Работа инжекторного ДВС контролируется электронным контроллером. Соответствующие данные о работе тех или иных узлов ЭБУ получает от датчиков, устанавливаемых в разных местах. Одним из таковых устройств в конструкции автомобилей Ланос является датчик детонации. Эта деталь контролирует нормальное воспламенение топливовоздушной смеси в цилиндрах. Бывает такое, что в цилиндре возникает детонация. Устройство сообщает об этом ЭБУ, который принимает решение о нормализации подачи топлива и корректировке угла опережения зажигания (делая его поздним). Где находится датчик детонации на Ланосе, как он устроен, а также особенности его замены, рассмотрим подробно.
Что называется детонацией двигателя
Чтобы понять для чего предназначен датчик детонации на Ланосе, потребуется разобраться с понятием детонация. Этот процесс именуется детонационное сгорание или произвольное самовоспламенение топлива, который проявляется в виде нестабильной работой мотора, возникающего по причине взрывного воспламенения ТВС. При нормальном сгорании ТВС в цилиндре возникает взрыв (воспламенение), который протекает со скоростью 30 м/с. Ненормальное сгорание (детонационное), сопровождается увеличенной скоростью до 2000 м/с, и свидетельствует о детонационном процессе.
Такое сгорание ТВС в цилиндрах является опасным, и при частом его возникновении способствует сильному сокращению ресурса двигателя. При детонировании ДВС под удар первыми попадают такие конструктивные элементы, как ГРМ и ЦПГ. Чтобы процесс при возникновении был практически мгновенно ликвидирован, в конструкции ДВС используется специальный датчик. Этот элемент является своего рода шумоулавливателем или микрофоном. Он называется датчик детонации или ДД.
Насколько опасен процесс детонации для ДВС
Процесс детонации двигателя очень опасен, и на это имеются соответствующие причины. Чтобы понимать это, вспомним, как происходит такт сжатия топливно-воздушной смеси в цилиндрах. Когда поршень движется вверх, происходит сжатие ТВС. Смесь сгорает от искры, создаваемой свечой зажигания, когда поршень не доходит до верхней точки при угле опережения ориентировочно 2-3 градуса.
Процесс детонации проявляется следующим образом — когда поршень в момент сжатия движется вверх, то примерно на середине пути возникает микровзрывы в камере сгорания, тем самым воспламеняется часть смеси. При этом на поршень, который не достиг ВМТ, воздействует мощная взрывная волна, отталкивающая его в обратном направлении. При таком воздействии нарушается нормальная работа ДВС, происходит потеря мощности и увеличивается расход.
Основные причины возникновения детонации:
- Бензин не соответствует октановому числу, рекомендуемое производителем.
- Конструктивные особенности ДВС.
- Условия эксплуатации транспортного средства.
Продолжительное воздействие процесса детонации на двигатель способствует ускоренному износу деталей. Именно поэтому ДД считается одним из основополагающих элементов, которые принимают непосредственное участие в работе двигателя. Если ДД неисправен, то его необходимо заменить. В вопросе о том, как проверить датчик на исправность, и как его заменить на Ланосе, разберемся подробно.
Виды устройств и принцип их работы
В инжекторных двигателях невозможно отрегулировать угол опережения зажигания вручную, так как за этот процесс отвечает электроника. Чтобы предотвратить возникновение самопроизвольного воспламенения смеси, на инжекторных двигателях используется датчик, располагающийся между 2 и 3 цилиндрами на блоке ДВС. Принцип работы этого устройства заключается на пьезоэффекте.
Всего существует два типа датчиков детонации — резонансные и широкополосные. Отличаются эти устройства не только внешне, но и по конструкции. Забегая на перед, надо отметить, что на Ланосах устанавливаются ДД широкополосные. Ставятся такие датчики на автомобили Сенс и Шанс, а также многие другие модели автомобилей. Резонансные ДД ставятся на автомобили марки Тойота. Оба типа устройств функционируют на основании пьезоэффекта, то есть при сжатии чувствительного элемента, происходит формирование электрического импульса.
Широкополосные датчики являются более распространенными, так как имеют они плоскую форму в виде таблетки. Крепятся они к блоку при помощи одного болта. Эти датчики еще называют пьезокерамическими, что обусловлено их конструктивными особенностями. Работает элемент следующим образом:
- Когда двигатель запущен, то датчик формирует сигнал в виде переменного напряжения с определенной частотой и амплитудой.
- Как только возникает эффект детонации, соответственно меняется амплитуда вибраций мотора, и частота увеличивается.
- При увеличении частоты, начинает повышаться напряжение, которое фиксируется ЭБУ.
- ЭБУ понимает, что в двигателе происходит детонация, и начинает принимать соответствующее решение о ее предотвращении. Он корректирует угол опережения зажигания УОЗ в сторону установку более позднего зажигания.
Широкополосные датчики состоят из пьезокерамического элемента в виде шайбы, а также стального грузика, изолятора (смола) и контрольного резистора. Грузик воздействует на пьезометрический элемент, посредством чего происходит увеличение электрического импульса. Резистор нужен для того, чтобы ЭБУ не фиксировал обрыв цепи при включении зажигания.
Рассмотрим принцип работы резонансного датчика детонации. Он имеет вид бочонка, и его еще называют пьезоэлектрическим устройством за счет своей конструкции. ДД резонансный состоит из пьезометрического элемента и вибропластины. Принцип работы таких элементов заключается в следующем:
- От ЭБУ на датчик подается постоянное напряжение величиной 5В.
- Внутри устройства стоит резистор, который понижает опорное напряжение до 2,5В.
- Когда двигатель работает без детонации, то напряжение на датчике составляет 2,5В.
- Как только возникает детонация, ДД начинает генерировать сигнал переменного тока.
- Этот сигнал поступает на ЭБУ по той же цепи, что и постоянное напряжение питания 5В.
- Блок управления считывает сигнал в виде переменного напряжения, и понимает, что двигатель работает нестабильно, тем самым принимая соответствующее решение об изменении угла опережения зажигания.
На автомобилях Шевроле и ДЭУ Ланос, а также Сенсах и Шансах ставятся широкополосные датчики, которые имеют плоскую конструкцию. Эти устройства являются достаточно надежными, а из строя они выходят крайне редко, как и датчик положения коленвала.
Признаки поломок датчика детонации на Ланосе, Сенсе и Шансе
Если при работе мотора возникают сбои, то это говорит о необходимости выполнения диагностических манипуляций. Для этого вовсе не обязательно ехать в автосервис, так как выявить неисправность датчика детонации на Ланосе можно самостоятельно. Главными причинами, по которым может сформироваться неисправность устройства, являются такие факторы:
- Повреждение проводки.
- Износ внутренних деталей.
- Окисление контактов.
- Некачественное соединение.
О неисправности рассматриваемого устройства на автомобиле Ланос, Сенс и Шанс свидетельствуют следующие факторы:
- Автомобиль не набирает обороты.
- Падение мощности и динамики.
- Наблюдаются нестабильная работа мотора на ХХ.
- Возникновение черного дыма в выхлопных газах.
- Повышение расхода топлива.
Как видно, рассматриваемый датчик на инжекторном автомобиле также может быть следствием повышенного расхода топлива. Самый главный фактор поломки ДД на Ланосе — это индикация Check Engine, которая говорит о неисправности работы двигателя. Чтобы не пришлось гадать, действительно ли неисправен детонирующий датчик, необходимо произвести проверочные манипуляции.
Это интересно! Выявить неисправность датчика детонации можно по соответствующим кодам ошибок на бортовом компьютере. Это такие коды, как Р0324, Р0325, Р0326, Р0327 и Р0328.
Как проверить датчик на исправность
С проверкой датчика детонации сможет справиться каждый водитель. Для проведения проверочных манипуляций понадобится мультиметр. Чтобы проверить исправность устройства, нужно демонтировать его с автомобиля. При выполнении демонтажных работ важно не допускать падения детали, так как внутри находится чувствительный пьезометрический элемент, который может повредиться.
Щупы мультиметра подсоединить к контактам 1 и 2 снятого датчика, и включаем режим измерения постоянного напряжения 200 мВ. Причем измерять необходимо минимальные значения напряжения, так как его величина будет составлять около 0,03-0,15 В. Далее следует постучать по устройству металлическим предметом (не сильно), и зафиксировать показания мультиметра. Вместо ударов, можно сдавливать ДД. Если на приборе не будут изменяться значения, значит, элемент неисправен, и подлежит замене.
Это интересно! Рассматриваемое устройство может иметь два или три контакта. На Ланосе этот датчик имеет три контакта, которые представляют собой — сигнальный провод, масса и экран. Надо отметить, что третий контакт (экранирующий) применяется на устройствах, которые имеют встроенную проводку. На автомобилях Сенс и Шанс применяются двухконтактные датчики детонации, к которым фишка подключается напрямую.
Еще можно проверить датчик детонации на Ланосе следующим простым способом.
- Не снимая элемент с автомобиля, завести двигатель.
- Увеличить обороты коленвала до 2-2,5 тысяч оборотов.
- Ключом постукивать по блоку двигателя.
- Если деталь исправна, то во время постукивания будет наблюдаться уменьшение оборотов двигателя.
- Если ЭБУ не реагирует на звонкий стук, значит, элемент неисправен, и нуждается в замене.
Максимально-точная проверка исправной работы ДД осуществляется при помощи осциллографа. Чтобы заменить датчик детонации на Ланосе, следует сначала определить его расположение.
Где стоит датчик детонации на Ланосе и как его заменить
Как уже упоминалось выше, располагается датчик детонации на автомобилях между 2 и 3 цилиндрами. Следовательно, на Ланосе искать этот элемент следует на блоке двигателя. На Ланосах с 8-клапанными агрегатами 1,5 получить доступ к детали можно из подкапотного пространства. Находится он ближе к моторному щиту рядом с трубой вентиляции картера. Важно знать, что на на Ланос 1,5 ДД используется, но не на всех моделях.
Если же автомобиль Ланос 16-клапанный, то здесь возникают трудности с доступом к датчику детонации. Чтобы снять его и заменить, понадобится ставить автомобиль на смотровую яму, и снимать защиту масляного картера. Ниже на фото показано, где находится датчик детонации на Ланосе.
Теперь разберемся с особенностями снятия и замены датчика на Шевроле и ДЭУ Ланос. Чтобы снять эту деталь, необходимо выполнить такие манипуляции:
- Отключить минусовую клемму от АКБ. Это необходимо, чтобы сбросить ошибки на ЭБУ.
- Отсоединить колодку от датчика.
- При помощи ключа на «12» нужно выкрутить крепежный болт, которым устройство крепится к блоку.
- Новый элемент монтируется в обратном порядке, предварительно очистив место расположения устройства наждачной бумагой.
На фото ниже показано расположение датчика детонации на автомобилях Сенс.
Затяжку крепежного болта следует выполнять с определенным моментом 20Hм, поэтому если не используете специальный ключ, то старайтесь не переусердствовать, чтобы не сорвать резьбу в блоке.
На этом процесс снятия и замены датчика детонации на Ланосе завершен, и остается прибегнуть к проверочному запуску мотора. Что касаемо выбора датчика, то здесь никаких трудностей не возникает.
На Ланосы нужно покупать датчики со встроенным проводом и фишкой (их выпускают разные производители), а на Сенсы устанавливаются устройства без провода с двумя контактами.
Обновлено: 05.06.2023
Работа инжекторного ДВС контролируется электронным контроллером. Соответствующие данные о работе тех или иных узлов ЭБУ получает от датчиков, устанавливаемых в разных местах. Одним из таковых устройств в конструкции автомобилей Ланос является датчик детонации. Эта деталь контролирует нормальное воспламенение топливовоздушной смеси в цилиндрах. Бывает такое, что в цилиндре возникает детонация. Устройство сообщает об этом ЭБУ, который принимает решение о нормализации подачи топлива и корректировке угла опережения зажигания (делая его поздним). Где находится датчик детонации на Ланосе, как он устроен, а также особенности его замены, рассмотрим подробно.
Что называется детонацией двигателя
Чтобы понять для чего предназначен датчик детонации на Ланосе, потребуется разобраться с понятием детонация. Этот процесс именуется детонационное сгорание или произвольное самовоспламенение топлива, который проявляется в виде нестабильной работой мотора, возникающего по причине взрывного воспламенения ТВС. При нормальном сгорании ТВС в цилиндре возникает взрыв (воспламенение), который протекает со скоростью 30 м/с. Ненормальное сгорание (детонационное), сопровождается увеличенной скоростью до 2000 м/с, и свидетельствует о детонационном процессе.
Такое сгорание ТВС в цилиндрах является опасным, и при частом его возникновении способствует сильному сокращению ресурса двигателя. При детонировании ДВС под удар первыми попадают такие конструктивные элементы, как ГРМ и ЦПГ. Чтобы процесс при возникновении был практически мгновенно ликвидирован, в конструкции ДВС используется специальный датчик. Этот элемент является своего рода шумоулавливателем или микрофоном. Он называется датчик детонации или ДД.
Насколько опасен процесс детонации для ДВС
Процесс детонации двигателя очень опасен, и на это имеются соответствующие причины. Чтобы понимать это, вспомним, как происходит такт сжатия топливно-воздушной смеси в цилиндрах. Когда поршень движется вверх, происходит сжатие ТВС. Смесь сгорает от искры, создаваемой свечой зажигания, когда поршень не доходит до верхней точки при угле опережения ориентировочно 2-3 градуса.
Процесс детонации проявляется следующим образом — когда поршень в момент сжатия движется вверх, то примерно на середине пути возникает микровзрывы в камере сгорания, тем самым воспламеняется часть смеси. При этом на поршень, который не достиг ВМТ, воздействует мощная взрывная волна, отталкивающая его в обратном направлении. При таком воздействии нарушается нормальная работа ДВС, происходит потеря мощности и увеличивается расход.
Основные причины возникновения детонации:
- Бензин не соответствует октановому числу, рекомендуемое производителем.
- Конструктивные особенности ДВС.
- Условия эксплуатации транспортного средства.
Продолжительное воздействие процесса детонации на двигатель способствует ускоренному износу деталей. Именно поэтому ДД считается одним из основополагающих элементов, которые принимают непосредственное участие в работе двигателя. Если ДД неисправен, то его необходимо заменить. В вопросе о том, как проверить датчик на исправность, и как его заменить на Ланосе, разберемся подробно.
Виды устройств и принцип их работы
В инжекторных двигателях невозможно отрегулировать угол опережения зажигания вручную, так как за этот процесс отвечает электроника. Чтобы предотвратить возникновение самопроизвольного воспламенения смеси, на инжекторных двигателях используется датчик, располагающийся между 2 и 3 цилиндрами на блоке ДВС. Принцип работы этого устройства заключается на пьезоэффекте.
Всего существует два типа датчиков детонации — резонансные и широкополосные. Отличаются эти устройства не только внешне, но и по конструкции. Забегая на перед, надо отметить, что на Ланосах устанавливаются ДД широкополосные. Ставятся такие датчики на автомобили Сенс и Шанс, а также многие другие модели автомобилей. Резонансные ДД ставятся на автомобили марки Тойота. Оба типа устройств функционируют на основании пьезоэффекта, то есть при сжатии чувствительного элемента, происходит формирование электрического импульса.
Широкополосные датчики являются более распространенными, так как имеют они плоскую форму в виде таблетки. Крепятся они к блоку при помощи одного болта. Эти датчики еще называют пьезокерамическими, что обусловлено их конструктивными особенностями. Работает элемент следующим образом:
- Когда двигатель запущен, то датчик формирует сигнал в виде переменного напряжения с определенной частотой и амплитудой.
- Как только возникает эффект детонации, соответственно меняется амплитуда вибраций мотора, и частота увеличивается.
- При увеличении частоты, начинает повышаться напряжение, которое фиксируется ЭБУ.
- ЭБУ понимает, что в двигателе происходит детонация, и начинает принимать соответствующее решение о ее предотвращении. Он корректирует угол опережения зажигания УОЗ в сторону установку более позднего зажигания.
Широкополосные датчики состоят из пьезокерамического элемента в виде шайбы, а также стального грузика, изолятора (смола) и контрольного резистора. Грузик воздействует на пьезометрический элемент, посредством чего происходит увеличение электрического импульса. Резистор нужен для того, чтобы ЭБУ не фиксировал обрыв цепи при включении зажигания.
Рассмотрим принцип работы резонансного датчика детонации. Он имеет вид бочонка, и его еще называют пьезоэлектрическим устройством за счет своей конструкции. ДД резонансный состоит из пьезометрического элемента и вибропластины. Принцип работы таких элементов заключается в следующем:
- От ЭБУ на датчик подается постоянное напряжение величиной 5В.
- Внутри устройства стоит резистор, который понижает опорное напряжение до 2,5В.
- Когда двигатель работает без детонации, то напряжение на датчике составляет 2,5В.
- Как только возникает детонация, ДД начинает генерировать сигнал переменного тока.
- Этот сигнал поступает на ЭБУ по той же цепи, что и постоянное напряжение питания 5В.
- Блок управления считывает сигнал в виде переменного напряжения, и понимает, что двигатель работает нестабильно, тем самым принимая соответствующее решение об изменении угла опережения зажигания.
На автомобилях Шевроле и ДЭУ Ланос, а также Сенсах и Шансах ставятся широкополосные датчики, которые имеют плоскую конструкцию. Эти устройства являются достаточно надежными, а из строя они выходят крайне редко, как и датчик положения коленвала.
Признаки поломок датчика детонации на Ланосе, Сенсе и Шансе
Если при работе мотора возникают сбои, то это говорит о необходимости выполнения диагностических манипуляций. Для этого вовсе не обязательно ехать в автосервис, так как выявить неисправность датчика детонации на Ланосе можно самостоятельно. Главными причинами, по которым может сформироваться неисправность устройства, являются такие факторы:
- Повреждение проводки.
- Износ внутренних деталей.
- Окисление контактов.
- Некачественное соединение.
О неисправности рассматриваемого устройства на автомобиле Ланос, Сенс и Шанс свидетельствуют следующие факторы:
- Автомобиль не набирает обороты.
- Падение мощности и динамики.
- Наблюдаются нестабильная работа мотора на ХХ.
- Возникновение черного дыма в выхлопных газах.
- Повышение расхода топлива.
Как видно, рассматриваемый датчик на инжекторном автомобиле также может быть следствием повышенного расхода топлива. Самый главный фактор поломки ДД на Ланосе — это индикация Check Engine, которая говорит о неисправности работы двигателя. Чтобы не пришлось гадать, действительно ли неисправен детонирующий датчик, необходимо произвести проверочные манипуляции.
Это интересно! Выявить неисправность датчика детонации можно по соответствующим кодам ошибок на бортовом компьютере. Это такие коды, как Р0324, Р0325, Р0326, Р0327 и Р0328.
Как проверить датчик на исправность
Щупы мультиметра подсоединить к контактам 1 и 2 снятого датчика, и включаем режим измерения постоянного напряжения 200 мВ. Причем измерять необходимо минимальные значения напряжения, так как его величина будет составлять около 0,03-0,15 В. Далее следует постучать по устройству металлическим предметом (не сильно), и зафиксировать показания мультиметра. Вместо ударов, можно сдавливать ДД. Если на приборе не будут изменяться значения, значит, элемент неисправен, и подлежит замене.
Это интересно! Рассматриваемое устройство может иметь два или три контакта. На Ланосе этот датчик имеет три контакта, которые представляют собой — сигнальный провод, масса и экран. Надо отметить, что третий контакт (экранирующий) применяется на устройствах, которые имеют встроенную проводку. На автомобилях Сенс и Шанс применяются двухконтактные датчики детонации, к которым фишка подключается напрямую.
Еще можно проверить датчик детонации на Ланосе следующим простым способом.
- Не снимая элемент с автомобиля, завести двигатель.
- Увеличить обороты коленвала до 2-2,5 тысяч оборотов.
- Ключом постукивать по блоку двигателя.
- Если деталь исправна, то во время постукивания будет наблюдаться уменьшение оборотов двигателя.
- Если ЭБУ не реагирует на звонкий стук, значит, элемент неисправен, и нуждается в замене.
Максимально-точная проверка исправной работы ДД осуществляется при помощи осциллографа. Чтобы заменить датчик детонации на Ланосе, следует сначала определить его расположение.
Где стоит датчик детонации на Ланосе и как его заменить
Если же автомобиль Ланос 16-клапанный, то здесь возникают трудности с доступом к датчику детонации. Чтобы снять его и заменить, понадобится ставить автомобиль на смотровую яму, и снимать защиту масляного картера. Ниже на фото показано, где находится датчик детонации на Ланосе.
Теперь разберемся с особенностями снятия и замены датчика на Шевроле и ДЭУ Ланос. Чтобы снять эту деталь, необходимо выполнить такие манипуляции:
На фото ниже показано расположение датчика детонации на автомобилях Сенс.
Затяжку крепежного болта следует выполнять с определенным моментом 20Hм, поэтому если не используете специальный ключ, то старайтесь не переусердствовать, чтобы не сорвать резьбу в блоке.
На этом процесс снятия и замены датчика детонации на Ланосе завершен, и остается прибегнуть к проверочному запуску мотора. Что касаемо выбора датчика, то здесь никаких трудностей не возникает.
На Ланосы нужно покупать датчики со встроенным проводом и фишкой (их выпускают разные производители), а на Сенсы устанавливаются устройства без провода с двумя контактами.
Перед проверкой датчиков необходимо проверить целостность электрических цепей, напряжение в бортовой сети (на ХХ 13.9В-14.1В), работу системы впрыска и отсутствие внешних механических повреждений и запахов.
Датчик температуры охлаждающей жидкости (Код: 96182634) установлен в торце головки блока цилиндров со стороны 4-го цилиндра под катушкой зажигания.
Датчик представляет собой термистор с отрицательным температурным коэффициентом: электрическое сопротивление датчика уменьшается с повышением температуры. Контроллер обрабатывает сигнал датчика и устанавливает оптимальное обогащение рабочей смеси при прогреве двигателя. Для снятия датчика необходимо слить охлаждающую жидкость.
У датчика температуры охлаждающей жидкости проверяют сопротивление на выводах датчика при различных температурных режимах.
Подсоедините тестер к выводам датчика и измерьте сопротивление, а термометром замерьте текущую температуру.
При отклонении сопротивления от нормы замените датчик.
Датчик температуры воздуха на впуске (код: 96183228) вклеен в воздухоподводящий рукав. Датчик представляет собой термистор с отрицательным температурным коэффициентом: электрическое сопротивление датчика уменьшается с повышением температуры. По информации о температуре воздуха от датчика контроллер регулирует количество впрыскиваемого топлива.
У датчика температуры всасываемого воздуха проверяют сопротивление на выводах при различных температурных режимах.
Вам потребуются: отвертка с крестообразным лезвием, тестер, термометр, пассатижи.
Подсоедините тестер в режиме омметра к выводам датчика и измерьте его сопротивление. Измерьте термометром текущую температуру воздуха и сравните полученные значения с табл.
Датчик положения коленчатого вала (код: 96183235) двигателя, состоящий из магнита и обмотки, установлен у зубчатого венца шкива коленчатого вала.
При возникновении неисправности в цепи датчика положения коленчатого вала двигатель перестает работать, контроллер заносит в память код неисправности и включает сигнальную лампу в комбинации приборов. В этом случае проверьте датчик и зубчатый венец на отсутствие зубьев, биение или другие повреждения.
Датчик положения дроссельной заслонки представляет собой переменный резистор, который установлен на оси дроссельной заслонки. Вращение оси заслонки вызывает изменение напряжения сигнала датчика, по которому контроллер определяет степень открытия дроссельной заслонки.
рекомендую его настроить: на сигнальном проводе лучше когда 0.45В-0.6В. Иногда надо просверлить большие отверстия в датчике для крепежа, я сверлил 6 мм сверлом. Вставляем в разъем иголку, не снимая с дросселя, включаем зажигание, приоткручиваем болты, крутим и смотрим тестером, сколько на выходе, потом фиксируем и закручиваем.
Датчик скорости автомобиля (код: 96190708) установлен на коробке передач. Датчик представляет собой датчик Холла. Он выдает на электронный блок управления двигателем импульсный сигнал, пропорциональный частоте вращения ведущих колес.
Информация от датчика поступает в блок управления в виде сигналов низкого (от 0,1 В) и высокого (до 0,9 В) уровня. При сигнале низкого уровня блок управления получает информацию о высоком содержании кислорода и, следовательно, об обеднении смеси. Сигнал высокого уровня свидетельствует о низком содержании кислорода в отработавших газах и, следовательно, о переобогащении смеси.
Как проверить датчик кислорода:
От колодки отсоедините датчик кислорода и подсоедините его к вольтметру.
Увеличить обороты двигателя до 2 500 тыс.
С помощью устройства для обогащения горючей смеси искусственно увеличьте содержание бензина в ней. Это нужно сделать, таким образом, чтоб обороты движка упали на 200 об./мин.
Если у Вас автомобиль с электронным впрыском, просто вытащите вакуумную трубку с регулятора давления и вставьте ее в магистрали.
Датчик работает правильно в том случае, если вольтметр довольно быстро покажет напряжение 0.9 В. Если он покажет меньше 0.8 В или будет реагировать слишком медленно, то датчик необходимо заменить.
Можно попробовать провести тест на бедную смесь. С помощью вакуумной трубки сымитируйте подсос воздуха. Если в течении 1сек. Показатели вольтметра упадут на 0.2 В – кислородный датчик реагирует правильно. Если же показатель выше указанной нормы либо реагирует медленно датчик необходимо менять.
Также можно провести тест динамических режимов. Необходимо подсоединить датчик к разъему.
Подсоединить параллельно к разъему вольтметра (иголкой).
Восстановить нормальную работу системы.
Обороты двигателя должны быть в приделах 1 500 тыс.
Норма показателя 0.5 В, если вольтметр показывает другие результаты – датчик подлежит замене.
Если любой из этих тестов указывает на неисправность датчика кислорода либо какие-то проблемы в процессе диагностики, необходимо немедленно искать решение. Если оставить проблему на потом, это может привести к поломке катализатора.
Также при проведении испытания необходимо учитывать, что правильной работа датчика кислорода может быть возможной только при достижении температуры 350 С градусов. Таким образом, только через 3 минуты после зажигания начинает работать обратная связь в системах впрыска.
Двигатель, устанавливаемый на автомобили Chevrolet Lanos / ZAZ Chance, оборудован электронной системой управления двигателем с распределенным впрыском топлива. Эта система обеспечивает выполнение современных норм по токсичности выбросов и испарениям при сохранении высоких ходовых качеств и низкого расхода топлива.
Управляющим устройством в системе является электронный блок управления (ЭБУ) На основе информации, полученной от датчиков, ЭБУ рассчитывает параметры регулирования впрыска топлива и управления углом опережения зажигания. Кроме того, в соответствии с заложенным алгоритмом ЭБУ управляет работой электродвигателя вентилятора системы охлаждения двигателя и электромагнитной муфты включения компрессора кондиционера, выполняет функцию самодиагностики элементов системы и оповещает водителя о возникших неисправностях.
При выходе из строя отдельных датчиков и исполнительных механизмов ЭБУ включает аварийные режимы, обеспечивающие работоспособность двигателя.
Количество топлива, подаваемого форсунками, определяется продолжительностью электрического сигнала от ЭБУ. Электронный блок отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность сигнала) Для увеличения количества подаваемого топлива длительность сигнала увеличивается, а для уменьшения подачи топлива — уменьшается.
Система управления двигателем наряду с электронным блоком управления включает в себя датчики, исполнительные устройства, разъемы и предохранители.
схема системы управления двигателем шевроле ланос
Схема электронной системы управления двигателем: 1 -аккумуляторная батарея; 2 -замок зажигания; 3 -электронный блок управления двигателем (ЭБУ); 4 — колодка диагностики; 5 -датчик абсолютного давления воздуха ВО впускном коллекторе; 6 -датчик температуры воздуха во впускном трубопроводе; 7 -датчик детонации; 8 -датчик температуры охлаждающей жидкости; 9 -управляющее реле вентиляторов системы охлаждения; 10 — реле электродвигателя основного вентилятора; 11 — реле электродвигателя дополнительного вентилятора; 12 -электровентиляторы системы охлаждения; 13 — комбинация приборов; 14 -датчик фаз; 15 -диагностический и управляющий датчики концентрации кислорода; 16 -датчик неровной дороги; 17 -реле компрессора кондиционера; 18 -компрессор кондиционера; 19 -датчик скорости автомобиля; 20 -реле топливного насоса; 21 -топливный модуль; 22 — электромагнитный клапан продувки адсорбера; 23 -катушка зажигания; 24 -клапан рециркуляции отработавших газов; 25 — регулятор холостого хода; 26 -дат чик положения дроссельной заслонки; 27 -форсунка; 28 -датчик положения коленчатого вала
элементы системы управления
Элементы электронной системы управления двигателем: 1* -датчик неровной дороги; 2* -датчик температуры воздуха во впускном трубопроводе; 3* -датчик фаз; 4* -датчик положения коленчатого вала; 5* -датчик положения дроссельной заслонки; 6 -форсунки; 7 -электронный блок управления; 8 -датчик абсолютного давления воздуха; 9* -колодка диагностики; 10 -катушка зажигания; 11* — датчик скорости; 12 -монтажный блок реле и предохранителей; 13* -датчик температуры охлаждающей жидкости; 14* -диагностический датчик концентрации кислорода; 15 -свечи зажигания; 16 -управляющий датчик концентрации кислорода; 17* -датчик детонации
* Элемент на фото не виден.
колодка для диагностки
Диагностический разъем служит для вывода из памяти ЭБУ кодов неисправностей, выявленных при работе системы управления двигателем. Обозначение и расположение выводов
Датчик температуры охлаждающей жидкости
Датчик температуры охлаждающей жидкости установлен в системе охлаждения двигателя. Чувствительным элементом датчика является термистор, электрическое сопротивление которого изменяется обратно пропорционально температуре. При низкой температуре охлаждающей жидкости (–40 °С) сопротивление термистора составляет около 100 кОм, при повышении температуры до +130 °С — уменьшается до 70 Ом.
Электронный блок питает цепь датчика температуры постоянным опорным напряжением. Напряжение сигнала датчика максимально на холодном двигателе и снижается по мере его прогрева. По значению напряжения электронный блок определяет температуру двигателя и учитывает ее при расчете регулировочных параметров впрыска и зажигания. При отказе датчика или нарушениях в цепи его подключения ЭБУ устанавливает код неисправности и запоминает его. Для устранения неисправности проверьте надежность контактных соединений в проводке к датчику или замените датчик.
Датчик температуры воздуха
Датчик температуры воздуха на впуске (вклеен в воздухоподводящий рукав) аналогичен по конструкции датчику температуры охлаждающей жидкости, в нем также использован термистор, изменяющий свое сопротивление в зависимости от температуры.
Сопротивление термистора составляет 100 кОм при температуре –40 °С, а при повышении температуры до +130 °С уменьшается до 70 Ом.
ЭБУ питает цепь датчика постоянным опорным напряжением. Напряжение сигнала датчика максимально, когда воздух во впускной трубе холодный, и снижается по мере повышения его температуры. По значению напряжения ЭБУ определяет температуру воздуха на впуске и вносит коррективы при расчете угла опережения зажигания. При отказе датчика или нарушениях в цепи его подключения ЭБУ устанавливает код неисправности и запоминает его. Если ЭБУ продолжает выдавать код неисправности при исправных контактных соединениях в проводке, замените датчик температуры воздуха.
Датчик абсолютного давления во впускной трубе преобразует разрежение в этой трубе в электрическое напряжение, по значению которого электронный блок управления определяет нагрузку двигателя. Датчик установлен в моторном отсеке, закреплен на перегородке щита передка и соединен с впускной трубой резиновой трубкой. Выходное напряжение датчика изменяется в соответствии с давлением во впускной трубе — от 4,9 В (при полностью открытой заслонке) до 0,3 В (при закрытой заслонке) При неработающем двигателе блок управления по напряжению датчика определяет атмосферное давление и адаптирует параметры регулирования впрыска к конкретной высоте над уровнем моря. Значения атмосферного давления, хранящиеся в памяти, периодически обновляются при равномерном движении автомобиля и во время полного открытия дроссельной заслонки.
Датчик скорости (код 96190708) автомобиля установлен на коробке передач. Принцип действия датчика основан на эффекте Холла. Датчик выдает на электронный блок управления прямоугольные импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колес.
Датчик концентрации кислорода (лямбда-зонд) ввернут в резьбовое отверстие выпускного коллектора. В металлической колбе датчика расположен гальванический элемент, омываемый потоком отработавших газов. В зависимости от содержания кислорода в отработавших газах в результате сгорания топливовоздушной смеси изменяется напряжение сигнала датчика.
Информация от датчика поступает в блок управления в виде сигналов низкого (от 0,1 В) и высокого (до 0,9 В) уровня. При сигнале низкого уровня блок управления получает информацию о высоком содержании кислорода и, следовательно, об обеднении смеси. Сигнал высокого уровня свидетельствует о низком содержании кислорода в отработавших газах и, следовательно, о переобогащении смеси.
Постоянно отслеживая напряжение сигнала датчика, блок управления корректирует количество впрыскиваемого форсунками топлива. При низком уровне сигнала датчика (бедная топливовоздушная смесь) количество подаваемого топлива увеличивается, при высоком уровне сигнала (богатая смесь) – уменьшается.
Электронный блок управления — это мозг автомобиля, отвечающий за стабильную работу двигателя. ЭБУ работает совместно с датчиками, которые подают соответствующие сигналы о происходящих процессах в соответствующих механизмах. Одним из важнейших датчиков на автомобиле Ланос является ДАД или датчик абсолютного давления. Если неисправен этот элемент, то на автомобиле увеличивается расход топлива, поэтому знаем все детали и подробности замены устройства.
Для чего предназначен ДАД на Ланосе
Это устройство осуществляет измерение давления на впускном коллекторе, в зависимости от нагрузки двигателя и частоты вращения коленчатого вала. Измерение происходит путем сравнения вакуума (абсолюта) с атмосферным давлением. Датчик передает сигнал на ЭБУ, и на основании этого показателя электроника оценивает плотность воздуха и предполагаемый его расход, чтобы создавать ТВС подходящего состава. В итоге рассматриваемый датчик предназначается для таких целей:
- Для определения величины абсолютного и барометрического давления, что зависит от местности, в которой эксплуатируется автомобиль
- Для расчета объема всасываемого воздуха
- Для оценки нагрузки двигателя. Именно от нагрузки двигателя зависит величина давления в коллекторе. Чем выше это значение, тем больше нагрузка на мотор, а значит исходя из этого, происходит приготовление оптимальной ТВС
Многие ошибочно полагают, что этот датчик нужен только для оценивания количественного состава воздуха, поступающего в коллектор. Однако этот элемент выполняет много функций, на основании чего обеспечивается стабильная работа двигателя при разных режимах движения — под нагрузкой или при движении накатом.
Это интересно! Неисправность устройства приводит к повышению расхода топлива на Ланосе. Увеличенный расход является не единственным признаком, указывающий на неисправность детали.
Принцип работы и конструкция ДАД
Датчик абсолютного давления на Ланосе определяет объем воздуха, проходящего через дроссельную заслонку. В зависимости от количества проходящего воздуха и нагрузки на ДВС, создаются электрические импульсы, которые считываются ЭБУ. На основании величины импульсов происходит корректирование топливно-воздушной смеси, подаваемой в цилиндры.
Датчик абсолютного давления воздуха в конструкции имеет вакуумную камеру. За счет этой камеры происходит сравнение давления во впускном штуцере, и формирование соответствующего сигнала в виде электрических импульсов. Расчет давления воздуха осуществляется за счет следующих действий, происходящих внутри датчика:
- В конструкции устройства имеется высокочувствительная микромеханическая диафрагма, которая деформируется при увеличении давления на впускном коллекторе
- В зависимости от величины давления, происходит растяжение диафрагмы. При ее растяжении или деформации осуществляется изменение сопротивления на четырех тензорезисторах (переменный резистор)
- В зависимости от величины сопротивления тензорезисторов, происходит колебание напряжения в цепи
- Высокая чувствительность тензорезисторов обеспечивается за счет применения кремниевого чипа, поэтому варьирующееся напряжение на клеммах датчика равняется от 1 до 4,9В
- В зависимости от величины напряжения, которое поступает на ЭБУ и фиксируется, осуществляется формирование импульса. Этот импульс подается на форсунки, тем самым отвечая за приготовление сжигаемой в цилиндрах смеси
Это интересно! Чем выше показатель давления, тем соответственно выше значение напряжения на клеммах датчика.
При не запущенном моторе давление во впускном коллекторе будет одинаковым с атмосферным, и составлять 101 кПа. Именно в этот момент датчик определяет величину атмосферного давления. Когда мотор заводится, то происходит закрытие дроссельной заслонки, что способствует возникновению разрежения и созданию давления порядка 30-33 кПа. При открытой заслонке и работающем моторе давление будет сравниваться с атмосферным, и приравниваться к 101 кПа. Колебания давления возникают при открытии и закрытии дроссельной заслонки.
Выходное напряжение на выводах ДАД | |||
Высота над уровнем моря | Барометрическое давление | Напряжение на выходе | |
м | мм.рт.ст | кПа | В |
0-610 | 760-707 | 100-94 | 3,3-4,3 |
611-1524 | 707-634 | 94-85 | 3,0-4,1 |
1525-2438 | 634-567 | 85-76 | 2,7-3,7 |
2439-3048 | 567-526 | 76-70 | 2,5-3,3 |
Из принципа действия датчика абсолютного давления на Шевроле, ДЭУ и ЗАЗ Ланос видно, что этот элемент играет важную роль в приготовлении смеси. Если элемент будет работать с погрешностью или вовсе не будет функционировать, то ТВС будет насыщенной, и способствовать увеличению расхода топлива.
Симптомы неисправности устройства
Рассматриваемый элемент имеет соответствующий ресурс работы, который зависит от разных факторов. Главный фактор — это изготовитель ДАД, так как элементы российского производства являются самыми не надежными. Кроме непродолжительного эксплуатационного ресурса, они также имеют свойство давать неправильные данные. О признаках неисправности датчика абсолютного давления Ланос свидетельствуют следующие факторы:
При неисправности датчика давления воздуха ЭБУ переходит в аварийный режим работы, и при этом двигатель будет заводиться и работать. Редко возникают случаи, когда мотор не заводится, и причиной этого также может быть неисправный рассматриваемый элемент. При всех вышеописанных симптомах необходимо обратить внимание на ДАД, и произвести его проверку. Как проверить исправность датчика абсолютного давления Шевроле Ланос, рассмотрим подробно, но для начала надо разобраться, где он находится.
Это интересно! Датчики абсолютного давления для автомобилей Ланос производятся по микромеханической технологии.
Где расположен датчик абсолютного давления Ланос и его артикул
На всех автомобилях марки Ланос устанавливаются датчики абсолютного давления воздуха. Для чего нужен этот элемент, и по какому принципу он работает, подробно описано в материале. Часто симптомы, указывающие на неисправность устройства, приводят к необходимости его проверки. Для начала нужно найти, где находится ДАД на Ланосе.
Располагается ДАД Ланос на моторном щитке передка. Найти его не составит большого труда. К этому элементу подключена фишка с проводами, а также шланг. На фото ниже показано, где находится датчик давления воздуха на Ланосе.
Есть и другие производители рассматриваемых элементов, но при покупке учитывайте стоимость изделий. Цена датчика давления на Ланос датского производства составляет 1800-2000 рублей, в то время как российский прототип стоит около 800 рублей.
Это интересно! При перемещении на автомобиле по горной местности, рекомендуется периодически делать остановку, чтобы ЭБУ смог измерить величину атмосферного давления.
Проверка исправности МАП-сенсора
Перед тем, как прибегнуть к проверочным действиям, надо отметить, что датчики бывают аналогового и цифрового типа. На автомобили Ланос устанавливаются цифровые датчики. Цифровые устройства отличаются от аналоговых наличием микросхемы, где осуществляется преобразование сигнала. Чтобы проверить исправность ДАД на Ланосе, понадобится подготовить первоначально следующие детали:
Процедура диагностики выглядит следующим образом:
- Первоначально необходимо проверить величину напряжения на клеммах датчика. Для этого используется мультиметр, который устанавливается в режим измерения постоянного напряжения до 20В
- Черный щуп прибора подключается к массе автомобиля (можно на минусовую клемму аккумулятора), а красный щуп нужно подсоединить к фишке центрального провода салатового цвета (если щуп не вмещается в тыльную части фишки, тогда используем скрепку или булавку). Этим проводом элемент соединен с ЭБУ, и происходит изменение напряжения в зависимости от давления
- Включить зажигание авто, и снять показания. При включении зажигания проверяемый элемент измеряет атмосферное давление путем его сравнения с вакуумом. Напряжение на приборе при включенном зажигании должно составлять от 4,5 до 4,9В
- Пониженное напряжение свидетельствует о неисправности датчика или шланга, соединяющего элемент с впускным коллектором. Шланг необходимо проверить на целостность, и при необходимости заменить
Если выходное напряжение ДАДа составляет 4,5-4,9В, значит переходим к дальнейшей проверке. Для этого необходимо отсоединить шланг от коллектора, и присоединить к нему шприц. При помощи шприца создается разряжение в датчике, и контролируются по прибору изменения напряжения. При возникновении разрежения (когда давление относительно атмосферного уменьшается), будет падать напряжение. Если этого не происходит, значит ДАД неисправен, и требуется его замена. Величина падения напряжения достигает 0,3-0,5В.
Это интересно! Для проверки не обязательно использовать шприц. Чтобы быстро проверить исправность датчика, понадобится завести мотор, и проследить за изменением напряжения на мультиметре. Снижение напряжения говорит об исправности элемента.
Замена неисправного датчика абсолютного давления ДАД
Если после диагностики выясняется, что ДАД на Ланосе неисправен, значит его необходимо заменить. Процедура замены не трудная, и занимает минимум времени. Перед заменой понадобится купить новый ДАД. Инструкция по замене имеет следующий вид:
Процесс замены ДАД на Ланосе 1,5 не трудный, и после проведения таких действий, можно обнаружить исчезновение дефектов работы двигателя, которые возникали с неисправным элементом.
Ремонт и очистка датчика абсолютного давления
Стоимость рассматриваемого устройства вызывающая, что обусловлено его конструктивными особенностями. Сразу стоит отметить тот факт, что ДАД не предназначен для ремонта, поэтому в случае его неисправности, следует произвести замену. Однако в устройстве возникают незначительные поломки, которые вполне реально устранить своими руками.
Принимая решение о самостоятельном ремонте ДАДа, нужно отдавать себе отчет, что в случае неправильности действий, из строя может выйти ЭБУ. Если принято решение разобрать и отремонтировать датчик абсолютного давления на Ланосе, то делать это необходимо в следующем порядке:
- Разобрать устройство, воспользовавшись ножом
- Оценить состояние внутренних элементов. Наличие окислов недопустимо, и они могут быть причиной неработоспособности устройства. Окислы необходимо очистить, а слабые контакты перепаять
- Чтобы исключить повторное возникновение окислов и загрязнений, внутреннее заполнение устройства следует залить специальным силиконовым герметиком
- Устанавливать элемент на автомобиль после использования герметика можно только через 24 часа
- После установки на автомобиль, понадобится выполнить проверку, и убедиться, что ремонт помог устранить неисправность мап-сенсора
На этом ремонт датчика абсолютного давления завершен, и остается проверить его в действии после запуска двигателя. Зная конструкцию, принцип работы и назначение ДАДа на Ланосе, не составит большого труда заменить его, тем самым снизив расход топлива и восстановив работоспособность двигателя.
В завершении надо отметить, что если вы владелец автомобилей Сенс и Шанс 1,3 и 1,4, то данная информация является не уместной. На Сенсах и Шансах 1,3 и 1,4 устанавливаются датчики, которые оценивают не только абсолютное давление, но и температуру воздуха. На Ланосе за температуру всасываемого воздуха отвечает датчик ДТВ на впускном патрубке. На Сенсах и Шансах 1,3 и 1,4 литра такого устройства нет, поэтому используется ДАД, оценивающий давление и температуру всасываемого воздуха. Место расположения этого устройства и принцип проверки на Сенсе и Шансе соответственно отличается. Автомобиль марки Шанс 1,5 литра с двигателем A15SMS на 86 л.с. имеет аналогичный ДАД с Ланосом.
Заз Шанс автомобиль, который дал новую жизнь заводу и является клоном Шевроле Ланос. Шанс и Ланос получились довольно симпатичным автомобилем с уже современным дизайном и современными решениями. Новый авто оснащается инжекторным двигателем, который обеспечивает экономию топлива и простоту использования. Как известно двигателя с инжекторным впрыском топлива оснащены большим количеством датчиков, которые участвуют в работе двигателя. Поломка одного из них сулит большими проблемами и порой, чтобы определить какой датчик вышел из строя, необходимо проводить полную диагностику всего авто, что довольно дорого. Опытные водители могут определить сломанный датчик по одним лишь признакам, о которых рассказывается в данной статье. Изучив данный материал, Вы с легкостью сможете определить неисправность датчика на вашем автомобиле.
Блок управления двигателем
Расположен ЭБУ под центральной консолью и крепиться к корпусу отопителя.
Признаки неисправности:
Признаков поломки у блока управления двигателем может быть множество, но чаще всего это полный отказ двигателя или вовсе автомобиля. При поломке ЭБУ не работает двигатель так и все функции автомобиля (стеклоподъемники, приборная панель и т.д.).
Датчик скорости
Датчик скорости необходим для определения скорости движения автомобиля. Раньше скорость автомобиля определялась через специальный трос, который вращался и подвергался большому трению, что часто приводило его в негодность, современные же автомобили используют датчик с электромагнитной связью, такой принцип работы позволят повысить надежность и точность работы спидометра. Расположен датчик в корпусе КПП и считывает показания с первичного вала.
Признаки неисправности:
- Не работает спидометр;
- Неправильные показания на спидометре;
- Спидометр завис на одной скорости;
Датчик детонации
Если в двигателе автомобиля не гасить детонации, то срок его службы заметно сокращается. Детонация в двигателе возникает из-за некачественного топлива износа трущихся деталей и неправильного угла зажигания. Избавиться от детонаций в ЗАЗ Шанс помогает специальный датчик, который улавливает детонации в двигателе и посылает сигналы на ЭБУ, а тот корректирует топливную смесь в нужных пропорциях для снижения шумов в двигателе. Расположен данный датчик на блоке двигателя, где как раз лучше всего слышны детонации.
Признаки неисправности:
- Повышенный расход топлива;
- Нестабильная работа двигателя;
- Потеря мощности и динамики;
Датчик положения коленчатого вала
Датчик, который считывает показания с вращения коленавала, называется ДПКВ. Эта деталь в автомобиле отвечает за определение верхней мертвой точки поршня, необходимо это для правильного воспламенения топливной смеси в камере сгорания. Устанавливается, датчик вблизи шкива коленчатого вала и работает на принципе электромагнита. Единственный датчик, при неисправности которого двигатель не запустится.
Признаки неисправности:
- Самопроизвольная остановка двигателя;
- Отказ одного из цилиндров;
- Невозможность запустить ДВС;
Датчик кислорода
В настоящее время у автомобилей есть стандарты, которым они должны соответствовать. В эти параметры входят выбросы в окружающую среду отработанных газов. Датчик кислорода измеряет, эти выбросы и передает показания на ЭБУ. Если эти параметры не соответствуют нормам, то он посылает сигнал на блок управления двигателем, а тот в свою очередь меняет параметры топливной смеси. Устанавливается датчики в выпускном коллекторе.
Признаки неисправности:
- Из выхлопной трубы пахнет бензином;
- Большой расход топлива;
Датчик температуры воздуха в ресивере
Датчик служит для определения температуры впускаемого воздуха в двигатель. Установлен данный элемент во впускной гофре. Температура воздуха необходима для правильной корректировки топливной смеси в зависимости от погодных условий.
Признаки неисправности:
- Не стабильная работа ДВС;
- Плавающие обороты ХХ;
Датчик абсолютного давления
ДАД устанавливается в гофре впускного ресивера. Датчик считывает показания давления и разрежения во впускном тракте двигателя. Показания меняются в зависимости от оборотов двигателя и режима эксплуатации.
Признаки неисправности:
- Не стабильная работа ДВС;
- Потеря мощности и динамики;
- Самопроизвольная остановка двигателя;
Датчик положения дроссельной заслонки
ДПДЗ устанавливается на дроссельном узле и насажен на один вал с заслонкой дросселя. Задачей датчика является определение угла открытия дроссельной заслонки и передача этих показаний на ЭБУ. Один из самых ненадежных датчиков в системе автомобиля из-за своей конструкции.
Признаки неисправности:
- Повышенные обороты холостого хода;
- Низкие обороты холостого хода;
- Двигатель глохнет на ХХ;
Датчик температуры ОЖ
Данный датчик установлен в корпусе ГБЦ под модулем зажигания. Служит для определения температуры антифриза. Данные показания необходимы для обеспечения правильного прогрева двигателя или же для ненадобности прогрева. В зависимости от температуры жидкости датчик меняет свое сопротивление и передает его на ЭБУ, тот же в свою очередь, основываясь на показаниях сопротивления, понимает температуру ОЖ и корректирует топливную смесь в зависимости от температуры.
Читайте также:
- Замена помпы лансер 9
- Замена переднего ступичного подшипника ситроен ксантия
- 96820587 датчик давления топливной рампы симптомы поломки дэу винсторм
- Замена порогов крайслер рт крузер своими руками
- Распиновка датчика распредвала газель
Неисправность датчика детонации
Неисправность датчика детонации приводит к тому, что блок управления двигателем (ЭБУ) перестает обнаруживать процесс детонации при сгорании топливной смеси в цилиндрах. Такая проблема возникает в результате слишком слабого или наоборот чересчур сильного исходящего сигнала. Как результат — на приборной панели загорается лампочка “проверьте двигатель”, а поведение автомобиля меняется из-за условий работы двигателя.
Чтобы разобраться с вопросом неисправностей датчика детонации необходимо понимать принцип его работы и выполняемые им функции.
Как работает датчик детонации
В двигателях автомобилей может использоваться один из двух типов датчиков фиксирующих детонацию — резонансные и широкополосные. Но поскольку первый вид уже устарел и встречается редко, то опишем работу именно широкополосных датчиков (ДД).
В основе конструкции широкополосного ДД лежит пьезоэлемент, который при механическом воздействии на него (то есть, при взрыве, которым, по сути, и является детонация) подает в электронный блок управления ток с определенным напряжением. Датчик настроен на восприятие звуковых волн в диапазоне от 6 Гц до 15 кГц. В конструкцию датчика входит также утяжелитель, который усиливает механическое воздействие на него посредством увеличения силы, то есть, увеличивает звуковую амплитуду.
Поданное датчиком на ЭБУ напряжение через выводы коннектора обрабатывается электроникой и потом делается вывод имеется ли в двигателе детонация, и соответственно, нужно ли корректировать угол опережения зажигания, что поможет ее устранить. То есть, датчик в данном случае является лишь “микрофоном”.
Признаки неисправности датчика детонации
При полном или частичном выходе ДД из строя проявляется неисправность датчика детонации по одном из симптомов:
- Тряска двигателя. При исправных датчике и системе управления в двигателе этого явления быть не должно. На слух появление детонации можно косвенно определить по металлическому звуку, исходящему из работающего двигателя (стук пальцев). А излишняя во время работы двигателя тряска и рывки это первое по чем можно определить неисправность датчика детонации.
- Снижение мощности либо “тупость” двигателя которые проявляются ухудшением разгона либо излишним повышением оборотов на низких скоростях. Такое происходит когда при неверном сигнале ДД осуществляется самопроизвольная корректировка угла зажигания.
- Затрудненный запуск двигателя, особенно «на холодную», то есть, при низких температурах после длительного простоя (например, утром). Хотя вполне возможно такое поведение машины и при теплой температуре окружающего воздуха.
- Повышенный расход топлива. Так как угол зажигания нарушен, то и топливно воздушная смесь не отвечает оптимальным параметрам. Соответственно, возникает ситуация, когда двигатель потребляет большее количество бензина, чем ему нужно.
- Фиксирование ошибок датчика детонации. Обычно причинами их появления является выход сигнала от ДД за границы допустимых пределов, обрыв его проводки или полный выход датчика из строя. О появлении ошибок будет свидетельствовать лампочка Check Engine на приборной панели.
Однако стоит учитывать, что такие симптомы могут указывать и на другие поломки двигателя, в том числе, других датчиков. Рекомендуется дополнительно считать память ЭБУ на наличие ошибок, которые могли возникнуть при некорректной работе отдельных датчиков.
Неисправности цепи датчика детонации
Для того, чтобы выявить неисправности ДД более точно, желательно воспользоваться электронными сканерами ошибок электронного блока управления. Тем более если на приборной панели засветилась контрольная лампа “чека”.
Лучшим устройством для этой задачи будет Scan Tool Pro Black Edition – недорогое устройство корейского производства с большим функционалом работающее с протоколом передачи данных OBD2 и совместимое с большинством современных авто, а также программами для смартфона и компьютера (с модулем Bluetooth или Wi-Fi).
Необходимо считать есть ли одна с 4-х ошибок датчика детонации и ошибки по датчикам ДМРВ, лямбде или температуры ОЖ, а затем просмотреть показатели в реальном времени по углу опережения и составу топливной смеси (ошибка по датчику ДД выскакивает при значительном обеднении).
Зачастую ошибка р0325 “Обрыв в цепи датчика детонации” указывает на проблемы в проводке. Это может быть обрыв проводов либо, что чаще, окислившиеся контакты. Нужно выполнить профилактику разъемов на датчике. Иногда ошибка p0325 возникает по причине того, что ремень ГРМ проскакивает на 1-2 зуба.
Ошибка P0328 “Высокий уровень сигнала датчика детонации” зачастую свидетельствует о проблеме с высоковольтными проводами. В частности, если на них либо пьезоэлементе пробивает изоляция. Аналогично указанная ошибка может возникнуть и по причине того, что ремень ГРМ перескочил на пару зубьев. Для диагностики нужно проверить метки на нем и состояние шайб.
Ошибки р0327 или р0326, как правило, формируются в памяти ЭБУ по причине низкого сигнала от датчика детонации. Причина может заключаться в плохом контакте от него, либо слабом механическом соприкосновении датчика с блоком цилиндров. Для устранения ошибки можно попробовать обработать средством WD-40 как упомянутые контакты, так и сам датчик. Также важно проверить момент затяжки крепления датчика, поскольку этот параметр критически важен для его работы.
В целом, можно отметить, что признаки неисправности датчика детонации очень схожи с симптомами, характерными для позднего зажигания ведь ЭБУ, в целях безопасности для мотора старается автоматически делать максимально поздним, так как это исключает разрушение мотора (если угол слишком ранний, то кроме того что возникает детонация, не только падает мощность, а и появляется риск прогорания клапанов). Так что в целом можно сделать вывод что главные признаки точно такие же как и при неверной установки угла опережения зажигания.
Причины неисправности датчика детонации
Что касается причин, по которым возникают проблемы с датчиком детонации, то к ним относятся следующие поломки:
- Нарушение механического контакта между корпусом датчика и блоком двигателя. Как показывает практика, это является наиболее распространенной причиной. Обычно сам датчик имеет круглую форму с крепежным отверстием посередине, через которое с помощью болта или шпильки крепится на своем посадочном месте. Соответственно, если в резьбовом соединении уменьшается момент затяжки (ослабляется прижимание ДД к двигателю), то впоследствии на датчик не поступают звуковые механические колебания из блока цилиндров. Для того чтобы устранить подобную поломку достаточно затянуть упомянутое резьбовое соединение, либо заменить крепежный болт на крепежную шпильку, поскольку она более надежна и обеспечивает плотное механическое соединение.
- Проблемы с проводкой датчика. В данном случае могут быть различные проблемы, например, замыкание питающего или сигнального провода на «массу», механическое повреждение провода (особенно в местах его изгиба), повреждение внутренней или внешней изоляции, обрыв всего провода либо его отдельных жил (питающего, сигнального), нарушение экранирующей оплетки. В случае проблема решается восстановлением либо заменой его проводки.
- Плохой контакт в месте подключения. Такая ситуация иногда случается в случае, если, например, сломана пластмассовая защелка в месте подсоединения контактов датчика. Иногда в результате тряски контакт просто нарушается, и соответственно, сигнал от датчика либо питание на него попросту не доходят до адресата. Для ремонта можно попробовать заменить фишку, поправить контакт, либо другим механическим методом попробовать соединить две колодки с контактами.
- Полный выход датчика из строя. Сам по себе датчик детонации — устройство достаточно простое, поэтому ломаться там особо нечему, соответственно, и выходит из строя он достаточно редко, но бывает и такое. Ремонту датчик не подлежит, поэтому в случае полной поломки необходимо выполнить его замену на новый.
- Проблемы с электронным блоком управления. В ЭБУ как и любом другом электронном устройстве могут случатся программные сбои, что приводит к некорректному восприятию информации от ДД, и соответственно, принятию блоком некорректных решений.
На что влияют неисправности датчика детонации
Можно ли ездить с неисправным датчиком детонации? Этот вопрос интересует автолюбителей, впервые столкнувшихся с данной проблемой. В общих чертах ответ на этот вопрос можно сформулировать так — в краткосрочной перспективе автомобилем пользоваться можно, однако при ближайшей же возможности необходимо провести соответствующие диагностику и устранить проблему.
Ведь по принципу работы ЭБУ когда возникает неисправность датчика детонации топлива, то автоматически устанавливается позднее зажигание чтобы исключить повреждение деталей поршневой группы при возникновении реального детонирования при сгорании топливной смеси. Как результат — поднимается расход топлива и значительно падает динамика которая особенно станет заметной при повышении оборотов.
Что будет если отключить датчик детонации полностью?
Некоторые автовладельцы и вовсе пытаются отключить датчик детонации так как при нормальных условиях эксплуатации и заправке хорошим топливом может казаться ненужным. Однако это не так! Поскольку детонирование возникает не только из-за плохого топлива и проблем со свечами, компрессией и пропусками зажигания. Поэтому если отключить датчик детонации то последствия могут быть следующими:
- быстрый выход из строя (пробой) прокладки ГБЦ со всеми вытекающими последствиями;
- ускоренный износ элементов цилиндропоршневой группы;
- трещина головки блока цилиндров;
- прогорание (полное или частичное) одного или нескольких поршней;
- выход из строя перемычек между кольцами;
- изгиб шатуна;
- подгорание тарелок клапанов.
Это обусловлено тем, что при возникновении этого явления электронный блок управления не будет предпринимать мер по ее устранению. Поэтому ни в коем случае не нужно отключать его и ставить перемычку из сопротивления ведь это чревато дорогим ремонтом.
Как определить неисправность датчика детонации
При проявлении первых признаков отказа ДД, интересует логический вопрос — как проверить и определить неисправность датчика детонации. В первую очередь необходимо сказать, что проверка датчика детонации возможна не снимая его с блока цилиндров, так после демонтажа с посадочного места. Причем сначала лучше проделать несколько тестов когда датчик прикручен к блоку. Вкратце процедура выглядит так:
- установить обороты холостого хода на уровень приблизительно 2000 оборотов в минуту;
- каким-нибудь металлическим предметом (маленьким молотком, гаечным ключом) нанести один-два удара несильных (. ) по корпусу блока цилиндров в непосредственной близости от датчика (можно легонько ударить непосредственно по датчику);
- если обороты двигателя после этого упали (это будет слышно на слух), — значит, датчик исправен;
- обороты остались на прежнем уровне — необходимо выполнить дополнительную проверку.
Для проверки датчика детонации автолюбителю понадобится электронный мультиметр, способный измерять значение электрического сопротивления, а также постоянного напряжения. Самый лучший вариант проверки — с помощью осциллографа. Снятая с его помощью диаграмма работы датчика явно покажет — работоспособный он или нет.
Но так как рядовому автолюбителю доступен лишь тестер, то достаточно проверить показания сопротивления которые выдает датчик при постукивании. Диапазон изменения сопротивления находится в пределах 400 … 1000 Ом. Также в обязательном порядке необходимо провести элементарную проверку целостности его проводки — нет ли обрыва, повреждения изоляции либо короткого замыкания. Без помощи мультиметра при этом также не обойтись.
Если же проверка показала что датчик детонации топлива исправен, а ошибка о выходе сигнала датчика за пределы допустимого диапазона, то возможно стоит искать причину не в самом датчике, а в работе двигателя или коробки передач. Почему? Во всем виноваты звуки и вибрация которую ДД может воспринимать как детонирование топлива и неверно корректировать угол зажигания!
Источник
Симптомы неисправности датчика детонации (ДД) и как его проверить
Водители со стажем замечательно не забывают, как детонировали Жигули при заправке нехорошим бензином или бензином с пониженным октановым числом. Детонация двигателя проявляет себя в момент глушения ДВС. Некое время по окончании выключения зажигания он продолжает неравномерно вращаться, «дергаться».
На ходу автомобиля на некачественном бензине смогут, как говорят водители, «стучать пальчики». Это кроме этого проявление результата детонации. На самом деле, это – далеко не безобидный эффект. При его действии появляются большие перегрузки на поршни, клапана, головку блока цилиндров, двигатель в целом.
В современных машинах для предотвращения детонирования двигателя в совокупностях управления используют датчики детонации (ДД).
Что такое детонация
Детонация двигателя – процесс произвольного воспламенения смеси бензин-воздух без участия искры зажигания.
Теоретически, в случае если давление в цилиндре превысит предельно допустимое значение для смеси с бензином определенного октанового числа, происходит самовоспламенение. Чем меньше октановое число бензина, тем при более низкой компрессии вероятен данный процесс.
На протяжении детонирования двигателя процесс самовоспламенения имеет хаотичный темперамент, нет единого центра возгорания:
В случае если выстроить зависимость давления в цилиндре от угла зажигания, она будет иметь вид:
На графике видно, что при детонации пиковые значения давления в цилиндре фактически в два раза превышает большое давление при обычном сгорании. Такие нагрузки смогут привести к поломке двигателя, кроме того таковой важной, как трещина в блоке.
Главные факторы, приводящие к происхождению результата детонации:
- неправильное октановое число заправленного бензина;
- повышению возможности проявления данного результата содействуют конструктивные изюминки ДВС (степень сжатия, форма поршня, особенности камеры сгорания и другие);
- особенности эксплуатации силового агрегата (температура воздуха, уровень качества бензина, состояние свечей, нагрузка и др.).
Назначение
Главное назначение датчика детонации – своевременно найти зарождение этого вредного результата и передать сведения электронному блоку управления двигателем для корректировки качества смеси бензин-воздух и угла зажигания для предотвращения страшного детонирования двигателя.
Видео — что из себя воображает ДД:
Регистрация факта данного результата ведется методом преобразования механических колебаний двигателя в электрический сигнал.
Принцип работы
Принцип работы практических всех датчиков детонации основан на применении пьезоэлектрического результата. Пьезоэлектрический эффект – свойство определенных материалов образовывать разность потенциалов при действии на него механических действий.
Большая часть мужчин пользовались пьезозажигалками, и знают, что в них формируется нешуточная электрическая искра. Таких высоких напряжений в датчиках детонации не появляется, но взятого наряду с этим сигнала достаточно для блока управления двигателем.
Используется два типа датчиков детонации: резонансные и широкополосные.
Конструкция широкополосных ДД, используемых в машинах ВАЗ, вторых машин зарубежного производства:
Широкополосные датчики крепятся на блоке цилиндров в близи от территории сгорания. Крепление имеет твёрдый темперамент, дабы не демпфировать ударные импульсы при нарушениях работы ДВС.
Пьезокерамический чувствительный элемент формирует электрический импульс достаточной для обработки блоком управления двигателем амплитудой в широком диапазоне частот.
Широкополосные датчики формируют сигнал, как на протяжении выключения зажигания при остановке двигателя на малой частоте вращения, так и на громадных оборотах на ходу.
На некоторых машинах, к примеру Toyota, используют резонансные датчики:
Такие ДД трудятся на малых оборотах двигателя, при которых за счет явления резонанса достигается громаднейшее механическое действие на пьезоэлектрическую пластину, соответственно, формируется громадной сигнал. Не просто так, в этих датчиках устанавливается защитный шунтирующий резистор.
Преимущество резонансных датчиков – фильтрация механических действий при перемещении по неровной дороге, посторонних механических стуках, не связанных с детонацией двигателя.
ДД резонансного типа устанавливаются на собственное резьбовое соединение, напоминают по форме датчики давления масла.
Показатели неисправности датчика детонации
Главной показатель, свидетельствующий о неисправности датчика детонации – конкретно проявление результата некорректной работы двигателя, обрисованного выше.
Во многих случаях это возможно обстоятельством механического разрушения датчика, например, в момент удара при аварии, или проникновение жидкости в разъем либо через трещину в зону пьезодатчика.
В случае если ДД начинает механически разрушаться, в ходе перемещения величина напряжения на его выводах может скачкообразно изменяться. Блок управления двигателя будет реагировать на скачки напряжения, как на вероятную детонацию.
Видео — симптомы неисправности датчика детонации, где находится на Лада Гранта и как его заменить:
При самопроизвольной корректировке угла зажигания двигатель начинает дергаться, обороты плавать. Такой же эффект может появиться, в случае если ослабло крепление датчика.
Как проверить датчик детонации
Компьютерная диагностика не всегда регистрирует неисправность датчика детонации. В большинстве случаев диагностика двигателя происходит в стационарном режиме на СТО, а детонация больше проявляется на ходу автомобиля при повышенных нагрузках (на повышенной передаче) или в момент выключения зажигания, в то время, когда компьютерная диагностика в принципе неосуществима.
Имеется способ диагностики датчика детонации без снятия со штатного места. Для этого запускают и прогревают двигатель, после этого на холостых оборотах маленьким железным предметом постукивают по крепежному болту датчика. В случае если отмечается изменение частоты вращения двигателя (изменяются обороты), значит, ДД исправен.
Это мало страшный способ. Возможно повредить сам ДД и блок цилиндров также.
Самый надежный метод проверки работоспособности – демонтировать датчик, отсоединить от него разъем, подключить к его выводам мультиметр в положении измерения напряжения 2 Вольта.
После этого нужно железным предметом постучать по нему. Показания мультиметра должны увеличиться с 0 до нескольких десятков милливольт (лучше проверить амплитуду импульсов по справочнику). В любом случае, если напряжение при постукивании увеличилось, датчик электрически исправен.
Значительно лучше вместо мультиметра подключить осциллогаф, тогда возможно определить кроме того форму выходного сигнала. Такую диагностику лучше сделать на СТО.
Замена
В том случае, если имеется подозрение на неисправность датчика детонации, его направляться поменять. По большому счету, они весьма редко выходят из строя и имеют громадной ресурс, обычно превышающий ресурс двигателя. Как правило неисправность образуется как последствие аварии либо демонтажа силового агрегата на протяжении капремонта.
Принцип работы датчиков детонации однообразен для каждого типа (резонансные и широкополосные). Исходя из этого время от времени возможно применять устройство от вторых моделей двигателей, если не находится родной. Очевидно, если он подходит по посадочным данным и разъему.
Допускается установка ДД, бывшего в эксплуатации, с разборки.
Рекомендации
Кое-какие автомобилисты забывают о ДД, поскольку он редко напоминает о собственном существовании, и его неприятности не вызывают таких последствий, как при неисправности, к примеру, датчика положения коленвала.
Однако, результатом неисправности этого устройства смогут быть намного большие неприятности с двигателем. Исходя из этого при эксплуатации автомобиля следите, дабы датчик детонации:
- был надежно закреплен;
- на его корпусе не было масляных жидкостей;
- на разъеме не было следов коррозии.
Разбираемся какое масло лучше заливать в двигатель зимний период для отечественного климата.
Как проверить ДТОЖ мультиметром и какие конкретно нюансы наряду с этим лучше знать.
Принцип работы датчика АБС http://voditeliauto.ru/poleznaya-informaciya/на данный момент-i-remont/kak-proverit-datchik-abs.html и как его проверить на работоспособность.
Видео — где стоит датчик детонации ЗАЗ Ланос, Шанс, Чери и как его проверить мультиметром, и не снимая его с авто:
В обязательном порядке к прочтению:
ДАТЧИК ДЕТОНАЦИИ. Неисправности датчика детонации. ВАЗ. ЛАДА.
Статьи как раз той тематики,которой Вы интересуетесь:
уход и Обслуживание за автомобилем Главным условием оптимальной работы двигателя автомобиля есть обычное сгорание топливовоздушной смеси в цилиндрах мотора. А это зависит от двух…
Исправность антиблокировочной совокупности тормозов – база надёжной езды на автомобиле, в особенности в условиях сложной дорожной обстановки. В случае если в ходе управления транспортным средством на…
уход и Обслуживание за автомобилем Постоянное совершенствование силовых установок отражается положительно на неспециализированных чертях двигателя, но не весьма на неспециализированной технической части автомобиля….
уход и Обслуживание за автомобилем За оптимальный температурный режим силовой установки, при котором выход мощности большой, отвечает совокупность охлаждения. Эта совокупность включает рубаху…
Датчик температуры охлаждающей жидкости либо, в сокращении, ДТОЖ, является прибором , определяющий температуру антифриза в совокупности охлаждения и дающий сигнал на ее понижение при помощи…
Источник
Загорелся чек?
Итак, случилось. Что делать? Можно конечно сразу ехать на диагностику, но если таковой нет в зоне досягаемости?
А делаем следующее:
(Справедливо для автомобилей с K-L линией — ланосы с двигом 1.5 до 2008 года выпуска и для других без ODBII)
В колодке диагностики перемыкаем контакты А и В, чек отмаргивается 12 раз, а потом считаем количество вспышек, чтобы узнать номер ошибки.
Вспышки разделяются паузами, малая пауза — около секунды, длинная — около двух. Малая пауза используется для разделения цифр в коде, длинная — для разделения кодов. Например, серия импульсов: две вспышки, короткая пауза, вспышка, длинная пауза — код 21. Каждый код повторяется три раза, например 12,12,12,33,33,33… 12-начало и конец выдачи кодов, 33 — код неисправности, если неисправностей нет, всегда выдается код 12.
Коды неисправностей Ланос (до 2008г.в. — Евро2 — с ЭБУ KDAC).
Расшифровка ошибок:
1. Ошибка ТСМ
2. Ошибка ТСМ
3,4,5,6. Ошибка Карлсона
7,8. Ошибка клапана EGR
12. Двигатель не заведен (Нет импульсов с датчика)
13. Ошибка датчика кислорода (O2 sensor not toggling)
14. Датчик темпиратуры ОЖ. Высокий уровень сигнала
15. Обрыв датчика темпиратуры ОЖ
16. Ошибка датчика детонации (странно, на украинских ланосах до 2008г. с двигателями 1.5 его нет)
17. Форсунки отсоединены или КЗ (Injector disconn or shorted)
18. Ошибка управления DSNEF
19. Ошибка датчика синхронизации к/вала, 58зуб (58X (engine speed) signal)
21. Датчик положения дросселя. Высокий уровень сигнала (TPS High)
22. Обрыв датчика положения дросселя
23. Датчик темпиратуры воздуха. Высокий уровень сигнала (MAT sensor high)
24. Слишком мала скорость автомобиля/ошибка ДС (Vehicle speed sensor malf)
25. Обрыв датчика темпиратуры воздуха (MAT sensor low)
27. Высокое давление кондиционера (A/C pressure high)
28. Низкое давление кондиционера (A/C pressure low)
29. Реле бензонасоса (замкнут на землю)
32. Реле бензонасоска (замкнут на питание)
33. МАР сенсор. Высокий уровень сигнала
34. МАР сенсор. Низкий уровень сигнала
35. Ошибка РХХ (IAC malfunction)
41. Обмотка катушки В (замкнут на питание) EST B shorted to battery
42. Обмотка катушки А (замкнут на питание) EST A shorted to battery
44. Датчик кислорода. Бедная смесь (O2 sensor lean)
45. Датчик кислорода. Богатая смесь (O2 sensor rich)
49. Слишком высокое бортовое напряжение
51. Ошибка PROM
53. Неисправность иммобилайзера (вроде так же нету его на Шевроле)
61. Клапан продувки адсорбера (замкнут на землю)
62. Клапан продувки адсорбера (замкнут на питание)
63. Обмотка катушки В (замкнут на землю) EST B shorted to ground
64. Обмотка катушки А (замкнут на землю) EST A shorted to ground
87,88. Реле кондиционера.
Коды неисправностей Ланос (с 2008г.в. — Евро3 — с ЭБУ CAVUT).
Двузначные обозначение – коды в соответствии с диагностическим прибором SCAN-100, четырёхзначные (в скобках) – в соответствии с индикацией ошибок лампой ТОД
Код 13 (0134) Датчик кислорода не переключается
Код 14 (0117) Высокая температура охлаждающей жидкости
Код 15 (0118) Низкая температура охлаждающей жидкости
Код 17 (0201, 0202, 0203, 0204, 0261, 0262, 0264, 0265, 0267, 0268, 0270, 0271) Замыкание цепи форсунки на «массу»/аккумуляторную батарею
Код 19 (0336) Ошибка в сигнале 58Х (А и В)
Код 21 (0123) Высокий уровень выходного сигнала датчика положения дроссельной заслонки
Код 22 (0122) Низкий уровень выходного сигнала датчика положения дроссельной за-слонки
Код 23 (0112) Высокая температура воздуха впускного коллектора
Код 24 (0500) Ошибка датчика скорости автомобиля механическая коробка передач
Код 25 (0113) Низкая температура воздуха впускного коллектора
Код 27 (0447) Высокий уровень выходного сигнала датчика давления в системе конди-ционирования воздуха
Код 28 (0446) Низкий уровень выходного сигнала датчика давления в системе кондицио-нирования воздуха
Код 33 (0108) Высокий уровень выходного сигнала датчика абсолютного давления впуск-ного коллектора
Код 34 (0107) Низкий уровень выходного сигнала датчика абсолютного давления впускного коллектора
Код 35 (1509, 1513, 1514, 0506, 0507) Ошибка в управлении подачей воздуха на холостом ходу
Код 36 (0444) Неисправность системы рециркуляции выхлопных газов
Код 41 (1304) Замыкание на аккумуляторную батарею контура «В» электронной регулировки момента зажигания (ЭРМЗ)
Код 42 (1303) Замыкание на аккумуляторную батарею контура «A» электронной регулировки момента зажигания (ЭРМЗ)
Код 44 (0131) Неисправность датчика кислорода (сигнал переобедненной смеси)
Код 45 (0132) Неисправность датчика кислорода (сигнал переобогащенной смеси)
Код 51 (0604) Неисправность БЭК
Код 63 (1302) Замыкание на массу контура «В» электронной регулировки момента зажигания (ЭРМЗ)
Код 64 (1301) Замыкание на массу контура «А» электронной регулировки момента зажигания (ЭРМЗ)
Колодка диагностики
Назначение выводов:
A- Масса
B- L-линия диагностики двигателя (в том числе линия считывания медленных кодов самодиагностики), ABS (8192-Baud Serial Data) (не всегда разведена)
C- AIR (не всегда разведена)
D- SES-Lamp — линия лампы самодиагностики (не всегда разведена)
E- K-линия диагностики (160-Baud Serial Data)
F- TCC (не всегда разведена). На некоторых моделях — питание +12В
G- Управление бензонасосом (не всегда разведена)
J- K-линия диагностики подушек безопасности (AirBag) (8192-Baud Serial Data)
M- K-линия диагностики двигателя, ABS
==================
Ошибки ЭСУД с ЭБУ МИКАС-7.6 а/м ЗАЗ SENS
Код Расшифровка кода
Р0100 Неисправность цепи датчика расхода воздуха
Р0105 Неисправность датчика давления воздуха
Р0110 Неисправность датчика температуры всасываемого воздуха
Р0115 Неисправность датчика температуры охлаждающей жидкости
Р0120 Неисправность датчика положения дроссельной заслонки
Р0130 Датчик кислорода 1 (банк 1) неисправен
Р0136 Датчик кислорода 2 (банк 1) неисправен
Р0171 Слишком бедная смесь (возможен подсос воздуха)
Р0172 Слишком богатая смесь
Р0201 Неисправность цепи управления форсункой №1
Р0202 Неисправность цепи управления форсункой №2
Р0203 Неисправность цепи управления форсункой №4
Р0204 Неисправность цепи управления форсункой №4
Р0217 Перегрев двигателя
Р0219 Слишком высокие обороты двигателя
Р0230 Неисправность первичной цепи управления бензонасосом (упр. реле бензонасоса)
Р0301 Обнаружены пропуски зажигания в цилиндре №1
Р0302 Обнаружены пропуски зажигания в цилиндре №2
Р0303 Обнаружены пропуски зажигания в цилиндре №3
Р0304 Обнаружены пропуски зажигания в цилиндре №4
Р0335 Ошибка датчика положения коленвала
Р0340 Неисправность датчика фазы распределительного вала
Р0350 Неисправность первичной / вторичной цепи катушки зажигания
Р0351 Неисправность первичной / вторичной цепи катушки зажигания «А»
Р0352 Неисправность первичной / вторичной цепи катушки зажигания «В»
Р0403 Неисправность цепи датчика системы рециркуляции отработанных газов
Р0405 Низкий / Высокий уровень сигнала датчика системы рециркуляции ОГ
Р0480 Неисправность цепи управления реле вентилятора
Р0500 Нет сигнала датчика скорости автомобиля
Р0505 Неисправность регулятора холостого хода
Р0560 Напряжение питания системы нестабильное
Р0603 Ошибка EEPROM
Р0606 Неисправность Блока управления
Р0650 Неисправность в цепи индикаторной лампы неисправностей «CHECK ENGINE»
Р0654 Неисправность цепи сигнала тахометра
Р1170 Низкий/Высокий уровень сигнала СО-потенциометра
Р1230 Неисправность первичной цепи главного реле
Р1530 Неисправность цепи управления реле кондиционера
Р1612 Ошибка сброса Блока управления
Ошибки ЭСУД с ЭБУ МИКАС-10.3 а/м ЗАЗ SENS
Код Расшифровка кода
0100 * датчик расхода воздуха
0101 (1140) датчик расхода воздуха — выход сигнала за доп. диапазон
0102 датчик расхода воздуха — низкий уровень сигнала
0103 датчик расхода воздуха — высокий уровень сигнала
0105* датчик положения дросселя
0106 датчик расхода воздуха — выход сигнала за доп. диапазон
0107 датчик расхода воздуха — низкий уровень сигнала
0108 датчик расхода воздуха — высокий уровень сигнала
0110* датчик температуры воздуха
0112 датчик температуры воздуха — низкий уровень сигнала
0113 датчик температуры воздуха — высокий уровень сигнала
0115* датчик температуры охлаждающей жидкости
0116 датчик температуры охлаждающей жидкости — сигнал вне диапазона
0117 датчик температуры охлаждающей жидкости — низкий уровень сигнала
0118 датчик температуры охлаждающей жидкости — высокий уровень сигнала
0120* датчик положения дросселя
0121 датчик положения дросселя — сигнал вне диапазона
0122 датчик положения дросселя — низкий уровень сигнала
0123 датчик положения дросселя — высокий уровень сигнала
1170* потенциометр коррекции СО
0130* датчик кислорода 1
0131 датчик кислорода 1 — низкий уровень сигнала
0132 датчик кислорода 1 — высокий уровень сигнала
0133 датчик кислорода 1 — медленный отклик
0134 датчик кислорода 1 — обрыв цепи
0135 (1135) датчик кислорода 1 — неисправность нагревателя
0136* датчик кислорода 2
0137 датчик кислорода 2 — низкий уровень сигнала
0138 датчик кислорода 2 — высокий уровень сигнала
0140 датчик кислорода 2 — обрыв цепи
0141 (1141) неисправность нагревателя датчика кислорода 2
0171 система слишком бедная
0172 система слишком богатая
0200 цепь управления форсунками — неисправность
0201* форсунка 1
0202* форсунка 2
0203* форсунка 3
0204* форсунка 4
0217 превышение температуры двигателя
0219 превышение оборотов двигателя
0230* первичная цепь топливного реле
0261 форсунка 1 замыкание на массу
0262 форсунка 1 замыкание на бортсеть
0263 форсунка 1 драйвер неисправен
0264 форсунка 2 замыкание на массу
0265 форсунка 2 замыкание на бортсеть
0266 форсунка 2 драйвер неисправен
0267 форсунка 3 замыкание на массу
0268 форсунка 3 замыкание на бортсеть
0269 форсунка 3 драйвер неисправен
0270 форсунка 4 замыкание на массу
0271 форсунка 4 замыкание на бортсеть
0272 форсунка 4 драйвер неисправен
0297 превышение допустимой скорости
0300 множественные пропуски воспламенения
0301 пропуск воспламенения в 1 цилиндре
0302 пропуск воспламенения в 2 цилиндре
0303 пропуск воспламенения в 3 цилиндре
0304 пропуск воспламенения в 4 цилиндре
0325 обрыв цепи датчика детонации
0327 датчик детонации — низкий уровень сигнала
0328 датчик детонации — высокий уровень сигнала
0335* датчик синхронизации КВ
0336 датчик синхронизации КВ — сигнал вне диапазона
0337 датчик синхронизации КВ — замыкание на массу
0338 датчик синхронизации КВ — обрыв цепи
0340* датчик фазы
0342 датчик фазы — низкий уровень сигнала
0343 датчик фазы — высокий уровень сигнала
0350* цепь катушки зажигания
0351* цепь 1 канала зажигания
0352* цепь 2 канала зажигания
0353* цепь 3 канала зажигания
0354* цепь 4 канала зажигания
0403* клапан рециркуляции
0405* датчик положения клапан рециркуляции
0422 эффективность нейтрализатора ниже допустимой
0441 некорректный расход воздуха через клапан продувки адсорбера
0443 (0444, 1410, 1426) неисправность цепи управления клапаном продувки адсорбера
0445 (1425) замыкание на массу цепи управления клапаном продувки адсорбера
0480* первичная цепь реле вентилятора 1
0481 первичная цепь реле вентилятора 2 — неисправность
0500 обрыв датчика скорости автомобиля
0501 (0503) неисправность цепи датчика скорости автомобиля
0505* регулятор холостого хода
0506 низкие обороты холостого хода
0507 высокие обороты холостого хода
0508 (0513) замыкание на массу цепи управления РХХ
0509 (1514) замыкание на бортсеть цепи управления РХХ
0511 обрыв цепи управления РХХ
0560* напряжение бортсети
0562 пониженное напряжение бортсети
0563 повышенное напряжение бортсети
0601 (1620) неисправность ПЗУ
0602 (0603, 0604, 1621) неисправность ОЗУ
0606 неустранимая неисправность ЭБУ
0612 ошибка EEPROM
0615 обрыв цепи управления реле стартера
0616 замыкание на массу цепи управления реле стартера
0617 замыкание на +12в цепи управления реле стартера
0627 (1500, 1541) обрыв цепи управления реле бензонасоса
0628 (1501) замыкание на массу цепи управления реле бензонасоса
0629 (1502) замыкание на бортсеть цепи управления реле бензонасоса
0630 неисправность сохранения VIN
0645 обрыв цепи управления реле муфты кондиционера
0646 замыкание на массу цепи управления реле муфты кондиционера
0647 замыкание на бортсеть цепи управления реле муфты кондиционера
0650* цепь лампы check engine
0654* цепь сигнала тахометра
0685 обрыв цепи управления главным реле
0687 замыкание на бортсеть цепи управления главным реле
0688 обрыв силовой цепи с выхода главного реле
0690 замыкание на бортсеть силовой цепи главного реле
1102 датчик кислорода 1 низкое сопротивление нагревателя
1123 (1127, 1136) смесь богатая
1124 (1128, 1137) смесь бедная
1171 низкий уровень сигнала СО потенциометра
1172 высокий уровень сигнала СО потенциометра
1386 ошибка теста канала детонации
1230* первичная цепь главного реле
1509 перегрузка цепи управления РХХ
1530* первичная цепь реле кондиционера
1570 нет ответа от АПС
1571 использован незарегистрированный электронный ключ
1572 обрыв антенны АПС
1573 неисправность АПС
1600 (1601) нет связи с АПС
1602 пропадание напряжение бортсети
1603 (1622, 1640) неисправность EEPROM
1606 неверный сигнал датчика неровной дороги
1612 ошибка сброса контроллера
1616 низкий уровень сигнала с датчика неровной дороги
1617 высокий уровень сигнала с датчика неровной дороги
1689 неверные коды ошибок в памяти
1750 цепь 1 управления моментным РХХ — замыкание на бортсеть
1751 цепь 1 управления моментным РХХ — обрыв
1752 цепь 1 управления моментным РХХ — замыкание на массу
1753 цепь 2 управления моментным РХХ — замыкание на бортсеть
1754 цепь 2 управления моментным РХХ — обрыв
1755 цепь 2 управления моментным РХХ — замыкание на массу
2301 цепь 1 канала зажигания замыкание на бортсеть
2303 цепь 2 канала зажигания замыкание на бортсеть
2305 цепь 3 канала зажигания замыкание на бортсеть
2307 цепь 4 канала зажигания замыкание на бортсеть
* Примечание
высокий уровень сигнала (1)
низкий уровень сигнала (2)
нет сигнала (4)
некорректный сигнал ( 8 )
Схема электрооборудования Шевроле Ланос 1.5: коды ошибок
Содержание
- Технические характеристики мотора
- Схема электрооборудования двигателя
- Коды ошибок ЭБУ
- Коды неисправностей Ланос (до 2008г.в. — Евро2 — с ЭБУ KDAC).
- Коды неисправностей Ланос (с 2008г.в. — Евро3 — с ЭБУ CAVUT)
- Колодка диагностики
- Ошибки ЭСУД с ЭБУ МИКАС-7.6
- Ошибки ЭСУД с ЭБУ МИКАС-10.3 а/м ЗАЗ SENS
- Вывод
Шевроле Ланос 1.5 является прямым наследником Деу Ланос, как украинского производства, так и корейского. Значительных изменений силовой агрегат не получил, а поэтому конструктивные особенности и проблемы остались прежними.
Технические характеристики мотора
На Ланос 1.5 устанавливался двигатель производства Шевроле с маркировкой A15SMS. Этот мотор применялся и на других корейских моделях класса Деу. Повышенные экологические нормы позволили продавать транспортные средства в ближнее зарубежье.
В некоторых американских фильмах до 2010 года, на заднем фоне моно встретить Ланос, что говорит о том, что машина продавалась даже в Штатах.
Рассмотрим, основные технические характеристики мотора:
Наименование | Показатель |
Объем | 1,5 литр (1498 см куб) |
Мощность | 86 л.с. |
Количество цилиндров | 4 |
Количество клапанов | 8 |
Топливо | Бензин |
Система впрыска | Инжектор |
Расход топлива | 7,2 |
Эконорма | Евро-3 |
Порядок работы цилиндров | 1-3-4-2 |
Схема электрооборудования двигателя
Чтобы понимать устройство электрооборудования, стоит рассмотреть схемы его подключения, а также расшифровки показателей.
Рис. 1. Схема плавких предохранителей: 1 — плавкая вставка (80 А); 2, 3 — предохранители (15 А); 4 — катушка зажигания; 5 — электронный блок управления двигателем; 6 — датчик положения коленчатого вала; 7 — соединительная колодка; 8 — предохранитель (10 А)
Рис. 2. Плавкие предохранители: 1, 2 — предохранители (15 А); 3 — плавкая вставка (80 А); 4 — плавкая вставка (15 А); 5 — реле топливного насоса; 6 — диагностическая колодка топливного насоса; 7 — топливный насос; 8 — электронный блок управления двигателем; 9 — датчик концентрации кислорода; 10 — октан-корректор (установлен на часть автомобилей); 11 — топливная рампа
Рис. 3. Датчики: 1 — датчик холостого хода; 2 — электронный блок управления двигателем; 3 — датчик температуры охлаждающей жидкости; 4 — датчик положения дроссельной заслонки; 5 — датчик давления воздуха во впускном коллекторе; 6 — датчик давления в системе кондиционирования; 7 — датчик температуры воздуха во впускном коллекторе
Рис. 4. Схема 2г. Система управления двигателем: 1, 2, 5 — предохранители (15 А); 3 — предохранитель (10 А); 4, 12 — соединительные колодки; 6 — электромагнитный клапан рециркуляции отработавших газов; 7 — двухходовой клапан; 8 — соединительная колодка; 9 — гравитационный клапан; 10 — комбинация приборов; 11 — электронный блок управления двигателем; 13 — датчик скорости автомобиля (для автомобилей, оснащённых механической коробкой передач)
Рис. 5. Плавкие предохранители 1 — предохранитель (15 А); 2 — электромагнитный клапан рециркуляции отработавших газов; 3 — двухходовой клапан; 4 — предохранитель F17 (15 А); 5 — гравитационный клапан; 6 — электронный блок управления двигателем; 7 — комбинация приборов; 8 — датчик скорости автомобиля (для автомобилей, оснащённых автоматической коробкой передач)
Рис.6. Система управления двигателем: 1 — плавкая вставка (30 А); 2 — плавкая вставка (80 А); 3 — реле дополнительного вентилятора системы охлаждения двигателя; 4 — реле основного вентилятора системы охлаждения двигателя; 5 — резистор; 6 — электронный блок управления двигателем; 7 — электровентилятор системы охлаждения двигателя
Коды ошибок ЭБУ
Определить неисправности датчиков и электрооборудования двигателя начинается с диагностики. К электронному блоку управления двигателем подключается диагностический компьютер и определяется наличие ошибок, которые показывают неисправности элементов силовой установки.
Коды неисправностей Ланос (до 2008г.в. — Евро2 — с ЭБУ KDAC).
Расшифровка ошибок:
- 1. Ошибка ТСМ
- 2. Ошибка ТСМ
- 3,4,5,6. Ошибка Карлсона
- 7,8. Ошибка клапана EGR
- 12. Двигатель не заведён (Нет импульсов с датчика)
- 13. Ошибка датчика кислорода (O2 sensor not toggling)
- 14. Датчик температуры ОЖ. Высокий уровень сигнала
- 15. Обрыв датчика температуры ОЖ
- 16. Ошибка датчика детонации (странно, на украинских ланосах до 2008г. с двигателями 1.5 его нет)
- 17. Форсунки отсоединены или КЗ (Injector disconn or shorted)
- 18. Ошибка управления DSNEF
- 19. Ошибка датчика синхронизации к/вала, 58зуб (58X (engine speed) signal)
- 21. Датчик положения дросселя. Высокий уровень сигнала (TPS High)
- 22. Обрыв датчика положения дросселя
- 23. Датчик температуры воздуха. Высокий уровень сигнала (MAT sensor high)
- 24. Слишком мала скорость автомобиля/ошибка ДС (Vehicle speed sensor malf)
- 25. Обрыв датчика температуры воздуха (MAT sensor low)
- 27. Высокое давление кондиционера (A/C pressure high)
- 28. Низкое давление кондиционера (A/C pressure low)
- 29. Реле бензонасоса (замкнут на землю)
- 32. Реле бензонасоса (замкнут на питание)
- 33. МАР сенсор. Высокий уровень сигнала
- 34. МАР сенсор. Низкий уровень сигнала
- 35. Ошибка РХХ (IAC malfunction)
- 41. Обмотка катушки В (замкнут на питание) EST B shorted to battery
- 42. Обмотка катушки А (замкнут на питание) EST A shorted to battery
- 44. Датчик кислорода. Бедная смесь (O2 sensor lean)
- 45. Датчик кислорода. Богатая смесь (O2 sensor rich)
- 49. Слишком высокое бортовое напряжение
- 51. Ошибка PROM
- 53. Неисправность иммобилайзера (вроде так же нет его на Шевроле)
- 61. Клапан продувки адсорбера (замкнут на землю)
- 62. Клапан продувки адсорбера (замкнут на питание)
- 63. Обмотка катушки В (замкнут на землю) EST B shorted to ground
- 64. Обмотка катушки А (замкнут на землю) EST A shorted to ground
- 87,88. Реле кондиционера.
Коды неисправностей Ланос (с 2008г.в. — Евро3 — с ЭБУ CAVUT)
Двузначные обозначение — коды в соответствии с диагностическим прибором SCAN-100, четырёхзначные (в скобках) — в соответствии с индикацией ошибок, лампой ТОД
- Код 13 (0134) Датчик кислорода не переключается
- Код 14 (0117) Высокая температура охлаждающей жидкости
- Код 15 (0118) Низкая температура охлаждающей жидкости
- Код 17 (0201, 0202, 0203, 0204, 0261, 0262, 0264, 0265, 0267, 0268, 0270, 0271) Замыкание цепи форсунки на «массу«/аккумуляторную батарею
- Код 19 (0336) Ошибка в сигнале 58Х (А и В)
- Код 21 (0123) Высокий уровень выходного сигнала датчика положения дроссельной заслонки
- Код 22 (0122) Низкий уровень выходного сигнала датчика положения дроссельной заслонки
- Код 23 (0112) Высокая температура воздуха впускного коллектора
- Код 24 (0500) Ошибка датчика скорости автомобиля механическая коробка передач
- Код 25 (0113) Низкая температура воздуха впускного коллектора
- Код 27 (0447) Высокий уровень выходного сигнала датчика давления в системе кондиционирования воздуха
- Код 28 (0446) Низкий уровень выходного сигнала датчика давления в системе кондиционирования воздуха
- Код 33 (0108) Высокий уровень выходного сигнала датчика абсолютного давления впускного коллектора
- Код 34 (0107) Низкий уровень выходного сигнала датчика абсолютного давления впускного коллектора
- Код 35 (1509, 1513, 1514, 0506, 0507) Ошибка в управлении подачей воздуха на холостом ходу
- Код 36 (0444) Неисправность системы рециркуляции выхлопных газов
- Код 41 (1304) Замыкание на аккумуляторную батарею контура «В» электронной регулировки момента зажигания (ЭРМЗ)
- Код 42 (1303) Замыкание на аккумуляторную батарею контура «A» электронной регулировки момента зажигания (ЭРМЗ)
- Код 44 (0131) Неисправность датчика кислорода (сигнал переобедненной смеси)
- Код 45 (0132) Неисправность датчика кислорода (сигнал переобогащённой смеси)
- Код 51 (0604) Неисправность БЭК
- Код 63 (1302) Замыкание на массу контура «В» электронной регулировки момента зажигания (ЭРМЗ)
- Код 64 (1301) Замыкание на массу контура «А» электронной регулировки момента зажигания (ЭРМЗ)
Колодка диагностики
Назначение выводов:
- A- Масса
- B- L-линия диагностики двигателя (в том числе линия считывания медленных кодов самодиагностики), ABS (8192-Baud Serial Data) (не всегда разведена)
- C- AIR (не всегда разведена)
- D- SES-Lamp — линия лампы самодиагностики (не всегда разведена)
- E- K-линия диагностики (160-Baud Serial Data)
- F- TCC (не всегда разведена). На некоторых моделях — питание +12В
- G- Управление бензонасосом (не всегда разведена)
- J- K-линия диагностики подушек безопасности (AirBag) (8192-Baud Serial Data)
- M- K-линия диагностики двигателя, ABS
(за любые последствия автор ответственности не несёт)
Ошибки ЭСУД с ЭБУ МИКАС-7.6
Код Расшифровка кода
- Р0100 Неисправность цепи датчика расхода воздуха
- Р0105 Неисправность датчика давления воздуха
- Р0110 Неисправность датчика температуры всасываемого воздуха
- Р0115 Неисправность датчика температуры охлаждающей жидкости
- Р0120 Неисправность датчика положения дроссельной заслонки
- Р0130 Датчик кислорода 1 (банк 1) неисправен
- Р0136 Датчик кислорода 2 (банк 1) неисправен
- Р0171 Слишком бедная смесь (возможен подсос воздуха)
- Р0172 Слишком богатая смесь
- Р0201 Неисправность цепи управления форсункой № 1
- Р0202 Неисправность цепи управления форсункой № 2
- Р0203 Неисправность цепи управления форсункой № 4
- Р0204 Неисправность цепи управления форсункой № 4
- Р0217 Перегрев двигателя
- Р0219 Слишком высокие обороты двигателя
- Р0230 Неисправность первичной цепи управления бензонасосом (упр. реле бензонасоса)
- Р0301 Обнаружены пропуски зажигания в цилиндре № 1
- Р0302 Обнаружены пропуски зажигания в цилиндре № 2
- Р0303 Обнаружены пропуски зажигания в цилиндре № 3
- Р0304 Обнаружены пропуски зажигания в цилиндре № 4
- Р0335 Ошибка датчика положения коленвала
- Р0340 Неисправность датчика фазы распределительного вала
- Р0350 Неисправность первичной / вторичной цепи катушки зажигания
- Р0351 Неисправность первичной / вторичной цепи катушки зажигания «А»
- Р0352 Неисправность первичной / вторичной цепи катушки зажигания «В»
- Р0403 Неисправность цепи датчика системы рециркуляции отработанных газов
- Р0405 Низкий / Высокий уровень сигнала датчика системы рециркуляции ОГ
- Р0480 Неисправность цепи управления реле вентилятора
- Р0500 Нет сигнала датчика скорости автомобиля
- Р0505 Неисправность регулятора холостого хода
- Р0560 Напряжение питания системы нестабильное
- Р0603 Ошибка EEPROM
- Р0606 Неисправность Блока управления
- Р0650 Неисправность в цепи индикаторной лампы неисправностей «CHECK ENGINE»
- Р0654 Неисправность цепи сигнала тахометра
- Р1170 Низкий/Высокий уровень сигнала СО-потенциометра
- Р1230 Неисправность первичной цепи главного реле
- Р1530 Неисправность цепи управления реле кондиционера
- Р1612 Ошибка сброса Блока управления
Ошибки ЭСУД с ЭБУ МИКАС-10.3 а/м ЗАЗ SENS
Код Расшифровка кода
- 0100 * датчик расхода воздуха
- 0101 (1140) датчик расхода воздуха — выход сигнала за доп. диапазон
- 0102 датчик расхода воздуха — низкий уровень сигнала
- 0103 датчик расхода воздуха — высокий уровень сигнала
- 0105* датчик положения дросселя
- 0106 датчик расхода воздуха — выход сигнала за доп. диапазон
- 0107 датчик расхода воздуха — низкий уровень сигнала
- 0108 датчик расхода воздуха — высокий уровень сигнала
- 0110* датчик температуры воздуха
- 0112 датчик температуры воздуха — низкий уровень сигнала
- 0113 датчик температуры воздуха — высокий уровень сигнала
- 0115* датчик температуры охлаждающей жидкости
- 0116 датчик температуры охлаждающей жидкости — сигнал вне диапазона
- 0117 датчик температуры охлаждающей жидкости — низкий уровень сигнала
- 0118 датчик температуры охлаждающей жидкости — высокий уровень сигнала
- 0120* датчик положения дросселя
- 0121 датчик положения дросселя — сигнал вне диапазона
- 0122 датчик положения дросселя — низкий уровень сигнала
- 0123 датчик положения дросселя — высокий уровень сигнала
- 1170* потенциометр коррекции СО
- 0130* датчик кислорода 1
- 0131 датчик кислорода 1 — низкий уровень сигнала
- 0132 датчик кислорода 1 — высокий уровень сигнала
- 0133 датчик кислорода 1 — медленный отклик
- 0134 датчик кислорода 1 — обрыв цепи
- 0135 (1135) датчик кислорода 1 — неисправность нагревателя
- 0136* датчик кислорода 2
- 0137 датчик кислорода 2 — низкий уровень сигнала
- 0138 датчик кислорода 2 — высокий уровень сигнала
- 0140 датчик кислорода 2 — обрыв цепи
- 0141 (1141) неисправность нагревателя датчика кислорода 2
- 0171 система слишком бедная
- 0172 система слишком богатая
- 0200 цепь управления форсунками — неисправность
- 0201* форсунка 1
- 0202* форсунка 2
- 0203* форсунка 3
- 0204* форсунка 4
- 0217 превышение температуры двигателя
- 0219 превышение оборотов двигателя
- 0230* первичная цепь топливного реле
- 0261 форсунка 1 замыкание на массу
- 0262 форсунка 1 замыкание на бортсеть
- 0263 форсунка 1 драйвер неисправен
- 0264 форсунка 2 замыкание на массу
- 0265 форсунка 2 замыкание на бортсеть
- 0266 форсунка 2 драйвер неисправен
- 0267 форсунка 3 замыкание на массу
- 0268 форсунка 3 замыкание на бортсеть
- 0269 форсунка 3 драйвер неисправен
- 0270 форсунка 4 замыкание на массу
- 0271 форсунка 4 замыкание на бортсеть
- 0272 форсунка 4 драйвер неисправен
- 0297 превышение допустимой скорости
- 0300 множественные пропуски воспламенения
- 0301 пропуск воспламенения в 1 цилиндре
- 0302 пропуск воспламенения в 2 цилиндре
- 0303 пропуск воспламенения в 3 цилиндре
- 0304 пропуск воспламенения в 4 цилиндре
- 0325 обрыв цепи датчика детонации
- 0327 датчик детонации — низкий уровень сигнала
- 0328 датчик детонации — высокий уровень сигнала
- 0335* датчик синхронизации КВ
- 0336 датчик синхронизации КВ — сигнал вне диапазона
- 0337 датчик синхронизации КВ — замыкание на массу
- 0338 датчик синхронизации КВ — обрыв цепи
- 0340* датчик фазы
- 0342 датчик фазы — низкий уровень сигнала
- 0343 датчик фазы — высокий уровень сигнала
- 0350* цепь катушки зажигания
- 0351* цепь 1 канала зажигания
- 0352* цепь 2 канала зажигания
- 0353* цепь 3 канала зажигания
- 0354* цепь 4 канала зажигания
- 0403* клапан рециркуляции
- 0405* датчик положения клапан рециркуляции
- 0422 эффективность нейтрализатора ниже допустимой
- 0441 некорректный расход воздуха через клапан продувки адсорбера
- 0443 (0444, 1410, 1426) неисправность цепи управления клапаном продувки адсорбера
- 0445 (1425) замыкание на массу цепи управления клапаном продувки адсорбера
- 0480* первичная цепь реле вентилятора 1
- 0481 первичная цепь реле вентилятора 2 — неисправность
- 0500 обрыв датчика скорости автомобиля
- 0501 (0503) неисправность цепи датчика скорости автомобиля
- 0505* регулятор холостого хода
- 0506 низкие обороты холостого хода
- 0507 высокие обороты холостого хода
- 0508 (0513) замыкание на массу цепи управления РХХ
- 0509 (1514) замыкание на бортсеть цепи управления РХХ
- 0511 обрыв цепи управления РХХ
- 0560* напряжение бортсети
- 0562 пониженное напряжение бортсети
- 0563 повышенное напряжение бортсети
- 0601 (1620) неисправность ПЗУ
- 0602 (0603, 0604, 1621) неисправность ОЗУ
- 0606 неустранимая неисправность ЭБУ
- 0612 ошибка EEPROM
- 0615 обрыв цепи управления реле стартера
- 0616 замыкание на массу цепи управления реле стартера
- 0617 замыкание на +12в цепи управления реле стартера
- 0627 (1500, 1541) обрыв цепи управления реле бензонасоса
- 0628 (1501) замыкание на массу цепи управления реле бензонасоса
- 0629 (1502) замыкание на бортсеть цепи управления реле бензонасоса
- 0630 неисправность сохранения VIN
- 0645 обрыв цепи управления реле муфты кондиционера
- 0646 замыкание на массу цепи управления реле муфты кондиционера
- 0647 замыкание на бортсеть цепи управления реле муфты кондиционера
- 0650* цепь лампы check engine
- 0654* цепь сигнала тахометра
- 0685 обрыв цепи управления главным реле
- 0687 замыкание на бортсеть цепи управления главным реле
- 0688 обрыв силовой цепи с выхода главного реле
- 0690 замыкание на бортсеть силовой цепи главного реле
- 1102 датчик кислорода 1 низкое сопротивление нагревателя
- 1123 (1127, 1136) смесь богатая
- 1124 (1128, 1137) смесь бедная
- 1171 низкий уровень сигнала СО потенциометра
- 1172 высокий уровень сигнала СО потенциометра
- 1386 ошибка теста канала детонации
- 1230* первичная цепь главного реле
- 1509 перегрузка цепи управления РХХ
- 1530* первичная цепь реле кондиционера
- 1570 нет ответа от АПС
- 1571 использован незарегистрированный электронный ключ
- 1572 обрыв антенны АПС
- 1573 неисправность АПС
- 1600 (1601) нет связи с АПС
- 1602 пропадание напряжение бортсети
- 1603 (1622, 1640) неисправность EEPROM
- 1606 неверный сигнал датчика неровной дороги
- 1612 ошибка сброса контроллера
- 1616 низкий уровень сигнала с датчика неровной дороги
- 1617 высокий уровень сигнала с датчика неровной дороги
- 1689 неверные коды ошибок в памяти
- 1750 цепь 1 управления моментным РХХ — замыкание на бортсеть
- 1751 цепь 1 управления моментным РХХ — обрыв
- 1752 цепь 1 управления моментным РХХ — замыкание на массу
- 1753 цепь 2 управления моментным РХХ — замыкание на бортсеть
- 1754 цепь 2 управления моментным РХХ — обрыв
- 1755 цепь 2 управления моментным РХХ — замыкание на массу
- 2301 цепь 1 канала зажигания замыкание на бортсеть
- 2303 цепь 2 канала зажигания замыкание на бортсеть
- 2305 цепь 3 канала зажигания замыкание на бортсеть
- 2307 цепь 4 канала зажигания замыкание на бортсеть
Вывод
Схема электрооборудования Шевроле Ланос 1.5 достаточно простая и понятная. При желании, каждый автолюбители, опираясь на этот материал, может устранить неполадки в электросистеме транспортного средства.
Понравилась статья? Поделитесь ссылкой с друзьями: