Реализовал свою нейронную сеть и решил проверить ее работоспособность.
Структура нейронной сети: 3 входных нейрона, скрытый слой с 2 нейронами и 2 выходных нейрона
.
Обучающая выборка:
double_t** trainSet = new double_t * [] {
new double_t[]{ 0, 0, 0 },
new double_t[]{ 0, 1, 0 },
new double_t[]{ 1, 0, 0 },
new double_t[]{ 1, 1, 0 },
new double_t[]{ 0, 0, 1 },
new double_t[]{ 0, 1, 1 },
new double_t[]{ 1, 0, 1 },
new double_t[]{ 1, 1, 1 },
new double_t[]{ 0, 0, 2 },
new double_t[]{ 0, 1, 2 },
new double_t[]{ 1, 0, 2 },
new double_t[]{ 1, 1, 2 }
};
Первый и второй нейрон это значения операндов, а третий нейрон это номер операции 1 — &, 2 — | или 3 — ^ (xor). Эти числа нормализуются в 0, 0.5 и 1 соответственно.
Вот последние результаты работы:
Как видно на приложенном скрине, ошибки во всех сетах, кроме последнего уменьшается. И если я из обучающей выборки уберу этот сет, то нейронная сеть будет отлично работать.
В чем может быть проблема? Как её исправить? Я проверил код функций и вроде не нашел ошибки, но если нужно попросите и я дополню вопрос кодом.
Дополнено
Ошибка выходного нейрона: error = (ideal - output) * derivative(output)
Ошибка скрытого нейрона: error[i] = derivative(output[i]) * summa(weights[i][i+1] * error[i+1]
Ошибка скрытого нейрона = значение производной * на сумму произведений веса между этим нейроном и нейроном следующего слоя, на ошибку нейрона следующего слоя.
Ошибка для выбранного сета:
trainError = summa(ideals[i] - output[i]) / countOutputNeurons
Ошибка эпохи: epochError = summa(trainError[i]) / countSets
Ошибка эпохи = сумма ошибок каждого сета разделенного на количество сетов.
Дополнено
Убрал умножение на производную при поиске ошибок выходных нейронов и нейронка наконецто обучилась, а не зациклилась.
И получил следующее:
Почему то при входных значениях (1, 1) нейронная сеть хуже обучается.
Объясните пожалуйста кто разбирается почему так.
При начальной структуре (3 входных, 2 скрытых и 2 выходных), ошибки некоторых сетов например на 50 эпохе < 0.00001, у большинства в районе (0.01, 0.09) и только проклятого двенадцатого сета ошибка растет.
Обновлено
В общем проблема заключается именно в том, чтобы научить нейронную сеть операции xor
и именно сету (1, 1). Ошибка уменьшается медленней чем при других сетах.
Добавил случайное перемешивание сетов каждую эпоху, что вроде ускорило обучение (раньше было в среднем 250+ эпох сейчас 150+).
Но тут есть еще одна проблема, решение которой я не могу найти. Если раз десять перезапустить обучение, то почему то может произойти такое, что нейронная сеть не будет обучаться и зациклиться на одних ошибках. Это как то случайно получается.
Время на прочтение
9 мин
Количество просмотров 38K
Сеть обучалась последние 12 часов. Всё выглядело хорошо: градиенты стабильные, функция потерь уменьшалась. Но потом пришёл результат: все нули, один фон, ничего не распознано. «Что я сделал не так?», — спросил я у компьютера, который промолчал в ответ.
Почему нейросеть выдаёт мусор (например, среднее всех результатов или у неё реально слабая точность)? С чего начать проверку?
Сеть может не обучаться по ряду причин. По итогу многих отладочных сессий я заметил, что часто делаю одни и те же проверки. Здесь я собрал в удобный список свой опыт вместе с лучшими идеями коллег. Надеюсь, этот список будет полезен и вам.
Содержание
0. Как использовать это руководство?
I. Проблемы с набором данных
II. Нормализация данных/Проблемы аугментации
III. Проблемы реализации
IV. Проблемы обучения
0. Как использовать это руководство?
Многое может пойти не так. Но некоторые проблемы встречаются чаще, чем другие. Я обычно начинаю с этого маленького списка как набора экстренной помощи:
- Начните с простой модели, которая точно правильно работает для этого типа данных (например, VGG для изображений). Используйте стандартную функцию потерь, если возможно.
- Отключите все финтифлюшки, например, регуляризацию и аугментацию данных.
- В случае тонкой настройки модели дважды проверьте препроцессинг, чтобы он соответствовал обучению первоначальной модели.
- Удостоверьтесь в правильности входных данных.
- Начните с действительно маленького набора данных (2-20 образцов). Затем расширяйте его, постепенно добавляя новые данные.
- Начните постепенно добавлять обратно все фрагменты, которые были опущены: аугментация/регуляризация, кастомные функции потерь, пробуйте более сложные модели.
Если ничего не помогло, то приступайте к чтению этого длинного списка и проверяйте каждый пункт.
I. Проблемы с набором данных
Источник: http://dilbert.com/strip/2014-05-07
1. Проверьте входные данные
Проверьте, что входные данные имеют смысл. Например, я не раз смешивал в кучу высоту и ширину изображений. Иногда по ошибке отдавал в нейросеть все нули. Или использовал одну и ту же партию снова и снова. Так что напечатайте/посмотрите пару партий входных данных и плановых выходных данных — убедитесь, что всё в порядке.
2. Попробуйте случайные входные значения
Попробуйте передать случайные числа вместо реальных данных и посмотрите, останется ли та же ошибка. Если так, то это верный знак, что ваша сеть на каком-то этапе превращает данные в мусор. Попробуйте отладку слой за слоем (операция за операцией) и посмотрите, где происходит сбой.
3. Проверьте загрузчик данных
С данными всё может быть в порядке, а ошибка в коде, который передаёт входные данные нейросети. Распечатайте и проверьте входные данные первого слоя перед началом его операций.
4. Убедитесь, что вход соединяется с выходом
Проверьте, что несколько образцов входных данных снабжены правильными метками. Также проверьте, что смена местами входных образцов так же отражается на выходных метках.
5. Взаимоотношение между входом и выходом слишком случайно?
Может быть, неслучайные части взаимоотношения между входом и выходом слишком малы по сравнению со случайной частью (кто-то может сказать, что таковы котировки на бирже). То есть вход недостаточно связан с выходом. Тут нет универсального метода, потому что мера случайности зависит от типа данных.
6. Слишком много шума в наборе данных?
Однажды это случилось со мной, когда я стянул набор изображений продуктов питания с сайта. Там было так много плохих меток, что сеть не могла обучаться. Вручную проверьте ряд образцов входных значений и посмотрите, что все метки на месте.
Данный пункт достоин отдельного разговора, потому что эта работа показывает точность выше 50% на базе MNIST при 50% повреждённых меток.
7. Перемешайте набор данных
Если ваши данные не перемешаны и располагаются в определённом порядке (отсортированы по меткам), это может отрицательно отразиться на обучении. Перемешайте набор данных: убедитесь, что перемешиваете вместе и входные данные, и метки.
8. Снизьте несбалансированность классов
Может, в наборе данных тысяча изображений класса А на одно изображение класса Б? Тогда вам может понадобиться сбалансировать функцию потерь или попробовать другие подходы устранения несбалансированности.
9. Достаточно ли образцов для обучения?
Если вы обучаете сеть с нуля (то есть не настраиваете её), то может понадобиться очень много данных. Например, для классификации изображений, говорят, нужна тысяча изображений на каждый класс, а то и больше.
10. Убедитесь в отсутствии партий с единственной меткой
Такое случается в отсортированном наборе данных (то есть первые 10 тыс. образцов содержат одинаковый класс). Легко исправляется перемешиванием набора данных.
11. Уменьшите размер партий
Эта работа указывает, что слишком большие партии могут понизить у модели способность к обобщению.
Дополнение 1. Используйте стандартный набор данных (например, mnist, cifar10)
Спасибо hengcherkeng за это:
При тестировании новой сетевой архитектуры или написании нового кода сначала используйте стандартные наборы данных вместо своих. Потому что для них уже есть много результатов и они гарантированно «разрешимые». Там не будет проблем с шумом в метках, разницей в распределении обучение/тестирование, слишком большой сложностью набора данных и т.д.
II. Нормализация данных/Проблемы аугментации
12. Откалибруйте признаки
Вы откалибровали входные данные на нулевое среднее и единичную дисперсию?
13. Слишком сильная аугментация данных?
Аугментация имеет регуляризующий эффект. Если она слишком сильная, то это вкупе с другими формами регуляризации (L2-регуляризация, dropout и др.) может привести к недообучению нейросети.
14. Проверьте предобработку предварительно обученной модели
Если вы используете уже подготовленную модель, то убедитесь, что используются та же нормализация и предобработка, что и в модели, которую вы обучаете. Например, должен пиксель быть в диапазоне [0, 1], [-1, 1] или [0, 255]?
15. Проверьте предварительную обработку для набора обучение/валидация/тестирование
CS231n указал на типичную ловушку:
«… любую статистику предобработки (например, среднее данных) нужно вычислять на данных для обучения, а потом применять на данных валидации/тестирования. Например, будет ошибкой вычисление среднего и вычитание его из каждого изображения во всём наборе данных, а затем разделение данных на фрагменты для обучения/валидации/тестирования».
Также проверьте на предмет наличия различающейся предварительной обработки каждого образца и партии.
III. Проблемы реализации
Источник: https://xkcd.com/1838/
16. Попробуйте решить более простой вариант задачи
Это поможет определить, где проблема. Например, если целевая выдача — это класс объекта и координаты, попробуйте ограничить предсказание только классом объекта.
17. Поищите правильную функцию потерь «по вероятности»
Снова из бесподобного CS231n: Инициализируйте с небольшими параметрами, без регуляризации. Например, если у нас 10 классов, то «по вероятности» означает, что правильный класс определится в 10% случаев, а функция потерь Softmax — это обратный логарифм к вероятности правильного класса, то есть получается
После этого попробуйте увеличить силу регуляризации, что должно увеличить функцию потерь.
18. Проверьте функцию потерь
Если вы реализовали свою собственную, проверьте её на баги и добавьте юнит-тесты. У меня часто бывало, что слегка неправильная функция потерь тонко вредила производительности сети.
19. Проверьте входные данные функции потерь
Если вы используете функцию потерь из фреймворка, то убедитесь, что передаёте ей то что нужно. Например, в PyTorch я бы смешал NLLLoss и CrossEntropyLoss, потому что первая требует входных данных softmax, а вторая — нет.
20. Отрегулируйте веса функции потерь
Если ваша функция потерь состоит из нескольких функций, проверьте их соотношение относительно друг друга. Для этого может понадобиться тестирование в разных вариантах соотношений.
21. Отслеживайте другие показатели
Иногда функция потерь — не лучший предиктор того, насколько правильно обучается ваша нейросеть. Если возможно, используйте другие показатели, такие как точность.
22. Проверьте каждый кастомный слой
Вы самостоятельно реализовали какие-то из слоёв сети? Дважды проверьте, что они работают как полагается.
23. Проверьте отсутствие «зависших» слоёв или переменных
Посмотрите, может вы неумышленно отключили обновления градиента каких-то слоёв/переменных.
24. Увеличьте размер сети
Может, выразительной мощности сети недостаточно для усвоения целевой функции. Попробуйте добавить слоёв или больше скрытых юнитов в полностью соединённые слои.
25. Поищите скрытые ошибки измерений
Если ваши входные данные выглядят как
, то легко пропустить ошибку, связанную с неправильными измерениями. Используйте необычные числа для измерений входных данных (например, разные простые числа для каждого измерения) и посмотрите, как они распространяются по сети.
26. Исследуйте Gradient Checking
Если вы самостоятельно реализовали Gradient Descent, то с помощью Gradient Checking можно убедиться в корректной обратной связи. Дополнительная информация: 1, 2, 3.
IV. Проблемы обучения
Источник: http://carlvondrick.com/ihog/
27. Решите задачу для действительно маленького набора данных
Переобучите сеть на маленьком наборе данных и убедитесь в её работе. Например, обучите её всего с 1-2 примерами и посмотрите, способна ли сеть различать объекты. Переходите к большему количеству образцов для каждого класса.
28. Проверьте инициализацию весов
Если не уверены, используйте инициализацию Ксавьера или Хе. К тому же, ваша инициализация может вывести на плохой локальный минимум, так что испытайте другую инициализацию, может поможет.
29. Измените гиперпараметры
Может вы используете плохой набор гиперпараметров. Если возможно, попробуйте grid search.
30. Уменьшите регуляризацию
Из-за слишком сильной регуляризации сеть может конкретно недообучиться. Уменьшите регуляризацию, такую как dropout, batch norm, L2-регуляризацию weight/bias и др. В отличном курсе «Практическое глубинное обучение для программистов» Джереми Говард рекомендует в первую очередь избавиться от недообучения. То есть нужно достаточно переообучить сеть на исходных данных, и только затем бороться с переобучением.
31. Дайте время
Может сети нужно больше времени на обучение, прежде чем она начнёт делать осмысленные предсказания. Если функция потерь стабильно уменьшается, дайте ей обучиться чуть подольше.
32. Переходите от режима обучения в режим тестирования
В некоторых фреймворках слои Batch Norm, Dropout и другие ведут себя по-разному во время обучения и тестирования. Переключение в подходящий режим может помочь вашей сети начать делать правильные прогнозы.
33. Визуализируйте обучение
- Отслеживайте активации, веса и обновления для каждого слоя. Убедитесь, что отношения их величин совпадают. Например, отношение величины обновлений к параметрам (весам и смещениям) должно равняться 1e-3.
- Рассмотрите библиотеки визуализации вроде Tensorboard и Crayon. В крайнем случае, можно просто печатать значения весов/сдвигов/активаций.
- Будьте осторожны с активациями сетей со средним намного больше нуля. Попробуйте Batch Norm или ELU.
- Deeplearning4j указал, на что смотреть в гистограммах весов и сдвигов:
«Для весов эти гистограммы должны иметь примерно гауссово (нормальное) распределение, спустя какое-то время. Гистограммы сдвигов обычно начинаются с нуля и обычно заканчиваются на уровне примерно гауссова распределения (единственное исключение — LSTM). Следите за параметрами, которые отклоняются на плюс/минус бесконечность. Следите за сдвигами, которые становятся слишком большими. Иногда такое случается в выходном слое для классификации, если распределение классов слишком несбалансировано».
- Проверяйте обновления слоёв, они должны иметь нормальное распределение.
34. Попробуйте иной оптимизатор
Ваш выбор оптимизатора не должен мешать нейросети обучаться, если только вы не выбрали конкретно плохие гиперпараметры. Но правильный оптимизатор для задачи может помочь получить наилучшее обучение за кратчайшее время. Научная статья с описанием того алгоритма, который вы используете, должна упомянуть и оптимизатор. Если нет, я предпочитаю использовать Adam или простой SGD.
Прочтите отличную статью Себастьяна Рудера, чтобы узнать больше об оптимизаторах градиентного спуска.
35. Взрыв/исчезновение градиентов
- Проверьте обновления слоя, поскольку очень большие значения могут указывать на взрывы градиентов. Может помочь клиппинг градиента.
- Проверьте активации слоя. Deeplearning4j даёт отличный совет: «Хорошее стандартное отклонение для активаций находится в районе от 0,5 до 2,0. Значительный выход за эти рамки может указывать на взрыв или исчезновение активаций».
36. Ускорьте/замедлите обучение
Низкая скорость обучения приведёт к очень медленному схождению модели.
Высокая скорость обучения сначала быстро уменьшит функцию потерь, а потом вам будет трудно найти хорошее решение.
Поэкспериментируйте со скоростью обучению, ускоряя либо замедляя её в 10 раз.
37. Устранение состояний NaN
Состояния NaN (Non-a-Number) гораздо чаще встречаются при обучении RNN (насколько я слышал). Некоторые способы их устранения:
- Уменьшите скорость обучения, особенно если NaN появляются в первые 100 итераций.
- Нечисла могут возникнуть из-за деления на ноль, взятия натурального логарифма нуля или отрицательного числа.
- Рассел Стюарт предлагает хорошие советы, что делать в случае появления NaN.
- Попробуйте оценить сеть слой за слоем и посмотреть, где появляются NaN.
Добро пожаловать во вторую часть руководства по нейронным сетям. Сразу хочу принести извинения всем кто ждал вторую часть намного раньше. По определенным причинам мне пришлось отложить ее написание. На самом деле я не ожидал, что у первой статьи будет такой спрос и что так много людей заинтересует данная тема. Взяв во внимание ваши комментарии, я постараюсь предоставить вам как можно больше информации и в то же время сохранить максимально понятный способ ее изложения. В данной статье, я буду рассказывать о способах обучения/тренировки нейросетей (в частности метод обратного распространения) и если вы, по каким-либо причинам, еще не прочитали первую часть, настоятельно рекомендую начать с нее. В процессе написания этой статьи, я хотел также рассказать о других видах нейросетей и методах тренировки, однако, начав писать про них, я понял что это пойдет вразрез с моим методом изложения. Я понимаю, что вам не терпится получить как можно больше информации, однако эти темы очень обширны и требуют детального анализа, а моей основной задачей является не написать очередную статью с поверхностным объяснением, а донести до вас каждый аспект затронутой темы и сделать статью максимально легкой в освоении. Спешу расстроить любителей “покодить”, так как я все еще не буду прибегать к использованию языка программирования и буду объяснять все “на пальцах”. Достаточно вступления, давайте теперь продолжим изучение нейросетей.
Что такое нейрон смещения?
Перед тем как начать нашу основную тему, мы должны ввести понятие еще одного вида нейронов — нейрон смещения. Нейрон смещения или bias нейрон — это третий вид нейронов, используемый в большинстве нейросетей. Особенность этого типа нейронов заключается в том, что его вход и выход всегда равняются 1 и они никогда не имеют входных синапсов. Нейроны смещения могут, либо присутствовать в нейронной сети по одному на слое, либо полностью отсутствовать, 50/50 быть не может (красным на схеме обозначены веса и нейроны которые размещать нельзя). Соединения у нейронов смещения такие же, как у обычных нейронов — со всеми нейронами следующего уровня, за исключением того, что синапсов между двумя bias нейронами быть не может. Следовательно, их можно размещать на входном слое и всех скрытых слоях, но никак не на выходном слое, так как им попросту не с чем будет формировать связь.
Для чего нужен нейрон смещения?
Нейрон смещения нужен для того, чтобы иметь возможность получать выходной результат, путем сдвига графика функции активации вправо или влево. Если это звучит запутанно, давайте рассмотрим простой пример, где есть один входной нейрон и один выходной нейрон. Тогда можно установить, что выход O2 будет равен входу H1, умноженному на его вес, и пропущенному через функцию активации (формула на фото слева). В нашем конкретном случае, будем использовать сигмоид.
Из школьного курса математики, мы знаем, что если взять функцию y = ax+b и менять у нее значения “а”, то будет изменяться наклон функции (цвета линий на графике слева), а если менять “b”, то мы будем смещать функцию вправо или влево (цвета линий на графике справа). Так вот “а” — это вес H1, а “b” — это вес нейрона смещения B1. Это грубый пример, но примерно так все и работает (если вы посмотрите на функцию активации справа на изображении, то заметите очень сильное сходство между формулами). То есть, когда в ходе обучения, мы регулируем веса скрытых и выходных нейронов, мы меняем наклон функции активации. Однако, регулирование веса нейронов смещения может дать нам возможность сдвинуть функцию активации по оси X и захватить новые участки. Иными словами, если точка, отвечающая за ваше решение, будет находиться, как показано на графике слева, то ваша НС никогда не сможет решить задачу без использования нейронов смещения. Поэтому, вы редко встретите нейронные сети без нейронов смещения.
Также нейроны смещения помогают в том случае, когда все входные нейроны получают на вход 0 и независимо от того какие у них веса, они все передадут на следующий слой 0, но не в случае присутствия нейрона смещения. Наличие или отсутствие нейронов смещения — это гиперпараметр (об этом чуть позже). Одним словом, вы сами должны решить, нужно ли вам использовать нейроны смещения или нет, прогнав НС с нейронами смешения и без них и сравнив результаты.
ВАЖНО знать, что иногда на схемах не обозначают нейроны смещения, а просто учитывают их веса при вычислении входного значения например:
input = H1*w1+H2*w2+b3
b3 = bias*w3
Так как его выход всегда равен 1, то можно просто представить что у нас есть дополнительный синапс с весом и прибавить к сумме этот вес без упоминания самого нейрона.
Как сделать чтобы НС давала правильные ответы?
Ответ прост — нужно ее обучать. Однако, насколько бы прост не был ответ, его реализация в плане простоты, оставляет желать лучшего. Существует несколько методов обучения НС и я выделю 3, на мой взгляд, самых интересных:
- Метод обратного распространения (Backpropagation)
- Метод упругого распространения (Resilient propagation или Rprop)
- Генетический Алгоритм (Genetic Algorithm)
Об Rprop и ГА речь пойдет в других статьях, а сейчас мы с вами посмотрим на основу основ — метод обратного распространения, который использует алгоритм градиентного спуска.
Что такое градиентный спуск?
Это способ нахождения локального минимума или максимума функции с помощью движения вдоль градиента. Если вы поймете суть градиентного спуска, то у вас не должно возникнуть никаких вопросов во время использования метода обратного распространения. Для начала, давайте разберемся, что такое градиент и где он присутствует в нашей НС. Давайте построим график, где по оси х будут значения веса нейрона(w) а по оси у — ошибка соответствующая этому весу(e).
Посмотрев на этот график, мы поймем, что график функция f(w) является зависимостью ошибки от выбранного веса. На этом графике нас интересует глобальный минимум — точка (w2,e2) или, иными словами, то место где график подходит ближе всего к оси х. Эта точка будет означать, что выбрав вес w2 мы получим самую маленькую ошибку — e2 и как следствие, самый лучший результат из всех возможных. Найти же эту точку нам поможет метод градиентного спуска (желтым на графике обозначен градиент). Соответственно у каждого веса в нейросети будет свой график и градиент и у каждого надо найти глобальный минимум.
Так что же такое, этот градиент? Градиент — это вектор который определяет крутизну склона и указывает его направление относительно какой либо из точек на поверхности или графике. Чтобы найти градиент нужно взять производную от графика по данной точке (как это и показано на графике). Двигаясь по направлению этого градиента мы будем плавно скатываться в низину. Теперь представим что ошибка — это лыжник, а график функции — гора. Соответственно, если ошибка равна 100%, то лыжник находиться на самой вершине горы и если ошибка 0% то в низине. Как все лыжники, ошибка стремится как можно быстрее спуститься вниз и уменьшить свое значение. В конечном случае у нас должен получиться следующий результат:
Представьте что лыжника забрасывают, с помощью вертолета, на гору. На сколько высоко или низко зависит от случая (аналогично тому, как в нейронной сети при инициализации веса расставляются в случайном порядке). Допустим ошибка равна 90% и это наша точка отсчета. Теперь лыжнику нужно спуститься вниз, с помощью градиента. На пути вниз, в каждой точке мы будем вычислять градиент, что будет показывать нам направление спуска и при изменении наклона, корректировать его. Если склон будет прямым, то после n-ого количества таких действий мы доберемся до низины. Но в большинстве случаев склон (график функции) будет волнистый и наш лыжник столкнется с очень серьезной проблемой — локальный минимум. Я думаю все знают, что такое локальный и глобальный минимум функции, для освежения памяти вот пример. Попадание в локальный минимум чревато тем, что наш лыжник навсегда останется в этой низине и никогда не скатиться с горы, следовательно мы никогда не сможем получить правильный ответ. Но мы можем избежать этого, снарядив нашего лыжника реактивным ранцем под названием момент (momentum). Вот краткая иллюстрация момента:
Как вы уже наверное догадались, этот ранец придаст лыжнику необходимое ускорение чтобы преодолеть холм, удерживающий нас в локальном минимуме, однако здесь есть одно НО. Представим что мы установили определенное значение параметру момент и без труда смогли преодолеть все локальные минимумы, и добраться до глобального минимума. Так как мы не можем просто отключить реактивный ранец, то мы можем проскочить глобальный минимум, если рядом с ним есть еще низины. В конечном случае это не так важно, так как рано или поздно мы все равно вернемся обратно в глобальный минимум, но стоит помнить, что чем больше момент, тем больше будет размах с которым лыжник будет кататься по низинам. Вместе с моментом в методе обратного распространения также используется такой параметр как скорость обучения (learning rate). Как наверняка многие подумают, чем больше скорость обучения, тем быстрее мы обучим нейросеть. Нет. Скорость обучения, также как и момент, является гиперпараметром — величина которая подбирается путем проб и ошибок. Скорость обучения можно напрямую связать со скоростью лыжника и можно с уверенностью сказать — тише едешь дальше будешь. Однако здесь тоже есть определенные аспекты, так как если мы совсем не дадим лыжнику скорости то он вообще никуда не поедет, а если дадим маленькую скорость то время пути может растянуться на очень и очень большой период времени. Что же тогда произойдет если мы дадим слишком большую скорость?
Как видите, ничего хорошего. Лыжник начнет скатываться по неправильному пути и возможно даже в другом направлении, что как вы понимаете только отдалит нас от нахождения правильного ответа. Поэтому во всех этих параметрах нужно находить золотую середину чтобы избежать не сходимости НС (об этом чуть позже).
Что такое Метод Обратного Распространения (МОР)?
Вот мы и дошли до того момента, когда мы можем обсудить, как же все таки сделать так, чтобы ваша НС могла правильно обучаться и давать верные решения. Очень хорошо МОР визуализирован на этой гифке:
А теперь давайте подробно разберем каждый этап. Если вы помните то в предыдущей статье мы считали выход НС. По другому это называется передача вперед (Forward pass), то есть мы последовательно передаем информацию от входных нейронов к выходным. После чего мы вычисляем ошибку и основываясь на ней делаем обратную передачу, которая заключается в том, чтобы последовательно менять веса нейронной сети, начиная с весов выходного нейрона. Значение весов будут меняться в ту сторону, которая даст нам наилучший результат. В моих вычисления я буду пользоваться методом нахождения дельты, так как это наиболее простой и понятный способ. Также я буду использовать стохастический метод обновления весов (об этом чуть позже).
Теперь давайте продолжим с того места, где мы закончили вычисления в предыдущей статье.
Данные задачи из предыдущей статьи
Данные: I1=1, I2=0, w1=0.45, w2=0.78 ,w3=-0.12 ,w4=0.13 ,w5=1.5 ,w6=-2.3.
H1input = 1*0.45+0*-0.12=0.45
H1output = sigmoid(0.45)=0.61
H2input = 1*0.78+0*0.13=0.78
H2output = sigmoid(0.78)=0.69
O1input = 0.61*1.5+0.69*-2.3=-0.672
O1output = sigmoid(-0.672)=0.33
O1ideal = 1 (0xor1=1)
Error = ((1-0.33)^2)/1=0.45
Результат — 0.33, ошибка — 45%.
Так как мы уже подсчитали результат НС и ее ошибку, то мы можем сразу приступить к МОРу. Как я уже упоминал ранее, алгоритм всегда начинается с выходного нейрона. В таком случае давайте посчитаем для него значение δ (дельта) по формуле 1.
Так как у выходного нейрона нет исходящих синапсов, то мы будем пользоваться первой формулой (δ output), следственно для скрытых нейронов мы уже будем брать вторую формулу (δ hidden). Тут все достаточно просто: считаем разницу между желаемым и полученным результатом и умножаем на производную функции активации от входного значения данного нейрона. Прежде чем приступить к вычислениям я хочу обратить ваше внимание на производную. Во первых как это уже наверное стало понятно, с МОР нужно использовать только те функции активации, которые могут быть дифференцированы. Во вторых чтобы не делать лишних вычислений, формулу производной можно заменить на более дружелюбную и простую формула вида:
Таким образом наши вычисления для точки O1 будут выглядеть следующим образом.
Решение
O1output = 0.33
O1ideal = 1
Error = 0.45
δO1 = (1 — 0.33) * ( (1 — 0.33) * 0.33 ) = 0.148
На этом вычисления для нейрона O1 закончены. Запомните, что после подсчета дельты нейрона мы обязаны сразу обновить веса всех исходящих синапсов этого нейрона. Так как в случае с O1 их нет, мы переходим к нейронам скрытого уровня и делаем тоже самое за исключение того, что формула подсчета дельты у нас теперь вторая и ее суть заключается в том, чтобы умножить производную функции активации от входного значения на сумму произведений всех исходящих весов и дельты нейрона с которой этот синапс связан. Но почему формулы разные? Дело в том что вся суть МОР заключается в том чтобы распространить ошибку выходных нейронов на все веса НС. Ошибку можно вычислить только на выходном уровне, как мы это уже сделали, также мы вычислили дельту в которой уже есть эта ошибка. Следственно теперь мы будем вместо ошибки использовать дельту которая будет передаваться от нейрона к нейрону. В таком случае давайте найдем дельту для H1:
Решение
H1output = 0.61
w5 = 1.5
δO1 = 0.148
δH1 = ( (1 — 0.61) * 0.61 ) * ( 1.5 * 0.148 ) = 0.053
Теперь нам нужно найти градиент для каждого исходящего синапса. Здесь обычно вставляют 3 этажную дробь с кучей производных и прочим математическим адом, но в этом и вся прелесть использования метода подсчета дельт, потому что в конечном счете ваша формула нахождения градиента будет выглядеть вот так:
Здесь точка A это точка в начале синапса, а точка B на конце синапса. Таким образом мы можем подсчитать градиент w5 следующим образом:
Решение
H1output = 0.61
δO1 = 0.148
GRADw5 = 0.61 * 0.148 = 0.09
Сейчас у нас есть все необходимые данные чтобы обновить вес w5 и мы сделаем это благодаря функции МОР которая рассчитывает величину на которую нужно изменить тот или иной вес и выглядит она следующим образом:
Настоятельно рекомендую вам не игнорировать вторую часть выражения и использовать момент так как это вам позволит избежать проблем с локальным минимумом.
Здесь мы видим 2 константы о которых мы уже говорили, когда рассматривали алгоритм градиентного спуска: E (эпсилон) — скорость обучения, α (альфа) — момент. Переводя формулу в слова получим: изменение веса синапса равно коэффициенту скорости обучения, умноженному на градиент этого веса, прибавить момент умноженный на предыдущее изменение этого веса (на 1-ой итерации равно 0). В таком случае давайте посчитаем изменение веса w5 и обновим его значение прибавив к нему Δw5.
Решение
E = 0.7
Α = 0.3
w5 = 1.5
GRADw5 = 0.09
Δw5(i-1) = 0
Δw5 = 0.7 * 0.09 + 0 * 0.3 = 0.063
w5 = w5 + Δw5 = 1.563
Таким образом после применения алгоритма наш вес увеличился на 0.063. Теперь предлагаю сделать вам тоже самое для H2.
Решение
H2output = 0.69
w6 = -2.3
δO1 = 0.148
E = 0.7
Α = 0.3
Δw6(i-1) = 0
δH2 = ( (1 — 0.69) * 0.69 ) * ( -2.3 * 0.148 ) = -0.07
GRADw6 = 0.69 * 0.148 = 0.1
Δw6 = 0.7 * 0.1 + 0 * 0.3 = 0.07
w6 = w6 + Δw6 = -2.2
И конечно не забываем про I1 и I2, ведь у них тоже есть синапсы веса которых нам тоже нужно обновить. Однако помним, что нам не нужно находить дельты для входных нейронов так как у них нет входных синапсов.
Решение
w1 = 0.45, Δw1(i-1) = 0
w2 = 0.78, Δw2(i-1) = 0
w3 = -0.12, Δw3(i-1) = 0
w4 = 0.13, Δw4(i-1) = 0
δH1 = 0.053
δH2 = -0.07
E = 0.7
Α = 0.3
GRADw1 = 1 * 0.053 = 0.053
GRADw2 = 1 * -0.07 = -0.07
GRADw3 = 0 * 0.053 = 0
GRADw4 = 0 * -0.07 = 0
Δw1 = 0.7 * 0.053 + 0 * 0.3 = 0.04
Δw2 = 0.7 * -0.07 + 0 * 0.3 = -0.05
Δw3 = 0.7 * 0 + 0 * 0.3 = 0
Δw4 = 0.7 * 0 + 0 * 0.3 = 0
w1 = w1 + Δw1 = 0.5
w2 = w2 + Δw2 = 0.73
w3 = w3 + Δw3 = -0.12
w4 = w4 + Δw4 = 0.13
Теперь давайте убедимся в том, что мы все сделали правильно и снова посчитаем выход НС только уже с обновленными весами.
Решение
I1 = 1
I2 = 0
w1 = 0.5
w2 = 0.73
w3 = -0.12
w4 = 0.13
w5 = 1.563
w6 = -2.2
H1input = 1 * 0.5 + 0 * -0.12 = 0.5
H1output = sigmoid(0.5) = 0.62
H2input = 1 * 0.73 + 0 * 0.124 = 0.73
H2output = sigmoid(0.73) = 0.675
O1input = 0.62* 1.563 + 0.675 * -2.2 = -0.51
O1output = sigmoid(-0.51) = 0.37
O1ideal = 1 (0xor1=1)
Error = ((1-0.37)^2)/1=0.39
Результат — 0.37, ошибка — 39%.
Как мы видим после одной итерации МОР, нам удалось уменьшить ошибку на 0.04 (6%). Теперь нужно повторять это снова и снова, пока ваша ошибка не станет достаточно мала.
Что еще нужно знать о процессе обучения?
Нейросеть можно обучать с учителем и без (supervised, unsupervised learning).
Обучение с учителем — это тип тренировок присущий таким проблемам как регрессия и классификация (им мы и воспользовались в примере приведенном выше). Иными словами здесь вы выступаете в роли учителя а НС в роли ученика. Вы предоставляете входные данные и желаемый результат, то есть ученик посмотрев на входные данные поймет, что нужно стремиться к тому результату который вы ему предоставили.
Обучение без учителя — этот тип обучения встречается не так часто. Здесь нет учителя, поэтому сеть не получает желаемый результат или же их количество очень мало. В основном такой вид тренировок присущ НС у которых задача состоит в группировке данных по определенным параметрам. Допустим вы подаете на вход 10000 статей на хабре и после анализа всех этих статей НС сможет распределить их по категориям основываясь, например, на часто встречающихся словах. Статьи в которых упоминаются языки программирования, к программированию, а где такие слова как Photoshop, к дизайну.
Существует еще такой интересный метод, как обучение с подкреплением (reinforcement learning). Этот метод заслуживает отдельной статьи, но я попытаюсь вкратце описать его суть. Такой способ применим тогда, когда мы можем основываясь на результатах полученных от НС, дать ей оценку. Например мы хотим научить НС играть в PAC-MAN, тогда каждый раз когда НС будет набирать много очков мы будем ее поощрять. Иными словами мы предоставляем НС право найти любой способ достижения цели, до тех пор пока он будет давать хороший результат. Таким способом, сеть начнет понимать чего от нее хотят добиться и пытается найти наилучший способ достижения этой цели без постоянного предоставления данных “учителем”.
Также обучение можно производить тремя методами: стохастический метод (stochastic), пакетный метод (batch) и мини-пакетный метод (mini-batch). Существует очень много статей и исследований на тему того, какой из методов лучше и никто не может прийти к общему ответу. Я же сторонник стохастического метода, однако я не отрицаю тот факт, что каждый метод имеет свои плюсы и минусы.
Вкратце о каждом методе:
Стохастический (его еще иногда называют онлайн) метод работает по следующему принципу — нашел Δw, сразу обнови соответствующий вес.
Пакетный метод же работает по другому. Мы суммируем Δw всех весов на текущей итерации и только потом обновляем все веса используя эту сумму. Один из самых важных плюсов такого подхода — это значительная экономия времени на вычисление, точность же в таком случае может сильно пострадать.
Мини-пакетный метод является золотой серединой и пытается совместить в себе плюсы обоих методов. Здесь принцип таков: мы в свободном порядке распределяем веса по группам и меняем их веса на сумму Δw всех весов в той или иной группе.
Что такое гиперпараметры?
Гиперпараметры — это значения, которые нужно подбирать вручную и зачастую методом проб и ошибок. Среди таких значений можно выделить:
- Момент и скорость обучения
- Количество скрытых слоев
- Количество нейронов в каждом слое
- Наличие или отсутствие нейронов смещения
В других типах НС присутствуют дополнительные гиперпараметры, но о них мы говорить не будем. Подбор верных гиперпараметров очень важен и будет напрямую влиять на сходимость вашей НС. Понять стоит ли использовать нейроны смещения или нет достаточно просто. Количество скрытых слоев и нейронов в них можно вычислить перебором основываясь на одном простом правиле — чем больше нейронов, тем точнее результат и тем экспоненциально больше время, которое вы потратите на ее обучение. Однако стоит помнить, что не стоит делать НС с 1000 нейронов для решения простых задач. А вот с выбором момента и скорости обучения все чуточку сложнее. Эти гиперпараметры будут варьироваться, в зависимости от поставленной задачи и архитектуры НС. Например, для решения XOR скорость обучения может быть в пределах 0.3 — 0.7, но в НС которая анализирует и предсказывает цену акций, скорость обучения выше 0.00001 приводит к плохой сходимости НС. Не стоит сейчас заострять свое внимание на гиперпараметрах и пытаться досконально понять, как же их выбирать. Это придет с опытом, а пока что советую просто экспериментировать и искать примеры решения той или иной задачи в сети.
Что такое сходимость?
Сходимость говорит о том, правильная ли архитектура НС и правильно ли были подобраны гиперпараметры в соответствии с поставленной задачей. Допустим наша программа выводит ошибку НС на каждой итерации в лог. Если с каждой итерацией ошибка будет уменьшаться, то мы на верном пути и наша НС сходится. Если же ошибка будет прыгать вверх — вниз или застынет на определенном уровне, то НС не сходится. В 99% случаев это решается изменением гиперпараметров. Оставшийся 1% будет означать, что у вас ошибка в архитектуре НС. Также бывает, что на сходимость влияет переобучение НС.
Что такое переобучение?
Переобучение, как следует из названия, это состояние нейросети, когда она перенасыщена данными. Это проблема возникает, если слишком долго обучать сеть на одних и тех же данных. Иными словами, сеть начнет не учиться на данных, а запоминать и “зубрить” их. Соответственно, когда вы уже будете подавать на вход этой НС новые данные, то в полученных данных может появиться шум, который будет влиять на точность результата. Например, если мы будем показывать НС разные фотографии яблок (только красные) и говорить что это яблоко. Тогда, когда НС увидит желтое или зеленое яблоко, оно не сможет определить, что это яблоко, так как она запомнила, что все яблоки должны быть красными. И наоборот, когда НС увидит что-то красное и по форме совпадающее с яблоком, например персик, она скажет, что это яблоко. Это и есть шум. На графике шум будет выглядеть следующим образом.
Видно, что график функции сильно колеблется от точки к точке, которые являются выходными данными (результатом) нашей НС. В идеале, этот график должен быть менее волнистый и прямой. Чтобы избежать переобучения, не стоит долго тренировать НС на одних и тех же или очень похожих данных. Также, переобучение может быть вызвано большим количеством параметров, которые вы подаете на вход НС или слишком сложной архитектурой. Таким образом, когда вы замечаете ошибки (шум) в выходных данных после этапа обучения, то вам стоит использовать один из методов регуляризации, но в большинстве случаев это не понадобиться.
Заключение
Надеюсь эта статья смогла прояснить ключевые моменты такого нелегко предмета, как Нейронные сети. Однако я считаю, что сколько бы ты статей не прочел, без практики такую сложную тему освоить невозможно. Поэтому, если вы только в начале пути и хотите изучить эту перспективную и развивающуюся отрасль, то советую начать практиковаться с написания своей НС, а уже после прибегать к помощи различных фреймворков и библиотек. Также, если вам интересен мой метод изложения информации и вы хотите, чтобы я написал статьи на другие темы связанные с Машинным обучением, то проголосуйте в опросе ниже за ту тему которую вам интересна. До встречи в будущих статьях
Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.
Какая тема вам интересна больше всего?
13.56%
Обзор НС библиотеки для Android, написанной мной на Java c 0
214
53.68%
Другие виды нейросетей: Рекуррентные, Сверточные, LSTM
847
24.9%
Генетический алгоритм
393
7.86%
Методы регуляризации выходных данных
124
Проголосовали 1578 пользователей.
Воздержались 185 пользователей.
Нейронные сети обучаются с помощью тех или иных модификаций градиентного спуска, а чтобы применять его, нужно уметь эффективно вычислять градиенты функции потерь по всем обучающим параметрам. Казалось бы, для какого-нибудь запутанного вычислительного графа это может быть очень сложной задачей, но на помощь спешит метод обратного распространения ошибки.
Открытие метода обратного распространения ошибки стало одним из наиболее значимых событий в области искусственного интеллекта. В актуальном виде он был предложен в 1986 году Дэвидом Э. Румельхартом, Джеффри Э. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно красноярскими математиками С. И. Барцевым и В. А. Охониным. С тех пор для нахождения градиентов параметров нейронной сети используется метод вычисления производной сложной функции, и оценка градиентов параметров сети стала хоть сложной инженерной задачей, но уже не искусством. Несмотря на простоту используемого математического аппарата, появление этого метода привело к значительному скачку в развитии искусственных нейронных сетей.
Суть метода можно записать одной формулой, тривиально следующей из формулы производной сложной функции: если $f(x) = g_m(g_{m-1}(ldots (g_1(x)) ldots))$, то $frac{partial f}{partial x} = frac{partial g_m}{partial g_{m-1}}frac{partial g_{m-1}}{partial g_{m-2}}ldots frac{partial g_2}{partial g_1}frac{partial g_1}{partial x}$. Уже сейчас мы видим, что градиенты можно вычислять последовательно, в ходе одного обратного прохода, начиная с $frac{partial g_m}{partial g_{m-1}}$ и умножая каждый раз на частные производные предыдущего слоя.
Backpropagation в одномерном случае
В одномерном случае всё выглядит особенно просто. Пусть $w_0$ — переменная, по которой мы хотим продифференцировать, причём сложная функция имеет вид
$$f(w_0) = g_m(g_{m-1}(ldots g_1(w_0)ldots)),$$
где все $g_i$ скалярные. Тогда
$$f'(w_0) = g_m'(g_{m-1}(ldots g_1(w_0)ldots))cdot g’_{m-1}(g_{m-2}(ldots g_1(w_0)ldots))cdotldots cdot g’_1(w_0)$$
Суть этой формулы такова. Если мы уже совершили forward pass, то есть уже знаем
$$g_1(w_0), g_2(g_1(w_0)),ldots,g_{m-1}(ldots g_1(w_0)ldots),$$
то мы действуем следующим образом:
-
берём производную $g_m$ в точке $g_{m-1}(ldots g_1(w_0)ldots)$;
-
умножаем на производную $g_{m-1}$ в точке $g_{m-2}(ldots g_1(w_0)ldots)$;
-
и так далее, пока не дойдём до производной $g_1$ в точке $w_0$.
Проиллюстрируем это на картинке, расписав по шагам дифференцирование по весам $w_i$ функции потерь логистической регрессии на одном объекте (то есть для батча размера 1):
Собирая все множители вместе, получаем:
$$frac{partial f}{partial w_0} = (-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$
$$frac{partial f}{partial w_1} = x_1cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$
$$frac{partial f}{partial w_2} = x_2cdot(-y)cdot e^{-y(w_0 + w_1x_1 + w_2x_2)}cdotfrac{-1}{1 + e^{-y(w_0 + w_1x_1 + w_2x_2)}}$$
Таким образом, мы видим, что сперва совершается forward pass для вычисления всех промежуточных значений (и да, все промежуточные представления нужно будет хранить в памяти), а потом запускается backward pass, на котором в один проход вычисляются все градиенты.
Почему же нельзя просто пойти и начать везде вычислять производные?
В главе, посвящённой матричным дифференцированиям, мы поднимаем вопрос о том, что вычислять частные производные по отдельности — это зло, лучше пользоваться матричными вычислениями. Но есть и ещё одна причина: даже и с матричной производной в принципе не всегда хочется иметь дело. Рассмотрим простой пример. Допустим, что $X^r$ и $X^{r+1}$ — два последовательных промежуточных представления $Ntimes M$ и $Ntimes K$, связанных функцией $X^{r+1} = f^{r+1}(X^r)$. Предположим, что мы как-то посчитали производную $frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$ функции потерь $mathcal{L}$, тогда
$$frac{partialmathcal{L}}{partial X^{r}_{st}} = sum_{i,j}frac{partial f^{r+1}_{ij}}{partial X^{r}_{st}}frac{partialmathcal{L}}{partial X^{r+1}_{ij}}$$
И мы видим, что, хотя оба градиента $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ и $frac{partialmathcal{L}}{partial X_{st}^{r}}$ являются просто матрицами, в ходе вычислений возникает «четырёхмерный кубик» $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, даже хранить который весьма болезненно: уж больно много памяти он требует ($N^2MK$ по сравнению с безобидными $NM + NK$, требуемыми для хранения градиентов). Поэтому хочется промежуточные производные $frac{partial f^{r+1}}{partial X^{r}}$ рассматривать не как вычисляемые объекты $frac{partial f_{ij}^{r+1}}{partial X_{st}^{r}}$, а как преобразования, которые превращают $frac{partialmathcal{L}}{partial X_{ij}^{r+1}}$ в $frac{partialmathcal{L}}{partial X_{st}^{r}}$. Целью следующих глав будет именно это: понять, как преобразуется градиент в ходе error backpropagation при переходе через тот или иной слой.
Вы спросите себя: надо ли мне сейчас пойти и прочитать главу учебника про матричное дифференцирование?
Встречный вопрос. Найдите производную функции по вектору $x$:
$$f(x) = x^TAx, Ain Mat_{n}{mathbb{R}}text{ — матрица размера }ntimes n$$
А как всё поменяется, если $A$ тоже зависит от $x$? Чему равен градиент функции, если $A$ является скаляром? Если вы готовы прямо сейчас взять ручку и бумагу и посчитать всё, то вам, вероятно, не надо читать про матричные дифференцирования. Но мы советуем всё-таки заглянуть в эту главу, если обозначения, которые мы будем дальше использовать, покажутся вам непонятными: единой нотации для матричных дифференцирований человечество пока, увы, не изобрело, и переводить с одной на другую не всегда легко.
Мы же сразу перейдём к интересующей нас вещи: к вычислению градиентов сложных функций.
Градиент сложной функции
Напомним, что формула производной сложной функции выглядит следующим образом:
$$left[D_{x_0} (color{#5002A7}{u} circ color{#4CB9C0}{v}) right](h) = color{#5002A7}{left[D_{v(x_0)} u right]} left( color{#4CB9C0}{left[D_{x_0} vright]} (h)right)$$
Теперь разберёмся с градиентами. Пусть $f(x) = g(h(x))$ – скалярная функция. Тогда
$$left[D_{x_0} f right] (x-x_0) = langlenabla_{x_0} f, x-x_0rangle.$$
С другой стороны,
$$left[D_{h(x_0)} g right] left(left[D_{x_0}h right] (x-x_0)right) = langlenabla_{h_{x_0}} g, left[D_{x_0} hright] (x-x_0)rangle = langleleft[D_{x_0} hright]^* nabla_{h(x_0)} g, x-x_0rangle.$$
То есть $color{#FFC100}{nabla_{x_0} f} = color{#348FEA}{left[D_{x_0} h right]}^* color{#FFC100}{nabla_{h(x_0)}}g$ — применение сопряжённого к $D_{x_0} h$ линейного отображения к вектору $nabla_{h(x_0)} g$.
Эта формула — сердце механизма обратного распространения ошибки. Она говорит следующее: если мы каким-то образом получили градиент функции потерь по переменным из некоторого промежуточного представления $X^k$ нейронной сети и при этом знаем, как преобразуется градиент при проходе через слой $f^k$ между $X^{k-1}$ и $X^k$ (то есть как выглядит сопряжённое к дифференциалу слоя между ними отображение), то мы сразу же находим градиент и по переменным из $X^{k-1}$:
Таким образом слой за слоем мы посчитаем градиенты по всем $X^i$ вплоть до самых первых слоёв.
Далее мы разберёмся, как именно преобразуются градиенты при переходе через некоторые распространённые слои.
Градиенты для типичных слоёв
Рассмотрим несколько важных примеров.
Примеры
-
$f(x) = u(v(x))$, где $x$ — вектор, а $v(x)$ – поэлементное применение $v$:
$$vbegin{pmatrix}
x_1
vdots
x_N
end{pmatrix}
= begin{pmatrix}
v(x_1)
vdots
v(x_N)
end{pmatrix}$$Тогда, как мы знаем,
$$left[D_{x_0} fright] (h) = langlenabla_{x_0} f, hrangle = left[nabla_{x_0} fright]^T h.$$
Следовательно,
$$begin{multline*}
left[D_{v(x_0)} uright] left( left[ D_{x_0} vright] (h)right) = left[nabla_{v(x_0)} uright]^T left(v'(x_0) odot hright) =[0.1cm]
= sumlimits_i left[nabla_{v(x_0)} uright]_i v'(x_{0i})h_i
= langleleft[nabla_{v(x_0)} uright] odot v'(x_0), hrangle.
end{multline*},$$где $odot$ означает поэлементное перемножение. Окончательно получаем
$$color{#348FEA}{nabla_{x_0} f = left[nabla_{v(x_0)}uright] odot v'(x_0) = v'(x_0) odot left[nabla_{v(x_0)} uright]}$$
Отметим, что если $x$ и $h(x)$ — это просто векторы, то мы могли бы вычислять всё и по формуле $frac{partial f}{partial x_i} = sum_jbig(frac{partial z_j}{partial x_i}big)cdotbig(frac{partial h}{partial z_j}big)$. В этом случае матрица $big(frac{partial z_j}{partial x_i}big)$ была бы диагональной (так как $z_j$ зависит только от $x_j$: ведь $h$ берётся поэлементно), и матричное умножение приводило бы к тому же результату. Однако если $x$ и $h(x)$ — матрицы, то $big(frac{partial z_j}{partial x_i}big)$ представлялась бы уже «четырёхмерным кубиком», и работать с ним было бы ужасно неудобно.
-
$f(X) = g(XW)$, где $X$ и $W$ — матрицы. Как мы знаем,
$$left[D_{X_0} f right] (X-X_0) = text{tr}, left(left[nabla_{X_0} fright]^T (X-X_0)right).$$
Тогда
$$begin{multline*}
left[ D_{X_0W} g right] left(left[D_{X_0} left( ast Wright)right] (H)right) =
left[ D_{X_0W} g right] left(HWright)=
= text{tr}, left( left[nabla_{X_0W} g right]^T cdot (H) W right) =
=
text{tr} , left(W left[nabla_{X_0W} (g) right]^T cdot (H)right) = text{tr} , left( left[left[nabla_{X_0W} gright] W^Tright]^T (H)right)
end{multline*}$$Здесь через $ast W$ мы обозначили отображение $Y hookrightarrow YW$, а в предпоследнем переходе использовалось следующее свойство следа:
$$
text{tr} , (A B C) = text{tr} , (C A B),
$$где $A, B, C$ — произвольные матрицы подходящих размеров (то есть допускающие перемножение в обоих приведённых порядках). Следовательно, получаем
$$color{#348FEA}{nabla_{X_0} f = left[nabla_{X_0W} (g) right] cdot W^T}$$
-
$f(W) = g(XW)$, где $W$ и $X$ — матрицы. Для приращения $H = W — W_0$ имеем
$$
left[D_{W_0} f right] (H) = text{tr} , left( left[nabla_{W_0} f right]^T (H)right)
$$Тогда
$$ begin{multline*}
left[D_{XW_0} g right] left( left[D_{W_0} left(X astright) right] (H)right) = left[D_{XW_0} g right] left( XH right) =
= text{tr} , left( left[nabla_{XW_0} g right]^T cdot X (H)right) =
text{tr}, left(left[X^T left[nabla_{XW_0} g right] right]^T (H)right)
end{multline*} $$Здесь через $X ast$ обозначено отображение $Y hookrightarrow XY$. Значит,
$$color{#348FEA}{nabla_{X_0} f = X^T cdot left[nabla_{XW_0} (g)right]}$$
-
$f(X) = g(softmax(X))$, где $X$ — матрица $Ntimes K$, а $softmax$ — функция, которая вычисляется построчно, причём для каждой строки $x$
$$softmax(x) = left(frac{e^{x_1}}{sum_te^{x_t}},ldots,frac{e^{x_K}}{sum_te^{x_t}}right)$$
В этом примере нам будет удобно воспользоваться формализмом с частными производными. Сначала вычислим $frac{partial s_l}{partial x_j}$ для одной строки $x$, где через $s_l$ мы для краткости обозначим $softmax(x)_l = frac{e^{x_l}} {sum_te^{x_t}}$. Нетрудно проверить, что
$$frac{partial s_l}{partial x_j} = begin{cases}
s_j(1 — s_j), & j = l,
-s_ls_j, & jne l
end{cases}$$Так как softmax вычисляется независимо от каждой строчки, то
$$frac{partial s_{rl}}{partial x_{ij}} = begin{cases}
s_{ij}(1 — s_{ij}), & r=i, j = l,
-s_{il}s_{ij}, & r = i, jne l,
0, & rne i
end{cases},$$где через $s_{rl}$ мы обозначили для краткости $softmax(X)_{rl}$.
Теперь пусть $nabla_{rl} = nabla g = frac{partialmathcal{L}}{partial s_{rl}}$ (пришедший со следующего слоя, уже известный градиент). Тогда
$$frac{partialmathcal{L}}{partial x_{ij}} = sum_{r,l}frac{partial s_{rl}}{partial x_{ij}} nabla_{rl}$$
Так как $frac{partial s_{rl}}{partial x_{ij}} = 0$ при $rne i$, мы можем убрать суммирование по $r$:
$$ldots = sum_{l}frac{partial s_{il}}{partial x_{ij}} nabla_{il} = -s_{i1}s_{ij}nabla_{i1} — ldots + s_{ij}(1 — s_{ij})nabla_{ij}-ldots — s_{iK}s_{ij}nabla_{iK} =$$
$$= -s_{ij}sum_t s_{it}nabla_{it} + s_{ij}nabla_{ij}$$
Таким образом, если мы хотим продифференцировать $f$ в какой-то конкретной точке $X_0$, то, смешивая математические обозначения с нотацией Python, мы можем записать:
$$begin{multline*}
color{#348FEA}{nabla_{X_0}f =}
color{#348FEA}{= -softmax(X_0) odot text{sum}left(
softmax(X_0)odotnabla_{softmax(X_0)}g, text{ axis = 1}
right) +}
color{#348FEA}{softmax(X_0)odot nabla_{softmax(X_0)}g}
end{multline*}
$$
Backpropagation в общем виде
Подытожим предыдущее обсуждение, описав алгоритм error backpropagation (алгоритм обратного распространения ошибки). Допустим, у нас есть текущие значения весов $W^i_0$ и мы хотим совершить шаг SGD по мини-батчу $X$. Мы должны сделать следующее:
- Совершить forward pass, вычислив и запомнив все промежуточные представления $X = X^0, X^1, ldots, X^m = widehat{y}$.
- Вычислить все градиенты с помощью backward pass.
- С помощью полученных градиентов совершить шаг SGD.
Проиллюстрируем алгоритм на примере двуслойной нейронной сети со скалярным output’ом. Для простоты опустим свободные члены в линейных слоях.
Обучаемые параметры – матрицы $U$ и $W$. Как найти градиенты по ним в точке $U_0, W_0$?
$$nabla_{W_0}mathcal{L} = nabla_{W_0}{left({vphantom{frac12}mathcal{L}circ hcircleft[Wmapsto g(XU_0)Wright]}right)}=$$
$$=g(XU_0)^Tnabla_{g(XU_0)W_0}(mathcal{L}circ h) = underbrace{g(XU_0)^T}_{ktimes N}cdot
left[vphantom{frac12}underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes 1}odot
underbrace{nabla_{hleft(vphantom{int_0^1}g(XU_0)W_0right)}mathcal{L}}_{Ntimes 1}right]$$
Итого матрица $ktimes 1$, как и $W_0$
$$nabla_{U_0}mathcal{L} = nabla_{U_0}left(vphantom{frac12}
mathcal{L}circ hcircleft[Ymapsto YW_0right]circ gcircleft[ Umapsto XUright]
right)=$$
$$=X^Tcdotnabla_{XU^0}left(vphantom{frac12}mathcal{L}circ hcirc [Ymapsto YW_0]circ gright) =$$
$$=X^Tcdotleft(vphantom{frac12}g'(XU_0)odot
nabla_{g(XU_0)}left[vphantom{in_0^1}mathcal{L}circ hcirc[Ymapsto YW_0right]
right)$$
$$=ldots = underset{Dtimes N}{X^T}cdotleft(vphantom{frac12}
underbrace{g'(XU_0)}_{Ntimes K}odot
underbrace{left[vphantom{int_0^1}left(
underbrace{h’left(vphantom{int_0^1}g(XU_0)W_0right)}_{Ntimes1}odotunderbrace{nabla_{h(vphantom{int_0^1}gleft(XU_0right)W_0)}mathcal{L}}_{Ntimes 1}
right)cdot underbrace{W^T}_{1times K}right]}_{Ntimes K}
right)$$
Итого $Dtimes K$, как и $U_0$
Схематически это можно представить следующим образом:
Backpropagation для двуслойной нейронной сети
Если вы не уследили за вычислениями в предыдущем примере, давайте более подробно разберём его чуть более конкретную версию (для $g = h = sigma$)Рассмотрим двуслойную нейронную сеть для классификации. Мы уже встречали ее ранее при рассмотрении линейно неразделимой выборки. Предсказания получаются следующим образом:
$$
widehat{y} = sigma(X^1 W^2) = sigmaBig(big(sigma(X^0 W^1 )big) W^2 Big).
$$
Пусть $W^1_0$ и $W^2_0$ — текущее приближение матриц весов. Мы хотим совершить шаг по градиенту функции потерь, и для этого мы должны вычислить её градиенты по $W^1$ и $W^2$ в точке $(W^1_0, W^2_0)$.
Прежде всего мы совершаем forward pass, в ходе которого мы должны запомнить все промежуточные представления: $X^1 = X^0 W^1_0$, $X^2 = sigma(X^0 W^1_0)$, $X^3 = sigma(X^0 W^1_0) W^2_0$, $X^4 = sigma(sigma(X^0 W^1_0) W^2_0) = widehat{y}$. Они понадобятся нам дальше.
Для полученных предсказаний вычисляется значение функции потерь:
$$
l = mathcal{L}(y, widehat{y}) = y log(widehat{y}) + (1-y) log(1-widehat{y}).
$$
Дальше мы шаг за шагом будем находить производные по переменным из всё более глубоких слоёв.
-
Градиент $mathcal{L}$ по предсказаниям имеет вид
$$
nabla_{widehat{y}}l = frac{y}{widehat{y}} — frac{1 — y}{1 — widehat{y}} = frac{y — widehat{y}}{widehat{y} (1 — widehat{y})},
$$где, напомним, $ widehat{y} = sigma(X^3) = sigmaBig(big(sigma(X^0 W^1_0 )big) W^2_0 Big)$ (обратите внимание на то, что $W^1_0$ и $W^2_0$ тут именно те, из которых мы делаем градиентный шаг).
-
Следующий слой — поэлементное взятие $sigma$. Как мы помним, при переходе через него градиент поэлементно умножается на производную $sigma$, в которую подставлено предыдущее промежуточное представление:
$$
nabla_{X^3}l = sigma'(X^3)odotnabla_{widehat{y}}l = sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — widehat{y}}{widehat{y} (1 — widehat{y})} =
$$$$
= sigma(X^3)left( 1 — sigma(X^3) right) odot frac{y — sigma(X^3)}{sigma(X^3) (1 — sigma(X^3))} =
y — sigma(X^3)
$$ -
Следующий слой — умножение на $W^2_0$. В этот момент мы найдём градиент как по $W^2$, так и по $X^2$. При переходе через умножение на матрицу градиент, как мы помним, умножается с той же стороны на транспонированную матрицу, а значит:
$$
color{blue}{nabla_{W^2_0}l} = (X^2)^Tcdot nabla_{X^3}l = (X^2)^Tcdot(y — sigma(X^3)) =
$$$$
= color{blue}{left( sigma(X^0W^1_0) right)^T cdot (y — sigma(sigma(X^0W^1_0)W^2_0))}
$$Аналогичным образом
$$
nabla_{X^2}l = nabla_{X^3}lcdot (W^2_0)^T = (y — sigma(X^3))cdot (W^2_0)^T =
$$$$
= (y — sigma(X^2W_0^2))cdot (W^2_0)^T
$$ -
Следующий слой — снова взятие $sigma$.
$$
nabla_{X^1}l = sigma'(X^1)odotnabla_{X^2}l = sigma(X^1)left( 1 — sigma(X^1) right) odot left( (y — sigma(X^2W_0^2))cdot (W^2_0)^T right) =
$$$$
= sigma(X^1)left( 1 — sigma(X^1) right) odotleft( (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^T right)
$$ -
Наконец, последний слой — это умножение $X^0$ на $W^1_0$. Тут мы дифференцируем только по $W^1$:
$$
color{blue}{nabla_{W^1_0}l} = (X^0)^Tcdot nabla_{X^1}l = (X^0)^Tcdot big( sigma(X^1) left( 1 — sigma(X^1) right) odot (y — sigma(sigma(X^1)W_0^2))cdot (W^2_0)^Tbig) =
$$$$
= color{blue}{(X^0)^Tcdotbig(sigma(X^0W^1_0)left( 1 — sigma(X^0W^1_0) right) odot (y — sigma(sigma(X^0W^1_0)W_0^2))cdot (W^2_0)^Tbig) }
$$
Итоговые формулы для градиентов получились страшноватыми, но они были получены друг из друга итеративно с помощью очень простых операций: матричного и поэлементного умножения, в которые порой подставлялись значения заранее вычисленных промежуточных представлений.
Автоматизация и autograd
Итак, чтобы нейросеть обучалась, достаточно для любого слоя $f^k: X^{k-1}mapsto X^k$ с параметрами $W^k$ уметь:
- превращать $nabla_{X^k_0}mathcal{L}$ в $nabla_{X^{k-1}_0}mathcal{L}$ (градиент по выходу в градиент по входу);
- считать градиент по его параметрам $nabla_{W^k_0}mathcal{L}$.
При этом слою совершенно не надо знать, что происходит вокруг. То есть слой действительно может быть запрограммирован как отдельная сущность, умеющая внутри себя делать forward pass и backward pass, после чего слои механически, как кубики в конструкторе, собираются в большую сеть, которая сможет работать как одно целое.
Более того, во многих случаях авторы библиотек для глубинного обучения уже о вас позаботились и создали средства для автоматического дифференцирования выражений (autograd). Поэтому, программируя нейросеть, вы почти всегда можете думать только о forward-проходе, прямом преобразовании данных, предоставив библиотеке дифференцировать всё самостоятельно. Это делает код нейросетей весьма понятным и выразительным (да, в реальности он тоже бывает большим и страшным, но сравните на досуге код какой-нибудь разухабистой нейросети и код градиентного бустинга на решающих деревьях и почувствуйте разницу).
Но это лишь начало
Метод обратного распространения ошибки позволяет удобно посчитать градиенты, но дальше с ними что-то надо делать, и старый добрый SGD едва ли справится с обучением современной сетки. Так что же делать? О некоторых приёмах мы расскажем в следующей главе.
Метод обратного распространения ошибок (англ. backpropagation) — метод вычисления градиента, который используется при обновлении весов в нейронной сети.
Содержание
- 1 Обучение как задача оптимизации
- 2 Дифференцирование для однослойной сети
- 2.1 Находим производную ошибки
- 3 Алгоритм
- 4 Недостатки алгоритма
- 4.1 Паралич сети
- 4.2 Локальные минимумы
- 5 Примечания
- 6 См. также
- 7 Источники информации
Обучение как задача оптимизации
Рассмотрим простую нейронную сеть без скрытых слоев, с двумя входными вершинами и одной выходной, в которых каждый нейрон использует линейную функцию активации, (обычно, многослойные нейронные сети используют нелинейные функции активации, линейные функции используются для упрощения понимания) которая является взвешенной суммой входных данных.
Простая нейронная сеть с двумя входными вершинами и одной выходной
Изначально веса задаются случайно. Затем, нейрон обучается с помощью тренировочного множества, которое в этом случае состоит из множества троек где и — это входные данные сети и — правильный ответ. Начальная сеть, приняв на вход и , вычислит ответ , который вероятно отличается от . Общепринятый метод вычисления несоответствия между ожидаемым и получившимся ответом — квадратичная функция потерь:
- где ошибка.
В качестве примера, обучим сеть на объекте , таким образом, значения и равны 1, а равно 0. Построим график зависимости ошибки от действительного ответа , его результатом будет парабола. Минимум параболы соответствует ответу , минимизирующему . Если тренировочный объект один, минимум касается горизонтальной оси, следовательно ошибка будет нулевая и сеть может выдать ответ равный ожидаемому ответу . Следовательно, задача преобразования входных значений в выходные может быть сведена к задаче оптимизации, заключающейся в поиске функции, которая даст минимальную ошибку.
График ошибки для нейрона с линейной функцией активации и одним тренировочным объектом
В таком случае, выходное значение нейрона — взвешенная сумма всех его входных значений:
где и — веса на ребрах, соединяющих входные вершины с выходной. Следовательно, ошибка зависит от весов ребер, входящих в нейрон. И именно это нужно менять в процессе обучения. Распространенный алгоритм для поиска набора весов, минимизирующего ошибку — градиентный спуск. Метод обратного распространения ошибки используется для вычисления самого «крутого» направления для спуска.
Дифференцирование для однослойной сети
Метод градиентного спуска включает в себя вычисление дифференциала квадратичной функции ошибки относительно весов сети. Обычно это делается с помощью метода обратного распространения ошибки. Предположим, что выходной нейрон один, (их может быть несколько, тогда ошибка — это квадратичная норма вектора разницы) тогда квадратичная функция ошибки:
- где — квадратичная ошибка, — требуемый ответ для обучающего образца, — действительный ответ сети.
Множитель добавлен чтобы предотвратить возникновение экспоненты во время дифференцирования. На результат это не повлияет, потому что позже выражение будет умножено на произвольную величину скорости обучения (англ. learning rate).
Для каждого нейрона , его выходное значение определено как
Входные значения нейрона — это взвешенная сумма выходных значений предыдущих нейронов. Если нейрон в первом слое после входного, то входного слоя — это просто входные значения сети. Количество входных значений нейрона . Переменная обозначает вес на ребре между нейроном предыдущего слоя и нейроном текущего слоя.
Функция активации нелинейна и дифференцируема. Одна из распространенных функций активации — сигмоида:
у нее удобная производная:
Находим производную ошибки
Вычисление частной производной ошибки по весам выполняется с помощью цепного правила:
Только одно слагаемое в зависит от , так что
Если нейрон в первом слое после входного, то — это просто .
Производная выходного значения нейрона по его входному значению — это просто частная производная функции активации (предполагается что в качестве функции активации используется сигмоида):
По этой причине данный метод требует дифференцируемой функции активации. (Тем не менее, функция ReLU стала достаточно популярной в последнее время, хоть и не дифференцируема в 0)
Первый множитель легко вычислим, если нейрон находится в выходном слое, ведь в таком случае и
Тем не менее, если произвольный внутренний слой сети, нахождение производной по менее очевидно.
Если рассмотреть как функцию, берущую на вход все нейроны получающие на вход значение нейрона ,
и взять полную производную по , то получим рекурсивное выражение для производной:
Следовательно, производная по может быть вычислена если все производные по выходным значениям следующего слоя известны.
Если собрать все месте:
и
Чтобы обновить вес используя градиентный спуск, нужно выбрать скорость обучения, . Изменение в весах должно отражать влияние на увеличение или уменьшение в . Если , увеличение увеличивает ; наоборот, если , увеличение уменьшает . Новый добавлен к старым весам, и произведение скорости обучения на градиент, умноженный на , гарантирует, что изменения будут всегда уменьшать . Другими словами, в следующем уравнении, всегда изменяет в такую сторону, что уменьшается:
Алгоритм
- — скорость обучения
- — коэффициент инерциальности для сглаживания резких скачков при перемещении по поверхности целевой функции
- — обучающее множество
- — количество повторений
- — функция, подающая x на вход сети и возвращающая выходные значения всех ее узлов
- — количество слоев в сети
- — множество нейронов в слое i
- — множество нейронов в выходном слое
fun BackPropagation: init repeat : for = to : = for : = for = to : for : = for : = = return
Недостатки алгоритма
Несмотря на многочисленные успешные применения обратного распространения, оно не является универсальным решением. Больше всего неприятностей приносит неопределённо долгий процесс обучения. В сложных задачах для обучения сети могут потребоваться дни или даже недели, она может и вообще не обучиться. Причиной может быть одна из описанных ниже.
Градиентный спуск может найти локальный минимум вместо глобального
Паралич сети
В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших выходных значениях, а производная активирующей функции будет очень мала. Так как посылаемая обратно в процессе обучения ошибка пропорциональна этой производной, то процесс обучения может практически замереть.
Локальные минимумы
Градиентный спуск с обратным распространением ошибок гарантирует нахождение только локального минимума функции; также, возникают проблемы с пересечением плато на поверхности функции ошибки.
Примечания
- Алгоритм обучения многослойной нейронной сети методом обратного распространения ошибки
- Neural Nets
- Understanding backpropagation
См. также
- Нейронные сети, перцептрон
- Стохастический градиентный спуск
- Настройка глубокой сети
- Практики реализации нейронных сетей
Источники информации
- https://en.wikipedia.org/wiki/Backpropagation
- https://ru.wikipedia.org/wiki/Метод_обратного_распространения_ошибки
Рад снова всех приветствовать, и сегодня продолжим планомерно двигаться в выбранном направлении. Речь, конечно, о масштабном разборе искусственных нейронных сетей для решения широкого спектра задач. Продолжим ровно с того момента, на котором остановились в предыдущей части, и это означает, что героем данного поста будет ключевой процесс — обучение нейронных сетей.
Тема эта крайне важна, поскольку именно процесс обучения позволяет сети начать выполнять задачу, для которой она, собственно, и предназначена. То есть нейронная сеть функционирует не по какому-либо жестко заданному на этапе проектирования алгоритму, она совершенствуется в процессе анализа имеющихся данных. Этот процесс и называется обучением нейронной сети. Математически суть процесса обучения заключается в корректировке значений весов синапсов (связей между имеющимися нейронами). Изначально значения весов задаются случайно, затем производится обучение, результатом которого будут новые значения синаптических весов. Это все мы максимально подробно разберем как раз в этой статье.
На своем сайте я всегда придерживаюсь концепции, при которой теоретические выкладки по максимуму сопровождаются практическими примерами для максимальной наглядности. Так мы поступим и сейчас 👍
Итак, суть заключается в следующем. Пусть у нас есть простейшая нейронная сеть, которую мы хотим обучить (продолжаем рассматривать сети прямого распространения):
То есть на входы нейронов I1 и I2 мы подаем какие-либо числа, а на выходе сети получаем соответственно новое значение. При этом нам необходима некая выборка данных, включающая в себя значения входов и соответствующее им, правильное, значение на выходе:
bold{I_1} | bold{I_2} | bold{O_{net}} |
---|---|---|
x_{11} | x_{12} | y_{1} |
x_{21} | x_{22} | y_{2} |
x_{31} | x_{32} | y_{3} |
… | … | … |
x_{N1} | x_{N2} | y_{N} |
Допустим, сеть выполняет суммирование значений на входе, тогда данный набор данных может быть таким:
bold{I_1} | bold{I_2} | bold{O_{net}} |
---|---|---|
1 | 4 | 5 |
2 | 7 | 9 |
3 | 5 | 8 |
… | … | … |
1000 | 1500 | 2500 |
Эти значения и используются для обучения сети. Как именно — рассмотрим чуть ниже, пока сконцентрируемся на идее процесса в целом. Для того, чтобы иметь возможность тестировать работу сети в процессе обучения, исходную выборку данных делят на две части — обучающую и тестовую. Пусть имеется 1000 образцов, тогда можно 900 использовать для обучения, а оставшиеся 100 — для тестирования. Эти величины взяты исключительно ради наглядности и демонстрации логики выполнения операций, на практике все зависит от задачи, размер обучающей выборки может спокойно достигать и сотен тысяч образцов.
Итак, итог имеем следующий — обучающая выборка прогоняется через сеть, в результате чего происходит настройка значений синаптических весов. Один полный проход по всей выборке называется эпохой. И опять же, обучение нейронной сети — это процесс, требующий многократных экспериментов, анализа результатов и творческого подхода. Все перечисленные параметры (размер выборки, количество эпох обучения) могут иметь абсолютно разные значения для разных задач и сетей. Четкого правила тут просто нет, в этом и кроется дополнительный шарм и изящность )
Возвращаемся к разбору, и в результате прохода обучающей выборки через сеть мы получаем сеть с новыми значениями весов синапсов.
Далее мы через эту, уже обученную в той или иной степени, сеть прогоняем тестовую выборку, которая не участвовала в обучении. При этом сеть выдает нам выходные значения для каждого образца, которые мы сравниваем с теми верными значениями, которые имеем.
Анализируем нашу гипотетическую выборку:
Таким образом, для тестирования подаем на вход сети значения x_{(M+1)1}, x_{(M+1)2} и проверяем, чему равен выход, ожидаем очевидно значение y_{(M+1)}. Аналогично поступаем и для оставшихся тестовых образцов. После чего мы можем сделать вывод, успешно или нет работает сеть. Например, сеть дает правильный ответ для 90% тестовых данных, дальше уже встает вопрос — устраивает ли нас данная точность или процесс обучения необходимо повторить, либо провести заново, изменив какие-либо параметры сети.
В этом и заключается суть обучения нейронных сетей, теперь перейдем к деталям и конкретным действиям, которые необходимо осуществить для выполнения данного процесса. Двигаться снова будем поэтапно, чтобы сформировать максимально четкую и полную картину. Поэтому начнем с понятия градиентного спуска, который используется при обучении по методу обратного распространения ошибки. Обо всем этом далее…
Обучение нейронных сетей. Градиентный спуск.
Рассмотрев идею процесса обучения в целом, на данном этапе мы можем однозначно сформулировать текущую цель — необходимо определить математический алгоритм, который позволит рассчитать значения весовых коэффициентов таким образом, чтобы ошибка сети была минимальна. То есть грубо говоря нам необходима конкретная формула для вычисления:
Здесь Delta w_{ij} — величина, на которую необходимо изменить вес синапса, связывающего нейроны i и j нашей сети. Соответственно, зная это, необходимо на каждом этапе обучения производить корректировку весов связей между всеми элементами нейронной сети. Задача ясна, переходим к делу.
Пусть функция ошибки от веса имеет следующий вид:
Для удобства рассмотрим зависимость функции ошибки от одного конкретного веса:
В начальный момент мы находимся в некоторой точке кривой, а для минимизации ошибки попасть мы хотим в точку глобального минимума функции:
Нанесем на график вектора градиентов в разных точках. Длина векторов численно равна скорости роста функции в данной точке, что в свою очередь соответствует значению производной функции по данной точке. Исходя из этого, делаем вывод, что длина вектора градиента определяется крутизной функции в данной точке:
Вывод прост — величина градиента будет уменьшаться по мере приближения к минимуму функции. Это важный вывод, к которому мы еще вернемся. А тем временем разберемся с направлением вектора, для чего рассмотрим еще несколько возможных точек:
Находясь в точке 1, целью является перейти в точку 2, поскольку в ней значение ошибки меньше (E_2 < E_1), а глобальная задача по-прежнему заключается в ее минимизации. Для этого необходимо изменить величину w на некое значение Delta w (Delta w = w_2 — w_1 > 0). При всем при этом в точке 1 градиент отрицательный. Фиксируем данные факты и переходим к точке 3, предположим, что мы находимся именно в ней.
Тогда для уменьшения ошибки наш путь лежит в точку 4, а необходимое изменение значения: Delta w = w_4 — w_3 < 0. Градиент же в точке 3 положителен. Этот факт также фиксируем.
А теперь соберем воедино эту информацию в виде следующей иллюстрации:
Переход | bold{Delta w} | Знак bold{Delta w} | Градиент |
---|---|---|---|
1 rArr 2 | w_2 — w_1 | + | — |
3 rArr 4 | w_4 — w_3 | — | + |
Вывод напрашивается сам собой — величина, на которую необходимо изменить значение w, в любой точке противоположна по знаку градиенту. И, таким образом, представим эту самую величину в виде:
Delta w = -alpha cdot frac{dE}{dw}
Имеем в наличии:
- Delta w — величина, на которую необходимо изменить значение w.
- frac{dE}{dw} — градиент в этой точке.
- alpha — скорость обучения.
Собственно, логика метода градиентного спуска и заключается в данном математическом выражении, а именно в том, что для минимизации ошибки необходимо изменять w в направлении противоположном градиенту. В контексте нейронных сетей имеем искомый закон для корректировки весов синаптических связей (для синапса между нейронами i и j):
Delta w_{ij} = -alpha cdot frac{dE}{dw_{ij}}
Более того, вспомним о важном свойстве, которое мы отдельно пометили. И заключается оно в том, что величина градиента будет уменьшаться по мере приближения к минимуму функции. Что это нам дает? А то, что в том случае, если наша текущая дислокация далека от места назначения, то величина, корректирующая вес связи, будет больше. А это обеспечит скорейшее приближение к цели. При приближении к целевому пункту, величина frac{dE}{dw_{ij}} будет уменьшаться, что поможет нам точнее попасть в нужную точку, а кроме того, не позволит нам ее проскочить. Визуализируем вышеописанное:
Скорость же обучения несет в себе следующий смысл. Она определяет величину каждого шага при поиске минимума ошибки. Слишком большое значение приводит к тому, что точка может «перепрыгнуть» через нужное значение и оказаться по другую сторону от цели:
Если же величина будет мала, то это приведет к тому, что спуск будет осуществляться очень медленно, что также является нежелательным эффектом. Поэтому скорость обучения, как и многие другие параметры нейронной сети, является очень важной величиной, для которой нет единственно верного значения. Все снова зависит от конкретного случая и оптимальная величина определяется исключительно исходя из текущих условий.
И даже на этом еще не все, здесь присутствует один важный нюанс, который в большинстве статей опускается, либо вовсе не упоминается. Реальная зависимость может иметь совсем другой вид:
Из чего вытекает потенциальная возможность попадания в локальный минимум, вместо глобального, что является большой проблемой. Для предотвращения данного эффекта вводится понятие момента обучения и формула принимает следующий вид:
Delta w_{ij} = -alpha cdot frac{dE}{dw_{ij}} + gamma cdot Delta w_{ij}^{t - 1}
То есть добавляется второе слагаемое, которое представляет из себя произведение момента на величину корректировки веса на предыдущем шаге.
Итого, резюмируем продвижение к цели:
- Нашей задачей было найти закон, по которому необходимо изменять величину весов связей между нейронами.
- Наш результат — Delta w_{ij} = -alpha cdot frac{dE}{dw_{ij}} + gamma cdot Delta w_{ij}^{t — 1} — именно то, что и требовалось 👍
И опять же, полученный результат логичным образом перенаправляет нас на следующий этап, ставя вопросы — что из себя представляет функция ошибки, и как определить ее градиент.
Обучение нейронных сетей. Функция ошибки.
Начнем с того, что определимся с тем, что у нас в наличии, для этого вернемся к конкретной нейронной сети. Пусть вид ее таков:
Интересует нас, в первую очередь, часть, относящаяся к нейронам выходного слоя. Подав на вход определенные значения, получаем значения на выходе сети: O_{net, 1} и O_{net, 2}. Кроме того, поскольку мы ведем речь о процессе обучения нейронной сети, то нам известны целевые значения: O_{correct, 1} и O_{correct, 2}. И именно этот набор данных на этом этапе является для нас исходным:
- Известно: O_{net, 1}, O_{net, 2}, O_{correct, 1} и O_{correct, 2}.
- Необходимо определить величины Delta w_{ij} для корректировки весов, для этого нужно вычислить градиенты (frac{dE}{dw_{ij}}) для каждого из синапсов.
Полдела сделано — задача четко сформулирована, начинаем деятельность по поиску решения.
В плане того, как определять ошибку, первым и самым очевидным вариантом кажется простая алгебраическая разность. Для каждого из выходных нейронов:
E_k = O_{correct, k} - O_{net, k}
Дополним пример числовыми значениями:
Нейрон | bold{O_{net}} | bold{O_{correct}} | bold{E} |
---|---|---|---|
1 | 0.9 | 0.5 | -0.4 |
2 | 0.2 | 0.6 | 0.4 |
Недостатком данного варианта является то, что в том случае, если мы попытаемся просуммировать ошибки нейронов, то получим:
E_{sum} = e_1 + e_2 = -0.4 + 0.4 = 0
Что не соответствует действительности (нулевая ошибка, говорит об идеальной работе нейронной сети, по факту оба нейрона дали неверный результат). Так что вариант с разностью откидываем за несостоятельностью.
Вторым, традиционно упоминаемым, методом вычисления ошибки является использование модуля разности:
E_k = | O_{correct, k} - O_{net, k} |
Тут в действие вступает уже проблема иного рода:
Функция, бесспорно, симпатична, но при приближении к минимуму ее градиент является постоянной величиной, скачкообразно меняясь при переходе через точку минимума. Это нас также не устраивает, поскольку, как мы обсуждали, концепция заключалась в том числе в том, чтобы по мере приближения к минимуму значение градиента уменьшалось.
В итоге хороший результат дает зависимость (для выходного нейрона под номером k):
E_k = (O_{correct, k} - O_{net, k})^2
Функция по многим своим свойствам идеально удовлетворяет нуждам обучения нейронной сети, так что выбор сделан, остановимся на ней. Хотя, как и во многих аспектах, качающихся нейронных сетей, данное решение не является единственно и неоспоримо верным. В каких-то случаях лучше себя могут проявить другие зависимости, возможно, что какой-то вариант даст большую точность, но неоправданно высокие затраты производительности при обучении. В общем, непаханное поле для экспериментов и исследований, это и привлекательно.
Краткий вывод промежуточного шага, на который мы вышли:
- Имеющееся: frac{dE}{dw_{jk}} = frac{d}{d w_{jk}}(O_{correct, k} — O_{net, k})^2.
- Искомое по-прежнему: Delta w_{jk}.
Несложные диффернциально-математические изыскания выводят на следующий результат:
frac{dE}{d w_{jk}} = -(O_{correct, k} - O_{net, k}) cdot f{Large{prime}}(sum_{j}w_{jk}O_j) cdot O_j
Здесь эти самые изыскания я все-таки решил не вставлять, дабы не перегружать статью, которая и так выходит объемной. Но в случае необходимости и интереса, отпишите в комментарии, я добавлю вычисления и закину их под спойлер, как вариант.
Освежим в памяти структуру сети:
Формулу можно упростить, сгруппировав отдельные ее части:
- (O_{correct, k} — O_{net, k}) cdot f{Large{prime}}(sum_{j}w_{jk}O_j) — ошибка нейрона k.
- O_j — тут все понятно, выходной сигнал нейрона j.
f{Large{prime}}(sum_{j}w_{jk}O_j) — значение производной функции активации. Причем, обратите внимание, что sum_{j}w_{jk}O_j — это не что иное, как сигнал на входе нейрона k (I_{k}). Тогда для расчета ошибки выходного нейрона: delta_k = (O_{correct, k} — O_{net, k}) cdot f{Large{prime}}(I_k).
Итог: frac{dE}{d w_{jk}} = -delta_k cdot O_j.
Одной из причин популярности сигмоидальной функции активности является то, что ее производная очень просто выражается через саму функцию:
f{'}(x) = f(x)medspace (1medspace-medspace f(x))
Данные алгебраические вычисления справедливы для корректировки весов между скрытым и выходным слоем, поскольку для расчета ошибки мы используем просто разность между целевым и полученным результатом, умноженную на производную.
Для других слоев будут незначительные изменения, касающиеся исключительно первого множителя в формуле:
frac{dE}{d w_{ij}} = -delta_j cdot O_i
Который примет следующий вид:
delta_j = (sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_j)
То есть ошибка для элемента слоя j получается путем взвешенного суммирования ошибок, «приходящих» к нему от нейронов следующего слоя и умножения на производную функции активации. В результате:
frac{dE}{d w_{ij}} = -(sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_j) cdot O_i
Снова подводим промежуточный итог, чтобы иметь максимально полную и структурированную картину происходящего. Вот результаты, полученные нами на двух этапах, которые мы успешно миновали:
- Ошибка:
- выходной слой: delta_k = (O_{correct, k} — O_{net, k}) cdot f{Large{prime}}(I_k)
- скрытые слои: delta_j = (sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_j)
- Градиент: frac{dE}{d w_{ij}} = -delta_j cdot O_i
- Корректировка весовых коэффициентов: Delta w_{ij} = -alpha cdot frac{dE}{dw_{ij}} + gamma cdot Delta w_{ij}^{t — 1}
Преобразуем последнюю формулу:
Delta w_{ij} = alpha cdot delta_j cdot O_i + gamma cdot Delta w_{ij}^{t - 1}
Из этого мы делаем вывод, что на данный момент у нас есть все, что необходимо для того, чтобы произвести обучение нейронной сети. И героем следующего подраздела будет алгоритм обратного распространения ошибки.
Метод обратного распространения ошибки.
Данный метод является одним из наиболее распространенных и популярных, чем и продиктован его выбор для анализа и разбора. Алгоритм обратного распространения ошибки относится к методам обучение с учителем, что на деле означает необходимость наличия целевых значений в обучающих сетах.
Суть же метода подразумевает наличие двух этапов:
- Прямой проход — входные сигналы двигаются в прямом направлении, в результате чего мы получаем выходной сигнал, из которого в дальнейшем рассчитываем значение ошибки.
- Обратный проход — обратное распространение ошибки — величина ошибки двигается в обратном направлении, в результате происходит корректировка весовых коэффициентов связей сети.
Начальные значения весов (перед обучением) задаются случайными, есть ряд методик для выбора этих значений, я опишу в отдельном материале максимально подробно. Пока вот можно полистать — ссылка.
Вернемся к конкретному примеру для явной демонстрации этих принципов:
Итак, имеется нейронная сеть, также имеется набор данных обучающей выборки. Как уже обсудили в начале статьи — обучающая выборка представляет из себя набор образцов (сетов), каждый из которых состоит из значений входных сигналов и соответствующих им «правильных» значений выходных величин.
Процесс обучения нейронной сети для алгоритма обратного распространения ошибки будет таким:
- Прямой проход. Подаем на вход значения I_1, I_2, I_3 из обучающей выборки. В результате работы сети получаем выходные значения O_{net, 1}, O_{net, 2}. Этому целиком и полностью был посвящен предыдущий манускрипт.
- Рассчитываем величины ошибок для всех слоев:
- для выходного: delta_k = (O_{correct, k} — O_{net, k}) cdot f{Large{prime}}(I_k)
- для скрытых: delta_j = (sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_j)
- Далее используем полученные значения для расчета Delta w_{ij} = alpha cdot delta_j cdot O_i + gamma cdot Delta w_{ij}^{t — 1}
- И финишируем, рассчитывая новые значения весов: w_{ij medspace new} = w_{ij} + Delta w_{ij}
- На этом один цикл обучения закончен, данные шаги 1 — 4 повторяются для других образцов из обучающей выборки.
Обратный проход завершен, а вместе с ним и одна итерация процесса обучения нейронной сети по данному методу. Собственно, обучение в целом заключается в многократном повторении этих шагов для разных образцов из обучающей выборки. Логику мы полностью разобрали, при повторном проведении операций она остается в точности такой же.
Таким образом, максимально подробно концентрируясь именно на сути и логике процессов, мы в деталях разобрали метод обратного распространения ошибки. Поэтому переходим к завершающей части статьи, в которой разберем практический пример, произведя полностью все вычисления для конкретных числовых величин. Все в рамках продвигаемой мной концепции, что любая теоретическая информация на порядок лучше может быть осознана при применении ее на практике.
Пример расчетов для метода обратного распространения ошибки.
Возьмем нейронную сеть и зададим начальные значения весов:
Здесь я задал значения не в соответствии с существующими на сегодняшний день методами, а просто случайным образом для наглядности примера.
В качестве функции активации используем сигмоиду:
f(x) = frac{1}{1 + e^{-x}}
И ее производная:
f{Large{prime}}(x) = f(x)medspace (1medspace-medspace f(x))
Берем один образец из обучающей выборки, пусть будут такие значения:
- Входные: I_1 = 0.6, I_1 = 0.7.
- Выходное: O_{correct} = 0.9.
Скорость обучения alpha пусть будет равна 0.3, момент — gamma = 0.1. Все готово, теперь проведем полный цикл для метода обратного распространения ошибки, то есть прямой проход и обратный.
Прямой проход.
Начинаем с выходных значений нейронов 1 и 2, поскольку они являются входными, то:
O_1 = I_1 = 0.6 O_2 = I_2 = 0.7
Значения на входе нейронов 3, 4 и 5:
I_3 = O_1 cdot w_{13} + O_2 cdot w_{23} = 0.6 cdot (-1medspace) + 0.7 cdot 1 = 0.1 I_4 = 0.6 cdot 2.5 + 0.7 cdot 0.4 = 1.78 I_5 = 0.6 cdot 1 + 0.7 cdot (-1.5medspace) = -0.45
На выходе этих же нейронов первого скрытого слоя:
O_3 = f(I3medspace) = 0.52 O_4 = 0.86 O_5 = 0.39
Продолжаем аналогично для следующего скрытого слоя:
I_6 = O_3 cdot w_{36} + O_4 cdot w_{46} + O_5 cdot w_{56} = 0.52 cdot 2.2 + 0.86 cdot (-1.4medspace) + 0.39 cdot 0.56 = 0.158 I_7 = 0.52 cdot 0.34 + 0.86 cdot 1.05 + 0.39 cdot 3.1 = 2.288 O_6 = f(I_6) = 0.54 O_7 = 0.908
Добрались до выходного нейрона:
I_8 = O_6 cdot w_{68} + O_7 cdot w_{78} = 0.54 cdot 0.75 + 0.908 cdot (-0.22medspace) = 0.205 O_8 = O_{net} = f(I_8) = 0.551
Получили значение на выходе сети, кроме того, у нас есть целевое значение O_{correct} = 0.9. То есть все, что необходимо для обратного прохода, имеется.
Обратный проход.
Как мы и обсуждали, первым этапом будет вычисление ошибок всех нейронов, действуем:
delta_8 = (O_{correct} - O_{net}) cdot f{Large{prime}}(I_8) = (O_{correct} - O_{net}) cdot f(I_8) cdot (1-f(I_8)) = (0.9 - 0.551medspace) cdot 0.551 cdot (1-0.551medspace) = 0.0863 delta_7 = (sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_7) = (delta_8 cdot w_{78}) cdot f{Large{prime}}(I_7) = 0.0863 cdot (-0.22medspace) cdot 0.908 cdot (1 - 0.908medspace) = -0.0016 delta_6 = 0.086 cdot 0.75 cdot 0.54 cdot (1 - 0.54medspace) = 0.016 delta_5 = (sum_{k}{}{delta_kmedspace w_{jk}}) cdot f{Large{prime}}(I_5) = (delta_7 cdot w_{57} + delta_6 cdot w_{56}) cdot f{Large{prime}}(I_7) = (-0.0016 cdot 3.1 + 0.016 cdot 0.56) cdot 0.39 cdot (1 - 0.39medspace) = 0.001 delta_4 = (-0.0016 cdot 1.05 + 0.016 cdot (-1.4)) cdot 0.86 cdot (1 - 0.86medspace) = -0.003 delta_3 = (-0.0016 cdot 0.34 + 0.016 cdot 2.2) cdot 0.52 cdot (1 - 0.52medspace) = -0.0087
С расчетом ошибок закончили, следующий этап — расчет корректировочных величин для весов всех связей. Для этого мы вывели формулу:
Delta w_{ij} = alpha cdot delta_j cdot O_i + gamma cdot Delta w_{ij}^{t - 1}
Как вы помните, Delta w_{ij}^{t — 1} — это величина поправки для данного веса на предыдущей итерации. Но поскольку у нас это первый проход, то данное значение будет нулевым, соответственно, в данном случае второе слагаемое отпадает. Но забывать о нем нельзя. Продолжаем калькулировать:
Delta w_{78} = alpha cdot delta_8 cdot O_7 = 0.3 cdot 0.0863 cdot 0.908 = 0.0235 Delta w_{68} = 0.3 cdot 0.0863 cdot 0.54= 0.014 Delta w_{57} = alpha cdot delta_7 cdot O_5 = 0.3 cdot (−0.0016medspace) cdot 0.39= -0.00019 Delta w_{47} = 0.3 cdot (−0.0016medspace) cdot 0.86= -0.0004 Delta w_{37} = 0.3 cdot (−0.0016medspace) cdot 0.52= -0.00025 Delta w_{56} = alpha cdot delta_6 cdot O_5 = 0.3 cdot 0.016 cdot 0.39= 0.0019 Delta w_{46} = 0.3 cdot 0.016 cdot 0.86= 0.0041 Delta w_{36} = 0.3 cdot 0.016 cdot 0.52= 0.0025 Delta w_{25} = alpha cdot delta_5 cdot O_2 = 0.3 cdot 0.001 cdot 0.7= 0.00021 Delta w_{15} = 0.3 cdot 0.001 cdot 0.6= 0.00018 Delta w_{24} = alpha cdot delta_4 cdot O_2 = 0.3 cdot (-0.003medspace) cdot 0.7= -0.00063 Delta w_{14} = 0.3 cdot (-0.003medspace) cdot 0.6= -0.00054 Delta w_{23} = alpha cdot delta_3 cdot O_2 = 0.3 cdot (−0.0087medspace) cdot 0.7= -0.00183 Delta w_{13} = 0.3 cdot (−0.0087medspace) cdot 0.6= -0.00157
И самый что ни на есть заключительный этап — непосредственно изменение значений весовых коэффициентов:
w_{78 medspace new} = w_{78} + Delta w_{78} = -0.22 + 0.0235 = -0.1965 w_{68 medspace new} = 0.75+ 0.014 = 0.764 w_{57 medspace new} = 3.1 + (−0.00019medspace) = 3.0998 w_{47 medspace new} = 1.05 + (−0.0004medspace) = 1.0496 w_{37 medspace new} = 0.34 + (−0.00025medspace) = 0.3398 w_{56 medspace new} = 0.56 + 0.0019 = 0.5619 w_{46 medspace new} = -1.4 + 0.0041 = -1.3959 w_{36 medspace new} = 2.2 + 0.0025 = 2.2025 w_{25 medspace new} = -1.5 + 0.00021 = -1.4998 w_{15 medspace new} = 1 + 0.00018 = 1.00018 w_{24 medspace new} = 0.4 + (−0.00063medspace) = 0.39937 w_{14 medspace new} = 2.5 + (−0.00054medspace) = 2.49946 w_{23 medspace new} = 1 + (−0.00183medspace) = 0.99817 w_{13 medspace new} = -1 + (−0.00157medspace) = -1.00157
И на этом данную масштабную статью завершаем, конечно же, не завершая на этом деятельность по использованию нейронных сетей. Так что всем спасибо за прочтение, любые вопросы пишите в комментариях и на форуме, ну и обязательно следите за обновлениями и новыми материалами, до встречи!
Применение алгоритма обратного распространения ошибки — один из известных методов, используемых для глубокого обучения нейронных сетей прямого распространения (такие сети ещё называют многослойными персептронами). Этот метод относят к методу обучения с учителем, поэтому требуется задавать в обучающих примерах целевые значения. В этой статье мы рассмотрим, что собой представляет метод обратного распространения ошибки, как он реализуется, каковы его плюсы и минусы.
Сегодня нейронные сети прямого распространения используются для решения множества сложных задач. Если говорить об обучении нейронных сетей методом обратного распространения, то тут пользуются двумя проходами по всем слоям нейросети: прямым и обратным. При выполнении прямого прохода осуществляется подача входного вектора на входной слой сети, после чего происходит распространение по нейронной сети от слоя к слою. В итоге должна осуществляться генерация набора выходных сигналов — именно он, по сути, является реакцией нейронной сети на этот входной образ. При прямом проходе все синаптические веса нейросети фиксированы. При обратном проходе все синаптические веса настраиваются согласно правил коррекции ошибок, когда фактический выход нейронной сети вычитается из желаемого, что приводит к формированию сигнала ошибки. Такой сигнал в дальнейшем распространяется по сети, причём направление распространения обратно направлению синаптических связей. Именно поэтому соответствующий метод и называют алгоритмом с обратно распространённой ошибкой. Синаптические веса настраивают с целью наибольшего приближения выходного сигнала нейронной сети к желаемому.
Общее описание алгоритма обратного распространения ошибки
К примеру, нам надо обучить нейронную сеть по аналогии с той, что представлена на картинке ниже. Естественно, задачу следует выполнить, применяя алгоритм обратного распространения ошибки:
В многослойных персептронах в роли активационной функции обычно применяют сигмоидальную активационную функция, в нашем случае — логистическую. Формула:
Причём «альфа» здесь означает параметр наклона сигмоидальной функции. Меняя его, мы получаем возможность строить функции с разной крутизной.
Сигмоид может сужать диапазон изменения таким образом, чтобы значение OUT лежало между нулем и единицей. Нейронные многослойные сети характеризуются более высокой представляющей мощностью, если сравнивать их с однослойными, но это утверждение справедливо лишь в случае нелинейности. Нужную нелинейность и обеспечивает сжимающая функция. Но на практике существует много функций, которые можно использовать. Говоря о работе алгоритма обратного распространения ошибки, скажем, что для этого нужно лишь, чтобы функция была везде дифференцируема, а данному требованию как раз и удовлетворяет сигмоид. У него есть и дополнительное преимущество — автоматический контроль усиления. Если речь идёт о слабых сигналах (OUT близко к нулю), то кривая «вход-выход» характеризуется сильным наклоном, дающим большое усиление. При увеличении сигнала усиление падает. В результате большие сигналы будут восприниматься сетью без насыщения, а слабые сигналы будут проходить по сети без чрезмерного ослабления.
Цель обучения сети
Цель обучения нейросети при использовании алгоритма обратного распространения ошибки — это такая подстройка весов нейросети, которая позволит при приложении некоторого множества входов получить требуемое множество выходов нейронов (выходных нейронов). Можно назвать эти множества входов и выходов векторами. В процессе обучения предполагается, что для любого входного вектора существует целевой вектор, парный входному и задающий требуемый выход. Эту пару называют обучающей. Работая с нейросетями, мы обучаем их на многих парах.
Также можно сказать, что алгоритм использует стохастический градиентный спуск и продвигается в многомерном пространстве весов в направлении антиградиента, причём цель — это достижение минимума функции ошибки.
При практическом применении метода обучение продолжают не до максимально точной настройки нейросети на минимум функции ошибки, а пока не будет достигнуто довольно точное его приближение. С одной стороны, это даёт возможность уменьшить количество итераций обучения, с другой — избежать переобучения нейронной сети.
Пошаговая реализация метода обратного распространения ошибки
Необходимо выполнить следующие действия:
1. Инициализировать синаптические веса случайными маленькими значениями.
2. Выбрать из обучающего множества очередную обучающую пару; подать на вход сети входной вектор.
3. Выполнить вычисление выходных значений нейронной сети.
4. Посчитать разность между выходом нейросети и требуемым выходом (речь идёт о целевом векторе обучающей пары).
5. Скорректировать веса сети в целях минимизации ошибки.
6. Повторять для каждого вектора обучающего множества шаги 2-5, пока ошибка обучения нейронной сети на всём множестве не достигнет уровня, который является приемлемым.
Виды обучения сети по методу обратного распространения
Сегодня существует много модификаций алгоритма обратного распространения ошибки. Возможно обучение не «по шагам» (выходная ошибка вычисляется, веса корректируются на каждом примере), а «по эпохам» в offline-режиме (изменения весовых коэффициентов происходит после подачи на вход нейросети всех примеров обучающего множества, а ошибка обучения neural сети усредняется по всем примерам).
Обучение «по эпохам» более устойчиво к выбросам и аномальным значениям целевой переменной благодаря усреднению ошибки по многим примерам. Зато в данном случае увеличивается вероятность «застревания» в локальных минимумах. При обучении «по шагам» такая вероятность меньше, ведь применение отдельных примеров создаёт «шум», «выталкивающий» алгоритм обратного распространения из ям градиентного рельефа.
Преимущества и недостатки метода
К плюсам можно отнести простоту в реализации и устойчивость к выбросам и аномалиям в данных, и это основные преимущества. Но есть и минусы:
• неопределенно долгий процесс обучения;
• вероятность «паралича сети» (при больших значениях рабочая точка функции активации попадает в область насыщения сигмоиды, а производная величина приближается к 0, в результате чего коррекции весов почти не происходят, а процесс обучения «замирает»;
• алгоритм уязвим к попаданию в локальные минимумы функции ошибки.
Значение метода обратного распространения
Появление алгоритма стало знаковым событием и положительно отразилось на развитии нейросетей, ведь он реализует эффективный с точки зрения вычислительных процессов способ обучения многослойного персептрона. В то же самое время, было бы неправильным сказать, что алгоритм предлагает наиболее оптимальное решение всех потенциальных проблем. Зато он действительно развеял пессимизм относительно машинного обучения многослойных машин, который воцарился после публикации в 1969 году работы американского учёного с фамилией Минский.
Источники:
— «Алгоритм обратного распространения ошибки»;
— «Back propagation algorithm».
Нейронная сеть — попытка с помощью математических моделей воспроизвести работу человеческого мозга для создания машин, обладающих искусственным интеллектом.
Искусственная нейронная сеть обычно обучается с учителем. Это означает наличие обучающего набора (датасета), который содержит примеры с истинными значениями: тегами, классами, показателями.
Неразмеченные наборы также используют для обучения нейронных сетей, но мы не будем здесь это рассматривать.
Например, если вы хотите создать нейросеть для оценки тональности текста, датасетом будет список предложений с соответствующими каждому эмоциональными оценками. Тональность текста определяют признаки (слова, фразы, структура предложения), которые придают негативную или позитивную окраску. Веса признаков в итоговой оценке тональности текста (позитивный, негативный, нейтральный) зависят от математической функции, которая вычисляется во время обучения нейронной сети.
Раньше люди генерировали признаки вручную. Чем больше признаков и точнее подобраны веса, тем точнее ответ. Нейронная сеть автоматизировала этот процесс.
Искусственная нейронная сеть состоит из трех компонентов:
- Входной слой;
- Скрытые (вычислительные) слои;
- Выходной слой.
Обучение нейросетей происходит в два этапа:
- Прямое распространение ошибки;
- Обратное распространение ошибки.
Во время прямого распространения ошибки делается предсказание ответа. При обратном распространении ошибка между фактическим ответом и предсказанным минимизируется.
Прямое распространение ошибки
Зададим начальные веса случайным образом:
- w1
- w2
- w3
Умножим входные данные на веса для формирования скрытого слоя:
- h1 = (x1 * w1) + (x2 * w1)
- h2 = (x1 * w2) + (x2 * w2)
- h3 = (x1 * w3) + (x2 * w3)
Выходные данные из скрытого слоя передается через нелинейную функцию (функцию активации), для получения выхода сети:
- y_ = fn(h1 , h2, h3)
Обратное распространение
- Суммарная ошибка (total_error) вычисляется как разность между ожидаемым значением «y» (из обучающего набора) и полученным значением «y_» (посчитанное на этапе прямого распространения ошибки), проходящих через функцию потерь (cost function).
- Частная производная ошибки вычисляется по каждому весу (эти частные дифференциалы отражают вклад каждого веса в общую ошибку (total_loss)).
- Затем эти дифференциалы умножаются на число, называемое скорость обучения или learning rate (η).
Полученный результат затем вычитается из соответствующих весов.
В результате получатся следующие обновленные веса:
- w1 = w1 — (η * ∂(err) / ∂(w1))
- w2 = w2 — (η * ∂(err) / ∂(w2))
- w3 = w3 — (η * ∂(err) / ∂(w3))
То, что мы предполагаем и инициализируем веса случайным образом, и они будут давать точные ответы, звучит не вполне обоснованно, тем не менее, работает хорошо.
Если вы знакомы с рядами Тейлора, обратное распространение ошибки имеет такой же конечный результат. Только вместо бесконечного ряда мы пытаемся оптимизировать только его первый член.
Смещения – это веса, добавленные к скрытым слоям. Они тоже случайным образом инициализируются и обновляются так же, как скрытый слой. Роль скрытого слоя заключается в том, чтобы определить форму базовой функции в данных, в то время как роль смещения – сдвинуть найденную функцию в сторону так, чтобы она частично совпала с исходной функцией.
Частные производные
Частные производные можно вычислить, поэтому известно, какой был вклад в ошибку по каждому весу. Необходимость производных очевидна. Представьте нейронную сеть, пытающуюся найти оптимальную скорость беспилотного автомобиля. Eсли машина обнаружит, что она едет быстрее или медленнее требуемой скорости, нейронная сеть будет менять скорость, ускоряя или замедляя автомобиль. Что при этом ускоряется/замедляется? Производные скорости.
Разберем необходимость частных производных на примере.
Предположим, детей попросили бросить дротик в мишень, целясь в центр. Вот результаты:
Теперь, если мы найдем общую ошибку и просто вычтем ее из всех весов, мы обобщим ошибки, допущенные каждым. Итак, скажем, ребенок попал слишком низко, но мы просим всех детей стремиться попадать в цель, тогда это приведет к следующей картине:
Ошибка нескольких детей может уменьшиться, но общая ошибка все еще увеличивается.
Найдя частные производные, мы узнаем ошибки, соответствующие каждому весу в отдельности. Если выборочно исправить веса, можно получить следующее:
Гиперпараметры
Нейронная сеть используется для автоматизации отбора признаков, но некоторые параметры настраиваются вручную.
Скорость обучения (learning rate)
Скорость обучения является очень важным гиперпараметром. Если скорость обучения слишком мала, то даже после обучения нейронной сети в течение длительного времени она будет далека от оптимальных результатов. Результаты будут выглядеть примерно так:
С другой стороны, если скорость обучения слишком высока, то сеть очень быстро выдаст ответы. Получится следующее:
Функция активации (activation function)
Функция активации — это один из самых мощных инструментов, который влияет на силу, приписываемую нейронным сетям. Отчасти, она определяет, какие нейроны будут активированы, другими словами и какая информация будет передаваться последующим слоям.
Без функций активации глубокие сети теряют значительную часть своей способности к обучению. Нелинейность этих функций отвечает за повышение степени свободы, что позволяет обобщать проблемы высокой размерности в более низких измерениях. Ниже приведены примеры распространенных функций активации:
Функция потери (loss function)
Функция потерь находится в центре нейронной сети. Она используется для расчета ошибки между реальными и полученными ответами. Наша глобальная цель — минимизировать эту ошибку. Таким образом, функция потерь эффективно приближает обучение нейронной сети к этой цели.
Функция потерь измеряет «насколько хороша» нейронная сеть в отношении данной обучающей выборки и ожидаемых ответов. Она также может зависеть от таких переменных, как веса и смещения.
Функция потерь одномерна и не является вектором, поскольку она оценивает, насколько хорошо нейронная сеть работает в целом.
Некоторые известные функции потерь:
- Квадратичная (среднеквадратичное отклонение);
- Кросс-энтропия;
- Экспоненциальная (AdaBoost);
- Расстояние Кульбака — Лейблера или прирост информации.
Cреднеквадратичное отклонение – самая простая фукция потерь и наиболее часто используемая. Она задается следующим образом:
Функция потерь в нейронной сети должна удовлетворять двум условиям:
- Функция потерь должна быть записана как среднее;
- Функция потерь не должна зависеть от каких-либо активационных значений нейронной сети, кроме значений, выдаваемых на выходе.
Глубокие нейронные сети
Глубокое обучение (deep learning) – это класс алгоритмов машинного обучения, которые учатся глубже (более абстрактно) понимать данные. Популярные алгоритмы нейронных сетей глубокого обучения представлены на схеме ниже.
Более формально в deep learning:
- Используется каскад (пайплайн, как последовательно передаваемый поток) из множества обрабатывающих слоев (нелинейных) для извлечения и преобразования признаков;
- Основывается на изучении признаков (представлении информации) в данных без обучения с учителем. Функции более высокого уровня (которые находятся в последних слоях) получаются из функций нижнего уровня (которые находятся в слоях начальных слоях);
- Изучает многоуровневые представления, которые соответствуют разным уровням абстракции; уровни образуют иерархию представления.
Пример
Рассмотрим однослойную нейронную сеть:
Здесь, обучается первый слой (зеленые нейроны), он просто передается на выход.
В то время как в случае двухслойной нейронной сети, независимо от того, как обучается зеленый скрытый слой, он затем передается на синий скрытый слой, где продолжает обучаться:
Следовательно, чем больше число скрытых слоев, тем больше возможности обучения сети.
Не следует путать с широкой нейронной сетью.
В этом случае большое число нейронов в одном слое не приводит к глубокому пониманию данных. Но это приводит к изучению большего числа признаков.
Пример:
Изучая английскую грамматику, требуется знать огромное число понятий. В этом случае однослойная широкая нейронная сеть работает намного лучше, чем глубокая нейронная сеть, которая значительно меньше.
Но
В случае изучения преобразования Фурье, ученик (нейронная сеть) должен быть глубоким, потому что не так много понятий, которые нужно знать, но каждое из них достаточно сложное и требует глубокого понимания.
Главное — баланс
Очень заманчиво использовать глубокие и широкие нейронные сети для каждой задачи. Но это может быть плохой идеей, потому что:
- Обе требуют значительно большего количества данных для обучения, чтобы достичь минимальной желаемой точности;
- Обе имеют экспоненциальную сложность;
- Слишком глубокая нейронная сеть попытается сломать фундаментальные представления, но при этом она будет делать ошибочные предположения и пытаться найти псевдо-зависимости, которые не существуют;
- Слишком широкая нейронная сеть будет пытаться найти больше признаков, чем есть. Таким образом, подобно предыдущей, она начнет делать неправильные предположения о данных.
Проклятье размерности
Проклятие размерности относится к различным явлениям, возникающим при анализе и организации данных в многомерных пространствах (часто с сотнями или тысячами измерений), и не встречается в ситуациях с низкой размерностью.
Грамматика английского языка имеет огромное количество аттрибутов, влияющих на нее. В машинном обучении мы должны представить их признаками в виде массива/матрицы конечной и существенно меньшей длины (чем количество существующих признаков). Для этого сети обобщают эти признаки. Это порождает две проблемы:
- Из-за неправильных предположений появляется смещение. Высокое смещение может привести к тому, что алгоритм пропустит существенную взаимосвязь между признаками и целевыми переменными. Это явление называют недообучение.
- От небольших отклонений в обучающем множестве из-за недостаточного изучения признаков увеличивается дисперсия. Высокая дисперсия ведет к переобучению, ошибки воспринимаются в качестве надежной информации.
Компромисс
На ранней стадии обучения смещение велико, потому что выход из сети далек от желаемого. А дисперсия очень мала, поскольку данные имеет пока малое влияние.
В конце обучения смещение невелико, потому что сеть выявила основную функцию в данных. Однако, если обучение слишком продолжительное, сеть также изучит шум, характерный для этого набора данных. Это приводит к большому разбросу результатов при тестировании на разных множествах, поскольку шум меняется от одного набора данных к другому.
Действительно,
алгоритмы с большим смещением обычно в основе более простых моделей, которые не склонны к переобучению, но могут недообучиться и не выявить важные закономерности или свойства признаков. Модели с маленьким смещением и большой дисперсией обычно более сложны с точки зрения их структуры, что позволяет им более точно представлять обучающий набор. Однако они могут отображать много шума из обучающего набора, что делает их прогнозы менее точными, несмотря на их дополнительную сложность.
Следовательно, как правило, невозможно иметь маленькое смещение и маленькую дисперсию одновременно.
Сейчас есть множество инструментов, с помощью которых можно легко создать сложные модели машинного обучения, переобучение занимает центральное место. Поскольку смещение появляется, когда сеть не получает достаточно информации. Но чем больше примеров, тем больше появляется вариантов зависимостей и изменчивостей в этих корреляциях.
0 / 0 / 0
Регистрация: 16.05.2020
Сообщений: 5
1
Странное поведение ошибки в нейросети
13.04.2021, 00:08. Показов 1875. Ответов 2
Суть следующего характера. Изучаю обычный перцептрон. Даю на вход выборку с простой задачей. Есть два числа. Нейросеть должна выбрать большее следующим образом. Если большее число из первого нейрона то ответ 0, если из второго то ответ 1. На одном примере сводится правильно без вопросов. Но вот когда выборок становится чуток больше чем одна, то вариантов исхода становится несколько. Иногда нейросеть сводится но уже не таким плавным и красивым графиком. Вроде как эталонная сеть должна сводится по обратной экспоненте, но вместо этого она сводится «ступеньками». Заимствовал формулы из разных источников. В некоторых такой график сведения считается нормальным, но, по крайней мере, для моей задачи с 2-3 примерами это выглядит странно. Иногда нейросеть может так и остаться на одной ступеньке и никто не знает сколько еще ей надо эпох, чтобы опустить ошибку чуть ниже. Если смотреть по MSE то ошибка даже во время одного уровня уменьшается, но очень очень медленно.
Второй нюанс это резкий взрыв ошибки. Он происходит толи в самые первые эпохи, толи в какой-то момент сведения. Нейросеть начинает работать в обратную сторону и вместо того, чтобы уменьшать ошибку, начинает её увеличивать. Учитывая что это сделать намного проще то она улетает в бесконечность с вылетом исключения за пару эпох (вот тут как раз экспоненциально). Я не придумал причину по которой это может происходить но это как-то связано с ошибкой и корректировкой весов, которая при каких-то условиях «разворачивается», как будто меняет знак — на +.
Алгоритм прямого распространения работает как нужно, было проверено отладкой. Скорее всего что-то с обратным распространением, точнее в одной из формул. Как я уже сказал я пробовал формулы разных источников и я без понятия какой из них при каких условиях будет работать правильно и должен ли работать правильно в принципе.
Снизу пару графиков поведения нейросети а также код формул.
Смена гиперпараметров и структуры влияли на скорость обучения но не на поведения графика и не решали взрыв ошибки. Использую нейроны смещения для каждых слоёв кроме последнего, по очевидным причинам. Веса генерируются случайно от -0,5 до 0,5. Активатор — сигмоида. Обучение производится эпохами. Эпоха = проход по всей выборке, заведомо перемешанной с каждой новой эпохой.
P.S Работаю на не очень Sharp Develop и отладка отказывается работать при мультипотоке (нужно для отрисовки графика в реальном времени) а переходить на Visual например мне лень. Мне нужно разобраться с формулами и правильным графиком сведения.
C# | ||
|
C# | ||
|
0
ОРО и корректировка весов в нейросети
Ранее мы улучшали поведение простого линейного классификатора и рассмотрели, как по входу и матрицам весов нейросети вычислить её выход.
Теперь предположим, что имеется некий эталоный выход, к которому должен стремиться результат работы нейросети. Для достижения эталона нам потребуется что-то перенастраивать в сети. Это будут весовые коэффициенты.
Выясним, как мы будем обновлять матрицы весов.
Заготовка распределения ошибки. Изображение из (1)
Обратное распространение ошибки в нейронной сети
Воспользуемся методом ОРО, пропорционально распределяя ошибку между имеющимися узлами:
Простая сеть и ошибка на узлах. Изображение из (1)
Определим ошибку на выходном слое ( e^{О}), как разность между эталонным значением ( t_{i}) и полученным ( o_{i}) на выходе нейросети :
( e^{О}_{i} = t_{i} — o_{i})
Тогда, глядя на рисунок выше, заключим, что ошибка ( e^{О}_{1}) распределяется пропорционально весам ( w_{11}) и ( w_{21}), а ошибка ( e^{О}_{2}) должна распределяться пропорционально весам ( w_{12}) и ( w_{22}).
Запишем эти доли в явном виде:
( e^{O}_{1} = displaystylefrac {w_{11}}{w_{11} + w_{21}}; quad e^{O}_{2} = displaystylefrac {w_{12}}{w_{12} + w_{22}}, )
Итак, на основе отклонения текущего выхода от эталонного, мы будем обновлять весовые коэффициенты во всей нейросети, двигаясь с конца к её началу.
Распределение ошибки по слоям. Изображение из (1)
Но если сначала мы использовали ошибку выходного слоя, то какую ошибку использовать для узлов скрытого слоя? Ведь мы не можем указать очевидную ошибку для узла в таком слое.
Разберёмся, как определить ошибку для скрытого узла.
Ошибка скрытого слоя
Мы можем воссоединить ошибки, распределенные по связям следующим образом: ошибка на первом скрытом узле ( e^{H}_{1} ) представляет собой сумму ошибок, распределенных по всем связям, исходящим из этого узла в прямом направлении:
( e^{H}_{1} = e^{O}_{1} cdot frac {w_{11}}{w_{11} + w_{21}} + e^{O}_{2} cdot frac {w_{12}}{w_{12} + w_{22}}, )
или как показано на иллюстрации ниже:
Метод ОРО. Изображение из (1)
Применять данную методику мы будем до тех пор, пока не доберёмся до входного слоя:
Расчет ошибки на внутренних узлах. Изображение из (1)
Векторизация метода ОРО в нейросети
Опять, так как Scilab — матричный язык, адаптируем поэлементный процесс обратного распространения ошибки в нейросети под удобный нам.
Зададим эталонный вектор ( V_{e}), тогда ошибка ( E_O) на выходном слое ( O) считается самым простым способом:
( E_O = V_{e} — O )
Ошибка ( E_H ) на скрытом слое ( H) будет считаться с учетом вклада каждого узла следующим образом:
( E_H = begin{pmatrix}
frac {w_{11}}{w_{11} + w_{21}} & frac {w_{12}}{w_{12} + w_{22}} \
frac {w_{21}}{w_{21} + w_{11}} & frac {w_{22}}{w_{22} + w_{12}}
end{pmatrix} cdot E_o
)
Здесь ( w_{ij} ) — элементы матрицы ( W_{HO} ), задающей веса для слоёв выходной-скрытый.
Это выражение можно переписать в более простом виде, отказавшись от знаменателей в первом множителе. Тогда получим связь с весовой матрицей на текущем шаге:
( E_H = begin{pmatrix}
w_{11} & w_{12} \
w_{21} & w_{22}
end{pmatrix} cdot E_O
)
Итак, ошибка ( E_H ) скрытого вычисляется с учётом ошибки (E_O) выходного слоя и матрицы ( W_{HO} ):
( E_H = W_{HO}^T cdot E_O)
Аналогично, для входного слоя ошибка ( E_I ) будет вычисляться с учётом ошибки (E_H) предыдущего слоя в связи с матрицей ( W_{IH} ), определяющей веса входной-скрытый слоёв:
( E_I = W_{IH}^T cdot E_H)
Обновление весовых коэффициентов
Для обновления весовых коэффициентов мы воспользуемся методом градиентного спуска (подробнее в (1)).
При подсчёте ошибки на каждом из слоёв, будем немного корректировать весовые коэффициенты соответвующей весовой матрицы на величину ( Delta w ), которая на векторно-матричном языке может быть представлена как:
( Delta w = — alpha cdot E_k cdot O_k cdot (1 — O_k) cdot O^T_j, )
где
(alpha — ) скорость обучения нейронной сети (alpha in (0,1) ),
(E_k — ) ошибка текущего слоя (вектор столбец),
(O_k — ) текущий слой (вектор-столбец),
(O^T_j — ) предыдущий слой (вектор-столбец).
А обновлённая матрица весов примет вид:
( W^{new} = W^{cur} — Delta w )
Осталось лишь собрать всё в программный код обучения нейросети 😁
Данная статья создана на основе чудесной книги(1) с реализацией автором приведённых примеров на Scilab.
Нейронные сети считаются универсальными моделями в машинном обучении, поскольку позволяют решать широкий класс задач. Однако, при их использовании могут возникать различные проблемы.
Содержание
- 1 Взрывающийся и затухающий градиент
- 1.1 Определение
- 1.2 Причины
- 1.3 Способы определения
- 1.3.1 Взрывающийся градиент
- 1.3.2 Затухающий градиент
- 1.4 Способы устранения
- 1.4.1 Использование другой функции активации
- 1.4.1.1 Tanh
- 1.4.1.2 ReLU
- 1.4.1.3 Softplus
- 1.4.2 Изменение модели
- 1.4.3 Использование Residual blocks
- 1.4.4 Регуляризация весов
- 1.4.5 Обрезание градиента
- 1.4.1 Использование другой функции активации
- 2 См. также
- 3 Примечания
- 4 Источники
Взрывающийся и затухающий градиент
Определение
Напомним, что градиентом в нейронных сетях называется вектор частных производных функции потерь по весам нейронной сети. Таким образом, он указывает на направление наибольшего роста этой функции для всех весов по совокупности. Градиент считается в процессе тренировки нейронной сети и используется в оптимизаторе весов для улучшения качества модели.
В процессе обратного распространения ошибки при прохождении через слои нейронной сети в элементах градиента могут накапливаться большие значения, что будет приводить к сильным изменениям весов. Это в свою очередь может сделать нестабильным алгоритм обучения нейронной сети. В таком случае элементы градиента могут переполнить тип данных, в котором они хранятся. Такое явление называется взрывающимся градиентом (англ. exploding gradient).
Существует аналогичная обратная проблема, когда в процессе обучения при обратном распространении ошибки через слои нейронной сети градиент становится все меньше. Это приводит к тому, что веса при обновлении изменяются на слишком малые значения, и обучение проходит неэффективно или останавливается, то есть алгоритм обучения не сходится. Это явление называется затухающим градиентом (англ. vanishing gradient).
Таким образом, увеличение числа слоев нейронной сети с одной стороны увеличивает ее способности к обучению и расширяет ее возможности, но с другой стороны может порождать данную проблему. Поэтому для решения сложных задач с помощью нейронных сетей необходимо уметь определять и устранять ее.
Причины
Рисунок 1. График сигмоиды и ее производной[1]
Такая проблема может возникнуть при использовании нейронных сетях классической функцией активации (англ. activation function) сигмоиды (англ. sigmoid):
$sigma(x) = frac{1}{1 + e^{-x}}.$
Эта функция часто используется, поскольку множество ее возможных значений — отрезок $[0, 1]$ — совпадает с возможными значениями вероятностной меры, что делает более удобным ее предсказание. Также график сигмоиды соответствует многим естественным процессам, показывающим рост с малых значений, который ускоряется с течением времени, и достигающим своего предела[2] (например, рост популяции).
Пусть сеть состоит из подряд идущих нейронов с функцией активации $sigma(x)$; функция потерть (англ. loss function) $L(y) = MSE(y, hat{y}) = (y — hat{y})^2$ (англ. MSE — Mean Square Error); $u_d$ — значение, поступающее на вход нейрону на слое $d$; $w_d$ — вес нейрона на слое $d$; $y$ — выход из последнего слоя. Оценим частные производные по весам такой нейронной сети на каждом слое. Оценка для производной сигмоиды видна из рисунка 1.
$frac{partial(L(y))}{partial(w_d)} = frac{partial(L(y))}{partial(y)} cdot frac{partial(y)}{partial(w_d)} = 2 (y — hat{y}) cdot sigma'(w_d u_d) u_d leq 2 (y — hat{y}) cdot frac{1}{4} u_d$
$frac{partial(L(y))}{partial(w_{d — 1})} = frac{partial(L(y))}{partial(w_d)} cdot frac{partial(w_d)}{partial(w_{d — 1})} leq 2 (y — hat{y}) cdot (frac{1}{4})^2 u_d u_{d-1}$
$ldots$
Откуда видно, что оценка элементов градиента растет экспоненциально при рассмотрении частных производных по весам слоев в направлении входа в нейронную сеть (уменьшения номера слоя). Это в свою очередь может приводить либо к экспоненциальному росту градиента от слоя к слою, когда входные значения нейронов — числа, по модулю большие $1$, либо к затуханию, когда эти значения — числа, по модулю меньшие $1$.
Однако, входные значения скрытых слоев есть выходные значения функций активаций предшествующих им слоев. В частности, сигмоида насыщается (англ. saturates) при стремлении аргумента к $+infty$ или $-infty$, то есть имеет там конечный предел. Это приводит к тому, что более отдаленные слои обучаются медленнее, так как увеличение или уменьшение аргумента насыщенной функции вносит малые изменения, и градиент становится все меньше. Это и есть проблема затухающего градиента.
Способы определения
Взрывающийся градиент
Возникновение проблемы взрывающегося градиента можно определить по следующим признакам:
- Модель плохо обучается на данных, что отражается в высоком значении функции потерь.
- Модель нестабильна, что отражается в значительных скачках значения функции потерь.
- Значение функции потерь принимает значение
NaN
.
Более непрозрачные признаки, которые могут подтвердить возникновение проблемы:
- Веса модели растут экспоненциально.
- Веса модели принимают значение
NaN
.
Затухающий градиент
Признаки проблемы затухающего градиента:
- Точность модели растет медленно, при этом возможно раннее срабатывание критерия останова, так как алгоритм может решить, что дальнейшее обучение не будет оказывать существенного влияния.
- Градиент ближе к концу показывает более сильные изменения, в то время как градиент ближе к началу почти не показывает никакие изменения.
- Веса модели уменьшаются экспоненциально во время обучения.
- Веса модели стремятся к $0$ во время обучения.
Способы устранения
Использование другой функции активации
Рисунок 2. Графики функций активации: sigmoid, tanh, ReLU, softplus
Как уже упоминалось выше, подверженность нейронной сети проблемам взрывающегося или затухающего градиента во многом зависит от свойств используемых функций активации. Поэтому правильный их подбор важен для предотвращения описываемых проблем.
Tanh
$tanh(x) = frac{e^x — e^{-x}}{e^x + e^{-x}}$
Функция аналогична сигмоиде, но множество возможных значений: $[-1, 1]$. Градиенты при этом сосредоточены около $0$,. Однако, эта функция также насыщается в обоих направлениях, поэтому также может приводить к проблеме затухающего градиента.
ReLU
$h(x) = max(0, x)$
Функция проста для вычисления и имеет производную, равную либо $1$, либо $0$. Также есть мнение, что именно эта функция используется в биологических нейронных сетях. При этом функция не насыщается на любых положительных значениях, что делает градиент более чувствительным к отдаленным слоям.
Недостатком функции является отсутствие производной в нуле, что можно устранить доопределением производной в нуле слева или справа. Также эту проблему устраняет использование гладкой аппроксимации, Softplus.
Существуют модификации ReLU:
- Noisy ReLU: $h(x) = max(0, x + varepsilon), varepsilon sim N(0, sigma(x))$.
- Parametric ReLU: $h(x) = begin{cases} x & x > 0 \ beta x & text{otherwise} end{cases}$.
- Leaky ReLU: Paramtetric ReLU со значением $beta = 0.01$.
Softplus
$h(x) = ln(1 + e^x)$
Гладкий, везде дифференцируемый аналог функции ReLU, следовательно, наследует все ее преимущества. Однако, эта функция более сложна для вычисления. Эмпирически было выявлено, что по качеству не превосходит ReLU.
Графики всех функций активации приведены на рисунок 2.
Изменение модели
Для решения проблемы может оказаться достаточным сокращение числа слоев. Это связано с тем, что частные производные по весам растут экспоненциально в зависимости от глубины слоя.
В рекуррентных нейронных сетях можно воспользоваться техникой обрезания обратного распространения ошибки по времени, которая заключается в обновлении весов с определенной периодичностью.
Использование Residual blocks
Рисунок 3. Устройство residual block[3]
В данной конструкции вывод нейрона подается как следующему нейрону, так и нейрону на расстоянии 2-3 слоев впереди, который суммирует его с выходом предшествующего нейрона, а функция активации в нем — ReLU (см. рисунок 3). Такая связка называется shortcut. Это позволяет при обратном распространении ошибки значениям градиента в слоях быть более чувствительным к градиенту в слоях, с которыми связаны с помощью shortcut, то есть расположенными несколько дальше следующего слоя.
Регуляризация весов
Регуляризация заключается в том, что слишком большие значения весов будут увеличивать функцию потерь. Таким образом, в процессе обучения нейронная сеть помимо оптимизации ответа будет также минимизировать веса, не позволяя им становиться слишком большими.
Обрезание градиента
Образание заключается в ограничении нормы градиента. То есть если норма градиента превышает заранее выбранную величину $T$, то следует масштабировать его так, чтобы его норма равнялась этой величине:
$nabla_{clipped} = begin{cases} nabla & || nabla || leq T \ frac{T}{|| nabla ||} cdot nabla & text{otherwise} end{cases}.$
См. также
- Нейронные сети, перцептрон
- Обратное распространение ошибки
- Регуляризация
- Глубокое обучение
- Сверточные нейронные сети
Примечания
- ↑ towardsdatascience.com — Derivative of the sigmoid function
- ↑ wikipedia.org — Sigmoid function, Applications
- ↑ wikipedia.org — Residual neural network
Источники
- Курс Machine Learning, ИТМО, 2020;
- towardsdatascience.com — The vanishing exploding gradient problem in deep neural networks;
- machinelearningmastery.com — Exploding gradients in neural networks.
Анализ ошибок в нейронных сетях
Перевод
Ссылка на автора
Анализ ошибок — это анализ ошибок. Хе хе! Ты не должен говорить мне это. На самом деле весь анализ ошибок столь же интуитивен. Но люди склонны упускать некоторые моменты в реальных проектах. Мы можем рассматривать это как своего рода переподготовку, которую можно проверить — когда разочарование заставляет нас забыть основы.
С такими богатыми библиотеками, как Pytorch и Tensorflow, большинство алгоритмов машинного обучения теперь доступны прямо из коробки — просто создайте экземпляр объекта и обучите его имеющимся данным. Вы готовы к работе!
Это может работать для тривиальных задач учебника, таких как Чтение цифр MNIST, Мы можем просто поиграть с несколькими конфигурациями и вскоре получить почти 100% точность. Но жизнь не так проста. Все становится все сложнее, когда мы пытаемся работать над «реальными» проблемами.
Разработка модели нейронной сети — это гораздо больше, чем просто создание экземпляра объекта Python. Что мне делать, если я понимаю, что моя модель не так точна, как хотелось бы? Должен ли я добавить слои? Должен ли я обрезать модель? Должен ли я изменить некоторые гиперпараметры? Это где анализ ошибок приходит.
Что такое анализ ошибок
Формально, анализ ошибок относится к процессу изучения примеров наборов разработчика, которые ваш алгоритм неверно классифицировал, чтобы мы могли понять основные причины ошибок. Это может помочь нам определить, какая проблема заслуживает внимания и насколько. Это дает нам направление для обработки ошибок.
Анализ ошибок — это не просто окончательная операция по спасению. Это должно быть частью основного развития. Как правило, мы начинаем с небольшой модели, которая должна иметь низкую точность (высокую погрешность). Затем мы можем приступить к оценке этой модели и проанализировать ошибки. Анализируя и исправляя такие ошибки, мы можем расти вместе с моделью.
Распространенные источники ошибок
Мы можем столкнуться с несколькими источниками ошибок. У каждой модели будут свои уникальные ошибки. И нам нужно смотреть на них индивидуально. Но типичные причины:
Неправильно маркированные данные
Большая часть маркировки данных восходит к людям. Мы можем извлекать данные из сети или опросов или из других источников. Основные материалы поступили от людей. И люди подвержены ошибкам. Таким образом, мы должны признать тот факт, что все наши данные по train / dev / test имеют ошибочные записи. Если наша модель хорошо построена и обучена должным образом, то она должна быть в состоянии преодолеть такие ошибки.
Размытая линия разграничения
Алгоритмы классификации работают хорошо, когда положительное и отрицательное четко разделены. Например, если мы пытаемся классифицировать изображения муравья и человека; демаркация довольно хорошая, и это должно помочь ускорить процесс обучения.
Но если мы хотим провести различие между мужской и женской фотографиями, это не так просто. Мы очень хорошо знаем крайности. Но демаркация не так ясна. Такая классификация естественно подвержена ошибкам. В таком случае мы должны работать над лучшим обучением вблизи этой туманной линии разграничения — возможно, предоставляя больше данных, которые находятся рядом с этой линией.
Переоснащение или занижение размера
Давайте рассмотрим тривиальный пример, чтобы понять концепцию. Предположим, мы работаем над классификатором изображений, чтобы различать ворону и попугая. Помимо размера, клюва, хвоста, крыльев … очевидным отличием является цвет. Но возможно как-то модель не узнает эту разницу. Таким образом, классифицирует маленькую ворону как попугая.
Это означает, что модели не удалось узнать измерение на основе доступных данных. Когда мы замечаем это, мы должны попытаться собрать больше данных, которые могут научить сеть классифицировать по цвету больше, чем другие параметры.
Точно так же возможно, что модель соответствует определенному измерению. Предположим, что в классификаторе Cat / Dog мы отмечаем в записях ошибок, что многие темные собаки были классифицированы как кошки, а светлые кошки были классифицированы как собаки. Это означает, что данные обучения не имели достаточного количества записей, которые могли бы обучить модель против такой неправильной классификации.
Многие другие
Это всего лишь несколько видов источников ошибок. Их может быть гораздо больше, которые можно обнаружить, проанализировав набор ошибок. Давайте не будем «переусердствовать» в нашем понимании, чтобы ограничить наш анализ этими типами ошибок.
Каждый анализ ошибок покажет нам новый набор источников проблем. Но правильный подход состоит в том, чтобы выявить любую склонность к недостаточному или избыточному подгонке — в целом или к определенной функции или набору функций или вокруг определенных значений некоторых входных функций.
Набор для глазных яблок
Теперь мы знаем, что в нашей модели есть ошибки и может быть несколько источников ошибок. Но как определить, какой? У нас есть миллионы записей в обучающем наборе и, по крайней мере, несколько тысяч в наборе разработчиков. Тестового набора пока не видно.
Мы не можем оценить каждую запись в тренировочном наборе. Мы также не можем оценить каждую запись в наборе разработчиков Чтобы определить тип ошибок, которые генерирует наша модель, мы разделили набор dev на две части — набор eyeball и blackbox set.
Набор глазного яблока — это набор образцов, который мы на самом деле оцениваем. Мы можем проверить эти записи вручную, чтобы угадать источник ошибок. Поэтому набор глазных яблок должен быть достаточно маленьким, чтобы мы могли работать вручную, и достаточно большим, чтобы получить статистическое представление всего набора разработчиков.
Анализируя ошибки в наборе глазного яблока, мы можем определить различные источники ошибок и вклад каждого из них. Получив эту информацию, мы можем начать работать с основными источниками ошибок. Как только мы сделаем соответствующие исправления, мы сможем продолжить поиск источников ошибок.
Обратите внимание, что анализ должен быть основан только на наборе глазного яблока. Если мы используем весь набор dev для этого анализа, мы в конечном итоге перегоним набор dev. Но если набор разработчиков недостаточно велик, мы должны использовать его целиком. В таком случае, мы просто должны отметить, что у нас есть высокий риск переоснащения набора разработчиков — и планировать остальное соответственно. (Возможно, мы можем использовать вращающийся набор разработчиков — где мы выбираем новый набор разработчиков из тренировочного набора при каждой попытке.)
Предвзятость и дисперсия
Работая над анализом ошибок, мы определяем определенный параметр или область проблем; или мы замечаем, что ошибка довольно равномерная. Как мы пойдем отсюда? Я получу больше данных? Это может звучать логично. Но не всегда так. Дополнительные данные не всегда могут помочь — после определенного момента любые другие данные могут быть просто избыточными. Нужна ли мне более богатая модель? Простое обогащение модели может значительно улучшить цифры — путем переоснащения. Это тоже не правильно! Итак, как мы решаем направление?
Предвзятость и дисперсия дают нам хорошее представление об этом. Проще говоря, если ошибка высока в обучающем наборе, а также в наборе разработчиков, то мы имеем высокий уклон. Хотя, если тренировочный набор хороший, а набор плохой, у нас высокая дисперсия. Смещение по существу подразумевает, что вывод плох для всех данных. Дисперсия подразумевает, что вывод хорош для некоторых данных и плох для остальных.
Если у нас есть модель с точностью 60% на тренировочном наборе. Естественно, мы называем это большим уклоном. С такой точностью мы можем даже не захотеть проверять набор разработчиков. Но, если ошибка обучающего набора намного лучше, чем наша цель, оставляя разработчик позади, мы можем назвать это высокой дисперсией. Это связано с тем, что поведение модели сильно зависит от доступных данных.
Можно интуитивно сказать, что если у нас высокий уклон, это означает, что мы недостаточно приспособлены. Это может быть связано с тем, что конкретная функция не обрабатывается должным образом или сама модель недостаточно богата. Исходя из этого, мы можем обновить решение для повышения производительности — путем улучшения конкретной функции или самой модели.
С другой стороны, высокая дисперсия означает, что мы недостаточно тренируемся. Нам нужно больше данных или нам нужно намного лучше обрабатывать имеющиеся данные. С этим мы могли бы тренировать лучшую модель.
Уменьшение смещения
Модель машинного обучения может учиться только на основе имеющихся данных. Некоторые ошибки неизбежны во входных данных. Это не человеческие ошибки, а истинные ограничения людей, которые классифицируют или тестируют модель. Например, если я не могу различить пару идентичных близнецов, я никак не могу сгенерировать помеченные данные и научить машину это делать!
Такое ограничение называется неизбежным смещением. Остальное можно избежать, и мы должны сосредоточиться на этом. Таким образом, когда мы выполняем анализ ошибок, когда мы пытаемся определить основную причину ошибки, мы должны учитывать смещение, которого можно избежать, а не смещение в целом.
Если наш анализ ошибок говорит нам, что смещение, которое можно избежать, является основным источником ошибок, мы можем попробовать некоторые из следующих шагов
Увеличить размер модели
Высокий уклон означает, что модель не может выучить все, что она может извлечь из доступных ей данных. Это происходит, когда модель недостаточно способна к обучению. Если модель имеет только два параметра, она не может узнать больше, чем могут содержать эти два параметра. Кроме того, любые новые данные обучения будут перезаписывать то, что они узнали из предыдущих записей. Модель должна иметь достаточно параметров для изучения — только тогда она может содержать информацию, необходимую для выполнения требуемой работы.
Следовательно, первичное решение высокого уклона состоит в создании более богатой модели.
Разрешить больше возможностей
Одним из основных шагов в нашей очистке данных является сокращение всех избыточных функций. На самом деле, ни одна функция не является избыточной. Но некоторые менее значимы, чем другие. А сокращение возможностей по существу отбрасывает такие функции с меньшей ценностью — таким образом, отбрасывая некоторую информацию с низким значением.
Это хорошо для начала. Но когда мы замечаем, что функции, которыми мы располагаем, не способны передавать требуемую информацию, мы должны переделать этап сокращения функций и позволить пройти еще некоторым функциям. Это может сделать модель богаче и дать ей больше информации для изучения
Уменьшить регуляризацию модели
Все методы регуляризации по существу держат параметры модели ближе к нулю. То есть он не позволяет каждому параметру «учиться слишком много». Это хорошая техника для обеспечения сбалансированности модели. Но когда мы понимаем, что модель не в состоянии учиться достаточно, мы должны уменьшить уровни регуляризации, чтобы каждый узел в сети мог учиться на основе данных, доступных для обучения.
Избегайте локального минимума
Локальный минимум является еще одним распространенным источником высокого уклона. У нас может быть богатая модель и хороший объем данных. Но если градиентный спуск застрянет на локальном минимуме, смещение не уменьшится. Существуют различные способы избежать локального минимума — случайные запуски (обучайте его снова и снова с разными начальными значениями. Поскольку каждый выбирает разностный путь, локальный минимум избегается). Или мы можем добавить импульс к градиентному спуску — это может снова предотвратить неглубокий минимум вдоль спуска.
Лучшая сетевая архитектура
Простое увеличение нейронов и слоев не обязательно улучшает модель. Использование соответствующей сетевой архитектуры может гарантировать, что новые слои действительно добавят ценность.
Исследователи сталкивались и работали над этими проблемами в прошлом и предоставили нам хорошие модели архитектуры, которые могут быть использованы для лучшего компромисса между смещением и дисперсией — например, AlexNet, RESNET, GoogleNet а также многое другое, Приспособление к такой архитектуре может помочь нам избежать многих наших проблем.
Уменьшение дисперсии
Если анализ ошибок указывает на то, что основной причиной ошибки является высокая дисперсия, мы можем использовать один из этих методов, чтобы уменьшить это.
Добавить больше данных обучения
Это основное решение. Дисперсия возникает, когда у нас недостаточно данных, чтобы обучить сеть наилучшей производительности. Таким образом, основной целью действий должно быть поиск дополнительных данных. Но это имеет свои пределы, так как данные не всегда доступны.
Добавить регуляризацию
Регуляризация L1 или L2 — это проверенные методы, позволяющие уменьшить проблему переоснащения и, таким образом, избежать высокой дисперсии По сути, они держат каждый параметр ближе к 0. Это означает, что ни один параметр не может учиться слишком много. Если один параметр содержит много информации, модель становится несбалансированной и приводит к переобучению и высокой дисперсии.
Методы регуляризации L1 и L2 помогают предотвратить такие проблемы. Регуляризация L1 быстрее и вычислительно проще. Он генерирует разреженные модели. Естественно, L2 намного точнее, поскольку имеет дело с более мелкими деталями.
Ранняя остановка
По мере того, как мы обучаем модель с использованием доступных данных обучения, каждая итерация делает модель немного лучше для доступных данных. Но чрезмерное количество итераций этого может привести к переобучению. Для этого нужно найти золотую середину. Лучший способ — это остановиться рано, а не осознавать, что мы уже перешли границы.
Уменьшить Особенности
Чем меньше функций, тем легче модель и, следовательно, меньше возможностей для переоснащения. У нас есть несколько алгоритмов выбора функций, таких как PCA, которые могут помочь нам определить минимальный и ортогональный набор функций, который может обеспечить более простой способ обучения моделей.
Знание предметной области также может помочь нам сократить количество функций. Мы также можем использовать результаты анализа ошибок, чтобы определить, как следует изменить набор функций, чтобы повысить производительность.
Уменьшить размер модели
Высокая дисперсия или переоснащение обычно означает, что у нас слишком много параметров для обучения. Если у нас недостаточно данных для обучения каждого из этих параметров, случайность значений инициализации остается в параметрах, что приводит к неверным результатам.
Уменьшение размера модели напрямую влияет на это.
Используйте разреженную модель
Иногда мы знаем, что размер модели является обязательным, и уменьшение размера приведет только к снижению функциональности. В таком случае мы можем рассмотреть возможность обучения разреженной модели. Это дает хорошее сочетание лучшей модели с меньшей дисперсией.
Модельная архитектура
Подобно уменьшению смещения, дисперсия также определяется архитектурой модели. Исследователи предоставили нам хорошие модели архитектуры, которые могут быть использованы для лучшего компромисса между смещением и дисперсией. Приспособление к такой архитектуре может помочь нам избежать многих наших проблем.
Резюме
Мы видели, что может быть много причин для ошибки в модели, которую мы обучаем. Каждая модель будет иметь уникальный набор ошибок и источников ошибок. Но, если мы будем придерживаться формального подхода к этому анализу, мы сможем не изобретать велосипед каждый раз.
В статье рассматривается способ применения интеллектуальных нейросетевых технологий для анализа многомерных данных в пакете Matlab. Построена нейросетевая модель, адекватно воспроизводящая статистические данные.
Ключевые слова: нейронная сеть, интеллектуальные технологии, анализ многомерных данных.
Одной из важнейших задач математического моделирования деятельности любого предприятия является оценка его финансового состояния на основе статистических данных за отчетный период. Для составления описания деятельности предприятия применяют экономико-математические и статистические методы анализа, позволяющие получать математические модели, наиболее приближенные к эмпирическим данным.
В настоящее время одним из перспективных направлений моделирования экономических процессов является использование искусственных нейронных сетей, которые позволяют найти решение быстрее и эффективнее по сравнению с известными алгоритмами моделирования. Одним из преимуществ применения нейросетей является их способность работать с неполной информацией [1, с. 170].
Нейронная сеть — это система, состоящая из многих простых вычислительных элементов, или нейронов, определенным образом связанных между собой. Наиболее распространенными являются многослойные сети, в которых нейроны объединены в слои. Слой, в свою очередь, представляет собой совокупность нейронов, на которые в каждый момент времени параллельно поступает информация от других нейронов сети, т. е. выходы нейронов соединяются с входами других нейронов. После того как определено количество слоев и число элементов в каждом из них, нужно обучить сеть, т. е. найти значения для весов и порогов сети, которые минимизировали бы ошибку прогноза, выдаваемого сетью. Для этого существуют так называемые алгоритмы обучения. Ошибка для конкретной конфигурации сети определяется путем прогона через сеть всех имеющихся наблюдений и сравнения реально выдаваемых выходных значений с желаемыми (целевыми) значениями. По сути, процесс обучения представляет собой подгонку модели, которая реализуется сетью, к имеющимся обучающим данным [2, с. 34].
Построим нейросетевую модель финансовых показателей для предприятия ОАО «Башинформсвязь», которое является одним из крупнейших операторов связи в уральском регионе и в стране. Статистические данные для построения модели взяты поквартально за период с 2006 года по 2013 год [3].
Значение чистой прибыли, в руб., от влияющих на нее факторов обозначим за — это зависимая переменная. В качестве объясняющих переменных возьмем следующие факторы, в рублях: — выручка; — себестоимость реализованных товаров и услуг; – коммерческие расходы; – прочие операционные доходы; — прочие операционные расходы; — дебиторская задолженность; – отложенные налоги; — нераспределенная прибыль.
Для выявления взаимосвязи между всеми переменными проведен корреляционный анализ. На основе анализа матрицы коэффициентов парной корреляции из модели исключаются такие факторы, как и .
Для построения нейросетевой модели использовано 6 входных факторов (), 1 выходное значение (), 31 наблюдение. Для получения достоверных результатов необходимо использовать нейросеть, аппроксимирующую исходные данные с максимальной степенью точности. Выбор архитектуры сети для решения конкретной задачи основывается на опыте разработчика. Для получения наилучшей сети проведем ряд экспериментов. Построим в Matlab нейросети с обратным распространением ошибки, т. к. они обладают хорошими обобщающими свойствами. Изменяя число скрытых слоев, число нейронов в слоях, функции активации нейронов выберем сеть с наилучшим значением общей среднеквадратической ошибки.
Создадим двухслойную однонаправленную сеть, предварительно нормализуя исходные значения финансовых показателей. Первый слой состоит из 20 нейронов с функциями активации ‘tansig‘, второй слой содержит 1 нейрон с функцией активации ‘purelin’. Для обучения воспользуемся алгоритмом Левенберга-Маркара (‘trainlm’):
net=newff([-2.146 1.526; -1.140 2.498; -1.498 2.264; -2.591 2.130; -2.177 2.698],
[20 1],{‘tansig’ ‘purelin’});
Обучим созданную сеть, используя функцию train:
net=train(net,INP,OUTP),
где INP — сформированный входной вектор из обучающей выборки, а OUTP — сформированный выходной вектор из обучающей выборки.
Для моделирования нейронной сети воспользуемся функцией sim:
Y = sim(net,X),
где net — сеть, X — вектор входных сигналов, Y — вектор выходных значений сети.
Для оценки качества сети рассчитана общая среднеквадратическая ошибка, значение которой менее 0,05 считается удовлетворительным [4, с. 1575].
Построим 9 нейросетей с одним скрытым слоем, изменяя типы функции активации и число нейронов от 7 до 20. Значения среднеквадратической ошибки этих сетей приведены в табл. 1.
Таблица 1
Значение среднеквадратической ошибки для нейросетей с одним скрытым слоем
Номер нейросети |
Функция активации нейронов скрытого слоя/ выходного слоя |
Количество нейронов в скрытом слое |
Значение среднеквадратической ошибки |
1 |
Tansig/ Purelin |
7 |
0,052 |
2 |
17 |
0,013 |
|
3 |
20 |
0,009 |
|
4 |
Logsig/ Purelin |
7 |
0,083 |
5 |
17 |
0,046 |
|
6 |
20 |
0,031 |
|
7 |
Purelin/ Purelin |
7 |
0,085 |
8 |
17 |
0,091 |
|
9 |
20 |
0,097 |
На рис. 1 приведен график зависимости среднеквадратической ошибки от количества нейронов в скрытом слое. Отсюда видно, что для нейросетей № 1–6 с увеличением числа нейронов скрытого слоя ошибка уменьшается, а для нейросетей № 7–9, наоборот, увеличивается.
Рис. 1. График зависимости среднеквадратической ошибки от количества нейронов
Построим нейронные сети с двумя скрытыми слоями. В табл. 2 приведены значения среднеквадратических ошибок для нейросетей с двумя скрытыми слоями, количество нейронов на слое изменяется от 2 до 6, используются функции активации Tansig/ Tansig /Purelin и Logsig/ Tansig /Purelin.
Таблица 2
Значение среднеквадратической ошибки для нейросетей с двумя скрытыми слоями
Номер нейросети |
Функция активации нейронов 1 скрытого слоя/2 скрытого слоя/ выходного слоя |
Количество нейронов в 1 скрытом слое |
Количество нейронов во 2 скрытом слое |
Значение среднеквадратической ошибки |
1 |
Tansig/ Tansig /Purelin |
2 |
2 |
0,085 |
2 |
4 |
4 |
0,028 |
|
3 |
2 |
6 |
0,043 |
|
4 |
Logsig/ Tansig /Purelin |
2 |
2 |
0,084 |
5 |
4 |
4 |
0,025 |
|
6 |
2 |
6 |
0,039 |
Из рисунка 2 видно, что размер ошибки для сетей с функциями активации Logsig/ Tansig /Purelin ниже, чем для аналогичных сетей с функциями Tansig/ Tansig /Purelin.
Рис. 2. График зависимости размера среднеквадратической ошибки от количества нейронов в скрытых слоях
Анализ полученных данных показал, что наилучшей сетью является сеть с архитектурой 6:20:1 (6 входных нейронов, 20 нейронов на 1 скрытом слое и 1 выходное значение), функциями активации Tansig/Purelin (среднеквадратическая ошибка равна 0,009). На рис. 3 представлены фактические значения финансовых показателей и значения, предоставляемые нейросетевой моделью.
Рис. 3. Динамика чистой прибыли ОАО «Башинформсвязь»
Коэффициент детерминации R2, рассчитанный для нейросетевой модели 6:20:1, равен 0,971, что свидетельствует о том, что нейронная сеть достаточно хорошо описывает связь между входными и выходными значениями модели.
Таким образом, построенную нейросетевую модель финансовых показателей можно использовать для решения задач прогнозирования величины чистой прибыли и оптимизации финансовых показателей предприятия.
Литература:
1. Кравченко М. Л., Грекова Т. И. Моделирование экономических систем с применением нейронных сетей // Вестник Томского государственного университета, 2006. — № 290. — С. 169–172.
2. Степашина Е. В. Оптимизация финансовых показателей предприятия на основе нейросетевой модели // Информационные системы и технологии, 2014. — № 5. — С. 34–42.
3. Бухгалтерский баланс и приложения к нему ОАО «Башинформсвязь» [Электронный ресурс]. — URL: http://www.bashtel.ru/buh_ballance.php.
4. Antipin A. F. A Computer-aided System for Designing Multidimensional Logic Controllers with Variables Representing a Set of Binary Logic Arguments // Automation and Remote Control, 2013. — No 9. — Vol. 74. — P. 1573–1581.