Абсолютная и относительная погрешность
4.2
Средняя оценка: 4.2
Всего получено оценок: 2201.
4.2
Средняя оценка: 4.2
Всего получено оценок: 2201.
Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.
Опыт работы учителем математики — более 33 лет.
Абсолютная погрешность
Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример: в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.
Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.
Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:
Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.
На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.
Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.
Относительная погрешность
Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374.
Получим число 0,0695, переведем в проценты и получим 7 %. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10 % и 0,1 %. Для отрезка длиной в 10 см погрешность в 1 см очень велика, это ошибка в 10 %. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1 %.
Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.
Правила подсчета погрешностей
Для номинальной оценки погрешностей существует несколько правил:
- при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
- при делении и умножении чисел требуется сложить относительные погрешности;
- при возведении в степень относительную погрешность умножают на показатель степени.
Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.
Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например, для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.
Что мы узнали?
Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
-
Светлана Лобанова-Асямолова
10/10
-
Валерий Соломин
10/10
-
Анастасия Юшкова
10/10
-
Ксюша Пономарева
7/10
-
Паша Кривов
10/10
-
Евгений Холопик
9/10
-
Guzel Murtazina
10/10
-
Максим Аполонов
10/10
-
Olga Bimbirene
9/10
-
Света Колодий
10/10
Оценка статьи
4.2
Средняя оценка: 4.2
Всего получено оценок: 2201.
А какая ваша оценка?
Источники
погрешностей (инструментальные и
методические погрешности, влияние
помех, субъективные ошибки). Номинальная
и реальная функция преобразования,
абсолютная и относительная погрешность
средства измерений, основная и
дополнительная погрешности. Пределы
допускаемых погрешностей, классы
точности средств измерений. Выявление
и уменьшение систематических погрешностей.
Оценка случайных погрешностей.
Доверительный интервал и доверительная
вероятность. Оценка погрешностей
косвенных измерений. Обработка результатов
измерений. [1:
с.23…35,40,41,53,54,56…61; 2:
с.22…53; 3:
с.48…91; 4:
с.21,22,35…52,63…71, 72…77,85…93].
II.1. Основные сведения и методические указания.
Одним из
основополагающих понятий Метрологии
является понятие погрешности измерений.
Погрешностью
измерения
называют отклонение измеренного
значения физической
величины от её истинного значения.
Погрешность
измерений, в общем случае, может быть
вызвана следующими причинами:
-
Несовершенством
принципа действия и недостаточным
качеством элементов используемого
средства измерения. -
Несовершенством
метода измерений и влиянием используемого
средства измерения на саму измеряемую
величину, зависящим от способа
использования данного средства
измерения. -
Субъективными
ошибками экспериментатора.
Так как истинное
значение измеряемой величины никогда
неизвестно (в противном случае отпадает
необходимость в проведении измерений),
то численное значение погрешности
измерений может быть найдено только
приближенно. Наиболее близким к истинному
значению измеряемой величины является
значение, которое может быть получено
при использовании эталонных средств
измерений (средств измерений наивысшей
точности). Это значение условились
называть действительным
значением измеряемой величины.
Действительное значение также является
неточным, однако, из-за малой погрешности
эталонных средств измерений, погрешностью
определения действительного значения
пренебрегают.
Классификация
погрешностей
-
По форме представления
различают понятия абсолютной погрешности
измерений и относительной погрешности
измерений.
Абсолютной
погрешностью
измерений называют разность между
измеренным и
действительным значениями измеряемой
величины:
,
где ∆ — абсолютная
погрешность,
–измеренное
значение,
–действительное
значение измеряемой величины.
Абсолютная
погрешность имеет размерность измеряемой
величины. Знак абсолютной погрешности
будет положительным, если измеренное
значение больше действительного, и
отрицательным в противном случае.
Относительной
погрешностью
называют отношение абсолютной
погрешности к
действительному значению измеряемой
величины:
где δ – относительная
погрешность.
Чаще всего
относительную погрешность определяют
приближенно в процентах от измеренного
значения:
Относительная
погрешность показывает, какую часть (в
%) от измеренного значения составляет
абсолютная погрешность. Относительная
погрешность позволяет нагляднее, чем
абсолютная погрешность, судить о точности
измеренного значения.
-
По источникам
происхождения погрешности подразделяют
на следующие виды:
— инструментальные
погрешности;
— методические
погрешности;
— субъективные
погрешности, допущенные экспериментатором
.
Инструментальными
называются погрешности, которые
принадлежат данному типу средств
измерения, могут быть определены при
их испытаниях и занесены в паспорт
средства измерения в виде пределов
допускаемых погрешностей.
Инструментальная
погрешность возникает из-за несовершенства
принципа действия и недостаточно
высокого качества элементов, применяемых
в конструкции средства измерений. По
этой причине реальная передаточная
характеристика каждого экземпляра
средства измерений в большей или меньшей
степени отличается от номинальной
(расчетной) передаточной характеристики.
Отличие реальной характеристики средства
измерений от номинальной (рис.1) определяет
величину инструментальной погрешности
средства измерений.
Рис.1. Иллюстрация
к определению понятия инструментальной
погрешности.
Здесь: 1 – номинальная
характеристика средства измерений;
2 – реальная
характеристика средства измерений.
Как видно из рис.1,
при изменении измеряемой величины,
инструментальная погрешность может
иметь различные значения (как положительные,
так и отрицательные).
При создании
средств измерений какой-либо физической
величины, к сожалению, не удается
полностью избавиться от реакции этого
средства измерений на изменение других
(не измеряемых) величин. Наряду с
чувствительностью средства измерения
к измеряемой величине, оно всегда
реагирует (хотя и существенно в меньшей
степени) на изменение условий эксплуатации.
По этой причине инструментальную
погрешность подразделяют на основную
погрешность и дополнительную
погрешности.
Основной
погрешностью
называют погрешность, имеющую место
в случае применения
средства измерений в нормальных условиях
эксплуатации.
Номенклатура
влияющих на средство измерений величин
и диапазоны их изменений определяются
разработчиками в качестве нормальных
условий для каждого типа средств
измерений. Нормальные условия эксплуатации
всегда указываются в техническом
паспорте средства измерений. Если
эксперимент выполняется в условиях,
отличных от нормальных для данного
средства измерений, его реальная
характеристика искажается сильнее, чем
в нормальных условиях. Погрешности,
которые при этом возникают, называют
дополнительными.
Дополнительной
погрешностью
называют погрешность средств
измерений, которая
возникает в условиях, отличающихся от
нормальных, но
входящих в допустимую рабочую область
условий
эксплуатации.
Рабочие условия
эксплуатации, так же как и нормальные,
в обязательном порядке приводятся в
техническом паспорте средств измерений.
Инструментальная
погрешность средств измерений
определенного типа не должна превышать
некоторого заданного значения – так
называемой предельно допустимой основной
погрешности средств измерений данного
типа. Фактическая основная погрешность
каждого конкретного экземпляра этого
типа является при этом случайной
величиной и может принимать различные
значения, иногда даже равные нулю, но в
любом случае инструментальная погрешность
не должна превышать заданного предельного
значения. Если это условие не выполняется,
средство измерений должно быть изъято
из обращения.
Методическими
называются погрешности, которые возникают
из-за неудачного выбора экспериментатором
средства измерения для решения
поставленной задачи. Они не могут быть
приписаны средству измерения и приведены
в его паспорте.
Методические
погрешности измерения зависят как от
характеристик применяемого средства
измерений, так и во многом от параметров
самого объекта измерения. Неудачно
выбранные средства измерений могут
исказить состояние объекта измерений.
При этом методическая составляющая
погрешности может оказаться существенно
больше инструментальной.
Субъективными
погрешностями
называют погрешности,
допускаемые
самим экспериментатором при проведении
измерений.
Этот тип погрешностей
связан обычно с невнимательностью
экспериментатора: применение прибора
без устранения смещения нуля, неправильное
определение цены деления шкалы, неточный
отсчет доли деления, ошибки в подключении
и т.п.
-
По характеру
проявления погрешности измерений
подразделяют на:
— систематические
погрешности;
— случайные
погрешности;
— промахи (грубые
ошибки).
Систематической
называют погрешность, которая при
повторных измерениях одной и той же
величины остается постоянной, или
изменяется закономерно.
Систематические
погрешности обусловлены как несовершенством
метода измерений и влиянием средства
измерений на измеряемый объект, так и
отклонением реальной передаточной
характеристики применяемого средства
измерений от номинальной характеристики.
Постоянные
систематические погрешности средств
измерений могут быть выявлены и численно
определены в результате сличения их
показаний с показаниями эталонных
средств измерений. Такие систематические
погрешности могут быть уменьшены
регулировкой приборов или введением
соответствующих поправок. Следует
заметить, что полностью исключить
систематические погрешности средств
измерений не удается, так как их реальные
передаточные характеристики изменяются
при изменении условий эксплуатации.
Кроме этого всегда имеют место так
называемые прогрессирующие погрешности
(возрастающие или убывающие), вызванные
старением элементов входящих в состав
средств измерений. Прогрессирующие
погрешности могут быть скорректированы
регулировкой или введением поправок
лишь на некоторое время.
Таким образом,
даже после регулировки или введения
поправок, всегда имеет место так
называемая неисключенная систематическая
погрешность результата измерений.
Случайной
называют погрешность, которая при
повторных измерениях одной и той же
величины принимает различные значения.
Случайные погрешности
обусловлены хаотичным характером
изменений физических величин (помех),
влияющих на передаточную характеристику
средства измерений, суммированием помех
с измеряемой величиной, а также наличием
собственных шумов средства измерений.
При создании средств измерений
предусматриваются специальные меры
защиты от помех: экранирование входных
цепей, использование фильтров, применение
стабилизированных источников питающего
напряжения и т.д. Это позволяет уменьшить
величину случайных погрешностей при
проведении измерений. Как правило, при
повторных измерениях одной и той же
величины результаты измерений либо
совпадают, либо отличаются на одну, две
единицы младшего разряда. В такой
ситуации случайной погрешностью
пренебрегают и оценивают только величину
неисключенной систематической
погрешности.
Наиболее сильно
случайные погрешности проявляются при
измерении малых значений физических
величин. Для повышения точности в таких
случаях производятся многократные
измерения с последующей статистической
обработкой результатов методами теории
вероятности и математической статистики.
Промахами
называют грубые погрешности, существенно
превышающие ожидаемые погрешности при
данных условиях проведения измерений.
Промахи большей
частью возникают из-за субъективных
ошибок экспериментатора или из-за сбоев
в работе средства измерений при резких
изменениях условий эксплуатации (броски
или провалы сетевого напряжения, грозовые
разряды и т.п.) Обычно промахи легко
выявляются при повторных измерениях и
исключаются из рассмотрения.
Оценка погрешностей
косвенных измерений.
При косвенных
измерениях результат измерений
определяется по функциоральной
зависимости от результатов прямых
измерений. Поэтому погрешность косвенных
измерений определяется как полный
дифференциал этой функции от величин,
измеряемых с помощью прямых измерений.
;
Где:
—
предельные абсолютные погрешности
результатов прямых
измерений;
—
предельная абсолютная погрешность
результата косвенного
измерения;
—
соответствующие предельные относительные
погрешности.
—
функциональная связь между искомой
измеряемой величиной и
величинами,
подвергающимися прямым измерениям.
Статистическая
обработка результатов измерений
Из-за влияния на
средство измерений помех различного
происхождения (изменение температуры
окружающей среды, электромагнитных
полей, вибраций, изменения частоты и
амплитуды сетевого напряжения, изменения
атмосферного давления, влажности и
т.д.), а также из-за наличия собственных
шумов элементов, входящих в состав
измерительных приборов, результаты
повторных измерений одной и той же
физической величины (особенно ее малых
значений) будут в большей или меньшей
степени отличаться друг от друга. В этом
случае результат измерений является
случайной величиной, которая характеризуется
наиболее вероятным значением и разбросом
(рассеянием) результатов повторных
измерений вблизи наиболее вероятного
значения. Если при повторных измерениях
одной и той же величины результаты
измерений не отличаются друг от друга,
то это означает, что разрешающая
способность отсчетного устройства не
позволяет обнаружить это явление. В
этом случае случайная составляющая
погрешности измерений является
несущественной и ею можно пренебречь.
При этом неисключенную систематическую
погрешность результата измерений
оценивают по величине пределов допускаемых
погрешностей применяемых средств
измерений. Если же при повторных
измерениях одной и той же величины
наблюдается разброс показаний, то это
означает, что наряду с большей или
меньшей неисключенной систематической
погрешностью, имеет место и случайная
погрешность, принимающая при повторных
измерениях различные значения.
Для определения
наиболее вероятного значения измеряемой
величины при наличии случайных
погрешностей и для оценки погрешности,
с которой определено это наиболее
вероятное значение, применяется
статистическая обработка результатов
измерений. Статистическая обработка
результатов серии измерений при
проведении экспериментов позволяет
решить следующие задачи.
-
Более точно
определить результат измерения путем
усреднения отдельных наблюдений. -
Оценить область
неопределенности уточненного результата
измерений.
Основной смысл
усреднения результатов измерений
заключается в том, что найденная
усредненная оценка имеет меньшую
случайную погрешность, чем отдельные
результаты, по которым эта усредненная
оценка определяется. Следовательно
усреднение не устраняет полностью
случайного характера усредненного
результата, а лишь уменьшает ширину
полосы его неопределенности.
Таким образом, при
статистической обработке, прежде всего,
определяют наиболее вероятное значение
измеряемой величины путем вычисления
среднего арифметического всех отсчетов:
где: xi
– результат i
– го измерения;
n
– число проведенных измерений в данной
серии измерений.
После этого
оценивают отклонение результатов
отдельных измерений xi
от этой оценки среднего значения
;.
Затем находят
оценку среднеквадратического отклонения
наблюдений, характеризующую степень
рассеяния результатов отдельных
наблюдений вблизи,
по формуле:
.
Точность оценки
наиболее вероятного значения измеряемой
величины
зависит от числа наблюдений.
Нетрудно убедиться в том, что результаты
нескольких оценокпо одному и тому же числуотдельных измерений будут отличаться.
Таким образом, сама оценкатакже является случайной величиной. В
связи с этим вычисляется оценка
среднеквадратического отклонения
результата измерения,
которую обозначают.
Эта оценка характеризует степень
разброса значенийпо отношению к истинному значению
результата, т.е. характеризует точность
результата, полученного усреднением
результата многократных измерений.
Следовательно, поможет быть оценена систематическая
составляющая результата серии измерений.
Для различныхона определяется по формуле:
Следовательно,
точность результата многократных
измерений увеличивается с ростом числа
последних.
Однако в большинстве
практических случаев нам важно определить
не просто степень рассеивания значения
погрешности при проведении серии
измерений (т.е. величину
),
а оценить вероятность возникновения
погрешности измерения, не превышающую
допустимую, т.е. не выходящую за пределы
некоторого заданного интервала разброса
получаемых погрешностей.
Доверительным
интервалом
называют
интервал, который с заданной вероятностью,
называемой
доверительной вероятностью
накрывает истинное значение измеряемой
величины.
При определении
доверительных интервалов необходимо,
прежде всего, учитывать, что закон
распределения погрешностей, получаемых
при проведении многократных измерений,
при числе измерений в серии меньше 30,
описывается не нормальным законом
распределения, а так называемым законом
распределения Стьюдента. И, в этих
случаях, величину доверительного
интервала обычно оценивают по формуле:
,
где
— так называемый коэффициент Стьюдента.
В табл.4.1 приведены
значения коэффициентов Стьюдента
в зависимости от заданной доверительной
вероятности и числа проведенных
наблюдений.
При выполнении измерений обычно задаются
доверительной вероятностью 0,95 или 0,99.
Таблица 4.1
Значения
коэффициентов Стьюдента
.
-
n
0,5
0,6
0,7
0,8
0,9
0,95
0,98
0,99
2
1,00
1,38
1,96
3,08
6,31
12,71
31,82
63,66
3
0,82
1,06
1,34
1,89
2,92
4,30
6,97
9,93
4
0,77
0,98
1,25
1,64
2,35
3,18
4,54
5,84
5
0,74
0,94
1,19
1,53
2,13
2,78
3,75
4,60
6
0,73
0,92
1,16
1,48
2,02
2,62
3,37
4,03
7
0,72
0,91
1,13
1,44
1,94
2,45
3,14
3,71
8
0,71
0,90
1,12
1,42
1,90
2,37
3,00
3,50
9
0,71
0,89
1,11
1,40
1,86
2,31
2,90
3,36
10
0,70
0,88
1,10
1,38
1,83
2,26
2,82
3,25
16
0,69
0,87
1,07
1,34
1,75
2,13
2,60
2,95
25
0,69
0,86
1,06
1,32
1,71
2,06
2,49
2,80
При изучении
материалов данного раздела следует
хорошо уяснить, что погрешности
результатов измерений и погрешности
средств измерений – не идентичные
понятия. Погрешность средства измерения
это его свойство, характеристика, для
описания которого используют ряд правил,
закрепленных в стандартах и нормативных
документах. Это та доля погрешности
измерения, которая определяется только
самим средством измерения. Погрешность
же измерений (результата измерений) –
это число, которое характеризует границы
неопределенности значения измеряемой
величины. В нее, кроме погрешности
средства измерений, могут входить
составляющие погрешности, порожденные
применяемым методом измерения
(методические погрешности), действием
влияющих (неизмеряемых) величин,
погрешность отсчета и др.
Нормирование
погрешностей средств измерения.
Точность СИ
определяется предельно-допустимыми
погрешностями, которые могут быть
получены при его использовании.
Нормированием
погрешностей средств измерений называют
процедуру
назначения допустимых границ основной
и
дополнительных
погрешностей, а также выбор формы
указания
этих границ
в нормативно-технической документации.
Пределы допускаемой
основной и дополнительных погрешностей
определяются разработчиками для каждого
типа средств измерений на стадии
подготовки производства. В зависимости
от назначения средства измерений и
характера изменения погрешности в
пределах диапазона измерений нормируется
для средств измерений различного типа
либо предельно-допустимое значение
основной абсолютной погрешности, либо
предельно-допустимое значение основной
приведенной погрешности, либо
предельно-допустимое значение основной
относительной погрешности.
Для каждого типа
средств измерений характер изменения
погрешности в пределах диапазона
измерений зависит от принципа действия
этого средства измерений и может быть
самым разнообразным. Однако, как показала
практика, среди этого многообразия
часто удается выделить три типовых
случая, предопределяющих выбор формы
представления пределов допускаемой
погрешности. Типовые варианты отклонения
реальных передаточных характеристик
средств измерений от номинальной
характеристики и соответствующие им
графики изменения предельных значений
абсолютной и относительной погрешностей
в зависимости от измеряемой величины
приведены на рис 2.
Если реальная
передаточная характеристика средства
измерений смещена по отношению к
номинальной (1-й график на рис.2а),
абсолютная погрешность, возникающая
при этом, (1-й график на рис.2б), не зависит
от измеряемой величины.
Составляющую
погрешности средства измерений, не
зависящую от измеряемой величины,
называют аддитивной
погрешностью.
Если угол наклона
реальной передаточной характеристики
средства измерений отличается от
номинального (2-й график на рис. 2а), то
абсолютная погрешность будет линейно
зависеть от измеряемой величины (2-й
график на рис. 2б).
Составляющую
погрешности средства измерений, линейно
зависящую от измеряемой величины,
называют мультипликативной
погрешностью.
Если реальная
передаточная характеристика средства
измерений смещена по отношению к
номинальной и угол ее наклона отличается
от номинального (3-й график на рис. 2а),
то в этом случае имеет место как
аддитивная, так и мультипликативная
погрешность.
Аддитивная
погрешность возникает из-за неточной
установки нулевого значения перед
началом измерений, ухода нуля в процессе
измерений, из-за наличия трений в опорах
измерительного механизма, из-за наличия
термо-эдс в контактных соединениях и
т.д.
Мультипликативная
погрешность возникает при изменении
коэффициентов усиления или ослабления
входных сигналов (например, при изменении
температуры окружающей среды, или
вследствие старения элементов), из-за
изменения значений, воспроизводимых
мерами, встроенными в измерительные
приборы, из-за изменений жесткости
пружин, создающих противодействующий
момент в электромеханических приборах
и т.д.
Ширина полосы
неопределенности значений абсолютной
(рис.2б) и относительной (рис.2в) погрешностей
характеризует разброс и изменение в
процессе эксплуатации индивидуальных
характеристик множества находящихся
в обращении средств измерений определенного
типа.
А) Нормирование
пределов допускаемой основной погрешности
для
средств
измерений с преобладающей аддитивной
погрешностью.
Для средств
измерений с преобладающей аддитивной
погрешностью (1-й график на рис.2) удобно
нормировать одним числом предельно-допустимое
значение абсолютной погрешности (∆max=
±а). В этом случае фактическая абсолютная
погрешность ∆ каждого экземпляра
средства измерений данного типа на
различных участках шкалы может иметь
различные значения, но не должна превышать
предельно-допустимой величины (∆ ≤
±а). В многопредельных измерительных
приборах с преобладающей аддитивной
погрешностью для каждого предела
измерений пришлось бы указывать свое
значение предельно допустимой абсолютной
погрешности. К сожалению, как видно из
1-го графика на рис.2в, нормировать одним
числом предел допускаемой относительной
погрешности в различных точках шкалы
не представляется возможным. По этой
причине для средств измерений с
преобладающей аддитивной погрешностью
часто нормируют одним числом значение
так называемой основной приведенной
относительной
погрешности
,
где XN
– нормирующее значение.
Таким способом,
например, нормируются погрешности
большинства электромеханических и
электронных приборов со стрелочными
индикаторами. В качестве нормирующего
значения XN
обычно используется предел измерений
(XN
= Xmax),
удвоенное значение предела измерений
(если нулевая отметка находится в
середине шкалы), или длина шкалы (для
приборов с неравномерной шкалой). Если
XN
= Xmax,
то значение приведенной погрешности γ
равно пределу допускаемой относительной
погрешности средства измерений в точке,
соответствующей пределу измерений. По
заданному значению предела допускаемой
основной приведенной погрешности легко
определить предел допускаемой основной
абсолютной погрешности для каждого
предела измерений многопредельного
прибора:.
После этого для
любой отметки шкалы X
может быть произведена оценка
предельно-допустимой основной
относительной погрешности:
.
Б) Нормирование
пределов допускаемой основной погрешности
для
средств измерений
с преобладающей мультипликативной
погрешностью.
Как видно из рис.2
(2-й график), для средств измерений с
преобладающей мультипликативной
погрешностью, одним числом удобно
нормировать предел допускаемой основной
относительной погрешности (рис.2в) δmax=
± b∙100%.
В этом случае, фактическая относительная
погрешность каждого экземпляра средства
измерений данного типа на различных
участках шкалы может иметь различные
значения, но не должна превышать предельно
допустимой величины (δ ≤ ± b∙100%).
По заданному значению предельно
допустимой относительной погрешности
δmax
для любой точки шкалы может быть
произведена оценка предельно-допустимой
абсолютной погрешности:
.
К числу средств
измерений с преобладающей мультипликативной
погрешностью относится большинство
многозначных мер, счетчики электрической
энергии, счетчики воды, расходомеры и
др. Следует отметить, что для реальных
средств измерений с преобладающей
мультипликативной погрешностью не
удается полностью устранить аддитивную
погрешность. По этой причине в технической
документации всегда указывается
наименьшее значение измеряемой величины,
для которого предел допускаемой основной
относительной погрешности ещё не
превышает заданного значения δmax.
Ниже этого наименьшего значения
измеряемой величины погрешность
измерений не нормируется и является
неопределенной.
В) Нормирование
пределов допускаемой основной погрешности
для
средств измерений
с соизмеримой аддитивной и мультипликативной
погрешностью.
Если аддитивная
и мультипликативная составляющая
погрешности средства измерений соизмеримы
(3-й график на рис.2), то задание
предельно-допустимой погрешности одним
числом не представляется возможным. В
этом случае либо нормируется предел
допускаемой абсолютной основной
погрешности (указываются предельно-допустимые
значения a
и b),
либо (чаще всего) нормируется предел
допускаемой относительной основной
погрешности. В последнем случае численные
значения предельно-допустимых
относительных погрешностей в различных
точках шкалы оцениваются по формуле:
,
где Xmax
– предел измерений;
X
— измеренное значение;
d
=
— значение приведенной к пределу измерений
аддитивной
составляющей основной погрешности;
с =
— значение результирующей относительной
основной
погрешности в точке, соответствующей
пределу
измерений.
Рассмотренным
выше способом (указанием численных
значений c
и d)
нормируются, в частности, предельно-допустимые
значения относительной основной
погрешности цифровых измерительных
приборов. В этом случае относительные
погрешности каждого экземпляра средств
измерений определенного типа не должны
превышать установленных для этого типа
средств измерений значений
предельно-допустимой погрешности:
.
При этом абсолютная
основная погрешность определяется по
формуле
.
Г)
Нормирование дополнительных погрешностей.
Наиболее часто
пределы допускаемых дополнительных
погрешностей указывают в технической
документации либо одним значением для
всей рабочей области величины, влияющей
на точность средства измерений (иногда
несколькими значениями для поддиапазонов
рабочей области влияющей величины),
либо отношением предела допускаемой
дополнительной погрешности к интервалу
значений влияющей величины. Пределы
допускаемых дополнительных погрешностей
указываются на каждой , влияющей на
точность средства измерений величине.
При этом, как правило, значения
дополнительных погрешностей устанавливают
в виде дольного или кратного значения
предела допускаемой основной погрешности.
Например, в документации может быть
указано, что при температуре окружающей
среды за пределами нормальной области
температур, предел допускаемой
дополнительной погрешности, возникающей
по этой причине, не должен превышать
0,2% на 10о С.
Классы
точности средств измерений.
Исторически по
точности средства измерений подразделяют
на классы. Иногда их называют классами
точности, иногда классами допуска,
иногда просто классами.
Класс точности
средства измерений
– это его характеристика, отражающая
точностные возможности средств измерений
данного типа.
Допускается
буквенное или числовое обозначение
классов точности. Средствам измерений,
предназначенным для измерения двух и
более физических величин, допускается
присваивать различные классы точности
для каждой измеряемой величины. Средствам
измерений с двумя или более переключаемыми
диапазонами измерений также допускается
присваивать два или более класса
точности.
Если нормируется
предел допускаемой абсолютной основной
погрешности, или в различных поддиапазонах
измерений установлены разные значения
пределов допускаемой относительной
основной погрешности, то , как правило,
применяется буквенное обозначение
классов. Так, например платиновые
термометры сопротивления изготовляют
с классом допуска А
или классом
допуска В.
При этом для
класса А
установлен
предел допускаемой абсолютной основной
погрешности
,
а для классаВ
—
,
где– температура измеряемой среды.
Если для средств
измерений того или иного типа нормируется
одно значение предельно-допустимой
приведенной основной погрешности, или
одно значение предельно-допустимой
относительной основной погрешности,
или указываются значения c
и d,
то для обозначения классов точности
используются десятичные числа. В
соответствии с ГОСТом 8.401-80 для обозначения
классов точности допускается применение
следующих чисел:
1∙10n;
1,5∙10n;
2∙10n;
2,5∙10n;
4∙10n;
5∙10n;
6∙10n,
где n
= 0, -1, -2, и т.д.
Для средств
измерений с преобладающей аддитивной
погрешностью численное значение класса
точности выбирается из указанного ряда
равным предельно-допустимому значению
приведенной основной погрешности,
выраженной в процентах. Для средств
измерений с преобладающей мультипликативной
погрешностью численное значение класса
точности соответствует пределу
допускаемой относительной основной
погрешности также выраженной в процентах.
Для средств измерений с соизмеримыми
аддитивными и мультипликативными
погрешностями числа с
и d
также
выбираются из указанного выше ряда. При
этом класс точности средства измерений
обозначается двумя числами, разделенными
косой чертой, например, 0,05/0,02. В этом
случае с
= 0,05%; d
= 0,02%. Примеры
обозначений классов точности в
документации и на средствах измерений,
а также расчетные формулы для оценки
пределов допускаемой основной погрешности
приведены в Таблице 1.
Правила округления
и записи результата измерений.
Нормирование
пределов допускаемых погрешностей
средств измерений производится указанием
значения погрешностей с одной или двумя
значащими цифрами. По этой причине при
расчете значений погрешностей измерений
также должны быть оставлены только
первые одна или две значащие цифры. Для
округления используются следующие
правила:
-
Погрешность
результата измерения указывается двумя
значащими цифрами, если первая из них
не более 2, и одной цифрой, если первая
из них 3 и более. -
Показание прибора
округляется до того же десятичного
разряда, которым заканчивается
округленное значение абсолютной
погрешности. -
Округление
производится в окончательном ответе,
промежуточные вычисления выполняют с
одной – двумя избыточными цифрами.
Пример 1:
— показание прибора
— 5,361 В;
— вычисленное
значение абсолютной погрешности — ±
0,264 В;
— округленное
значение абсолютной погрешности — ±
0,26 В;
— результат измерения
— (5,36 ± 0,26) В.
Таблица
1
Примеры обозначения
классов точности средств измерений и
расчетные
формулы для оценки
пределов допускаемой основной погрешности.
Форма представления нормируемой основной погрешности |
Примеры обозначения класса |
Расчетные формулы для оценки пределов допускаемой основной погрешности |
Примечания |
|
В документации |
На средствах измерений |
|||
Нормируется предел допускаемой абсолютной основной |
Варианты: — класс B; — класс допуска В; — класс |
В |
или или |
Значения a иb приводятся в документации на средство измерений. |
Нормируется предел допускаемой приведенной основной |
Варианты: — класс точности 1,5 2,5 — не обозначается. |
1,5 |
гдепредел |
Для приборов с равномерной шкалой и нулевой отметкой в начале шкалы |
Варианты: — класс точности 2,5; — не обозначается |
— — длина всей шкалы. |
Для приборов с неравномерной шкалой. Длина шкалы указывается в документации. |
||
Нормируется предел допускаемой относительной основной |
Класс точности |
0,5 |
|
Для средств измерений с преобладающей мультипликативной погрешностью. |
Варианты: — класс точности 0,02/0,01; -не обозначается. |
0,02/0,01 |
Для средств измерений с соизмеримыми аддитивной и мультипликативной погрешностью |
Пример 2:
— показание прибора
– 35,67 мА;
— вычисленное
значение абсолютной погрешности — ±
0,541 мА;
— округленное
значение абсолютной погрешности — ± 0,5
мА;
— результат измерений
– (35,7 ± 0,5) мА.
Пример 3:
— вычисленное
значение относительной погрешности –
± 1,268 %;
— округленное
значение относительной погрешности –
± 1,3 %.
Пример 4:
— вычисленное
значение относительной погрешности —
± 0,367 %;
— округленное
значение относительной погрешности —
± 0,4 %.
II.2.
Вопросы для самопроверки
-
Чем вызываются
погрешности измерений? -
Перечислите
разновидности погрешностей, возникающих
в процессе измерений? -
Какая разница
между абсолютной, относительной и
приведенной погрешностями измерения
и в чем смысл их введения? -
Чем отличается
основная погрешность измерения от
дополнительной? -
Чем отличается
методическая погрешность измерения
от инструментальной? -
Чем отличается
систематическая погрешность измерения
от случайной? -
Что понимается
под аддитивной и мультипликативной
оставляющими погрешности? -
В каких случаях
целесообразно использовать статистическую
обработку результатов измерений? -
Какие статистические
характеристики обработки наиболее
часто используются на практике? -
Как оценивается
неисключенная систематическая
погрешность при статистической обработке
результатов измерений?
11. Что характеризует
величина среднеквадратического
отклонения ?
12. В чем заключается
суть понятий «доверительной вероятности»
и «доверительного интервала», используемых
при статистической обработке результатов
измерений?
13. В чем заключается
разность понятий «погрешность измерения»
и
«погрешность
средства измерения»?
Определение относительной погрешности измерений
Относительная погрешность измерений – это отношение абсолютной погрешности измерений к истинному значению измеряемой величины, в долях или процентах:
$ δ = frac{Delta x}{x_{ист}}$ или $ δ = frac{Delta x}{x_{ист}} cdot 100 text{%} $
Правила округления
На практике относительную погрешность округляют до двух значащих цифр, выполняя округление с избытком, т.е. всегда увеличивая последнюю значащую цифру на единицу.
Например:
Для x = 1, $7 pm 0,2$ относительная погрешность измерений
$δ = frac{0,2}{1,7} cdot 100 text{%} approx 11,8 text{%} approx 12 text{%}$ — погрешность достаточно велика.
Внимание!
Чем меньше относительная погрешность измерения, тем оно точнее.
Примеры
Пример 1. Согласно данным эксперимента, проведенного в 1975 году, скорость света равна $c = 299 792 458 pm 1,2 м/с$. Найдите относительную погрешность измерений в этом эксперименте в долях и процентах.
$$ δ = frac{1,2}{299 792 458} approx 4,0 cdot 10^{-9} $$
$$δ = 4,0 cdot 10^{-9} cdot 100 text{%} approx (4,0 cdot 10^{-7} ) text{%} $$
Пример 2. В результате школьного эксперимента ускорение свободного падения оказалось равным $g = 10,0 pm 0,1 м/с^2$. Определите относительную погрешность для данного эксперимента, а также относительную погрешность по отношению к табличной величине $g_0 = 9,81 м/с^2$. Что вы можете сказать о систематической ошибке эксперимента?
Для данного эксперимента $δ = frac{0,1}{10,0} cdot 100 text{%} = 1,0 text{%} $
Относительная погрешность по отношению к табличной величине:
$$ δ_{таб} = frac{|g-g_0 |}{g_0} cdot 100 text{%}, δ_{таб} = frac{|10,0-9,81|}{9,81} cdot 100 text{%} approx 1,9 text{%} $$
Согласно полученным результатам $9,9 le g le 10,1$, табличное значение в этот отрезок не входит. В эксперименте присутствует систематическая ошибка: результаты систематически завышены.
Пример 3. При взвешивании масса слона оказалась равной $M = 3,63 pm 0,01$ т, а масса муравья $m = 41,2 pm 0,5$ мг. Какое измерение точнее?
Найдем относительные погрешности измерений:
$$ δ_M = frac{0,01}{3,63} cdot 100 text{%} approx 0,28 text{%} $$
$$ δ_m = frac{0,5}{41,2} cdot 100 text{%} approx 1,21 text{%} approx ↑1,3 text{%} $$
Таким образом, масса слона определена точнее.
Пример 4. Вольтметр измеряет напряжение с относительной погрешностью 0,5%. Найдите границы точного значения величины, если при измерении получено $V_0$ = 5 В.
Абсолютная погрешность измерений данным вольтметром:
$$ Delta V = V_0 cdot δ, Delta V = 5 cdot 0,005 = 0,025 (В) approx 0,03(В) $$
Границы точного значения:
$$ V = 5,00 pm 0,03 (В) или 4,97 le V le 5,03 (В) $$
Статья обновлена 10.07.2022
Что такое погрешность измерения
Любой расчет состоит из истинного и вычисляемого значения. При этом всегда должны учитываться значения ошибки или погрешности. Погрешность — это расхождение между истинным значением и вычисляемым. В маркетинге выделяют следующие виды погрешностей.
- Математическая погрешность. Она описывается алгебраической формулой и бывает абсолютной, относительной и приведенной. Абсолютная погрешность измерения — это разница между вычисляемым и истинным значением. Относительная погрешность вычисляется в процентном соотношении истинного значения и полученного. Вычисление погрешности приведенной схоже с относительной, указывается она также в процентах, но дает разницу между нормирующей шкалой и полученными данными, то есть между эталонными и полученными значениями.
- Оценочная погрешность. В маркетинге она бывает случайной и систематической. Случайная погрешность возникает из-за любых факторов, которые случайным образом влияют на измерение переменной в выборке. Систематическая погрешность вызывается факторами, которые систематически влияют на измерение переменной в выборке.
Математическая погрешность: формула для каждого типа
Если определение погрешности можно провести точным путем, она считается математической. Зачем нужно вычисление этого значения в маркетинге?
Погрешности возникают настолько часто, что популярной практикой в исследованиях является включение значения погрешности в окончательные результаты. Для этого используются формулы. Математическая погрешность — это значение, которое отражает разницу между выборкой и фактическим результатом. Если при расчетах учитывалась погрешность, в тексте исследования указывается что-то вроде: «Абсолютная погрешность для этих данных составляет 3,25%». Погрешность можно вычислить с любыми цифрами: количество человек, участвующих в опросе, погрешность суммы, затраченной на маркетинговый бюджет, и так далее.
Формулы погрешностей вычисляются следующим образом.
Абсолютная погрешность измерений: формула
Формула дает разницу между измеренным и реальным значением.
Относительная погрешность: формула
Формула использует значение абсолютной погрешности и вычисляется в процентах по отношению к фактическому значению.
Приведенная погрешность: формула
Формула также использует значение абсолютной погрешности. В чем измеряется приведенная погрешность? Тоже в процентах, но в качестве «эталона» используется не реальное значение, а единица измерения любой нормирующей шкалы. Например, для обычной линейки это значение равно 1 мм.
Классификация оценочной погрешности
Определение погрешности в оценках — это всегда методическая погрешность, то есть допустимое значение ошибки, основанное на методах проведения исследования. Погрешность метода вызывает два типа погрешностей — случайные и систематические. Таблица погрешностей в графической форме покажет все возможные типы.
Что такое случайная погрешность
Случайная погрешность бывает статической и динамической. Динамическая погрешность возникает, когда мы имеем дело с меняющимися значениями — например, количество человек в выборке при маркетинговом исследовании. Статическая погрешность описывает ошибки при вычислении неизменных величин — вроде количества вопросов в вопроснике. Все они относятся к случайным погрешностям.
Типичный пример возникновения случайной погрешности — настроение участников маркетингового опроса. Как известно, эмоциональный настрой человека всегда влияет на его производительность. В ходе тестирования одни люди могут быть в хорошем расположении духа, а другие — в «миноре». Если настроение влияет на их ответы по заданному критерию выборки, это может искусственно завышать или занижать наблюдаемые оценки. Например, в случае с истинным значением 1 случайная погрешность может дать как -0,8, так и +0,5 к этому числу. Очень часто это случается при оценке времени ответа, например.
Случайная погрешность добавляет изменчивости данным, но не оказывает постоянного влияния на всю выборку. Вместо этого она произвольно изменяет измеряемые значения в диапазоне. В маркетинговой практике считается, что все случайные погрешности в распределении перекрывают друг друга и практически не влияют на конечный результат. Поэтому случайная погрешность считается «шумом» и в расчет не принимается. Эту погрешность нельзя устранить совсем, но можно уменьшить, просто увеличив размер выборки.
Что такое систематическая погрешность
Систематическая погрешность существует в результатах исследования, если эти результаты показывают устойчивую тенденцию к отклонению от истинных значений. Иными словами, если полученные цифры постоянно выше или ниже расчетных, речь идет о том, что в данных имеется систематическая погрешность.
В маркетинговых исследованиях есть два основных типа систематической погрешности: погрешность выборки и погрешность измерения.
Погрешность выборки
Погрешность выборки возникает, когда выборка, используемая в исследовании, не репрезентативна для всей совокупности данных. Типы такой погрешности включают погрешность структуры, погрешность аудитории и погрешность отбора.
Погрешность структуры
Погрешность структуры возникает из-за использования неполной или неточной основы для выборки. Распространенным источником такой погрешности в рамках маркетинговых исследований является проведение какого-либо опроса по телефону на основе существующего телефонного справочника или базы данных абонентов. Многие данные там указаны неполно или неточно — например, если люди недавно переехали или изменили свой номер телефона. Также такие данные часто указывают неполную или неверную демографию.
Если в качестве основы для исследования взят телефонный справочник, оно подвержено погрешности структуры, так как не учитывает всех возможных респондентов.
Погрешность аудитории
Погрешность аудитории возникает, если исследователь не знает, как определить аудиторию для исследования. Пример — оценка результатов исследования, проведенного среди клиентов крупного банка. Доля ответов на анкету составила чуть менее 1%. Анализ профессий всех опрошенных показал, что процент пенсионеров среди них в 20 раз выше, чем в целом по городу. Если эта группа значительно различается по интересующим переменным, то результаты будут неверными из-за погрешности аудитории.
Погрешность отбора
Даже если маркетологи правильно определили структуру и аудиторию, они не застрахованы от погрешности отбора. Она возникает, когда процедуры отбора являются неполными, неправильными или не соблюдаются должным образом. Например, интервьюеры при полевом исследовании могут избегать людей, которые живут в муниципальных домах. Потому что, по их мнению, жители вряд ли согласятся пройти такой опрос. Если жители муниципальных домов отличаются от тех, кто проживает в домах бизнес-класса, в результаты опроса будет внесена погрешность отбора.
Как минимизировать погрешность выборки
- Знайте свою аудиторию.
Знайте, кто покупает ваш продукт, использует его, работает с вами и так далее. Имея базовую социально-экономическую информацию, можно составить стабильную выборку целевой аудитории. Маркетинговые исследования часто касаются одной конкретной группы населения — например, пользователей Facebook или молодых мам. - Разделите аудиторию на группы.
Вместо случайной выборки разбейте аудиторию на группы в соответствии с их численностью в общей совокупности данных. Например, если люди с определенной демографией составляют 35% населения, убедитесь, что 35% респондентов исследования отвечают этому условию. - Увеличьте размер выборки.
Больший размер выборки приводит к более точному результату.
Погрешность измерения
Погрешность измерения представляет собой серьезную угрозу точности исследования. Она возникает, когда существует разница между искомой информацией — то есть истинным значением, и информацией, фактически полученной в процессе измерения. К таким погрешностям приводят различные недостатки процесса исследования. Погрешность измерения, в основном, вызывается человеческим фактором — например, формулировкой вопросника, ошибками ввода данных и необъективными выводами.
К погрешностям измерения приводят следующие виды ошибок.
Ошибка цели
Ошибка цели возникает, когда существует несоответствие между информацией, фактически необходимой для решения проблемы, и данными , которые собирает исследование. Например, компания Kellogg впустую потратила миллионы на разработку завтраков для снижения уровня холестерина. Реальный вопрос, который нужно было бы задать в исследовании, заключался в том, купят ли люди овсяные хлопья для решения своей проблемы. Ответ «Нет» обошелся бы компании дешевле.
Предвзятость ответов
Некоторые люди склонны отвечать на конкретный вопрос определенным образом. Тогда возникает предвзятость ответа. Предвзятость ответа может быть результатом умышленной фальсификации или неосознанного искажения фактов.
Умышленная фальсификация происходит, когда респонденты целенаправленно дают неверные ответы на вопросы. Есть много причин, по которым люди могут сознательно искажать информацию. Например, они хотят скрыть или хотят казаться лучше, чем есть на самом деле.
Бессознательное искажение информации происходит, когда респондент пытается быть правдивым, но дает неточный ответ. Этот тип предвзятости может возникать из-за формата вопроса, его содержания или по другим причинам.
Предвзятость интервьюера
Интервьюер оказывает влияние на респондента — сознательно или бессознательно. Одежда, возраст, пол, выражение лица, язык тела или тон голоса могут повлиять на ответы некоторых или всех респондентов.
Ошибка обработки
Примеры включают наводящие вопросы или элементы дизайна анкеты, которые затрудняют запись ответов или приводят к ошибкам в них.
Ошибка ввода
Это ошибки, возникающие при вводе информации. Например, документ может быть отсканирован неправильно, и его данные по ошибке перенесутся неверно. Или люди, заполняющие опросы на смартфоне или ноутбуке, могут нажимать не те клавиши.
Виды проводимых маркетинговых исследований различны, поэтому универсальных рецептов не существует. Мы дадим несколько общих советов, используемых для минимизации систематических погрешностей разного типа.
Как минимизировать погрешность измерения
- Предварительно протестируйте.
Погрешностей обработки и предвзятости можно избежать, если проводить предварительные тесты вопросника до начала основных интервью. - Проводите выборку случайным образом.
Чтобы устранить предвзятость, при выборке респондентов можно включать каждого четвертого человека из общего списка. - Тренируйте команду интервьюеров и наблюдателей.
Отбор и обучение тех, кто проводит исследования, должен быть тщательным. Особое внимание нужно уделять соблюдению инструкций в ходе каждого исследования. - Всегда выполняйте проверку сделанных записей.
Чтобы исключить ошибки ввода, все данные, вводимые для компьютерного анализа, должны быть перепроверены как минимум дважды.
Мир без ошибок не может существовать. Но понимание факторов, влияющих на маркетинговые исследования и измеряемые погрешности, имеет важное значение для сбора качественных данных.
Чтобы оценить степень отклонения, используется показатель абсолютной и относительной погрешности.
В математике, физике и метрологии этот коэффициент может быть использован для округления полученных результатов.
Показатель бывает нескольких видов. Для его определения применяют разные методы.
Понятие и классификация
Под термином погрешность принято понимать степень отклонения реальной величины от вычисленной. Этот показатель служит мерой точности измерения.
Существует несколько разновидностей погрешности:
- Абсолютная — оценка ошибки в абсолютных единицах. Величина ее может быть разной в зависимости от способа расчета.
- Относительная — отношение абсолютной величины к тому значению, которое принято считать истинным. Измеряется в процентах.
- Приведенная — разновидность относительной. Ее вычисляют отношением абсолютной и условной постоянной величины, определяется в процентах.
- Приборная или инструментальная — погрешность, которую дают технические средства измерений. Она обусловлена неточной цифровой градуировкой приборов или недостаточной наглядностью. Класс точности приборов будет равен максимальной приведенной погрешности и выражается в процентах. К примеру, класс точности вольтметра ΔU = ±0,75 В.
- Методическая — связанная с несовершенством метода измерения или его чрезмерным упрощением.
- Субъективная или операторная — погрешность, связанная с личными свойствами оператора — невнимательностью, утомлением, профессиональной подготовленностью.
- Случайная. Погрешность, которая может изменяться при разных измерениях. Изменения возможны по знаку или величине отклонения. Причиной может быть техническое несовершенство приборов отсчета или объекта измерения, неблагоприятные для работы условия или особенности измеряемых единиц.
- Систематическая. Погрешность, изменения которой имеют некоторую закономерность во времени. В качестве частного случая допускают постоянное отклонение, которое не изменяется во времени.
- Прогрессирующая или дрейфовая — медленно изменяется во времени и не может быть предсказана. Такое отклонение относится к случайным.
- Грубая или промах. Значительное отклонение от принятой нормы. Возникает в результате неисправности аппаратуры или ошибки экспериментатора.
Выделяют также отклонения прямых или косвенных измерений. Вторая разновидность учитывается в тех случаях, когда измерить величину напрямую невозможно и ее можно посчитать по формулам исходя из других данных.
Абсолютная и относительная погрешности
Абсолютная погрешность величины — это разница между ней и принятым точным значением. Чтобы определить этот показатель, из большего числа вычитают меньшее. Единицы обозначения такие же, как и для основной величины. В формулах обозначается греческой буквой дельта и исследуемой величиной.
Пример: В пакете находится 478 граммов сахара. Это число можно округлить до 500. В этом случае абсолютная погрешность приближения будет 500 — 478 =22 г
Для вычислений разработана специальная формула: Δа=А-а,
где А — это точная величина,
а — приближенная, это число, которое немного отличается от точного.
Результаты вычисления записывают со знаком ±. Например, длина бумажного рулона составляет 25 м ± 5 см. Наибольшее значение абсолютной погрешности принято называть ее пределом.
Чтобы получить измерения высокой точности, рассчитать абсолютную погрешность недостаточно. Если измерять предмет длиной 30 см и допустить неточность в 1 см, ее величина будет значительной. При измерении 30-метрового участка дороги то же самое отклонение в 1 см допускается, такое измерение будет наиболее точным. При вычислении ускорения свободного падения с помощью маятника неточность не превышает 10 -5 м/с. 2
Относительная погрешность — условная величина, равная отношению абсолютной к самому числу.
Пример: количество сахара в пакете равно 478 граммов, абсолютная погрешность составляет 22 грамма, относительная равняется 22: 478 = 0, 046. Если перевести в проценты, получается 4,6%. Для отрезка длиной 10 см погрешность в 1 см будет составлять 10%, а для отрезка в 1 м такая же абсолютная величина составит всего 1%. Относительная оценка считается наиболее точной.
Относительная погрешность может быть случайной, возникающей под действием внешних факторов. Ее размер зависит от способа нахождения.
Методики расчета
Существует несколько методов определения отклонения. Наиболее простой и доступный способ:
- Необходимые измерения проводят не менее 5 раз. Это дает возможность вычислить наиболее точное значение параметра. Результаты вносят в таблицу excel.
- Полученные величины складывают и делят на количество замеров. В результате получится действительное значение. Его обычно применяют вместо истинного, так как нет возможности вычислить последнее.
- Следующий шаг — определение абсолютной погрешности. Ее считают для каждого измерения. Чтобы узнать величину этого показателя, из результата каждого замера вычитают действительное значение. Для обработки данных неважно, положительная или отрицательная получилась цифра. Используют модули полученных чисел, пренебрегая знаками.
- Чтобы определить относительную погрешность измерения, нужно разделить абсолютную на действительное значение. Полученное число умножают на 100%.
Для определения предельного отклонения выбирают наибольшее значение из всех полученных.
Чтобы получить наиболее точные показатели дискретности цифровых приборов, пользуются средним квадратическим отклонением. Вычислить его можно следующим способом:
- Каждый показатель абсолютной погрешности возводят в квадрат и записывают.
- Полученные результаты складывают между собой.
- Сумму всех квадратов делят на число, которое на единицу меньше количества измерений.
- Из результата вычислений извлекают квадратный корень — это и будет среднее квадратическое отклонение.
Чтобы вычислить, чему равна относительная погрешность измерения, важно придерживаться некоторых правил. Складывая или вычитая числа, учитывают абсолютные отклонения. Если числа нужно разделить или перемножить, прибегают к относительным показателям. Возведение числа в степень требует умножить относительную погрешность на показатель этой степени.
Результаты фиксируются в виде десятичных дробей. Точное значение может быть очень длинным, вплоть до бесконечного. Для удобства используют только среднее значение. При этом важно помнить о существовании верных и сомнительных цифр. У первой категории цифр разряд бывает выше допустимой погрешности, у второй — ниже.
При расчете относительной погрешности измерения времени формула включает в себя отношение среднего отклонения к среднему значению времени, умноженное на 100%. Эта же закономерность применяется для оценки температуры и других физических величин.
Произвести необходимые расчеты можно с помощью онлайн-калькулятора. В окошки вносятся необходимые данные, после чего программа выдает результат.
Методы Корнфельда и Стьюдента
Некоторые экспериментальные исследования требуют многократного измерения одного и того же показателя с помощью аппаратуры или приспособлений. В этом случае высока вероятность возникновения отклонений разброса. Определить ее величины можно разными способами. Самый распространенный и доступный из них называется по автору — методом Корнфельда.
Он применяется в ситуации, когда какая-либо физическая величина была измерена n раз. В этом случае рекомендован следующий порядок действий:
- Предполагается, что имеется ряд результатов измерений от Х1 до Хn.
- Из этих величин выбирают минимальную и максимальную.
- Вычисляют среднее значение Х.
- В пределах от наименьшего до наибольшего показателя выбирают доверительный интервал.
- Чтобы найти абсолютное отклонение, необходимо вычесть из максимального результата измерения величину минимального. Полученную разность делят пополам.
Метод Корнфельда имеет существенный недостаток. Чтобы определить вероятность приведенного результата, необходимо провести большое количество измерений. При этом нет возможности изменить границы доверительного интервала. Более точные данные можно получить, используя метод расчета Стьюдента. Для этого используют специальные таблицы, где отражены так называемые коэффициенты Стьюдента.
Эти показатели вычисляются на основе доверительной вероятности и большого количества измерений.