Ошибки анализа программ

7.2.3. Функциональное тестирование

Цель функционального тестирования — обнаружение несоответствий между реальным поведением реализованных функций и ожидаемым поведением в соответствии со спецификацией и исходными требованиями. Функциональные тесты должны охватывать все реализованные функции с учетом наиболее вероятных типов ошибок. Тестовые сценарии, объединяющие отдельные тесты, ориентированы на проверку качества решения функциональных задач.

Функциональные тесты создаются по внешним спецификациям функций, проектной информации и по тексту на ЯП, относятся к функциональным его характеристикам и применяются на этапе комплексного тестирования и испытаний для определения полноты реализации функциональных задач и их соответствия исходным требованиям.

В задачи функционального тестирования входят:

  • идентификация множества функциональных требований;
  • идентификация внешних функций и построение последовательностей функций в соответствии с их использованием в ПС;- идентификация множества входных данных каждой функции и определение областей их изменения;
  • построение тестовых наборов и сценариев тестирования функций;
  • выявление и представление всех функциональных требований с помощью тестовых наборов и проведение тестирования ошибок в программе и при взаимодействии со средой.

Тесты, создаваемые по проектной информации, связаны со структурами данных, алгоритмами, интерфейсами между отдельными компонентами и применяются для тестирования компонентов и их интерфейсов. Основная цель — обеспечение полноты и согласованности реализованных функций и интерфейсов между ними.

Комбинированный метод «черного ящика» и «прозрачного ящика» основан на разбиении входной области функции на подобласти обнаружения ошибок. Подобласть содержит однородные элементы, которые все обрабатываются корректно либо некорректно. Для тестирования подобласти производится выполнение программы на одном из элементов этой области.

Предпосылки функционального тестирования:

  • корректное оформление требований и ограничений к качеству ПО;
  • корректное описание модели функционирования ПО в среде эксплуатации у заказчика;
  • адекватность модели ПО заданному классу.

7.3. Инфраструктура процесса тестирования ПС

Под инфраструктурой процесса тестирования понимается:

  • выделение объектов тестирования;
  • проведение классификации ошибок для рассматриваемого класса тестируемых программ;
  • подготовка тестов, их выполнение и поиск разного рода ошибок и отказов в компонентах и в системе в целом;
  • служба проведения и управление процессом тестирования;
  • анализ результатов тестирования.

Объекты тестирования — компоненты, группы компонентов, подсистемы и система. Для каждого из них формируется стратегия проведения тестирования. Если объект тестирования относится к «белому ящику» или «черному ящику», состав компонентов которого неизвестный, то тестирование проводится посредством ввода внего входных тестовых данных для получения выходных данных. Стратегическая цель тестирования состоит в том, чтобы убедиться, что каждый рассматриваемый входной набор данных соответствует ожидаемым выходным выходных данным. При таком подходе к тестированию не требуется знания внутренней структуры и логики объекта тестирования.

Проектировщик тестов должен заглянуть внутрь «черного ящика» и исследовать детали процессов обработки данных, вопросы обеспечения защиты и восстановления данных, а также интерфейсы с другими программами и системами. Это способствует подготовке тестовых данных для проведения тестирования.

Для некоторых типов объектов группа тестирования не может сгенерировать представительное множество тестовых наборов, которые демонстрировали бы функциональную правильность работы компоненты при всех возможных наборах тестов.

Поэтому предпочтительным является метод «белого ящика», при котором можно использовать структуру объекта для организации тестирования по различным ветвям. Например, можно выполнить тестовые наборы, которые проходят через все операторы или все контрольные точки компонента для того, чтобы убедиться в правильности их работы.

7.3.1. Методы поиска ошибок в программах

Международный стандарт ANSI/IEEE-729-83 разделяет все ошибки в разработке программ на следующие типы.

Ошибка (error) — состояние программы, при котором выдаются неправильные результаты, причиной которых являются изъяны (flaw) в операторах программы или в технологическом процессе ее разработки, что приводит к неправильной интерпретации исходной информации, следовательно, и к неверному решению.

Дефект (fault) в программе — следствие ошибок разработчика на любом из этапов разработки, которая может содержаться в исходных или проектных спецификациях, текстах кодов программ, эксплуатационной документация и т.п. В процессе выполнения программы может быть обнаружен дефект или сбой.

Отказ (failure) — это отклонение программы от функционирования или невозможность программы выполнять функции, определенные требованиями и ограничениями, что рассматривается как событие, способствующее переходу программы в неработоспособное состояние из-за ошибок, скрытых в ней дефектов или сбоев в среде функционирования [7.6, 7.11]. Отказ может быть результатом следующих причин:

  • ошибочная спецификация или пропущенное требование, означающее, что спецификация точно не отражает того, что предполагал пользователь;
  • спецификация может содержать требование, которое невозможно выполнить на данной аппаратуре и программном обеспечении;
  • проект программы может содержать ошибки (например, база данных спроектирована без средств защиты от несанкционированного доступа пользователя, а требуется защита);
  • программа может быть неправильной, т.е. она выполняет несвойственный алгоритм или он реализован не полностью.

Таким образом, отказы, как правило, являются результатами одной или более ошибок в программе, а также наличия разного рода дефектов.

Ошибки на этапах процесса тестирования.Приведенные типы ошибок распределяются по этапам ЖЦ и им соответствуют такие источники их возникновения [7.12]:

  • непреднамеренное отклонение разработчиков от рабочих стандартов или планов реализации;
  • спецификации функциональных и интерфейсных требований выполнены без соблюдения стандартов разработки, что приводит к нарушению функционирования программ;
  • организации процесса разработки — несовершенная или недостаточное управление руководителем проекта ресурсами (человеческими, техническими, программными и т.д.) и вопросами тестирования и интеграции элементов проекта.

Рассмотрим процесс тестирования, исходя из рекомендаций стандарта ISO/IEC 12207, и приведем типы ошибок, которые обнаруживаются на каждом процессе ЖЦ.

Процесс разработки требований. При определении исходной концепции системы и исходных требований к системе возникают ошибки аналитиков при спецификации верхнего уровня системы и построении концептуальной модели предметной области.

Характерными ошибками этого процесса являются:

  • неадекватность спецификации требований конечным пользователям;- некорректность спецификации взаимодействия ПО со средой функционирования или с пользователями;
  • несоответствие требований заказчика к отдельным и общим свойствам ПО;
  • некорректность описания функциональных характеристик;
  • необеспеченность инструментальными средствами всех аспектов реализации требований заказчика и др.

Процесс проектирования.Ошибки при проектировании компонентов могут возникать при описании алгоритмов, логики управления, структур данных, интерфейсов, логики моделирования потоков данных, форматов ввода-вывода и др. В основе этих ошибок лежат дефекты спецификаций аналитиков и недоработки проектировщиков. К ним относятся ошибки, связанные:

  • с определением интерфейса пользователя со средой;
  • с описанием функций (неадекватность целей и задач компонентов, которые обнаруживаются при проверке комплекса компонентов);
  • с определением процесса обработки информации и взаимодействия между процессами (результат некорректного определения взаимосвязей компонентов и процессов);
  • с некорректным заданием данных и их структур при описании отдельных компонентов и ПС в целом;
  • с некорректным описанием алгоритмов модулей;
  • с определением условий возникновения возможных ошибок в программе;
  • с нарушением принятых для проекта стандартов и технологий.

Этап кодирования.На данном этапе возникают ошибки, которые являются результатом дефектов проектирования, ошибок программистов и менеджеров в процессе разработки и отладки системы. Причиной ошибок являются:

  • бесконтрольность значений входных параметров, индексов массивов, параметров циклов, выходных результатов, деления на 0 и др.;
  • неправильная обработка нерегулярных ситуаций при анализе кодов возврата от вызываемых подпрограмм, функций и др.;
  • нарушение стандартов кодирования (плохие комментарии, нерациональное выделение модулей и компонент и др.);
  • использование одного имени для обозначения разных объектов или разных имен одного объекта, плохая мнемоника имен;- несогласованное внесение изменений в программу разными разработчиками и др.

Процесс тестирования.На этом процессе ошибки допускаются программистами и тестировщиками при выполнении технологии сборки и тестирования, выбора тестовых наборов и сценариев тестирования и др. Отказы в программном обеспечении, вызванные такого рода ошибками, должны выявляться, устраняться и не отражаться на статистике ошибок компонент и программного обеспечения в целом.

Процесс сопровождения.На процессе сопровождения обнаруживаются ошибки, причиной которых являются недоработки и дефекты эксплуатационной документации, недостаточные показатели модифицируемости и удобочитаемости, а также некомпетентность лиц, ответственных за сопровождение и/или усовершенствование ПО. В зависимости от сущности вносимых изменений на этом этапе могут возникать практически любые ошибки, аналогичные ранее перечисленным ошибкам на предыдущих этапах.

Все ошибки, которые возникают в программах, принято подразделять на следующие классы [7.12]:

  • логические и функциональные ошибки;
  • ошибки вычислений и времени выполнения;
  • ошибки вводавывода и манипулирования данными;
  • ошибки интерфейсов;
  • ошибки объема данных и др.

Логические ошибки являются причиной нарушения логики алгоритма, внутренней несогласованности переменных и операторов, а также правил программирования. Функциональные ошибки — следствие неправильно определенных функций, нарушения порядка их применения или отсутствия полноты их реализации и т.д.

Ошибки вычислений возникают по причине неточности исходных данных и реализованных формул, погрешностей методов, неправильного применения операций вычислений или операндов. Ошибки времени выполнения связаны с необеспечением требуемой скорости обработки запросов или времени восстановления программы.

Ошибки ввода-вывода и манипулирования данными являются следствием некачественной подготовки данных для выполнения программы, сбоев при занесении их в базы данных или при выборке из нее.

Ошибки интерфейса относятся к ошибкам взаимосвязи отдельных элементов друг с другом, что проявляется при передаче данных между ними, а также при взаимодействии со средой функционирования.

Ошибки объема относятся к данным и являются следствием того, что реализованные методы доступа и размеры баз данных не удовлетворяют реальным объемам информации системы или интенсивности их обработки.

Приведенные основные классы ошибок свойственны разным типам компонентов ПО и проявляются они в программах по разному. Так, при работе с БД возникают ошибки представления и манипулирования данными, логические ошибки в задании прикладных процедур обработки данных и др. В программах вычислительного характера преобладают ошибки вычислений, а в программах управления и обработки — логические и функциональные ошибки. В ПО, которое состоит из множества разноплановых программ, реализующих разные функции, могут содержаться ошибки разных типов. Ошибки интерфейсов и нарушение объема характерны для любого типа систем.

Анализ типов ошибок в программах является необходимым условием создания планов тестирования и методов тестирования для обеспечения правильности ПО.

На современном этапе развития средств поддержки разработки ПО (CASE-технологии, объектно-ориентированные методы и средства проектирования моделей и программ) проводится такое проектирование, при котором ПО защищается от наиболее типичных ошибок и тем самым предотвращается появление программных дефектов.

Связь ошибки с отказом.Наличие ошибки в программе, как правило, приводит к отказу ПО при его функционировании. Для анализа причинно-следственных связей «ошибкаотказ» выполняются следующие действия:

  • идентификация изъянов в технологиях проектирования и программирования;
  • взаимосвязь изъянов процесса проектирования и допускаемых человеком ошибок;
  • классификация отказов, изъянов и возможных ошибок, а также дефектов на каждом этапе разработки;- сопоставление ошибок человека, допускаемых на определенном процессе разработки, и дефектов в объекте, как следствий ошибок спецификации проекта, моделей программ;
  • проверка и защита от ошибок на всех этапах ЖЦ, а также обнаружение дефектов на каждом этапе разработки;
  • сопоставление дефектов и отказов в ПО для разработки системы взаимосвязей и методики локализации, сбора и анализа информации об отказах и дефектах;
  • разработка подходов к процессам документирования и испытания ПО.

Конечная цель причинно-следственных связей «ошибкаотказ» заключается в определении методов и средств тестирования и обнаружения ошибок определенных классов, а также критериев завершения тестирования на множестве наборов данных; в определении путей совершенствования организации процесса разработки, тестирования и сопровождения ПО.

Приведем следующую классификацию типов отказов:

  • аппаратный, при котором общесистемное ПО не работоспособно;
  • информационный, вызванный ошибками во входных данных и передаче данных по каналам связи, а также при сбое устройств ввода (следствие аппаратных отказов);
  • эргономический, вызванный ошибками оператора при его взаимодействии с машиной (этот отказ — вторичный отказ, может привести к информационному или функциональному отказам);
  • программный, при наличии ошибок в компонентах и др.

Некоторые ошибки могут быть следствием недоработок при определении требований, проекта, генерации выходного кода или документации. С другой стороны, они порождаются в процессе разработки программы или при разработке интерфейсов отдельных элементов программы (нарушение порядка параметров, меньше или больше параметров и т.п.).

Источники ошибок.Ошибки могут быть порождены в процессе разработки проекта, компонентов, кода и документации. Как правило, они обнаруживаются при выполнении или сопровождении программного обеспечения в самых неожиданных и разных ее точках.

Некоторые ошибки в программе могут быть следствием недоработок при определении требований, проекта, генерации кода или документации. С другой стороны, ошибки порождаются в процессе разработки программы или интерфейсов ее элементов (например, при нарушении порядка задания параметров связи — меньше или больше, чем требуется и т.п.).

Причиной появления ошибок — непонимание требований заказчика; неточная спецификация требований в документах проекта и др. Это приводит к тому, что реализуются некоторые функции системы, которые будут работать не так, как предлагает заказчик. В связи с этим проводится совместное обсуждение заказчиком и разработчиком некоторых деталей требований для их уточнения.

Команда разработчиков системы может также изменить синтаксис и семантику описания системы. Однако некоторые ошибки могут быть не обнаружены (например, неправильно заданы индексы или значения переменных этих операторов).

Дефекты программного обеспечения можно обнаружить на каждом этапе разработки и тестирования продукта. Чтобы гарантировать исправление наиболее серьезных дефектов программного обеспечения, тестировщикам важно иметь хорошее представление о различных типах дефектов, которые могут возникнуть.

20 ВИДОВ ПРОГРАММНЫХ ДЕФЕКТОВ, КОТОРЫЕ ДОЛЖЕН ЗНАТЬ КАЖДЫЙ ТЕСТЕР

В этой статье мы обсудим самые распространенные типы ПО дефекты и способы их выявления.

Что такое дефект?

Дефект программного обеспечения — это ошибка, изъян, сбой или неисправность в компьютерной программе, из-за которой она выдает неправильный или неожиданный результат или ведет себя непреднамеренным образом. Программная ошибка возникает, когда фактические результаты не совпадают с ожидаемыми. Разработчики и программисты иногда допускают ошибки, которые создают ошибки, называемые дефектами. Большинство ошибок возникает из-за ошибок, которые допускают разработчики или программисты.

Обязательно прочтите: Разница между дефектом, ошибкой, ошибкой и сбоем

Типы программных ошибок при тестировании программного обеспечения

Существует множество различных типов дефектов программного обеспечения, и тестировщикам важно знать наиболее распространенные из них, чтобы они могут эффективно тестировать их.

Ошибки программного обеспечения подразделяются на три типа:

  1. Дефекты программного обеспечения по своей природе
  2. Дефекты программного обеспечения по их приоритету
  3. Дефекты программного обеспечения по их серьезности

Обычно мы можем видеть приоритет и серьезность классификаторов в большинстве инструментов отслеживания ошибок. Если мы настроим классификатор в соответствии с характером ошибки, а также приоритетом и серьезностью, это поможет легко управлять распределением обязанностей по исправлению ошибок соответствующим командам.

#1. Дефекты программного обеспечения по своей природе

Ошибки в программном обеспечении имеют широкий спектр природы, каждая из которых имеет свой собственный набор симптомов. Несмотря на то, что таких багов много, сталкиваться с ними можно не часто. Вот наиболее распространенные ошибки программного обеспечения, классифицированные по характеру, с которыми вы, скорее всего, столкнетесь при тестировании программного обеспечения.

#1. Функциональные ошибки

Как следует из названия, функциональные ошибки — это те, которые вызывают сбои в работе программного обеспечения. Хорошим примером этого может служить кнопка, при нажатии на которую должно открываться новое окно, но вместо этого ничего не происходит.

Функциональные ошибки можно исправить, выполнив функциональное тестирование.

#2. Ошибки на уровне модуля

Ошибки на уровне модуля — это дефекты, связанные с функциональностью отдельного программного модуля. Программный модуль — это наименьшая тестируемая часть приложения. Примеры программных модулей включают классы, методы и процедуры. Ошибки на уровне подразделения могут существенно повлиять на общее качество программного обеспечения.

Ошибки на уровне модуля можно исправить, выполнив модульное тестирование.

#3. Ошибки уровня интеграции

Ошибки уровня интеграции — это дефекты, возникающие при объединении двух или более программных модулей. Эти дефекты может быть трудно найти и исправить, потому что они часто требуют координации между несколькими командами. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки интеграции можно исправить, выполнив интеграционное тестирование.

#4. Дефекты юзабилити

Ошибки юзабилити — это дефекты, влияющие на работу пользователя с программным обеспечением и затрудняющие его использование. Дефект юзабилити — это дефект пользовательского опыта программного обеспечения, который затрудняет его использование. Ошибки юзабилити — это такие ошибки, как если веб-сайт сложен для доступа или обойти, или процесс регистрации сложен для прохождения.

Во время тестирования удобства использования тестировщики программного обеспечения проверяют приложения на соответствие требованиям пользователей и Руководству по доступности веб-контента (WCAG) для выявления таких проблем. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки, связанные с удобством использования, можно исправить, выполнив тестирование удобства использования.

#5. Дефекты производительности

Ошибки производительности — это дефекты, влияющие на производительность программного обеспечения. Это может включать в себя такие вещи, как скорость программного обеспечения, объем используемой памяти или количество потребляемых ресурсов. Ошибки уровня производительности сложно отследить и исправить, поскольку они могут быть вызваны рядом различных факторов.

Ошибки юзабилити можно исправить, выполнив тестирование производительности.

#6. Дефекты безопасности

Ошибки безопасности — это тип дефекта программного обеспечения, который может иметь серьезные последствия, если его не устранить. Эти дефекты могут позволить злоумышленникам получить доступ к конфиденциальным данным или системам или даже позволить им получить контроль над уязвимым программным обеспечением. Таким образом, очень важно, чтобы ошибкам уровня безопасности уделялось первоочередное внимание и устранялись как можно скорее.

Ошибки безопасности можно исправить, выполнив тестирование безопасности.

#7. Дефекты совместимости

Дефекты совместимости — это те ошибки, которые возникают, когда приложение несовместимо с оборудованием, на котором оно работает, или с другим программным обеспечением, с которым оно должно взаимодействовать. Несовместимость программного и аппаратного обеспечения может привести к сбоям, потере данных и другому непредсказуемому поведению. Тестировщики должны знать о проблемах совместимости и проводить соответствующие тесты. Программное приложение, имеющее проблемы с совместимостью, не работает последовательно на различных видах оборудования, операционных системах, веб-браузерах и устройствах при подключении к определенным программам или работе в определенных сетевых условиях.

Ошибки совместимости можно исправить, выполнение тестирования совместимости.

#8. Синтаксические ошибки

Синтаксические ошибки являются самым основным типом дефекта. Они возникают, когда код нарушает правила языка программирования. Например, использование неправильной пунктуации или забывание закрыть скобку может привести к синтаксической ошибке. Синтаксические ошибки обычно мешают запуску кода, поэтому их относительно легко обнаружить и исправить.

#9. Логические ошибки

Логические ошибки — это дефекты, из-за которых программа выдает неправильные результаты. Эти ошибки может быть трудно найти и исправить, потому что они часто не приводят к каким-либо видимым ошибкам. Логические ошибки могут возникать в любом типе программного обеспечения, но они особенно распространены в приложениях, требующих сложных вычислений или принятия решений.

Общие симптомы логических ошибок включают:

  • Неверные результаты или выходные данные
  • Неожиданное поведение
  • Сбой или зависание программного обеспечения

Чтобы найти и исправить логические ошибки, тестировщикам необходимо иметь четкое представление о коде программы и о том, как она должна работать. Часто лучший способ найти такие ошибки — использовать инструменты отладки или пошаговое выполнение, чтобы отслеживать выполнение программы и видеть, где что-то идет не так.

#2. Дефекты программного обеспечения по степени серьезности

Уровень серьезности присваивается дефекту по его влиянию. В результате серьезность проблемы отражает степень ее влияния на функциональность или работу программного продукта. Дефекты серьезности классифицируются как критические, серьезные, средние и незначительные в зависимости от степени серьезности.

#1. Критические дефекты

Критический дефект — это программная ошибка, имеющая серьезные или катастрофические последствия для работы приложения. Критические дефекты могут привести к сбою, зависанию или некорректной работе приложения. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение критическим дефектам, поскольку их необходимо исправить как можно скорее.

#2. Серьезные дефекты

Серьезный дефект — это программная ошибка, существенно влияющая на работу приложения. Серьезные дефекты могут привести к замедлению работы приложения или другому неожиданному поведению. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение серьезным дефектам, поскольку их необходимо исправить как можно скорее.

#3. Незначительные дефекты

Незначительный дефект — это программная ошибка, которая оказывает небольшое или незначительное влияние на работу приложения. Незначительные дефекты могут привести к тому, что приложение будет работать немного медленнее или демонстрировать другое неожиданное поведение. Разработчики и тестировщики часто не придают незначительным дефектам приоритет, потому что их можно исправить позже.

#4. Тривиальные дефекты

Тривиальный дефект – это программная ошибка, не влияющая на работу приложения. Тривиальные дефекты могут привести к тому, что приложение отобразит сообщение об ошибке или проявит другое неожиданное поведение. Разработчики и тестировщики часто присваивают тривиальным дефектам самый низкий приоритет, потому что они могут быть исправлены позже.

#3. Дефекты программного обеспечения по приоритету

#1. Дефекты с низким приоритетом

Дефекты с низким приоритетом, как правило, не оказывают серьезного влияния на работу программного обеспечения и могут быть отложены для исправления в следующей версии или выпуске. В эту категорию попадают косметические ошибки, такие как орфографические ошибки, неправильное выравнивание и т. д.

#2. Дефекты со средним приоритетом

Дефекты со средним приоритетом — это ошибки, которые могут быть исправлены после предстоящего выпуска или в следующем выпуске. Приложение, возвращающее ожидаемый результат, которое, однако, неправильно форматируется в конкретном браузере, является примером дефекта со средним приоритетом.

#3. Дефекты с высоким приоритетом

Как следует из названия, дефекты с высоким приоритетом — это те, которые сильно влияют на функционирование программного обеспечения. В большинстве случаев эти дефекты необходимо исправлять немедленно, так как они могут привести к серьезным нарушениям нормального рабочего процесса. Дефекты с высоким приоритетом обычно классифицируются как непреодолимые, так как они могут помешать пользователю продолжить выполнение поставленной задачи.

Некоторые распространенные примеры дефектов с высоким приоритетом включают:

  • Дефекты, из-за которых приложение не работает. сбой
  • Дефекты, препятствующие выполнению задачи пользователем
  • Дефекты, приводящие к потере или повреждению данных
  • Дефекты, раскрывающие конфиденциальную информацию неавторизованным пользователям
  • Дефекты, делающие возможным несанкционированный доступ к системе
  • Дефекты, приводящие к потере функциональности
  • Дефекты, приводящие к неправильным результатам или неточным данным
  • Дефекты, вызывающие проблемы с производительностью, такие как чрезмерное использование памяти или медленное время отклика

#4. Срочные дефекты

Срочные дефекты — это дефекты, которые необходимо устранить в течение 24 часов после сообщения о них. В эту категорию попадают дефекты со статусом критической серьезности. Однако дефекты с низким уровнем серьезности также могут быть классифицированы как высокоприоритетные. Например, опечатка в названии компании на домашней странице приложения не оказывает технического влияния на программное обеспечение, но оказывает существенное влияние на бизнес, поэтому считается срочной.

#4. Дополнительные дефекты

#1. Отсутствующие дефекты

Отсутствующие дефекты возникают из-за требований, которые не были включены в продукт. Они также считаются несоответствиями спецификации проекта и обычно негативно сказываются на пользовательском опыте или качестве программного обеспечения.

#2. Неправильные дефекты

Неправильные дефекты — это те дефекты, которые удовлетворяют требованиям, но не должным образом. Это означает, что хотя функциональность достигается в соответствии с требованиями, но не соответствует ожиданиям пользователя.

#3. Дефекты регрессии

Дефект регрессии возникает, когда изменение кода вызывает непреднамеренное воздействие на независимую часть программного обеспечения.

Часто задаваемые вопросы — Типы программных ошибок< /h2>

Почему так важна правильная классификация дефектов?

Правильная классификация дефектов важна, поскольку она помогает эффективно использовать ресурсы и управлять ими, правильно приоритизировать дефекты и поддерживать качество программного продукта.

Команды тестирования программного обеспечения в различных организациях используют различные инструменты отслеживания дефектов, такие как Jira, для отслеживания дефектов и управления ими. Несмотря на то, что в этих инструментах есть несколько вариантов классификации дефектов по умолчанию, они не всегда могут наилучшим образом соответствовать конкретным потребностям организации.

Следовательно, важно сначала определить и понять типы дефектов программного обеспечения, которые наиболее важны для организации, а затем соответствующим образом настроить инструмент управления дефектами.

Правильная классификация дефектов также гарантирует, что команда разработчиков сможет сосредоточиться на критических дефектах и ​​исправить их до того, как они повлияют на конечных пользователей.

Кроме того, это также помогает определить потенциальные области улучшения в процессе разработки программного обеспечения, что может помочь предотвратить появление подобных дефектов в будущих выпусках.

Таким образом, отслеживание и устранение дефектов программного обеспечения может показаться утомительной и трудоемкой задачей. , правильное выполнение может существенно повлиять на качество конечного продукта.

Как найти лежащие в основе ошибки программного обеспечения?

Определение основной причины программной ошибки может быть сложной задачей даже для опытных разработчиков. Чтобы найти лежащие в основе программные ошибки, тестировщики должны применять систематический подход. В этот процесс входят различные этапы:

1) Репликация. Первым этапом является воспроизведение ошибки. Это включает в себя попытку воспроизвести тот же набор шагов, в котором возникла ошибка. Это поможет проверить, является ли ошибка реальной или нет.
2) Изоляция. После того, как ошибка воспроизведена, следующим шагом будет попытка ее изоляции. Это включает в себя выяснение того, что именно вызывает ошибку. Для этого тестировщики должны задать себе несколько вопросов, например:
– Какие входные данные вызывают ошибку?
– При каких различных условиях возникает ошибка?
– Каковы различные способы проявления ошибки?
3) Анализ: после Изолируя ошибку, следующим шагом будет ее анализ. Это включает в себя понимание того, почему возникает ошибка. Тестировщики должны задать себе несколько вопросов, таких как:
– Какова основная причина ошибки?
– Какими способами можно исправить ошибку?
– Какое исправление было бы наиболее эффективным? эффективно?
4) Отчет. После анализа ошибки следующим шагом является сообщение о ней. Это включает в себя создание отчета об ошибке, который включает всю соответствующую информацию об ошибке. Отчет должен быть четким и кратким, чтобы разработчики могли его легко понять.
5) Проверка. После сообщения об ошибке следующим шагом является проверка того, была ли она исправлена. Это включает в себя повторное тестирование программного обеспечения, чтобы убедиться, что ошибка все еще существует. Если ошибка исправлена, то тестер может подтвердить это и закрыть отчет об ошибке. Если ошибка все еще существует, тестировщик может повторно открыть отчет об ошибке.

Заключение

В индустрии программного обеспечения дефекты — неизбежная реальность. Однако благодаря тщательному анализу и пониманию их характера, серьезности и приоритета дефектами можно управлять, чтобы свести к минимуму их влияние на конечный продукт.

Задавая правильные вопросы и применяя правильные методы, тестировщики могут помочь обеспечить чтобы дефекты обнаруживались и исправлялись как можно раньше в процессе разработки.
TAG: qa

    1. Классификация ошибок

Задача любого
тестировщика заключается в нахождении
наибольшего количества ошибок, поэтому
он должен хорошо знать наиболее часто
допускаемые ошибки и уметь находить их
за минимально короткий период времени.
Остальные ошибки, которые не являются
типовыми, обнаруживаются только тщательно
созданными наборами тестов. Однако из
этого не следует, что для типовых ошибок
не нужно составлять тесты.

Для классификации
ошибок мы должны определить термин
«ошибка».

Ошибка – это
расхождение между вычисленным, наблюдаемым
и истинным, заданным или теоретически
правильным значением.

Итак, по времени
появления ошибки можно разделить на
три вида:

– структурные ошибки
набора;

– ошибки компиляции;

– ошибки периода
выполнения.

Структурные
ошибки
возникают непосредственно при наборе
программы. К данному типу ошибок относятся
такие как: несоответствие числа
открывающих скобок числу закрывающих,
отсутствие парного оператора (например,
try
без catch).

Ошибки
компиляции
возникают из-за ошибок в тексте кода.
Они включают ошибки в синтаксисе,
неверное использование конструкции
языка (оператор else
в операторе for
и т. п.), использование несуществующих
объектов или свойств, методов у объектов,
употребление синтаксических знаков и
т. п.

Ошибки
периода выполнения
возникают, когда программа выполняется
и компилятор (или операционная система,
виртуальная машина) обнаруживает, что
оператор делает попытку выполнить
недопустимое или невозможное действие.
Например, деление на ноль.

Если проанализировать
все типы ошибок согласно первой
классификации, то можно прийти к
заключению, что при тестировании
приходится иметь дело с ошибками периода
выполнения, так как первые два типа
ошибок определяются на этапе кодирования.

В теоретической
информатике программные ошибки
классифицируют по степени нарушения
логики на:

– синтаксические;

–семантические;

– прагматические.

Синтаксические
ошибки
заключаются в нарушении правописания
или пунктуации в записи выражений,
операторов и т. п., т. е. в нарушении
грамматических правил языка. В качестве
примеров синтаксических ошибок можно
назвать:

– пропуск необходимого
знака пунктуации;

– несогласованность
скобок;

– пропуск нужных
скобок;

– неверное написание
зарезервированных слов;

– отсутствие описания
массива.

Все ошибки данного
типа обнаруживаются компилятором.

Семантические
ошибки
заключаются в нарушении порядка
операторов, параметров функций и
употреблении выражений. Например,
параметры у функции add
(на языке Java)
в следующем выражении указаны в
неправильном порядке:

GregorianCalendar.add(1,
Calendar.MONTH).

Параметр, указывающий
изменяемое поле (в примере – месяц),
должен идти первым. Семантические ошибки
также обнаруживаются компилятором.
Надо отметить, что некоторые исследователи
относят семантические ошибки к следующей
группе ошибок.

Прагматические
ошибки (или
логические) заключаются в неправильной
логике алгоритма, нарушении смысла
вычислений и т. п. Они являются самыми
сложными и крайне трудно обнаруживаются.
Компилятор может выявить только следствие
прагматической ошибки.

Таким образом, после
рассмотрения двух классификаций ошибок
можно прийти к выводу, что на этапе
тестирования ищутся прагматические
ошибки периода выполнения, так как
остальные выявляются в процессе
программирования.

На этом можно было
бы закончить рассмотрение классификаций,
но с течением времени накапливался опыт
обнаружения ошибок и сами ошибки,
некоторые из которых образуют характерные
группы, которые могут тоже служить
характерной классификацией.

Ошибка
адресации
– ошибка, состоящая в неправильной
адресации данных (например, выход за
пределы участка памяти).

Ошибка
ввода-вывода
– ошибка, возникающая в процессе обмена
данными между устройствами памяти,
внешними устройствами.

Ошибка
вычисления
– ошибка, возникающая при выполнении
арифметических операций (например,
разнотипные данные, деление на нуль и
др.).

Ошибка
интерфейса
– программная ошибка, вызванная
несовпадением характеристик фактических
и формальных параметров (как правило,
семантическая ошибка периода компиляции,
но может быть и логической ошибкой
периода выполнения).

Ошибка
обращения к данным
– ошибка, возникающая при обращении
программы к данным (например, выход
индекса за пределы массива, не
инициализированные значения переменных
и др.).

Ошибка
описания данных
– ошибка, допущенная в ходе описания
данных.[2]

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Функциональное тестирование программного обеспеченияФункциональное тестирование является одним из ключевых видов тестирования, задача которого – установить соответствие разработанного программного обеспечения (ПО) исходным функциональным требованиям компании клиента. То есть проведение функционального тестирования позволяет проверить способность информационной системы в определенных условиях решать задачи, нужные пользователям.

В зависимости от степени доступа к коду системы можно выделить два типа функциональных испытаний:

⦁ тестирование black box (черный ящик) – проведение функционального тестирования без доступа к коду системы,
⦁ тестирование white box (белый ящик) – функциональное тестирование с доступом к коду системы.
Тестирование black box проводится без знания внутренних механизмов работы системы и опирается на внешние проявления ее работы. При этом тестировании проверяется поведение ПО при различных входных данных и внутреннем состоянии систем. В случае тестирования white box создаются тест-кейсы, основанные преимущественно на коде системы ПО. Также существует расширенный тип black-box тестирования, включающего в себя изучение кода, – так называемый grey box (серый ящик).

Ключевые преимущества

⦁ Функциональное тестирование ПО полностью имитирует фактическое использование системы.
⦁ Позволяет своевременно выявить системные ошибки ПО и, тем самым, избежать множества проблем при работе с ним в дальнейшем.
⦁ Экономия за счет исправления ошибок на более раннем этапе жизненного цикла ПО.

Основные этапы функционального тестирования

Подготовка — Проводится анализ исходных документов о системе: функциональные и бизнес-требования, техническое задание, паспорт проекта. Также происходят разработка и согласование плана тестирования, тест-кейсов, согласование проектных сроков, числа итераций, оценка возможных рисков. Задачи по этому этапу выполняются совместно с представителями заказчика.

Проведение — Функциональное тестирование ведется вручную по подготовленным заранее тестовым сценариям с занесением всех найденных ошибок в багтрекинговую систему. В случае отсутствия такой системы у компании клиента, компания модератор краудтестинга может: предоставить систему управления тестированием на своей площадке; поставить компании клиенту лицензии; использовать имеющиеся у компании клиента средства; обходиться только офисным пакетом; поставить процесс тестирования у компании клиента на основе бесплатных средств.

Отчет — Происходит разработка и согласование отчетов о проведенном тестировании со списком обнаруженных отклонений и рекомендациями по улучшению системы. Если необходимо, проводится обучение пользователей.

Направления функционального тестирования

Регрессионное тестирование — Тестирование функциональности продукта после исправления ошибок или реализации новых функциональных возможностей

Тестирование безопасности — Оценка уязвимости ПО к различным атакам и попыткам несанкционированного доступа к данным.

Системное тестирование — Проверка соответствия ПО требованиям, заявленным в спецификации

Тестирование мобильных приложений — Выявление дефектов в работе графического интерфейса

Тестирование установки — Тестирование процесса инсталляции/деинсталляции программного обеспечения

Конфигурационное тестирование — Проверка работы ПО на различных программных и аппаратных окружениях.

Интеграционное тестирование — Тестирование взаимодействий между компонентами системы и между несколькими системами.

Smoke-тестирование — Короткий цикл тестов для выявления правильной работы основных функций приложения.

Тестирование документации — Проверка документов на соответствие принятым стандартам, а также соответствие определенным характеристикам

Обеспечение тестового покрытия — Оценка плотности покрытия системы тестами

Тестирование удобства использования — Определение степени удобства использования, понятности и привлекательности разрабатываемого продукта

Регрессионное тестирование

Функциональное тестирование программного обеспечения

Каждый раз при внесении изменений в систему, либо дополнения ее новым функционалом, существует

вероятность того, что эти изменения повлияют на работоспособность ранее разработанного функционала или системы в целом. Регрессионное тестирование позволяет проверить корректность дополнений и удостовериться в том, что программа после изменений продолжает соответствовать установленным требованиям и успешно взаимодействует с другими системами.

Данный вид тестирования рекомендуется проводить каждый раз после корректировки программы, которая может включать исправление дефекта, слияние кода, миграцию на другую ОС или БД, добавление новой функциональности, и другие изменения. Если в процессе эксплуатации ПО существенно выросло число пользователей системы по сравнению с пилотной эксплуатацией, рекомендуется проводить регрессионное нагрузочное тестирование.

В ходе проекта тестировщики прежде всего проверяют ту часть функционала, где вероятность появления ошибки после внесенных изменений наиболее велика. Для экономии времени специалисты могут разработать автоматизированные регрессионные тесты, которые уменьшат сроки тестирования без потери в качестве работ.

Ключевые преимущества

⦁ При регулярном проведении регрессионного тестирования — значительное сокращение количества дефектов в системе к моменту релиза.
⦁ Исключение деградации качества системы при росте функциональности.
⦁ Уменьшение вероятности критических ошибок в опытно-промышленной эксплуатации.

Основные этапы

⦁ Верификационные тесты: включают тесты для проверки исправления ошибок и тесты для проверки сохранности базовой функциональности в каждой новой версии ПО;
⦁ Регрессионные тесты: проверка новой версии программы с набором тестов, которые использовались при тестировании предыдущей версии и не выявили ошибок;
⦁ Регресс на исправленных ошибках: проверка ранее выявленных и исправленных ошибок, это необходимо, чтобы избежать появления подобных ошибок после модификации кода.

Интеграционное тестирование

Функциональное тестирование программного обеспечения

Многие современные ИТ-системы взаимодействуют с другими системами и модулями, поэтому крайне

важно иметь представление об их взаимосвязи и проверять их работоспособность. Интеграционное тестирование позволяет обнаружить дефекты, возникающие при взаимодействии систем. Для этого могут быть использованы как ручные, так и автоматизированные тесты.

Интеграционное тестирование рекомендуется проводить перед началом системного тестирования. Данный вид тестирования следует проводить как можно раньше, поскольку дефекты интеграции, как правило, имеют архитектурный характер, их исправление на поздних стадиях разработки является рискованным и может обойтись значительно дороже. Для ускорения начала процесса тестирования рекомендуется воспользоваться разработкой эмуляторов внешних систем.

В рамках интеграционного тестирования также может проводиться регрессионное тестирование с целью проверки сделанных в приложении или окружающей среде изменений и работоспособности унаследованной функциональности.

Ключевые преимущества

Интеграционное тестирование позволяет имитировать действия пользователей и быстро получать подтверждение, что программный продукт успешно взаимодействует с другими системами. Такой подход гарантирует сразу несколько преимуществ:

⦁ Предотвращение появления критичных ошибок в опытно-промышленной эксплуатации;
⦁ Снижение влияния человеческого фактора;
⦁ Экономия затрат на исправление дефектов.

Основные задачи

Главной задачей интеграционного тестирования является поиск ошибок, связанных с взаимодействием модулей системы или нескольких систем. В результате все смежные системы и модули одной системы должны работать согласованно.

Способы проведения интеграционного тестирования подбираются в зависимости от интеграционных решений.

Этапы

⦁ Разработка тест-плана – руководства к действию для тестировщиков;
⦁ Формирование тестовых данных и создание тест-кейсов;
⦁ Реализация сценариев для запуска тест-кейсов;
⦁ Выполнение тест-кейсов и исправление ошибок;
⦁ Повторение цикла тестирования до успешной интеграции.

Тестирование безопасности

Функциональное тестирование программного обеспечения

Тестирование безопасности проводится с целью оценки устойчивости системы к противоправным

действиям: хакерским атакам, проникновению вирусам, попыткам доступа к корпоративной информации. Тестирование безопасности особенно актуально для web-приложений, приложений с важной коммерческой или персональной информацией, платежных систем, приложений, требующих целостности информации, социальных приложений, приложений с коммерческой лицензией. Зачастую для проверки безопасности

таких систем функционального тестирования оказывается недостаточно.

Ключевые преимущества

⦁ Тестирование безопасности снижает вероятность несанкционированного доступа к системе, краж информации  и потерь данных;
⦁ Клиенты получают объективную оценку уровня защищенности систем.

Основные задачи

⦁ Анализ архитектуры и построение  модели угроз и рисков
⦁ Определение критериев защищенности
⦁ Поиск уязвимостей в исходном коде
⦁ Fuzz тестирование
⦁ Тестирование на проникновение
⦁ Тестирование, основанное на рисках
⦁ Проведение нагрузочного тестирования

Этапы

⦁ Подготовка: сбор информации, уточнение деталей;
⦁ Планирование: анализ уязвимостей системы и возможных угроз, составление матрицы рисков;
⦁ Проектирование: определение параметров защищенности системы, анализ кода, элементарные тесты;
⦁ Разработка: ввод неожиданных, неправильных, нетипичных данных (fuzz-тестирование), оценка нефункциональных составляющих ПО, модель тестирования на рисках;
⦁ Внедрение: ⦁ нагрузочное тестирование, тесты на проникновение.

Smoke-тестирование

Частая сборка ПО не всегда проходит с должным качеством, вследствие чего программный продукт может содержать ошибки в работе критичного для бизнеса функционала. Именно поэтому проверку ключевого функционала системы следует осуществляться сразу после сборки и перед передачей ПО на тестирование.

Smoke-тестирование (дымовое тестирование) ставит задачу выявить дефекты сразу после сборки ПО. Оно включает небольшое количество тестовых сценариев и предназначено для выявления явных ошибок функциональности. Обычно smoke-тесты проводятся после обновления ПО, но данный метод можно применять и для тестирования программных продуктов, созданных с нуля. SMOKE-тестирование может проводится в качестве приемочных испытаний перед функциональным тестированием. Поскольку smoke-тестирование проводится с довольно высокой периодичностью и на него затрачиваются существенные ресурсы тестировщиков, рекомендуется автоматизировать это направление.

Ключевые преимущества

⦁ Выявление критичных ошибок в первые несколько часов (минут) после установки
⦁ Снижение рисков вывода некачественного продукта;
⦁ Минимизация рисков при интеграции систем;
⦁ Сокращение затрат на исправление дефектов;
⦁ Ускорение проверки за счет автоматизации.

Основные задачи

⦁ Выбор тестовых сценариев, таким образом, чтобы обеспечить тестовое покрытие наиболее приоритетных функций системы.
⦁ Определение количества SMOKE-тестов и времени их выполнения. Обычно для SMOKE-тестов выбирается не более 10 сценариев с временем их выполнения в несколько часов.
⦁ Написание сценариев тестирования, описание шагов воспроизведения и ожидаемых результатов их выполнения. По желанию клиента сценарии могут быть автоматизированы.
⦁ Выполнение SMOKE-тестов.

Системное тестирование

Функциональное тестирование программного обеспечения

Системное тестирование предназначено для тестирования

готового ПО в том состоянии, в котором оно будет внедряться в опытно-промышленную эксплуатацию.

Системное тестирование позволяет обнаружить такие дефекты как выявление отсутствующего функционала в системе, некорректная работа функций системы, возникновение ошибок при использовании специфических тестовых данных или их комбинации, ошибки взаимодействия с другими системами.

Ключевые преимущества

⦁ Сокращение количества дефектов в опытно-промышленной эксплуатации;
⦁ Возможность использования тестовых сценариев в качестве обучающих материалов для будущих пользователей системы;
⦁ Выявление ошибок настройки стенда, что облегчает работу администраторов АС при установке системы в опытно-промышленную эксплуатацию.

Основные задачи

⦁ Определение подхода к составлению тестовых сценариев
⦁ Создание плана и методики испытаний
⦁ Подготовка тестовых данных
⦁ Проведение тестирования
⦁ Выявление некорректного использования ресурсов

Этапы

⦁ Тестовый план
⦁ Разработка тестов
⦁ Подготовка тестовых данных
⦁ Тестовые прогоны – автоматизированные и обычные
⦁ Составление отчета
⦁ Регрессионое тестирование после исправления ошибок

Тестирование документации

Тестирование документации позволяет оценить различные характеристики документов и требований: полнота и избыточность, однозначность и непротиворечивость, ранжируемость и трассируемость, реализуемость и  проверяемость.

Тестирование документации рекомендуется проводить при создании нового ПО или при его изменении в связи с развитием бизнеса.  Тестирование документации лучше начинать на этапе создания требований к системе, это позволит устранить часть дефектов до их реализации в коде.

Ключевые преимущества

⦁ Выявление ошибок требований на ранних этапах позволяет снизить затраты на их исправление.
⦁ Качественная документация снижает трудоемкость и длительность проекта в целом.
⦁ Однозначные и полные бизнес-требования позволяют разработчикам лучше оценить объем работ и проработать техническое задание.
⦁ Понятная документация снижает количество вопросов о работе системы у пользователей и тестировщиков, что облегчает работу администратора и аналитика.

Тестирование документации включает тестирование нескольких уровней документации:

⦁ Бизнес-требования
⦁ Функциональные требования
⦁ Техническое задание
⦁ Руководства пользователей

Тестирование мобильных приложений

Функциональное тестирование программного обеспечения

Тестирование – важнейший этап разработки мобильных приложений. Этот вид тестирования позволяет проверить работоспособность приложения на различных устройствах и операционных системах в соответствии с заданными требованиями.

Ключевые преимущества

⦁ Проверка работоспособности и совместимости приложения на различных устройствах и платформах.
⦁ Снижение репутационных рисков, так как выпуск некачественного приложения на любой мобильной платформе связан с негативными комментариями и низкими оценками пользователей.
⦁ Возможность проведения автоматизации тестирования мобильных приложений, что сокращает сроки каждой итерации.

Для проведения тестирования компания модератор краудтестинга опирается на разнообразные мобильные устройства, включая все современные модели планшетов и смартфонов, которыми владеют тестировщики со всех стран мира.

Обеспечение тестового покрытия

Тестовое покрытие представляет величину, выражающую процентное отношение функциональности, проверяемой тестами, к полной функциональности системы. Оценку тестового покрытия рекомендуется проводить при подготовке плана и методики испытаний, чтобы тестирование смогло обеспечить требуемый уровень тестового покрытия. Данный вид тестирования может проводиться как вручную, так и при автоматизированном тестировании.

Ключевые преимущества

⦁ Оценка тестового покрытия однозначно показывает процент покрытия функциональности тестами и является критерием их полноты: чем выше процент тестового покрытия, тем выше полнота.
⦁ Обеспечение наиболее полного тестового покрытия позволяет снизить количество дефектов  и повышает качество конечного продукта.

Основные задачи

При подготовке плана и методики испытаний для ручного и автоматизированного тестирования в зависимости от целей тестирования определяется требуемый уровень тестового покрытия. При тестировании рекомендуется использовать максимально достижимый уровень тестового покрытия, однако для снижения времени на подготовку и проведение тестов допускается использование неполного тестового покрытия.

Тестирование установки

Тестирование установки (инсталляционное тестирование) позволяет удостовериться в том, что ПО корректно устанавливается и настраивается, накат новых версий происходит без ошибок, а также есть возможность деинсталлировать и удалить данное ПО. Тестирование инсталляции необходимо проводить при создании ПО, после появления новой версии, а также при изменении конфигурации стенда.
Инсталляционное тестирование ПО рекомендуется проводить на разных платформах, ручным методом или с помощью автоматизации. На данный тип работ по тестированию влияют следующие факторы:
⦁ Какие платформы и операционные системы поддерживаются?
⦁ Каким образом будет распространяться программное обеспечение?
⦁ Кто будет устанавливать программное обеспечение?

Ключевые преимущества

Тестирование установки  позволяет избежать таких проблем при установке ПО в промышленную среду, как:
⦁ Невозможность установить ПО
⦁ Потеря данных после установки новой версии
⦁ Невозможность откатиться до предыдущей версии

В результате экономия денег и времени, существенное облегчение работы администраторов.
Основные задачи

Тестирование инсталляции проводится согласно плану установки ПО. Проверяется установка, настройка, обновление, откат версии и удаление ПО на всех заявленных платформах.

Тестирование удобства использования

Функциональное тестирование программного обеспечения

Тестирование удобства использования  проводится при создании нового ПО и его доработке. Главной целью такого тестирования является поиск решений наиболее дружелюбного интерфейса программы для уменьшения времени на решение задач пользователей.

Результатом тестирования удобства использования является ряд пожеланий по улучшению объекта тестирования, например, изменение расположения кнопок или добавление новых для быстрого выполнения какой-либо команды, заполнение значений по умолчанию, добавление горячих клавиш  и т.д.
Ключевые преимущества

Результаты тестирования удобства использования обеспечат положительные отзывы пользователей системы в будущем. Если система предназначена для регулярного использования, например, сотрудниками call-центра, операционистами в банке или продавцами-консультантами в магазине, эргономичность системы снизит их трудозатраты на выполнение  повседневных операций. Если система предназначена для обслуживания клиентов, например, интернет-магазин или  интернет-банк, удобство и простота системы оставят положительные воспоминания о работе с ней, что сохранит клиентов и привлечет новых.

Основные задачи

Задачей тестирования удобства использования является определение уровня  удобства и простоты решения задач пользователем, для выполнения которых продукт был создан.

В рамках данной задачи оценивается:

⦁ Сколько шагов нужно сделать для выполнения задачи?
⦁ Сколько времени требуется на выполнение задачи?
⦁ Сколько ошибок делает пользователь-новичок при выполнении задачи?
⦁ Какое впечатление осталось у пользователя от работы с программой?
⦁ Эмоции пользователя во время выполнения задачи.

Конфигурационное тестирование

Конфигурационное тестирование — это проверка работы программного обеспечения на различных программных и аппаратных окружениях. Данный вид тестирования применяется, если известно, что информационный продукт будет использоваться, например, на разных платформах, в различных браузерах, будет поддерживать разные версии драйверов.

Ключевые преимущества

⦁ Конфигурационное тестирование полностью имитирует фактическое использование системы.
⦁ Позволяет своевременно выявить системные ошибки ПО в работе под разными конфигурациями, и, таким образом, предотвратить проблемы при работе с ним.

Основные этапы конфигурационного тестирования

Подготовка — Составляется перечень конфигураций системы, при которых будет происходить тестирование. На практике часто невозможно описать всю совокупность конфигураций, при которых система будет использоваться. Поэтому проводится их приоритизация, и только самые важные конфигурации попадают в конечный список.
Проведение — Производится тестирование системы на выбранных конфигурациях.
Отчет – Компании клиенту предоставляется подробный отчет с перечнем дефектов и отклонений, обнаруженных в работе системы при каждом варианте конфигураций.

Software testing is the process of testing and verifying that a software product or application is doing what it is supposed to do. The benefits of testing include preventing distractions, reducing development costs, and improving performance. There are many different types of software testing, each with specific goals and strategies. Some of them are below:

  1. Acceptance Testing: Ensuring that the whole system works as intended.
  2. Integration Testing: Ensuring that software components or functions work together.
  3. Unit Testing: To ensure that each software unit is operating as expected. The unit is a testable component of the application.
  4. Functional Testing: Evaluating activities by imitating business conditions, based on operational requirements. Checking the black box is a common way to confirm tasks.
  5. Performance Testing: A test of how the software works under various operating loads. Load testing, for example, is used to assess performance under real-life load conditions.
  6. Re-Testing: To test whether new features are broken or degraded. Hygiene checks can be used to verify menus, functions, and commands at the highest level when there is no time for a full reversal test.

What is a Bug?

A malfunction in the software/system is an error that may cause components or the system to fail to perform its required functions. In other words, if an error is encountered during the test it can cause malfunction. For example, incorrect data description, statements, input data, design, etc.

Reasons Why Bugs Occur?

1. Lack of Communication: This is a key factor contributing to the development of software bug fixes. Thus, a lack of clarity in communication can lead to misunderstandings of what the software should or should not do. In many cases, the customer may not fully understand how the product should ultimately work. This is especially true if the software is designed for a completely new product. Such situations often lead to many misinterpretations from both sides.

2. Repeated Definitions Required: Constantly changing software requirements creates confusion and pressure in both software development and testing teams. Usually, adding a new feature or deleting an existing feature can be linked to other modules or software components. Observing such problems causes software interruptions.

3. Policy Framework Does Not Exist: Also, debugging a software component/software component may appear in a different or similar component. Lack of foresight can cause serious problems and increase the number of distractions. This is one of the biggest problems because of what interruptions occur as engineers are often under pressure related to timelines; constantly changing needs, increasing the number of distractions, etc. Addition, Design and redesign, UI integration, module integration, database management all add to the complexity of the software and the system as a whole.

4. Performance Errors: Significant problems with software design and architecture can cause problems for systems. Improved software tends to make mistakes as programmers can also make mistakes. As a test tester, data/announcement reference errors, control flow errors, parameter errors, input/output errors, etc.

5. Lots of Recycling: Resetting resources, redoing or discarding a finished work, changes in hardware/software requirements may also affect the software. Assigning a new developer to a project in the middle of nowhere can cause software interruptions. This can happen if proper coding standards are not followed, incorrect coding, inaccurate data transfer, etc. Discarding part of existing code may leave traces on other parts of the software; Ignoring or deleting that code may cause software interruptions. In addition, critical bugs can occur especially with large projects, as it becomes difficult to pinpoint the location of the problem.

Life Cycle of a Bug in Software Testing

Below are the steps in the lifecycle of the bug in software testing:

  1. Open: The editor begins the process of analyzing bugs here, where possible, and works to fix them. If the editor thinks the error is not enough, the error for some reason can be transferred to the next four regions, Reject or No, i.e. Repeat.
  2. New: This is the first stage of the distortion of distractions in the life cycle of the disorder. In the later stages of the bug’s life cycle, confirmation and testing are performed on these bugs when a new feature is discovered.
  3. Shared: The engineering team has been provided with a new bug fixer recently built at this level. This will be sent to the designer by the project leader or team manager.
  4. Pending Review: When fixing an error, the designer will give the inspector an error check and the feature status will remain pending ‘review’ until the tester is working on the error check.
  5. Fixed: If the Developer completes the debugging task by making the necessary changes, the feature status can be called “Fixed.”
  6. Confirmed: If the tester had no problem with the feature after the designer was given the feature on the test device and thought that if it was properly adjusted, the feature status was given “verified”.
  7. Open again / Reopen: If there is still an error, the editor will then be instructed to check and the feature status will be re-opened.
  8. Closed: If the error is not present, the tester changes the status of the feature to ‘Off’.
  9. Check Again: The inspector then begins the process of reviewing the error to check that the error has been corrected by the engineer as required.
  10. Repeat: If the engineer is considering a factor similar to another factor. If the developer considers a feature similar to another feature, or if the definition of malfunction coincides with any other malfunction, the status of the feature is changed by the developer to ‘duplicate’.

Few more stages to add here are:

  1. Rejected: If a feature can be considered a real factor the developer will mean “Rejected” developer.
  2. Duplicate: If the engineer finds a feature similar to any other feature or if the concept of the malfunction is similar to any other feature the status of the feature is changed to ‘Duplicate’ by the developer.
  3. Postponed: If the developer feels that the feature is not very important and can be corrected in the next release, however, in that case, he can change the status of the feature such as ‘Postponed’.
  4. Not a Bug: If the feature does not affect the performance of the application, the corrupt state is changed to “Not a Bug”.

Bug lifecycle

Fig 1.1 Diagram of Bug Life Cycle

Bug Report

  1. Defect/ Bug Name: A short headline describing the defect. It should be specific and accurate.
  2. Defect/Bug ID: Unique identification number for the defect.
  3. Defect Description: Detailed description of the bug including the information of the module in which it was detected. It contains a detailed summary including the severity, priority, expected results vs actual output, etc.
  4. Severity: This describes the impact of the defect on the application under test.
  5. Priority: This is related to how urgent it is to fix the defect. Priority can be High/ Medium/ Low based on the impact urgency at which the defect should be fixed.
  6. Reported By: Name/ ID of the tester who reported the bug.
  7. Reported On: Date when the defect is raised.
  8. Steps: These include detailed steps along with the screenshots with which the developer can reproduce the same defect.
  9. Status: New/ Open/ Active
  10. Fixed By: Name/ ID of the developer who fixed the defect.
  11. Data Closed: Date when the defect is closed.

Factors to be Considered while Reporting a Bug:

  1. The whole team should clearly understand the different conditions of the trauma before starting research on the life cycle of the disability.
  2. To prevent future confusion, a flawed life cycle should be well documented.
  3. Make sure everyone who has any work related to the Default Life Cycle understands his or her best results work very clearly.
  4. Everyone who changes the status quo should be aware of the situation which should provide sufficient information about the nature of the feature and the reason for it so that everyone working on that feature can easily see the reason for that feature.
  5. A feature tracking tool should be carefully handled in the course of a defective life cycle work to ensure consistency between errors.

Bug Tracking Tools

Below are some of the bug tracking tools–

1. KATALON TESTOPS: Katalon TestOps is a free, powerful orchestration platform that helps with your process of tracking bugs. TestOps provides testing teams and DevOps teams with a clear, linked picture of their testing, resources, and locations to launch the right test, in the right place, at the right time.

Features:

  • Applies to Cloud, Desktop: Window and Linux program.
  • Compatible with almost all test frames available: Jasmine, JUnit, Pytest, Mocha, etc .; CI / CD tools: Jenkins, CircleCI, and management platforms: Jira, Slack.
  • Track real-time data for error correction, and for accuracy.
  • Live and complete performance test reports to determine the cause of any problems.
  • Plan well with Smart Scheduling to prepare for the test cycle while maintaining high quality.
  • Rate release readiness to improve release confidence.
  • Improve collaboration and enhance transparency with comments, dashboards, KPI tracking, possible details – all in one place.

2. KUALITEE: Collection of specific results and analysis with solid failure analysis in any framework. The Kualitee is for development and QA teams look beyond the allocation and tracking of bugs. It allows you to build high-quality software using tiny bugs, fast QA cycles, and better control of your build. The comprehensive suite combines all the functions of a good error management tool and has a test case and flow of test work built into it seamlessly. You would not need to combine and match different tools; instead, you can manage all your tests in one place.

Features:

  • Create, assign, and track errors.
  • Tracing between disability, needs, and testing.
  • Easy-to-use errors, test cases, and test cycles.
  • Custom permissions, fields, and reporting.
  • Interactive and informative dashboard.
  • Integration of external companies and REST API.
  • An intuitive and easy-to-use interface.

3. QA Coverage: QACoverage is the place to go for successfully managing all your testing processes so that you can produce high-quality and trouble-free products. It has a disability control module that will allow you to manage errors from the first diagnostic phase until closed. The error tracking process can be customized and tailored to the needs of each client. In addition to negative tracking, QACoverage has the ability to track risks, issues, enhancements, suggestions, and recommendations. It also has full capabilities for complex test management solutions that include needs management, test case design, test case issuance, and reporting.

Features:

  1. Control the overall workflow of a variety of Tickets including risk, issues, tasks, and development management.
  2. Produce complete metrics to identify the causes and levels of difficulty.
  3. Support a variety of information that supports the feature with email attachments.
  4. Create and set up a workflow for enhanced test visibility with automatic notifications.
  5. Photo reports based on difficulty, importance, type of malfunction, disability category, expected correction date, and much more.

4. BUG HERD: BugHerd is an easy way to track bugs, collect and manage webpage responses. Your team and customers search for feedback on web pages, so they can find the exact problem. BugHerd also scans the information you need to replicate and resolve bugs quickly, such as browser, CSS selector data, operating system, and screenshot. Distractions and feedback, as well as technical information, are submitted to the Kanban Style Task Board, where distractions can be assigned and managed until they are eliminated. BugHerd can also integrate with your existing project management tools, helping to keep your team on the same page with bug fixes.

Software testing is the process of testing and verifying that a software product or application is doing what it is supposed to do. The benefits of testing include preventing distractions, reducing development costs, and improving performance. There are many different types of software testing, each with specific goals and strategies. Some of them are below:

  1. Acceptance Testing: Ensuring that the whole system works as intended.
  2. Integration Testing: Ensuring that software components or functions work together.
  3. Unit Testing: To ensure that each software unit is operating as expected. The unit is a testable component of the application.
  4. Functional Testing: Evaluating activities by imitating business conditions, based on operational requirements. Checking the black box is a common way to confirm tasks.
  5. Performance Testing: A test of how the software works under various operating loads. Load testing, for example, is used to assess performance under real-life load conditions.
  6. Re-Testing: To test whether new features are broken or degraded. Hygiene checks can be used to verify menus, functions, and commands at the highest level when there is no time for a full reversal test.

What is a Bug?

A malfunction in the software/system is an error that may cause components or the system to fail to perform its required functions. In other words, if an error is encountered during the test it can cause malfunction. For example, incorrect data description, statements, input data, design, etc.

Reasons Why Bugs Occur?

1. Lack of Communication: This is a key factor contributing to the development of software bug fixes. Thus, a lack of clarity in communication can lead to misunderstandings of what the software should or should not do. In many cases, the customer may not fully understand how the product should ultimately work. This is especially true if the software is designed for a completely new product. Such situations often lead to many misinterpretations from both sides.

2. Repeated Definitions Required: Constantly changing software requirements creates confusion and pressure in both software development and testing teams. Usually, adding a new feature or deleting an existing feature can be linked to other modules or software components. Observing such problems causes software interruptions.

3. Policy Framework Does Not Exist: Also, debugging a software component/software component may appear in a different or similar component. Lack of foresight can cause serious problems and increase the number of distractions. This is one of the biggest problems because of what interruptions occur as engineers are often under pressure related to timelines; constantly changing needs, increasing the number of distractions, etc. Addition, Design and redesign, UI integration, module integration, database management all add to the complexity of the software and the system as a whole.

4. Performance Errors: Significant problems with software design and architecture can cause problems for systems. Improved software tends to make mistakes as programmers can also make mistakes. As a test tester, data/announcement reference errors, control flow errors, parameter errors, input/output errors, etc.

5. Lots of Recycling: Resetting resources, redoing or discarding a finished work, changes in hardware/software requirements may also affect the software. Assigning a new developer to a project in the middle of nowhere can cause software interruptions. This can happen if proper coding standards are not followed, incorrect coding, inaccurate data transfer, etc. Discarding part of existing code may leave traces on other parts of the software; Ignoring or deleting that code may cause software interruptions. In addition, critical bugs can occur especially with large projects, as it becomes difficult to pinpoint the location of the problem.

Life Cycle of a Bug in Software Testing

Below are the steps in the lifecycle of the bug in software testing:

  1. Open: The editor begins the process of analyzing bugs here, where possible, and works to fix them. If the editor thinks the error is not enough, the error for some reason can be transferred to the next four regions, Reject or No, i.e. Repeat.
  2. New: This is the first stage of the distortion of distractions in the life cycle of the disorder. In the later stages of the bug’s life cycle, confirmation and testing are performed on these bugs when a new feature is discovered.
  3. Shared: The engineering team has been provided with a new bug fixer recently built at this level. This will be sent to the designer by the project leader or team manager.
  4. Pending Review: When fixing an error, the designer will give the inspector an error check and the feature status will remain pending ‘review’ until the tester is working on the error check.
  5. Fixed: If the Developer completes the debugging task by making the necessary changes, the feature status can be called “Fixed.”
  6. Confirmed: If the tester had no problem with the feature after the designer was given the feature on the test device and thought that if it was properly adjusted, the feature status was given “verified”.
  7. Open again / Reopen: If there is still an error, the editor will then be instructed to check and the feature status will be re-opened.
  8. Closed: If the error is not present, the tester changes the status of the feature to ‘Off’.
  9. Check Again: The inspector then begins the process of reviewing the error to check that the error has been corrected by the engineer as required.
  10. Repeat: If the engineer is considering a factor similar to another factor. If the developer considers a feature similar to another feature, or if the definition of malfunction coincides with any other malfunction, the status of the feature is changed by the developer to ‘duplicate’.

Few more stages to add here are:

  1. Rejected: If a feature can be considered a real factor the developer will mean “Rejected” developer.
  2. Duplicate: If the engineer finds a feature similar to any other feature or if the concept of the malfunction is similar to any other feature the status of the feature is changed to ‘Duplicate’ by the developer.
  3. Postponed: If the developer feels that the feature is not very important and can be corrected in the next release, however, in that case, he can change the status of the feature such as ‘Postponed’.
  4. Not a Bug: If the feature does not affect the performance of the application, the corrupt state is changed to “Not a Bug”.

Bug lifecycle

Fig 1.1 Diagram of Bug Life Cycle

Bug Report

  1. Defect/ Bug Name: A short headline describing the defect. It should be specific and accurate.
  2. Defect/Bug ID: Unique identification number for the defect.
  3. Defect Description: Detailed description of the bug including the information of the module in which it was detected. It contains a detailed summary including the severity, priority, expected results vs actual output, etc.
  4. Severity: This describes the impact of the defect on the application under test.
  5. Priority: This is related to how urgent it is to fix the defect. Priority can be High/ Medium/ Low based on the impact urgency at which the defect should be fixed.
  6. Reported By: Name/ ID of the tester who reported the bug.
  7. Reported On: Date when the defect is raised.
  8. Steps: These include detailed steps along with the screenshots with which the developer can reproduce the same defect.
  9. Status: New/ Open/ Active
  10. Fixed By: Name/ ID of the developer who fixed the defect.
  11. Data Closed: Date when the defect is closed.

Factors to be Considered while Reporting a Bug:

  1. The whole team should clearly understand the different conditions of the trauma before starting research on the life cycle of the disability.
  2. To prevent future confusion, a flawed life cycle should be well documented.
  3. Make sure everyone who has any work related to the Default Life Cycle understands his or her best results work very clearly.
  4. Everyone who changes the status quo should be aware of the situation which should provide sufficient information about the nature of the feature and the reason for it so that everyone working on that feature can easily see the reason for that feature.
  5. A feature tracking tool should be carefully handled in the course of a defective life cycle work to ensure consistency between errors.

Bug Tracking Tools

Below are some of the bug tracking tools–

1. KATALON TESTOPS: Katalon TestOps is a free, powerful orchestration platform that helps with your process of tracking bugs. TestOps provides testing teams and DevOps teams with a clear, linked picture of their testing, resources, and locations to launch the right test, in the right place, at the right time.

Features:

  • Applies to Cloud, Desktop: Window and Linux program.
  • Compatible with almost all test frames available: Jasmine, JUnit, Pytest, Mocha, etc .; CI / CD tools: Jenkins, CircleCI, and management platforms: Jira, Slack.
  • Track real-time data for error correction, and for accuracy.
  • Live and complete performance test reports to determine the cause of any problems.
  • Plan well with Smart Scheduling to prepare for the test cycle while maintaining high quality.
  • Rate release readiness to improve release confidence.
  • Improve collaboration and enhance transparency with comments, dashboards, KPI tracking, possible details – all in one place.

2. KUALITEE: Collection of specific results and analysis with solid failure analysis in any framework. The Kualitee is for development and QA teams look beyond the allocation and tracking of bugs. It allows you to build high-quality software using tiny bugs, fast QA cycles, and better control of your build. The comprehensive suite combines all the functions of a good error management tool and has a test case and flow of test work built into it seamlessly. You would not need to combine and match different tools; instead, you can manage all your tests in one place.

Features:

  • Create, assign, and track errors.
  • Tracing between disability, needs, and testing.
  • Easy-to-use errors, test cases, and test cycles.
  • Custom permissions, fields, and reporting.
  • Interactive and informative dashboard.
  • Integration of external companies and REST API.
  • An intuitive and easy-to-use interface.

3. QA Coverage: QACoverage is the place to go for successfully managing all your testing processes so that you can produce high-quality and trouble-free products. It has a disability control module that will allow you to manage errors from the first diagnostic phase until closed. The error tracking process can be customized and tailored to the needs of each client. In addition to negative tracking, QACoverage has the ability to track risks, issues, enhancements, suggestions, and recommendations. It also has full capabilities for complex test management solutions that include needs management, test case design, test case issuance, and reporting.

Features:

  1. Control the overall workflow of a variety of Tickets including risk, issues, tasks, and development management.
  2. Produce complete metrics to identify the causes and levels of difficulty.
  3. Support a variety of information that supports the feature with email attachments.
  4. Create and set up a workflow for enhanced test visibility with automatic notifications.
  5. Photo reports based on difficulty, importance, type of malfunction, disability category, expected correction date, and much more.

4. BUG HERD: BugHerd is an easy way to track bugs, collect and manage webpage responses. Your team and customers search for feedback on web pages, so they can find the exact problem. BugHerd also scans the information you need to replicate and resolve bugs quickly, such as browser, CSS selector data, operating system, and screenshot. Distractions and feedback, as well as technical information, are submitted to the Kanban Style Task Board, where distractions can be assigned and managed until they are eliminated. BugHerd can also integrate with your existing project management tools, helping to keep your team on the same page with bug fixes.

Дефекты программного обеспечения можно обнаружить на каждом этапе разработки и тестирования продукта. Чтобы гарантировать исправление наиболее серьезных дефектов программного обеспечения, тестировщикам важно иметь хорошее представление о различных типах дефектов, которые могут возникнуть.

20 ВИДОВ ПРОГРАММНЫХ ДЕФЕКТОВ, КОТОРЫЕ ДОЛЖЕН ЗНАТЬ КАЖДЫЙ ТЕСТЕР

В этой статье мы обсудим самые распространенные типы ПО дефекты и способы их выявления.

Что такое дефект?

Дефект программного обеспечения — это ошибка, изъян, сбой или неисправность в компьютерной программе, из-за которой она выдает неправильный или неожиданный результат или ведет себя непреднамеренным образом. Программная ошибка возникает, когда фактические результаты не совпадают с ожидаемыми. Разработчики и программисты иногда допускают ошибки, которые создают ошибки, называемые дефектами. Большинство ошибок возникает из-за ошибок, которые допускают разработчики или программисты.

Обязательно прочтите: Разница между дефектом, ошибкой, ошибкой и сбоем

Типы программных ошибок при тестировании программного обеспечения

Существует множество различных типов дефектов программного обеспечения, и тестировщикам важно знать наиболее распространенные из них, чтобы они могут эффективно тестировать их.

Ошибки программного обеспечения подразделяются на три типа:

  1. Дефекты программного обеспечения по своей природе
  2. Дефекты программного обеспечения по их приоритету
  3. Дефекты программного обеспечения по их серьезности

Обычно мы можем видеть приоритет и серьезность классификаторов в большинстве инструментов отслеживания ошибок. Если мы настроим классификатор в соответствии с характером ошибки, а также приоритетом и серьезностью, это поможет легко управлять распределением обязанностей по исправлению ошибок соответствующим командам.

#1. Дефекты программного обеспечения по своей природе

Ошибки в программном обеспечении имеют широкий спектр природы, каждая из которых имеет свой собственный набор симптомов. Несмотря на то, что таких багов много, сталкиваться с ними можно не часто. Вот наиболее распространенные ошибки программного обеспечения, классифицированные по характеру, с которыми вы, скорее всего, столкнетесь при тестировании программного обеспечения.

#1. Функциональные ошибки

Как следует из названия, функциональные ошибки — это те, которые вызывают сбои в работе программного обеспечения. Хорошим примером этого может служить кнопка, при нажатии на которую должно открываться новое окно, но вместо этого ничего не происходит.

Функциональные ошибки можно исправить, выполнив функциональное тестирование.

#2. Ошибки на уровне модуля

Ошибки на уровне модуля — это дефекты, связанные с функциональностью отдельного программного модуля. Программный модуль — это наименьшая тестируемая часть приложения. Примеры программных модулей включают классы, методы и процедуры. Ошибки на уровне подразделения могут существенно повлиять на общее качество программного обеспечения.

Ошибки на уровне модуля можно исправить, выполнив модульное тестирование.

#3. Ошибки уровня интеграции

Ошибки уровня интеграции — это дефекты, возникающие при объединении двух или более программных модулей. Эти дефекты может быть трудно найти и исправить, потому что они часто требуют координации между несколькими командами. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки интеграции можно исправить, выполнив интеграционное тестирование.

#4. Дефекты юзабилити

Ошибки юзабилити — это дефекты, влияющие на работу пользователя с программным обеспечением и затрудняющие его использование. Дефект юзабилити — это дефект пользовательского опыта программного обеспечения, который затрудняет его использование. Ошибки юзабилити — это такие ошибки, как если веб-сайт сложен для доступа или обойти, или процесс регистрации сложен для прохождения.

Во время тестирования удобства использования тестировщики программного обеспечения проверяют приложения на соответствие требованиям пользователей и Руководству по доступности веб-контента (WCAG) для выявления таких проблем. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки, связанные с удобством использования, можно исправить, выполнив тестирование удобства использования.

#5. Дефекты производительности

Ошибки производительности — это дефекты, влияющие на производительность программного обеспечения. Это может включать в себя такие вещи, как скорость программного обеспечения, объем используемой памяти или количество потребляемых ресурсов. Ошибки уровня производительности сложно отследить и исправить, поскольку они могут быть вызваны рядом различных факторов.

Ошибки юзабилити можно исправить, выполнив тестирование производительности.

#6. Дефекты безопасности

Ошибки безопасности — это тип дефекта программного обеспечения, который может иметь серьезные последствия, если его не устранить. Эти дефекты могут позволить злоумышленникам получить доступ к конфиденциальным данным или системам или даже позволить им получить контроль над уязвимым программным обеспечением. Таким образом, очень важно, чтобы ошибкам уровня безопасности уделялось первоочередное внимание и устранялись как можно скорее.

Ошибки безопасности можно исправить, выполнив тестирование безопасности.

#7. Дефекты совместимости

Дефекты совместимости — это те ошибки, которые возникают, когда приложение несовместимо с оборудованием, на котором оно работает, или с другим программным обеспечением, с которым оно должно взаимодействовать. Несовместимость программного и аппаратного обеспечения может привести к сбоям, потере данных и другому непредсказуемому поведению. Тестировщики должны знать о проблемах совместимости и проводить соответствующие тесты. Программное приложение, имеющее проблемы с совместимостью, не работает последовательно на различных видах оборудования, операционных системах, веб-браузерах и устройствах при подключении к определенным программам или работе в определенных сетевых условиях.

Ошибки совместимости можно исправить, выполнение тестирования совместимости.

#8. Синтаксические ошибки

Синтаксические ошибки являются самым основным типом дефекта. Они возникают, когда код нарушает правила языка программирования. Например, использование неправильной пунктуации или забывание закрыть скобку может привести к синтаксической ошибке. Синтаксические ошибки обычно мешают запуску кода, поэтому их относительно легко обнаружить и исправить.

#9. Логические ошибки

Логические ошибки — это дефекты, из-за которых программа выдает неправильные результаты. Эти ошибки может быть трудно найти и исправить, потому что они часто не приводят к каким-либо видимым ошибкам. Логические ошибки могут возникать в любом типе программного обеспечения, но они особенно распространены в приложениях, требующих сложных вычислений или принятия решений.

Общие симптомы логических ошибок включают:

  • Неверные результаты или выходные данные
  • Неожиданное поведение
  • Сбой или зависание программного обеспечения

Чтобы найти и исправить логические ошибки, тестировщикам необходимо иметь четкое представление о коде программы и о том, как она должна работать. Часто лучший способ найти такие ошибки — использовать инструменты отладки или пошаговое выполнение, чтобы отслеживать выполнение программы и видеть, где что-то идет не так.

#2. Дефекты программного обеспечения по степени серьезности

Уровень серьезности присваивается дефекту по его влиянию. В результате серьезность проблемы отражает степень ее влияния на функциональность или работу программного продукта. Дефекты серьезности классифицируются как критические, серьезные, средние и незначительные в зависимости от степени серьезности.

#1. Критические дефекты

Критический дефект — это программная ошибка, имеющая серьезные или катастрофические последствия для работы приложения. Критические дефекты могут привести к сбою, зависанию или некорректной работе приложения. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение критическим дефектам, поскольку их необходимо исправить как можно скорее.

#2. Серьезные дефекты

Серьезный дефект — это программная ошибка, существенно влияющая на работу приложения. Серьезные дефекты могут привести к замедлению работы приложения или другому неожиданному поведению. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение серьезным дефектам, поскольку их необходимо исправить как можно скорее.

#3. Незначительные дефекты

Незначительный дефект — это программная ошибка, которая оказывает небольшое или незначительное влияние на работу приложения. Незначительные дефекты могут привести к тому, что приложение будет работать немного медленнее или демонстрировать другое неожиданное поведение. Разработчики и тестировщики часто не придают незначительным дефектам приоритет, потому что их можно исправить позже.

#4. Тривиальные дефекты

Тривиальный дефект – это программная ошибка, не влияющая на работу приложения. Тривиальные дефекты могут привести к тому, что приложение отобразит сообщение об ошибке или проявит другое неожиданное поведение. Разработчики и тестировщики часто присваивают тривиальным дефектам самый низкий приоритет, потому что они могут быть исправлены позже.

#3. Дефекты программного обеспечения по приоритету

#1. Дефекты с низким приоритетом

Дефекты с низким приоритетом, как правило, не оказывают серьезного влияния на работу программного обеспечения и могут быть отложены для исправления в следующей версии или выпуске. В эту категорию попадают косметические ошибки, такие как орфографические ошибки, неправильное выравнивание и т. д.

#2. Дефекты со средним приоритетом

Дефекты со средним приоритетом — это ошибки, которые могут быть исправлены после предстоящего выпуска или в следующем выпуске. Приложение, возвращающее ожидаемый результат, которое, однако, неправильно форматируется в конкретном браузере, является примером дефекта со средним приоритетом.

#3. Дефекты с высоким приоритетом

Как следует из названия, дефекты с высоким приоритетом — это те, которые сильно влияют на функционирование программного обеспечения. В большинстве случаев эти дефекты необходимо исправлять немедленно, так как они могут привести к серьезным нарушениям нормального рабочего процесса. Дефекты с высоким приоритетом обычно классифицируются как непреодолимые, так как они могут помешать пользователю продолжить выполнение поставленной задачи.

Некоторые распространенные примеры дефектов с высоким приоритетом включают:

  • Дефекты, из-за которых приложение не работает. сбой
  • Дефекты, препятствующие выполнению задачи пользователем
  • Дефекты, приводящие к потере или повреждению данных
  • Дефекты, раскрывающие конфиденциальную информацию неавторизованным пользователям
  • Дефекты, делающие возможным несанкционированный доступ к системе
  • Дефекты, приводящие к потере функциональности
  • Дефекты, приводящие к неправильным результатам или неточным данным
  • Дефекты, вызывающие проблемы с производительностью, такие как чрезмерное использование памяти или медленное время отклика

#4. Срочные дефекты

Срочные дефекты — это дефекты, которые необходимо устранить в течение 24 часов после сообщения о них. В эту категорию попадают дефекты со статусом критической серьезности. Однако дефекты с низким уровнем серьезности также могут быть классифицированы как высокоприоритетные. Например, опечатка в названии компании на домашней странице приложения не оказывает технического влияния на программное обеспечение, но оказывает существенное влияние на бизнес, поэтому считается срочной.

#4. Дополнительные дефекты

#1. Отсутствующие дефекты

Отсутствующие дефекты возникают из-за требований, которые не были включены в продукт. Они также считаются несоответствиями спецификации проекта и обычно негативно сказываются на пользовательском опыте или качестве программного обеспечения.

#2. Неправильные дефекты

Неправильные дефекты — это те дефекты, которые удовлетворяют требованиям, но не должным образом. Это означает, что хотя функциональность достигается в соответствии с требованиями, но не соответствует ожиданиям пользователя.

#3. Дефекты регрессии

Дефект регрессии возникает, когда изменение кода вызывает непреднамеренное воздействие на независимую часть программного обеспечения.

Часто задаваемые вопросы — Типы программных ошибок< /h2>

Почему так важна правильная классификация дефектов?

Правильная классификация дефектов важна, поскольку она помогает эффективно использовать ресурсы и управлять ими, правильно приоритизировать дефекты и поддерживать качество программного продукта.

Команды тестирования программного обеспечения в различных организациях используют различные инструменты отслеживания дефектов, такие как Jira, для отслеживания дефектов и управления ими. Несмотря на то, что в этих инструментах есть несколько вариантов классификации дефектов по умолчанию, они не всегда могут наилучшим образом соответствовать конкретным потребностям организации.

Следовательно, важно сначала определить и понять типы дефектов программного обеспечения, которые наиболее важны для организации, а затем соответствующим образом настроить инструмент управления дефектами.

Правильная классификация дефектов также гарантирует, что команда разработчиков сможет сосредоточиться на критических дефектах и ​​исправить их до того, как они повлияют на конечных пользователей.

Кроме того, это также помогает определить потенциальные области улучшения в процессе разработки программного обеспечения, что может помочь предотвратить появление подобных дефектов в будущих выпусках.

Таким образом, отслеживание и устранение дефектов программного обеспечения может показаться утомительной и трудоемкой задачей. , правильное выполнение может существенно повлиять на качество конечного продукта.

Как найти лежащие в основе ошибки программного обеспечения?

Определение основной причины программной ошибки может быть сложной задачей даже для опытных разработчиков. Чтобы найти лежащие в основе программные ошибки, тестировщики должны применять систематический подход. В этот процесс входят различные этапы:

1) Репликация. Первым этапом является воспроизведение ошибки. Это включает в себя попытку воспроизвести тот же набор шагов, в котором возникла ошибка. Это поможет проверить, является ли ошибка реальной или нет.
2) Изоляция. После того, как ошибка воспроизведена, следующим шагом будет попытка ее изоляции. Это включает в себя выяснение того, что именно вызывает ошибку. Для этого тестировщики должны задать себе несколько вопросов, например:
– Какие входные данные вызывают ошибку?
– При каких различных условиях возникает ошибка?
– Каковы различные способы проявления ошибки?
3) Анализ: после Изолируя ошибку, следующим шагом будет ее анализ. Это включает в себя понимание того, почему возникает ошибка. Тестировщики должны задать себе несколько вопросов, таких как:
– Какова основная причина ошибки?
– Какими способами можно исправить ошибку?
– Какое исправление было бы наиболее эффективным? эффективно?
4) Отчет. После анализа ошибки следующим шагом является сообщение о ней. Это включает в себя создание отчета об ошибке, который включает всю соответствующую информацию об ошибке. Отчет должен быть четким и кратким, чтобы разработчики могли его легко понять.
5) Проверка. После сообщения об ошибке следующим шагом является проверка того, была ли она исправлена. Это включает в себя повторное тестирование программного обеспечения, чтобы убедиться, что ошибка все еще существует. Если ошибка исправлена, то тестер может подтвердить это и закрыть отчет об ошибке. Если ошибка все еще существует, тестировщик может повторно открыть отчет об ошибке.

Заключение

В индустрии программного обеспечения дефекты — неизбежная реальность. Однако благодаря тщательному анализу и пониманию их характера, серьезности и приоритета дефектами можно управлять, чтобы свести к минимуму их влияние на конечный продукт.

Задавая правильные вопросы и применяя правильные методы, тестировщики могут помочь обеспечить чтобы дефекты обнаруживались и исправлялись как можно раньше в процессе разработки.
TAG: qa

Привет, Вы узнаете про виды ошибок программного обеспечения, Разберем основные ее виды и особенности использования. Еще будет много подробных примеров и описаний. Для того чтобы лучше понимать что такое
виды ошибок программного обеспечения, принципы отладки , настоятельно рекомендую прочитать все из категории Качество и тестирование программного обеспечения. Quality Assurance..

1. Отладка программы

Отладка, как мы уже говорили, бывает двух видов:
Синтаксическая отладка. Синтаксические ошибки выявляет компилятор, поэтому исправлять их достаточно легко.
Семантическая (смысловая) отладка. Ее время наступает тогда, когда синтаксических ошибок не осталось, но результаты программа выдает неверные. Здесь компилятор сам ничего выявить не сможет, хотя в среде программирования обычно существуют вспомогательные средства отладки, о которых мы еще поговорим.
Отладка — это процесс локализации и исправления ошибок в программе.

Как бы тщательно мы ни писали, отладка почти всегда занимает больше времени, чем программирование.

2. Локализация ошибок

Локализация — это нахождение места ошибки в программе.

В процессе поиска ошибки мы обычно выполняем одни и те же действия:

  • прогоняем программу и получаем результаты;
  • сверяем результаты с эталонными и анализируем несоответствие;
  • выявляем наличие ошибки, выдвигаем гипотезу о ее характере и месте в программе;
  • проверяем текст программы, исправляем ошибку, если мы нашли ее правильно.

Способы обнаружения ошибки:

  • Аналитический — имея достаточное представление о структуре программы, просматриваем ее текст вручную, без прогона.
  • Экспериментальный — прогоняем программу, используя отладочную печать и средства трассировки, и анализируем результаты ее работы.

Оба способа по-своему удобны и обычно используются совместно.

3.
принципы отладки

Принципы локализации ошибок:

  • Большинство ошибок обнаруживается вообще без запуска программы — просто внимательным просматриванием текста.
  • Если отладка зашла в тупик и обнаружить ошибку не удается, лучше отложить программу. Когда глаз «замылен», эффективность работы упорно стремится к нулю.
  • Чрезвычайно удобные вспомогательные средства — это отладочные механизмы среды разработки: трассировка, промежуточный контроль значений. Можно использовать даже дамп памяти, но такие радикальные действия нужны крайне редко.
  • Экспериментирования типа «а что будет, если изменить плюс на минус» — нужно избегать всеми силами. Обычно это не дает результатов, а только больше запутывает процесс отладки, да еще и добавляет новые ошибки.

Принципы исправления ошибок еще больше похожи на законы Мерфи:

  • Там, где найдена одна ошибка, возможно, есть и другие.
  • Вероятность, что ошибка найдена правильно, никогда не равна ста процентам.
  • Наша задача — найти саму ошибку, а не ее симптом.

Это утверждение хочется пояснить. Если программа упорно выдает результат 0,1 вместо эталонного нуля, простым округлением вопрос не решить. Если результат получается отрицательным вместо эталонного положительного, бесполезно брать его по модулю — мы получим вместо решения задачи ерунду с подгонкой.
Исправляя одну ошибку, очень легко внести в программу еще парочку. «Наведенные» ошибки — настоящий бич отладки.
Исправление ошибок зачастую вынуждает нас возвращаться на этап составления программы. Это неприятно, но порой неизбежно.

4. Методы отладки

Силовые методы

  • — Использование дампа (распечатки) памяти.Это интересно с познавательной точки зрения: можно досконально разобраться в машинных процессах. Иногда такой подход даже необходим — например, когда речь идет о выделении и высвобождении памяти под динамические переменные с использованием недокументированных возможностей языка. Однако, в большинстве случаев мы получаем огромное количество низкоуровневой информации, разбираться с которой — не пожелаешь и врагу, а результативность поиска — исчезающе низка.
  • — Использование отладочной печати в тексте программы — произвольно и в большом количестве.Получать информацию о выполнении каждого оператора тоже небезынтересно. Но здесь мы снова сталкиваемся со слишком большими объемами информации. Кроме того, мы здорово захламляем программу добавочными операторами, получая малочитабельный текст, да еще рискуем внести десяток новых ошибок.
  • — Использование автоматических средств отладки — трассировки с отслеживанием промежуточных значений переменых.Пожалуй, это самый распространенный способ отладки. Не нужно только забывать, что это только один из способов, и применять всегда и везде только его — часто невыгодно.

Сложности возникают, когда приходится отслеживать слишком большие структуры данных или огромное их число. Еще проблематичнее трассировать проект, где выполнение каждой подпрограммы приводит к вызову пары десятков других. Но для небольших программ трассировки вполне достаточно.

С точки зрения «правильного» программирования силовые методы плохи тем, что не поощряют анализ задачи.

Суммируя свойства силовых методов, получаем практические советы:
— использовать трассировку и отслеживание значений переменных для небольших проектов, отдельных подпрограмм;
— использовать отладочную печать в небольших количества и «по делу»;
— оставить дамп памяти на самый крайний случай.

Метод индукции — анализ программы от частного к общему.
Просматриваем симптомы ошибки и определяем данные, которые имеют к ней хоть какое-то отношение. Затем, используя тесты, исключаем маловероятные гипотезы, пока не остается одна, которую мы пытаемся уточнить и доказать.
Метод дедукции — от общего к частному.
Выдвигаем гипотезу, которая может объяснить ошибку, пусть и не полностью. Затем при помощи тестов эта гипотеза проверяется и доказывается.
Обратное движение по алгоритму.
Отладка начинается там, где впервые встретился неправильный результат. Затем работа программы прослеживается (мысленно или при помощи тестов) в обратном порядке, пока не будет обнаружено место возможной ошибки.
Метод тестирования.

Давайте рассмотрим процесс локализации ошибки на конкретном примере. Пусть дана небольшая программа, которая выдает значение максимального из трех введенных пользователем чисел.

var
a, b, c: real;
begin
writeln('Программа находит значение максимального из трех введенных чисел');
write('Введите первое число '); readln(a);
write('Введите второе число '); readln(b);
write('Введите третье число '); readln(c);
if (a>b)and(a>c) then
writeln('Наибольшим оказалось первое число ',a:8:2)
else if (b>a)and(a>c) then
writeln('Наибольшим оказалось второе число ',b:8:2)
else
writeln('Наибольшим оказалось третье число ',b:8:2);
end.

Обе выделенные ошибки можно обнаружить невооруженным глазом: первая явно допущена по невнимательности, вторая — из-за того, что скопированную строку не исправили.

Тестовые наборы данных должны учитывать все варианты решения, поэтому выберем следующие наборы чисел:

Данные Ожидаемый результат
a=10; b=-4; c=1 max=a=10
a=-2; b=8; c=4 max=b=8
a=90; b=0; c=90.4 max=c=90.4

В результате выполнения программы мы, однако, получим следующие результаты:
Для a=10; b=-4; c=1:

Наибольшим оказалось первое число 10.00

Для a=-2; b=8; c=4: < pre class=»list»>Наибольшим оказалось третье число 8.00Для a=90; b=0; c=90.4:

Наибольшим оказалось третье число 0.00

Вывод во втором и третьем случаях явно неверен. Будем разбираться.

1. Трассировка и промежуточная наблюдение за переменными

Добавляем промежуточную печать или наблюдение за переменными:

  • — вывод a, b, c после ввода (проверяем, правильно ли получили данные)
  • — вывод значения каждого из условий (проверяем, правильно ли записали условия)

Листинг программы существенно увеличился и стал вот таким:

var
a, b, c: real;
begin
writeln(‘Программа находит значение максимального из трех введенных чисел’);
write(‘Введите первое число ‘); readln(a);
writeln(‘Вы ввели число ‘,a:8:2); {отл.печать}
write(‘Введите второе число ‘); readln(b);
writeln(‘Вы ввели число ‘,b:8:2); {отл.печать}
write(‘Введите третье число ‘); readln(c);
writeln(‘Вы ввели число ‘,c:8:2); {отл.печать}
writeln(‘a>b=’,a>b,’, a>c=’,a>c,’, (a>b)and(a>c)=’,(a>b)and(a>c)); {отл.печать}
if (a>b)and(a>c) then
writeln(‘Наибольшим оказалось первое число ‘,a:8:2)
else begin
writeln(‘b>a=’,b>a,’, b>c=’,b>c,’, (b>a)and(b>c)=’,(b>a)and(b>c)); {отл.печать}
if (b>a)and(a>c) then
writeln(‘Наибольшим оказалось второе число ‘,b:8:2)
else
writeln(‘Наибольшим оказалось третье число ‘,b:8:2);
end;
end.

В принципе, еще при наборе у нас неплохой шанс отловить ошибку в условии: подобные кусочки кода обычно не перебиваются, а копируются, и если дать себе труд слегка при этом задуматься, ошибку найти легко.

Но давайте считать, что глаз «замылен» совершенно, и найти ошибку не удалось.

Вывод для второго случая получается следующим:

Программа находит значение максимального из трех введенных чисел
Введите первое число -2
Вы ввели число -2.00
Введите второе число 8
Вы ввели число 8.00
Введите третье число 4
Вы ввели число 4.00
a>b=FALSE, a>c=FALSE, (a>b)and(a>c)=FALSE
b>a=TRUE, b>c=TRUE, (b>a)and(b>c)=TRUE
Наибольшим оказалось третье число 8.00

Со вводом все в порядке . Об этом говорит сайт https://intellect.icu . Впрочем, в этом сомнений и так было немного. А вот что касается второй группы операторов печати, то картина вышла интересная: в результате выводится верное число (8.00), но неправильное слово («третье», а не «второе»).

Вероятно, проблемы в выводе результатов. Тщательно проверяем текст и обнаруживаем, что действительно в последнем случае выводится не c, а b. Однако к решению текущей проблемы это не относится: исправив ошибку, мы получаем для чисел -2.0, 8.0, 4.0 следующий результат.

Наибольшим оказалось третье число 4.00

Теперь ошибка локализована до расчетного блока и, после некоторых усилий, мы ее находим и исправляем.

2. Метод индукции

Судя по результатам, ошибка возникает, когда максимальное число — второе или третье (если максимальное — первое, то определяется оно правильно, для доказательства можно програть еще два-три теста).

Просматриваем все, относящееся к переменным b и с. Со вводом никаких проблем не замечено, а что касается вывода — то мы быстро натыкаемся на замену b на с. Исправляем.

Как видно, невыявленные ошибки в программе остаются. Просматриваем расчетный блок: все, что относится к максимальному b (максимум с получается «в противном случае»), и обнаруживаем пресловутую проблему «a>c» вместо «b>c». Программа отлажена.

3. Метод дедукции

Неверные результаты в нашем случае могут получиться из-за ошибки в:

  • — вводе данных;
  • — расчетном блоке;
  • — собственно выводе.

Для доказательства мы можем пользоваться отладочной печатью, трассировкой или просто набором тестов. В любом случае мы выявляем одну ошибку в расчете и одну в выводе.

4. Обратное движение по алгоритму

Зная, что ошибка возникает при выводе результатов, рассматриваем код, начиная с операторов вывода. Сразу же находим лишнюю b в операторе writeln.

Далее, смотрим по конкретной ветке условного оператора, откуда взялся результат. Для значений -2.0, 8.0, 4.0 расчет идет по ветке с условием if (b>a)and(a>c) then… где мы тут же обнаруживаем искомую ошибку.

5. Тестирование

В нашей задаче для самого полного набора данных нужно выбрать такие переменные, что
a > b > c
a > c > b
b > a > c
b > c > a
c > a > b
c > b > a

Анализируя получившиеся в каждом из этих случаев результаты, мы приходим к тому, что проблемы возникают при b>c>a и с — максимальном. Зная эти подробности, мы можем заострить внимание на конкретных участках программы.

Конечно, в реальной работе мы не расписываем так занудно каждый шаг, не прибегаем исключительно к одной методике, да и вообще частенько не задумываемся, каким образом искать ляпы. Теперь, когда мы разобрались со всеми подходами, каждый волен выбрать те из них, которые кажутся самыми удобными.

5. Средства отладки

Помимо методик, хорошо бы иметь представление о средствах, которые помогают нам выявлять ошибки. Это:

1) Аварийная печать — вывод сообщений о ненормальном завершении отдельных блоков и всей программы в целом.

2) Печать в узлах программы — вывод промежуточных значений параметров в местах, выбранных программистом. Обычно, это критичные участки алгоритма (например, значение, от которого зависит дальнейший ход выполнения) или составные части сложных формул (отдельно просчитать и вывести числитель и знаменатель большой дроби).

3) Непосредственное слежение:

  • — арифметическое (за тем, чему равны, когда и как изменяются выбранные переменные),
  • — логическое (когда и как выполняется выбранная последовательность операторов),
  • — контроль выхода индексов за допустимые пределы,
  • — отслеживание обращений к переменным,
  • — отслеживание обращений к подпрограммам,
  • — проверка значений индексов элементов массивов и т.д.

Нынешние среды разработки часто предлагают нам реагировать на возникающую проблему в диалоговом режиме. При этом можно:

  • — просмотреть текущие значения переменных, состояние памяти, участок алгоритма, где произошел сбой;
  • — прервать выполнение программы;
  • — внести в программу изменения и повторно запустить ее (в компиляторных средах для этого потребуется перекомпилировать код, в интерпретаторных выполнение можно продолжить прямо с измененного оператора).

Виды ошибок и основные принципы отладки программного обеспеченияРис Пример отладки приложения

6. Классификация ошибок

Ошибки в программах могут допускаться от самого начального этапа составления алгоритма решения задачи до окончательного оформления программы. Разновидностей ошибок достаточно много. Рассмотрим некоторые группы ошибок и соответствующие примеры:

Виды ошибок и основные принципы отладки программного обеспечения

Если вы удручены тем, что насажали в текст программы глупых ошибок — не расстраивайтесь. Ошибки вообще не бывают умными, хотя и могут относиться к самым разным частям кода:

  • — ошибки обращения к данным,
  • — ошибки описания данных,
  • — ошибки вычислений,
  • — ошибки при сравнении,
  • — ошибки в передаче управления,
  • — ошибки ввода-вывода,
  • — ошибки интерфейса,
  • и т д

Виды ошибок и основные принципы отладки программного обеспечения

Классификация ошибок по этапу обработки программы

Виды ошибок и основные принципы отладки программного обеспечения

рис Классификация ошибок этапа выполнения по возможным причинам

Синтаксические ошибки

Синтаксические ошибки зачастую выявляют уже на этапе трансляции. К сожалению, многие ошибки других видов транслятор выявить не в силах, т.к. ему не известен задуманный или требуемый результат работы программы. Отсутствие сообщений транслятора о наличии синтаксических ошибок является необходимым условием правильности программы, но не может свидетельствовать о том, что она даст правильный результат.

Примеры синтаксических ошибок :

  • отсутствие знака пунктуации;
  • несоответствие количества открывающих и закрывающих скобок;
  • неправильно сформированный оператор;
  • неправильная запись имени переменной;
  • ошибка в написании служебных слов;
  • отсутствие условия окончания цикла;
  • отсутствие описания массивов и т.п.

Ошибки, которые не обнаруживает транслятор

В случае правильного написания операторов в программе может присутствовать большое количество ошибок, которые транслятор не может обнаружить. Рассмотрим примеры таких ошибок:

Логические ошибки: после проверки заданного условия неправильно указана ветвь алгоритма; неполный перечень возможных условий при решении задачи; один или более блоков алгоритма в программе пропущен.

Ошибки в циклах: неправильно указано начало цикла; неправильно указаны условия окончания цикла; неправильно указано количество повторений цикла; использование бесконечного цикла.

Ошибки ввода-вывода; ошибки при работе с данными: неправильно задан тип данных; организовано считывание меньшего или большего объема данных, чем нужно; неправильно отредактированы данные.

Ошибки в использовании переменных: используются переменных, для которых не указаны начальные значения; ошибочно указана одна переменная вместо другой. Ошибки при работе с массивами: пропущено предварительное обнуление массивов; неправильное описание массивов; индексы массивов следуют в ошибочном порядке.

ошибки безопасности, умышленные и не умышленные уязвимости в системе, открытость к отказам в обслуживании. несанкционированном доступе. екхолы

Ошибки в арифметических операциях: неправильное использование типа переменной (например, для сохранения результата деления используется целочисленная переменная); неправильно определен порядок действий; выполняется деление на нуль; при расчете выполняется попытка извлечения квадратного корня из отрицательного числа; не учитываются значащие разряды числа.

ошибки в архитектуре приложения пприводящие к увеличени технического долга

Методы (пути) снижение ошибок в программировании

  • использование тестиования
  • использование более простых решений
  • использование систем с наименьшим числом составлящих
  • использование ранее использованных и проверенных компонентов
  • использование более квалифицрованных специалистов

7. Советы отладчику

1) Проверяйте тщательнее: ошибка скорее всего находится не в том месте, в котором кажется.

2) Часто оказывается легче выделить те места программы, ошибок в которых нет, а затем уже искать в остальных.

3) Тщательнее следить за объявлениями констант, типов и переменных, входными данными.

4) При последовательной разработке приходится особенно аккуратно писать драйверы и заглушки — они сами могут быть источником ошибок.

5) Анализировать код, начиная с самых простых вариантов. Чаще всего встречаются ошибки:
— значения входных аргументов принимаются не в том порядке,
— переменная не проинициализирована,
— при повторном прохождении модуля, перемен ная повторно не инициализируется,
— вместо предполагаемого полного копирования структуры данных, копируется только верхний уровень (например, вместо создания новой динамической переменной и присваивания ей нужного значения, адрес тупо копируется из уже существующей переменной),
— скобки в сложном выражении расставлены неправильно.

6) При упорной длительной отладке глаз «замыливается». Хороший прием — обратиться за помощью к другому лицу, чтобы не повторять ошибочных рассуждений. Правда, частенько остается проблемой убедить это другое лицо помочь вам.

7) Ошибка, скорее всего окажется вашей и будет находиться в тексте программы. Гораздо реже она оказывается:

  • в компиляторе,
  • операционной системе,
  • аппаратной части,
  • электропроводке в здании и т.д.

Но если вы совершенно уверены, что в программе ошибок нет, просмотрите стандартные модули, к которым она обращается, выясните, не менялась ли версия среды разработки, в конце концов, просто перегрузите компьютер — некоторые проблемы (особенно в DOS-средах, запускаемых из-под Windows) возникают из-за некорректной работы с памятью.

8) Убедитесь, что исходный текст программы соответствует скомпилированному объектному коду (текст может быть изменен, а запускаемый модуль, который вы тестируете — скомпилирован еще из старого варианта).

9) Навязчивый поиск одной ошибки почти всегда непродуктивен. Не получается — отложите задачу, возьмитесь за написание следующего модуля, на худой конец займитесь документированием.

10) Старайтесь не жалеть времени, чтобы уясненить причину ошибки. Это поможет вам:
исправить программу,
обнаружить другие ошибки того же типа,
не делать их в дальнейшем.

11) Если вы уже знаете симптомы ошибки, иногда полезно не исправлять ее сразу, а на фоне известного поведения программы поискать другие ляпы.

12) Самые труднообнаруживаемые ошибки — наведенные, то есть те, что были внесены в код при исправлении других.

8. Тестирование

Тестирование — это выполнение программы для набора проверочных входных значений и сравнение полученных результатов с ожидаемыми.

Цель тестирования — проверка и доказательство правильности работы программы. В противном случае — выявление того, что в ней есть ошибки. Тестирование само не показывает местонахождение ошибки и не указывает на ее причины.
Принципы тестирования.

1) Тест — просчитанный вручную пример выполнения программы от исходных данных до ожидаемых результатов расчета. Эти результаты считаются эталонными.
Полномаршрутным будет такое тестирование, при котором каждый линейный участок программы будет пройден хотя бы при выполнении одного теста.

2) При прогоне программы по тестовым начальным данным, полученные результаты нужно сверить с эталонными и проанализировать разницу, если она есть.

3) При разработке тестов нужно учитывать не только правильные, но и неверные исходные данные.

4) Мы должны проверить программу на нежелательные побочные эффекты при задании некоторых исходных данных (деление на ноль, попытка считывания из несуществующего файла и т.д.).

5) Тестирование нужно планировать: заранее выбрать, что мы контролируем и как это сделать лучше. Обычно тесты планируются на этапе алгоритмизации или выбора численного метода решения. Причем, составляя тесты, мы предполагаем, что ошибки в программе есть.

6) Чем больше ошибок в коде мы уже нашли, тем больше вероятность, что мы обнаружим еще не найденные.
Хорошим называют тест, который с большой вероятностью должен обнаруживать ошибки, а удачным — тот, который их обнаружил.

9. Проектирование тестов

Тесты просчитываются вручную, значит, они должны быть достаточно просты для этого.
Тесты должны проверять каждую ветку алгоритма. По возможности, конечно. Так что количество и сложность тестов зависит от сложности программы.
Тесты составляются до кодирования и отладки: во время разработки алгоритма или даже составления математической модели.
Обычно для экономии времени сначала пропускают более простые тесты, а затем более сложные.

Давайте рассмотрим задачу: нужно проверить, попадает ли введенное число в заданный пользователем диапазон.

program Example;
(******************************************************
* Задача: проверить, попадает ли введенное число в *
* заданный пользователем диапазон *
******************************************************)

var
min, max, A, tmp: real;
begin
writeln(‘Программа проверяет, попадают ли введенные пользователем’);
writeln(‘значения в заданный диапазон’);
writeln;
writeln(‘Введите нижнюю границу диапазона ‘); readln(min);
writeln(‘Введите верхнюю границу диапазона ‘); readln(max);
if min>max then begin
writeln(‘Вы перепутали диапазоны, и я их поменяю’);
tmp:=min;
min:=max;
max:=tmp;
end;
repeat
writeln(‘Введите число для проверки (0 — конец работы) ‘); readln(A);
if (A>=min)and(A<=max) then
writeln(‘Число ‘,A,’ попадает в диапазон [‘,min,’..’,max,’]’)
else
writeln(‘Число ‘,A,’ не попадает в диапазон [‘,min,’..’,max,’]’);
until A=0;
writeln;
end.

Если исходить из алгоритма программы, мы должны составить следующие тесты:
ввод границ диапазона
— min< max
— min>max
ввод числа
— A < min (A<>0)
— A > max (A<>0)
— min <= A <= max (A<>0)
— A=0

Как видите, программа очень мала, а тестов для проверки всех ветвей ее алгоритма, требуется довольно много.

10. Стратегии тестирования

1) Тестирование программы как «черного ящика».

Мы знаем только о том, что делает программа, но даже не задумываемся о ее внутренней структуре. Задаем набор входных данных, получаем результаты, сверяем с эталонными.

При этом обнаружить все ошибки мы можем только если составили тесты для всех возможных наборов данных. Естественно, это противоречит экономическим принципам, да и просто достаточно глупо.

«Черным ящиком» удобно тестировать небольшие подпрограммы.
2) Тестирование программы как «белого ящика».

Здесь перед составлением теста мы изучаем логику программы, ее внутреннюю структуру. Тестирование будет считаться удачным, если проверяет программу по всем направлениям. Однако, как мы уже говорили, это требует огромного количества тестов.

На практике мы, как всегда, совместно используем оба принципа.
3) Тестирование программ модульной структуры.

Мы снова возвращаемся к вопросу о структурном программировании. Если вы помните, программы строятся из модулей не в последнюю очередь для того, чтобы их легко было отлаживать и тестировать. Действительно, структурированную программу мы будем тестировать частями. При этом нам нужно:
строить набор тестов;
комбинировать модули для тестирования.

Такое комбинирование может строиться двумя способами:
Пошаговое тестирование — тестируем каждый модуль, присоединяя его к уже оттестированным. При этом можем соединять части программы сверху вниз (нисходящий способ) или снизу вверх (восходящий).
Монолитное тестирование — каждый модуль тестируется отдельно, а затем из них формируется готовая рабочая программа и тестируется уже целиком.

Чтобы протестировать отдельный модуль, нужен модуль-драйвер (всегда один) и модул и-заглушки (этих может быть несколько).
Модуль-драйвер содержит фиксированные исходные данные. Он вызывает тестируемый модуль и отображает (а возможно, и анализирует) результаты.
Модуль-заглушка нужен, если в тестируемом модуле есть вызовы других. Вместо этого вызова управление передается модулю-заглушке, и уже он имитирует необходимые действия.

К сожалению, мы опять сталкиваемся с тем, что драйверы и заглушки сами могут оказаться источником ошибок. Поэтому создаваться они должны с большой осторожностью.

Вау!! 😲 Ты еще не читал? Это зря!

  • ошибки в приложениях , bugs , баг репорт , bug report ,
  • Фича
  • GIGO
  • Патч
  • тестирование
  • цикломатическая сложность
  • баг репорт
  • качество программного обеспечения

К сожалению, в одной статье не просто дать все знания про виды ошибок программного обеспечения. Но я — старался.
Если ты проявишь интерес к раскрытию подробностей,я обязательно напишу продолжение! Надеюсь, что теперь ты понял что такое виды ошибок программного обеспечения, принципы отладки
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
Качество и тестирование программного обеспечения. Quality Assurance.

Классификация ошибок

Отладка – это процесс локализации и исправления ошибок, обнаруженных при тестировании программного обеспечения. Локализацией называют процесс определения оператора программы, выполнение которого вызвало нарушение нормального вычислительного процесса. Доя исправления ошибки необходимо определить ее причину, т. е. определить оператор или фрагмент, содержащие ошибку. Причины ошибок могут быть как очевидны, так и очень глубоко скрыты.

В целом сложность отладки обусловлена следующими причинами:

  • требует от программиста глубоких знаний специфики управления используемыми техническими средствами, операционной системы, среды и языка программирования, реализуемых процессов, природы и специфики различных ошибок, методик отладки и соответствующих программных средств;
  • психологически дискомфортна, так как необходимо искать собственные ошибки и, как правило, в условиях ограниченного времени;
  • возможно взаимовлияние ошибок в разных частях программы, например, за счет затирания области памяти одного модуля другим из-за ошибок адресации;
  • отсутствуют четко сформулированные методики отладки.

В соответствии с этапом обработки, на котором проявляются ошибки, различают:

  • синтаксические ошибки — ошибки, фиксируемые компилятором (транслятором, интерпретатором) при выполнении синтаксического и частично семантического анализа программы; 
  • логические ошибки — …; 
  • ошибки компоновки — ошибки, обнаруженные компоновщиком (редактором связей) при объединении модулей программы;
  • ошибки выполнения — ошибки, обнаруженные операционной системой, аппаратными средствами или пользователем при выполнении программы.

Синтаксические ошибки. Синтаксические ошибки относят к группе самых простых, так как синтаксис языка, как правило, строго формализован, и ошибки сопровождаются развернутым комментарием с указанием ее местоположения. Определение причин таких ошибок, как правило, труда не составляет, и даже при нечетком знании правил языка за несколько прогонов удается удалить все ошибки данного типа.

Следует иметь в виду, что чем лучше формализованы правила синтаксиса языка, тем больше ошибок из общего количества может обнаружить компилятор и, соответственно, меньше ошибок будет обнаруживаться на следующих этапах. В связи с этим говорят о языках программирования с защищенным синтаксисом и с незащищенным синтаксисом. К первым, безусловно, можно отнести Pascal, имеющий очень простой и четко определенный синтаксис, хорошо проверяемый при компиляции программы, ко вторым — Си со всеми его модификациями. Чего стоит хотя бы возможность выполнения присваивания в условном операторе в Си, например:

if (c = n) x = 0; /* в данном случае не проверятся равенство с и n, а выполняется присваивание с значения n, после чего результат операции сравнивается с нулем, если программист хотел выполнить не присваивание, а сравнение, то эта ошибка будет обнаружена только на этапе выполнения при получении результатов, отличающихся от ожидаемых.

Ошибки компоновки. Ошибки компоновки, как следует из названия, связаны с проблемами, обнаруженными при разрешении внешних ссылок. Например, предусмотрено обращение к подпрограмме другого модуля, а при объединении модулей данная подпрограмма не найдена или не стыкуются списки параметров. В большинстве случаев ошибки такого рода также удается быстро локализовать и устранить.

Ошибки выполнения. К самой непредсказуемой группе относятся ошибки выполнения. Прежде всего они могут иметь разную природу, и соответственно по-разному проявляться. Часть ошибок обнаруживается и документируется операционной системой. Выделяют четыре способа проявления таких ошибок:

  • появление сообщения об ошибке, зафиксированной схемами контроля выполнения машинных команд, например, переполнении разрядной сетки, ситуации «деление на ноль», нарушении адресации и т. п.;
  • появление сообщения об ошибке, обнаруженной операционной системой, например, нарушении защиты памяти, попытке записи на устройства, защищенные от записи, отсутствии файла с заданным именем и т. п.;
  • «зависание» компьютера, как простое, когда удается завершить программу без перезагрузки операционной системы, так и «тяжелое», когда для продолжения работы необходима перезагрузка;
  • несовпадение полученных результатов с ожидаемыми.

Примечание. Отметим, что, если ошибки этапа выполнения обнаруживает пользователь, то в двух первых случаях, получив соответствующее сообщение, пользователь в зависимости от своего характера, степени необходимости и опыта работы за компьютером, либо попробует понять, что произошло, ища свою вину, либо обратится за помощью, либо постарается никогда больше не иметь дела с этим продуктом. При «зависании» компьютера пользователь может даже не сразу понять, что происходит что-то не то, хотя его печальный опыт и заставляет волноваться каждый раз, когда компьютер не выдает быстрой реакции на введенную команду, что также целесообразно иметь в виду. Также опасны могут быть ситуации, при которых пользователь получает неправильные результаты и использует их в своей работе.

Причины ошибок выполнения очень разнообразны, а потому и локализация может оказаться крайне сложной. Все возможные причины ошибок можно разделить на следующие группы:

  • неверное определение исходных данных,
  • логические ошибки,
  • накопление погрешностей результатов вычислений.

Методы отладки программного обеспечения

Отладка программы в любом случае предполагает обдумывание и логическое осмысление всей имеющейся информации об ошибке. Большинство ошибок можно обнаружить по косвенным признакам посредством тщательного анализа текстов программ и результатов тестирования без получения дополнительной информации. При этом используют различные методы:

  • ручного тестирования;
  • индукции;
  • дедукции;
  • обратного прослеживания.

Метод ручного тестирования

Это — самый простой и естественный способ данной группы. При обнаружении ошибки необходимо выполнить тестируемую программу вручную, используя тестовый набор, при работе с которыми была обнаружена ошибка. Метод очень эффективен, но не применим для больших программ, программ со сложными вычислениями и в тех случаях, когда ошибка связана с неверным представлением программиста о выполнении некоторых операций. Данный метод часто используют как составную часть других методов отладки.

Метод индукции

Метод основан на тщательном анализе симптомов ошибки, которые могут проявляться как неверные результаты вычислений или как сообщение об ошибке. Если компьютер просто «зависает», то фрагмент проявления ошибки вычисляют, исходя из последних полученных результатов и действий пользователя. Полученную таким образом информацию организуют и тщательно изучают, просматривая соответствующий фрагмент программы. В результате этих действий выдвигают гипотезы об ошибках, каждую из которых проверяют. Если гипотеза верна, то детализируют информацию об ошибке, иначе — выдвигают другую гипотезу. Последовательность выполнения отладки методом индукции показана на рисунке в виде схемы алгоритма.

Самый ответственный этап — выявление симптомов ошибки. Организуя данные об ошибке, целесообразно записать все, что известно о её проявлениях, причем фиксируют, как ситуации, в которых фрагмент с ошибкой выполняется нормально, так и ситуации, в которых ошибка проявляется. Если в результате изучения данных никаких гипотез не появляется, то необходима дополнительная информация об ошибке. Дополнительную информацию можно получить, например, в результате выполнения схожих тестов. В процессе доказательства пытаются выяснить, все ли проявления ошибки объясняет данная гипотеза, если не все, то либо гипотеза не верна, либо ошибок несколько.

Метод дедукции

По методу дедукции вначале формируют множество причин, которые могли бы вызвать данное проявление ошибки. Затем анализируя причины, исключают те, которые противоречат имеющимся данным. Если все причины исключены, то следует выполнить дополнительное тестирование исследуемого фрагмента. В противном случае наиболее вероятную гипотезу пытаются доказать. Если гипотеза объясняет полученные признаки ошибки, то ошибка найдена, иначе — проверяют следующую причину.

Метод обратного прослеживания

Для небольших программ эффективно применение метода обратного прослеживания. Начинают с точки вывода неправильного результата. Для этой точки строится гипотеза о значениях основных переменных, которые могли бы привести к получению имеющегося результата. Далее, исходя из этой гипотезы, делают предложения о значениях переменных в предыдущей точке. Процесс продолжают, пока не обнаружат причину ошибки.

Методы и средства получения дополнительной информации

Для получения дополнительной информации об ошибке можно выполнить добавочные тесты или использовать специальные методы и средства:

  • отладочный вывод;
  • интегрированные средства отладки;
  • независимые отладчики.

Отладочный вывод. Метод требует включения в программу дополнительного отладочного вывода в узловых точках. Узловыми считают точки алгоритма, в которых основные переменные программы меняют свои значения. Например, отладочный вывод следует предусмотреть до и после завершения цикла изменения некоторого массива значений. (Если отладочный вывод предусмотреть в цикле, то будет выведено слишком много значений, в которых, как правило, сложно разбираться.) При этом предполагается, что, выполнив анализ выведенных значений, программист уточнит момент, когда были получены неправильные значения, и сможет сделать вывод о причине ошибки.

Данный метод не очень эффективен и в настоящее время практически не используется, так как в сложных случаях в процессе отладки может потребоваться вывод большого количества — «трассы» значений многих переменных, которые выводятся при каждом изменении. Кроме того, внесение в программы дополнительных операторов может привести к изменению проявления ошибки, что нежелательно, хотя и позволяет сделать определенный вывод о ее природе.

Примечание. Ошибки, исчезающие при включении в программу или удалению из нее каких-либо «безобидных» операторов, как правило, связаны с «затиранием» памяти. В результате добавления или удаления операторов область затирания может сместиться в другое место и ошибка либо перестанет проявляться, либо будет проявляться по-другому.

Интегрированные средства отладки. Большинство современных сред программирования (Delphi, Builder C++, Visual Studio и т. д.) включают средства отладки, которые обеспечивают максимально эффективную отладку. Они позволяют:

  • выполнять программу по шагам, причем как с заходом в подпрограммы, так и выполняя их целиком;
  • предусматривать точки останова;
  • выполнять программу до оператора, указанного курсором; 
  • отображать содержимое любых переменных при пошаговом выполнении;
  • отслеживать поток сообщений и т. п.

Отладка с использованием независимых отладчиков. 

При отладке программ иногда используют специальные программы — отладчики, которые позволяют выполнить любой фрагмент программы в пошаговом режиме и проверить содержимое интересующих программиста переменных. Как правило такие отладчики позволяют отлаживать программу только в машинных командах, представленных в 16-ричном коде.

Общая методика отладки программного обеспечения

Суммируя все сказанное выше, можно предложить следующую методику отладки программного обеспечения:

1 этап — изучение проявления ошибки — если выдано какое-либо сообщение или выданы неправильные или неполные результаты, то необходимо их изучить и попытаться понять, какая ошибка могла так проявиться. При этом используют индуктивные и дедуктивные методы отладки. В результате выдвигают версии о характере ошибки, которые необходимо проверить. Для этого можно применить методы и средства получения дополнительной информации об ошибке. Если ошибка не найдена или система просто «зависла», переходят ко второму этапу.

2 этап — локализация ошибки — определение конкретного фрагмента, при выполнении которого произошло отклонение от предполагаемого вычислительного процесса. Локализация может выполняться:

  • путем отсечения частей программы, причем, если при отсечении некоторой части программы ошибка пропадает, то это может означать как то, что ошибка связана с этой частью, так и то, что внесенное изменение изменило проявление ошибки;
  • с использованием отладочных средств, позволяющих выполнить интересующих нас фрагмент программы в пошаговом режиме и получить дополнительную информацию о месте проявления и характере ошибки, например, уточнить содержимое указанных переменных.

При этом если были получены неправильные результаты, то в пошаговом режиме проверяют ключевые точки процесса формирования данного результата. Как подчеркивалось выше, ошибка не обязательно допущена в том месте, где она проявилась. Если в конкретном случае это так, то переходят к следующему этапу.

3 этап — определение причины ошибки — изучение результатов второго этапа и формирование версий возможных причин ошибки. Эти версии необходимо проверить, возможно, используя отладочные средства для просмотра последовательности операторов или значений переменных.

4 этап — исправление ошибки — внесение соответствующих изменений во все операторы, совместное выполнение которых привело к ошибке.

5 этап — повторное тестирование — повторение всех тестов с начала, так как при исправлении обнаруженных ошибок часто вносят в программу новые.

Следует иметь в виду, что процесс отладки можно существенно упростить, если следовать основным рекомендациям структурного подхода к программированию:

  • программу наращивать «сверху-вниз», от интерфейса к обрабатывающим подпрограммам, тестируя ее по ходу добавления подпрограмм;
  • выводить пользователю вводимые им данные для контроля и проверять их на допустимость сразу после ввода;
  • предусматривать вывод основных данных во всех узловых точках алгоритма (ветвлениях, вызовах подпрограмм).

Кроме того, следует более тщательно проверять фрагменты программного обеспечения, где уже были обнаружены ошибки, так как вероятность ошибок в этих местах по статистике выше. Это вызвано следующими причинами. Во-первых, ошибки чаще допускают в сложных местах или в тех случаях, если спецификации на реализуемые операции недостаточно проработаны. Во-вторых, ошибки могут быть результатом того, что программист устал, отвлекся или плохо себя чувствует. В-третьих, как уже упоминалось выше, ошибки часто появляются в результате исправления уже найденных ошибок.

Источник:

Динамический, статический и бинарный анализ

Сегодня есть две наиболее зрелые и востребованные технологии анализа кода – динамический анализ (DAST – Dynamic Application Security Testing) и статический анализ (SAST – Static Application Security Testing). Разновидностью SAST является бинарный анализ.

Динамический анализ – его также называют методом «Черного ящика» – представляет собой проверку программы на наличие уязвимостей непосредственно во время ее выполнения. У этого подхода есть свои преимущества. Во-первых, поскольку уязвимости находятся в исполняемой программе и обнаружение ошибки происходит с помощью ее эксплуатации, возникает меньше ложных срабатываний, чем при использовании статического анализа. Плюс для выполнения данного вида анализа не нужен исходный код. Но есть и слабые места, в частности, данным методом нельзя обнаружить все возможные уязвимости, в связи с чем существуют риски пропущенных уязвимостей. Не все уязвимости могут себя проявить при таком методе тестирования. Например, временная бомба или захардкоженные креды. Кроме того, метод требует максимально точного воспроизведения боевой среды при тестировании.

Статический анализ – метод «Белого ящика» – представляет собой тип тестирования, при котором, в отличие от динамического анализа, не происходит выполнения программы, а анализируется весь ее код. В результате мы имеем нахождение большего количества уязвимостей. Также метод выгодно отличает возможность внедрения в начальные стадии разработки: чем раньше обнаруживаем уязвимость, тем дешевле обходится ее устранение.

У метода есть два недостатка. Первый – наличие ложноположительных срабатываний. Как следствие – необходимость оценки, что перед тобой реальная уязвимость или ошибка сканера. Второй недостаток – необходимость наличия исходного кода программы, который не всегда доступен. В последнем случае помогает бинарный анализ – он позволяет с помощью технологий реверс-инжиниринга провести статический анализ кода, даже если у нас нет исходника. Когда в 2015 году мы выводили на рынок анализатор кода приложений Solar appScreener, эта функциональность уже была заложена в системе. Мы видели тогда и видим сейчас, что в реальной жизни это зачастую единственная возможность грамотно и полноценно выявить уязвимости в приложениях.

Например, нам нужно убедиться в том, что исходный код, который мы проверяли, – тот самый, который потом пойдет в продакшн. Помимо ситуаций, когда кто-либо намеренно вносит в код закладки, ряд уязвимостей может добавить и компилятор. И это отнюдь не экзотическая ситуация: компилятор тоже пишут люди, и он не застрахован от ошибок. В общем, нам нужно взять из продакшна исполняемый файл и проверить его на уязвимости.

Альтернативный вариант – прогнать приложение через динамический анализатор: перед нами черный ящик, мы не можем его открыть, но можем на него воздействовать – «пнуть, поднять, потрясти, уронить». И по результатам этого воздействия сделать выводы. При динамическом анализе на вход приложения подаются разные данные, в текстовые поля вводятся различные последовательности, в случае с веб-сайтом посылаются разнообразные команды, протоколы, пакеты. И по ответу от приложения мы делаем вывод, есть ли в нем уязвимости. DAST действительно хорош для веб-приложений, потому что можно повоздействовать на систему, защищенную при этом файрволом.

Однако DAST помогает обнаружить только определенный спектр уязвимостей. А, например, угрозы вроде временной бомбы, которая по триггеру времени запустит в систему вредонос, скрытую «учетку», небезопасный пароль и прочее динамическим анализом не обнаружить. Бинарный анализ же делает из черного ящика белый, позволяя в ходе статического анализа увидеть его содержимое.

Кроме того, бывают ситуации, когда исходный код разработанной системы утерян, при этом она активно эксплуатируется и резко отказаться от нее невозможно. Бинарный анализ поможет проверить эту систему на наличие уязвимостей, чтобы принять оперативные меры по защите.

True or False: как решить главную проблему автоматизированного анализа кода?

Ложные срабатывания – проблема любых систем, которые автоматически что-то анализируют и выдают результат. Очевидно, что она актуальна и для анализаторов кода. Чем больше ложных срабатываний, тем дороже использование инструмента для пользователя. Ведь на верификацию тратятся человеческие ресурсы – время.

Сегодня есть несколько путей развития технологий для минимизации ложных срабатываний. Один из самых хайповых – применение искусственного интеллекта, а точнее его подраздела – машинного обучения (МО). Какими способами можно искать уязвимости в коде с помощью МО?

Во-первых, можно попытаться обучить МО-анализатор вручную: написать множество примеров правильного и неправильного кода и научить анализатор искать такие ошибки. Минус подхода в том, что для обучения анализатора нам придется потратить много времени на подготовку подходящих примеров.

Есть еще вариант — пометить код реальных приложений с указанием фрагментов, в отношении которых анализатор должен выдавать предупреждение о наличии ошибки. В любом случае необходимо будет проделать большой объем работы, так как для обучения необходимы десятки тысяч примеров ошибок кода. Если же учесть, что существуют уязвимости (например, утечка памяти), которые могут содержаться в коде, написанном почти бесконечным числом вариаций, то необходимый для обучения объем примеров делает задачу фактически невыполнимой.

Во-вторых, можно не готовить примеры вручную, а обучать МО-анализатор на основе больших объемов открытого исходного кода. Можно отслеживать историю коммитов на GitHub и выявлять закономерности изменения или исправления программного кода. Однако проблема в том, что правки на GitHub вносятся довольно хаотично: например, пользователь не хочет тратить время на внесение каждой правки в отдельности – и он где-то вносит пару изменения, а где-то просто переписывает кусок кода. Тогда даже человек не сможет разобраться, связаны ли эти исправленные ошибки между собой.

Можно, конечно, нанять маленькую армию специалистов, которые будут проверять исходный код и указывать, где исправлена ошибка – а где код переписан, где добавлена новая функция – а где изменились требования. То есть, по сути, мы опять возвращаемся к ручному обучению. Не говоря уже о росте стоимости и длительности решения задачи. Или же можно попытаться автоматически определять ошибки в открытом исходном коде: можно попробовать запрограммировать такой поиск, что будет непросто, а главное, возникнут вопросы к качеству такого анализа.

Таким образом, в целом использование ИИ для анализа кода – очень трудозатратная и недешевая история при неочевидном результате.

Но есть и другой метод борьбы с ложными срабатываниями – математический.

Нечеткая логика: как это работает

Нечеткая логика – относительно новый раздел математики. Он является обобщением классической логики и теории множеств и базируется на понятии нечеткого множества, впервые введенного в 1965 году. Если в обычной логике у нас есть true или false, 0 или 1, то нечеткая логика оперирует градациями между true и false. Она может сказать, что событие верно на столько-то процентов и на столько-то неверно, – и это ближе к мышлению человека.

Представьте, что у вас есть стакан воды и нужно сказать, что вода холодная, если ее температура ниже 15 градусов, и теплая, если выше 15 градусов. Мы опускаем палец в стакан (допустим, там 16 градусов, но мы об этом не знаем). И мы не скажем: «Да, она точно теплая». На пограничных значениях мы будем внутренне колебаться: вроде теплая, но скорее холодная. Нечеткая логика помогает нам уйти от линейного мышления.

В обычном линейном мышлении, когда систему научили принимать решение, что это true или false, при выставлении математического порога (допустим, мы хотим меньше ложных срабатываний) приходится устанавливать для машины жёсткие фильтры принятия решений. Тогда она начнет выдавать меньше ложных срабатываний, но при этом начнет пропускать реальные уязвимости. Двигаем линейный фильтр в обратную сторону – машина перестает пропускать уязвимости, но при этом ложных срабатываний становится очень много.

Поэтому в своей системе мы реализовали механизм борьбы с уязвимостями на основе математического аппарата нечеткой логики – Fuzzy Logic Engine (FLE), который позволяет тонко настраивать линейные фильтры, балансируя между снижением ложных срабатываний и потерей точности выявления уязвимостей. Фильтры в системе позволяют, например, отображать лишь те уязвимости, в которых FLE полностью уверен. Кроме того, можно практически ювелирно настроить уровень уверенности системы в наличии уязвимости. С помощью шкалы Confidence можно, например, задать для уязвимостей критичного уровня более жесткие критерии, по которым система будет относить потенциальные уязвимости к реальным.

Для уязвимостей средней и низкой критичности можно задать более мягкие критерии оценки.

Чем больше языков, тем лучше

Языков программирования становится все больше, многие из новых быстро набирают популярность. Например, язык Rust, который позиционируется как безопасная замена С++ и сегодня часто используется для написания десктопных приложений и бэкэндов. Или Go (Golang), применяемый для создания высоконагруженных сервисов – площадок онлайн-торговли, ДБО, мессенджеры и т.п. Dart, предназначенный для написания веб и мобильных клиентов.

И нередко бывает так, что какая-то часть системы написана на языке, который можно проверить не всеми инструментами. Поэтому, если мы хотим, чтобы анализ кода был эффективным и удобным, важно, чтобы все языки были на борту. Пользователь не должен задаваться вопросом, на каких языках написано приложение, все ли языки поддерживает анализатор. Код должен загружаться в анализатор, который сам определит, какие языки содержатся в приложении, и все их проверит, ничего не пропуская. Именно по такому принципу мы реализуем Solar appScreener: в апреле прошлого года добавили поддержку Dart и продолжаем лидировать по количеству поддерживаемых языков – сейчас их 36.

Мы довольно гибко подходим к управлению командой и разработке новых фич. Некоторые вендоры не могут просто взять и быстро добавить новый язык в свой анализатор, потому что им нужно просчитать выгоду от реализации той или иной функции на других рынках. Много ли запросов на нее от наиболее приоритетных рынков, или лучше потратить ресурсы команды на создание другой функциональности? Это может отнимать много времени.

Технологии на перспективу

Ну а что же там, за горизонтом? Какие технологии могут быть реализованы в анализаторах кода уже в ближайшем будущем?
Сейчас на рынке анализа кода наблюдается растущий спрос на бинарный анализ сложных систем. Допустим, компания покупает софт стороннего вендора, устанавливает его в свою критическую информационную инфраструктуру, и ИБ-специалисты хотят понимать реальный уровень защищенности той или иной системы. В чем здесь отличие от уже существующих технологий? Современный бинарный анализ позволяет загрузить в анализатор и проанализировать лишь каждый исполняемый файл в отдельности. В случае со сложной многокомпонентной системой нужно отправить в анализатор целый зоопарк различных файлов, связанных друг с другом, – инсталляционные файлы, готовые файлы системы, библиотеки, исполняемые файлы и т.п. Это не просто файлы, а единое ПО, которое состоит из разных логических компонентов. Поэтому тут нужен сложнейший анализ, который очень тяжело реализовать. Пока подобная функция является экзотикой.

Весьма реалистичной выглядит перспектива применения интегрированных систем, в которых используются преимущества сразу всех передовых методов анализа – DAST, SAST, IAST, mAST, SCA (Software Composition Analysis). Последний представляет собой инвентаризацию библиотек, кода, предоставленного на анализ, и его сверку с базой данных, включающей перечень библиотек и содержащихся в них уязвимостей. Однако пока нет вендора, который свел бы все эти компоненты воедино, а отчеты, предоставляемые каждой системой, настолько разнятся, что привести их к общему знаменателю нереально. Поэтому создание интегрированной системы, которая объединит возможности разных видов анализа кода, с единой системой отчетности, выглядит многообещающе.

Стоит отметить и еще одну довольно занятную технологию для защиты приложений от уязвимостей – RASP (Runtime application self-protection). О ее перспективности однажды заявлял Gartner, однако пока технология самозащиты приложений кажется малоэффективной. Некоторые вендоры уже пытались ее реализовать, однако работает она только в частных случаях и применима далеко не ко всем языкам программирования. Её суть состоит в том, что в само защищаемое ПО добавляется в код, который позволяет приложению понимать, когда его атакуют, и блокировать атаку. Проблема кроется в том, что архитектура веб-приложений очень разная, поэтому такой подход к защите применим либо при индивидуальной разработке под каждое приложение и каждую новую его версию, либо в случае, если RASP-система допускает очень глубокую кастомизацию. Чтобы говорить о RASP как о полноценной замене анализу кода веб-приложений, нужно сделать определенные шаги в развитии технологий в целом и искусственного интеллекта в частности.

P.S. А если вдруг?..

А что, если придет квантовый компьютер и настанет эра квантовых вычислений – как в таком случае защититься, например, от уязвимостей, проэксплуатировать которые можно методом перебора? Вот эти все недостаточные размеры ключа шифрования, слабые алгоритмы хеширования, заданная в исходном коде соль и т.п.? Если такие технологии придут в массовое использование, то все, что сейчас считается безопасным – сложные пароли, алгоритмы шифрования – будет взламываться налету. Очевидно, необходимо будет разрабатывать совершенно другие подходы и к статическому анализу кода, и к динамическому. Как это будет, пока неизвестно, но очень интересно.

Понравилась статья? Поделить с друзьями:
  • Ошибки анализа днк
  • Ошибки амниоцентеза форум
  • Ошибки американцев во второй мировой войне
  • Ошибки акпп ниссан блюберд
  • Ошибки акпп митсубиси рвр