычисления для точки O1 будут выглядеть следующим образом.

      Решение

      O1output = 0.33
      O1ideal = 1
      Error = 0.45

      ?O1 = (1 — 0.33) * ( (1 — 0.33) * 0.33 ) = 0.148

      На этом вычисления для нейрона O1 закончены. Запомните, что после подсчета дельты нейрона мы обязаны сразу обновить веса всех исходящих синапсов этого нейрона. Так как в случае с O1 их нет, мы переходим к нейронам скрытого уровня и делаем тоже самое за исключение того, что формула подсчета дельты у нас теперь вторая и ее суть заключается в том, чтобы умножить производную функции активации от входного значения на сумму произведений всех исходящих весов и дельты нейрона с которой этот синапс связан. Но почему формулы разные? Дело в том что вся суть МОР заключается в том чтобы распространить ошибку выходных нейронов на все веса НС. Ошибку можно вычислить только на выходном уровне, как мы это уже сделали, также мы вычислили дельту в которой уже есть эта ошибка. Следственно теперь мы будем вместо ошибки использовать дельту которая будет передаваться от нейрона к нейрону. В таком случае давайте найдем дельту для H1:

      Решение

      H1output = 0.61
      w5 = 1.5
      ?O1 = 0.148

      ?H1 = ( (1 — 0.61) * 0.61 ) * ( 1.5 * 0.148 ) = 0.053

      Теперь нам нужно найти градиент для каждого исходящего синапса. Здесь обычно вставляют 3 этажную дробь с кучей производных и прочим математическим адом, но в этом и вся прелесть использования метода подсчета дельт, потому что в конечном счете ваша формула нахождения градиента будет выглядеть вот так:

      Здесь точка A это точка в начале синапса, а точка B на конце синапса. Таким образом мы можем подсчитать градиент w5 следующим образом:

      Решение

      H1output = 0.61
      ?O1 = 0.148

      GRADw5 = 0.61 * 0.148 = 0.09

      Сейчас у нас есть все необходимые данные чтобы обновить вес w5 и мы сделаем это благодаря функции МОР которая рассчитывает величину на которую нужно изменить тот или иной вес и выглядит она следующим образом:

      Настоятельно рекомендую вам не игнорировать вторую часть выражения и использовать момент так как это вам позволит избежать проблем с локальным минимумом.

      Здесь мы видим 2 константы о которых мы уже говорили, когда рассматривали алгоритм градиентного спуска: E (эпсилон) — скорость обучения, ? (альфа) — момент. Переводя формулу в слова получим: изменение веса синапса равно коэффициенту скорости обучения, умноженному на градиент этого веса, прибавить момент умноженный на предыдущее изменение этого веса (на 1-ой итерации равно 0). В таком случае давайте посчитаем изменение веса w5 и обновим его значение прибавив к нему ?w5.

      Решение

      E = 0.7
      ? = 0.3
      w5 = 1.5
      GRADw5 = 0.09
      ?w5(i-1) = 0

      ?w5 = 0.7 * 0.09 + 0 * 0.3 = 0.063
      w5 = w5 + ?w5 = 1.563

      Таким образом после применения алгоритма наш вес увеличился на 0.063. Теперь предлагаю сделать вам тоже самое для H2.

      Решение

      H2output = 0.69
      w6 = -2.3
      ?O1 = 0.148
      E = 0.7
      ? = 0.3
      ?w6(i-1) = 0

      ?H2 = ( (1 — 0.69) * 0.69 ) * ( -2.3 * 0.148 ) = -0.07

      GRADw6 = 0.69 * 0.148 = 0.1

      ?w6 = 0.7 * 0.1 + 0 * 0.3 = 0.07

      w6 = w6 + ?w6 = -2.2

      И конечно не забываем про I1 и I2, ведь у них тоже есть синапсы веса которых нам тоже нужно обновить. Однако помним, что нам не нужно находить дельты для входных нейронов так как у них нет входных синапсов.

      Решение

      w1 = 0.45, ?w1(i-1) = 0
      w2 = 0.78, ?w2(i-1) = 0
      w3 = -0.12, ?w3(i-1) = 0
      w4 = 0.13, ?w4(i-1) = 0
      ?H1 = 0.053
      ?H2 = -0.07
      E = 0.7
      ? = 0.3

      GRADw1 = 1 * 0.053 = 0.053
      GRADw2 = 1 * -0.07 = -0.07
      GRADw3 = 0 * 0.053 = 0
      GRADw4 = 0 * -0.07 = 0

      ?w1 = 0.7 * 0.053 + 0 * 0.3 = 0.04
      ?w2 = 0.7 * -0.07 + 0 * 0.3 = -0.05
      ?w3 = 0.7 * 0 + 0 * 0.3 = 0
      ?w4 = 0.7 * 0 + 0 * 0.3 = 0

      w1 = w1 + ?w1 = 0.5
      w2 = w2 + ?w2 = 0.73
      w3 = w3 + ?w3 = -0.12
      w4 = w4 + ?w4 = 0.13

      Теперь давайте убедимся в том, что мы все сделали правильно и снова посчитаем выход НС только уже с обновленными весами.

      Решение

      I1 = 1
      I2 = 0
      w1 = 0.5
      w2 = 0.73
      w3 = -0.12
      w4 = 0.13
      w5 = 1.563
      w6 = -2.2

      H1input = 1 * 0.5 + 0 * -0.12 = 0.5
      H1output = sigmoid(0.5) = 0.62

      H2input = 1 * 0.73 + 0 * 0.124 = 0.73
      H2output = sigmoid(0.73) = 0.675

      O1input = 0.62* 1.563 + 0.675 * -2.2 = -0.51
      O1output = sigmoid(-0.51) = 0.37

      O1ideal = 1 (0xor1=1)

      Error = ((1-0.37)^2)/1=0.39

      Результат — 0.37, ошибка — 39%.

      Как мы видим после одной итерации МОР, нам удалось уменьшить ошибку на 0.04 (6%). Теперь нужно повторять это снова и снова, пока ваша ошибка не станет достаточно мала.

      Что еще нужно знать о процессе обучения?

      Нейросеть можно обучать с учителем и без (supervised, unsupervised learning).

      Обучение с учителем — это тип тренировок присущий таким проблемам как регрессия и классификация (им мы и воспользовались в примере приведенном выше). Иными словами здесь вы выступаете в роли учителя а НС в роли ученика. Вы предоставляете входные данные и желаемый результат, то есть ученик посмотрев на входные данные поймет, что нужно стремиться к тому результату который вы ему предоставили.

      Обучение без учителя — этот тип обучения встречается не так часто. Здесь нет учителя, поэтому сеть не получает желаемый результат или же их количество очень мало. В основном такой вид тренировок присущ НС у которых задача состоит в группировке данных по определенным параметрам. Допустим вы подаете на вход 10000 статей на хабре и после анализа всех этих статей НС сможет распределить их по категориям основываясь, например, на часто встречающихся словах. Статьи в которых упоминаются языки программирования, к программированию, а где такие слова как Photoshop, к дизайну.

      Существует еще такой интересный метод, как обучение с подкреплением (reinforcement learning). Этот метод заслуживает отдельной статьи, но я попытаюсь вкратце описать его суть. Такой способ применим тогда, когда мы можем основываясь на результатах полученных от НС, дать ей оценку. Например мы хотим научить НС играть в PAC-MAN, тогда каждый раз когда НС будет набирать много очков мы будем ее поощрять. Иными словами мы предоставляем НС право найти любой способ достижения цели, до тех пор пока он будет давать хороший результат. Таким способом, сеть начнет понимать чего от нее хотят добиться и пытается найти наилучший способ достижения этой цели без постоянного предоставления данных “учителем”.

      Также обучение можно производить тремя методами: стохастический метод (stochastic), пакетный метод (batch) и мини-пакетный метод (mini-batch). Существует очень много статей и исследований на тему того, какой из методов лучше и никто не может прийти к общему ответу. Я же сторонник стохастического метода, однако я не отрицаю тот факт, что каждый метод имеет свои плюсы и минусы.

      Вкратце о каждом методе:

      Стохастический (его еще иногда называют онлайн) метод работает по следующему принципу — нашел ?w, сразу обнови соответствующий вес.

      Пакетный метод же работает по другому. Мы суммируем ?w всех весов на текущей итерации и только потом обновляем все веса используя эту сумму. Один из самых важных плюсов такого подхода — это значительная экономия времени на вычисление, точность же в таком случае может сильно пострадать.

      Мини-пакетный метод является золотой серединой и пытается совместить в себе плюсы обоих методов. Здесь принцип таков: мы в свободном порядке распределяем веса по группам и меняем их веса на сумму ?w всех весов в той или иной группе.

      Что такое гиперпараметры?

      Гиперпараметры — это значения, которые нужно подбирать вручную и зачастую методом проб и ошибок. Среди таких значений можно выделить:

      • Момент и скорость обучения
      • Количество скрытых слоев
      • Количество нейронов в каждом слое
      • Наличие или отсутствие нейронов смещения

      В других типах НС присутствуют дополнительные гиперпараметры, но о них мы говорить не будем. Подбор верных гиперпараметров очень важен и будет напрямую влиять на сходимость вашей НС. Понять стоит ли использовать нейроны смещения или нет достаточно просто. Количество скрытых слоев и нейронов в них можно вычислить перебором основываясь на одном простом правиле — чем больше нейронов, тем точнее результат и тем экспоненциально больше время, которое вы потратите на ее обучение. Однако стоит помнить, что не стоит делать НС с 1000 нейронов для решения простых задач. А вот с выбором момента и скорости обучения все чуточку сложнее. Эти гиперпараметры будут варьироваться, в зависимости от поставленной задачи и архитектуры НС. Например, для решения XOR скорость обучения может быть в пределах 0.3 — 0.7, но в НС которая анализирует и предсказывает цену акций, скорость обучения выше 0.00001 приводит к плохой сходимости НС. Не стоит сейчас заострять свое внимание на гиперпараметрах и пытаться досконально понять, как же их выбирать. Это придет с опытом, а пока что советую просто экспериментировать и искать примеры решения той или иной задачи в сети.

      Что такое сходимость?


      Сходимость говорит о том, правильная ли архитектура НС и правильно ли были подобраны гиперпараметры в соответствии с поставленной задачей. Допустим наша программа выводит ошибку НС на каждой итерации в лог. Если с каждой итерацией ошибка будет уменьшаться, то мы на верном пути и наша НС сходится. Если же ошибка будет прыгать вверх — вниз или застынет на определенном уровне, то НС не сходится. В 99% случаев это решается изменением гиперпараметров. Оставшийся 1% будет означать, что у вас ошибка в архитектуре НС. Также бывает, что на сходимость влияет переобучение НС.

      Что такое переобучение?

      Переобучение, как следует из названия, это состояние нейросети, когда она перенасыщена данными. Это проблема возникает, если слишком долго обучать сеть на одних и тех же данных. Иными словами, сеть начнет не учиться на данных, а запоминать и “зубрить” их. Соответственно, когда вы уже будете подавать на вход этой НС новые данные, то в полученных данных может появиться шум, который будет влиять на точность результата. Например, если мы будем показывать НС разные фотографии яблок (только красные) и говорить что это яблоко. Тогда, когда НС увидит желтое или зеленое яблоко, оно не сможет определить, что это яблоко, так как она запомнила, что все яблоки должны быть красными. И наоборот, когда НС увидит что-то красное и по форме совпадающее с яблоком, например персик, она скажет, что это яблоко. Это и есть шум. На графике шум будет выглядеть следующим образом.

      Видно, что график функции сильно колеблется от точки к точке, которые являются выходными данными (результатом) нашей НС. В идеале, этот график должен быть менее волнистый и прямой. Чтобы избежать переобучения, не стоит долго тренировать НС на одних и тех же или очень похожих данных. Также, переобучение может быть вызвано большим количеством параметров, которые вы подаете на вход НС или слишком сложной архитектурой. Таким образом, когда вы замечаете ошибки (шум) в выходных данных после этапа обучения, то вам стоит использовать один из методов регуляризации, но в большинстве случаев это не понадобиться.

      Заключение

      Надеюсь эта статья смогла прояснить ключевые моменты такого нелегко предмета, как Нейронные сети. Однако я считаю, что сколько бы ты статей не прочел, без практики такую сложную тему освоить невозможно. Поэтому, если вы только в начале пути и хотите изучить эту перспективную и развивающуюся отрасль, то советую начать практиковаться с написания своей НС, а уже после прибегать к помощи различных фреймворков и библиотек. Также, если вам интересен мой метод изложения информации и вы хотите, чтобы я написал статьи на другие темы связанные с Машинным обучением, то проголосуйте в опросе ниже за ту тему которую вам интересна. До встречи в будущих статьях :)

      Применение алгоритма обратного распространения ошибки — один из известных методов, используемых для глубокого обучения нейронных сетей прямого распространения (такие сети ещё называют многослойными персептронами). Этот метод относят к методу обучения с учителем, поэтому требуется задавать в обучающих примерах целевые значения. В этой статье мы рассмотрим, что собой представляет метод обратного распространения ошибки, как он реализуется, каковы его плюсы и минусы.

      Сегодня нейронные сети прямого распространения используются для решения множества сложных задач. Если говорить об обучении нейронных сетей методом обратного распространения, то тут пользуются двумя проходами по всем слоям нейросети: прямым и обратным. При выполнении прямого прохода осуществляется подача входного вектора на входной слой сети, после чего происходит распространение по нейронной сети от слоя к слою. В итоге должна осуществляться генерация набора выходных сигналов — именно он, по сути, является реакцией нейронной сети на этот входной образ. При прямом проходе все синаптические веса нейросети фиксированы. При обратном проходе все синаптические веса настраиваются согласно правил коррекции ошибок, когда фактический выход нейронной сети вычитается из желаемого, что приводит к формированию сигнала ошибки. Такой сигнал в дальнейшем распространяется по сети, причём направление распространения обратно направлению синаптических связей. Именно поэтому соответствующий метод и называют алгоритмом с обратно распространённой ошибкой. Синаптические веса настраивают с целью наибольшего приближения выходного сигнала нейронной сети к желаемому.

      Общее описание алгоритма обратного распространения ошибки

      К примеру, нам надо обучить нейронную сеть по аналогии с той, что представлена на картинке ниже. Естественно, задачу следует выполнить, применяя алгоритм обратного распространения ошибки:

      4-20219-e537a8.png

      2-20219-7f9b72.png

      В многослойных персептронах в роли активационной функции обычно применяют сигмоидальную активационную функция, в нашем случае — логистическую. Формула:

      3-20219-2ac7f4.png

      Причём «альфа» здесь означает параметр наклона сигмоидальной функции. Меняя его, мы получаем возможность строить функции с разной крутизной.

      Сигмоид может сужать диапазон изменения таким образом, чтобы значение OUT лежало между нулем и единицей. Нейронные многослойные сети характеризуются более высокой представляющей мощностью, если сравнивать их с однослойными, но это утверждение справедливо лишь в случае нелинейности. Нужную нелинейность и обеспечивает сжимающая функция. Но на практике существует много функций, которые можно использовать. Говоря о работе алгоритма обратного распространения ошибки, скажем, что для этого нужно лишь, чтобы функция была везде дифференцируема, а данному требованию как раз и удовлетворяет сигмоид. У него есть и дополнительное преимущество — автоматический контроль усиления. Если речь идёт о слабых сигналах (OUT близко к нулю), то кривая «вход-выход» характеризуется сильным наклоном, дающим большое усиление. При увеличении сигнала усиление падает. В результате большие сигналы будут восприниматься сетью без насыщения, а слабые сигналы будут проходить по сети без чрезмерного ослабления.

      Цель обучения сети

      Цель обучения нейросети при использовании алгоритма обратного распространения ошибки — это такая подстройка весов нейросети, которая позволит при приложении некоторого множества входов получить требуемое множество выходов нейронов (выходных нейронов). Можно назвать эти множества входов и выходов векторами. В процессе обучения предполагается, что для любого входного вектора существует целевой вектор, парный входному и задающий требуемый выход. Эту пару называют обучающей. Работая с нейросетями, мы обучаем их на многих парах.

      Также можно сказать, что алгоритм использует стохастический градиентный спуск и продвигается в многомерном пространстве весов в направлении антиградиента, причём цель — это достижение минимума функции ошибки.

      При практическом применении метода обучение продолжают не до максимально точной настройки нейросети на минимум функции ошибки, а пока не будет достигнуто довольно точное его приближение. С одной стороны, это даёт возможность уменьшить количество итераций обучения, с другой — избежать переобучения нейронной сети.

      Пошаговая реализация метода обратного распространения ошибки

      Необходимо выполнить следующие действия:
      1. Инициализировать синаптические веса случайными маленькими значениями.
      2. Выбрать из обучающего множества очередную обучающую пару; подать на вход сети входной вектор.
      3. Выполнить вычисление выходных значений нейронной сети.
      4. Посчитать разность между выходом нейросети и требуемым выходом (речь идёт о целевом векторе обучающей пары).
      5. Скорректировать веса сети в целях минимизации ошибки.
      6. Повторять для каждого вектора обучающего множества шаги 2-5, пока ошибка обучения нейронной сети на всём множестве не достигнет уровня, который является приемлемым.

      Виды обучения сети по методу обратного распространения

      Сегодня существует много модификаций алгоритма обратного распространения ошибки. Возможно обучение не «по шагам» (выходная ошибка вычисляется, веса корректируются на каждом примере), а «по эпохам» в offline-режиме (изменения весовых коэффициентов происходит после подачи на вход нейросети всех примеров обучающего множества, а ошибка обучения neural сети усредняется по всем примерам).

      Обучение «по эпохам» более устойчиво к выбросам и аномальным значениям целевой переменной благодаря усреднению ошибки по многим примерам. Зато в данном случае увеличивается вероятность «застревания» в локальных минимумах. При обучении «по шагам» такая вероятность меньше, ведь применение отдельных примеров создаёт «шум», «выталкивающий» алгоритм обратного распространения из ям градиентного рельефа.

      Преимущества и недостатки метода

      К плюсам можно отнести простоту в реализации и устойчивость к выбросам и аномалиям в данных, и это основные преимущества. Но есть и минусы:
      • неопределенно долгий процесс обучения;
      • вероятность «паралича сети» (при больших значениях рабочая точка функции активации попадает в область насыщения сигмоиды, а производная величина приближается к 0, в результате чего коррекции весов почти не происходят, а процесс обучения «замирает»;
      • алгоритм уязвим к попаданию в локальные минимумы функции ошибки.

      Значение метода обратного распространения

      Появление алгоритма стало знаковым событием и положительно отразилось на развитии нейросетей, ведь он реализует эффективный с точки зрения вычислительных процессов способ обучения многослойного персептрона. В то же самое время, было бы неправильным сказать, что алгоритм предлагает наиболее оптимальное решение всех потенциальных проблем. Зато он действительно развеял пессимизм относительно машинного обучения многослойных машин, который воцарился после публикации в 1969 году работы американского учёного с фамилией Минский.

      Источники:
      — «Алгоритм обратного распространения ошибки»;
      — «Back propagation algorithm».

      Понравилась статья? Поделить с друзьями:
    • Нейроны детекторы ошибок
    • Нейронная сеть обратного распространения ошибки python
    • Некст рп ошибка сс21
    • Некст рп ошибка сд09
    • Некст рп ошибка при запуске