Ошибка репрезентативности выборочного наблюдения зависит от

Ошибка
наблюдения

– это расхождение между расчетным и
действительным значениями изучаемых
величин. Следует иметь в виду, что ошибки
наблюдения могут возникнуть при любых
статистических исследованиях (сплошных
и выборочных). Эти ошибки бывают двух
видов: регистрации
и репрезентативности.

Ошибка
регистрации

– это отклонение между значением
показателя, полученного в ходе
статистического наблюдения (как
сплошного,
так и несплошного),
и фактическим, действительным его
значением. Ошибки регистрации бывают
случайные
(непреднамеренные) и систематические
(тенденциозные). Случайные
ошибки регистрации

– это результат действия различных
случайных факторов (например, цифры
переставлены местами, перепутаны
соседние графы или графы при заполнении
статистического формуляра). При достаточно
большой обследуемой совокупности в
результате действия закона больших
чисел эти ошибки взаимно погашаются,
так как они обычно уравновешивают друг
друга, поскольку не имеют преимущественного
направления в сторону преувеличения
или преуменьшения значения изучаемого
показателя. Систематические
ошибки регистрации
направлены
в одну сторону вследствие преднамеренного
нарушения правил отбора (предвзятые
цели) (например, многие опрашиваемые
вместо 48-49 лет и 51-52 года говорят, что им
50 лет, т.е. округляют возраст на цифрах,
оканчивающихся на цифре 0 (при
соответствующих случаях – на 5))

Ошибка
репрезентативности

возникает потому, что отобранная и
обследованная совокупность недостаточно
точно воспроизводит (репрезентирует)
всю исходную совокупность в целом
(характерна только для несплошного
наблюдения), другими словами, ошибка
репрезентативности

есть отклонение значения показателя
обследованной совокупности от его
величины по исходной совокупности.
Случайные
ошибки репрезентативности

возникают, если отобранная совокупность
неполно воспроизводит всю совокупность
в целом (ее
величина может быть оценена
).
Систематическая
ошибка репрезентативности

появляются вследствие нарушения
принципов отбора единиц из исходной
совокупности, которые должны быть
подвергнуты наблюдению. Для каждого
конкретного выборочного наблюдения
значение ошибки репрезентативности
может быть определено по соответствующим
формулам, которые зависят от вида,
метода
и способа
формирования выборочной совокупности.

2. Формирование выборочной совокупности.

I)
По виду
отбора
различают
индивидуальный,
групповой
и комбинированный
отбор.

Индивидуальный
отбор

в выборочную совокупность отбираются
отдельные единицы генеральной
совокупности.

Групповой
отбор
– в выборочную
совокупность отбираются качественно
однородные или серии изучаемых единиц.

Комбинированный
отбор

сочетание группового
и индивидуального
видов отбора.

II).
По методу
отбора

различают повторную
и бесповторную
выборки.

Повторная
выборка

– общая численность генеральной
совокупности в процессе выборки остается
неизменной, т.е. ту или иную единицу,
попавшую в выборку, возвращают в
генеральную совокупность, и она сохраняет
равную возможность со всеми прочими
единицами при повторном отборе единиц
вновь попасть в выборку (в
социально-экономической жизни встречается
редко).

Бесповторная
выборка

единица
совокупности, попавшая в выборку, в
генеральную совокупность не возвращается
и в дальнейшем в выборке не участвует,
т.е. последующую выборку делают из
генеральной совокупности уже без
отобранных ранее единиц; т.о, при
бесповторной
выборке
численность
единиц генеральной совокупности
сокращается в процессе исследования.

III)
Способ
отбора

определяет конкретный механизм или
процедуру выборки единиц из генеральной
совокупности, что основывается на
алгоритме
(методе) отбора единиц выборочной
совокупности
,
то есть реализуется принцип случайности
в процессе формирования выборочной
совокупности.

Метод
жеребьевки

– требуемое в соответствии с установленным
процентом отбора число жребиев (фишек,
карточек) извлекается из общей совокупности
в случайном порядке (количество жребиев
соответствует объему генеральной
совокупности). Недостаток
данного способа заключается в том, что
жеребьевка является в большей степени
теоретическим методом формирования
выборки, так как ее техническая реализация
при большом объеме генеральной
совокупности затруднительна.

Метод
случайной сортировки
:

1)
каждой единице генеральной совокупности
присваивается случайное число u,
полученное с помощью процессора случайных
чисел в интервале от 0 до 1;

2)
единицы генеральной совокупности
ранжируются в соответствии с полученным
значением u;

3)
отбираются n
первых единиц.

Достоинства
данного способа заключаются в простом
алгоритме отбора единиц, а также в
возможности формирования нескольких
выборок без перекрытия. К недостатку
относят наличие процедуры сортировки
единиц генеральной совокупности, которая
при достаточно большом ее объеме
нежелательна.

Метод
прямой реализации
:

1)
все единицы генеральной совокупности,
расположенные в случайном порядке или
ранжированные по какому-либо признаку,
нумеруются от 1 до N;

2)
с помощью процессора случайных чисел
получают n
значений в интервале от 1 до N;

3) из сформированного
списка единиц генеральной совокупности
отбираются единицы, соответствующие
по номеру полученным случайным числам.

Отбор
по таблице случайных чисел

(упрощенный вариант метода
прямой реализации
)
– при отборе используются цифры любого
столбца таблицы случайных чисел с учетом
объема генеральной совокупности. При
проведении бесповторного
отбора повторяющиеся номера следует
учитывать только один
раз. При повторном
отборе, если тот или иной номер случайно
встретится один или более раз,
соответствующая этому номеру единица
в каждом
случае

повторно
включается в выборочную совокупность.

Метод
отбора-отказа
:

1)
последовательно образуют случайные
числа
,,
… в соответствии с законом равномерного
распределения в интервале от 0 до 1;

2)
первая единица генеральной совокупности
включается в выборку при выполнении
для нее неравенства
;

3)
из оставшихся единиц

включается в выборку при выполнении
для нее неравенства(— число отобранных в выборку единиц
среди первыхk
просмотренных);

4)
когда
,
т.е. выборка необходимого объема
сформирована, процедура заканчивается
(этот момент может наступить и до
завершения просмотра всех единиц
генеральной совокупности).

К
достоинствам
метод отбора-отказа можно отнести то,
что данный способ основан на алгоритме
последовательного извлечения единиц,
не требующем ни предварительной
сортировки единиц генеральной совокупности
или образования случайных чисел, ни
многократного считывания исходного
файла.

По
степени
охвата единиц совокупности

различают большие
(n>30)
и малые
(n
< 30) выборки.

Ошибка
репрезентативности

— расхождение между выборочной
характе­ристикой и характеристикой
генеральной совокупности.

Ошибки
репрезентативности

  1. Систематические
    — возникают в результате нарушения
    научных принципов отбора единиц
    совокупности (преднамеренные и
    непреднамеренные).

  2. Случайные
    возникают в результате несплошного
    характера наблюде­ния (средняя и
    предельная ошибки выбора).

Случайные
ошибки могут быть доведены до незначительных
размеров, а главное, их размеры и пределы
можно определить с достаточной точностью
на основании закона больших чисел.

Средняя
ошибка выборки

— такое расхождение между средними
вы­борочной и генеральной совокупностями,
которое не превышает ±.

В
математической статистике доказывается,
что значения средней ошибки выборки
определяются по формулам:

Формула
для определения величины средней ошибки
выборки для количественного признака:

Формула
для определения величины средней ошибки
выборки для альтернативного признака:

Полученное
значение средней ошибки необходимо для
установления возможного значения .
Которое определяется по формуле:

Но
такое суждение можно гарантировать не
с абсолютной
достоверностью, а лишь с определенной
степенью
вероятности.

В
математической статистике доказывается,
что пределы значений характеристик
генеральной совокупности отличаются
от характеристик выборочной совокупности
лишь с вероятностью, которая определена
числом 0,683.

Это
означает, что в 683 случаях из 1000 генеральная
средняя будет находиться в установленных
пределах, т.е. отклонение ГС от ВС не
превысит однократной средней ошибки
выборки. В остальных 317 случаях они могут
выйти за эти пределы. Вероятность можно
повысить, если расширить пределы
отклонений. Так, при удвоенном значении
,
вероятность достигает 0,954 ().
Если утроить значение то вероятность
увеличится до 0,997 ().

Возможное
значение генеральной средней

Вероятность

0,683

0,954

0,997

Если
обозначить значение увеличения
за
t,
то можно записать в общем виде:

Множитель
t
называется коэффициентом
доверия
.
Известный русский математик А.М.Ляпунов
дал выражение конкретных значений
множителя t
для различных степеней вероятности в
виде функции:

На
практике пользуются готовыми таблицами
этой функции.

t

0

0,1

0,5

1

1,5

2

2,5

2,6

3

4

(t)

0,1

0,0797

0,3829

0,6827

0,8664

0,9545

0,9876

0,9907

0,9973

0,99994

Из
вышесказанного следует, что лишь с
определенной степенью вероятности
можно утверждать, что показатели
генеральной совокупности и их отклонения
не превысят величину .
Полученную величинуназываетсяпредельной
ошибкой выборки.

Предельная
ошибка выборки


максимально
возможное расхождение вы­борочной и
генеральной средних,
т.е.
максимум ошибки при заданной ве­роятности
ее появления.

Предельная
ошибка выборки для количественного
признака:

Предельная
ошибка выборки для альтернативного
признака:

В
связи с тем, что существуют различные
методы, виды и способы отбора единиц из
генеральной совокупности формулы для
расчета средней ошибки выборки также
будут различаться:

Способ
отбора

Оцениваемый
параметр

Повторный
отбор

Бесповторный
отбор

Собственно

случайный
и

механи­ческий

Средняя

Доля

Типический

Средняя

Доля

Серийный

Средняя

Доля


— средняя из групповых дисперсий;

wi

доля
единиц совокупности, обладающих изучаемым
признаком в i
типической
группе;


— средняя из групповых дисперсий для
доли. В табл. 6.6 представлены формулы
для исчисления средней ошибки выборки
при типическом отборе;

S
– общее число серий;

s
– число отобранных серий;


межгрупповая дисперсия средних,
определяемая по формуле:


межгрупповая дисперсия доли, определяемая
по формуле:


— средняя
i
серии;



средняя по всей выборочной совокупности;

w
— доля признака i
серии;


— общая доля признака во всей выборочной
совокупности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понятие репрезентативности часто встречается в статистических отчетностях и при подготовке выступлений и докладов. Пожалуй, без нее трудно представить себе какой-либо из видов подачи информации на обозрение.

Репрезентативность — что это?

понятие репрезентативности

Репрезентативность отражает, насколько выбранные объекты или части соответствуют содержанию и смыслу совокупности данных, из которой они были выбраны.

Другие определения

Понятие репрезентативности можно раскрывать в разных контекстах. Но по своему смыслу репрезентативность – это соответствие черт и свойств выбранных единиц из общей совокупности, которые точно отражают характеристики всей генеральной базы данных в целом.

репрезентативность что это

Также репрезентативность информации определяют как способность выборочных данных представить параметры и свойства совокупности, важные с точки зрения проводимого исследования.

Репрезентативная выборка

Принцип формирования выборки заключается в избрании наиболее важных и точно отображающих свойства общей совокупности данных. Для этого используются различные методы, которые позволяют получать точные результаты и общее представление о генеральной совокупности, используя только выборочные материалы, описывающие качества всех данных.

Таким образом, нет необходимости изучать весь материал, а достаточно рассмотреть выборочную репрезентативность. Что это? Это выборка отдельных данных для того, чтобы иметь понятие об общей массе информации.

репрезентативность результатов

Их в зависимости от способа различают как вероятностные и невероятностные. Вероятностная – это выборка, которая производится путем вычисления наиболее важных и интересных данных, являющихся в дальнейшем представителями генеральной совокупности. Это обдуманный выбор или случайная выборка, тем не менее, обоснованная своим содержанием.

Невероятностная – это одна из разновидностей случайной выборки, составляющаяся по принципу обычной лотереи. В таком случае не учитывается мнение того, кто составляет такую выборку. Используется лишь слепой жребий.

Вероятностная выборка

Вероятностные выборки также могут подразделяться на несколько видов:

  • Одна из самых простых и понятных принципов – это нерепрезентативная выборка. К примеру, такой способ часто используется при проведении социальных опросов. При этом участники опроса не выбираются из толпы по каким-либо определенным признакам, и получение информации производится у первых 50 людей, принявших участие в нём.
  • Преднамеренные выборки отличаются тем, что имеют ряд требований и условий при отборе, однако все же полагаются на случайное совпадение, не преследуя своей целью достижение хорошей статистики.
  • Выборка на основании квот – это еще одна из вариаций невероятностной выборки, которая часто используется для исследования больших совокупностей данных. Для нее используется множество условий и норм. Подбираются объекты, которые должны им соответствовать. То есть на примере социального опроса можно предположить, что опрошены будут 100 человек, но только мнение некоторого числа людей, которые будут соответствовать установленным требованиям, будут учтены при составлении статистического отчета.

репрезентативность информации

Вероятностные выборки

Для вероятностных выборок исчисляется ряд параметров, которым объекты в выборке будут соответствовать, и среди них разными способами могут избираться именно те факты и данные, которые будут представлены как репрезентативность данных выборки. Такими способами вычисления нужных данных могут быть:

  • Простая случайная выборка. Заключается в том, что среди выбранного сегмента совершенно случайным методом лотереи выбирается необходимое количество данных, которые будут являться репрезентативной выборкой.
  • Систематическая и случайная выборка дает возможность составить систему вычисления необходимых данных на основе случайно выбранного сегмента. Таким образом, если первое случайное число, которое указывает на порядковый номер данных, выбранных из общей совокупности, будет 5, то последующими данными, которые будут выбраны, могут стать, например, 15, 25, 35 и так далее. Этот пример наглядно объясняет, что даже случайный выбор может основываться на систематических вычислениях необходимых исходных данных.

Выборка потребителей

Осмысленная выборка – это способ, который заключается в рассмотрении каждого отдельного сегмента, и на основании его оценки составляется совокупность, отражающая характеристики и свойства общей базы данных. Таким образом набирается большее количество данных, соответствующих требованиям репрезентативной выборки. Можно легко отобрать некоторое количество вариантов, которые не войдут в общее число, не потеряв при этом качество отобранных данных, представляющих общую совокупность. Таким способом определяется репрезентативность результатов исследования.

Размер выборки

Не последний вопрос, который необходимо решить, – это размер выборки для репрезентативного представления генеральной совокупности. Размер выборки не всегда зависит от количества исходников в генеральной совокупности. Однако репрезентативность выборочной совокупности напрямую зависит от того, на сколько сегментов должен быть в итоге разделён результат. Чем больше таких сегментов, тем больше данных попадает в результативную выборку. Если результаты требуют общего обозначения и не требуют конкретики, тогда, соответственно, выборка становится меньше, поскольку, не вдаваясь в детали, информация излагается более поверхностно, а значит, ее прочтение будет общим.

ошибка репрезентативности

Понятие ошибки репрезентативности

Ошибка репрезентативности – это конкретные расхождения между характеристиками генеральной совокупности и выборочных данных. При проведении любого выборочного исследования невозможно получить абсолютно точные данные, как при полном исследовании генеральных совокупностей и выборки, представленной лишь частью сведений и параметров, тогда как более детальное изучение возможно только при исследовании всей совокупности. Таким образом, неизбежны некоторые погрешности и ошибки.

Виды ошибок

Различают некоторые ошибки, которые возникают при составлении репрезентативной выборки:

  • Систематические.
  • Случайные.
  • Преднамеренные.
  • Непреднамеренные.
  • Стандартные.
  • Предельные.

Основанием для появления случайных ошибок может быть несплошной характер исследования общей совокупности. Обычно случайная ошибка репрезентативности имеет незначительный размер и характер.

Систематические ошибки между тем возникают при нарушении правил отбора данных из общей совокупности.

репрезентативность данных

Средняя ошибка – это разница между усредненными значениями выборки и основной совокупностью. Она не зависит от количества единиц в выборке. Она обратно пропорциональна объему выборки. Тогда чем больше объем, тем меньше значение средней ошибки.

Предельная ошибка – это наибольшая возможная разница между усредненными значениями сделанной выборки и общей совокупностью. Такая ошибка охарактеризовывается как максимум вероятных ошибок при заданных условиях их появления.

Преднамеренные и непреднамеренные ошибки репрезентативности

Ошибки смещения данных бывают преднамеренными и непреднамеренными.

Тогда причинами появления преднамеренных ошибок является подход к подбору данных по методу определения тенденций. Непреднамеренные ошибки возникают еще на стадии подготовки выборочного наблюдения, формирования репрезентативной выборки. Для недопущения подобных ошибок необходимо создать хорошую основу для выборки, составляющей списки единиц отбора. Она должна полностью соответствовать целям проведения выборки, быть достоверной, охватывающей все аспекты исследования.

Валидность, надежность, репрезентативность. Расчет ошибок

1

Расчет ошибки репрезентативности (Мм) средней арифметической величины (М).

Среднее квадратическое отклонение: численность выборки (>30).

Ошибка репрезентативности (Мр) и относительная величина (Р): численность выборки (n>30).

В том случае, когда приходится изучать совокупность, где количество выборки мало и составляет меньше 30 единиц, тогда число наблюдений станет меньше на одну единицу.

Величина ошибки прямо порциональна объему выборки. Репрезентативность информации и вычисление степени возможности составления точного прогноза отражает определенная величина предельной ошибки.

2

Репрезентативные системы

Не только в процессе оценки подачи информации используется репрезентативная выборка, но и сам человек, получающий информацию, использует репрезентативные системы. Таким образом, мозг обрабатывает некоторое количество информации, создавая репрезентативную выборку из всего потока информации, чтобы качественно и быстро оценить подаваемые данные и понять суть вопроса. Ответить на вопрос: «Репрезентативность — что это?» — в масштабах человеческого сознания довольно просто. Для этого мозг использует все подвластные органы чувств, в зависимости от того, какую именно информацию необходимо вычленить из общего потока. Таким образом, различают:

3

  • Визуальную репрезентативную систему, где задействуются органы зрительного восприятия глаза. Люди, часто использующие подобную систему, называются визуалами. С помощью этой системы человек обрабатывает информацию, поступающую в виде изображений.
  • Аудиальная репрезентативная система. Главный орган, который используется – это слух. Информация, подаваемая в виде звуковых файлов или речи, обрабатываются именно этой системой. Люди, лучше воспринимающие информацию на слух, называются аудиалами.
  • Кинестетическая репрезентативная система представляет собой обработку потока информации, путем восприятия его с помощью обонятельных и осязательных каналов.

4

  • Дигитальная репрезентативная система используется вместе с другими как средство получения информации извне. Это субъективно-логическое восприятие и осмысление полученных данных.

валидность надежность репрезентативность

Итак, репрезентативность — что это? Простая выборка из множества или неотъемлемая процедура при обработке информации? Однозначно можно сказать, что репрезентативность во многом определяет наше восприятие потоков данных, помогая вычленить из него наиболее веские и значимые.

Пример об ошибке репрезентативности

Лекция 4.1 Выборочный метод

К настоящему времени Вы заработали баллов: 0 из 0 возможных.

ГЕНЕРАЛЬНАЯ И ВЫБОРОЧНАЯ СОВОКУПНОСТЬ

Генеральная совокупность — вся подлежащая изучению совокупность объектов (наблюдений).

Генеральная совокупность носит гипотетический характер. Она представляет собой совокупность всех мыслимых наблюдений, которые могли бы быть произведены при данных условиях. Даже если бы у нас была возможность провести сплошное исследование всей совокупности признака, все равно в нее не попали бы объекты, которое по какой то причине отсутствуют на текущий момент, но должны были существовать при данных условиях.

Та часть объектов, которая отобрана для непосредственного изучения, называется выборочной совокупностьюили выборкой

Сущность выборочного метода

Сущность выборочного метода состоит в том, чтобы по некоторой части генеральной совокупности выносить суждение о её свойствах в целом

Чтобы по данным выборки иметь возможность судить о генеральной совокупности, она должна быть репрезентативной(представительной).

Репрезентативная выборка сохраняет и повторяет структуру генеральной совокупности.

Если две выборки взяты из одной генеральной совокупности, то разница в получаемых оценках (например, средних) будет носить случайный характер, как следствие ошибки репрезентативности

Ошибка репрезентативности возникает по причине того, что мы исследуем не всю совокупность, а только её части (выборки). Мы получаем случайную комбинацию элементов из генеральной совокупности.

Для того, чтобы минимизировать различия однородных (взятых из одной генеральной совокупности) выборок необходимо правильным образом их формировать.

Наилучшим способом формирования репрезентативной выборки является случайный отбор элементов из генеральной совокупности без расчленения на части или группы (случайная выборка).

Пример об ошибке репрезентативности

Рассмотрим следующий пример.

Исследователь задался вопросом: «существуют ли различия в эмпатических способностях между психологами и педагогами?». Для того чтобы это прояснить он набрал две группы испытуемых в соответствии с их профессиональной деятельностью и предложил им заполнить опросник на эмпатические способности. Далее, он рассчитал среднее значение в каждой группе.

В группе психологов среднее составило 23,4 балла, а в группе педагогов 21,1. Таким образом, разница в средних между группами составила2,3 балла (23,4 — 21,1 = 2,3).

Если бы представители этих профессий не отличались по изучаемому признаку, тогда разница в средних равнялась бы нулю.

Однако, можно ли считать эту разницу в 2,3 балла достаточной, чтобы судить о реальных различиях между группами? Может сложится так, что психологи и педагоги по эмпатии в реальности не отличаются (выборки однородны), а разница в 2,3 балла, полученная исследователем носит случайный характер, как ошибка репрезентативности.

Таким образом, мы можем сформулировать две гипотезы:

Гипотезы являются альтернативами по отношению к друг другу. Принятие одной из них как верной влечет за собой исключение «истинности» другой.

СТАТИСТИЧЕСКАЯ ГИПОТЕЗА

Статистическая гипотеза – это любое предположение о виде или параметрах неизвестного закона распределения (закона распределения генеральной совокупности)

В статистике принято формулировать пару гипотез. Первая гипотеза называется нулевой, а вторая – альтернативной.

Нулевая гипотеза Н Альтернативная гипотеза Н1
1. 1. Является проверяемой 2. Обычно гипотеза об отсутствии явления (например, различий или зависимости) Является логическим отрицанием нулевой
Поскольку нулевая гипотеза является проверяемой, то её можно отвергать и принимать Альтернативную гипотезу принимают как следствие отрицания нулевой гипотезы

пример:

· Н (нулевая): Женщины не отличаются от мужчин по среднему уровню развития эмпатических способностей (средние значения равны)

· Н1 (альтернативная): Средний уровень эмпатических способностей выше у женщин по сравнению с мужчинами

пример:

· Н (нулевая): Линейная корреляция между самооценкой и тревожностью равна 0

· Н1 (альтернативная): Самооценка отрицательно связана с тревожностью (линейная корреляция меньше нуля / чем выше самооценка, тем ниже тревожность и наоборот)

Вопрос:Какая из двух формулировок соответствует нулевой гипотезе Н?

· А) между психологами и педагогами нет различий по среднему уровню выраженности эмпатии

· Б) между психологами и педагогами есть различия по среднему уровню выраженности эмпатии

Статистический критерий

Правило, по которому нулевая гипотеза отвергается или принимается, называется статистическим критерием.

Статистика – это специально составленная выборочная характеристика (распределение), у которой есть критическое значение такое, что если верна нулевая гипотеза, то вероятность (α) того, что случайная величина превысит это критическое значение, мала (Кремер Н.Ш., 2004).

Критическое значение делит распределение «нулевой гипотезы» на две области: область допустимых значений и область критических значений

Таким образом, критические значения позволяют исследователю либо принять, либо отвергнуть нулевую гипотезу.

В математической статистике можно подбирать критические значение для разных альфа-уровней (уровней значимости). Чаще всего:

1. Критическое значение, которое выделяет критическую область с вероятностью α

Источник

Ошибки статистического наблюдения и основные приёмы их устранения

Всякое статистическое наблюдение должно быть полным и достоверным. Однако по ряду причин степень точности данных может быть различной.

Все ошибки наблюдения подразделяются на два вида:

Ошибки регистрации возникают вследствие неправильного установления фактов в процессе наблюдения или неправильной их записи.

Ошибки регистрации могут возникать как при сплошном наблюдении, так и при несплошном и имеют следующие виды:

Случайные ошибки – это ошибки, которые возникают в результате небрежной описки или невнимательного отношения регистратора при заполнении формуляра (ошибки в подсчёте).

Систематические ошибки – это ошибки, которые искажают сведения по каждой отдельной единице наблюдения в одном и том же направлении.

Систематические ошибки делятся на:

Преднамеренные ошибки (сознательные, тенденциозные ошибки), возникающие в результате сознательного искажения статистической информации. К ним относятся: приписки, неправильные сведения об объёме выпущенной продукции, об остатках сырья и материалов и т. д.

Непреднамеренные ошибки – это ошибки, которые возникают в результате случайных причин, т.е. неумышленно (неисправность измерительных приборов, невнимательность регистратора и т.д.).

Ошибки репрезентативности свойственны несплошному наблюдению. Они возникают в результате выборочного наблюдения, когда отобранная часть единиц совокупности недостаточно полно отражает состав всей изучаемой совокупности.

Ошибки репрезентативности (так же, как и ошибки регистрации) могут быть случайными и систематическими.

Случайные ошибки оцениваются с помощью математических методов.

Систематические ошибки – это отклонения, которые возникают в результате случайного отбора единиц изучаемой совокупности. Их размеры не поддаются количественной оценке.

Для выявления и устранения допущенных при регистрации ошибок применяются следующие методы:

а) внешний контроль;

б) логический контроль;

в) счётный контроль.

При внешнем контроле проверяется: правильность оформления документов; наличие всех необходимых записей, которые предусмотрены инструкцией и т.д.

Логический контроль заключается в проверке ответов на вопросы программы наблюдения путём сопоставления полученных данных с другими источниками.

Сущность счётного (арифметического) контроля заключается в счётной проверке всех итоговых показателей, которые содержатся в отчётности или формуляре исследования. Задачей такого контроля является исправление итогов и отдельных числовых показателей.

В ряде случаев, при счётном контроле данных статистического наблюдения применяется метод балансовой увязки показателей (наличие на начало отчётного периода плюс поступления минус расход должно быть равно наличию на конец отчётного периода). Такой метод применяют: при проверках поголовья скота, при учёте поступления и расхода сырья и материалов и т.д.

Указанные методы проверки достоверности статистического наблюдения позволяют сократить до минимального значения допуск ошибок.

Источник

Репрезентативность — что это за процесс? Ошибка репрезентативности

Понятие репрезентативности часто встречается в статистических отчетностях и при подготовке выступлений и докладов. Пожалуй, без нее трудно представить себе какой-либо из видов подачи информации на обозрение.

Репрезентативность — что это?

Репрезентативность отражает, насколько выбранные объекты или части соответствуют содержанию и смыслу совокупности данных, из которой они были выбраны.

Другие определения

Понятие репрезентативности можно раскрывать в разных контекстах. Но по своему смыслу репрезентативность – это соответствие черт и свойств выбранных единиц из общей совокупности, которые точно отражают характеристики всей генеральной базы данных в целом.

Также репрезентативность информации определяют как способность выборочных данных представить параметры и свойства совокупности, важные с точки зрения проводимого исследования.

Репрезентативная выборка

Принцип формирования выборки заключается в избрании наиболее важных и точно отображающих свойства общей совокупности данных. Для этого используются различные методы, которые позволяют получать точные результаты и общее представление о генеральной совокупности, используя только выборочные материалы, описывающие качества всех данных.

Таким образом, нет необходимости изучать весь материал, а достаточно рассмотреть выборочную репрезентативность. Что это? Это выборка отдельных данных для того, чтобы иметь понятие об общей массе информации.

Их в зависимости от способа различают как вероятностные и невероятностные. Вероятностная – это выборка, которая производится путем вычисления наиболее важных и интересных данных, являющихся в дальнейшем представителями генеральной совокупности. Это обдуманный выбор или случайная выборка, тем не менее, обоснованная своим содержанием.

Невероятностная – это одна из разновидностей случайной выборки, составляющаяся по принципу обычной лотереи. В таком случае не учитывается мнение того, кто составляет такую выборку. Используется лишь слепой жребий.

Вероятностная выборка

Вероятностные выборки также могут подразделяться на несколько видов:

  • Одна из самых простых и понятных принципов – это нерепрезентативная выборка. К примеру, такой способ часто используется при проведении социальных опросов. При этом участники опроса не выбираются из толпы по каким-либо определенным признакам, и получение информации производится у первых 50 людей, принявших участие в нём.
  • Преднамеренные выборки отличаются тем, что имеют ряд требований и условий при отборе, однако все же полагаются на случайное совпадение, не преследуя своей целью достижение хорошей статистики.
  • Выборка на основании квот – это еще одна из вариаций невероятностной выборки, которая часто используется для исследования больших совокупностей данных. Для нее используется множество условий и норм. Подбираются объекты, которые должны им соответствовать. То есть на примере социального опроса можно предположить, что опрошены будут 100 человек, но только мнение некоторого числа людей, которые будут соответствовать установленным требованиям, будут учтены при составлении статистического отчета.

Вероятностные выборки

Для вероятностных выборок исчисляется ряд параметров, которым объекты в выборке будут соответствовать, и среди них разными способами могут избираться именно те факты и данные, которые будут представлены как репрезентативность данных выборки. Такими способами вычисления нужных данных могут быть:

  • Простая случайная выборка. Заключается в том, что среди выбранного сегмента совершенно случайным методом лотереи выбирается необходимое количество данных, которые будут являться репрезентативной выборкой.
  • Систематическая и случайная выборка дает возможность составить систему вычисления необходимых данных на основе случайно выбранного сегмента. Таким образом, если первое случайное число, которое указывает на порядковый номер данных, выбранных из общей совокупности, будет 5, то последующими данными, которые будут выбраны, могут стать, например, 15, 25, 35 и так далее. Этот пример наглядно объясняет, что даже случайный выбор может основываться на систематических вычислениях необходимых исходных данных.

Выборка потребителей

Осмысленная выборка – это способ, который заключается в рассмотрении каждого отдельного сегмента, и на основании его оценки составляется совокупность, отражающая характеристики и свойства общей базы данных. Таким образом набирается большее количество данных, соответствующих требованиям репрезентативной выборки. Можно легко отобрать некоторое количество вариантов, которые не войдут в общее число, не потеряв при этом качество отобранных данных, представляющих общую совокупность. Таким способом определяется репрезентативность результатов исследования.

Размер выборки

Не последний вопрос, который необходимо решить, – это размер выборки для репрезентативного представления генеральной совокупности. Размер выборки не всегда зависит от количества исходников в генеральной совокупности. Однако репрезентативность выборочной совокупности напрямую зависит от того, на сколько сегментов должен быть в итоге разделён результат. Чем больше таких сегментов, тем больше данных попадает в результативную выборку. Если результаты требуют общего обозначения и не требуют конкретики, тогда, соответственно, выборка становится меньше, поскольку, не вдаваясь в детали, информация излагается более поверхностно, а значит, ее прочтение будет общим.

Понятие ошибки репрезентативности

Ошибка репрезентативности – это конкретные расхождения между характеристиками генеральной совокупности и выборочных данных. При проведении любого выборочного исследования невозможно получить абсолютно точные данные, как при полном исследовании генеральных совокупностей и выборки, представленной лишь частью сведений и параметров, тогда как более детальное изучение возможно только при исследовании всей совокупности. Таким образом, неизбежны некоторые погрешности и ошибки.

Виды ошибок

Различают некоторые ошибки, которые возникают при составлении репрезентативной выборки:

  • Систематические.
  • Случайные.
  • Преднамеренные.
  • Непреднамеренные.
  • Стандартные.
  • Предельные.

Основанием для появления случайных ошибок может быть несплошной характер исследования общей совокупности. Обычно случайная ошибка репрезентативности имеет незначительный размер и характер.

Систематические ошибки между тем возникают при нарушении правил отбора данных из общей совокупности.

Средняя ошибка – это разница между усредненными значениями выборки и основной совокупностью. Она не зависит от количества единиц в выборке. Она обратно пропорциональна объему выборки. Тогда чем больше объем, тем меньше значение средней ошибки.

Предельная ошибка – это наибольшая возможная разница между усредненными значениями сделанной выборки и общей совокупностью. Такая ошибка охарактеризовывается как максимум вероятных ошибок при заданных условиях их появления.

Преднамеренные и непреднамеренные ошибки репрезентативности

Ошибки смещения данных бывают преднамеренными и непреднамеренными.

Тогда причинами появления преднамеренных ошибок является подход к подбору данных по методу определения тенденций. Непреднамеренные ошибки возникают еще на стадии подготовки выборочного наблюдения, формирования репрезентативной выборки. Для недопущения подобных ошибок необходимо создать хорошую основу для выборки, составляющей списки единиц отбора. Она должна полностью соответствовать целям проведения выборки, быть достоверной, охватывающей все аспекты исследования.

Валидность, надежность, репрезентативность. Расчет ошибок

Расчет ошибки репрезентативности (Мм) средней арифметической величины (М).

Среднее квадратическое отклонение: численность выборки (>30).

Ошибка репрезентативности (Мр) и относительная величина (Р): численность выборки (n>30).

В том случае, когда приходится изучать совокупность, где количество выборки мало и составляет меньше 30 единиц, тогда число наблюдений станет меньше на одну единицу.

Величина ошибки прямо порциональна объему выборки. Репрезентативность информации и вычисление степени возможности составления точного прогноза отражает определенная величина предельной ошибки.

Репрезентативные системы

Не только в процессе оценки подачи информации используется репрезентативная выборка, но и сам человек, получающий информацию, использует репрезентативные системы. Таким образом, мозг обрабатывает некоторое количество информации, создавая репрезентативную выборку из всего потока информации, чтобы качественно и быстро оценить подаваемые данные и понять суть вопроса. Ответить на вопрос: «Репрезентативность — что это?» — в масштабах человеческого сознания довольно просто. Для этого мозг использует все подвластные органы чувств, в зависимости от того, какую именно информацию необходимо вычленить из общего потока. Таким образом, различают:

  • Визуальную репрезентативную систему, где задействуются органы зрительного восприятия глаза. Люди, часто использующие подобную систему, называются визуалами. С помощью этой системы человек обрабатывает информацию, поступающую в виде изображений.
  • Аудиальная репрезентативная система. Главный орган, который используется – это слух. Информация, подаваемая в виде звуковых файлов или речи, обрабатываются именно этой системой. Люди, лучше воспринимающие информацию на слух, называются аудиалами.
  • Кинестетическая репрезентативная система представляет собой обработку потока информации, путем восприятия его с помощью обонятельных и осязательных каналов.

  • Дигитальная репрезентативная система используется вместе с другими как средство получения информации извне. Это субъективно-логическое восприятие и осмысление полученных данных.

Итак, репрезентативность — что это? Простая выборка из множества или неотъемлемая процедура при обработке информации? Однозначно можно сказать, что репрезентативность во многом определяет наше восприятие потоков данных, помогая вычленить из него наиболее веские и значимые.

Источник

Согласно теории выборочного метода, неоднократно подтвержденной практикой, опрашивать всех нет необходимости, а можно опросить лишь часть группы, которая может быть в тысячи раз меньше. Эта маленькая часть называется выборкой (или выборочной совокупностью), а большая группа, которую она представляет, называется генеральной совокупностью.

При этом если выборка сформирована правильно, выводы, полученные на основе изучения выборки, могут быть перенесены и на генеральную совокупность. Например, если в выборке женщины значимо чаще, чем мужчины, пользуются дезодорантами, то делается вывод, что и в генеральной совокупности (например, в исследованном городе) присутствует такая закономерность.

Процесс переноса выводов с выборки на генеральную совокупность называется генерализацией. А свойство выборки отражать характеристики генеральной совокупности называется репрезентативностью. Для более комфортного запоминания термина на рис.1.

приведены иллюстрации, когда выборка отражает свойства генеральной совокупности и когда свойства выборки отличаются от свойств генеральной совокупности.

Статистика ошибок: зависимость от репрезентативности выборки Статистика ошибок: зависимость от репрезентативности выборки Статистика ошибок: зависимость от репрезентативности выборки

Рис.1. Иллюстративные примеры соответствия (несоответствия) свойств генеральной совокупности и выборки

Не стоит путать понятие репрезентативности с такими понятиями как валидность и релевантность, хотя они тоже относятся к характеристикам качества исследования. В социальных науках валидность понимается довольно широко, но чаще всего – как обоснованность.

Понятие валидности относится не к выборке, а к исследовательской методике. Методика или измерение (анкета, блок вопросов, тест) считается валидным, если фиксирует именно то понятие или свойство, которое планируется измерить.

Например, если мы захотим оценить уровень лояльности клиента к магазину и выберем для этого лишь показатель частоты посещения магазина, валидность этого подхода будет неполной: возможно, респондент часто заходит в магазин только из-за банкомата, который там установлен.

Валидная методика в данном примере должна включать и другие показатели: предпочтение магазина, суммы покупок в этом и других магазинах, готовность переключиться на другие магазины, готовность рекомендовать магазин и др.

При установлении валидности решающую роль играет обоснование и последующая проверка гипотезы релевантности, то есть соответствия измеряемых параметров характеристикам исследуемого объекта.

Житейский пример нерелевантности – измерять уровень счастья человека количеством денег у него (хотя, наверное, не все с этим согласятся).

Очевидный пример нерелевантности – попытка измерить массу тела по его температуре.

Но вернемся к понятию репрезентативности. В то время как точность измерений зависит от размера выборки, размер выборки не гарантирует ее репрезентативности.

Репрезентативность выборки главным образом обеспечивается способом отбора ее участников (респондентов).

Примером явного нарушения репрезентативности может послужить шутка о том, что интернет-опрос показал, что 100% людей пользуется интернетом.

Можно выделить несколько вариантов нарушения репрезентативности выборки: когда опрошены не те люди и когда опрошено слишком много (или мало) определенных людей (например, женщин намного больше, чем мужчин). Кроме того, чем меньше размер выборки, тем меньше вероятность того, что она будет репрезентативной. Например, допустим, 1% населения мог бы заинтересоваться новой услугой.

Это 1 из 100 людей. Если размер выборки составляет всего 60 человек, то в вашей выборке может отсутствовать человек, который, скорее всего, будет заинтересован в услуге. Ваша выборка менее репрезентативна, потому что она меньше. Ваши результаты будут разными в зависимости от того, содержит ли ваша выборка одного из этих людей или нет.

Пример репрезентативной и нерепрезентативной выборки показан на рис.2.

Статистика ошибок: зависимость от репрезентативности выборки

Рис.2. Пример репрезентативной и нерепрезентативной выборки

На рис.3 показана та же по составу генеральная совокупность, но с другим расположением объектов внутри круга.

Статистика ошибок: зависимость от репрезентативности выборки

Рис.3. Пример репрезентативной и нерепрезентативной выборки при другом расположении объектов генеральной совокупности

Говоря простым языком, репрезентативная выборка – это такая выборка, в которой представлены все подгруппы, важные для исследования. Помимо этого, характер распределения рассматриваемых параметров в выборке должен быть таким же, как в генеральной совокупности.

Простой случайный отбор респондентов представляется оптимальным способом формирования репрезентативной выборки.

Поскольку в этом случае у любого представителя генеральной совокупности одинаковая вероятность попасть в выборку, в нее попадут люди с разными характеристиками пропорционально их долям в генеральной совокупности.

В итоге выборка будет представлять собой нечто вроде уменьшенной копии генеральной совокупности.

Случайность отбора респондентов в выборку обеспечивается разными способами.

Например, для телефонного опроса жителей города берется база данных всех телефонных номеров, и номера респондентов случайным образом выбираются компьютером (с использованием генератора случайных чисел).

При уличном опросе интервьюеров распределяют по случайно выбранным точкам и инструктируют опрашивать каждого N-ного прохожего.

Наглядным примером репрезентативной выборки может служить пицца. Если целая пицца – это генеральная совокупность, которую мы хотим изучить, то кусок пиццы – это выборка.

Как правило, достаточно одного куска пиццы, чтобы судить обо всей пицце (при условии, что ингредиенты равномерно распределены по ее поверхности). Таким образом, кусок пиццы пиццы на рис.

4 – это репрезентативная выборка из пиццы.

Статистика ошибок: зависимость от репрезентативности выборки

Рис.4. Наглядный пример репрезентативной выборки (пицца)

Важно отметить, что не любой кусок пиццы будет репрезентативной выборкой. Разные способы получения куска пиццы могут принципиально повлиять на качество исследования и выводы, которые будут получены при анализе каждого варианта выборки (рис.4)

(рисунок в сушильной камере, готовится к публикации)

Рис.5. Наглядный пример формирования репрезентативной и нерепрезентативной выборки.

Еще один показательный пример формирования репрезентативной выборки – кастрюля, содержимое которой мы должны узнать (допустим, там скрывается борщ). Мы только один раз можем зачерпнуть из кастрюли ложкой (провести исследование). В нашем примере ложка – это выборка, а содержимое кастрюли – генеральная совокупность.

Если мы зачерпнем сверху, то придем к выводу, что в кастрюле бульон. Если снизу – решим, что в кастрюле мясо. Зачерпнув где-то посередине, мы получим картошку или капусту. В любом из трех случаев выводы будут неверны.

Чтобы получить достоверный результат, нам стоит хорошенько перемешать содержимое кастрюли, перед тем как пробовать его.

Перемешивание в данном случае – аналог процедуры простого случайного отбора, поскольку оно предоставляет всем ингредиентам примерно равную вероятность попадания в ложку-выборку (или тарелку-выборку).

Статистика ошибок: зависимость от репрезентативности выборки

Рис.6. Борщ как модель, демонстрирующая репрезентативность выборки.

В реальности применить простой случайный отбор респондентов не всегда удается в полной мере. Например, мы можем абсолютно корректно отобрать в выборку нужное количество номеров домашних телефонов случайным образом, но при их прозвоне выяснится, что дозвониться и поговорить удается преимущественно с пенсионерами, а «поймать» дома молодежь и работающих людей получается плохо.

Возвращаясь к примеру с борщом, если у нас вместо кастрюли – огромный ресторанный котел, а в руках все та же обычная ложка, перемешивание будет неэффективным. Чтобы решить задачу, потребуются иные подходы.

Например, мы можем теоретически разделить глубину котла на несколько слоев и постараться зачерпнуть содержимое из каждого слоя (из случайного места слоя: не только в центре, но и по краям). Таким образом, наша итоговая выборка будет состоять уже из нескольких выборок и при этом адекватно отражать содержимое всех слоев котла.

Подобные альтернативные подходы называются типами выборки, которых придумано достаточно много для того, чтобы максимизировать репрезентативность выборки в сложных условиях реального мира.

Последствия нарушения репрезентативности выборки: некорректные выводы исследования, выброшенный на ветер бюджет исследования, финансовые потери вследствие применения неправильных выводов.

Вы можете выбрать валидную исследовательскую методику, рассчитать объем выборки, обеспечивающий приемлемую точность измерений, но, если выборка исследования нерепрезентативна, получить достоверную информацию не удастся.

  • ПРИМЕРЫ НАРУШЕНИЯ РЕПРЕЗЕНТАТИВНОСТИ ВЫБОРКИ
  • ПРЕДВЫБОРНЫЙ ОПРОС
  • Самым известным примером нарушения репрезентативности выборки является история провала американского журнала «Литературный дайджест».

В 1936 году журнал в очередной раз провел почтовый опрос общественного мнения о вероятных результатах грядущих президентских выборов в США. До 1936 года опрос всегда правильно предсказывал победителя. Опрос 1936 года показал, что победителем с большим отрывом станет кандидат от республиканцев, но в итоге победителем оказался представитель демократов.

Таким образом, гигантская выборка (около 2,4 млн. человек) не обеспечила достоверных результатов. В чем же заключалась причина ошибки?

Называются две основные причины провала: смещение при формировании выборки и смещение вследствие отказа респондентов от участия в опросе.

Прежде всего, журнал включил своих подписчиков в список для рассылки анкет и, желая расширить выборку, использовал два других доступных тогда списка граждан: зарегистрированных автовладельцев и пользователей телефонов.

Во времена Великой Депрессии представители этих групп отличались от остального населения более высоким доходом, как и подписчики самого журнала.

Таким образом, полученная база для рассылки не являлась корректным отражением структуры населения США.

Вторая проблема с опросом заключалась в том, что из 10 миллионов человек, чьи имена были в первоначальном списке рассылки, только 2,4 миллиона ответили на опрос. Вероятно, высокий процент отказов был связан с тем, что опрос проводился по почте.

Уже в те времена американцы относились к почтовым рассылкам как к спаму. Таким образом, размер выборки составил примерно одну четверть от того, что первоначально планировалось.

Когда доля ответивших низка (как это было в данном случае), считается, что исследование страдает от необъективности ответов.

У этой истории две морали: Большая, но неправильно сформированная выборка гораздо хуже маленькой, но правильно сформированной выборки. При проведении опроса не упускайте из внимания смещение отбора и смещение в результате отказов.

СИСТЕМАТИЧЕСКАЯ ОШИБКА ВЫЖИВШЕГО

Пример из военной практики. Во Вторую мировую войну американские военные столкнулись со следующей проблемой. Не все американские бомбардировщики после задания возвращались на базу.

На вернувшихся самолетах оставалось множество пробоин от выстрелов противника, но распределены они были неравномерно: больше всего на фюзеляже и прочих частях, меньше в топливной системе и гораздо меньше — в двигателе.

Командованию казалось логичным, что в наиболее поврежденных местах нужно установить больше брони. Привлеченный к решению задачи математик возразил: данные как раз показывают, что самолет, получивший пробоины в этих местах, еще может вернуться на базу.

А самолет, которому попали в бензобак или двигатель, выходит из строя и не возвращается. Поэтому укреплять следует те места, которые у вернувшихся самолетов повреждены меньше всего.

Статистика ошибок: зависимость от репрезентативности выборки

Рис .7. Пробоины на вернувшихся самолётах. Получившие повреждения в других местах не смогли вернуться на базу

Эта задача служит примером нарушения репрезентативности выборки, когда в нее включены не те респонденты: в данном случае, вернувшиеся самолеты, в то время как не вернувшиеся проигнорированы.

Применительно к маркетинговым исследованиям, эта ситуация подобна следующей. При опросе клиентов бизнеса будет ошибкой опрашивать только текущих клиентов и не опрашивать потерянных клиентов (а какие «пробоины» получили они?).

НЕПРАВИЛЬНЫЕ МЕСТА ОПРОСА

При опросе посетителей ТРЦ важно правильно расставить интервьюеров. Например, если поставить интервьюеров только у главного входа, в выборку не попадут посетители, приехавшие в ТРЦ на автомобиле и попавшие в него через парковку.

Как следствие, выводы, полученные на собранных данных, будут корректны только для той части посетителей, которые приходят в ТРЦ пешком, а значит, делают меньше покупок, не покупают габаритные товары, живут ближе к ТРЦ, чем приезжающие на автомобиле.

ОТСУТСТВИЕ КВОТИРОВАНИЯ

Другой пример. Бывает, что в разных районах города сбор анкет идет с разной скоростью: где-то (например, в центре города) большой пешеходный поток и у людей есть время на участие в опросе (отдыхающие, в отпуске, офисные сотрудники на обеде), а на окраинах либо мало людей на улицах, либо все спешат на работу и отказываются участвовать.

В результате, если не ограничивать доли районов, в выборке будут преобладать люди из центрального района, которые могут значимо отличаться от остальных людей родом занятий, уровнем дохода и образования, уровнем осведомленности о магазинах и др.

Таким образом, собранная выборка уже не будет репрезентативной по отношению к населению всего города.

ОНЛАЙН-ОПРОСЫ (ОНЛАЙН-ПАНЕЛИ)

Несмотря на многие положительные стороны онлайн-опросов, такие как экономичность, оперативность сбора информации, удобство ее обработки и т. д., некоторые их особенности напрямую угрожают репрезентативности исследования:

  1. Во-первых, участники онлайн-опросов – это, как правило, активные пользователи интернета, хорошо в нем разбирающиеся и больше подверженные влиянию интернет-культуры, чем обычные люди.
  2. Во-вторых, люди, у которых есть время и желание регулярно участвовать в онлайн-опросах за небольшое вознаграждение, скорее всего, значительно отличаются от остальных людей как по социально-демографическим, так и по психографическим характеристикам.
  3. В-третьих, профессиональное участие в опросах приводит к так называемой профессиональной деформации, когда ответы респондентов на вопросы новых исследований обусловлены предыдущим опытом, но не жизненным, а опытом участия в других опросах.
  4. Таким образом, в данном случае возникает та ситуация, когда опрашиваются не те люди, хотя по формальным характеристикам они подходят под описание целевой аудитории.
  5. ВЫВОДЫ
  6. Итак, чтобы получить достаточно точные данные об интересующей нас группе людей, необязательно опрашивать их всех, благодаря свойству репрезентативности выборки.
  7. «Чем больше, тем лучше» – неправильный подход к формированию выборки.

Небольшая репрезентативная выборка лучше большой, но нерепрезентативной выборки. Применительно к выборке не стоит пугаться слова «случайная». Это вовсе не значит, что в исследовании будут получены случайные результаты. Напротив, случайный подход к формированию выборки делает ее максимально похожей на генеральную совокупность, а значит, репрезентативной.

При проектировании выборки следует учитывать опасность смещения структуры выборки вследствие особенностей сбора информации и других условий.

Источник: https://scanmarket.ru/blog/reprezentativnost-vyborki

Ошибки выборки

Чтобы оценить степень точности выборочного наблюдения, необходимо оценить величину ошибок, которые могут возникнуть в процессе проведения выборочного наблюдения.

Статистика ошибок: зависимость от репрезентативности выборки

Статистическое исследование может осуществляться по данным несплошного наблюдения, основная цель которого состоит в получении характеристик изучаемой совокупности по обследованной ее части. Одним из наиболее распространенных в статистике методов, применяющих несплошное наблюдение, является выборочный метод.

Под выборочным понимается метод статистического исследования, при котором обобщающие показатели изучаемой совокупности устанавливаются по некоторой ее части на основе положений случайного отбора.

При выборочном методе обследованию подвергается сравнительно небольшая часть всей изучаемой совокупности (обычно до 5 — 10%, реже до 15 — 25%). При этом подлежащая изучению статистическая совокупность, из которой производится отбор части единиц, называется генеральной совокупностью.

Отобранная из генеральной совокупности некоторая часть единиц, подвергающаяся обследованию, называется выборочной совокупностью
или просто выборкой.

Значение выборочного метода состоит в  том, что при минимальной численности обследуемых единиц проведение исследования осуществляется в более короткие сроки и с минимальными затратами труда и средств. Это повышает оперативность статистической информации, уменьшает ошибки регистрации.

В проведении ряда исследований выборочный метод является единственно возможным, например, при контроле качества продукции (товара), если проверка сопровождается уничтожением или разложением на составные части обследуемых образцов (определение сахаристости фруктов, клейковины печеного хлеба, установление носкости обуви, прочности тканей на разрыв и т.д.).

  • Проведение исследования социально — экономических явлений выборочным методом складывается из ряда последовательных этапов:
  • 1) обоснование (в соответствии с задачами исследования) целесообразности применения выборочного метода;
  • 2) составление программы проведения статистического исследования выборочным методом;
  • 3) решение организационных вопросов сбора и обработки исходной     информации;

4) установление доли выборки, т.е. части подлежащих обследованию единиц генеральной совокупности;

  1. 5) обоснование способов формирования выборочной совокупности;
  2. 6) осуществление отбора единиц из генеральной совокупности для их обследования;
  3. 7) фиксация в отобранных единицах (пробах) изучаемых признаков;
  4. 8) статистическая обработка полученной в выборке информации с определением обобщающих характеристик изучаемых признаков;
  5. 9) определение количественной оценки ошибки выборки;
  6. 10) распространение обобщающих выборочных характеристик на генеральную совокупность.
  7. В генеральной совокупности доля единиц, обладающих изучаемым признаком, называется генеральной долей (обозначается р), а средняя величина изучаемого варьирующего признака — генеральной средней (обозначается ).
  8. В выборочной совокупности долю изучаемого признака называют выборочной долей, или частостью (обозначается ), а среднюю  величину в выборке — выборочной средней (обозначается ).
  9. Пример.

При контрольной проверке качества хлебобулочных изделий проведено 5%-ное выборочное обследование партии нарезных батонов из муки высшего сорта. При этом из 100 отобранных в выборку батонов 90 шт. соответствовали требованиям стандарта. Средний вес одного батона в выборке составлял 500,5 г при среднем квадратическом отклонении г.

  • На основе полученных в выборке данных нужно установить возможные значения доли стандартных изделий и среднего веса одного изделия во всей партии.
  • Прежде всего устанавливаются характеристики выборочной совокупности. Выборочная доля, или частость,  определяется из отношения единиц, обладающих изучаемым признаком m, к общей численности единиц выборочной совокупности n:

Поскольку из 100 изделий, попавших в выборку n, 90 ед. оказались стандартными m, то показатель частости равен: = 90:100=0,9.

Средний вес изделия в выборке х = 500,5 г определен взвешиванием. Но полученные показатели частости (0,9) и средней величины (500,5 г) характеризуют долю стандартной продукции и средний вес одного изделия лишь в выборке. Дляопределения соответствующих показателей для всей партии товара надо установить возможные при этом значения ошибки выборки.

Ошибка выборки — это объективно возникающее расхождение между характеристиками выборки и генеральной совокупности. Она зависит от ряда факторов: степени вариации изучаемого признака, численности выборки, методом отбора единиц в выборочную совокупность, принятого уровня достоверности результата исследования.

  1. Определение ошибки выборочной средней.
  2. При случайном повторном отборе средняя ошибка выборочной средней рассчитывается по формуле:
  3. ,
  4. где  — средняя ошибка выборочной средней;
  5. — дисперсия выборочной совокупности;
  6. n — численность выборки.
  7. При бесповторном отборе она рассчитывается по формуле:
  8. Статистика ошибок: зависимость от репрезентативности выборки,
  9. где N — численность генеральной совокупности.
  10. Определение ошибки выборочной доли.
  11. При повторном отборе средняя ошибка выборочной доли рассчитывается по формуле:
  • где  — выборочная  доля единиц, обладающих изучаемым признаком;
  •  — число единиц, обладающих изучаемым признаком;
  •  — численность выборки.
  • При бесповторном способе отбора средняя ошибка выборочной доли определяется по формулам:

Статистика ошибок: зависимость от репрезентативности выборки

  1. Предельная ошибка выборки  связана со средней ошибкой выборки  отношением:
  2. .
  3. При этом t как коэффициент кратности средней ошибки выборки зависит от значения вероятности Р, с которой гарантируется величина предельной ошибки выборки.
  4. Предельная ошибка выборки при бесповторном отборе определяется по следующим формулам:

Статистика ошибок: зависимость от репрезентативности выборки
Статистика ошибок: зависимость от репрезентативности выборки

Предельная ошибка выборки при повторном отборе определяется по формуле:

Статистика ошибок: зависимость от репрезентативности выборки

.

Источник: https://www.ekonomstat.ru/lektsii-po-distsipline-statistika/36-obshhaja-teorija-statistiki-lekcii/834-oshibki-vyborki.html

116. Ошибка репрезентативности, методика вычисления ошибки средней и относительной величины

В статистике выделяют два основных метода исследования – сплошной и выборочный. При проведении выборочного исследования обязательным является соблюдение следующих требований: репрезентативность выборочной совокупности и достаточное число единиц наблюдений.

При выборе единиц наблюдения возможны Ошибки смещения, т. е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объектив­ными и закономерными.

При определении степени точности выборочно­го исследования оценивается величина ошибки, которая может прои­зойти в процессе выборки – Случайная ошибка репрезентативности (M) – Является фактической разностью между средними или относительными величинами, полученными при проведении выборочного исследования и аналогичными величинами, которые были бы получены при проведении исследования на гене­ральной совокупности.

  • Оценка достоверности результатов исследования предусматривает определение:
  • 1. ошибки репрезентативности
  • 2. доверительных границ средних (или относительных) величин в генеральной совокупности
  • 3. достоверности разности средних (или относительных) величин (по критерию t)
  • Расчет ошибки репрезентативности (mм) средней арифмети­ческой величины (М):
  • , где σ – среднее квадратическое отклонение; n – численность выборки (>30).
  • Расчет ошибки репрезентативности (mР) относительной величины (Р):
  • , где Р – соответствующая относительная величина (рассчитанная, например, в %);
  • Q =100 – Ρ% – величина, обратная Р; n – численность выборки (n>30)

В клинических и экспериментальных работах довольно часто приходится использовать Малую выборку, Когда число наблюдений меньше или равно 30. При малой выборке для расчета ошибок репрезентатив­ности, как средних, так и относительных величин, Число наблюде­ний уменьшается на единицу, т. е.

Статистика ошибок: зависимость от репрезентативности выборки

Величина ошибки репрезентативности зависит от объема выборки: чем больше число наблюдений, тем меньше ошибка. Для оценки достоверности выборочного показателя принят следующий подход: показатель (или средняя величина) должен в 3 раза превышать свою ошибку, в этом случае он считается достоверным.

Знание величины ошибки недостаточно для того, чтобы быть уве­ренным в результатах выборочного исследования, так как конкрет­ная ошибка выборочного исследования может быть значительно больше (или меньше) величины средней ошибки репрезентативности.

Для оп­ределения точности, с которой исследователь желает получить ре­зультат, в статистике используется такое понятие, как вероят­ность безошибочного прогноза, которая является характеристикой надежности результатов выборочных медико-биологических статистических исследований.

Обычно, при проведении медико-биологических статистических исследований используют вероятность безошибочного прогноза 95% или 99%.

В наиболее ответственных случаях, когда необходимо сделать особенно важные выводы в теоретическом или практическом отношении, используют вероятность безошибочного прогноза 99,7%

  1. Определенной степени вероятности безошибочного прогноза соот­ветствует определенная величина Предельной ошибки случайной выборки (Δ – дельта), которая определяется по формуле:
  2. Δ=t * m, где t – доверительный коэффициент, который при большой выборке при вероятности безо­шибочного прогноза 95% равен 2,6; при вероятности безоши­бочного прогноза 99% – 3,0; при вероятности безошибочно­го прогноза 99,7% – 3,3, а при малой выборке определяется по специальной таблице значений t Стьюдента.
  3. Используя предельную ошибку выборки (Δ), можно определить До­верительные границы, в которых с определенной вероятностью безо­шибочного прогноза заключено действительное значение статистичес­кой величины, Характеризующей всю генеральную совокупность (сред­ней или относительной).
  4. Для определения доверительных границ используются следующие формулы:
  5. 1) для средних величин:

Статистика ошибок: зависимость от репрезентативности выборки

Мвыб – средняя величина, Полученная при проведении исследова­ния на выборочной совокупности; t – доверительный коэффициент, значение которого определяет­ся степенью вероятности безошибочного прогноза, с кото­рой исследователь желает получить результат; mM – ошибка репрезентативности средней величины.

2) для относительных величин:

Статистика ошибок: зависимость от репрезентативности выборки

Доверительные границы показывают, в каких пределах может колебаться размер выборочного показателя в зависимости от причин случайного характера.

При малом числе наблюдений (n

Источник: https://uchenie.net/116-oshibka-reprezentativnosti-metodika-vychisleniya-oshibki-srednej-i-otnositelnoj-velichiny/

Ошибки репрезентативности. Ошибки выборки

Любое выборочное наблюдение ставит своей задачей определение среднего размера признака или доли единиц, обладающих данным признаком, и распространение полученных характеристик выборочной совокупности на генеральную совокупность.

Ошибки репрезентативности возникают вследствие различия структуры выборочной и генеральной совокупности.

Структура генеральной совокупности вполне однозначна, и ей соответствует вполне определенное значение среднего размера (или доли) изучаемого признака. Выборочная же совокупность формируется на основе случайного отбора, в силу этого ее состав отличается от состава генеральной совокупности, отличается, естественно, и значение среднего размера (или доли) изучаемого признака.

Если из одной и той же генеральной совокупности производится несколько выборок, то в каждую из них попадут разные единицы и, следовательно, каждой выборочной совокупности будет соответствовать своя средняя. Отсюда следует важный вывод: выборочная средняя, в отличие от генеральной, – величина переменная. Переменной или случайной величиной будет и ошибка репрезентативности.

В практических статистических работах выборочное наблюдение проводится один раз, поэтому фактически приходится иметь дело с одной из множества выборочных средних, но с какой именно – сказать невозможно.

Чтобы получить суждение о точности результатов выборочного наблюдения, математическая статистика дает формулу средней ошибки, т.е.

средней величины из всех возможных ошибок при бесчисленном множестве случайных выборок.

При бесконечно большом числе выборок получится кривая частот, которая представляет кривую выборочного распределения.

Рассмотрим выборочное распределение средней величины.

Такое распределение будет являться нормальным или приближаться к нему по мере увеличения объема выборки независимо от того, имеет или не имеет нормальное распределение та генеральная совокупность, из которой взяты выборки.

С увеличением числа выборок средняя для всех выборок будет приближаться к генеральной средней. По выборочному распределению может быть рассчитана средняя квадратическая ошибка репрезентативности:

Среднее квадратическое отклонение выборочных средних от генеральной средней называется средней ошибкой выборочной средней (средней ошибкой выборки для средней величины признака):

Статистика ошибок: зависимость от репрезентативности выборки

Поскольку, как правило, генеральная средняя неизвестна, этой формулой нельзя воспользоваться. Кроме того, в социально-экономических исследованиях выборки из одной и той же совокупности не производятся многократно. Поэтому используют нижеприведенную формулу, исходя из того, что средняя ошибка выборки зависит от колеблемости признака в генеральной совокупности и числа отобранных единиц.

Средняя ошибка выборки для средней величины признака определяется по формуле:

Статистика ошибок: зависимость от репрезентативности выборки

где s2г – дисперсия количественного признака в генеральной совокупности.

Следовательно, средняя ошибка выборки тем больше, чем больше вариация в генеральной совокупности, и тем меньше, чем больше объем выборки.

Т.о. можно утверждать, что отклонение выборочной средней от генеральной средней в среднем равно . Ошибка конкретной выборки может принимать различные значения, но ее отношение к средней ошибке практически не превышает , если величина объема выборки достаточно большая .

  • Отношение ошибки конкретной выборки к средней квадратической ошибке называется нормированным отклонением :
  • .
  • Распределение нормированного отклонения выборочной средней от генеральной средней при численности выборки определяется следующим уравнением:
  • (1)

Данное уравнение называют стандартным уравнением нормальной кривой. Величина достигает максимума при , в этом случае .

На рис. приведен график кривой распределения нормированных отклонений ошибок выборочных средних .

Рис.

Ординаты соответствуют плотностям вероятности при том или ином значении . Для того, чтобы определить вероятность значений в интервале от до , следует найти отношение части площади кривой, заключенной между ординатами, соответствующими и ко всей площади кривой. Вся площадь под кривой нормального распределения вероятностей принимается за единицу.

  1. Площадь нормальной кривой, заключенную между ординатами и , определяют, интегрируя функцию (1) – интеграл Лапласа.
  2. Имеются таблицы интеграла Лапласа, которые содержат значения вероятностей для нормированных отклонений . Значения функции Ф(t) табулированы при разных значениях, например:
  3. при t=1 P(D£ m) = Ф(1) = 0,683;
  4. при t=2 P(D£2m) = Ф(2) = 0,9545;

при t=3 P(D£3m) = Ф(3) = 0,9973 и т.д.

  • Это вероятность того, что ошибка попадет в заданные пределы.
  • В общем виде
  • D=tm

характеризует предельную ошибку выборки, показывающую максимально возможное расхождение выборочной и генеральной характеристик при заданной вероятности этого утверждения. Т.о. о величине ошибки можно судить с определенной вероятностью.

  1. Так, при t=2 возможная ошибка D не превысит 2m, что гарантируется с вероятностью 0,9545. Это значит, что в 9545 выборках из 10000 подобных максимальная ошибка не выйдет за пределы ±2m,
  2. где – это коэффициент доверия.
  3. При проведении выборочного учета массовых социально-экономических явлений считается достаточным максимальный размах ошибки выборки ±3m.
  4. На практике наиболее часто пользуются значениями вероятности Р=0,95 (t=1,96), Р=0,99 (t=2,58) и Р=0,999 (t=3,28), гарантирующими репрезентативность выборки соответственно с ошибкой 5; 1; 0,1%.

Предельная ошибка выборки позволяет определять предельные значения характеристик генеральной совокупности при заданной вероятности, т.е. их доверительные интервалы.

Поэтому вероятность Р называется доверительной, она представляет собой вероятность того, что ошибка выборки не превысит некоторую заданную величину D, т.е. генеральная средняя находится где-то в пределах

  • (от до ),
  • генеральная доля – в пределах
  • (от w–D до w+D).
  • Как мы определили выше, средняя ошибка выборки для средней величины признака определяется по формуле:
  • ,
  • где s2г – дисперсия количественного признака в генеральной совокупности.
  • Если при выборочном наблюдении изучению подлежит альтернативный признак, то средняя ошибка выборки для доли единиц, обладающих данным признаком, определяется по теореме Я. Бернулли:
  • ,
  • где p – доля единиц, обладающих данным качеством, в генеральной совокупности; p(1-p) – дисперсия альтернативного признака в генеральной совокупности.

Приведенные формулы средних ошибок выборки практически непригодны для расчета. В них фигурирует дисперсия признака в генеральной совокупности, которая неизвестна, как неизвестна и генеральная доля, генеральная средняя. Поскольку в теории вероятности доказано, что

,

то при большом объеме выборки дисперсии генеральной s2г и выборочной s2 совокупностей равны. ( ). Это дает основание исчислять среднюю ошибку выборки по значениям выборочной дисперсии s2 для средней и w(1–w) для доли признака:

  1. , ,
  2. где w – доля признака в выборочной совокупности.
  3. Наряду с абсолютной величиной предельной ошибки выборки рассчитывается и относительная ошибка выборки, которая определяется отношением предельной ошибки средней или доли к соответствующей характеристике выборочной совокупности:
  4. ; .

При проведении выборочного наблюдения в экономических исследованиях преимущественно стремятся к тому, чтобы относительная ошибка репрезентативности выборки не превышала 5 … 10%.

Вывод формул , ,

исходит из схемы повторной выборки. На практике повторная выборка, при которой численность генеральной совокупности остается неизменной (т.е.отобранная единица возвращается в генеральную совокупность и снова может быть отобрана), встречается редко (например, при изучении населения в качестве пользователей, пациентов, избирателей).

  • Обычно отбор организуется по схеме бесповторной выборки, при которой отобранная единица после обследования в генеральную совокупность не возвращается и в дальнейшей выборке не участвует.
  • При бесповторной выборке численность генеральной совокупности в процессе отбора сокращается на
  • 1–n/N, где n/N – доля отобранных единиц.
  • В связи с этим формулы ошибки выборки приобретают следующий вид:
  • ; .
  • Так как доля единиц генеральной совокупности, не попавших в выборку (1–n/N), всегда меньше единицы, то ошибка выборки при бесповторном отборе при прочих равных условиях меньше, чем при повторном отборе.

Источник: https://infopedia.su/10x41a.html

2.2.2. Стихийная выборка

Исследователь при
применении данного метода в некоторой
степени контролирует выборку (например,
публикуя анкету в журнале, он обращается
только к читателям этого журнала), но
решение о включении в выборку принимает
сам респондент.

То есть, её размер заранее
часто не известен, а определяется
конкретным условием — активностью
респондентов. Значит, нельзя и заранее
определить структуру массива респондентов,
которые заполнят и вернут анкеты.

Поэтому
этот метод не претендует на репрезентативность
выборки, а выводы исследования очень
часто распространяются только на
опрошенную совокупность.

Сферы применения
стихийной выборки:

  1. анкеты, публикуемые в газетах и журналах;

  2. почтовые опросы1;

  3. опросы покупателей в залах супермаркетов;

  4. опрос пассажиров на остановках и в общественном транспорте2.

2.3. Многоступенчатая и одноступенчатая выборки

Выборка делится
на одноступенчатую и многоступенчатую
по количеству ступеней в отборе.
Одноступенчатая выборка предполагает,
что из генеральной совокупности сразу
осуществляется отбор респондентов для
опроса.

Процедура же многоступенчатой
выборки включает несколько ступеней,
при этом на каждой из них единица отбора
меняется. «Различают единицы отбора
первой ступени (первичные единицы),
единицы отбора вторичной ступени
(вторичные единицы) и так далее.

Объекты
самой нижней ступени, с которых ведется
непосредственный сбор информации,
называются единицами наблюдения»3.
Например, задача исследования – изучение
свободного времени студентов всей
страны.

Процедура будет
строиться следующим образом:

  1. отбор регионов;

  2. отбор города в них, где есть вузы;

  3. отбор учебных заведений, в которых будет проводиться исследование;

  4. выбор академических групп;

  5. отбор студентов.

Многоступенчатая
выборка осуществляется не в локальных
масштабах, а в региональных, общенациональных,
международных. Использовать одноступенчатую
выборку в таких масштабах нерационально,
да и очень дорого обойдётся такое
исследование. Многоступенчатая выборка
в этом плане экономична и упрощает
подход к выбору объекта.

  • Но нужно
    учитывать, что чем больше ступеней в
    выборке, тем больше будет ошибка
    репрезентативности, возрастёт вероятность
    погрешностей, что приведёт к искажению
    результатов исследования4.
  • Рассмотрев
    некоторые типы выборок, необходимо
    также уяснить, что такое объем выборки
    и какие бывают ошибки выборки и как их
    избежать.
  • В
    формировании выборочной совокупности
    важную роль играет определение ее объема
    и обеспечение репрезентативности.

«Если тип выборки
говорит о том, как попадают люди в
выборочную совокупность, то объём
выборки сообщает о том, какое их
количество попало сюда»2. То есть объем выборки – это количество
единиц попавших в выборочную совокупность.

И очень важно, чтобы выборка была
репрезентативной, то есть не искажала
представлений о генеральной совокупности
вцелом3.

«Требования репрезентативности выборки
означают, что по выделенным параметрам
(критериям) состав обследуемых должен
приближаться к соответствующим пропорциям
в генеральной совокупности»4.

Одна из ключевых
проблем, встающих, как правило, перед
социологом, решающим: доверять полученным
в ходе него данным или нет, это то, сколько
же человек должно быть опрошено для
того, чтобы получить действительно
репрезентативную информацию.

К сожалению,
единой и четкой формулы, используя
которую можно было бы рассчитать
оптимальный объем выборочной совокупности,
не существует в природе. И объясняется
это весьма просто.

Дело в том, что
определение объема выборочной совокупности
– это проблема не столько статистическая,
сколько содержательная.

Иными словами,
объем выборочной совокупности зависит
от множества факторов, основные из них
следующие:

  1. затраты на сбор информации, включая временные;

  2. стремление к определённой статистической достоверности результатов, которую надеется получить исследователь;

  3. ценность и новизна информации, получаемой в результате опроса5.

Объем
выборки обусловлен степенью однородности
или неоднородности, генеральной
совокупности, количеством характеризующих
ее признаков.

Однородной считается совокупность,
в которой контролируемый признак,
например уровень грамотности, распределён
равномерно, то есть не образует пустот
и сгущений, тогда опросив лишь несколько
человек, можно сделать вывод о том, что
большинство людей грамотны.

Чем более
однородна генеральная совокупность,
тем меньше объем выборки. Например,
«допустим, мы осуществляем отбор из
генеральной совокупности в 2000 человек,
контролируя состав выборочной совокупности
по признаку «пол»»: 70% мужчин и 30% женщин.

Согласно теории вероятности, можно
предположить, что примерно среди каждых
десяти отбираемых респондентов встретятся
три женщины. Если мы хотим опросить по
крайней мерее 90 женщин, то исходя из
вышеупомянутого соотношения, нам
необходимо отобрать не менее 300 человек.

А теперь предположим, что в генеральной
совокупности 90% мужчин и 10% женщин. В
этом случае, чтобы в выборочную
совокупность попало 90 женщин, необходимо
отобрать уже не менее 900 человек»1.
Из примера видно, что объем выборки
зависит от разброса признака (дисперсии),
и его нужно вычислять по признаку,
дисперсия значений которого наибольшая.

«Степень
однородности социального объекта
зависит, в сущности, от того, насколько
детально мы намерены его исследовать.
Практически любой, самый «элементарный»
объект оказывается чрезвычайно сложным.

Лишь в анализе мы представляем его как
относительно простой, выделяя те или
иные его свойства.

Чем более основательным
и детальным будет анализ, чем больше
свойств данного объекта мы намерены
принять во внимание в их сочетании, а
не изолированно, тем больше должен быть
объем выборки»2.

Существуют, так
называемые «правила левой руки» для
определения размера выборки (таблица
1)»3:

Размер выборки растёт Размер выборки уменьшается
— при необходимости опубликовать данные для отдельных подгрупп (размеры подвыборок при этом суммируются, и выборка в целом растёт пропорционально числу подгрупп); — при исследовании организаций, институтов и прочих «первичных единиц отбора», если сравнительно невелика величина генеральной совокупности, из которой производится отбор(например, совокупности сотрудников рекламных агентств, школьников, пациентов и т.п.);
— при проведении общенациональных обследований, когда велика генеральная совокупность; — при проведении локальных и региональных исследований;

Источник: https://studfile.net/preview/5996791/page:7/

Ошибки выборки

Расхождения между величиной какого-либо показателя, найденного посредством статистического наблюдения, и действительными его размерами называются ошибками наблюдения. В зависимости от причин возникновения различают ошибки регистрации и ошибки ре- пр ез ентативн о сти.

Ошибки регистрации возникают в результате неправильного установления фактов или ошибочной записи в процессе наблюдения или опроса. Они бывают случайными или систематическими.

Случайные ошибки регистрации могут быть допущены как опрашиваемыми в их ответах, так и регистраторами. Систематические ошибки могут быть и преднамеренными, и непреднамеренными. Преднамеренные — сознательные, тенденциозные искажения действительного положения дела.

Непреднамеренные вызываются различными случайными причинами (небрежность, невнимательность).

Ошибки репрезентативности (представительности) возникают в результате неполного обследования и в случае, если обследуемая совокупность недостаточно полно воспроизводит генеральную совокупность. Они могут быть случайными и систематическими.

Случайные ошибки репрезентативности — это отклонения, возникающие при несплошном наблюдении из-за того, что совокупность отобранных единиц наблюдения (выборка) неполно воспроизводит всю совокупность в целом. Систематические ошибки репрезентативности — это отклонения, возникающие вследствие нарушения принципов случайного отбора единиц.

Ошибки репрезентативности органически присущи выборочному наблюдению и возникают в силу того, что выборочная совокупность не полностью воспроизводит генеральную.

Избежать ошибок репрезентативности нельзя, однако, пользуясь методами теории вероятностей, основанными на использовании предельных теорем закона больших чисел, эти ошибки можно свести к минимальным значениям, границы которых устанавливаются с достаточно большой точностью.

Ошибки выборки — разность между характеристиками выборочной и генеральной совокупности. Для среднего значения ошибка будет определяться по формуле

Величина называется предельной ошибкой выборки.

Предельная ошибка выборки — величина случайная. Исследованию закономерностей случайных ошибок выборки посвящены предельные теоремы закона больших чисел. Наиболее полно эти закономерности раскрыты в теоремах П.Л. Чебышева и А.М. Ляпунова.

Теорему П.Л. Чебышева применительно к рассматриваемому методу можно сформулировать следующим образом: при достаточно большом числе независимых наблюдений можно с вероятностью, близкой к единице (т.е.

почти с достоверностью), утверждать, что отклонение выборочной средней от генеральной будет сколько угодно малым. В теореме П.Л. Чебышева доказано, что величина ошибки не должна превышать tp .

В свою очередь величина Р, выражающая среднее квадратическое отклонение выборочной средней от генеральной средней, зависит от колеблемости признака в генеральной совокупности о- и числа отобранных единиц п. Эта зависимость выражается формулой

  • где Р зависит также от способа производства выборки.
  • Величину М = о2 называют средней ошибкой выборки. В этом V п
  • выражении а2 — генеральная дисперсия, п — объем выборочной совокупности.

Рассмотрим, как влияет на величину средней ошибки число отбираемых единиц п. Логически нетрудно убедиться, что при отборе большого числа единиц расхождения между средними будут меньше, т.е.

существует обратная связь между средней ошибкой выборки и числом отобранных единиц.

При этом здесь образуется не просто обратная математическая зависимость, а такая зависимость, которая показывает, что квадрат расхождения между средними обратно пропорционален числу отобранных единиц.

Увеличение колеблемости признака влечет за собой увеличение среднего квадратического отклонения, а, следовательно, и ошибки. Если предположить, что все единицы будут иметь одинаковую величину признака, то среднее квадратическое отклонение станет равно нулю и ошибка выборки также исчезнет.

Тогда нет необходимости применять выборку. Однако следует иметь в виду, что величина колеблемости признака в генеральной совокупности не известна, поскольку не известны размеры единиц в ней. Можно рассчитать лишь колеблемость признака в выборочной совокупности.

Соотношение между дисперсиями генеральной и выборочной совокупности выражается формулой

Поскольку величина п при достаточно больших п близка к 1, п — 1

можно приближенно считать, что выборочная дисперсия равна генеральной дисперсии, т.е. Орен ж •

Следовательно, средняя ошибка выборки показывает, какие возможны отклонения характеристик выборочной совокупности от соответствующих характеристик генеральной совокупности. Однако о величине этой ошибки можно судить с определенной вероятностью. На величину вероятности указывает множитель t.

Теорема А.М. Ляпунова. А.М. Ляпунов доказал, что распределение выборочных средних (следовательно, и их отклонений от генеральной средней) при достаточно большом числе независимых наблюдений приближенно нормально при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически теорему Ляпунова можно записать так:

  1. Где
  2. где я = 3,14 — математическая постоянная;
  3. предельная ошибка выборки, которая дает возможность выяснить, в каких пределах находится величина генеральной средней.
  4. Значения этого интеграла для различных значений коэффициента доверия t вычислены и приводятся в специальных математических таблицах. В частности, при:

Поскольку t указывает на вероятность расхождения х — х , т.е.

на вероятность того, на какую величину генеральная средняя будет отличаться от выборочной средней, то это может быть прочитано так: с вероятностью 0,683 можно утверждать, что разность между выборочной и генеральной средними не превышает одной величины средней ошибки выборки.

Другими словами, в 68,3% случаев ошибка репрезентативности не выйдет за пределы ±Ц. С вероятностью 0,954 можно утверждать, что ошибка репрезентативности не превышает ± 2р (т.е. в 95% случаев). С вероятностью 0,997, т.е.

довольно близкой к единице, можно ожидать, что разность между выборочной и генеральной средней не превзойдет трехкратной средней ошибки выборки и т.д.

  • Логически связь здесь выглядит довольно ясно: чем больше пределы, в которых допускается возможная ошибка, тем с большей вероятностью судят о ее величине.
  • Зная выборочную среднюю величину признака (х) и предельную ошибку выборки можно определить границы (пределы), в
  • которых заключена генеральная средняя

Источник: https://bstudy.net/710108/ekonomika/oshibki_vyborki

Понравилась статья? Поделить с друзьями:
  • Ошибка репрезентативности асимметрии
  • Ошибка репозитория ubuntu
  • Ошибка репозитория kali linux
  • Ошибка репозиторий не содержит файла release
  • Ошибка репликация dfs 4012