Контролем
выборки будем
называть процесс научного сравнения
генеральной и выборочной совокупностей,
выявление степени их расхождения,
обнаружение причин отклонения и
разработку возможных способов устранения
погрешностей. В узком смысле — это
уравнивание
выборочных и генеральных распределений
социально-демографических характеристик
респондентов.
Под
ремонтам
выборки надо
понимать сам процесс устранения
погрешностей, т.е. расхождения двух
совокупностей, теми способами, методами
и инструментами, которые предлагает
методическая наука.
Таким
образом, второй прием выступает
практической реализацией первого,
аналитического, а оба они составляют
два обязательных этапа проведения
социологического исследования.
Часто
контроль выборки употребляют в расширенном
значении, включая в него также ремонт
выборки. В этом случае говорят о широком
понимании ремонта
выборки как первичной статистической
обработки данных, включающей коррекцию:
а) выборочной совокупности; б) распределений
социально-демографических характеристик
респондентов; в) резко выделяющихся и
пропущенных ответов, а также взвешивание
исходных данных. Указанные виды коррекции
призваны отремонтировать самое главное
— выборку исследования, повысить степень
ее репрезентативности. Почему это
главное? Анкета может быть исключительно
интересной, глубокой и содержательной,
но запустили ее на плохом массиве, т.е.
нерепрезентативной выборке. Усилия
всего коллектива пошли насмарку, так
как цена такой информации почти нулевая.
Вот почему в рассматриваемых ниже видах
коррекции, даже если они касаются
заполнения анкеты и к выборке имеют
вроде бы косвенное отношение, фокус
внимания один-единственный — выборка.
Основная
цель ремонта выборки — повышение
качества уже собранной информации.
Процедура ремонта выборки включает
несколько операций.
Коррекция
выборочной совокупности. Далеко
не всегда отобранные респонденты,
по самым разным обстоятельствам, могут
или желают отвечать на вопросы. Кто-то
заболел или уехал в срочную командировку,
другой отказывается по идейным
соображениям или не способен отвечать
в силу умственной недостаточности.
Кого-то трудно застать дома, хотя анкетер
приходил к нему не единожды.
Возникает
проблема замены респондентов, которая
может быть решена с помощью нескольких
методов: выбор следующего по списку
респондента (например, следующего номера
в телефонном справочнике), использование
первоначальной выборки больших размеров
и формирование повторной выборки. В
последнем случае, если процент ответов
оказался намного ниже, чем ожидалось,
основа выборки расширяется за счет
дополнительных имен, найденных,
например, случайным образом. Самым
эффективным способом считается поиск
эквивалентной замены. Если, к примеру,
в вашу выборку попал работающий пенсионер
такой-то национальности и овдовевший,
то желательно подыскать ему в качестве
замены другого пенсионера сходного
возраста, национальности, овдовевшего
и работающего.
Коррекция
распределений демографических
характеристик респондентов. Если
по окончании исследования в паспортичке
вашего исследования получилось, что у
вас, к примеру, перебор женщин, людей с
высшим образованием или пожилых людей
в сравнении с теми процентными долями,
которые они имеют в генеральной
совокупности, то можно применить три
способа: 1) удалить те группы
респондентов, которые оказались
представлены в избыточном количестве;
2) доопросить те группы, которые оказались
представленными в недостаточном
количестве; 3) математически повысить
значение ответов, представленных
недостаточно, или снизить — представленных
избыточно
Взвешивание
исходных данных —
математический способ повышения или
понижения значения ответов конкретной
группы респондентов (например,
незамужних сельских женщин в возрасте
от 30 до 45 лет). Взвешивание означает
присваивание каждому респонденту
определенного веса (коэффициента, на
который нужно умножить все мнения-ответы
одного или группы респондентов ради
восстановления репрезентативности).
Весовые коэффициенты можно определять
по-разному, а сам процесс присвоения
коэффициентов почти невозможно
контролировать со стороны, другим
исследователям. Самый простой способ
— численность конкретной
социально-демографической группы,
например подростков от 13 до 17 лет, из
генеральной совокупности (N)
делят
на количество респондентов, представляющих
данную возрастную группу (п),
полагая,
что один респондент представляет
мнение jVчеловек
генеральной совокупности.
Билет
№3
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Репрезентативность — важнейшее свойство данных, используемых для построения аналитических моделей. Независимо от того, в какой предметной области и какими методами производятся выборочные исследования, отсутствие репрезентативности выборки приводит к некорректным результатам. В статье рассказываем подробнее об этом важном свойстве.
Репрезентативность — важнейшее свойство данных, используемых для построения аналитических моделей. Оно отражает способность данных представлять зависимости и закономерности исследуемой предметной области, которые должна обнаружить и научиться воспроизводить построенная модель. Иными словами, репрезентативность показывает, содержат ли анализируемые данные достаточно информации для построения качественной модели, а так же, может ли эта информация быть использована алгоритмом построения модели.
Репрезентативность генеральной совокупности отражает способность совокупности описывать существенные свойства, зависимости и закономерности объектов, процессов и явлений предметной области. Она достигается за счёт правильной организации сбора и консолидации первичных данных.
Репрезентативность выборки описывает способность выборочных данных отражать структурные свойства совокупности, из которой они были извлечены. Т.е. даёт ответ на вопрос: можно ли в исследовании заменить совокупность на выборку без значимого ухудшения результатов анализа. Репрезентативность выборки достигается с помощью правильного выбора метода сэмплинга.
Таким образом, репрезентативность выборки касается только воспроизведения характеристик совокупности. Если сама исходная совокупность плохо представляет предметную область, то, даже если полученная из неё выборка будет репрезентативной, построить на её основе корректную с точки зрения предметной области модель невозможно.
Например, пусть компания собирается вывести на рынок новый продукт. При этом она хочет провести маркетинговые исследования в виде опроса клиентов о желаемых характеристиках и параметрах продукта. Число клиентов компании насчитывает сотни тысяч человек (генеральная совокупность), поэтому опросить их всех не представляется возможным физически, не является целесообразным экономически.
Поэтому компания формирует выборку клиентов для проведения опроса. Если мнение клиентов из выборки отражает мнение большинства клиентов и может быть использовано для принятия решений о параметрах и характеристиках нового продукта, то такая выборка будет репрезентативной.
Независимо от того, в какой предметной области и какими методами производятся выборочные исследования, отсутствие репрезентативности выборки приводит к некорректным результатам. Поэтому в процессе анализа необходимо убедиться, что сформированная выборка репрезентативна.
Таким образом, репрезентативная выборка — это такая выборка, в которой представлены все подгруппы, важные для исследования. Помимо этого, характер распределения рассматриваемых параметров в выборке должен быть таким же, как в генеральной совокупности.
Особенно важным является обеспечение репрезентативности в машинном обучении, для построения моделей классификации и регрессии используется несколько выборок: обучающая, тестовая и валидационная, которые тем или иным способом отбираются из исходного набора данных. И все эти выборки должны быть репрезентативными.
Обеспечение репрезентативности
В основе построения репрезентативной выборки лежит правильный выбор используемого алгоритма сэмплинга. При этом размер выборки, хотя и является важным, сам по себе не гарантирует ее репрезентативности. Например, интернет-опрос может показать, что 100% людей пользуется интернетом, хотя это не соответствует действительности (т.е. репрезентативность нарушена).
Выделяют качественную (структурную) и количественную репрезентативность.
Рисунок 1. Количественная и качественная репрезентативность
Качественная репрезентативность
Качественная репрезентативность показывает, что все группы, присутствующие в совокупности, будут представлены и в выборке. Для этого каждый элемент совокупности должен иметь равную вероятность, быть выбранным, а сама выборка должна производиться из однородных групп.
Наиболее оптимальным способом формирования репрезентативной выборки является простой случайный сэмплинг, поскольку в этом случае у любого представителя генеральной совокупности будет одинаковая вероятность попасть в выборку.
Например, при формировании выборки клиентов для опроса, в нее попадут люди из различных социальных групп пропорционально их долям в генеральной совокупности. В результате, выборка будет представлять собой уменьшенную копию генеральной совокупности.
Случайность отбора респондентов в выборку может обеспечивается различными методами. Например, для опроса клиентов берутся номера клиентских карт, которые случайным образом отбираются компьютерной программой с использованием генератора случайных чисел.
Однако, на практике применить простой случайный сэмплинг не всегда представляется возможным. Это связано с тем, что генеральная совокупность может быть неоднородной и будет содержать группы объектов.
Например, если опрос будет проводиться по телефону, то большинство откликов будет получено от пенсионеров, как людей менее занятых и более склонных идти на контакт. Очевидно, что если опрос проводится о продукте, ориентированном на молодёжь, то ценность мнения пенсионеров вряд ли будет высокой.
Чтобы решить эту проблему, можно использовать случайный стратифицированный сэмплинг, когда исходная совокупность сначала разделяется на слои (страты) по некоторому признаку. Например, клиенты могут быть стратифицированы по возрасту. Тогда страты могут быть сформированы пропорционально доле объектов в группах, что позволит уменьшить или увеличить долю той или иной группы, сохранив репрезентативность.
Другой вариант — использовать кластерный (групповой) сэмплинг, когда клиенты предварительно разбиваются на качественно однородные группы — кластеры, и отбор производится из каждого кластера независимо. При этом вероятность отбора может быть одинаковой для всех кластеров, или различной. Можно некоторые кластеры вообще исключить из отбора. В нашем примере клиенты могут быть разбиты на кластеры по социальному статусу — студенты, работающие, пенсионеры, военнослужащие и т.д. Таким образом, долю, пенсионеров в выборке, можно уменьшить или совсем исключить.
Количественная репрезентативность
Количественная репрезентативность показывает, является ли достаточным число элементов выборки для представления характеристик генеральной совокупности с заданной погрешностью. Например, при неизвестной величине генеральной совокупности, когда результат отражается в виде показателя относительной доли, число элементов выборки, обеспечивающее количественную репрезентативность, может быть вычислено по формуле:
n=frac{t^{2}cdot pcdot q}{Delta ^{2}}
где t — доверительный коэффициент, показывающий, какова вероятность того, что размеры показателя не будут выходить за границы предельной ошибки, p — доля единиц наблюдения, обладающих изучаемым признаком, q=1−p — доля единиц наблюдения, не обладающих изучаемым признаков, Δ — допустимая ошибка выборки.
Например, одним из показателей качества кредитного портфеля банка является доля заёмщиков, допустивших просрочку. Предельная ошибка, которую можно допустить, чтобы разброс значений показателя не превышал разумные границы, Δ=5% . При этом показатель может принимать значения 25% ±5%, т.е. от 20% до 30%. Допуская t=2, что обеспечивает 95% вероятность, получаем
n=frac{2^{2}cdot 0,25cdot 0,75}{0,05^{2}}=300 заёмщиков.
Если же показатель — не относительная средняя величина просроченной задолженности по всем клиентам, то число наблюдений будет:
n=frac{t^{2}cdot sigma ^{2}}{Delta ^{2}}
где sigma ^{2} — среднеквадратическое отклонение значений исследуемого признака.
Если используется выборка без возврата и размер генеральной совокупности известен, то для определения необходимого размера случайной выборки при использования относительных величин (долей) применяется формула:
n=frac{t^{2}cdot pcdot qcdot N}{Delta ^{2}cdot N+t^{2}cdot pcdot q}
где N — число наблюдений генеральной совокупности. Для средних значений исследуемой величины формула примет вид:
n=frac{t^{2}cdot sigma ^{2}cdot N^{2}}{Delta ^{2}cdot N^{2}+t^{2}cdot sigma ^{2}}
Тогда, в предыдущем примере, положив число клиентов N=500, получим:
n=frac{2^{2}cdot 0,25cdot 0,75cdot 500}{0,05^{2}cdot 500+2^{2}cdot 0,25cdot 0,75}approx 188 клиентов.
Таким образом, необходимый объем выборки при безвозвратном отборе меньше, чем при возвратном (соответственнo, 188 и 300).
В целом, число наблюдений, требуемое для получения репрезентативной выборки, изменяется обратно пропорционально квадрату допустимой ошибки.
Методы оценки репрезентативности
Формально, выборку называют репрезентативной, когда результат оценки определенного параметра по данной выборке совпадает с результатом, оцененным по генеральной совокупности с учетом допустимой погрешности (ошибки репрезентативности). Если выборочная оценка отличается от оценки по генеральной совокупности более, чем на заданный уровень погрешности, то такая выборка считается нерепрезентативной.
Репрезентативность оценивается по отдельным параметрам выборки и совокупности. При этом выборка может оказаться репрезентативной по одним параметрам и нерепрезентативной по другим. Поэтому говорить о репрезентативности как о дихотомическом свойстве выборки (репрезентативна или нерепрезентативна) было бы не верно: выборка может одни параметры генеральной совокупности воспроизводить более точно, а другие — менее. Поэтому правильнее говорить о мере репрезентативности определённой выборки по конкретным параметрам.
Основным моментом в определении репрезентативности выборки является обоснование погрешности, в пределах которой выборка признается репрезентативной. Одна и та же выборка может быть достаточно репрезентативной для одной задачи и недостаточно для другой. Кроме этого, нужно проверять репрезентативность выборки по параметрам, имеющим существенное значение для предметной области исследования. Например, в маркетинговых исследованиях для анализа клиентов важны пол, возрасту, образование и пр.
Следует отметить, что далеко не все задачи бизнес-аналитики требуют строгого статистического подтверждения репрезентативности выборок. Как правило, это задачи точного прогнозирования. Что касается обычных задач, связанных, например, с определением предпочтений действующих и потенциальных клиентов, то они решаются охватом типичной клиентуры, которую можно найти непосредственно в торговых центрах.
Статистические методы
Данные, полученные в результате выборочных обследований, являются реализациями случайных величин (возраст, стаж работы, доход и т.д.). Обычно, на практике считают, что выборка является репрезентативной, если её статистические параметры (среднее значение, дисперсия, среднеквадратичное отклонение и т.д.) отличаются от параметров совокупности не более, чем на 5%.
Однако, данный подход применим только при условии, что вся генеральная совокупность известна и для неё можно вычислить статистические характеристики. Но на практике такое встречается редко, поскольку часть потенциально интересных для исследования объектов оказывается недоступной для наблюдения.
В этом случае прибегают к формированию двух независимых выборок, вычисляют и сравнивают их характеристики, и если они совпадают (не различаются значимо), то выборки считаются репрезентативными. В теоретическом плане такой подход является достаточно привлекательным, однако, на практике сложно реализуем. Во-первых, формирование нескольких выборок ведёт к дополнительным затратам, а во-вторых, если параметры выборок значимо различаются, то невозможно сказать, какая из них репрезентативна.
Для сравнения двух выборок используются два вида критериев: непараметрические и параметрические. Первые не используют в расчётах значений параметров статистических распределений, а оперируют частотами и рангами. К числу наиболее популярных непараметрических критериев можно отнести критерий Уилкоксона и U-критерий Манна-Уитни. Второй рекомендуется использовать, если число наблюдений превышает 30. К числу популярных параметрических критериев относится t-критерий Стьюдента, критерий однородности Смирнова, Q-критерий Розенбаума и др.
Нестатистические методы
Статистические методы оценки репрезентативности выборочных данных, хотя и являются строго обоснованными, но довольно сложны в использовании (особенно для пользователей, не имеющих достаточной математической подготовки). Кроме этого они могут иметь ограничения (например, независимость выборок), удовлетворить которым достаточно сложно.
Статистические подходы к оценке репрезентативности выборок имеет смысл использовать, если для анализа данных используются статистические методы. Методы машинного обучения, которые является эвристическими и в большинстве случаев не обеспечивают точного и единственного решения, вообще говоря, не нуждаются в точной оценке репрезентативности обучающих выборок. Поэтому в них используются свои техники для определения того, насколько обучающая или тестовая выборка хорошо представляют исходную совокупность.
Ещё одной особенностью выборок, используемых в машинном обучении, является то, что объём исходной совокупности, из которой формируются обучающее, тестовое, а при необходимости, и валидационное множество, известен, поскольку данные содержатся в консолидированных таблицах источника данных.
Обычно нестатистические меры репрезентативности используют расстояния между векторами наблюдений в пространстве признаков. Рассмотрим, например, такой показатель как индекс ближайшего соседа (Nearest Neighbours Index — NNI). Предположим, что выборка включает n ближайших соседей внутри некоторой области пространства признаков. Вычислим величину, представляющую собой среднее расстояние между i-м объектом и всеми остальными объектами в выборке (области соседства):
overline{D}_{sample}=frac{1}{n}sumlimits_{i=1}^{n}D_{i}
где D_i — расстояние от i-го объекта до остальных объектов выборки, n — число объектов выборки.
Затем вычислим величину:
overline{D}_{total}=sqrt{frac{D_{_{total}}}{N}}
где D_{_{total}} — общее расстояние по всей совокупности, N — число наблюдений совокупности.
Тогда индекс ближайшего соседа будет:
NNI=frac{overline{D}_{sample}}{overline{D}_{total}}
Если значение данного показателя близко к 1, то точки выборки имеют равномерное пространственное распределение. Если меньше 1, то пространственное распределение точек неоднородно. Если NNI больше 1, то имеет место значительная дисперсия значений внутри выборки.
Очевидно, что наилучшим вариантом с точки зрения репрезентативности будет первый случай, когда пространственное распределение точек данных в совокупности и выборке примерно одинаковое. Второй случай показывает, что внутри выборки могут присутствовать некоторое локальные особенности, нехарактерные для всей совокупности.
В литературе можно найти больше количество разнообразных алгоритмов и методов оценки репрезентативности выборок для машинного обучения, разработанных для различных предметных областей исследования и типов задач анализа. Большинство их них являются эвристическими и не гарантируют получения наилучшего результата. Поэтому самым надёжным критерием репрезентативности выборки, на основе которой строилась определённая обучаемая модель, является точность и обобщающая способность самой модели.
Ремонт выборки
Возникает вопрос: а что делать в ситуации, когда аналитику доступна только выборка «как есть», а её репрезентативность неудовлетворительная? При этом доступ к генеральной совокупности для формирования более репрезентативной выборки у него отсутствует (например, из-за проблем с сетью, невозможности повторных исследований из-за высоких затрат и т.д.). В этом случае улучшить ситуацию может специальная процедура, которая называется «ремонт выборки».
Все действия аналитика, связанные с репрезентативностью, можно разделить на два этапа: контроль и ремонт.
- Контроль выборки — процедура сравнения генеральной совокупности и выборки, выявление степени их расхождения, обнаружение причин отклонений и разработка возможных способов их устранения.
- Ремонт выборки — процесс устранения расхождения генеральной совокупности и выборки.
Контроль и ремонт выборки рассматриваются как обязательные этапы любого выборочного исследования. Хотя, некоторые авторы не разделяют эти два этапа, а включают ремонт в общую процедуру контроля выборки. Ряд вопросов, связанных с контролем выборки был рассмотрен выше.
Основной целью ремонта является повышение качества выборки в смысле отражения ею зависимостей и закономерностей исследуемых процессов и явлений, которые требуется обнаружить в процессе анализа. При этом не следует путать ремонт выборки с повышением качества данных вообще.
Ремонт выборки, обычно, включает следующие задачи:
- Коррекция выборки. Заключается в замене ранее выбранных объектов совокупности. Коррекция может потребоваться, например, если в выборке произошло искажение распределения объектов относительно исходной совокупности, например, получился избыток пенсионеров, мужчин, женщин или людей с определённым уровнем образования. Замена может быть произвольной (например, следующий клиент по списку) или эквивалентной (подыскивается клиент с теми же параметрами — пенсионера меняем на пенсионера и т.д.).
- Расширение основы выборки. Позволяет включить в выборку большее разнообразие наблюдений. Основа выборки — это подмножество элементов генеральной совокупности, из которого будет формироваться выборка. Использование основы выборки позволяет сделать отбор более целевым, исключив обработку данных, не относящихся к задаче анализа, лучше сфокусироваться на целевой группе. В анализе клиентской базы основой выборки могут быть только мужчины, только женщины, люди в возрасте от 30 до 60 и т.д. Если выборка получилась недостаточно репрезентативной, то решить проблему можно расширяя границы основы выборки. Например, если изначально основой выборки являлась только люди пенсионного возраста, то при необходимости она может быть расширена и на людей предпенсионного возраста.
- Взвешивание. При взвешивании объектам выборки могут присваиваться весовые коэффициенты, которые могут учитываться в алгоритме анализа. Например, повышенные весовые коэффициенты могут присваиваться клиентам, которые наиболее активно пользовались услугами компании (купили товаров и услуг на сумму выше некоторого порога). Логично предположить, что мнение таких клиентов будет более значимым.
Следует отметить, что единого, строго обоснованного подхода к ремонту выборок, вообще говоря, не существует, хотя в литературе можно встретить некоторые общие рекомендации. В большинстве практических случаев аналитику приходится самостоятельно выбирать, какие преобразования следует применить к выборке для повышения её репрезентативности.
Другие материалы по теме:
Обработка пропусков в данных
Loginom Data Quality. Очистка клиентских данных. Деморолик
Ошибка выборки — определение, типы, контроль и уменьшение ошибок
Опубликовано 2023-02-11 19:54 пользователем
Что такое ошибка выборки?
Ошибка выборки возникает, когда выборка, используемая в исследовании, не является репрезентативной для всей популяции. Ошибки выборки случаются часто, поэтому исследователи всегда рассчитывают предел ошибки при получении окончательных результатов в качестве статистической практики. Предел погрешности — это величина погрешности, допустимая при неправильном расчете, представляющая собой разницу между выборкой и реальной популяцией.
Выберите своих респондентов
Каковы наиболее распространенные ошибки выборки в маркетинговых исследованиях?
Вот четыре основные ошибки маркетинговых исследований при составлении выборки:
- Ошибка спецификации популяции: Ошибка спецификации популяции возникает, когда исследователи не знают, кого именно нужно опросить. Например, представьте себе исследование, посвященное детской одежде. Кого нужно опросить? Это могут быть оба родителя, только мать или ребенок. Родители принимают решение о покупке, но дети могут повлиять на их выбор.
- Ошибка выборочной совокупности: Ошибки выборочной совокупности возникают, когда исследователи неправильно ориентируются на субпопуляцию при отборе выборки. Например, выборка из телефонного справочника может иметь ошибочные включения, поскольку люди меняют свои города. Ошибочные исключения происходят, когда люди предпочитают не указывать свои номера. Богатые домохозяйства могут иметь более одного подключения, что приводит к многократным включениям.
- Ошибка отбора: Ошибка отбора происходит, когда респонденты сами выбирают себя для участия в исследовании. Отвечают только те, кто заинтересован. Ошибки отбора можно контролировать, если сделать дополнительный шаг и запросить ответы у всей выборки. Планирование перед опросом, последующие действия и аккуратный и чистый дизайн опроса повысят процент участия респондентов. Кроме того, попробуйте такие методы, как CATI-опросы и личные интервью, чтобы максимизировать количество ответов.
- Ошибки выборки: Ошибки выборки возникают из-за неравномерной репрезентативности респондентов. В основном это происходит, когда исследователь не планирует тщательно свою выборку. Эти ошибки выборки можно контролировать и устранять, создавая тщательный план выборки, имея достаточно большую выборку, отражающую все население, или используя для сбора ответов онлайн-выборку или аудиторию опроса.
Контроль ошибки выборки
Статистические теории помогают исследователям измерить вероятность ошибки выборки в зависимости от размера выборки и населения. Размер выборки, рассматриваемой из совокупности, в первую очередь определяет размер ошибки выборки. При больших размерах выборки вероятность ошибки ниже. Для понимания и оценки погрешности исследователи используют метрику, известную как предел погрешности. Обычно желаемым уровнем достоверности считается уровень достоверности в 95%.
Про совет: Если вам нужна помощь в расчете собственного предела погрешности, вы можете воспользоваться нашим калькулятором предела погрешности.
Каковы шаги по сокращению ошибок выборки?
Ошибки выборки легко выявить. Вот несколько простых шагов по уменьшению ошибки выборки:
- Увеличение размера выборки: Больший размер выборки дает более точный результат, поскольку исследование приближается к реальному размеру популяции.
- Разделение популяции на группы: Тестируйте группы в соответствии с их размером в популяции вместо случайной выборки. Например, если люди определенной демографической группы составляют 20% населения, убедитесь, что ваше исследование состоит из этой переменной, чтобы уменьшить смещение выборки.
- Знать свое население: Изучите свое население и поймите его демографический состав. Знайте, какие демографические группы используют ваш продукт и услугу, и убедитесь, что вы нацелены только на ту выборку, которая имеет значение.
Мы также создали инструмент, который поможет вам легко определить вашу выборку: Калькулятор размера выборки.
Ошибка выборки поддается измерению, и исследователи могут использовать ее в своих интересах, чтобы оценить точность своих выводов и оценить дисперсию.
Рубрика:
- Бизнес
Ключевые слова:
- аудитория
Автор:
- Dan Fleetwood
Источник:
- questionpro
Перевод:
- Дмитрий Л