Ошибка freeze frame

Коды неисправностей OBD стандартны для всех автомобилей и состоят из 5 знаков. Они регламентируются стандартами ISO 15031-6 и SAE J2012. Коды делятся на независимые от изготовителя (Р0) и зависимые от изготовителя (P1, Р2, РЗ). Формирование кода происходит по единой схеме. В приведенном ниже примере показана систематика кодов неисправностей.

Пример кода неисправности Р0267 (по ISO 15031-6 и SAE J2012).

1-я позиция:

  • Р — привод;
  • В — кузов;
  • С — ходовая часть;
  • U — шины.

2-я позиция:

  • 0 — независимый от изготовителя код (законодательно предписанный);
  • 1 — собственный код изготовителя (не предписанный законодательно);
  • 2 — собственный код изготовителя (не предписанный законодательно);
  • 3 — не определено (собственный код или SAE J2012).

3-я позиция:

  • 2 — неисправность конкретного узла (в примере — дозирование топлива и воздуха).

4-я и 5-я:

  • 67 — какая неисправность возникла? Какая деталь позиции затронута? (В примере — расход топлива в 3-м цилиндре очень маленький).

По 3-й позиции у кодов Р0 выделяются следующие группы неисправностей.

Группа неисправностей Базовый код неисправности Р0
Дозирование топлива и воздуха Р01ХХ
Дозирование топлива и воздуха Р02ХХ
Система зажигания и сбои сгорания Р03XX
Дополнительные системы для уменьшения выбросов Р04ХХ
Система регулировки скорости и холостых оборотов Р05ХХ
Компьютер и его выходные сигналы Р06ХХ
КПП и блок управления КПП Р07ХХ
КПП и блок управления КПП Р08ХХ
Код готовности Р1000

В списке кодов Р0 (в таблице приведена выдержка из него) числится более 700 кодов OBD. В списке уже сейчас имеются коды неисправностей, для которых пока нет датчиков, готовых к серийному выпуску. Отдельные коды неисправностей у разных производителей не всегда сравнимы между собой и часто могут быть считаны только собственными тестерами.

Таблица. Выдержка из перечня кодов неисправностей (по SAEJ2012 и ISO 15 031-6)

Код неисправности Функционирование Тип неисправности
Р0070 Датчик температуры окружающего воздуха нарушение работы
Р0071 Датчик температуры окружающего воздуха вне номинального диапазона
Р0072 Датчик температуры окружающего воздуха слишком слабый сигнал
Р0073 Датчик температуры окружающего воздуха слишком сильный сигнал
Р0074 Датчик температуры окружающего воздуха спорадическая неисправность
Р0100 Объемный/массовый расходомеры воздуха нарушение работы
Р0102 Объемный/массовый расходомеры воздуха слишком слабый сигнал
Р0103 Объемный/массовый расходомеры воздуха слишком сильный сигнал
Р0104 Объемный/массовый расходомеры воздуха спорадическая неисправность
Р0130 Лямбда-зонд, ряд 1, датчик 1 нарушение работы
Р0131 Лямбда-зонд, ряд 1, датчик 1 низкое напряжение
Р0132 Лямбда-зонд, ряд 1, датчик 1 высокое напряжение
РО133 Лямбда-зонд, ряд 1, датчик 1 замедленная реакция
Р0134 Лямбда-зонд, ряд 1, датчик 1 неактивен
Р0135 Цепь обогрева лямбда-зонда, ряд 1, датчик 1 нарушение работы
Р0200 Форсунка нарушение работы
Р0201 Форсунка цилиндр 1 нарушение работы
Р0202 Форсунка цилиндр 2 нарушение работы
Р0217 Допустимая температура охлаждающей жидкости превышена
Р0218 Допустимая температура масла в КПП превышена
Р0219 Максимально допустимые обороты двигателя превышены
Р0301 Цилиндр 1 распознан пропуск зажигания
Р0302 Цилиндр 2 распознан пропуск зажигания
Р0303 Цилиндр 3 распознан пропуск зажигания
Р0400 Рециркуляция ОГ нарушение работы
Р0401 Рециркуляция ОГ слишком малое количество
Р0402 Рециркуляция ОГ слишком большое количество
Р0403 Рециркуляция ОГ (клапан или выходной каскад) нарушение работы
Р0404 Рециркуляция ОГ вне номинального диапазона
Р0500 Датчик скорости движения нарушение работы
Р0501 Датчик скорости движения вне номинального диапазона
Р0502 Датчик скорости движения слишком слабый сигнал
Р0700 КПП, система регулировки нарушение работы
Р0701 КПП, система регулировки вне номинального диапазона
Р0702 КПП, система регулировки электрическая неисправность

Данные Freeze Frame

Данные Freeze Frame — это данные об окружающей обстановке, определяющие и «замораживающие» условия работы двигателя в момент регистрации неисправности. Они служат инструкциями для СТО по диагностике и устранению неисправностей. Становится проще оценивать неисправности и быстрее осознавать их последствия.

При выявлении первой неисправности какой-либо детали или системы в регистраторе системы OBD должны быть записаны условия работы двигателя на этот момент (данные Freeze Frame). Если впоследствии возникнет неисправность в топливной системе или неисправность в виде сбоя сгорания, то ранее записанные данные Freeze Frame будут замены соответствующими данными об условиях, преобладающих на момент появления первой неисправности. Возможна дополнительная запись «старых» данных Freeze Frame. Для записи нужно выбирать по возможности такие данные, которые могут оказаться полезными при последующем ремонте. Должен быть сохранен, как минимум, один набор данных Freeze Frame, который можно считать универсальным тестером Scan Tool. Сохраняемые данные об условиях работы двигателя должны включать в себя, как минимум, следующую информацию:

  • определенная компьютером нагрузка на двигатель;
  • обороты двигателя;
  • параметры регулировки смеси;
  • давление топлива;
  • скорость автомобиля;
  • температура охлаждающей жидкости;
  • давление во впускном трубопроводе;
  • значения лямбда-регулирования;
  • код неисправности, активация которого инициировала запись рабочих параметров.

При удалении кода-инициатора можно также удалить сохраненные рабочие параметры двигателя. Дополнительно к обязательным данным Freeze Frame (при наличии или доступности в качестве информации бортового компьютера) должна обеспечиваться возможность считывания следующих данных:

  • код неисправности OBD;
  • состояние топливной системы (регулируемый или нерегулируемый режим);
  • регулирование опережения зажигания;
  • температура всасываемого воздуха;
  • давление во впускном трубопроводе;
  • расход воздуха;
  • выходные сигналы потенциометра дроссельной заслонки;
  • состояние системы впуска добавочного воздуха.

При этом истинные измеренные значения должны четко отличаться от фиксированных значений или значений для аварийного режима. Все системы, для которых проводятся специальные бортовые проверки (за исключением систем, распознающих сбои сгорания, контролирующих топливную систему и предназначенных для общего контроля компонентов) должны обеспечивать возможность считывания результатов последней проверки автомобиля и предельных значений, лежащих в основе проверки системы. Это требование выполняет код готовности.

Код готовности

Код готовности (Readiness Code) представляет собой 12-значный двоичный код (0 или 1), имеющийся у всех автомобилей. Этот код показывает готовность системы к проверке. Он позволяет узнать, все ли проверки системы были проведены. Каждая позиция кода соответствует проверяемой системе.

Таблица. Обзор испытаний на готовность к проверке (В — непрерывный контроль; С — эпизодический контроль)

Код готовности Поле данных Система
0 В Не используется, всегда 0
1 В Компоненты в целом
2 B Топливная система
3 B Пропуски зажигания
4 C Система рециркуляции ОГ
5 C Обогрев лямбда-зонда
6 C Лямбда-зонды
7 C Кондиционер
8 C Система впуска добавочного воздуха
9 C Система вентиляции топливного бака
10 C Обогрев катализатора
11 C Катализатор(ы)

Если позиция в коде равна 1, значит, соответствующая система еще не завершила цикл проверки. Если позиция в коде равна 0, значит система завершила цикл проверки или не установлена в автомобиле. Последняя позиция в коде готовности (12) всегда равна 0. Некоторые диагностические тестеры не отображают ее на дисплее. Код готовности считывается справа налево.

До 2002 года код готовности можно было хранить в энергозависимом запоминающем устройстве. При отключении электропитания (замена батареи, отсоединение ЭБУ и пр.) данные в памяти стирались и все позиции выставлялись на 1. Проверку готовности системы нужно было проводить заново, что требовало большого объема дополнительных работ или прохождения циклов движения. Начиная с 2003 модельного года код готовности не должен стираться при сбое питания.

Если к моменту диагностики системы готовность к проверке еще не будет обеспечена, то для подтверждения функционирования системы используется сигнал лямбдазонда. Тестер OBD автоматически выполняет проверку функционирования управляющего зонда по инструкциям изготовителя. Для этого автопроизводители должны указать номинальные значения по проверке работы установленного управляющего зонда. У скачковых лямбда-зондов — это минимально достигаемый скачок напряжения при контрольной частоте вращения.

У широкополосных лямбда-зондов изготовитель должен указать либо номинальный ток в мА либо опорное напряжение в вольтах либо вычисленное блоком управления значение лямбда.

При проверке токсичности ОГ требуется, к примеру, автоматически создаваемое соединение между тестером и прибором для проверки токсичности ОГ. Считывающий прибор должен автоматически выбирать режим Mode 01 системы OBD. Фактические значения системы передаются на контрольный прибор прямо с тестера через интерфейс OBD по проводу для передачи данных. Это исключает манипуляции и ошибки. Результат считывания кодов из регистратора событий может быть проанализирован и обработан непосредственно контрольным прибором. Некоторые системы контролируются постоянно сразу после запуска двигателя, другие системы контролируются лишь эпизодически, при определенных условиях работы. Современные диагностические системы часто выдают код готовности в текстовом виде.

Пример кода готовности показан на рисунке.

Пример кода готовности

Рис. Пример кода готовности.
Значение:

  • 1-я позиция 0 — не используется;
  • 2-я позиция 1 — компоненты в целом, не проверено;
  • 3-я позиция 0 — топливная система, проверено или не установлено;
  • 4-я позиция 1 — сбой сгорания, не проверено;
  • 5-я позиция 1 — рециркуляция ОГ, не проверено;
  • 6-я позиция 0 — обогрев лямбда-зонда, проверено или не установлено;
  • 7-я позиция 0 —лямбда-зонд, проверено или не установлено;
  • 8-я позиция 0 — кондиционер, проверено или не установлено;
  • 9-я позиция 0 — система впуска добавочного воздуха, проверено или не установлено;
  • 10-я позиция 1 — система вентиляции топливного бака, не проверено;
  • 11-я позиция 0 — обогрев катализатора, проверено или не установлено;
  • 12-я позиция 1 — катализатор, не проверено.

У автомобилей с дизельным двигателем и D-OBD код готовности имеет то же распределение позиций, что и у бензиновых двигателей. Однако из-за отсутствия лямбдазондов и не контролируемого катализатора по этим позициям всегда значится 0. Поэтому количество возможных активизированных позиций кода меньше, чем у автомобилей с бензиновыми двигателями.

Пример кода готовности

Сравнение кодов готовности систем к проверке

Рис. Сравнение кодов готовности систем к проверке

На рисунке показано сравнение двух систем — готовой и не готовой к проверке. Чтобы быстро распознать, какие системы установлены, выдается второй дополнительный код. Верхний ряд кода указывает количество фактически установленных систем в автомобиле. На левом рисунке установлено восемь систем, проверка которых еще не завершена. Автомобиль пришлось бы подготовить к проверке, выполнив пробную поездку с длительным проездом определенных рабочих точек. Чтобы избежать этого, изготовители предписывают сокращенный цикл движения, при котором проезд рабочих точек выполняется в сокращенном виде по завершении готовности к проверке. Состояние кода готовности слева показывает недостигнутую, а справа — достигнутую готовность к проверке. Таким образом, с правой стороны показана система, готовая к проверке. Все коды обнулены (0). Однако выводы о возможных неисправностях в системе сделать нельзя. Для этого нужно считать коды из регистратора событий. Если код отображает еще не проверенные узлы, то оценка системы путем считывания кодов будет пока что невозможна. В регистраторе событий записаны еще не все возможные неисправности. Если при проверке токсичности ОГ готовность к проверке не достигнута, то для подтверждения работоспособности системы можно использовать сигнал лямбда-зонда со сравнением заданных значений с фактическими.

Если для достижения готовности к проверке нужно проехать сокращенный цикл, то перед началом пробной поездки нужно зарегистрировать эту процедуру в ЭБУ через диагностическую систему.

Пример цикла движения для достижения готовности к проверке

Рис. Пример цикла движения для достижения готовности к проверке

Обновлено: 06.06.2023

Коды неисправностей OBD стандартны для всех автомобилей и состоят из 5 знаков. Они регламентируются стандартами ISO 15031-6 и SAE J2012. Коды делятся на независимые от изготовителя (Р0) и зависимые от изготовителя (P1, Р2, РЗ). Формирование кода происходит по единой схеме. В приведенном ниже примере показана систематика кодов неисправностей.

Пример кода неисправности Р0267 (по ISO 15031-6 и SAE J2012).

  • Р — привод;
  • В — кузов;
  • С — ходовая часть;
  • U — шины.
  • 0 — независимый от изготовителя код (законодательно предписанный);
  • 1 — собственный код изготовителя (не предписанный законодательно);
  • 2 — собственный код изготовителя (не предписанный законодательно);
  • 3 — не определено (собственный код или SAE J2012).
  • 2 — неисправность конкретного узла (в примере — дозирование топлива и воздуха).
  • 67 — какая неисправность возникла? Какая деталь позиции затронута? (В примере — расход топлива в 3-м цилиндре очень маленький).

По 3-й позиции у кодов Р0 выделяются следующие группы неисправностей.

Группа неисправностей Базовый код неисправности Р0
Дозирование топлива и воздуха Р01ХХ
Дозирование топлива и воздуха Р02ХХ
Система зажигания и сбои сгорания Р03XX
Дополнительные системы для уменьшения выбросов Р04ХХ
Система регулировки скорости и холостых оборотов Р05ХХ
Компьютер и его выходные сигналы Р06ХХ
КПП и блок управления КПП Р07ХХ
КПП и блок управления КПП Р08ХХ
Код готовности Р1000

В списке кодов Р0 (в таблице приведена выдержка из него) числится более 700 кодов OBD. В списке уже сейчас имеются коды неисправностей, для которых пока нет датчиков, готовых к серийному выпуску. Отдельные коды неисправностей у разных производителей не всегда сравнимы между собой и часто могут быть считаны только собственными тестерами.

Таблица. Выдержка из перечня кодов неисправностей (по SAEJ2012 и ISO 15 031-6)

Код неисправности Функционирование Тип неисправности
Р0070 Датчик температуры окружающего воздуха нарушение работы
Р0071 Датчик температуры окружающего воздуха вне номинального диапазона
Р0072 Датчик температуры окружающего воздуха слишком слабый сигнал
Р0073 Датчик температуры окружающего воздуха слишком сильный сигнал
Р0074 Датчик температуры окружающего воздуха спорадическая неисправность
Р0100 Объемный/массовый расходомеры воздуха нарушение работы
Р0102 Объемный/массовый расходомеры воздуха слишком слабый сигнал
Р0103 Объемный/массовый расходомеры воздуха слишком сильный сигнал
Р0104 Объемный/массовый расходомеры воздуха спорадическая неисправность
Р0130 Лямбда-зонд, ряд 1, датчик 1 нарушение работы
Р0131 Лямбда-зонд, ряд 1, датчик 1 низкое напряжение
Р0132 Лямбда-зонд, ряд 1, датчик 1 высокое напряжение
РО133 Лямбда-зонд, ряд 1, датчик 1 замедленная реакция
Р0134 Лямбда-зонд, ряд 1, датчик 1 неактивен
Р0135 Цепь обогрева лямбда-зонда, ряд 1, датчик 1 нарушение работы
Р0200 Форсунка нарушение работы
Р0201 Форсунка цилиндр 1 нарушение работы
Р0202 Форсунка цилиндр 2 нарушение работы
Р0217 Допустимая температура охлаждающей жидкости превышена
Р0218 Допустимая температура масла в КПП превышена
Р0219 Максимально допустимые обороты двигателя превышены
Р0301 Цилиндр 1 распознан пропуск зажигания
Р0302 Цилиндр 2 распознан пропуск зажигания
Р0303 Цилиндр 3 распознан пропуск зажигания
Р0400 Рециркуляция ОГ нарушение работы
Р0401 Рециркуляция ОГ слишком малое количество
Р0402 Рециркуляция ОГ слишком большое количество
Р0403 Рециркуляция ОГ (клапан или выходной каскад) нарушение работы
Р0404 Рециркуляция ОГ вне номинального диапазона
Р0500 Датчик скорости движения нарушение работы
Р0501 Датчик скорости движения вне номинального диапазона
Р0502 Датчик скорости движения слишком слабый сигнал
Р0700 КПП, система регулировки нарушение работы
Р0701 КПП, система регулировки вне номинального диапазона
Р0702 КПП, система регулировки электрическая неисправность

Данные Freeze Frame

  • определенная компьютером нагрузка на двигатель;
  • обороты двигателя;
  • параметры регулировки смеси;
  • давление топлива;
  • скорость автомобиля;
  • температура охлаждающей жидкости;
  • давление во впускном трубопроводе;
  • значения лямбда-регулирования;
  • код неисправности, активация которого инициировала запись рабочих параметров.

При удалении кода-инициатора можно также удалить сохраненные рабочие параметры двигателя. Дополнительно к обязательным данным Freeze Frame (при наличии или доступности в качестве информации бортового компьютера) должна обеспечиваться возможность считывания следующих данных:

  • код неисправности OBD;
  • состояние топливной системы (регулируемый или нерегулируемый режим);
  • регулирование опережения зажигания;
  • температура всасываемого воздуха;
  • давление во впускном трубопроводе;
  • расход воздуха;
  • выходные сигналы потенциометра дроссельной заслонки;
  • состояние системы впуска добавочного воздуха.

При этом истинные измеренные значения должны четко отличаться от фиксированных значений или значений для аварийного режима. Все системы, для которых проводятся специальные бортовые проверки (за исключением систем, распознающих сбои сгорания, контролирующих топливную систему и предназначенных для общего контроля компонентов) должны обеспечивать возможность считывания результатов последней проверки автомобиля и предельных значений, лежащих в основе проверки системы. Это требование выполняет код готовности.

Код готовности

Код готовности (Readiness Code) представляет собой 12-значный двоичный код (0 или 1), имеющийся у всех автомобилей. Этот код показывает готовность системы к проверке. Он позволяет узнать, все ли проверки системы были проведены. Каждая позиция кода соответствует проверяемой системе.

Таблица. Обзор испытаний на готовность к проверке (В — непрерывный контроль; С — эпизодический контроль)

Код готовности Поле данных Система
0 В Не используется, всегда 0
1 В Компоненты в целом
2 B Топливная система
3 B Пропуски зажигания
4 C Система рециркуляции ОГ
5 C Обогрев лямбда-зонда
6 C Лямбда-зонды
7 C Кондиционер
8 C Система впуска добавочного воздуха
9 C Система вентиляции топливного бака
10 C Обогрев катализатора
11 C Катализатор(ы)

Если позиция в коде равна 1, значит, соответствующая система еще не завершила цикл проверки. Если позиция в коде равна 0, значит система завершила цикл проверки или не установлена в автомобиле. Последняя позиция в коде готовности (12) всегда равна 0. Некоторые диагностические тестеры не отображают ее на дисплее. Код готовности считывается справа налево.

До 2002 года код готовности можно было хранить в энергозависимом запоминающем устройстве. При отключении электропитания (замена батареи, отсоединение ЭБУ и пр.) данные в памяти стирались и все позиции выставлялись на 1. Проверку готовности системы нужно было проводить заново, что требовало большого объема дополнительных работ или прохождения циклов движения. Начиная с 2003 модельного года код готовности не должен стираться при сбое питания.

Если к моменту диагностики системы готовность к проверке еще не будет обеспечена, то для подтверждения функционирования системы используется сигнал лямбдазонда. Тестер OBD автоматически выполняет проверку функционирования управляющего зонда по инструкциям изготовителя. Для этого автопроизводители должны указать номинальные значения по проверке работы установленного управляющего зонда. У скачковых лямбда-зондов — это минимально достигаемый скачок напряжения при контрольной частоте вращения.

У широкополосных лямбда-зондов изготовитель должен указать либо номинальный ток в мА либо опорное напряжение в вольтах либо вычисленное блоком управления значение лямбда.

При проверке токсичности ОГ требуется, к примеру, автоматически создаваемое соединение между тестером и прибором для проверки токсичности ОГ. Считывающий прибор должен автоматически выбирать режим Mode 01 системы OBD. Фактические значения системы передаются на контрольный прибор прямо с тестера через интерфейс OBD по проводу для передачи данных. Это исключает манипуляции и ошибки. Результат считывания кодов из регистратора событий может быть проанализирован и обработан непосредственно контрольным прибором. Некоторые системы контролируются постоянно сразу после запуска двигателя, другие системы контролируются лишь эпизодически, при определенных условиях работы. Современные диагностические системы часто выдают код готовности в текстовом виде.

Пример кода готовности показан на рисунке.

Пример кода готовности

У автомобилей с дизельным двигателем и D-OBD код готовности имеет то же распределение позиций, что и у бензиновых двигателей. Однако из-за отсутствия лямбдазондов и не контролируемого катализатора по этим позициям всегда значится 0. Поэтому количество возможных активизированных позиций кода меньше, чем у автомобилей с бензиновыми двигателями.

Пример кода готовности

Сравнение кодов готовности систем к проверке

Рис. Сравнение кодов готовности систем к проверке

На рисунке показано сравнение двух систем — готовой и не готовой к проверке. Чтобы быстро распознать, какие системы установлены, выдается второй дополнительный код. Верхний ряд кода указывает количество фактически установленных систем в автомобиле. На левом рисунке установлено восемь систем, проверка которых еще не завершена. Автомобиль пришлось бы подготовить к проверке, выполнив пробную поездку с длительным проездом определенных рабочих точек. Чтобы избежать этого, изготовители предписывают сокращенный цикл движения, при котором проезд рабочих точек выполняется в сокращенном виде по завершении готовности к проверке. Состояние кода готовности слева показывает недостигнутую, а справа — достигнутую готовность к проверке. Таким образом, с правой стороны показана система, готовая к проверке. Все коды обнулены (0). Однако выводы о возможных неисправностях в системе сделать нельзя. Для этого нужно считать коды из регистратора событий. Если код отображает еще не проверенные узлы, то оценка системы путем считывания кодов будет пока что невозможна. В регистраторе событий записаны еще не все возможные неисправности. Если при проверке токсичности ОГ готовность к проверке не достигнута, то для подтверждения работоспособности системы можно использовать сигнал лямбда-зонда со сравнением заданных значений с фактическими.

Если для достижения готовности к проверке нужно проехать сокращенный цикл, то перед началом пробной поездки нужно зарегистрировать эту процедуру в ЭБУ через диагностическую систему.

Пример цикла движения для достижения готовности к проверке

Рис. Пример цикла движения для достижения готовности к проверке

Информацию ЭБУ OBD можно считывать на 9 уровнях проверки (режимы проверки 1-9). Принцип работы и формат данных для девяти режимов проверки регламентируются стандартами ISO 15031 — 5 и SAE J2190. Не все диагностические системы разрешают каждый режим. Часто режимы 6,8 и 9 доступны лишь для собственных диагностических систем. Одна диагностическая система может всегда отображать и предоставлять лишь те данные, которые предоставляются автомобилем.

Таблица. Обзор доступных режимов проверки

Режим проверки Функция, индикация, состояние
Режим проверки 1 • Считывание диагностических значений системы, имеющих отношение к ОГ.
• Считывание фактических данных системы.
• Информация о состоянии:
• фактические расчеты (например, момент зажигания, длительность впрыска);
• аналоговые данные ввода и вывода (например, температура двигателя);
• цифровые данные ввода и вывода (например, регулятор холостого хода, переключатель дроссельной заслонки)
Режим проверки 2 Считывание условий работы в момент регистрации неисправности, имеющей отношение к ОГ (данные об окружающих условиях).
Эти данные об окружающих условиях называют данными Freeze Frame. (Обороты двигателя, нагрузка на двигатель, температура двигателя, положение дроссельной заслонки и т. п.)
Режим проверки 3 Считывание неисправностей, имеющих отношение к ОГ, которые вызвали активацию индикатора MIL. Основой является определенный список кодов согласно ISO 15 031-6
Режим проверки 4 • Удаление всех кодов неисправностей, имеющих отношение к ОГ и обнуление данных Freeze Frame.
• Селективное удаление кодов невозможно и не допускается стандартом
Режим проверки 5 • Выдача данных последней проведенной проверки лямбда-зонда.
• Индикация протекания сигналов, измеренных значений и данных проверки лямбда-зонда
Режим проверки 6 Индикация измеренных значений не постоянно контролируемых систем, таких как, например, ЭБУ КПП или кондиционер
Режим проверки 7 Инициация кодов неисправностей, (еще) не приводящих ко включению индикатора MIL
Режим проверки 8 • Индикация состояния функции проверки OBD. Можно проводить целенаправленные проверки и диагностику исполнительных органов.
• Проверка систем или деталей после удаления кодов из регистратора событий завершена / не завершена.
Внутренняя проверка работы всех функций контроля должна быть завершена к моменту считывания кодов из регистратора событий. Могут потребоваться и масштабные пробные поездки (см. код готовности)
Режим проверки 9 Индикация специальной информации об автомобиле:
• VIN-номер (Vehicle Identification Number), идентификационный номер автомобиля;
• номера двигателя, КПП;
• комплектация автомобиля и спецификации модели;
• версия Э5У, ПО;
• CIN-номер (Calibration Identification Number), идентификатор калибровки;
• CVN-номер (Calibration Verification Number), проверочный номер калибровки

Функции в рамках всех режимов проверки имеют единую классификацию, а 8 рамках одного режима определенные функции обозначаются идентификатором параметра (PID) или идентификатором проверки (TID). Некоторые режимы не имеют дополнительных идентификаторов. К примеру, режим 3 не имеет других идентификаторов параметра. Не все PID полностью поддерживаются каждым ЭБУ. Диагностическая система всегда сначала запрашивает количество имеющихся кодов в режиме проверки 1 с PID 01 и в ответ получает количество записанных неисправностей.

Может быть до 256 идентификаторов PID.

PID 04 — значение, вычисляемое блоком управления с применением стандартных значений.

Режим проверки 4 не имеет дополнительных PID. В этом режиме удаляются или обнуляются следующие данные:

  • количество записанных кодов неисправностей (режим 1 PID 01);
  • состояние проверки системы (режим 1 PID 01);
  • пробег с момента включения MIL (режим 1 PID 21);
  • количество циклов прогрева с момента удаления кодов неисправностей (режим 1 PID 30);
  • пробег с момента удаления кодов неисправностей (режим 1 PID 31);
  • режим работы двигателя с момента включения MIL (режим 1 PID 4D);
  • время с момента удаления кодов неисправностей (режим 1 PID 4Е);
  • код неисправности для данных Freeze Frame (режим 2 PID 02);
  • данные Freeze Frame (режим 2);
  • коды неисправности (режим 3);
  • данные о проверке лямбда-зондов (режим 5);
  • результаты проверки бортовой диагностики (режимы 6 и 7).

Прежде чем перейти к обзору разных программ, хочется более детально рассказать о возможностях компьютерной диагностики.

Как я уже писал ранее, нужно понимать, что в нашей машине несколько блоков управления для разных систем автомобиля.

Общая схема расположения блоков управления:

1. Блок управления двигателем
Располагается чуть правее рулевой колонки. Между рулевой колонкой и центральной консолью:

2. Блок управления АКПП
Располагается под торпедой в левом углу, левее и вверх от педали тормоза:

3. Блок управления ABS
Располагается внизу центральной консоли:

4. Блок управления SRS(Airbag):
Располагается в центральном тоннеле, практически под бардачком:

Компьютерная диагностика доступна для каждого из этого блока.
Существует несколько режимов диагностики.
Я намеренно упрощаю описание логики, что бы сделать материал более доступным.
В частности я опускаю описание режимов Freeze Frame Data, System Readiness Test (SRT), поскольку они доступны
только из дилерской диагностики, стоимость которой неподъемна для простого автолюбителя. Детальная информация как что устроено — есть в сервис мануале.

1. Режим Self-diagnostic results
Режим чтения ошибок.
Описывая этот режим, мне захотелось обратиться к первоисточнику — сервисному мануалу и описать всю логику
возникновения ошибок, как это описывает производитель(схема немного упрощена). Оригинальное описание в виде графика
EC-54.

— Когда неисправность возникаем впервые(первая поездка) — ошибка(номер) и стоп-кадр(Freeze Frame) записываются в память ECM. Чек при этом не загорится.
— Если при второй поездке неисправность исчезла — ошибка и стоп-кадр стираются из ECM.
— Если неисправность возникает две поездки подряд:
— Перезаписывается ошибка и стоп-кадр
— Зажигается лапмочка MIL (Check engine)
— Если неисправность осчезла на протяжении трех поездок — лампочка MIL гаснет, ошибка стирается из памяти

В данном режиме — отображаются коды ошибок. По опыту могу сказать, далеко не все ошибки зажигают чек.
В зависимости от модельного года номера ошибок меняются(дополняются).
В этом же режиме есть возможно стереть ошибки принудительно.

2. Data monitor
Режим получения данных с датчиков/систем.
В этом режиме мы видим входные данные полученные с датчиков и выходные данные отсылаемые на исполнительные механизмы.
Например под входными данными могут приниматься:
— Датчик положения распредвала (CPS — camshaft position sensor) обороты двигателя
— Датчик массового расхода воздуха (MAF — mass air flow sensor) — напряжение
— Датчик температуры охлаждающей жидкости (Engine coolant temperature sensor)- в градусах
и т.п.
Например, под выходными данными отсылаемыми на исполнительные могут приниматься:
— Время впрыска форсунок (Injectors) — время открытия форсунки в мс;
— Состояние реле бензонасоса (Fuel pump relay) — два положения — вкл или выкл;
— Расчетная нагрузка (Calculate load value) — в процентах;
и т.п.

3. Active test
Тесты исполнительных механизмов.
В этом режиме мы можем вручную управлять исполнителными механизмами.
Например:
— Отключить одну или несколько форсунок. Очень удобный режим когда нужно определить в каком цилиндре пропуске зажигания.
— Включить или выключить реле бензонасоса.
— Включить или выключить клапан EGR.
— Изменить время впрыска форсунок
— Изменить угол опережения зажигания.
и т.п.

На примере европейца 97 модельного года — таблица в каких режимах диагностики какие доступны функции:

Так же в некоторых программах доступны целые группы тестов, удобные при диагностике. Но о них будет рассказано в статьях о ПО, отдельно.

Close menu

OBD2 Freeze Frame explained

Learn everything about Freeze Frame

OBD2 Freeze Frame is a simple but powerful tool when trying to diagnose car malfunctions. Freeze Frame provides insight into the conditions that were present when a malfunction occurred. This tutorial will explain in detail what the Freeze Frame is.

What is Freeze Frame?

In simple terms, a freeze frame is a snapshot of data. It’s a snapshot of sensor or component readings (parameter values) captured at the moment when the electronic control unit detected a malfunction. In addition, the freeze frame contains the Diagnostic Trouble Code (DTC) that the computer system identified as the reason for the malfunction.

OBDII Freeze Frame with the Android app

OBDII Freeze Frame with the Android app

Quite often, the car might have multiple DTCs simultaneously when some fault or faults occur. In this case, you cannot tell what DTC was the first one and caused the Malfunction Indicator Light (MIL) to light. The DTC that’s part of the Freeze Frame will reveal to you the DTC that is the main cause for the problems and occurred first.

The sensor data values stored in the frame help you figure out what might be wrong with your vehicle. However, sometimes coming to conclusions might need some guesswork. Experience with engines and cars will help when analyzing the possible solutions to fix the malfunctions.

For example, when an engine misfire is detected, a snapshot of the current sensor values is captured. The engine control unit stores this snapshot data along with the DTC, and it’s called a freeze frame. The causing DTC might be P0301 Cylinder 1 Misfire Detected, for example.

All OBD2 compliant cars are required to support Freeze Frame. It’s an essential part of onboard diagnostics.

How to read the Freeze Frame?

As the Freeze Frame is an integral part of the OBD2, basically all OBD2 scanners can access and present the snapshot data to you. Reading the Freeze Frame data with OBD Auto Doctor is straightforward. The software fetches the data from the car and gives it to you in a human-readable format.

Whether you are using the computer software or the mobile app, navigate to Trouble Codes -> Freeze Frame.

OBDII Freeze Frame with the macOS software

OBDII Freeze Frame with the macOS software

It’s rather essential to read the Freeze Frame data as soon as it’s stored because most cars can provide only a single Freeze Frame. In some cases, a new Freeze Frame snapshot will override the previously stored data, and you will lose the older data. For instance, an engine misfire will most likely override the previous content. In any case, you should notice that the Freeze Frame is not stored indefinitely.

Frequently asked questions related to the OBD Freeze Frame

Can there be multiple freeze frames?

Sure, the OBD2 specification allows the manufacturers to save additional freeze frames. The conditions for storing these extra frames and the content of them are manufacturer-specific.

Is it possible that there’s no freeze frame data stored?

Yes, in some real-world examples, we have seen cases when the Check Engine Light (CEL) was turned on, and OBDII Trouble Code was set without providing a Freeze Frame. The frame was either not stored at all or automatically deleted after multiple successful warm-up cycles. It is not a typical case to happen, but it’s possible.

Is it possible that there’s a Freeze Frame without an Engine Malfunction light?

Yes, in some cases, the car might automatically remove the Engine Malfunction light and the related OBD2 codes. Depending on the severity of the issues, this might happen after multiple warm-up cycles without the problem present. However, the car computer should not clear the Freeze Frame data in this case. Looking at the Freeze Frame snapshot gives you a hint of an intermittent problem.

Can I reset the Freeze Frame?

Yes, you can use OBD Auto Doctor to reset and clear the Freeze Frame. Freeze Frame is removed when you reset the MIL and clear the OBD2 trouble codes. It’s an all-in-one action that resets all the diagnostics data in the car. However, the trouble codes and other data will come back if the problem is detected again.

Get started

Get started with OBD Auto Doctor for free. Download the software and start diagnosing your car!

Что такое стоп кадр в диагностике

В следующей части:
— приступаем к чтению и пониманию данных:
— режимы работы системы топливной коррекции,
— датчики ДАД, ДТВ, ДТОЖ,
— следим за УОЗ,
— влияние температуры двигателя на обогащение смеси,
— идеи по легкому тюнингу.

Наверное, каждый владелец автомобиля с инжекторным двигателем сталкивался с различными ошибками в работе этого агрегата. О такой неприятности сообщает соответствующий знак на панели приборов – «ошибка двигателя». Многие сразу же поедут в СТО на диагностику, другие же будут ездить с этой проблемой. Но третья группа людей обязательно заинтересуется причинами и расшифровками кодов.

ЭБУ в автомобилях

Работа упомянутой детали незаметна, но этот блок сразу запускается после того, как водитель включил двигатель.

Что такое стоп кадр в диагностике

Каждое ЭБУ на любом автомобиле снабжено специальным контроллером, который при обнаружении различных неисправностей откликается на них зажиганием индикатора – «ошибка двигателя». Каждая ошибка имеет свой код и остается в памяти компьютера. Некоторые проблемы не только полностью сохраняются, но фиксируется также и время их обнаружения системой. Эта опция именуется «стоп-кадр».

Ошибка двигателя — причины

Лампочка, которая сообщает об ошибках, на приборной панели всего одна. Однако причин у них может быть много. Это можно узнать и без специального оборудования или же поездки в СТО.

Лямбда-зонд

Датчик кислорода – это часть системы отработки выхлопных продуктов. Он проверяет, сколько кислорода не сгорело в цилиндрах двигателя. Лямбда-зонд также контролирует расход топлива.

Различные неисправности названного датчика не позволяют ЭБУ получить информацию от него. Иногда этот элемент выдает неверную информацию. Такие поломки могут увеличить либо уменьшить расход топлива и снизить мощность двигателя. На большинстве современных автомобилей таких датчиков от двух до четырех.

Среди причин выхода из строя описываемого элемента загрязнение его отработанным маслом или же масляной сажей. Это снижает точность съема информации для регулирования топливной смеси и определения оптимального расхода топлива.

Что такое стоп кадр в диагностике

Крышка горловины топливного бака

Большинство водителей при возникновении ошибки всегда задумываются о существовании очень серьезных проблем. Но мало кто думает проверить, герметична ли топливная система. А ведь эта самая герметичность может быть легко нарушена недостаточно туго закрытой крышкой бензобака. И это довольно распространенная ситуация!

А причем здесь ошибка двигателя? Дело в том, что при негерметично закрытой крышке в систему проходит воздух, что увеличивает расход топлива. Система диагностики из-за этого выдает ошибку.

Что такое стоп кадр в диагностике

Катализатор

Эта деталь делает выхлопные газы чище. Она преобразовывает оксид углерода и другие вредные вещества в безвредные для экологии соединения. При неработающем катализаторе проблему можно замерить не только по значку на панели приборов, но и по значительному снижению мощности.

Датчик массового расхода воздуха измеряет количество воздуха, которое необходимо для приготовления оптимальной топливной смеси. Датчик постоянно общается с ЭБУ. Если этот элемент неисправен, то увеличивается уровень углекислого газа в выхлопных газах, снижается мощность силового агрегата и плавности хода. Также можно наблюдать слабую динамику разгона.

Свечи зажигания и высоковольтные провода

Свечи – это одна из главных деталей в автомобиле, после двигателя.
Если они вышли из строя, то искра подается неправильно. Неработающая деталь может подавать искру не вовремя или не зажигать топливо вовсе. При проблемах со свечами во время ускорения можно почувствовать толчки.

Что такое стоп кадр в диагностике

Что нужно знать о лампе Check Engine?

Некоторые водители пытаются выполнить снятие ошибки двигателя при помощи отключения аккумуляторной батареи. Эти манипуляции действительно позволяют избавиться от проблемы. Однако лампа может через некоторое время загореться снова. Это значит, что ни одна типовая причина для этой ситуации не походит, и получается, что необходимо выполнить более глубокую диагностику.

Для этого применяют специальные программно-аппаратные комплексы, которые не только находят любые ошибки в работе ЭБУ и двигателя, но и умеют их устранять. Если в ходе тестов ошибку удалось устранить, лампа погаснет. В некоторых случаях для сброса ошибки необходимо некоторое время ездить на машине. Это может быть связано с тем, что блоку управления нужно время для углубленного тестирования и отладки работы всех систем авто. Если же лампа не погасла, необходимо продолжить поиск проблемы.

Стоп-кадр: точная диагностика

Это некий снимок главных параметров двигателя и системы трансмиссии в момент возникновения поломки. Так, в памяти могут быть сохранены не только сами показатели, но и ошибка двигателя. Стоп-кадр может помочь в выяснении, что же произошло в автомобиле. Это очень полезная опция.

Можно обнаружить различные нарушения в работе и быстро устранить проблему. Например, если в памяти ЭБУ удалось найти ошибку P0116, то в стоп-кадре нужно искать температуры охлаждающей жидкости и воздуха. Пусть температура ОЖ – 40 градусов, а воздуха – 84 градуса. Этого просто не может быть, и стоит искать проблемы в датчике температуры двигателя или в плохом контакте

Самостоятельная глубокая диагностика

Еще недавно провести самостоятельную диагностику для авто обычному автолюбителю было практически нереально – просто не было доступного оборудования. Да и раньше это было особо и не нужно — расшифровка ошибки двигателя производилась по тому, как мигает индикатор.

Сегодня для самостоятельной диагностики предлагаются недорогие и простые приборы, которые работают по интерфейсу OBD-II. Эти приборы позволяют автолюбителю не только найти ошибки работы в ЭБУ, но и контролировать различные параметры.

Что такое стоп кадр в диагностике

Можно приобрести и установить бортовой компьютер, а точнее, просто консоль к нему. Тогда узнать код той или иной неисправности можно будет не покидая салон. Цена вопроса – от 3 000 рублей, однако, это не идеальное решение. Также можно прибрести беспроводной адаптер OBD-II и расшифровывать коды прямо со смартфона. Стоимость такого решения от 1 000 рублей.

Где расположен диагностический разъем?

Так как этот интерфейс является стандартом, то расположение его – тоже неизменно. Он может находиться в разных местах в зависимости от марки и модели, но не дальше, чем в метре от водителя. Стандартная конфигурация представляет собой 16 контактов в два ряда.

Как подключить и использовать?

Подключать сканер необходимо по порядку:

  • первым делом выключают зажигание;
  • затем прибор подключается к разъему для диагностики;
  • теперь нужно снова включить зажигание;
  • после этого программное обеспечение установит связь с адаптером, и можно начинать работать.

Для процесса поиска и устранения ошибок может использоваться самое разное программное обеспечение. В сети можно найти различные, как платные, так и бесплатные программы. Для первого раза можно воспользоваться бесплатным ПО, которая может считать текущие данные, отыщет ошибки, и подскажет, как сбросить ошибку двигателя.

Можно воспользоваться такими программными продуктами, как:

  • OBD-II Scan Master;
  • Torque для «Андроида».

Также существует отличный софт MotorData ELM. Он работает с большинством адаптеров и полностью бесплатен при домашнем использовании.

Как расшифровать коды ошибок сканера?

Без расшифровки кодов в диагностике нет никакого смысла. Именно поэтому кроме подбора оборудования и ПО необходимо уделить внимание и этой теме, особенно если не хочется платить за работу специалистам из СТО. Итак, есть общие принципы, которые могут помочь расшифровать ту или иную ошибку. Программное обеспечение выдает код в виде буквы и четырех цифр. Буквы обозначают:

  • B – кузов;
  • С – шасси;
  • P- КПП или двигатель;
  • U – шина обмена данных.

Первая цифра в коде — 0. Это общий код для этого стандарта. Вторая и третья – год производства автомобиля. 3 – резервная цифра. Вторая цифра в коде – тип проблемы, который подскажет, как убрать ошибку двигателя:

  • 1-2 – проблемы в топливной системе либо же в системе подачи воздуха;
  • 3 – различные неполадки в системе зажигания автомобиля;
  • 4 – дополнительный контроль;
  • 5 – холостой ход;
  • 6 – цепи ECU;
  • 7-8 – трансмиссия.

Четвертая и пятая цифра – это порядковые номера ошибок. Перечислять все коды ошибок смысла нет, потому что их очень много. Узнать более точно можно на сайте производителя. Для иномарок коды в большинстве своем стандартные.

Что такое стоп кадр в диагностике

Давайте рассмотрим порядок диагностирования некоторых автомобилей. В «Форде», первым делом необходимо включить зажигание. Заводить двигатель при этом совсем не обязательно. Далее, на приборной панели необходимо отыскать кнопку сброса дневного пробега – нужно нажать и удерживать ее.

Затем, не отпуская кнопки, замок поворачивается на вторую позицию. При этом необходимо следить, когда на экране одометра появится надпись, сообщающая, что тест начался. В этом момент кнопку можно отпустить.

Вот так в автомобиле «Форд» ошибка двигателя, выданная на приборной панели, подскажет, куда смотреть, и где кроется неисправность.

Диагностика Opel

Что такое стоп кадр в диагностике

Зажигание выключается, и тормоз можно отпустить. После этого одновременно нажимают на тормоз и газ и снова удерживают. Можно включить зажигание.

При удержании педалей появится ошибка двигателя в виде ECN кодов. Первые четыре цифры в коде – это тип неисправности, две другие – значение поломки. Если цифр пять, то для расшифровки в начало добавляют ноль. Таблицу кодов и поломок можно прочесть на сайте производителя. Также можно воспользоваться диагностическим разъемом.

Для самостоятельной диагностики ВАЗ тоже можно воспользоваться диагностическим разъемом, но допустимо сделать это и силами автомобиля. Для этого необходимо зажать кнопку одометра, затем повернуть ключ в первое положение, далее кнопка отпускается. После этого будут прыгать стрелки.

Затем одометр нажимается еще раз – водитель увидит номер прошивки. При нажатии в третий раз можно получить диагностический код. Любая ошибка двигателя ВАЗ в автомобиле будет представлена в виде двух цифр, а не четырех. Расшифровать их можно по соответствующим таблицам.

Приведенная информация способна помочь опытным и начинающим автолюбителям лучше понимать свою машину. Ошибки возникают время от времени, но главное – уметь вовремя их устранить. Раньше в советских автомобилях таких опций не было, и водитель не мог знать, на что «ругается» двигатель. Сегодня же есть множество возможностей по диагностике, ремонту, контролю состояния. А с помощью современного программного обеспечения нет ничего проще, чем разобраться, как сбросить ошибку двигателя из памяти ЭБУ.

Выпущена новая версия программы-клиента диагностической онлайн-системы MotorData с функциями диагностики автомобилей в реальном времени через разъем OBD II с помощью стандартного адаптера ELM327.
Она позволяет считывать/стирать коды (считывание и представление большинства кодов производиться на русском языке), предоставляет текущие данные и стоп-кадр в режиме offline, т.е без подключения к интернету.
Т.е программа-клиент с этими тремя функциями ELM327 работает независимо от «материнской» диагностической онлайн-системы MotorData.

Что такое стоп кадр в диагностике
Что такое стоп кадр в диагностике
Что такое стоп кадр в диагностике
Что такое стоп кадр в диагностике
Что такое стоп кадр в диагностике
Что такое стоп кадр в диагностике

Что такое стоп кадр в диагностике

Считывание/стирание кодов неисправностей

  • модели для рынка США с 1996 года
  • модели для рынка Японии с 2002 года
  • модели для рынка Европы с 2001 года и модели с дизельными двигателями с 2004 года.

некоторые модели из описанных выше могут не поддерживать стандарт OBD II.

Что такое стоп кадр в диагностике
Текущие данные (Data Stream)

Модуль БЕСПЛАТНЫЙ, работает OFFLINE, т.е. без доступа к интернету

Модуль предназначен для снятия текущих параметров системы управления двигателем в режиме реального времени. Существует возможность снятия, как всех доступных параметров, так и выбранных пользователем, в зависимости от неисправности, и последующего сохранения пользовательских настроек для удобства работы.

Для подключения к автомобилям марки Toyota (LHD+RHD) и получения расширенного набора считываемых параметров необходимо выбрать ее перед подключением к автомобилю. В этой версии программы реализована поддержка автомобилей Toyota по k-line и считывание более 100 параметров текущих данных с блока управления силовым агрегатом, включая состояния клапанов АКПП и другие данные. Для автомобилей с CAN-шиной воспользуйтесь подключением через «Другие производители».

Что такое стоп кадр в диагностике
Стоп кадр (Freeze Frame)

Модуль БЕСПЛАТНЫЙ, работает OFFLINE, т.е. без доступа к интернету

При записи кода неисправности в память блока управления записываются параметры автомобиля, при которых был записан код неисправности. Эти данные доступны в программе MotorData и будут полезны при анализе причин возникновения неисправности.

Что такое стоп кадр в диагностике
Информация об автомобиле

Модуль БЕСПЛАТНЫЙ, работает OFFLINE, т.е. без доступа к интернету

Специальный модуль программы, позволяющий считывать идентификационную информацию автомобиля. Это данные о VIN номере автомобиля, версии блока управления и версии прошивки.
Данная информация может быть полезна как для дополнительной проверки подлинности идентификационных номеров автомобиля, так и для целей диагностики. Например, некоторые неисправности производители предписывают устранять простым обновлением программного обеспечения или, наоборот, ошибки не могут быть надлежащим образом устранены без замены блока управления.
Обратите внимание на то, что вывод этой информации зависит от того поддерживается ли диагностируемым автомобилем данная функция.

Что такое стоп кадр в диагностике
Приборы – отображение информации

Модуль БЕСПЛАТНЫЙ, работает OFFLINE, т.е. без доступа к интернету

Такой режим вывода информации полезен для одновременного контроля несколько параметров, лучшей наглядности и анализа. Позволяет пользователю выбрать необходимое количество параметров для отображения. Если в процессе считывания необходимо изменять количество выводимых параметров, то их можно добавить к выбранным ранее.

Читайте также:

      

  • Ауди а4 какую выбрать
  •   

  • Не включается компрессор кондиционера шкода октавия а7
  •   

  • Не работает спидометр тойота авенсис 2001
  •   

  • Xpx видеорегистратор как подключить
  •   

  • Проверяют ли техосмотр на границе с россией и белоруссией

Главная / Статьи / Как правильно выбрать диагностический сканер

Как правильно выбрать диагностический сканер 21.08.2012 19:40

Начнем с того зачем применяется диагностическое оборудование. Расскажем подробнее об автосканерах для диагностики автомобилей. Во-первых стоит отметить что у слова «автосканер» есть синонимы: диагностический сканер, сканер для диагностики, авто сканер, автомобильный сканер, auto-scaner, auto scanner, autoscanner, auto scaner — при использовании этих слов всегда подразумевают одно и то же устройство. Этим устройством всегдя является компьютер (стационарный, переносной, карманный), имеющий кабель для подключения к диагностическому разъему авто и предустановленное программное обеспечение для диагностики автомобиля, в некоторых случаях автосканер не является самостоятельным устройством и работает в связке с обычным пользовательским компьютером. Основным назначением таких автосканеров является диагностика автомобиля посредством подключения прибора через диагностический разъем к ЭБУ(электронному блоку управления), в частности поиск неисправностей с использованием данных, получаемых с датчиков установленных в различных узлах автомобиля: двигатель, трансмиссия, шасси, кузов и т.д. Автосканер получает данные в виде кодов ошибок, которым соответствует та или иная неисправность (чтение кодов ошибок). Кроме того диагностический сканер позволяет определить неисправность тех узлов и систем, в которых отсутствуют датчики, по косвенным признакам — т.е несколько незначительных неисправностей могут повлечь более значительную неисправность доступ к диагностике которой напрямую будет отсутствовать, но при диагностике так или иначе причина неисправности будет обнаружена. Комплексная диагностика — пожалуй основная незаменимая функция всех автосканеров, она позволяет осуществлять диагностику, поиск ошибок и неисправностей, рассматривая автомобиль как систему взаимосвязанных узлов и агрегатов, осуществляя при этом анализ с учетом связей диагностируемых элементов.

Профессиональное диагностическое оборудование, в отличие от мультимарочного (универсального оборудования) поддерживает полнофункциональную и доскональную работу с автомобилями конкретных производителей, например BMW, Mercedes-Benz, Audi, Ford, Opel, Honda и т.д. Профессиональное диагностическое оборудование является наиболее подходящим для дилерских сервисных центров и СТО специализирующихся на профессиональной, полноценной и качественной диагностике автомобилей ведущих мировых производителей. Профессиональные диагностические сканеры гарантируют поддержку работы только с конкретными марками автомобилей, но в отдельных случаях профессиональные автосканеры работают с автомобилями одного автоконцерна, например General Motors: Cadillac, Hummer, Chevrolet, Saab, GMC и пр., или Daimler AG: Mercedes-Benz, Mercedes-AMG, Smart, Maybach.

Портативные автосканеры это самый дешевый и самый простой способ продиагностировать автомобиль, идеально подходит для гаражной диагностики, простой диагностики на мелких СТО. Портативное диагностическое оборудование является простым в использовании, как правило имеет монохромный дисплей и компактный размер, что позволяет легко переносить такой автосканер. Портативный автосканер это готовое к эксплуатации устройство, не требующее инсталляции программы для диагностики — она уже предустановлена. К минусам можно отнести лишь то что функционал у таких диагностических приборов очень ограничен, в основном это чтение и сброс кодов ошибок.

Автосканеры на основе компьютера или ноутбука, пожалуй, самое выгодное приобретение которое может сделать небольшой автосервис, станция технического обслуживания атвомобилей или просто автолюбитель. За счет того что техническое устройство автосканера состоит только из диагностического адаптера и набора кабелей, он имеет низкую стоимость. Но при этом с использованием стационарного компьютера или ноутбука на котором установлена программа дли диагностики, поставляемая с автосканером, дает возможность использовать все возможное программные функции современных автосканеров. По цене автосканеры на базе компьютера можно сравнить с портативными автосканерами, но их нельзя сравнивать по функциональности. Так же как и портативные автосканеры, диагностические сканеры на основе компьютера имеют малый вес и размер. Такие автосканеры подключаются к любому компьютеру посредством универсальной последовательной шины (USB) или последовательного порта (Com port).

Оборудование для диагностики автомобилей: автосканеры, дилерские сканеры, мотор-тестеры и прочее диагностическое оборудование — наш профиль !

Диагностика автомобилей — без этой процедуры не может состояться качественный ремонт автомобилей, по этому диагностическое оборудование для автомобилей должно быть в руках каждого технического специалиста автосервиса. Почему следует купить диагностическое оборудование? Оборудование для диагностики автомобилей позволяет быстро определить неисправность автомобиля: например определить неисправность ходовой части, найти неисправность двигателя, трансмиссии, или каких либо электронных систем автомобиля. Быстрое и точное определение неисправностей, последующий ремонт и исправление неполадок — это и есть качественный сервис, которого так не хватает владельцам дорогих автомобилей. По этому основную часть нашего каталога составляет профессиональное оборудование для диагностики автомобилей. Такое диагностическое оборудование используется на станциях технического обслуживания автомобилей, в автосервисах и дилерских центрах. Но наш каталог этим не ограничивается, у нас можно купить диагностическое оборудование для личного пользования — это оборудование для диагностики отличается простотой использования, очень низкой ценой доступной любому автовладельцу и достаточно простым, но достаточным функционалом. Как правило диагностика автомобилей ВАЗ, ГАЗ, УАЗ осуществляется именно таким автомобильным диагностическим оборудованием — простым и дешевым.

Если вы или ваш автосервис, СТО, дилерский центр осуществляет ремонт двигателя, ремонт АКПП и КПП, ремонт ходовой части, ремонт тормозной системы, ремонт инжектора, ремонт системы охлаждения, ремонт электрооборудования, кузовной ремонт, ремонт автомобильных кондиционеров, ремонт подушек безопасности, чип-тюнинг двигателя, корректировку одометров и подобные услуги — то вы попали по нужному адресу, наш магазин диагностического оборудования может стать и вашим поставщиком оборудования для диагностики и ремонта автомобилей. Какие условия мы предлагаем нашим клиентам?
Первым и основным условием является ассортимент оборудования для диагностики: в каталоге присутствует более 300 наименований диагностического оборудования — у нас вы всегда сможете найти подходящий прибор для ремонта автомобилей.
Второе условие — цены на оборудование для диагностики автомобилей доступны каждому. Причиной тому является ценовая политика и упомянутый выше асортимент. Третьим преимуществом являются производители и по совместительству наши поставщики оборудования для диагностики автомобилей — это крупнейшие и хорошо зарекомендовавшие себя компании, работающие на рынке автосервисного оборудования долгие годы и имеющие целью своего существования — производство лучшего оборудования для диагностики, отвечающего современным требованиям и стандартам и что естественно — удовлетворяющим потребности автосервисов, СТО и рядовых автолюбителей.
Четвертое условие это бесплатные консультации по вопросам покупки. Автодиагностика ваш профиль? Вы представляете автосервис? Вы автолюбитель и хотите самостоятельно определить неисправность своего автомобиля, но при этом не знаете какой прибор для автодиагностики выбрать — обращайтесь к нам по телефону, электронной почте,  поможем вам сделать выбор оборудования для диагностики автомобилей, ответим на ваши вопросы относительно диагностического оборудования, расскажем все подробности насчет диагностики автомобилей с помощью конкретного оборудования.
Пятым условием является оплата и доставка. Диагностическое оборудование для автомобилей мы продаем по отлаженной за годы работы схеме, мы работаем с проверенными службами доставки, у нас есть свои курьеры, мы принимаем оплату наличными, безналичными и электронными деньгами. Для любого случая мы можем найти альтернативу, если ситуация того требует и покупатель даже из самой дальней части России или еще более далеких частей стран СНГ сможет купить оборудование для диагностики автомобилей.

Если вы заинтересованы в партнерстве с нашей компанией и хотите стать дилером по продаже оборудования для диагностики автомобилей — свяжитесь с нами по телефону или электронной почте.

Оборудование для диагностики автомобилей: основные различия и назначение

Диагностическое оборудование является современным инструментом необходимым для любой СТО или автомастерской. Оборудование для диагностики автомобиля это единственный надежный, быстрый и точный способ определить неисправности автомобиля, его двигателя и электронных систем. Работа по ремонту автомобиля всегда начинается с предварительной диагностики автомобиля с использованием специального диагностического оборудования. Все оборудование для диагностики легковых автомобилей делится на несколько групп: диагностическое оборудование предназначенное для дилерской диагностики и диагностическое оборудование для мультимарочной диагностики машин.

Диагностическое оборудование для дилерской диагностики предназначено для диагностики автомобилей любых моделей одного производителя: BMW, Ford, Honda, Mercedes-Benz, Opel, Porsche, Renault, Toyota, Citroen, Peugeot, Chrysler, Mitsubishi, Nissan, Subaru, Volvo. Либо для диагностики автомобилей входящих в одну производственную группу: VAG (Audi, Skoda, Volkswagen, SEAT), GM (Buick, Cadillac, Chevrolet, GMC, GM Daewoo, Pontiac, Holden, Pontiac, Saturn, Saab, Vauxhall, Wuling, Hummer). Диагностическое оборудование для дилерской диагностики позволяет осуществлять работу по поиску неисправностей на самом высоком дилерском уровне.

Мультимарочное оборудование для диагностики автомобилей применяется в автомобилях различных марок и моделей. Такое оборудование для диагностики имеет очень широкий охват и богатый функционал, что позволяет обходиться всего одним прибором с набором адаптеров, при обслуживании различных автомобилей. Этой группе диагностического оборудования следует уделить особое внимание, если вы планируете организовать обслуживание и диагностику автомобилей различных производителей. Например автосканер Launch X-431 работает с более чем 120 марками автомобилей, и эта цифра несомненно впечатляет. Естественно, мультимарочное оборудование для диагностики поддерживает все известные марки и модели автомобилей отечественного производства.

Если для вас основным критерием выбора подходящего оборудования для диагностики является цена, то обязательно ознакомьтесь с двумя группами оборудования: автосканеры на базе ПК и портативное оборудование для диагностики.

Диагностическое оборудование на базе ПК имеет очень низкую стоимость, достаточный функционал и поддерживает различные автомобили Европейского, Американского, Азиатского и Российского производства. Основной функционал таких автосканеров это работа с кодами ошибок. Оборудование на базе ПК компактное, и простое в эксплуатации что позволяет использовать его не только в автосервисах, но и в небольших автомастерских. Это диагностическое оборудование требует наличия стационарного компьютера или ноутбука для инсталляции на него программного обеспечения, которое позволит адаптеру взаимодействовать с ПК. Программа для диагностики автомобиля чаще всего имеет русскоязычный интерфейс, что облегчает процесс диагностики автомобиля. В дополнение ко всему, программа для диагностики, которая поставляется в комплекте с оборудованием для диагностики, имеет демонстрационную версию, которая доступна для загрузки и инсталляции перед покупкой автосканера — вы можете бесплатно ознакомиться с самой программой, ее пользовательским интерфейсом и функциональными возможностями.

Портативное оборудование для диагностики автомобилей имеет необходимый функционал для определения неисправностей автомобиля, его ходовой части, двигателя и прочих систем путем чтения и расшифровки кодов ошибок. Так как портативные автосканеры работают по протоколу OBD 2, это означает что они могут взаимодействовать с большинством современных автомобилей. Плюсами являются не только малый размер и легкий вес но и отсутствие необходимости подключения к компьютеру. Этот фактор делает портативное оборудование для диагностики абсолютным лидером в экономном ценовом сегменте. Простота пользования и низкая цена делают портативное диагностическое оборудование доступным для каждого автолюбителя, мастерской, СТО.

Еще одна группа диагностического оборудования это автосканеры грузового транспорта. Они предназначены для профессионального использования на автосервисах и СТО грузовых автомобилей, автобусов отечественного и зарубежного производства: MAN, Volvo, Iveco, Renault, Scania, DAF, Mercedes-Benz, Volvo, КамАЗ.

Все представленное выше оборудование для диагностики, так или иначе использует комплексный подход и осуществляет диагностику всех электронных систем автомобиля и автомобиля в целом, включая двигатель, ходовую часть, кузов и прочее. Но для детальной диагностики двигателя машины предназначены мотор-тестеры, которым в нашем каталоге отведено отдельное место. Мотор тестеры позволяют работать с системой зажигания, газораспределения и топливоподачи. Мотор тестеры, а так же осциллографы с превосходной точностью регистрируют показания, которые подвергаясь тщательному анализу программ дают исчерпывающую информацию о состоянии мотора.

С 1996 г. в США при диагностике механизмов управления автомобилями обязательно применение системы OBD-II (на моделях как американского производителя, так и импортируемых в Штаты). Её суть – сканирование блоков управления двигателем и другими агрегатами автомашины и фиксация допущенных при этом отклонений от допустимых экологических норм (в первую очередь – в составе выхлопных газов). Внедрение данной системы было вызвано явным обострением экологических проблем и, как следствие – развитием движения по защите окружающей среды. Изначальная экологическая «специализация» данной системы несколько ограничила возможности её развития в диагностировании дефектов иного рода – но обеспечила её широкое использование как в США, так и в остальном мире.

Её применение в других странах также ведёт свой отчёт с 1996 г., но – только относительно ограниченного круга марок и моделей. Однако в 2001 г. стандарт, требующий оснащения автомобиля системой экологического контроля, был принят и в Европе (EOBD) – и система OBD-II стала гораздо более распространённой. Изначально её применяли к автомобилям работающим на бензине, а с 2004 г. – на дизеле. Но при этом некоторые автомобили более ранних чем 1996 (для Европы – 2001) лет выпуска также совместимы со стандартом OBD-II (т.н. pre-OBD автомобили).

Стандартными функциями системы OBD-II являются следующие:

  1. сканирование текущих параметров функционирования системы управления. Количество поддерживаемых стандартом параметров – приблизительно 20, однако существуют автомобили, поддерживающие гораздо большее количество параметров (например некоторые модели корпорации General Motors поддерживают до 100 параметров). Но при этом каждым отдельный блок управления поддерживается только некоторые из их общего количества. Основными сканируемыми параметрами являются следующие:
    • режим функционирования системы топливной коррекции (в режиме «Closed Loop» информация с датчика кислорода учитывается в её работе, в режиме «Open Loop» – нет)
    • температура хладоносителя
    • краткосрочная и долгосрочная корректировка топливоподачи по банку
    • сила давления топлива
    • сила давления во впускном коллекторе
    • расчетная нагрузка на двигатель и его обороты
    • скорость автомашины
  2. Обычно диагностика отдельной функции системы управления автомобилем предполагает одновременный контроль не более чем 2-3-х параметров. Но в некоторых случаях необходимо параллельное отслеживание и большего их количества. Но оно, как и формат их демонстрации (текст или графика) находится в зависимости от следующих факторов:
    • функционал конкретного сканирующего прибора
    • скорость обмена данными между сканером и блоком управления автомобилем (каковая в свою очередь определяется поддерживаемым протоколом). Но здесь нужно признать, что самый распространенный из протоколов (ISO-9141) в то же время является наиболее низкоскоростным (максимально возможное количество одновременно просматриваемых при работе с ним параметров – 2-4)
  3. Выведение текущих показателей работы системы управления в формате фотоизображения в момент возникновения дефектов
  4. Сканирование кодов неисправностей
  5. Удаление диагностических данных (кодов неисправности, результатов различных тестов и т.п.)
  6. Сканирование данных результатов тестирования лямбда-зондов
  7. запрос последних данных однократных диагностических тестов, контролирующих работу катализатора, режим циркуляции выхлопов и вентиляции топливного бака.
  8. запрос данных непрерывных диагностических тестов, контролирующих параметры, влияющие на состав выхлопа (состав горючей смеси, пропуски зажигания и др.)
  9. Управление исполнительными устройствами.
  10. запрос данных диагностирования автомобиля (его идентификационного номера и данных калибровки).
  11. ручной ввод требования запроса диагностических данных

Протоколы диагностики OBD-II

OBD-II-диагностика предполагает использование пяти протоколов обмена информацией, каждый из которых подразделяется в свою очередь на несколько разновидностей – CAN, ISO 9141, ISO 14230 (также именуется KWP2000), PWM и VPW. Различие между разновидностями – чисто детальное (например, в скорости обмена данными). В сети можно найти так называемые «таблицы применимости» – списки соответствия марок и моделей автомашин и OBD-II-протоколов, поддерживаемых ими. Но эти списки ещё не дают полной и точной информации – не всегда присутствующее в списке авто будет поддерживать OBD-II, как и отсутствующее не обязательно будет лишено этой функции. Тем более сложнее судить о функции поддержки конкретной разновидности протоколов. Дело в том, что всё зависит от конкретной модели, года выпуска а также рынка, на который ориентирован данный автомобиль.

Так как же определить, поддерживает ли ваша автомашина OBD-II-стандарты или же нет? В первую очередь (для значительного большинства автомобилей) нужно заглянуть под приборную панель рядом с местом водителя и попробовать найти там 16-контактный диагностический разъем в форме трапеции (DLC — Diagnostic Link Connector) – возможно, что его будет закрывать крышка с надписью «Diagnose», «OBD-II» или подобной. Однако есть автомобили (к примеру, Opel Vectra 1996–1997 гг. выпуска), снабжённые данным разъёмом, но вообще не совместимые со стандартом OBD-II. Тогда необходимо применение сканера, совместимого с фабричными протоколами конкретной марки и модели автомашины. Но чтобы определить, подходит ли этот сканер для диагностирования именно вашего авто, нужно выяснить, поддерживает ли оно OBD-II в принципе – и, если да, до какой стандарт именно. Для этого следует:

  1. изучить техническую документацию ИМЕННО ЭТОГО автомобиля (а не только информацию, касающуюся данной модели вообще), а также его идентификационные таблички – на предмет присутствия среди них таблички «OBD-II certified» (сертифицирована совместимость с OBD-II) или (в идеале) – «OBD-II compliant» (совместим с OBD-II)
  2. ознакомиться с информационной базой данных – например, Mitchell-on-Demand, а для уточнения информации (в общей базе могут быть погрешности) – с дилерскими базами данных по конкретным маркам и моделям
  3. определить, какой именно OBD-II протокол поддерживается вашим автомобилем. В этом может помочь специальный сканер – например, моделей OZEN MOByDic 2600 и Х-431. Комплект ScanTool может помочь Вам в процессе ручной проверки (попеременного подключения адаптеров и определения, какой из них устанавливает связь с системой управления автомобилем). Для облегчения процесса поисков советуем Вам начинать либо с протокола ISO (как самого распространённого), либо с указанного конкретно для данного транспортного средства в «Таблице применимости»
  4. проверить имеющийся разъём диагностики на предмет наличия в нём активных выводов (активными обычно являются не все, а только некоторые выводы, разные для каждого протокола) распиновка разъема диагностики OBD-II (16 контактов) (стандарт J1962):
    02 J1850 Bus+
    04 Chassis Ground
    05 Signal Ground
    06 CAN High (J-2284)
    07 ISO 9141-2 K-Line
    10 J1850 Bus
    14 CAN Low (J-2284)
    15 ISO 9141-2 L-Line
    16 Battery Power (напряжение АКБ)

    Конкретный набор выводов позволяет с некоторой долей вероятности определить, какой именно протокол поддерживается данным автомобилем. Например:

    • для протокола ISO-9141-2 активными являются выводы 4, 5, 7, 16, иногда – 15 (определяется его совместимость с автомобилем присутствием в разъёме контакта 7 и отсутствием в нём контактов 2 и/или 10)
    • для протокола SAE J1850 PWM (Pulse Width Modulation) активными являются выводы 2, 4, 5, 10 и 16 (они же, кроме 10, являются активными для протокола SAE J1850 VPW (Variable Pulse Width Modulation)). Совместимость автомобиля с данными протоколами определяется отсутствием контакта 7 в диагностическом разъёме
  5. Как уже неоднократно отмечалось, самыми распространёнными являются протоколы ISO. Но существуют и исключения – допустим, в большинстве легковых моделей и минивэнов General Motors используются протокол SAE J1850 VPW, а для большинства транспортных средств марки Ford стандартным является использование протокола J1850 PWM – и т.п.

В дополнение к вышесказанному следует отметить, что в OBD-II также существует стандарт SAE J2012, в котором прописаны соответствующие этой системе коды неисправностей (DTC – Diagnostic Trouble Code). Они все соответствуют одному формату и структура их письменного обозначения также однотипна – одна латинская буква и четыре арабские цифры (в иных случаях допустимо также использование букв). Но при дешифровке они распределяются на две группы – основных и дополнительных (расширенных) (generic и extended соответственно). Первой категории кодов свойственна жесткая стандартизация и одинаковая для всех транспортных средств, совместимых с OBD-II, дешифровка. Но один и тот же код на РАЗНЫХ автомобилях может быть индикатором РАЗНЫХ неисправностей – всё зависит от конструкции конкретного авто. Коды второй категории, введённой в своё время с целью увеличения количества диагностических функций, распределяются по различным маркам и моделям автомашин.

Одной из важнейших задач бортовой диагностики системы управления двигателем является обеспечение связи с диагностическим оборудованием. О наличии неисправности в работе системы контроллер информирует водителя с помощью диагностической лампы.

Далее система бортовой диагностики должна обеспечить возможность считывания сохраненной в памяти контроллера более полной информации об этой неисправности. Для этого в системе предусмотрен канал обмена данными с диагностическим оборудованием. После подключения диагностического тестера к колодке диагностики системы между контроллером и тестером происходит обмен по специальному диагностическому протоколу. Рассмотрим этот протокол как средство проведения диагностики работы системы управления двигателем.

Оборудование для диагностики впрыска Под термином “диагностическое оборудование”, или “тестер”, мы будем понимать специализированный прибор или персональный компьютер с программой для проведения диагностических работ на автомобилях с электронной системой управления двигателем. Многим, наверное, известны такие тестеры и программы, поэтому не будем упоминать их конкретные типы и названия. Все современные контроллеры автомобилей ВАЗ работают с диагностическим оборудованием по протоколу KWP2000 (Keyword Protocol 2000). Этот протокол является международным стандартом (ISO 14230), и его используют во многих системах импортных автомобилей. Сразу заметим, что стандарт определяет только способ “общения” между оборудованием и контроллером, а сама информация (таблицы параметров, определенные производителем коды неисправностей системы, перечень тестируемых исполнительных устройств системы и т. д.) может быть различной. Поэтому оборудование для диагностики не является универсальным.

С помощью диагностического протокола обмена данными диагностическое оборудование может выполнять следующие функции, необходимые при проведении диагностики работы двигателя:

1. Получение информации о системе, двигателе и автомобиле (паспортные данные): идентификационный номер автомобиля (VIN), версия и номер программного обеспечения (ПО) контроллера, дата подготовки ПО, тип двигателя и системы управления, номер для заказа запасных частей и т. д. Это позволяет получить информацию, “не заглядывая под капот”.

2. Получение информации о значениях основных параметров работы системы.

Контроллер передает тестеру таблицу значений текущих параметров работы системы, а тестер отображает их на дисплее. Значения отображаются в физических величинах или в виде графиков изменения во времени. Список параметров определяется на стадии проектирования системы и, по мнению разработчиков, является достаточным для проведения диагностических работ в условиях автосервиса. Типовой набор параметров следующий: температура охлаждающей жидкости, напряжение бортовой сети, скорость вращения коленвала двигателя, положение дроссельной заслонки, нагрузка (масса воздуха) двигателя, угол опережения зажигания, параметры регулирования состава топливовоздушной смеси, параметры регулирования холостого хода и т. д. Понятно, что нельзя предлагать один и тот же список параметров для различных систем с различной конфигурацией. Даже системы с одинаковым контроллером, но выполняющие разные функции (“Eвро-2” и “Евро-3”) будут иметь разные списки параметров.

Кроме значений параметров тестер может получить от контроллера значения напряжения сигналов с датчиков системы (в зависимости от конфигурации системы список датчиков тоже будет разный). Анализируя значения текущих параметров, можно выявить неисправности в работе системы, которые не определяются функциями самодиагностики. Например, значение температуры охлаждающей жидкости, полученное тестером, равно 30оC, а указатель температуры панели приборов уже подходит к красной зоне — это указывает на неверную работу датчика температуры системы. Или значение положения дроссельной заслонки равно 5%, а педаль акселератора полностью отпущена — в этом случае или неисправен датчик положения дроссельной заслонки, или есть проблемы в механической части привода дросселя. В руководстве по ремонту автомобилей с электронными системами управления двигателем существуют карты проведения диагностики, где описана последовательность действий для обнаружения неисправностей с использованием диагностического оборудования.

3. Получение информации из памяти контроллера о неисправностях в работе системы.

Мы уже говорили о том, что в памяти ошибок контроллера хранится следующая информация: код ошибки, статус-флаги и Freeze Frame. Рассмотрим эту информацию более подробно.

Код ошибки. Каждая неисправность системы кодируется согласно международному стандарту SAE J2012 пятисимвольным кодом. Например, P0122. Первая буква “P” показывает, что ошибка относится к системе управления двигателем. Следующий символ “0” показывает, что эта ошибка определена стандартом (может быть и “2”). Для ошибок, не вошедших в стандарт, а определенных производителем, этот символ будет “1” или “3”. Следующая комбинация символов “12” указывает на датчик положения дроссельной заслонки. Последний символ показывает тип ошибки, в нашем случае “2” — это низкий уровень сигнала с датчика.

Cтатус-флаги. Это дополнительная информация об ошибке. Они показывают, как обстоят дела с этой неисправностью в настоящий момент: активная или нет, случайная или постоянная, ведет к зажиганию диагностической лампы или нет, влияет на увеличение токсичности или нет… Для разных контроллеров существует разный набор статус-флагов. Контроллеры МР70 и М7.9.7, кроме этого, могут сообщать тестеру дополнительно, сколько раз возникала неисправность, время после сброса контроллера и до трех значений параметров работы системы в момент фиксирования ошибки.

Freeze Frame. Это зафиксированный (замороженный) на момент возникновения неисправности список значений параметров системы. Исследуя эти значения, можно определить, когда (при какой температуре, скорости вращения коленвала, нагрузке, скорости автомобиля и т. д.) возникла неисправность. Это поможет выяснить причину возникновения ошибки. Вообще, Freeze Frame — это стандартный список параметров, значения которых должны фиксироваться, но производители систем управления или автомобилей вправе выбрать из этого списка свой набор. Пока в системах управления двигателем автомобилей BAЗ только контроллеры МР70 и М7.9.7 поддерживают в своих реализациях диагностического протокола KWP2000 режим считывания параметров Freeze Frame.

По команде с диагностического тестера можно очистить память хранения ошибок контроллера.

4. Запуск тестов проверки исполнительных устройств системы.

При проведении диагностических работ часто возникает необходимость проверки работоспособности исполнительных устройств системы. В этом случае тестер подает команду на включение или выключение (изменение состояния) устройства. Например, при измерении баланса форсунок перед каждым измерением необходимо наличие рабочего давления в топливной системе (периодически нужно включать электробензонасос). Включение реле бензонасоса можно производить с помощью тестера, не изменяя электрическую схему жгута проводов системы. С помощью диагностического оборудования можно проверить работоспособность всех реле системы, форсунок, модуля зажигания и клапана продувки адсорбера. Кроме того, можно управлять регулятором холостого хода (задать положение регулятора или желаемые обороты холостого хода) и провести регулировку состава смеси (регулировку СО) для систем без обратной связи по датчику кислорода.

5. Другие сервисные функции. К ним относятся сброс контроллера — обычный и с начальной инициализацией параметров. При обычном сбросе осуществляется переход работы программы контроллера в начало (как при включении питания), а сброс с инициализацией еще и переводит значения параметров адаптации работы системы (хранятся в энергонезависимом ОЗУ) в исходное состояние, которое определяется при производстве контроллера.

Следует упомянуть (это не относится к диагностике), что протокол дает возможность записать в память контроллера идентификационные данные системы и автомобиля. Они записываются на специальном оборудовании при производстве автомобиля. Многие зарубежные фирмы в конце линии сборки автомобилей не только заносят в память контроллера идентификационные данные, но и программируют контроллер под нужную конфигурацию системы. Таким образом, диагностический протокол является важной частью в системе управления двигателем.

Одной из важнейших задач бортовой диагностики системы управления двигателем является обеспечение связи с диагностическим оборудованием. О наличии неисправности в работе системы контроллер информирует водителя с помощью диагностической лампы.

Далее система бортовой диагностики должна обеспечить возможность считывания сохраненной в памяти контроллера более полной информации об этой неисправности. Для этого в системе предусмотрен канал обмена данными с диагностическим оборудованием. После подключения диагностического тестера к колодке диагностики системы между контроллером и тестером происходит обмен по специальному диагностическому протоколу. Рассмотрим этот протокол как средство проведения диагностики работы системы управления двигателем.

Оборудование для диагностики впрыска Под термином “диагностическое оборудование”, или “тестер”, мы будем понимать специализированный прибор или персональный компьютер с программой для проведения диагностических работ на автомобилях с электронной системой управления двигателем. Многим, наверное, известны такие тестеры и программы, поэтому не будем упоминать их конкретные типы и названия. Все современные контроллеры автомобилей ВАЗ работают с диагностическим оборудованием по протоколу KWP2000 (Keyword Protocol 2000). Этот протокол является международным стандартом (ISO 14230), и его используют во многих системах импортных автомобилей. Сразу заметим, что стандарт определяет только способ “общения” между оборудованием и контроллером, а сама информация (таблицы параметров, определенные производителем коды неисправностей системы, перечень тестируемых исполнительных устройств системы и т. д.) может быть различной. Поэтому оборудование для диагностики не является универсальным.

С помощью диагностического протокола обмена данными диагностическое оборудование может выполнять следующие функции, необходимые при проведении диагностики работы двигателя:

1. Получение информации о системе, двигателе и автомобиле (паспортные данные): идентификационный номер автомобиля (VIN), версия и номер программного обеспечения (ПО) контроллера, дата подготовки ПО, тип двигателя и системы управления, номер для заказа запасных частей и т. д. Это позволяет получить информацию, “не заглядывая под капот”.

2. Получение информации о значениях основных параметров работы системы.

Контроллер передает тестеру таблицу значений текущих параметров работы системы, а тестер отображает их на дисплее. Значения отображаются в физических величинах или в виде графиков изменения во времени. Список параметров определяется на стадии проектирования системы и, по мнению разработчиков, является достаточным для проведения диагностических работ в условиях автосервиса. Типовой набор параметров следующий: температура охлаждающей жидкости, напряжение бортовой сети, скорость вращения коленвала двигателя, положение дроссельной заслонки, нагрузка (масса воздуха) двигателя, угол опережения зажигания, параметры регулирования состава топливовоздушной смеси, параметры регулирования холостого хода и т. д. Понятно, что нельзя предлагать один и тот же список параметров для различных систем с различной конфигурацией. Даже системы с одинаковым контроллером, но выполняющие разные функции (“Eвро-2” и “Евро-3”) будут иметь разные списки параметров.

Кроме значений параметров тестер может получить от контроллера значения напряжения сигналов с датчиков системы (в зависимости от конфигурации системы список датчиков тоже будет разный). Анализируя значения текущих параметров, можно выявить неисправности в работе системы, которые не определяются функциями самодиагностики. Например, значение температуры охлаждающей жидкости, полученное тестером, равно 30оC, а указатель температуры панели приборов уже подходит к красной зоне — это указывает на неверную работу датчика температуры системы. Или значение положения дроссельной заслонки равно 5%, а педаль акселератора полностью отпущена — в этом случае или неисправен датчик положения дроссельной заслонки, или есть проблемы в механической части привода дросселя. В руководстве по ремонту автомобилей с электронными системами управления двигателем существуют карты проведения диагностики, где описана последовательность действий для обнаружения неисправностей с использованием диагностического оборудования.

3. Получение информации из памяти контроллера о неисправностях в работе системы.

Мы уже говорили о том, что в памяти ошибок контроллера хранится следующая информация: код ошибки, статус-флаги и Freeze Frame. Рассмотрим эту информацию более подробно.

Код ошибки. Каждая неисправность системы кодируется согласно международному стандарту SAE J2012 пятисимвольным кодом. Например, P0122. Первая буква “P” показывает, что ошибка относится к системе управления двигателем. Следующий символ “0” показывает, что эта ошибка определена стандартом (может быть и “2”). Для ошибок, не вошедших в стандарт, а определенных производителем, этот символ будет “1” или “3”. Следующая комбинация символов “12” указывает на датчик положения дроссельной заслонки. Последний символ показывает тип ошибки, в нашем случае “2” — это низкий уровень сигнала с датчика.

Cтатус-флаги. Это дополнительная информация об ошибке. Они показывают, как обстоят дела с этой неисправностью в настоящий момент: активная или нет, случайная или постоянная, ведет к зажиганию диагностической лампы или нет, влияет на увеличение токсичности или нет… Для разных контроллеров существует разный набор статус-флагов. Контроллеры МР70 и М7.9.7, кроме этого, могут сообщать тестеру дополнительно, сколько раз возникала неисправность, время после сброса контроллера и до трех значений параметров работы системы в момент фиксирования ошибки.

Freeze Frame. Это зафиксированный (замороженный) на момент возникновения неисправности список значений параметров системы. Исследуя эти значения, можно определить, когда (при какой температуре, скорости вращения коленвала, нагрузке, скорости автомобиля и т. д.) возникла неисправность. Это поможет выяснить причину возникновения ошибки. Вообще, Freeze Frame — это стандартный список параметров, значения которых должны фиксироваться, но производители систем управления или автомобилей вправе выбрать из этого списка свой набор. Пока в системах управления двигателем автомобилей BAЗ только контроллеры МР70 и М7.9.7 поддерживают в своих реализациях диагностического протокола KWP2000 режим считывания параметров Freeze Frame.

По команде с диагностического тестера можно очистить память хранения ошибок контроллера.

4. Запуск тестов проверки исполнительных устройств системы.

При проведении диагностических работ часто возникает необходимость проверки работоспособности исполнительных устройств системы. В этом случае тестер подает команду на включение или выключение (изменение состояния) устройства. Например, при измерении баланса форсунок перед каждым измерением необходимо наличие рабочего давления в топливной системе (периодически нужно включать электробензонасос). Включение реле бензонасоса можно производить с помощью тестера, не изменяя электрическую схему жгута проводов системы. С помощью диагностического оборудования можно проверить работоспособность всех реле системы, форсунок, модуля зажигания и клапана продувки адсорбера. Кроме того, можно управлять регулятором холостого хода (задать положение регулятора или желаемые обороты холостого хода) и провести регулировку состава смеси (регулировку СО) для систем без обратной связи по датчику кислорода.

5. Другие сервисные функции. К ним относятся сброс контроллера — обычный и с начальной инициализацией параметров. При обычном сбросе осуществляется переход работы программы контроллера в начало (как при включении питания), а сброс с инициализацией еще и переводит значения параметров адаптации работы системы (хранятся в энергонезависимом ОЗУ) в исходное состояние, которое определяется при производстве контроллера.

Следует упомянуть (это не относится к диагностике), что протокол дает возможность записать в память контроллера идентификационные данные системы и автомобиля. Они записываются на специальном оборудовании при производстве автомобиля. Многие зарубежные фирмы в конце линии сборки автомобилей не только заносят в память контроллера идентификационные данные, но и программируют контроллер под нужную конфигурацию системы. Таким образом, диагностический протокол является важной частью в системе управления двигателем.

Концерн VAG, является одним из крупных производителей автомобилей в Европе и мире, в состав концерна входят заводы, выпускающие известнейшие и хорошо зарекомендовавшие себя автомобили марок: Audi, Volkswagen, Shkoda, Seat, Porshe.

Так, как концерн VAG выпускает большое количество разных марок автомашин, для удобства производства и удешевления конструкции, разные марки автомобилей, могут иметь одну и ту же платформу. К примеру Audi A4, и Volkswagen B5, имеют одинаковую платформу, на эти машины устанавливается одинаковый двигатель, подвеска, коробка передач и прочее… Не является исключением электроника и блоки управления всевозможных систем, так например на Shkoda Octavia и Volkswagen Golf 4 могут быть установлены одинаковые блоки управления двигателем, автоматические коробки передач, климат контроль и прочее.

В связи с большим количеством марок автомобилей, и большим количеством всевозможных электронных систем, концерн VAG сделал единый протокол диагностики для всех своих автомобилей. Диагностика Volkswagen, Audi, Shkoda, Seat может осуществляться по К-линии, благодаря высокому уровню диагностических программ во многих автосервисах, компьютером можно диагностировать не только двигатель, но и АБС, АКПП, иммобилайзер, климат контроль, подушки безопасности (SRS), систему электрики кузова и еще очень много всевозможных электронных систем, которыми богаты автомобили концерна VAG.

Вообще, в сравнении с прочими автомобилями, Audi, Volkswagen, Shkoda, Seat являются легко диагностируемыми автомобилями. Так, как на эти машины, продаётся много не очень дорогого диагностического оборудования, то владелец автомобиля Audi, Volkswagen, Shkoda или Seat без труда может найти диагностику для своего автомобиля.

« Назад

Пропуски воспламенения
Мотор дрожит, трясется и не едет – проблема, которую легко описать словами, но сложно найти. Более строгое название этой проблемы – «пропуски воспламенения». Поговорим о том, из-за чего она возникает, как ее можно диагностировать и чем в этом поможет сканер ELM327 в сочетании с программой Motordata OBD.

Суть проблемы

Прежде всего, определимся с терминами. Кто-то называет эту проблему «машина трясется и не едет», кто-то говорит «машина троит», кто-то называет это «пропусками зажигания». Как ни называй, а симптомы одинаковы — повышенные вибрации, пониженная мощность. Или, может быть, проблема проявляется не всегда, а случайным образом, почему-то в основном при необходимости ускориться.

Всё это может говорить о пропусках воспламенения. Именно так, поскольку термин «пропуски зажигания» подразумевает проблемы с системой зажигания – свечами, катушками и так далее. А «троить» мотор может и по другим причинам, которые мы перечислим ниже. Собственно, в английском языке это явление и называется «misfire», что гораздо более точно и лаконично. Тем не менее, для удобства в тексте ниже будет также иногда использоваться более привычный термин «пропуски зажигания».

Почему блоку управления нужно регистрировать пропуски воспламенения

Пропуски воспламенения (зажигания) плохи не только тем, что создают дискомфорт водителю, но и тем, что несгоревшее топливо в этом случае попадает в выхлоп. Это не слишком хорошо для экологии. Но и это еще не всё. Топливо смывает масляную пленку со стенок цилиндра, а это может привести к повышенному износу цилиндра и поршня.

Кроме того, подавляющее большинство автомобилей на наших дорогах оборудовано каталитическим нейтрализатором (в просторечии – «катализатор») – устройством, в котором токсичные компоненты выхлопа доокисляются до безвредных соединений. Катализатор представляет собой металлические или керамические «соты», покрытые слоем благородных металлов, в присутствии которых окисление происходит быстрее (отсюда, собственно, и название устройства). Работает катализатор при высоких температурах (400-800°C). При пропусках воспламенения, когда на него попадает несгоревший бензин – температура катализатора повышается до 1400°C, что приводит к его оплавлению или разрушению. И это опять проблема. Оплавившийся катализатор перестает пропускать выхлопные газы, что приводит к новым проблемам – мотору сложнее стартовать, а мощность еще сильнее снижается. Если катализатор разрушается, то получившуюся крошку может затягивать в цилиндры, где она работает как абразив, очень быстро приводя к необходимости капитального ремонта двигателя.

В любом случае, после разрушения катализатора его надо либо менять, либо удалять. Удаление катализатора – действие сомнительное как с точки зрения экологии, так и с точки зрения потребительских качеств автомобиля. Начиная с того, что выхлоп без нейтрализации токсичных веществ довольно сильно пахнет, и заканчивая тем, что необходимо каким-то путем «обманывать» блок управления, что не всегда реально сделать корректно. Новый же катализатор стоит довольно дорого, даже если менять его не целиком в корпусе, а отдельно соты.

Новый же катализатор стоит довольно дорого, даже если менять его не целиком в корпусе, а отдельно соты
Катализатор без корпуса. Для его замены корпус («банка» в просторечии) катализатора вскрывается, соты старого (оплавленного или осыпавшегося) катализатора удаляются, а новый катализатор приваривается на его местоИсходя из всего вышесказанного, понятно, что блок управления должен регистрировать пропуски воспламенения как из соображений экологии, так и во избежание повреждений двигателя и катализатора. Сложно сказать, какая из двух причин стала основной, но согласно стандарту OBD2/EOBD, в современных блоках управления возможность регистрации пропусков заложена. Однако реализация этого требования у всех разная. Существуют блоки и автомобили, не регистрирующие пропусков зажигания даже при полностью отключенном цилиндре.

Как регистрирует проблему блок управления.

С вопросом «надо ли регистрировать?» мы разобрались, теперь надо понять, как именно это сделать. К сожалению, не существует датчика, позволяющего однозначно определить, было ли воспламенение в цилиндре. Поэтому в блоки управления закладывают алгоритм регистрации по косвенным признакам. Чаще всего блок управления анализирует равномерность вращения коленчатого вала по сигналам с ДПКВ (датчик положения коленчатого вала). Неравномерность вращения при определенных условиях считается признаком пропуска воспламенения. Как правило, за отклонения принимается величина более 0,2%.

Кроме того, на автомобилях с индивидуальными катушками зажигания контролируются цепи управления катушками – если снять разъем с одной катушки, то блок управления априори отметит этот цилиндр как неработающий.

В ряде систем могут быть применены иные признаки для регистрации пропусков.

Даже если бы пропуски воспламенения фиксировались достоверно, а не по косвенным признакам, было бы некорректно отключать цилиндр по одному зафиксированному пропуску. Поэтому у блока управления есть параметр «счетчик пропусков воспламенения» для каждого из цилиндров. Как правило, блок управления решает, что пропуски воспламенения присутствуют и надо отключать цилиндр, если количество пропусков по какому-то из цилиндров превышает определенный порог, заданный разработчиками.

Действия, предпринимаемые блоков управления при регистрации пропусков воспламененияПервое и главное, что делает блок, обнаруживая пропуски зажигания – начинает мигать лампой Check Engine в то время, когда фиксирует их. Это одна из немногих причин, когда «чек» мигает. Настолько немногих, что можно почти со стопроцентной уверенностью делать вывод: мигает «чек» — пропуски воспламенения.

Второе, что делает блок, как уже упоминалось – отключает подачу топлива в тот цилиндр, в котором зафиксированы пропуски. На соответствующую форсунку просто перестают подаваться сигналы на открытие.

Наконец, третье – блок управления формирует и сохраняет в памяти код ошибки, а также зажигает Check Engine постоянно. Как правило, это ошибка P0301-P0308, если удалось определить конкретные цилиндры с пропусками. Последняя цифра как раз соответствует номеру цилиндра. Если не удалось определить, в каком цилиндре пропуски, или пропуски зафиксированы в нескольких цилиндрах, фиксируется код P0300.

В некоторых блоках управления формируются не стандартные коды P0300-P0308, а коды с другими номерами, из категории специфичных для конкретного производителя. Например, так происходит на автомобиле Lada X-Ray с двигателем ВАЗ-21179. Несмотря на это, их смысл и расшифровка аналогичны стандартным P0300-P0308.

На упомянутую выше ситуацию с управляющей цепью катушек формируется другой код ошибки, не относящийся непосредственно к пропускам воспламенения.

Как искать проблему

Без специальных инструментов бывает не слишком просто отличить пропуски зажигания от другой проблемы. Как правило, водителю доступны три признака – вибрации, сниженная мощность и мигающая (горящая) лампа Check Engine. Ни один из признаков не является достаточным для того, чтобы однозначно подтвердить пропуски.

Есть и хорошая новость – из специальных инструментов часто бывает достаточно простого сканера ELM327 в сочетании с программой, умеющей связываться с автомобилем по протоколу OBD2, а еще лучше – по заводскому протоколу. Мы в качестве такой программы рассматриваем Motordata OBD, поскольку она умеет работать по обоим протоколам, и делает это хорошо.

Первое и очевидное, что следует сделать – прочитать ошибки. Возможно, в памяти уже хранится ошибка, указывающая на конкретный цилиндр, с которым связана проблема. Например, так будет выглядеть ошибка при отключенной катушке на автомобиле Ford Focus 2 с двигателем объемом 2.0 литра:

Например, так будет выглядеть ошибка при отключенной катушке на автомобиле Ford Focus 2 с двигателем объемом 2.0 литра

Ошибка по цепи управления катушкой
Видим, что зафиксирована ошибка P0352 – это неисправность цепи катушки второго цилиндра. Логика здесь та же, что и с ошибками P0301-P0308 – последняя цифра обозначает номер цилиндра, по которому зафиксирована проблема. Так, P0351 будет означать проблему цепи катушки первого цилиндра. Также в данном случае ошибка сопровождена стоп-кадром (freeze frame), сохранившим условия, при которых зафиксирована ошибка. В принципе, особой ценности он не несет, но по значению давления во впускном коллекторе можно понять, что зафиксирована она уже при работающем двигателе, иначе разрежения во впуске не было бы и там стояло бы значение 100 кПа.

Если блок управления не умеет регистрировать пропуски воспламенения или по какой-то иной причине не формирует код ошибки, можно попробовать посмотреть на состав смеси, то есть, на показания лямбда-зонда. Поскольку в проблемном цилиндре не происходит сгорания, топливо и воздух выходят из него, не изменяя состава. Это значит, что концентрация кислорода на выпуске составляет около 21%, что для лямбда-зонда является очень высокой цифрой, и в результате он покажет значение, соответствующее бедной смеси. Для порогового лямбда-зонда это будет значение около 0 В:

Концентрация кислорода на выпуске составляет около 21%, что для лямбда-зонда является очень высокой цифрой, и в результате он покажет значение, соответствующее бедной смеси

Показания лямбда-зонда при пропусках воспламенения

Немного забежим вперед и уточним – бедная смесь может оказаться не следствием, а причиной проблемы – когда воздуха слишком много, смесь может воспламеняться не всегда, что в конечном счете выльется в такие же пропуски воспламенения, но к системе зажигания это не будет иметь никакого отношения.

Также возможна ситуация, когда ошибки по конкретному цилиндру нет, но можно посмотреть счетчики пропусков воспламенения по всем цилиндрам. В зависимости от конкретной машины это может быть доступно и по протоколу OBD2, и по заводскому протоколу:

Возможна ситуация, когда ошибки по конкретному цилиндру нет, но можно посмотреть счетчики пропусков воспламенения по всем цилиндрам.

Счетчики пропусков воспламенения на автомобиле BMW

Если всё же удалось локализовать цилиндр, с которым связана ошибка, дальше нужно разобраться, из-за чего в нем пропадает воспламенение. Причин, если в крупную клетку, не так уж много:

  1. искра.
  2. подача топлива.
  3. компрессия.

Исходя из практики, чаще всего причина кроется в системе зажигания. Случаи с выходом из строя форсунок очень редки, поэтому их проверку мы здесь не будем описывать. Ну а проверка компрессии — процедура на бензиновых моторах достаточно простая, чтобы описывать ее здесь.

Сосредоточимся на проверке системы зажигания. Здесь виноваты могут быть по очереди:

1)свечи зажигания из-за увеличенного зазора или пробоя по изолятору. Для проверки следует выкрутить свечу, замерить зазор и внимательно осмотреть фарфоровый изолятор на предмет пробоев:

Для проверки следует выкрутить свечу, замерить зазор и внимательно осмотреть фарфоровый изолятор на предмет пробоев

Пробой свечи по изолятору

При наличии чрезмерно увеличенного зазора или следов пробоя надо заменять свечи для продолжения диагностики.

А вот характерный коричневый «поясок» в месте соединения изолятора с металлической частью свечи, вопреки распространенному мнению, не является признаком каких-либо проблем со свечой. Его наличие может говорить только о присутствии масла в свечном колодце, но это никак не влияет на работу системы зажигания.

Характерный коричневый «поясок» в месте соединения изолятора с металлической частью свечи, вопреки распространенному мнению, не является признаком каких-либо проблем со свечой

«поясок» на изоляторе свечи зажигания

2)Наконечники свечных проводов или катушек, надеваемые на свечи. Их также необходимо осмотреть изнутри на предмет пробоев или, например, следов коррозии – такие случаи также встречались.

3)Проблема может быть связана и с внутренним состоянием высоковольтных проводов или катушек зажигания. Провода можно прозвонить мультиметром, их сопротивление должно быть примерно в диапазоне от 500 Ом до 20 кОм – конкретное нормальное значение зависит от марки и модели автомобиля.

Если на автомобиле установлены индивидуальные катушки зажигания, то проще всего поменять местами катушки с проблемного и исправного цилиндра. Если код ошибки начнет указывать на другой цилиндр – это однозначно свидетельствует проблеме с катушкой.

Аналогично можно поступить и с высоковольтными проводами, если их длина позволяет менять их местам. Практика, правда, такова, что для систем с одной катушкой и высоковольтными проводами стоимость замены системы (катушка+провода+свечи) чаще всего оказывается сравнима с ценой работы по поиску неисправности – особенно в случаях, когда для доступа к свечам необходимо снятие впускного коллектора.

Альтернативной проверкой катушки и проводов является «дедовский» способ, при котором надо выкрутить свечу из цилиндра, вставить ее в катушку, прислонить резьбой к любой металлической неокрашенной детали под капотом, и покрутить стартером. В этой ситуации можно глазами увидеть, есть искра или нет.

Сложным для диагностики случаем являются автомобили, на которых катушки зажигания всех цилиндров объединены в один неразборный модуль. Это очень распространенное решение. Здесь, очевидно, нет возможности поменять катушки местами для проверки.

Удобно, если есть возможность взять заведомо исправную катушку с другого автомобиля, как это нередко практикуется в среди участников клубов, объединенных одной маркой – классически именно так проверяли «кассету» зажигания участники клубов Saab в тот период, когда автомобили этой марки еще не были редкостью на дорогах.

Принципиально и на таком модуле возможна визуальная проверка наличия искры, но это будет выглядеть громоздко и довольно странно:

Принципиально и на таком модуле возможна визуальная проверка наличия искры, но это будет выглядеть громоздко и довольно странно

Проверка наличия искры на модуле зажигания. Металлический лом прижат к резьбовым частям свечей и соединен проводом с минусовой клеммой. Модуль зажигания штатно подключен к проводке автомобиля

Другие возможные причины

Возможны также ситуации, когда проблема не связана ни с зажиганием, ни с форсунками, ни с компрессией. Более того, нередко ошибка по пропускам воспламенения может возникнуть при фактическом присутствии воспламенения. Перечислим некоторые примеры таких ситуаций:

  1. При проблемах с ДПКВ, его проводкой или с задающим диском, возможно искажение сигнала с датчика, которое блок управления воспримет как неравномерность вращения и по этому признаку зафиксирует пропуски воспламенения.
  2. Известны случаи разрушения двухмассового маховика, из-за которых действительно присутствовало неравномерное вращение двигателя. Это и внешне выглядело как троящий двигатель, и воспринималось блоком управления именно так, но фактически никак не было связано с процессами сгорания в цилиндрах.
  3. Как уже упоминалось, проблемы с воспламенением могут быть связаны со смесеобразованием и подачей смеси в цилиндры. Например, сильный подсос воздуха хотя и может быть скомпенсирован топливной коррекцией, но только до определенных пределов. Ну а бедная смесь имеет полное право плохо воспламеняться.

Другой причиной такой ситуации могут оказаться банально некорректные фазы ГРМ, из-за которых воспламенение также будет происходить не тогда, когда надо.

Учитывая все вышесказанное, можно констатировать: в определении причин пропусков воспламенения, как и в остальной диагностике, основную роль играет не доступный инструмент, а понимание процессов, происходящих под капотом и в блоке управления. Тем не менее, одними знаниями провести диагностику чаще всего невозможно, и для получения хотя бы первичной информации необходим инструмент. Для снятия катушек и свечей это будут гаечные ключи, для проверки формы и уровней сигналов – осциллограф, а для получения информации из блока управления идеально подойдет приложение для диагностики автомобилей Motordata OBD.

Видео к данной статье:

Бочканов Евгений Александрович 
© Легион-Автодата

Москва, г. Зеленоград
service-193@mail.ru

Одной из самых значимых задач бортовой диагностики системы управления двигателем считается обеспечение связи с диагностическим оборудованием. Если при работе системы случается неисправность, контроллер сообщит о текущей ситуации водителю при помощи диагностической лампы.

Оборудование для диагностики впрыска

Затем система бортовой диагностики обязана обеспечить возможность считывать более подробную информацию о случившейся неисправности, которая записывается в памяти контроллера. Для этой цели в системе используется канал обмена информацией с диагностическим оборудованием. После подключения к диагностической колодки диагностического тестера, между тестером и контроллером начинается обмен по специально предназначенному для этого протоколу. Давайте узнаем об этом протоколе как о средстве проведения диагностики работы системы управления двигателем подробно.

Термин «тестер» или «диагностическое оборудование» подразумевает персональный компьютер или специализированный прибор, оснащённый программой, которая нужна, чтобы проводить работы на автомобилях с электронной системой двигателя. Наверняка, многие знакомы с подобными программами, поэтому на их типах мы останавливаться не будем. Контроллеры всех современных автомобилей ВАЗ работают с диагностическим оборудованием согласно протоколу KWP2000. Этот протокол принято считать международным стандартом, его довольно часто применяют во многих импортных системах автомобилей. Следует сразу сказать, что стандарт может определять только способ «общения» контроллера и оборудования. Сама информация при этом может иметь разный вид (определённый производителем код системных неисправностей, таблицы параметров, перечень тестируемых исполнительных системных устройств и так далее). Именно это объясняет, почему оборудование диагностики просто не может быть универсальным.

Диагностический протокол обмена данными помогает диагностическому оборудованию выполнять определённые функции, которые могут понадобиться для проведения диагностических работ двигателя. К этим функциям можно отнести следующие:

  • Получение информации о двигателе, системе и автомобиле. То есть, получение паспортных данных. К таким данным можно отнести номер и версию программного обеспечения контроллера, идентификационный номер автомобиля, тип системы управления и двигателя, номер, который позволит заказать запасные части и многое другое. Всё это даёт возможность получить быстро точную информацию об автомобиле, не заглядывая при этом даже под капот.
  • Возможность получить информацию, касающуюся значений основных параметров работы системы.

Через контроллер тестер получает точные значения всех текущих параметров работы системы, после чего выводит их на дисплей. Все значения отображены в физических величинах или в графиков временых изменений. Список параметров определяется при проектировании системы, и, как считают разработчики, их вполне достаточно для того, чтобы проводить диагностические работы в условиях автосервисов. В типовой набор включаются следующие параметры: температуры жидкости для охлаждения, скорость вращения коленчатого вала, напряжение бортовой сети, положение дроссельной заслонки, масса воздуха, параметры для регулирования состава топливовоздушной смеси, параметры, дающие возможность регулировать холостой ход, угол опережения зажигания и многие другие. Разумеется, предлагать одинаковый список параметров для систем с различной конфигурацией нельзя, даже в том случае, если системы обладают одним и тем же контроллером, однако функции они будут выполнять разные, то и списки контроллеров для них тоже будут различными.  

Кроме значений параметров, тестер способен получать от контроллера значения напряжения сигналов с системных датчиков (списки датчиков также будут отличаться в зависимости от конфигурации системы). При анализе значений текущих параметров, выявить можно те неисправности в системной работе, которые игнорируются самодиагностикой. К примеру, сюда можно отнести значение температуры жидкости для охлаждения, которое на тестере показывает 30 градусов, а на панели приборов уже почти приблизился к зоне красного цвета – это говорит о том, что датчики температуры системы работают неисправно. Или, когда педаль акселератора полностью опущена, а значение положения дроссельной заслонки составляет пять процентов – это говорит о проблемах в механической части положения дросселя или о неисправности датчика положения дроссельной заслонки. Что такое непосредственный впрыск. В руководстве управления автомобилей, система управления двигателем в которых электронная, имеются в наличии карты поведения диагностики, в которых описана последовательность действий — она поможет обнаружить неисправности при применении диагностического оборудования.

Мы уже сообщали о том, что память ошибок контроллера содержит следующую информацию: Freeze Frame, код ошибки и статус-флаги. Давайте рассмотрим эту информацию более подробно.

Freeze Frame

Это замороженный или зафиксированный список значений параметров системы на данный момент. При использовании этого списка параметров можно будет определить, когда именно возникла неисправность. Это позволяет выяснить причину появления неисправности. Если говорить о Фриз Фрэйм кратко, то он является списком стандартных параметров, значения которых должны фиксироваться, однако производители систем управления могут отдать предпочтение лишь некоторым параметрам в этом списке, и внести их в свой собственный набор. На сегодняшний день двигатели автомобилей ВАЗ могут иметь контроллеры М7.9.7 или МР70, а в своих реализациях поддерживать только диагностический протокол KWP2000 и собственный режим для чтения параметров.

Код ошибки 

Любая неисправность системы кодируется в соответствии с международным стандартам SAE J2012 кодом из пяти символов, к примеру, PO122. Первая буква указывает на то, что ошибка случилась в системе управления двигателем. Следующий символ показывает, что ошибка принадлежит к числу стандартных — вместо него там может стоять ещё цифра 2. Если ошибка не относится к стандартным, а была определена производителем, её символом будет выступать цифра 1 или 3. Следующая комбинация из двух символов показывает положение дроссельной заслонки. Последний символ показывает тип произошедшей ошибки — в нашем примере это 2, что означает, что датчик показывает слишком низкий уровень сигнала.

Важно! Статус-флаги показывают дополнительную информацию об ошибке.

Они позволяют узнать, как обстоят дела в данный момент времени: постоянная она или постоянная, активная или неактивная, влияет или нет на увеличение токсичности, ведёт или нет к зажиганию диагностической лампы. Статус-флаги для различных контроллеров не могут быть одинаковыми. Некоторые контроллеры способны дополнительно сообщать тестеру о том, сколько раз уже случались неисправности, время после того, как контроллер сделает сброс и так до того, как будут достигнуты три значения параметров системы в тот момент, когда была фиксирована ошибка.

С диагностического тестера по команде можно очистить память хранения контроллерных ошибок:

  • Включения тестов, проверяющих исполнительные устройства системы. Когда проводятся диагностические работы, нередко возникает необходимость в том, чтобы проверить работоспособность исполнительных устройств системы. В таких случаях тестер подаёт команду на изменение состояния (то есть, включение или выключение) устройства. К примеру, когда измеряется баланс форсунок, перед каждым измерением требуется наличие рабочего давления в топливной системе (для этого потребуется запускать периодически электробензонасос). Запуск реле бензонасоса осуществлять можно при помощи тестера, при этом не создавая изменений в электрической схеме жгута приводов системы. Что такое распределенный впрыск. При помощи диагностического оборудования проверить можно работоспособность всех системных реле, форсунок, клапана для продувки адсорбера и модуля зажигания. Помимо этого, можно осуществлять управление регулятором холостого хода (задать необходимые обороты или положение холостого хода) и провести регулирование состава смеси для системы без обратной связи по кислородному датчику.
  • Прочие сервисные функции. К ним можно отнести сброс контроллера – с начальной инициализацией параметров и обычный

Следует сказать, что протокол позволяет записать в памяти контроллера идентификационные данные автомобиля и системы. Многие зарубежные фирмы даже программируют контроллер под требуемую системную конфигурацию. Таким образом, мы можем сделать верный вывод, что диагностический протокол является очень значимой частью в системе управления двигателем.

  • Как работает бензонасос
  • Особенности универсального лямбда-зонда
  • Основные особенности и устройство ДМРВ
  • Принцип работы системы впрыска Common Rail

Понравилась статья? Поделить с друзьями:
  • Ошибка fr на мерседес актрос 4141
  • Ошибка fr на мерседес axor
  • Ошибка fr 5252
  • Ошибка fr 4341 на мерседес актрос
  • Ошибка fr 3330 мерседес актрос