Ошибки гравиметрического анализа бывают

    Процесс химического анализа состоит из нескольких операций. Так, определяя содержание какого-нибудь компонента методом гравиметрического анализа, надо измельчить образец, взять среднюю пробу, взять аналитическую навеску, растворить ее, получить осадок, отфильтровать его, промыть, высушить, прокалить и взвесить. Как бы тщательно ни выполнялись указанные операции, почти в каждой из них получается некоторая ошибка. Все это сказывается на результате анализа. При оценке конечного результата анализа надо учесть все возможные ошибки и рассчитать, -как эти ошибки отражаются на полученном результате. По своему характеру ошибки анализа подразделяются на случайные и систематические. [c.203]

    Систематические методические ошибки в гравиметрии могут быть учтены и уменьшены в ходе выполнения соответствующих операций. Как видно из табл. 7.8, завышенные результаты получаются либо вследствие загрязнения осадков посторонними примесями, не удаленными при промывании и прокаливании, либо из-за неправильно выбранной гравиметрической формы. Отрицательные ошибки возникают по многим причинам. Выявить вид ошибки можно, тщательно рассмотрев методику анализа на осно- [c.144]

    Эта ошибка близка по величине к ошибке гравиметрического анализа (см. пример [c.70]

    Применение гравиметрического анализа основано на том факте, что весовая форма является соединением определенного состава и, следовательно, имеет определенный молекулярный вес. Количество определяемого компонента можно найти по стехиометрической пропорции. Ошибка определения оказывается равной [c.62]

    Получающаяся здесь ошибка измерения по величине близка к ошибке гравиметрического анализа (ср. пример [4.3]). [c.70]

    Чувствительность Ь инструментальных методов анализа определяется фактором пересчета показаний прибора (обычно в единицах шкалы) на содержание вещества в гравиметрии — это обратная величина стехиометрического гравиметрического фактора (Ь=1//). Чем меньше /, тем больше чувствительность метода и тем меньше абсолютная ошибка гравиметрического определения количества вещества х. В объемных методах анализа фактору f соответствует эквивалентная концентрация с применяемого титранта. Чтобы ошибка определения была невелика, а чувствительность метода высока, эта величина должна быть как можно меньшей, что способствует получению интенсивного сигнала у. Однако при этом начинает сказываться эффект разбавления, что приводит к систематическим ошибкам определения, поэтому следует выбирать оптимальную величину Сз. [c.457]

    Теория гравиметрических методов анализа включает учение об образовании осадков, формулирует требования к весовым формам и т. д. Основная операция в гравиметрическом анализе — количественное осаждение определяемого компонента. Полученный осадок должен быть свободен от загрязнений необходимо, чтобы он легко отделялся от раствора, иначе говоря—легко отфильтровывался и промывался. Осадок должен либо сам быть соединением постоянного состава, которое нетрудно взвесить (т. е. соединением нелетучим, негигроскопичным, инертным по отношению к воздуху), либо переводиться в такое соединение высушиванием или прокаливанием. Такие требования легко предъявить, но трудно реализовать. Важно устранить потери за счет растворения осадка, уменьшить ошибки, связанные с соосаждением и последующим осаждением (на готовом осадке) посторонних компонентов. А ведь от гравиметрических методов ждут многого и, прежде всего, высокой точности. Эти методы позволяют снизить относительную ошибку определения до 0, %. Однако уменьшить ошибки можно, лишь хорошо владея теорией осаждения, поэтому исследования в этой области не прекращаются. [c.44]

    Каждому методу анализа свойственны свои специфические ошибки. Например, в гравиметрическом анализе имеют место ошибки, связанные с потерей вещества при промывании и прокаливании осадков. В титриметрическом анализе — ошибки, связанные с применением индикаторов. Наряду с этим имеются ошибки, свойственные всем или многим методам количественного анализа, [c.303]

    Каждому методу анализа присущи свои ошибки, которые могут отсутствовать в других методах. Например, ошибки, связанные с потерей вещества при прокаливании, наблюдаются в гравиметрическом анализе, но их нет в титриметрическом анализе. Ошибки, связанные с применением индикаторов, характерны для титриметрического анализа, но отсутствуют в гравиметрическом анализе. Указание на эти ошибки дано при каждом отдельном методе. Есть ошибки, которые характерны для всех методов количественного анализа. Наиример, взвешивая на аналитических весах, можно всегда сделать ошибку, равную 0,0002 г. В тщательно проводимом анализе неорганических веществ относительная ошибка не должна превышать 0,1%. Поэтому навеска вещества для анализа не должна быть меньше 0,2 г. [c.283]

    При использовании приема холостых проб следует иметь в виду, что в некоторых методах анализа он не исключает реактивной ошибки. Это относится в первую очередь к гравиметрическому анализу, где количество привносимого в ходе анализа компонента может быть недостаточным для образования самостоятельного осадка, однако вполне ощутимым, чтобы дать дополнительный привес при анализе пробы. [c.45]

    В некоторых — сравнительно редких случаях — вес остатка значительно меньше, чем навеска. Это имеет место при определении малых содержаний методом гравиметрического анализа, например при определении фосфора в стали, пробирном анализе при определении благородных металлов и т. д. Определяющий вклад в общую ошибку в таких случаях чаще всего вносит ошибка веса остатка (малая величина). В отличие от методов, где навеска и остаток близки по весу, здесь общая ошибка относительно высока. Хотя эта ошибка играет довольно малую роль при определении малых весов, все же по возможности надо избегать применения таких методов, поскольку при малом осадке довольно значительную роль начинают играть загрязнения. Поэтому гравиметрию применяют как основной метод при определении средних и высоких концентраций. А гравиметрическое определение малых концентраций обычно требует специальных приемов. [c.68]

    Расчет — важнейшая операция в количественном анализе. Гравиметрический анализ начинается с расчета навески. Величина навески играет существенную роль в выполнении анализа. Если навеска очень мала, увеличится ошибка анализа, если очень велика — фильтрование, сушка и прокаливание займут много времени. [c.103]

    Ошибки метода. Систематические ошибки часто возникают вследствие отклонения поведения реагентов или реакций, на которых основано определение, от идеального. Причинами таких отклонений могут быть малая скорость реакций, неполнота их протекания, неустойчивость каких-либо веществ, неспецифичность большинства реагентов и протекание побочных реакций, мешающих процессу определения. Например, в гравиметрическом анализе перед химиком стоит задача выделения определяемого элемента в виде возможно более чистого осадка. Если осадок не удается хорошо промыть, он будет загрязнен посторонними веществами и масса его будет завышена. С другой стороны, промывание, необходимое для удаления загрязнений, может привести к потере заметного количества осадка вследствие его растворимости в результате возникает систематическая отрицательная ошибка. В любом случае тщательность проведения операции сводится на нет систематической ошибкой, обусловленной методом анализа. [c.60]

    Следовательно, ошибка результата гравиметрического определения становится небольшой при малых ошибках измерений и больших, значениях измеряемых величин. Нижний предел ошибки измерения определяется типом используемых аналитических весов. Увеличение измеряемой величины целесообразно только в определенной степени, когда вследствие этого не выявляются другие недостатки, например увеличение затрат времени на фильтрование и промывание. Как правило, масса весовой формы не должна существенно превышать 200 мг. Масса исходной навески должна быть примерно такой же. Ошибкой аналитического фактора в общем можно пренебречь. Однако сам он непосредственно влияет на ошибку, так как определяет величину наибольшей исходной навески, равной = 200 мг. Если исходная навеска и масса весовой формы являются величинами одного порядка, то большой пересчетный фактор обеспечивает уменьшение суммарной ошибки. Если же масса весовой формы значительно меньше массы исходной навески, то суммарная ошибка возрастает. При определении основных компонентов обычными гравиметрическими методами ошибка определения достигает 0,1%, при соблюдении особых мер предосторожности можно достигнуть точности до 0,01%. Поэтому гравиметрию причисляют к особо точным методам количественного анализа 130—33]. [c.62]

    В отличие от чувствительности многих аналитических методов чувствительность (или точность) гравиметрического анализа почти никогда не определяется чувствительностью измерительного инструмента. На подходящих весах вполне можно взять навеску в несколько микрограммов с точностью до нескольких десятых процента, а при взвешивании большей навески ошибку можно понизить до нескольких десятитысячных долей процента. [c.155]

    При анализе простых образцов с содержанием определяемого вещества более 1% точность гравиметрического анализа редко удается превзойти с помощью других методов ошибки в этом случае можно снизить до 0,1—0,2%. При увеличении сложности состава образца ошибки неизбежно возрастают, или приходится затратить массу времени на их преодоление. В этом случае точность гравиметрического метода может оказаться не лучше, а иногда даже хуже точности других аналитических методов. [c.156]

    В некоторых сравнительно редких случаях вес остатка значительно меньше, чем навеска. Это имеет место при определении малых содерн аний гравиметрическим анализом, например при определении фосфора в стали, доки-мастическом определении благородных металлов и т. д. Определяющей для ошибки содержания является в таких случаях чаще всего ошибка веса остатка (малое значение измеряемой величины). В противоположность методу, нри котором навеска и остаток близки по весу, общая ошибка становится здесь относительно высокой. Хотя эта ошибка вносит малый относительный вклад при определении низких весовых содержаний, все же надо по возможности избегать применения этих методов, так как при малом количестве осадка довольно заметную роль играют загрязнения. Поэтому гравиметрию применяют как основной метод нри определении средних и высоких содержаний. Гравиметрическое определение малых содержаний в большинстве случаев требует специальной техники анализа. [c.68]

    При определении содержания добавочных компонентов допустима большая ошибка определения [а = 2. .. 5. ..10% (отн.)], особенно при определении небольших содержаний (<10″ %). Вследствие таких требований к точности определения основных и добавочных компонентов для определения первых применяют преимущественно химические методы анализа, для вторых — физико-химические методы. Из химических методов большое применение, благодаря их быстроте, находят титриметрические методы с различными способами определения точки эквивалентности. При особо высоких требованиях к точности прибегают к гравиметрическим методам анализа. Среди физико-химических методов определения добавочных компонентов особенно широкое применение нашли электрохимические методы анализа (полярография, кулонометрия) и оптические (фотометрия). При определении не очень малых количеств элементов (>1%) применяют также различные варианты объемных методов анализа. [c.399]

    Давно было замечено, что при гравиметрическом определении элементов нередко возникают ошибки, вызванные переходом в осадок присутствующих в растворе посторонних веществ. Это явление было названо соосаждением. Вначале предполагали, что соосаждение связано с несовершенством методик или с некомпетентностью исполнителей анализа. Однако подробное исследование выявило более глубокие причины. Оказалось, что соосаждение наблюдается при самых точных методиках и при высокой квалификации химиков-аналитиков, т. е. имеет общий характер. [c.189]

    Целый ряд аналитических методов известен своей склонностью к более или менее положительным или отрицательным систематическим ошибкам. Примером этому может служить гравиметрическое определение кремниевой кислоты, при котором постоянно занижаются истинные значения. Однако это занижение можно выявить, только если, например, потери, возникшие из-за растворимости осадка, выше, чем колебания из-за случайной ошибки анализа. Вообще систематические ошибки можно обнаружить только в том случае, когда смещение измеряемых величин больше, чем случайная ошибка применяемого метода анализа. [c.27]

    Более простым, а в ряде случаев, видимо, и более точным является гравиметрический метод определения суммарного содержания фенолов. Последние в данном методе выделяют раствором щелочи и после подкисления экстрагируют эфиром. После сушки и отгонки эфира фенолы взвешивают. Содержащиеся в пробе органические кислоты предварительно удаляют действием бикарбоната натрия. Метод предпочтителен для анализа сложных фенольных смесей, так как бромометрический и колориметрические методы в этом случае дают значительные ошибки первый — в результате протекания побочных реакций присоединения брома и образования высокозамещенных продуктов второй — в результате зависимости интенсивности окраски не только от количества, но и от строения фенолов. Это подтверждают недавно полученные Тилеманном данные [55] по анализу смесей ксиленолов. [c.49]

    Основы гравиметрического анализа — исторически первого метода количественного химического анализа — сложились к середине XIX в. благодаря работам многих ученых, особенно англичанина Р. Бойля, щве-дов Т. У. Бергмана (1735—1784) и Й. Я. Берцелиуса (1779—1848), немцев М. Г. Клапрота (1743—1817), Г. Розе, К. Р. Фрезениуса. В уже упоминавшейся книге К. Р. Фрезениуса Введение в количественный анализ (1846) бьши охарактеризованы не только основные принципы, но и практические приемы гравиметрического метода, включая важнейший из них — операцию взвешивания на аналитических весах, которые применял еще Р. Бойль в середине XVII в. Ко времени К. Р. Фрезениуса погрешность взвешивания на аналитических весах (до 0,0001 г) была уже практически та же, что и ошибка взвешивания на современных аналитических весах повседневного использования ( 0,0002 г). [c.38]

    Специфика этой задачи в том, что материал пробы ограничен малой навеской, но требуется высокая точность определения. Классический метод гравиметрического определения 8102 не подходит прежде всего из-за заметной растворимости кремниевой кислоты в водных растворах. С другой стороны, для кремния нет надежных методов объемного определения, а фотоколориметриче- ские методы и методы эмиссионного спектрального анализа, хотя и чувствительные, не обеспечивают необходимой надежности результатов анализа. Можно предположить такой путь анализа не увеличивая анализируемой навески, оса-,дить Кремний в виде малорастворимого соединения с высокой молекулярной массой. Если предварительные операции переведения ЗЮг в раствор и последующего осаждения, фильтрования, промывания и высушивания осадка обеспечивают количественное выделение стехиометрически чистого соединения кремния, общая ошибка анализа будет определяться в основном ошибками взвешивания при отборе пробы и конечном определении. Используя для осаждения и взвешивания кремния оксихинолиновую соль кремнемолибденовой кислоты, получаем соединение с молекулярной массой 2440  [c.26]

    Методические ошибки различных методов анализа носят специфический характер. Так, в гравиметрическом анализе и операциях осаждения, используемых для разделения, основной вид ошибок— ошибки недоосаждения (и частичного растворения в ходе промывания осадка) и соосаждения. Существенную роль в гравиметрическом анализе может играть ошибка, вызванная отклонением состава формы взвешивания от строго стехиометрического, например, за счет ее гигроскопичности. [c.47]

    Основной проблемой при гравиметрическом определении технического углерода является захват его частиц продуктами деструкции полиэтилена. Особенно велик вклад этой ошибки при малом содержании технического углерода в полимере. Для подбора условий количественного определения технического углерода при малом его содержании в полимере было исследовано влияние временного фактора и температурных условий на деструкцию полиэтилена в инертной атмосфере [71]. Было показано, что время, за которое происходит полная деструкция полимера, зависит от температуры. При этом при температуре выше 550 °С происходит слишком быстрое удаление фрагментов деструкции полиэтилена и наблюдается унос частиц технического углерода при 700°С технический углерод начинает взаимодействовать с примесями кислорода и воды в инертном газе. Таким образом термическая деструкция полиэтилена при температуре выше 550 °С, по данным автора работы [71], происходит с потерей некоторого количества введенного в полимер технического углерода. Была предложена методика, при которой навеску полиэтилена, содержащую 1—30 мг технического углерода, помешают в предварительно прокаленной кварцевой лодочке в центральную часть трубчатой электропечи, перед ней в зоне нагрева располагают катушку из медиой проволоки и трубку выдерживают при 500 + 10°С в течение 30 мин, продувая трубку азотом с постоянной скоростью (второй конец трубки остается при этом открытым). После этого лодочку помещают в эксикатор и через 30 мин взвешивают. Для определения зольности полимера пробу дожигают при 900°С в присутствии кислорода воздуха. Зольность полимера можно не учитывать при расчете результата анализа, если она составляет менее 2 % от содержания технического углерода. [c.259]

    Методические ошибки различных методов анализа носят специфический характер. Так, в гравиметрическом анализе и операциях осаждения, используемых для разделения, основной вид ошибок — ошибки недоосаждения (и частичного растворения в ходе промывания осадка) и соосаждения. Существенную роль в гравиметрическом анализе может играть ошибка, [c.32]

    Проведенный выше раэбор систематических ошибок хими-t e Koro аяализа не претендует на исчерпывающую полноту. Из рассмотрения исключены некоторые виды ошибок, например, ошибка натекания и капельная ошибка в титриметрических методах анализа. Некоторые виды систематических ошибок только упомянуты. Основное внимание и наибольшее количество примеров посвящено ошибкам традиционных методов гравиметрического, титриметрического и фотометрического анализов. Такой стиль изложения оправдан целью данного раздела—дать общее представление о систематических ошибках химического анализа, способах их обнаружения и оценки и методах их уменьшения. Детальный разбор всех известных источников ошибок должен входить как составная часть в теорию и практику каждого отдельного метода химического анализа, ибо каждому методу присущи свои специфические ошибки». Удачным примером в этом плане может служить руководство по (фотоколориметрическим и спектрофотометрическим методам анализа М. И. Булатова и И. П. Калин-кина (Л, Химия , 1976, 376 с.), где этому вопросу уделено большое внимание. Однако сказанное в равной мере относится и к любым другим химическим и физическим методам, [c.48]

    Сульфат можно определить, используя в качестве титранта раствор НС1 в диметилсульфоксиде (фотометрическая индикация точки эквивалентности) [110]. Этот метод применяют для определения сульфата в морской воде. Большинство общепринятых методов определения сульфатов не применимо для анализа морской воды из-за высокого содержания солей в ней. Для определения сульфатов в этом объекте используют гравиметрическую методику, однако в этом случае наблюдаются ошибки, связанные с соосаждением солей щелочных металлов и кальция. В соответствии с вышеупомянутым методом [ПО] сульфат титруют до H2SO4, используя в качестве индикатора бромкрезоловый зеленый. Конечную точку в этом титровании находят графически. [c.538]

    Путем,образования нитрокобальтиата калия удается практически полностью выделить калий даже из разбавленного раствора и количественно его определить. Хотя на состав осадка влияет ряд факторов, нитрокобальтиатный метод занимает первое место среди химических способов определения калия Метод позволяет получать вполне удовлетворительные по точности результаты, если стандартизировать все операции и условия выполнения анализа и применять фактор пересчета, найденный при параллельной обработке объекта с близким и известным содержанием калия [138, 2782]. Ошибки определения калия в микромасштабах достигают только 3% [1323, 1649] (О достаточной точности метода см. также [442, Ш81].) Некоторые авторы, однако, считают, что прямое гравиметрическое определение калия в виде нитрокобальтиата не дает удовлетворительных результатов [49, 1335], и осаЖдение нитрокобальтиата рассматривают только как удобный и простой способ выделения калия из раствора и отделения его от ряда других катионов. Осадок нитрокобальтиата калия растворяют и в полученном растворе определяют калий каким-нибудь другим способом, например хлороплатинатным [1271, 1335, 1541, 1846], перхлоратным [661, 662, 1271, 1459, 1756, 1806, 1811, 1846], тартратным [1217] и т. д. [c.45]

    К первому типу относят погрешности известной природы, которые могут быть рассчитаны а priori до определения компонента и учтены введением соответствующей поправки. Примеры таких погрешностей — индикаторные ошибки и ошибки измерения объемов в титриметрии, ошибки взвешивания в гравиметрическом методе анализа (см. гл. 9). [c.40]

    Сплавы Bi — As — Se. Для анализа этих сплавов предложен метод [342], включающий растворение пробы в H2SO4, гравиметрическое определение Se в виде элементного селена восстановлением его сернистым ангидридом, комплексонометрическое титрование Bi в присутствии ксиленолового оранжевого в качестве индикатора и последующее броматометрическое титрование As(III). Ошибка определения кал<дого элемента не превышает 0,5%. [c.203]

    Гравиметрическая форма не должна изменять свою массу иа воздухе из-за поглощения паров воды и оксида углерода (IV) или вследствие частичного разложения. Для точности определРиия желательно также, чтобы гравиметрическая форма имела возможно большую молярную массу и содержа.яа как можно меньше атомов определяемого элемента в молекуле. При этом погрешности определения (ошибки взвешивания, потери при перенесении осадка на фильтр и т.п.) меньше сказываются на результате анализа. [c.193]

    В производственных условиях при анализе сплавов, концентратов, руд, солей, удобрений, шлаков и т. п. требуется определять элементы при их высоком содержании. Обычно такие определения выполняют продолжительными гравиметрическими и титриметри-ческими методами, часто требующими отделения определяемого компонента от большинства сопутствующих элементов. Более быстрые фотометрические методы неприменимы из-за высоких оптических плотностей (выше 0,8). Для уменьшения оптической плотности раствор разбавляют, что вызывает при больших разбавлениях ошибки, связанные с измерениями объемов. Более разбавленный раствор можно приготовить также уменьшением навески точность в таком случае обусловливается только погрешностью взвешивания. [c.43]

    Примечание, Не следует думать, что при определении м а-л ы X количеств колориметрические методы анализа уступают по точности другим методам. Наоборот, если в предыдущем примере определять сурьму не колориметрическим способом (как это обычно делается), а гравиметрическим, то пришлось бы взвешивать около 0,0003 г 5Ьг04, что на обычных аналитических весах нельзя сделать с предельной ошибкой, меньшей 33% относительных. При этом еще не учитывается неизбежная значительная ошибка, возникающая вследствие присутствия в прокаленном осадке загрязнений, ошибка, которая не могла бы быть устранена даже в случае применения микровесов. [c.11]

    Применение газовой хроматографии позволяет не только упростить методику и сократить продолжительность анализа, но и устранить некоторые (возможно принципиальные) ошибки, а также оказать существенную помощь в определении оптимальных условий окисления в классическом гравиметрическом методе. Возможность последнего направления в применении газохроматографических методов в анализе показана в работах Стьюарта, Портера и Беда, Хахенберга и Гутбер-лета [11]. Как известно, при определении азота по Дюма во многих случаях получают завышенные результаты, особенно при анализе образцов, в состав которых входят органические соединения с длинными углеродными цепями. Ошибочные результаты получают также в случае истощения оксида меди или проведения сожжения при слишком высокой температуре. [c.198]

    Примечание. М. И. ( 0,03°), т = 10 суток. Анализ жидкой фазы К — гравиметрически в виде тетрафен илбората 504 — гравиметрически в виде Ва504, ошибка определения 0,3 %. Анализ твердой фазы кристаллооптич. и рентгенографич. [c.96]

    Авторы [98 ] радиохимически чистый гафний добавляли к анализируемому раствору в виде азотнокислого раствора после чего гафний отделяли от циркония ионным обменом на катионите КУ-2х12 из азотнокислого раствора (2-н. HNO3). Довольно быстрое разделение элементов происходило при элюировании колонки 0,7-н. серной кислотой. Количество выделенного гафния определялось гравиметрически, осаждением в виде гидроокиси, или фотометрически с ализарином S. Эта методика позволяет определять гафний в присутствии циркония с относительной ошибкой примерно 10% при содержании гафния менее 1% и с ошибкой 3—5% при большем его содержании. Метод применялся для определения гафния в цирконии, смесях окислов и в эвдиалите. Результаты определений хорошо совпадают с данными рентгеноспектрального анализа. [c.442]


Погрешности гравиметрии

      Гравиметрический
метод анализа дает наиболее правильный
результат, и, несмотря на длительность
и трудоемкость, его очень часто применяют
как проверочный метод в арбитражных
анализах. Систематические методические
ошибки в гравиметрии могут быть учтены
и уменьшены в ходе выполнения
соответствующих операций ( табл.
1.2).

Методические погрешности гравиметрии

Гравиметри-ческая операция

Абсолютная
погрешность

положительная
(завышенный результат)

отрицательная
(заниженный результат)

Выбор
осадителя:

а)
природа осадителя

б)
количество   осадителя

Нелетучий,
неспецифический осадитель

Небольшой
избыток осадителя, соосаждение
посторонних ионов

Высокая
растворимость осаждаемой формы,
коллоидообразование

Недостаток
осадителя. Слишком большой избыток
осадителя, повышение растворимости
осадка в результате комплексообразования
или солевого эффекта

Осаждение

Соосаждение
посторонних ионов

Недостаточное
время созревания (кристаллические
осадки). Коллоидообразование (аморфные
осадки)

Фильтрование

________

Неправильный
выбор фильтра – прохождение частиц
осадка через фильтр

Промывание

Промывание
нелетучей промывной жидкостью

Избыток
промывной жидкости: пептизация
аморфного осадка; гидролиз кристаллического
осадка. Потери в результате растворимости

Получение
гравиметри-ческой формы

Температура
прокаливания: получение соединения
другого состава, гигроскопичность,
поглощение СО2 из воздуха

Превышение
температуры высушивания для осадков
органической природы. Превышение
температуры прокаливания (получения
соединения другого химического
состава)

   Таблица
1.2

       Правильность
метода объясняется малой систематической
ошибкой измерений, связанной  с
точностью взвешивания на аналитических
весах:

Sx
/ x = √(S
a
/ a)
2 +
1/n(S
m
/ m)
2 
,

где
Sa
– точность взвешивания на аналитических
весах ( 0,0002 г для весов АДВ – 200;    0,00005
г для полумикровесов и т.д.);   а
– навеска анализи-руемого вещества,
г;   т — масса гравиметрической
формы, г;   п — количество
прокаливаний или высушиваний для
получения постоянной массы.        

Анализ
приведенных данных показывает, что
выявить вид ошибки можно при рассмотрении
методики определения с учетом механизма
образования осадка, свойств веществ,
используемых и получающихся в ходе
анализа.

В
настоящее время значение гравиметрических
методов анализа несколь­ко уменьшилось,
однако не следует забывать, что, имея
достоинства и недо­статки, гравиметрический
анализ является оптимальным для решения
доста­точно большого количества
аналитических задач.

Аналитическая химия — лекция №7 кислотно-основное титрование. Сущность метода и его возможности. Интервал перехода окраски кислотно-основных индикаторов. Кривые титрования.

Метод
кислотно-основного титрования основан
на реакциях взаимодей­ствия между
кислотами и основаниями, то есть на
реакции нейтрализации:

Н
+
+ ОН

↔  Н
2О

         Рабочими
растворами метода являются растворы
сильных кислот (HCl, H2S,
НNОз и др.) или сильных оснований (NaOH,
КОН, Ва(ОН)2
и др.). В зависимости от титранта метод
кислотно-основного титрования
подразде­ляют на ацидиметрию,
если титрантом является раствор кислоты,
и алкалиметрию,
если титрантом является раствор
основания.

Рабочие
растворы в основном готовят как вторичные
стандартные раство­ры, поскольку
исходные для их приготовления вещества
не являются стан­дaртными, а затем их
стандартизуют по стандартным веществам
или стандарт­ным растворам. Например:
растворы кислот можно стандартизовать
по стан­дартным
веществам

— натрия тетраборату Na2B4О7
∙10Н2О,
натрия карбонату Nа2СО3
∙10Н2О
или по стандартным растворам NaOH, КОН; а
растворы ос­нований — по щавелевой
кислоте Н2С2О4
∙ 2Н2О,
янтарной кислоте Н2С4Н4О4
или по стандартным растворам HCl, H2SO4,
НNО3.

Точка
эквивалентности и конечная точка
титрования
.
Согласно правилу эквивалентности
титрование необходимо продолжать до
тех пор, пока количе­ство прибавленного
реагента не станет эквивалентным
содержанию опреде­ляемого вещества.
Наступающий в процессе титрования
момент, когда коли­чecтвo стандартного
раствора реагента (титранта) становится
теоретически строго эквивалентным
количеству определяемого вещества
согласно опреде­ленному уравнению
химической реакции, называют точкой
эквивалентности
.

 Точку
эквивалентности устанавливают различными
способами, напри­мер по изменению
окраски индикатора, приба-вляемого в
титруемый рас­твор. Момент, при котором
происходит наблюдаемое изменение цвета
ин­дикатора, называют конечной
точкой титрования
.
Очень часто конечная точка титрования
не совсем совпадает с точкой эквивалентности.
Как правило, они отличаются друг от
друга не более чем на 0,02-0,04 мл (1-2 капли)
титранта. Это то количество титранта,
которое необходимо для взаимодей­cтвия
с индикатором.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Гравиметрический (весовой) метод анализа

Классическое название метода — весовой анализ. Гравиметрический анализ широко используют при количественных определениях. С его помощью определяют, например, содержание фосфора в фосфоритах, апатитах, фосфорных удобрениях, почвах, кормах и т. п.

1. Общая характеристика метода

Гравиметрией называют метод количественного анализа, заключающийся в точном измерении массы определяемого компонента пробы, выделенного в виде соединения известного состава или в форме элемента.

Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Это наиболее точный из химических методов анализа, его характеристики: предел обнаружения — 0,10%; правильность — 0,2 отн.%; информативность — 17 бит. В гравиметрии используют реакции обмена, замещения, разложения и комплексообразования, а также электрохимические процессы. Наиболее распространен метод осаждения.

1. Метод осажденияэто метод, при котором навеску анализируемого вещества растворяют и прибавляют 1,5-кратный избыток реагента- осадителя, соблюдая необходимые условия осаждения. Полученный осадок называют осаждаемой формой. Осадок отделяют от раствора (чаще всего фильтрованием), промывают, затем высушивают или прокаливают, по­лучая гравиметрическую (весовую) форму. Массу определяемого компонента mа рассчитывают по формуле:

ma =mBF •100/а (%)

где mа — масса высушенного или прокаленного осадка, г;

F — гравиметрический фактор, определяемый по химической формуле гравиметрической формы;

а — навеска анализируемого вещества, г.

Гравиметрические факторы, называемые также аналитическими множителями или факторами пересчета, вычисляют как отношение молекулярной массы определяемого компонента к молекулярной массе гравиметрической формы с учетом стехиометрических коэффициентов.

Пример. Вычислить гравиметрические факторы для следующих гравиметрических определений:

Определяемый компонент Al Ca CO2 Ba
Гравиметрическая форма Al2O3 CaO BaCO3 BaSO4

Решение: F = ABa / MBaSO4= 137.4 / 233.4 = 0.5887

2. Методы выделенияоснованы на выделении определяемого компонента из анализируемого вещества и точном взвешивании его. Например, при определении содержания золы в твердом топливе сжигают определенное количество (навеску) этого топлива, взвешивают золу и вычисляют процентное содержание ее во взятом образце.

3.Метод отгонки состоит в том, что определяемый компонент «количественно» выделяют в виде летучего соединения (газа, пара) действием кислоты, основания или высокой температуры на анализируемое вещество. Например, определяя, содержание двуокиси углерода в карбонатной породе, обрабатывают образец ее соляной кислотой. Выделившийся газ пропускают через поглотительные трубки со специальными реактивами. По увеличению массы поглотительной трубки определяют количество выделившегося CO2.

4.Термогравиметрия. Выполнение большинства операций гравиметрического анализа (фильтрование, высушивание и прокаливание осадка, доведение его до постоянной массы) отнимает очень много времени. Однако с помощью термовесов, сконструированных Дювалем, удается значительно ускорить определение. В этом приборе можно нагревать твердые вещества до температуры приблизительно 10000C и наблюдать, как изменяется их масса. При этом прибор автоматически вычерчивает на бумаге кривую изменения массы вещества. Получающаяся ступенчатая кривая характеризует изменение массы осадка в процессе повышения температуры и даже позволяет судить о химических превращениях веществ.

Например, такая кривая показывает, что кристаллогидрат оксалата кальция CaC2O4•H2O устойчив лишь при температуре не выше 1000C. При повышении температуры до 2260C он разрушается с образованием безводной соли CaC2O4. Последняя при 4200C разлагается с получением карбоната кальция СаСО3. Далее при 6600C начинается распад карбоната на окись кальция и двуокись углерода. Этот процесс заканчивается при температуре 8400C.

2.Основные операции весового анализа

В ходе гравиметрического определения различают следующие операции: 1) отбор средней пробы вещества и подготовку ее к анализу; 2) взятие навески; 3) растворение; 4) осаждение определяемого элемента (с пробой на полноту осаждения); 5) фильтрование; 6) промывание осадка (с пробой на полноту промывания); 7) высушивание и прокаливание осадка; 8) взвешивание; 9) вычисление результатов анализа.

Отбор средней пробы. Аналитическое определение лишь тогда приводит к содержательным выводам, когда отобранная для анализа проба является пред­ставительной по отношению к исследуемому материалу.

В производстве бывает необходимо определить средний химический состав большой партии неоднородного материала (удобрения, ядохимиката, почвы, руды и т. п.). При этом подготовка вещества к анализу сводится к правильному отбору так называемой средней пробы. Правила отбора средних проб раз­личных материалов предусмотрены государственными стандартами или техническими условиями. Выполнение этой операции всегда подчинено единому принципу: средняя проба должна быть составлена из большого числа мелких порций, взятых в разных местах анализируемого материала. Благодаря этому состав отобранной пробы приближается к среднему химическому составу большого количества исследуемого материала.

Первичная средняя проба, отобранная тем или иным способом, еще непригодна для анализа. Обычно она слишком велика (от одного до нескольких килограммов) и неоднородна. Подготовка пробы состоит в измельчении, перемешивании и сокращении до небольшой массы (около 300 г). Для сокращения пробы пользуются так называемым квартованием . Измельченный материал перемешивают в куче, рассыпают ровным слоем в виде квадрата (или круга), делят на четыре сектора, содержимое двух противоположных секторов отбрасывают, а двух остальных — соединяют вместе. Операцию квартования повторяют многократно. Из полученного таким образом однородного материала берут навески для анализа.

Перекристаллизация. В условиях исследовательской лаборатории часто требуется найти содержание какого-нибудь элемента в химически чистом соединении (например, содержание бария в хлориде барии ВаС12•2Н20). Здесь подготовка вещества к анализу состоит и очистке его от примесей и обычно осуществляется путем перекристаллизации для удаления примесей только из кристаллических веществ, например из солей.

Применительно к пробоотбору введены следующие количественные характеристики:

1. Рабочий диапазон. A=mi — диапазон количеств определяемого компонента i, к которым применима данная методика.

2. Диапазон количества пробы P=mi+mo — диапазон общих количеств пробы, состоящий из определяемого компонента (индекс i) и «матрицы» (индекс 0) — суммы остальных компонентов. В зависимости от требуемого для анализа количества пробы методики обычно классифицируют следующим образом:

3.Диапазон содержаний компонента

В зависимости от величины G компоненты пробы обычно называют следующим образом:

G> 10% 10%>G> 1% G< 1%
главный компонент сопутствующий компонент следовый компонент

Легко видеть, что между A, P и G существует соотношение:

P = A/G• 100%

Отсюда можно оценить минимальное (и максимальное) количество пробы, требуемое для проведения анализа по выбранной методике, если заданы величины рабочего диапазона и содержание определяемого компонента. На практике следует по возможности брать количество пробы, несколько превышающее рас­считанное.

Примеры.

Содержание определяемого вещества в пробе приблизительно 10%; методика позволяет определять не менее 0.5 мг этого вещества. Минимальное количество пробы, требуемое для анализа, составляет:

P = 0,5 мг/10•100=5мг

Максимальное количество пробы, которым располагает аналитик, составляет 10 мг, содержание определяемого компонента в ней около 0,2%. Следовательно, необходимо использовать методику, позволяющую определять не менее:

А = 0,2 • 10 мг/100 = 0,02 мг = 20 мкг

2. Взятие навески

Навеской называют количество вещества, необходимое для выполнения анализа.

Как правило, чем больше навеска, тем выше и относительная точность определения. Однако работа с большой навеской имеет свои отрицательные стороны: получающийся при этом большой осадок трудно отфильтровать, промыть или прокалить, анализ занимает много времени. Наоборот, при слишком малой навеске ошибки взвешиваний и других операций, неизбежные при анализе, значительно снижают точность определения.

Таким образом, выбор величины навески анализируемого вещества определяется количеством осадка, наиболее удобным в работе. Например, на бумажном фильтре диаметром 7 см можно легко отфильтровать 0,5 г кристаллического сульфата бария ВаSО4. Но с таким же количеством аморфных, студенистых осадков гидрооксидов Fe(OH)3, Al(OH)3 работать чрезвычайно трудно.

Аналитической практикой установлено, что наиболее удобны в работе кристаллические осадки с массой около 0,5 г и объемистые аморфные осадки с массой 0,1—0,3 г. Учитывая эти нормы осадков и зная приблизительное содержание определяемого элемента в веществе, вычисляют необходимую величину навески.

Пример. Какую навеску хлорида бария BaCl2• 2H2O нужно взять для определения содержания в нем бария?

Исходные данные: формула осадка BaSO4; норма кристаллического осадка 0,5 г.

Решение. Величину навески находят из пропорции:

233,43 г BaSO4 получаются из 244,31 г BaCl2•2H2O
0,5 г BaSO4 получаются из Х г BaCl2•2H2O

X= 0,52 г.

Ответ: для анализа следует взять навеску хлорида бария ВаС12•2Н2О около 0,5— 0,6 г.

Иногда, выбирая навеску, учитывают необходимую точность определения и возможные потери из-за растворимости осадка.

Разумеется, выбор навески зависит еще от метода, с помощью которого будет выполняться определение (макро-, полумикро- или микроанализ). Мы рассмотрели случай выбора навески при макроанализе.

При определениях, не связанных с получением осадка, например при изучении влажности или зольности различных материалов, допустимы навески в 1,0—2,0 г, а иногда и больше. Вещество взвешивают в специальном ста­канчике — бюксе.

3. Растворение навески анализируемого вещества

Для растворения навеску анализируемого вещества переносят (т. е. осторожно пересыпают) в чистый химический стакан нужного объема. Подходящий растворитель подбирают заранее, делая пробы с отдельными порциями вещества. Если предварительной пробой было установлено, что анализируемое вещество растворимо в воде, то навеску растворяют в 100—150 мл дистиллированной воды. При необходимости содержимое стакана нагревают на асбестированной сетке или на водяной бане, накрыв стакан часовым стеклом и не допуская кипения раствора.

Если исследуемое вещество не растворимо в воде, то навеску переводят в раствор действием кислоты (уксусной, соляной, серной, азотной) или царской водки. Количество той или иной кислоты, необходимое для растворения, вычисляют (с учетом ее концентрации) по уравнению реакции.

Выбор кислоты для растворения навески определяется, кроме того, характером происходящей при этом реакции. Например, известняк СаСО3 следует растворять в соляной кислоте, а не в серной, так как при действии последней образуется малорастворимый сульфат кальция CaSO4.

Навеску растворяют в кислоте осторожно, накрыв стакан часовым стеклом, чтобы избежать потери анализируемого вещества. Потеря возможна потому, что выделяющиеся газы (CO2, H2, H2S) увлекают с собой капельки раствора.

Приготовленный тем или иным способом раствор нередко приходится еще подготовить к анализу: упарить, нейтрализовать избыток кислоты, связать или удалить ионы, мешающие определению.

Разложение малорастворимых неорганических веществ. Разложение пробы малорастворимого неорганического вещества осуществляют «мокрым» путем (действием кислот) или «сухим» путем (сплавлением с карбонатом натрия, едкими щелочами и другими плавнями).

Азотная кислота как сильный окислитель растворяет медь, серебро, ртуть, мышьяк, висмут, бор, кадмий, германий, ванадий, марганец, молибден и некото­рые другие металлы.

В концентрированной серной кислоте растворяют сплавы олова, сурьмы, свинца, а также ферротитан.

«Нержавеющие» (легированные) стали растворяют в хлорной кис­лоте.

Золото и платину растворяют в царской водке (конц.НСl и конц. НNО3), которая действует и как окислитель, и как комплексообразователь; в результате такой обработки получаются комплексные хлориды этих металлов. Вольфрамовые сплавы, молибден и ферромолибден, цирконий и тантал рас­творяются в смеси азотной и плавиковой кислоте обра­зованием комплексных фторидов.

Пробы кремнекислоты, горных пород и различных силикатов разлагают дей­ствием плавиковой кислоты.

Перечисленные способы разложения анализируемой пробы и получения раствора не универсальны, непригодны для всех случаев анализа. Наиболее подходящий метод выбирают исходя из особенностей анализируемого материала.

4. Осаждение

Осаждение считают важнейшей операцией гравиметрического анализа.

При выполнении ее необходимо правильно выбрать осадитель, рассчитать его количество, соблюсти определенные условия осаждения, убедиться в полноте осаждения иона из раствора.

Выбор осадителя. Осадитель выбирают, исходя из ряда требований, предъявляемых к осадку.

1.Получающийся осадок (так называемая осаждаемая форма) должен прежде всего обладать как можно меньшей растворимостью в воде. Например, ион Ba2+ образует несколько малорастворимых солей: карбонат, оксалат, хромат и сульфат. Учитывая произведения растворимости их:

BaC2O4 — 1,6•10-10; BaCO3 — 2,4 • 10-10; ВаСО3 — 8,0•10-10; BaSO4 — 10-10. Очевидно, что при гравиметрическом определении ионы Ва2+ следует осаждать в виде сульфата BaSO4, имеющего наименьшую величину произведения растворимости.

2. Кроме того, получаемый осадок должен легко отфильтровываться и хорошо отмываться от примесей. Эти свойства наиболее характерны для крупнокристаллических осадков.

3. Наконец, осаждаемая форма должна при прокаливании полностью превращаться в весовую форму. Состав весовой формы должен точно соответствовать определенной химической формуле иначе невозможно провести вычисление результатов анализа. Например, осадок гидроокиси железа Fe(OH)3 в результате прокаливания полностью переходит в оксид железа Fe2O3. Последнюю и на­зывают весовой формой и именно ее взвешивают в конце анализа.

Помимо этого, весовая форма не должна изменять своей массы на воздухе из-за поглощения паров воды и двуокиси углерода или вслед­ствие частичного разложения. Для точности определения желательно также, чтобы весовая форма имела возможно большую молекулярную массу и содержала как можно меньше атомов определяемого элемента в молекуле. При этом погрешности определения (ошибки взвешивания, потери при перенесении осадка на фильтр и т. п.) меньше сказываются на результате анализа.

4.Кроме всех этих требований, предъявляемых к осадку при выборе осадителя, учитывают летучесть последнего. В качестве осадителя всегда предпочитают более летучее вещество, если примеси его не будут полностью удалены из осадка промыванием, то они улетучатся при последующем прокаливании. Например, для осаждения Ba2+ в виде сульфата бария пользуются серной кислотой, а не ее раствори­мыми солями (К2S04), так как кислота более летуча. По тем же соображениям ион Fe3+ осаждают из раствора действием летучего NH4OH, а не NaOH или KOH.

5. Выбираемый осадитель должен в той или иной мере обладать селективностью по отношению к осаждаемому иону. В противном случае приходится предварительно удалять другие ионы, мешающие определению. Такая селективность особенно характерна для органических реагентов, находящих применение не только в качественном, но и в количественном анализе.

Расчет количества осадителя. Необходимое количество осадителя вычисляют исходя из содержания осаждаемого иона в растворе и величины навески анализируемого вещества.

Пример. Для количественного определения Ba2+ растворили навеску BaCl2•2H2O в 0,4526 г. Какой объем 2 н. раствора серной кислоты потребуется для полного осаждения ионов Ba2+?

Решение: Из уравнения реакции видно, что одна грамм-молекула хлорида бария взаимодействует с одной грамм-молекулой серной кислоты:

BaCl2•2H2O + H2SO4 = BaSO4 + 2HC1 + 2H2O

Следовательно, на взаимодействие с 244,31 г BaCl2•2H2O расходуется 98 г H2SO4, которые содержатся в 1000 мл 2 н. раствора кислоты. Поэтому можно составить следующую пропорцию:

на 244,31 г BaCl2•2H2O идет 1000 мл 2 н. H2SO4
0,4526 г BaCl2•2H2O идет x мл 2 н. H2SO4

Отсюда

х = (0,4526 • 1000)/244,31 =2 мл

Казалось бы, в этом примере для полного осаждения ионов Ba2+ достаточно взять 2 мл 2 н. H2SO4. Однако это не так. Абсолютно нерастворимых веществ не существует, и над осадком сульфата бария в растворе еще будут находиться неосажденные ионы Ba+. Поэтому необходимо принять меры, чтобы понизить концентрацию их в растворе, т. е. добиться практической полноты осаждения ионов Ba2+.

Известно, что жидкость над осадком представляет собой насыщенный раствор электролита. Произведение концентраций его ионов при неизменной температуре сохраняет постоянное значение, равное произведению растворимости. В рассматриваемом примере

ПРBaSO4 = [Ва2+] [SO42- ] = 1,1•10-10

Следовательно, чтобы понизить концентрацию ионов Ba2+, еще остающихся в растворе после осаждения, нужно повысить концентрацию других ионов (SO42-), т. е. действовать избытком осадителя (серной кислоты).

Опытным путем установлено, что для практически полного осаждения иона достаточно полуторного избытка осадителя. Добавление большего избытка осадителя может повысить растворимость осадка вследствие образования комплексных соединений, кислых солей и т. д.

Ответ: в рассматриваемом случае для полного осаждения ионов нужно взять не 2 мл, а 3 мл 2 н. H2SO4.

Наиболее благоприятные условия получения кристаллических и аморфных осадков неодинаковы.

При осаждении в растворе протекают два взаимосвязанных процесса: возникновение мельчайших зародышевых кристаллов и их дальнейший рост. Следовательно, надо по возможности уменьшить число центров кристаллизации и усилить рост уже образовавшихся кристаллов. Для достижения этих целей необходимо, чтобы раствор был возможно менее пересыщенным по отношению к осаждаемому соединению. Действительно, из сильно пересыщенного раствора осаждается множество мельчайших зародышевых кристаллов, которые почти не укрупняются. И, наоборот, в мало пересыщенном растворе создаются условия для дальнейшего роста небольшого количества образовавшихся кристаллов.

Возможно малое пресыщение раствора и получение крупнокристаллического осадка достигается при соблюдении особых условий. Разумеется, даже при соблюдении этих условий, помимо крупных кристаллов, получается и некоторое количество мелких. Чтобы их было меньше, осадок оставляют стоять на несколько часов (или до следующего занятия) для созревания (старения). Известно, что мелкие кристаллы любого вещества растворяются несколько быстрее, чем крупные, так как имеют большую поверхность соприкосновения с растворителем. Поэтому при созревании мелкие кристаллы растворяются и за их счет растут крупные. Поскольку крупные кристаллы имеют меньшую поверхность, соосаждение примесей понижается. Более быстрому созреванию осадка содействует повышение температуры, ускоряющее движение ионов в растворе. Поэтому стакан с осадком обычно оставляют в теплом месте, например на горячей водяной бане.

Проба на полноту осаждения. Как только раствор над осадком становится совершенно прозрачным, делают пробу на полноту осаждения иона. Для этого по стенке стакана прибавляют еще 2—3 капли раствора осадителя. Если при этом в месте смешения растворов появится хотя бы легкая муть, то считают, что полнота осаждения не достигнута. В таком случае добавляют к жидкости еще несколько миллилитров осадителя, перемешивают стеклянной палочкой, снова нагревают и оставляют стоять для созревания осадка. Иногда пробу на полноту осаждения приходится повторить несколько раз. Ее рекомендуется сделать и перед самым фильтрованием.

5. Фильтрование

Фильтрованием отделяют полученный осадок от раствора, содержащего посторонние примеси. Тщательность выполнения этой операции сказывается на точности определений.

В гравиметрическом анализе применяют не обычную фильтровальную бумагу, а так называемые беззольные фильтры. В процессе изготовления их промывают кислотами (HCl), удаляя большую часть минеральных веществ. Масса золы, образующейся при сжигании одного беззольного фильтра, бывает мала, поэтому ею пренебрегают.

Промышленность выпускает беззольные фильтры нескольких сортов, различающиеся по диаметру и плотности.

Черная (или красная) лента – наименее плотные, т.е. быстрофильтрующие и крупнопористые и используют для отделения аморфных осадков гидроксидов железа, алюминия и др.

Белая лента — фильтры средней плотности, применяемые для отделения большинства кристаллических осадков

Синяя лента — фильтры мелкопористые, наиболее плотные и медленно фильтрующие; применяют их для отделения мелкокристаллических осадков сульфата бария BaSО4 , эти фильтры называют также «баритовыми».

Иногда для фильтрования используют фарфоровую воронку Бюхнера, на дно которой помещают бумажный фильтр. Через нее фильтруют также при помощи вакуум-насоса.

6.Соосаждение. Промывание осадка

Осадок увлекает с собой посторонние вещества из раствора. Это явление, называемое соосаждением, — одно из серьезных помех при выполнении гравиметрического определения. Можно выделить четыре основных вида соосаждений.

Окклюзия — процесс захвата примесей микрокомпонента внутрь растущих кристаллов осадка основного компонента. Удаление окклюдированных примесей из осадка представляет трудную задачу.

Изоморфное соосаждение — процесс образования «смешанных кристаллов» с ионами основного компонента и микрокомпонента, имеющими близкие радиусы. Например, осадок сульфата бария может увлекать с собой из раствора примеси перманганата калия, так как эти вещества изоморфны, т.е. образуют совместную пространственную кристаллическую решетку.

Соосаждение с образованием химических соединений с осаждаемым веществом и присутствующими в растворе примесями также довольно распространено. Если осаждать из раствора ионы Ba2+ действием серной кислоты, то вместе с ними соосаждаются и примеси Fe3+ в виде комплексного сульфата Ва3[Fe(SO4)3]. В таких случаях необходимо предварительное удаление примесей из раствора. Так, перед осаждением ионов Ba2+ примеси Fe3+ приходится осадить аммиаком и отфильтровать гидроокись железа.

Иногда для удаления примесей используют так называемое переосаждение. Например, осадок оксалата кальция CaC2O4, содержащий примеси оксалата магния MgC2O4, растворяют в соляной кислоте, нейтрализуют раствор и переосаждают ион Ca2+, т. е. повторяют осаждение его оксалатом аммония. Поскольку переосаждение происходит при значительно меньшей концентрации ионов Mg2+, чем в первый раз, осадок CaC2O4 оказывается практически свободным от примесей MgC3O4.

Соосаждение в результате поверхностной адсорбции примесей осадком особенно часто встречается при осаждении аморфных веществ, имеющих разветвленную поверхность (гидроксиды железа и алюминия, кремневая кислота и т. п.).

Но адсорбция — это обратимый процесс. При длительном промывании осадка той или иной жидкостью поглощенные им примеси могут быть десорбированы, вымыты и удалены. Десорбции содействует также применение горячей промывной жидкости. Задача промывания и состоит в удалении посторонних примесей, адсорбированных осадком из раствора.

Иногда осаждаемое вещество увлекает примеси из раствора в результате сочетания нескольких видов соосаждения (адсорбционная окклюзия, химическая окклюзия и т. п.).

При промывании необходимо исключить потери осажденного вещества. Поэтому выбор промывной жидкости определяется свойствами промываемого осадка.

Промывание разбавленным раствором осадителя. При промывании большинства осадков дистиллированной водой возможно частичное растворение их, приводящее к потере осажденного вещества. Во избежание потерь такие осадки промывают разбавленным раствором осадителя, т. е. в промывную жидкость вводят осаждающий ион. Например, осадок оксалата кальция CaC3O4, заметно растворимый в воде, промывают разбавленным раствором осадителя, т. е, оксалата аммония (NH4) C2O4.

Промывание раствором электролита-коагулятора. Если осажденное вещество склонно к пептизации, то возможна потеря его в результате прохождения коллоида через фильтр. Чтобы этого избежать, такой осадок промывают разбавленным раствором электролита-коагулятора, препятствующего пептизации. Электролитами-коагуляторами обычно служат летучие вещества, легко удаляющиеся при последующем прокаливании осадка. Так, аморфные осадки гидроксидов Fe(OH)3 и Al(OH)3 промывают разбавленным раствором нитрата аммония.

Промывание дистиллированной водой. Промывание водой возможно только в тех немногих случаях, когда промываемый осадок практически не растворяется в воде, не пептизируется и не гидролизуется. Так, например, осадок сульфата бария BaSO4 промывают на фильтре дистиллированной водой.

Когда повышение температуры не увеличивает потери осажденного вещества используют не холодную, а горячую промывную жидкость, так как нагревание ускоряет десорбцию примесей.

Самое промывание производят сначала декантацией, т. е. приливают в стакан с осадком 15—20 мл промывной жидкости, тщательно перемешивают, дают осадку осесть и сливают жидкость по палочке на фильтр. При таком способе отмывание примесей значительно ускоряется. Промывание декантацией обычно производят 3—4 раза. Затем осадок количественно, без потерь, переносят на фильтр. Для этого наливают в стакан небольшую порцию промывной жидкости, взмучивают осадок и полученную суспензию осторожно сливают на фильтр по стеклянной палочке. Выполняя эту операцию нельзя терять ни одной капли жидкости. Пользуясь промывалкой, многократно обмывают стенки стакана небольшими порциями промывной жидкости и каждый раз сливают ее на фильтр. Частицы осадка, приставшие к стенкам стакана, сначала тщательно оттирают резиновым наконечником палочки, смывают на фильтр, а затем следы осадка снимают кусочком фильтра, который помещают в ту же воронку. Стеклянную палочку также обтирают кусочком фильтра и помещают его в воронку с осадком.

Наконец, когда ни в стакане, ни на палочке больше не останется частиц осажденного вещества, приступают к промыванию осадка на фильтре. Промывают его большим числом маленьких порций жидкости, которой всякий раз дают полностью стекать. Это обеспечивает более быстрое удаление примесей, чем в случае больших порций жидкости. Попутно осадок смывают в нижнюю часть фильтра.

Повторив промывание 4—5 раз, делают пробу на полноту удаления примесей. Для этого собирают из воронки в пробирку небольшую порцию фильтрата и прибавляют к нему реактив, дающий характерную реакцию с удаляемым из осадка ионом. Например, выполняя пробу на полноту удаления Cl из осадка BaSO4, берут 1—2 мл фильтрата, подкисляют его азотной кислотой и действуют нитратом серебра. Если муть хлорида серебра при этом не появляется, то промывание прекращают. Фильтрат при гравиметрических определениях обычно не анализируют и отбрасывают, если он совершенно прозрачен, т. е. не содержит частиц осадка.

Фильтрование и промывание осадка следует выполнять на одном и том же занятии; отфильтрованный осадок сильно высыхает при хранении и не поддается промыванию.

7. Высушивание и прокаливание осадка

Отфильтрованный и промытый осадок еще содержит влагу; обычно его высушивают и прокаливают. Эти операции позволяют получить вещество со строго определенным химическим составом.

Высушивание осадка. Осадок высушивают вместе с фильтром. Воронку с осадком накрывают листком влажной фильтровальной бумаги. Ее края плотно прижимают к наружной поверхности воронки, лишнюю бумагу удаляют. Получается бумажная крышечка, плотно сидящая на воронке и защищающая осадок от пыли.

После этого воронку с осадком следует поместить на 20—30 мин в сушильный шкаф, имеющий полки с круглыми отверстиями. В одно из них и вставляют воронку. Температуру в шкафу поддерживают не выше 90—105° С — при более сильном нагреве фильтр обугливается и распадается.

Прокаливают осадки в фарфоровых тиглях различных размеров. Прежде чем приступить к прокаливанию, необходимо узнать массу пустого тигля. Для этого тигель предварительно прокаливают до постоянной массы, т. е. до тех пор, пока масса его перестанет изменяться. Прокаливают тигли в электрической муфельной печи, в тигельной печи или на газовой горелке, но обязательно при тех же температурных условиях, при которых предполагается прокаливать осадок. О температуре прокаливания ориентировочно судят по цвету каления муфельной (тигельной) печи:

Начало темно-красного каления …………………………… ~525°С
Темно-красное каление…………………………………………. –7000C
Светло-красное каление………………………………………… –900 – 10000C
Светло-оранжевое каление …………………………………… ~1200°С
Белое каление …………………………………………………….. –13000C
Ослепительно-белое каление………………………………… –1400 – 15000C

Предназначенный для прокаливания тигель берут тигельными щипцами за край и помещают в муфельную печь. После 25—30 мин прокаливания его вынимают из печи, дают остыть на листе асбеста (или на гранитной плитке) и переносят в эксикатор. Последний закрывают крышкой не сразу, а спустя 1—2 мин; иначе при охлаждении в эксикаторе создается разрежение и крышку будет трудно открыть. Затем эксикатор относят в весовую комнату и оставляют на 15—20 мин, чтобы тигель принял температуру весов.

Взвесив тигель на аналитических весах, его снова прокаливают 15—20 мин, охлаждают в эксикаторе и повторяют взвешивание. Если результат последнего взвешивания будет отличаться от предыдущего не более чем на ±0,0002 г, считают, что тигель доведен для постоянной массы, т. е. подготовлен для прокаливания осадка. В противном случае тигель прокаливают, охлаждают и взвешивают еще раз. Результаты всех взвешиваний непременно записывают в лабораторный журнал.

Прокаливание осадка. Кристаллизационная, или конституционная вода, которую может содержать даже высушенный осадок, должна быть полностью удалена путем прокаливания. Кроме того, при прокаливании нередко происходит химическое разложение вещества. Например, оксалат кальция CaC2О4•Н2О, получаемый при осаждении ионов Са2+ оксалатом аммония, уже при высушивании теряет кристаллизационную воду:

CaC2O4 • H2O → CaC2O4 + H2O

При слабом прокаливании он выделяет окись углерода и превращается в карбонат кальция:

CaC2O4 → СО2 + СаСО3

Наконец, при сильном прокаливании карбонат кальция разлагается с образованием двуокиси углерода и окиси кальция:

CaCO3 → CaO + CO2

По массе окиси кальция и вычисляют результат определения. Температура и продолжительность прокаливания осадков могут быть различны.

В самой технике прокаливания различают два случая.

1. Прокаливание осадка без отделения фильтра. Этот способ используют, когда прокаливаемый осадок не взаимодействует с углеродом обуглившегося фильтра. Так, без удаления фильтра прокаливают осадки оксидов Al2O3, CaO и некоторые другие.

Фарфоровый тигель, доведенный до постоянной массы, ставят на глянцевую (лучше черную) бумагу. Осторожно извлекают из воронки высушенный фильтр с осадком и, держа над тиглем, свертывают. После этого аккуратно укладывают его в тигель. Если при внимательном осмотре на воронке обнаруживают следы осадка, то тщательно вытирают внутреннюю поверхность ее кусочком беззольного фильтра, который помещают в тот же тигель. Наконец, крупинки осадка, просыпавшиеся на бумагу при свертывании фильтра, также стряхивают в тигель. Затем ставят тигель на электрическую плитку и осторожно озоляют (сжигают) фильтр. Иногда вместо этого тигель вставляют в фарфоровый треугольник на кольце штатива и нагревают на небольшом пламени горелки. Желательно, чтобы фильтр медленно обуглился и истлел, не вспыхивая, так как горение приводит к потере мельчайших частиц осадка. Если он все-таки загорится, то пламя ни в коем случае не задувают, а только перестают нагревать и ждут, когда горение прекратится.

Закончив озоление фильтра, переносят тигель в муфельную печь и прокаливают 25—30 мин. Охлаждают тигель в эксикаторе, взвешивают и записывают значение его массы в лабораторный журнал. Повторяют прокаливание (15—20 мин), охлаждение и взвешивание до тех пор, пока не будет достигнута постоянная масса тигля с осадком.

2. Прокаливание осадка с отделением фильтра. К этому способу прибегают, когда осадок при обугливании фильтра может химически взаимодействовать с углеродом (восстанавливаться). Например, осадок хлорида серебра AgCl восстанавливается углеродом до свободного серебра; прокаливать его вместе с фильтром нельзя.

Хорошо высушенный осадок возможно полнее высыпают из фильтра на глянцевую бумагу и накрывают химическим стаканом (или опрокинутой воронкой), чтобы предотвратить потери. Фильтр с оставшимися на нем частицами осадка укладывают в тигель (доведенный до постоянной массы), сжигают и прокаливают. К прокаленному остатку в том же тигле присоединяют ранее отделенный осадок. После этого, как обычно, содержимое тигля прокаливают до постоянной массы.

Если осадок отфильтровывают с помощью стеклянного тигля, то вместо прокаливания прибегают к высушиванию до постоянной массы. Разумеется, фильтрующий тигель должен быть предварительно доведен до постоянной массы при той же температуре.

Если в ходе анализа будет допущена непоправимая ошибка (например, потеряна часть осадка, пролита часть раствора с осадком и т. п.), то определение следует начать снова, не расходуя время на получение заведомо неверного результата.

8. Взвешивание

Взвешивание производят на аналитических весах с точностью до 10-6 г. (ВЛР 200)

9. Вычисления в гравиметрическом анализе

Выше уже были рассмотрены некоторые сравнительно простые вычисления, а именно: расчет величины навески и количества осадителя, нахождение относительной ошибки определения. Вычисление результатов анализа также не отличается сложностью.

Обычно результаты гравиметрических определений выражают в процентах от исходного количества вещества. Для этого нужно знать величину навески анализируемого вещества, массу полученного осадка и его химическую формулу.

Гравиметрические определения преследуют различные цели. В одних случаях необходимо определить содержание того или иного элемента в химически чистом веществе, например содержание бария в хлориде бария BaCl2•2H2O. В других случаях требуется найти содержание действующего начала в каком-нибудь техническом продукте или вообще в веществе, имеющем примеси. Например, приходится определять содержание хлорида бария BaCl2•2H2O в продажном хлориде бария.

Техника определений в обоих приведенных случаях может оставаться одинаковой, но вычисления при этом будут различны. Рассмотрим ход вычислений на конкретных примерах.

Пример 1. Определить содержание чистого BaCl2•2H2O в образце технического хлорида бария. Навеска составляет 0,5956 г. Масса осадка сульфата бария BaSO4 после прокаливания равна 0,4646 г.

Решение: Определение основано на реакции, протекающей по уравнению

BaCl2•2H2O + H2SO4 = BaSO4 + 2HCl + 2H2O

М=244,30 г/моль М= 233,40 г/моль

Прежде всего вычисляют, какому количеству BaCl2•2H2O соответствует найденное в анализе количество BaSO4:

233,40 г BaSO4 получаются из 244,30 г BaCl2•2H2O
0,4646 г BaSO4 получаются из Х г BaCl2•2H2O

х = (0,4646 • 244.30)/233.40 = 0.4862 г BaCl2 • 2H2O.

Затем выражают содержание чистого BaCl2•2H2O в процентах от исходной навески технического хлорида бария:

0,5956 г технического продукта составляют 100 %
0,4862 г чистого BaCl2•2H2O составляют х %

х = (0,4862•100)/0.5956 = 81.83%.

Ответ: технический хлорид бария содержит 81.83% чистого BaCl2•2H2O.

Пример 2. Определить содержание бария в образце химически чистого хлорида бария BaCl2•2H2O. Навеска чистого BaCl2•2H2O равна 0,4872 г. Масса осадка сульфата бария BaSO4 после прокаливания 0.4644 г.

Решение. Сначала вычисляют, сколько бария (атомная масса 137,40) содержится в полученном осадке сульфата бария:

в 233,40 г BaSO4 содержится 137,40 г Ba
в 0,4644 г BaSO4 содержится х г Ba

х = (0,4644•137,40)/233,40 = 0,2733 г.

Очевидно, что это же количество бария входило до реакции в состав навески BaCl2•2H2O. Поэтому можно составить пропорцию:

0,4872 г BaCl2•2H2O составляют 100 %
0,2733 г Ba составляют х %

х = (0,2733 • 100)/0,4872 = 56,09%

Ответ: следовательно, хлорид бария BaCl2•2H2O содержит 56.09% бария.

Нередко для вычислений в гравиметрическом анализе используют факторы пересчета, называемые также аналитическими или весовыми факторами.

Фактор пересчета (F) представляет собой отношение атомной (или молекулярной) массы определяемого вещества к молекулярной массе вещества, находящегося в осадке:

Фактор пересчета показывает, сколько граммов определяемого вещества содержит 1 г осадка. В конкретных случаях факторы пересчета находят следующим образом:

При определении бария путем взвешивания в виде сульфата BaSO4 фактор пересчета равен:

F = ABa/MBaSO4 = 137,40 / 233,40 = 0,5887

Пользуясь факторами пересчета, делают вычисления по готовым формулам. Например, чтобы вычислить содержание элемента (или другой составной части) в сложном веществе, используют формулу:

% = (mF/G)•100,

где m— масса полученного осадка, г;

F — фактор пересчета;

G — навеска исследуемого вещества, г.

По этой формуле можно рассчитать и процентное содержание бария в хлориде бария BaCl2•2H2O:

Ba, % = (mF/C)•100 = [(0,4644•0,5887)/0,4872] • 100 = 56,09 %.

    Процесс химического анализа состоит из нескольких операций. Так, определяя содержание какого-нибудь компонента методом гравиметрического анализа, надо измельчить образец, взять среднюю пробу, взять аналитическую навеску, растворить ее, получить осадок, отфильтровать его, промыть, высушить, прокалить и взвесить. Как бы тщательно ни выполнялись указанные операции, почти в каждой из них получается некоторая ошибка. Все это сказывается на результате анализа. При оценке конечного результата анализа надо учесть все возможные ошибки и рассчитать, -как эти ошибки отражаются на полученном результате. По своему характеру ошибки анализа подразделяются на случайные и систематические. [c.203]

    Систематические методические ошибки в гравиметрии могут быть учтены и уменьшены в ходе выполнения соответствующих операций. Как видно из табл. 7.8, завышенные результаты получаются либо вследствие загрязнения осадков посторонними примесями, не удаленными при промывании и прокаливании, либо из-за неправильно выбранной гравиметрической формы. Отрицательные ошибки возникают по многим причинам. Выявить вид ошибки можно, тщательно рассмотрев методику анализа на осно- [c.144]

    Эта ошибка близка по величине к ошибке гравиметрического анализа (см. пример [c.70]

    Применение гравиметрического анализа основано на том факте, что весовая форма является соединением определенного состава и, следовательно, имеет определенный молекулярный вес. Количество определяемого компонента можно найти по стехиометрической пропорции. Ошибка определения оказывается равной [c.62]

    Получающаяся здесь ошибка измерения по величине близка к ошибке гравиметрического анализа (ср. пример [4.3]). [c.70]

    Чувствительность Ь инструментальных методов анализа определяется фактором пересчета показаний прибора (обычно в единицах шкалы) на содержание вещества в гравиметрии — это обратная величина стехиометрического гравиметрического фактора (Ь=1//). Чем меньше /, тем больше чувствительность метода и тем меньше абсолютная ошибка гравиметрического определения количества вещества х. В объемных методах анализа фактору f соответствует эквивалентная концентрация с применяемого титранта. Чтобы ошибка определения была невелика, а чувствительность метода высока, эта величина должна быть как можно меньшей, что способствует получению интенсивного сигнала у. Однако при этом начинает сказываться эффект разбавления, что приводит к систематическим ошибкам определения, поэтому следует выбирать оптимальную величину Сз. [c.457]

    Теория гравиметрических методов анализа включает учение об образовании осадков, формулирует требования к весовым формам и т. д. Основная операция в гравиметрическом анализе — количественное осаждение определяемого компонента. Полученный осадок должен быть свободен от загрязнений необходимо, чтобы он легко отделялся от раствора, иначе говоря—легко отфильтровывался и промывался. Осадок должен либо сам быть соединением постоянного состава, которое нетрудно взвесить (т. е. соединением нелетучим, негигроскопичным, инертным по отношению к воздуху), либо переводиться в такое соединение высушиванием или прокаливанием. Такие требования легко предъявить, но трудно реализовать. Важно устранить потери за счет растворения осадка, уменьшить ошибки, связанные с соосаждением и последующим осаждением (на готовом осадке) посторонних компонентов. А ведь от гравиметрических методов ждут многого и, прежде всего, высокой точности. Эти методы позволяют снизить относительную ошибку определения до 0, %. Однако уменьшить ошибки можно, лишь хорошо владея теорией осаждения, поэтому исследования в этой области не прекращаются. [c.44]

    Каждому методу анализа свойственны свои специфические ошибки. Например, в гравиметрическом анализе имеют место ошибки, связанные с потерей вещества при промывании и прокаливании осадков. В титриметрическом анализе — ошибки, связанные с применением индикаторов. Наряду с этим имеются ошибки, свойственные всем или многим методам количественного анализа, [c.303]

    Каждому методу анализа присущи свои ошибки, которые могут отсутствовать в других методах. Например, ошибки, связанные с потерей вещества при прокаливании, наблюдаются в гравиметрическом анализе, но их нет в титриметрическом анализе. Ошибки, связанные с применением индикаторов, характерны для титриметрического анализа, но отсутствуют в гравиметрическом анализе. Указание на эти ошибки дано при каждом отдельном методе. Есть ошибки, которые характерны для всех методов количественного анализа. Наиример, взвешивая на аналитических весах, можно всегда сделать ошибку, равную 0,0002 г. В тщательно проводимом анализе неорганических веществ относительная ошибка не должна превышать 0,1%. Поэтому навеска вещества для анализа не должна быть меньше 0,2 г. [c.283]

    При использовании приема холостых проб следует иметь в виду, что в некоторых методах анализа он не исключает реактивной ошибки. Это относится в первую очередь к гравиметрическому анализу, где количество привносимого в ходе анализа компонента может быть недостаточным для образования самостоятельного осадка, однако вполне ощутимым, чтобы дать дополнительный привес при анализе пробы. [c.45]

    В некоторых — сравнительно редких случаях — вес остатка значительно меньше, чем навеска. Это имеет место при определении малых содержаний методом гравиметрического анализа, например при определении фосфора в стали, пробирном анализе при определении благородных металлов и т. д. Определяющий вклад в общую ошибку в таких случаях чаще всего вносит ошибка веса остатка (малая величина). В отличие от методов, где навеска и остаток близки по весу, здесь общая ошибка относительно высока. Хотя эта ошибка играет довольно малую роль при определении малых весов, все же по возможности надо избегать применения таких методов, поскольку при малом осадке довольно значительную роль начинают играть загрязнения. Поэтому гравиметрию применяют как основной метод при определении средних и высоких концентраций. А гравиметрическое определение малых концентраций обычно требует специальных приемов. [c.68]

    Расчет — важнейшая операция в количественном анализе. Гравиметрический анализ начинается с расчета навески. Величина навески играет существенную роль в выполнении анализа. Если навеска очень мала, увеличится ошибка анализа, если очень велика — фильтрование, сушка и прокаливание займут много времени. [c.103]

    Ошибки метода. Систематические ошибки часто возникают вследствие отклонения поведения реагентов или реакций, на которых основано определение, от идеального. Причинами таких отклонений могут быть малая скорость реакций, неполнота их протекания, неустойчивость каких-либо веществ, неспецифичность большинства реагентов и протекание побочных реакций, мешающих процессу определения. Например, в гравиметрическом анализе перед химиком стоит задача выделения определяемого элемента в виде возможно более чистого осадка. Если осадок не удается хорошо промыть, он будет загрязнен посторонними веществами и масса его будет завышена. С другой стороны, промывание, необходимое для удаления загрязнений, может привести к потере заметного количества осадка вследствие его растворимости в результате возникает систематическая отрицательная ошибка. В любом случае тщательность проведения операции сводится на нет систематической ошибкой, обусловленной методом анализа. [c.60]

    Следовательно, ошибка результата гравиметрического определения становится небольшой при малых ошибках измерений и больших, значениях измеряемых величин. Нижний предел ошибки измерения определяется типом используемых аналитических весов. Увеличение измеряемой величины целесообразно только в определенной степени, когда вследствие этого не выявляются другие недостатки, например увеличение затрат времени на фильтрование и промывание. Как правило, масса весовой формы не должна существенно превышать 200 мг. Масса исходной навески должна быть примерно такой же. Ошибкой аналитического фактора в общем можно пренебречь. Однако сам он непосредственно влияет на ошибку, так как определяет величину наибольшей исходной навески, равной = 200 мг. Если исходная навеска и масса весовой формы являются величинами одного порядка, то большой пересчетный фактор обеспечивает уменьшение суммарной ошибки. Если же масса весовой формы значительно меньше массы исходной навески, то суммарная ошибка возрастает. При определении основных компонентов обычными гравиметрическими методами ошибка определения достигает 0,1%, при соблюдении особых мер предосторожности можно достигнуть точности до 0,01%. Поэтому гравиметрию причисляют к особо точным методам количественного анализа 130—33]. [c.62]

    В отличие от чувствительности многих аналитических методов чувствительность (или точность) гравиметрического анализа почти никогда не определяется чувствительностью измерительного инструмента. На подходящих весах вполне можно взять навеску в несколько микрограммов с точностью до нескольких десятых процента, а при взвешивании большей навески ошибку можно понизить до нескольких десятитысячных долей процента. [c.155]

    При анализе простых образцов с содержанием определяемого вещества более 1% точность гравиметрического анализа редко удается превзойти с помощью других методов ошибки в этом случае можно снизить до 0,1—0,2%. При увеличении сложности состава образца ошибки неизбежно возрастают, или приходится затратить массу времени на их преодоление. В этом случае точность гравиметрического метода может оказаться не лучше, а иногда даже хуже точности других аналитических методов. [c.156]

    В некоторых сравнительно редких случаях вес остатка значительно меньше, чем навеска. Это имеет место при определении малых содерн аний гравиметрическим анализом, например при определении фосфора в стали, доки-мастическом определении благородных металлов и т. д. Определяющей для ошибки содержания является в таких случаях чаще всего ошибка веса остатка (малое значение измеряемой величины). В противоположность методу, нри котором навеска и остаток близки по весу, общая ошибка становится здесь относительно высокой. Хотя эта ошибка вносит малый относительный вклад при определении низких весовых содержаний, все же надо по возможности избегать применения этих методов, так как при малом количестве осадка довольно заметную роль играют загрязнения. Поэтому гравиметрию применяют как основной метод нри определении средних и высоких содержаний. Гравиметрическое определение малых содержаний в большинстве случаев требует специальной техники анализа. [c.68]

    При определении содержания добавочных компонентов допустима большая ошибка определения [а = 2. .. 5. ..10% (отн.)], особенно при определении небольших содержаний (<10″ %). Вследствие таких требований к точности определения основных и добавочных компонентов для определения первых применяют преимущественно химические методы анализа, для вторых — физико-химические методы. Из химических методов большое применение, благодаря их быстроте, находят титриметрические методы с различными способами определения точки эквивалентности. При особо высоких требованиях к точности прибегают к гравиметрическим методам анализа. Среди физико-химических методов определения добавочных компонентов особенно широкое применение нашли электрохимические методы анализа (полярография, кулонометрия) и оптические (фотометрия). При определении не очень малых количеств элементов (>1%) применяют также различные варианты объемных методов анализа. [c.399]

    Давно было замечено, что при гравиметрическом определении элементов нередко возникают ошибки, вызванные переходом в осадок присутствующих в растворе посторонних веществ. Это явление было названо соосаждением. Вначале предполагали, что соосаждение связано с несовершенством методик или с некомпетентностью исполнителей анализа. Однако подробное исследование выявило более глубокие причины. Оказалось, что соосаждение наблюдается при самых точных методиках и при высокой квалификации химиков-аналитиков, т. е. имеет общий характер. [c.189]

    Целый ряд аналитических методов известен своей склонностью к более или менее положительным или отрицательным систематическим ошибкам. Примером этому может служить гравиметрическое определение кремниевой кислоты, при котором постоянно занижаются истинные значения. Однако это занижение можно выявить, только если, например, потери, возникшие из-за растворимости осадка, выше, чем колебания из-за случайной ошибки анализа. Вообще систематические ошибки можно обнаружить только в том случае, когда смещение измеряемых величин больше, чем случайная ошибка применяемого метода анализа. [c.27]

    Более простым, а в ряде случаев, видимо, и более точным является гравиметрический метод определения суммарного содержания фенолов. Последние в данном методе выделяют раствором щелочи и после подкисления экстрагируют эфиром. После сушки и отгонки эфира фенолы взвешивают. Содержащиеся в пробе органические кислоты предварительно удаляют действием бикарбоната натрия. Метод предпочтителен для анализа сложных фенольных смесей, так как бромометрический и колориметрические методы в этом случае дают значительные ошибки первый — в результате протекания побочных реакций присоединения брома и образования высокозамещенных продуктов второй — в результате зависимости интенсивности окраски не только от количества, но и от строения фенолов. Это подтверждают недавно полученные Тилеманном данные [55] по анализу смесей ксиленолов. [c.49]

    Основы гравиметрического анализа — исторически первого метода количественного химического анализа — сложились к середине XIX в. благодаря работам многих ученых, особенно англичанина Р. Бойля, щве-дов Т. У. Бергмана (1735—1784) и Й. Я. Берцелиуса (1779—1848), немцев М. Г. Клапрота (1743—1817), Г. Розе, К. Р. Фрезениуса. В уже упоминавшейся книге К. Р. Фрезениуса Введение в количественный анализ (1846) бьши охарактеризованы не только основные принципы, но и практические приемы гравиметрического метода, включая важнейший из них — операцию взвешивания на аналитических весах, которые применял еще Р. Бойль в середине XVII в. Ко времени К. Р. Фрезениуса погрешность взвешивания на аналитических весах (до 0,0001 г) была уже практически та же, что и ошибка взвешивания на современных аналитических весах повседневного использования ( 0,0002 г). [c.38]

    Специфика этой задачи в том, что материал пробы ограничен малой навеской, но требуется высокая точность определения. Классический метод гравиметрического определения 8102 не подходит прежде всего из-за заметной растворимости кремниевой кислоты в водных растворах. С другой стороны, для кремния нет надежных методов объемного определения, а фотоколориметриче- ские методы и методы эмиссионного спектрального анализа, хотя и чувствительные, не обеспечивают необходимой надежности результатов анализа. Можно предположить такой путь анализа не увеличивая анализируемой навески, оса-,дить Кремний в виде малорастворимого соединения с высокой молекулярной массой. Если предварительные операции переведения ЗЮг в раствор и последующего осаждения, фильтрования, промывания и высушивания осадка обеспечивают количественное выделение стехиометрически чистого соединения кремния, общая ошибка анализа будет определяться в основном ошибками взвешивания при отборе пробы и конечном определении. Используя для осаждения и взвешивания кремния оксихинолиновую соль кремнемолибденовой кислоты, получаем соединение с молекулярной массой 2440  [c.26]

    Методические ошибки различных методов анализа носят специфический характер. Так, в гравиметрическом анализе и операциях осаждения, используемых для разделения, основной вид ошибок— ошибки недоосаждения (и частичного растворения в ходе промывания осадка) и соосаждения. Существенную роль в гравиметрическом анализе может играть ошибка, вызванная отклонением состава формы взвешивания от строго стехиометрического, например, за счет ее гигроскопичности. [c.47]

    Основной проблемой при гравиметрическом определении технического углерода является захват его частиц продуктами деструкции полиэтилена. Особенно велик вклад этой ошибки при малом содержании технического углерода в полимере. Для подбора условий количественного определения технического углерода при малом его содержании в полимере было исследовано влияние временного фактора и температурных условий на деструкцию полиэтилена в инертной атмосфере [71]. Было показано, что время, за которое происходит полная деструкция полимера, зависит от температуры. При этом при температуре выше 550 °С происходит слишком быстрое удаление фрагментов деструкции полиэтилена и наблюдается унос частиц технического углерода при 700°С технический углерод начинает взаимодействовать с примесями кислорода и воды в инертном газе. Таким образом термическая деструкция полиэтилена при температуре выше 550 °С, по данным автора работы [71], происходит с потерей некоторого количества введенного в полимер технического углерода. Была предложена методика, при которой навеску полиэтилена, содержащую 1—30 мг технического углерода, помешают в предварительно прокаленной кварцевой лодочке в центральную часть трубчатой электропечи, перед ней в зоне нагрева располагают катушку из медиой проволоки и трубку выдерживают при 500 + 10°С в течение 30 мин, продувая трубку азотом с постоянной скоростью (второй конец трубки остается при этом открытым). После этого лодочку помещают в эксикатор и через 30 мин взвешивают. Для определения зольности полимера пробу дожигают при 900°С в присутствии кислорода воздуха. Зольность полимера можно не учитывать при расчете результата анализа, если она составляет менее 2 % от содержания технического углерода. [c.259]

    Методические ошибки различных методов анализа носят специфический характер. Так, в гравиметрическом анализе и операциях осаждения, используемых для разделения, основной вид ошибок — ошибки недоосаждения (и частичного растворения в ходе промывания осадка) и соосаждения. Существенную роль в гравиметрическом анализе может играть ошибка, [c.32]

    Проведенный выше раэбор систематических ошибок хими-t e Koro аяализа не претендует на исчерпывающую полноту. Из рассмотрения исключены некоторые виды ошибок, например, ошибка натекания и капельная ошибка в титриметрических методах анализа. Некоторые виды систематических ошибок только упомянуты. Основное внимание и наибольшее количество примеров посвящено ошибкам традиционных методов гравиметрического, титриметрического и фотометрического анализов. Такой стиль изложения оправдан целью данного раздела—дать общее представление о систематических ошибках химического анализа, способах их обнаружения и оценки и методах их уменьшения. Детальный разбор всех известных источников ошибок должен входить как составная часть в теорию и практику каждого отдельного метода химического анализа, ибо каждому методу присущи свои специфические ошибки». Удачным примером в этом плане может служить руководство по (фотоколориметрическим и спектрофотометрическим методам анализа М. И. Булатова и И. П. Калин-кина (Л, Химия , 1976, 376 с.), где этому вопросу уделено большое внимание. Однако сказанное в равной мере относится и к любым другим химическим и физическим методам, [c.48]

    Сульфат можно определить, используя в качестве титранта раствор НС1 в диметилсульфоксиде (фотометрическая индикация точки эквивалентности) [110]. Этот метод применяют для определения сульфата в морской воде. Большинство общепринятых методов определения сульфатов не применимо для анализа морской воды из-за высокого содержания солей в ней. Для определения сульфатов в этом объекте используют гравиметрическую методику, однако в этом случае наблюдаются ошибки, связанные с соосаждением солей щелочных металлов и кальция. В соответствии с вышеупомянутым методом [ПО] сульфат титруют до H2SO4, используя в качестве индикатора бромкрезоловый зеленый. Конечную точку в этом титровании находят графически. [c.538]

    Путем,образования нитрокобальтиата калия удается практически полностью выделить калий даже из разбавленного раствора и количественно его определить. Хотя на состав осадка влияет ряд факторов, нитрокобальтиатный метод занимает первое место среди химических способов определения калия Метод позволяет получать вполне удовлетворительные по точности результаты, если стандартизировать все операции и условия выполнения анализа и применять фактор пересчета, найденный при параллельной обработке объекта с близким и известным содержанием калия [138, 2782]. Ошибки определения калия в микромасштабах достигают только 3% [1323, 1649] (О достаточной точности метода см. также [442, Ш81].) Некоторые авторы, однако, считают, что прямое гравиметрическое определение калия в виде нитрокобальтиата не дает удовлетворительных результатов [49, 1335], и осаЖдение нитрокобальтиата рассматривают только как удобный и простой способ выделения калия из раствора и отделения его от ряда других катионов. Осадок нитрокобальтиата калия растворяют и в полученном растворе определяют калий каким-нибудь другим способом, например хлороплатинатным [1271, 1335, 1541, 1846], перхлоратным [661, 662, 1271, 1459, 1756, 1806, 1811, 1846], тартратным [1217] и т. д. [c.45]

    К первому типу относят погрешности известной природы, которые могут быть рассчитаны а priori до определения компонента и учтены введением соответствующей поправки. Примеры таких погрешностей — индикаторные ошибки и ошибки измерения объемов в титриметрии, ошибки взвешивания в гравиметрическом методе анализа (см. гл. 9). [c.40]

    Сплавы Bi — As — Se. Для анализа этих сплавов предложен метод [342], включающий растворение пробы в H2SO4, гравиметрическое определение Se в виде элементного селена восстановлением его сернистым ангидридом, комплексонометрическое титрование Bi в присутствии ксиленолового оранжевого в качестве индикатора и последующее броматометрическое титрование As(III). Ошибка определения кал<дого элемента не превышает 0,5%. [c.203]

    Гравиметрическая форма не должна изменять свою массу иа воздухе из-за поглощения паров воды и оксида углерода (IV) или вследствие частичного разложения. Для точности определРиия желательно также, чтобы гравиметрическая форма имела возможно большую молярную массу и содержа.яа как можно меньше атомов определяемого элемента в молекуле. При этом погрешности определения (ошибки взвешивания, потери при перенесении осадка на фильтр и т.п.) меньше сказываются на результате анализа. [c.193]

    В производственных условиях при анализе сплавов, концентратов, руд, солей, удобрений, шлаков и т. п. требуется определять элементы при их высоком содержании. Обычно такие определения выполняют продолжительными гравиметрическими и титриметри-ческими методами, часто требующими отделения определяемого компонента от большинства сопутствующих элементов. Более быстрые фотометрические методы неприменимы из-за высоких оптических плотностей (выше 0,8). Для уменьшения оптической плотности раствор разбавляют, что вызывает при больших разбавлениях ошибки, связанные с измерениями объемов. Более разбавленный раствор можно приготовить также уменьшением навески точность в таком случае обусловливается только погрешностью взвешивания. [c.43]

    Примечание, Не следует думать, что при определении м а-л ы X количеств колориметрические методы анализа уступают по точности другим методам. Наоборот, если в предыдущем примере определять сурьму не колориметрическим способом (как это обычно делается), а гравиметрическим, то пришлось бы взвешивать около 0,0003 г 5Ьг04, что на обычных аналитических весах нельзя сделать с предельной ошибкой, меньшей 33% относительных. При этом еще не учитывается неизбежная значительная ошибка, возникающая вследствие присутствия в прокаленном осадке загрязнений, ошибка, которая не могла бы быть устранена даже в случае применения микровесов. [c.11]

    Применение газовой хроматографии позволяет не только упростить методику и сократить продолжительность анализа, но и устранить некоторые (возможно принципиальные) ошибки, а также оказать существенную помощь в определении оптимальных условий окисления в классическом гравиметрическом методе. Возможность последнего направления в применении газохроматографических методов в анализе показана в работах Стьюарта, Портера и Беда, Хахенберга и Гутбер-лета [11]. Как известно, при определении азота по Дюма во многих случаях получают завышенные результаты, особенно при анализе образцов, в состав которых входят органические соединения с длинными углеродными цепями. Ошибочные результаты получают также в случае истощения оксида меди или проведения сожжения при слишком высокой температуре. [c.198]

    Примечание. М. И. ( 0,03°), т = 10 суток. Анализ жидкой фазы К — гравиметрически в виде тетрафен илбората 504 — гравиметрически в виде Ва504, ошибка определения 0,3 %. Анализ твердой фазы кристаллооптич. и рентгенографич. [c.96]

    Авторы [98 ] радиохимически чистый гафний добавляли к анализируемому раствору в виде азотнокислого раствора после чего гафний отделяли от циркония ионным обменом на катионите КУ-2х12 из азотнокислого раствора (2-н. HNO3). Довольно быстрое разделение элементов происходило при элюировании колонки 0,7-н. серной кислотой. Количество выделенного гафния определялось гравиметрически, осаждением в виде гидроокиси, или фотометрически с ализарином S. Эта методика позволяет определять гафний в присутствии циркония с относительной ошибкой примерно 10% при содержании гафния менее 1% и с ошибкой 3—5% при большем его содержании. Метод применялся для определения гафния в цирконии, смесях окислов и в эвдиалите. Результаты определений хорошо совпадают с данными рентгеноспектрального анализа. [c.442]


Гравиметрический (весовой) метод анализа

Классическое название метода — весовой анализ. Гравиметрический анализ широко используют при количественных определениях. С его помощью определяют, например, содержание фосфора в фосфоритах, апатитах, фосфорных удобрениях, почвах, кормах и т. п.

1. Общая характеристика метода

Гравиметрией называют метод количественного анализа, заключающийся в точном измерении массы определяемого компонента пробы, выделенного в виде соединения известного состава или в форме элемента.

Гравиметрический анализ основан на законе сохранения массы веществ при химических превращениях. Это наиболее точный из химических методов анализа, его характеристики: предел обнаружения — 0,10%; правильность — 0,2 отн.%; информативность — 17 бит. В гравиметрии используют реакции обмена, замещения, разложения и комплексообразования, а также электрохимические процессы. Наиболее распространен метод осаждения.

1. Метод осажденияэто метод, при котором навеску анализируемого вещества растворяют и прибавляют 1,5-кратный избыток реагента- осадителя, соблюдая необходимые условия осаждения. Полученный осадок называют осаждаемой формой. Осадок отделяют от раствора (чаще всего фильтрованием), промывают, затем высушивают или прокаливают, по­лучая гравиметрическую (весовую) форму. Массу определяемого компонента mа рассчитывают по формуле:

ma =mBF •100/а (%)

где mа — масса высушенного или прокаленного осадка, г;

F — гравиметрический фактор, определяемый по химической формуле гравиметрической формы;

а — навеска анализируемого вещества, г.

Гравиметрические факторы, называемые также аналитическими множителями или факторами пересчета, вычисляют как отношение молекулярной массы определяемого компонента к молекулярной массе гравиметрической формы с учетом стехиометрических коэффициентов.

Пример. Вычислить гравиметрические факторы для следующих гравиметрических определений:

Определяемый компонент Al Ca CO2 Ba
Гравиметрическая форма Al2O3 CaO BaCO3 BaSO4

Решение: F = ABa / MBaSO4= 137.4 / 233.4 = 0.5887

2. Методы выделенияоснованы на выделении определяемого компонента из анализируемого вещества и точном взвешивании его. Например, при определении содержания золы в твердом топливе сжигают определенное количество (навеску) этого топлива, взвешивают золу и вычисляют процентное содержание ее во взятом образце.

3.Метод отгонки состоит в том, что определяемый компонент «количественно» выделяют в виде летучего соединения (газа, пара) действием кислоты, основания или высокой температуры на анализируемое вещество. Например, определяя, содержание двуокиси углерода в карбонатной породе, обрабатывают образец ее соляной кислотой. Выделившийся газ пропускают через поглотительные трубки со специальными реактивами. По увеличению массы поглотительной трубки определяют количество выделившегося CO2.

4.Термогравиметрия. Выполнение большинства операций гравиметрического анализа (фильтрование, высушивание и прокаливание осадка, доведение его до постоянной массы) отнимает очень много времени. Однако с помощью термовесов, сконструированных Дювалем, удается значительно ускорить определение. В этом приборе можно нагревать твердые вещества до температуры приблизительно 10000C и наблюдать, как изменяется их масса. При этом прибор автоматически вычерчивает на бумаге кривую изменения массы вещества. Получающаяся ступенчатая кривая характеризует изменение массы осадка в процессе повышения температуры и даже позволяет судить о химических превращениях веществ.

Например, такая кривая показывает, что кристаллогидрат оксалата кальция CaC2O4•H2O устойчив лишь при температуре не выше 1000C. При повышении температуры до 2260C он разрушается с образованием безводной соли CaC2O4. Последняя при 4200C разлагается с получением карбоната кальция СаСО3. Далее при 6600C начинается распад карбоната на окись кальция и двуокись углерода. Этот процесс заканчивается при температуре 8400C.

2.Основные операции весового анализа

В ходе гравиметрического определения различают следующие операции: 1) отбор средней пробы вещества и подготовку ее к анализу; 2) взятие навески; 3) растворение; 4) осаждение определяемого элемента (с пробой на полноту осаждения); 5) фильтрование; 6) промывание осадка (с пробой на полноту промывания); 7) высушивание и прокаливание осадка; 8) взвешивание; 9) вычисление результатов анализа.

Отбор средней пробы. Аналитическое определение лишь тогда приводит к содержательным выводам, когда отобранная для анализа проба является пред­ставительной по отношению к исследуемому материалу.

В производстве бывает необходимо определить средний химический состав большой партии неоднородного материала (удобрения, ядохимиката, почвы, руды и т. п.). При этом подготовка вещества к анализу сводится к правильному отбору так называемой средней пробы. Правила отбора средних проб раз­личных материалов предусмотрены государственными стандартами или техническими условиями. Выполнение этой операции всегда подчинено единому принципу: средняя проба должна быть составлена из большого числа мелких порций, взятых в разных местах анализируемого материала. Благодаря этому состав отобранной пробы приближается к среднему химическому составу большого количества исследуемого материала.

Первичная средняя проба, отобранная тем или иным способом, еще непригодна для анализа. Обычно она слишком велика (от одного до нескольких килограммов) и неоднородна. Подготовка пробы состоит в измельчении, перемешивании и сокращении до небольшой массы (около 300 г). Для сокращения пробы пользуются так называемым квартованием . Измельченный материал перемешивают в куче, рассыпают ровным слоем в виде квадрата (или круга), делят на четыре сектора, содержимое двух противоположных секторов отбрасывают, а двух остальных — соединяют вместе. Операцию квартования повторяют многократно. Из полученного таким образом однородного материала берут навески для анализа.

Перекристаллизация. В условиях исследовательской лаборатории часто требуется найти содержание какого-нибудь элемента в химически чистом соединении (например, содержание бария в хлориде барии ВаС12•2Н20). Здесь подготовка вещества к анализу состоит и очистке его от примесей и обычно осуществляется путем перекристаллизации для удаления примесей только из кристаллических веществ, например из солей.

Применительно к пробоотбору введены следующие количественные характеристики:

1. Рабочий диапазон. A=mi — диапазон количеств определяемого компонента i, к которым применима данная методика.

2. Диапазон количества пробы P=mi+mo — диапазон общих количеств пробы, состоящий из определяемого компонента (индекс i) и «матрицы» (индекс 0) — суммы остальных компонентов. В зависимости от требуемого для анализа количества пробы методики обычно классифицируют следующим образом:

3.Диапазон содержаний компонента

В зависимости от величины G компоненты пробы обычно называют следующим образом:

G> 10% 10%>G> 1% G< 1%
главный компонент сопутствующий компонент следовый компонент

Легко видеть, что между A, P и G существует соотношение:

P = A/G• 100%

Отсюда можно оценить минимальное (и максимальное) количество пробы, требуемое для проведения анализа по выбранной методике, если заданы величины рабочего диапазона и содержание определяемого компонента. На практике следует по возможности брать количество пробы, несколько превышающее рас­считанное.

Примеры.

Содержание определяемого вещества в пробе приблизительно 10%; методика позволяет определять не менее 0.5 мг этого вещества. Минимальное количество пробы, требуемое для анализа, составляет:

P = 0,5 мг/10•100=5мг

Максимальное количество пробы, которым располагает аналитик, составляет 10 мг, содержание определяемого компонента в ней около 0,2%. Следовательно, необходимо использовать методику, позволяющую определять не менее:

А = 0,2 • 10 мг/100 = 0,02 мг = 20 мкг

2. Взятие навески

Навеской называют количество вещества, необходимое для выполнения анализа.

Как правило, чем больше навеска, тем выше и относительная точность определения. Однако работа с большой навеской имеет свои отрицательные стороны: получающийся при этом большой осадок трудно отфильтровать, промыть или прокалить, анализ занимает много времени. Наоборот, при слишком малой навеске ошибки взвешиваний и других операций, неизбежные при анализе, значительно снижают точность определения.

Таким образом, выбор величины навески анализируемого вещества определяется количеством осадка, наиболее удобным в работе. Например, на бумажном фильтре диаметром 7 см можно легко отфильтровать 0,5 г кристаллического сульфата бария ВаSО4. Но с таким же количеством аморфных, студенистых осадков гидрооксидов Fe(OH)3, Al(OH)3 работать чрезвычайно трудно.

Аналитической практикой установлено, что наиболее удобны в работе кристаллические осадки с массой около 0,5 г и объемистые аморфные осадки с массой 0,1—0,3 г. Учитывая эти нормы осадков и зная приблизительное содержание определяемого элемента в веществе, вычисляют необходимую величину навески.

Пример. Какую навеску хлорида бария BaCl2• 2H2O нужно взять для определения содержания в нем бария?

Исходные данные: формула осадка BaSO4; норма кристаллического осадка 0,5 г.

Решение. Величину навески находят из пропорции:

233,43 г BaSO4 получаются из 244,31 г BaCl2•2H2O
0,5 г BaSO4 получаются из Х г BaCl2•2H2O

X= 0,52 г.

Ответ: для анализа следует взять навеску хлорида бария ВаС12•2Н2О около 0,5— 0,6 г.

Иногда, выбирая навеску, учитывают необходимую точность определения и возможные потери из-за растворимости осадка.

Разумеется, выбор навески зависит еще от метода, с помощью которого будет выполняться определение (макро-, полумикро- или микроанализ). Мы рассмотрели случай выбора навески при макроанализе.

При определениях, не связанных с получением осадка, например при изучении влажности или зольности различных материалов, допустимы навески в 1,0—2,0 г, а иногда и больше. Вещество взвешивают в специальном ста­канчике — бюксе.

3. Растворение навески анализируемого вещества

Для растворения навеску анализируемого вещества переносят (т. е. осторожно пересыпают) в чистый химический стакан нужного объема. Подходящий растворитель подбирают заранее, делая пробы с отдельными порциями вещества. Если предварительной пробой было установлено, что анализируемое вещество растворимо в воде, то навеску растворяют в 100—150 мл дистиллированной воды. При необходимости содержимое стакана нагревают на асбестированной сетке или на водяной бане, накрыв стакан часовым стеклом и не допуская кипения раствора.

Если исследуемое вещество не растворимо в воде, то навеску переводят в раствор действием кислоты (уксусной, соляной, серной, азотной) или царской водки. Количество той или иной кислоты, необходимое для растворения, вычисляют (с учетом ее концентрации) по уравнению реакции.

Выбор кислоты для растворения навески определяется, кроме того, характером происходящей при этом реакции. Например, известняк СаСО3 следует растворять в соляной кислоте, а не в серной, так как при действии последней образуется малорастворимый сульфат кальция CaSO4.

Навеску растворяют в кислоте осторожно, накрыв стакан часовым стеклом, чтобы избежать потери анализируемого вещества. Потеря возможна потому, что выделяющиеся газы (CO2, H2, H2S) увлекают с собой капельки раствора.

Приготовленный тем или иным способом раствор нередко приходится еще подготовить к анализу: упарить, нейтрализовать избыток кислоты, связать или удалить ионы, мешающие определению.

Разложение малорастворимых неорганических веществ. Разложение пробы малорастворимого неорганического вещества осуществляют «мокрым» путем (действием кислот) или «сухим» путем (сплавлением с карбонатом натрия, едкими щелочами и другими плавнями).

Азотная кислота как сильный окислитель растворяет медь, серебро, ртуть, мышьяк, висмут, бор, кадмий, германий, ванадий, марганец, молибден и некото­рые другие металлы.

В концентрированной серной кислоте растворяют сплавы олова, сурьмы, свинца, а также ферротитан.

«Нержавеющие» (легированные) стали растворяют в хлорной кис­лоте.

Золото и платину растворяют в царской водке (конц.НСl и конц. НNО3), которая действует и как окислитель, и как комплексообразователь; в результате такой обработки получаются комплексные хлориды этих металлов. Вольфрамовые сплавы, молибден и ферромолибден, цирконий и тантал рас­творяются в смеси азотной и плавиковой кислоте обра­зованием комплексных фторидов.

Пробы кремнекислоты, горных пород и различных силикатов разлагают дей­ствием плавиковой кислоты.

Перечисленные способы разложения анализируемой пробы и получения раствора не универсальны, непригодны для всех случаев анализа. Наиболее подходящий метод выбирают исходя из особенностей анализируемого материала.

4. Осаждение

Осаждение считают важнейшей операцией гравиметрического анализа.

При выполнении ее необходимо правильно выбрать осадитель, рассчитать его количество, соблюсти определенные условия осаждения, убедиться в полноте осаждения иона из раствора.

Выбор осадителя. Осадитель выбирают, исходя из ряда требований, предъявляемых к осадку.

1.Получающийся осадок (так называемая осаждаемая форма) должен прежде всего обладать как можно меньшей растворимостью в воде. Например, ион Ba2+ образует несколько малорастворимых солей: карбонат, оксалат, хромат и сульфат. Учитывая произведения растворимости их:

BaC2O4 — 1,6•10-10; BaCO3 — 2,4 • 10-10; ВаСО3 — 8,0•10-10; BaSO4 — 10-10. Очевидно, что при гравиметрическом определении ионы Ва2+ следует осаждать в виде сульфата BaSO4, имеющего наименьшую величину произведения растворимости.

2. Кроме того, получаемый осадок должен легко отфильтровываться и хорошо отмываться от примесей. Эти свойства наиболее характерны для крупнокристаллических осадков.

3. Наконец, осаждаемая форма должна при прокаливании полностью превращаться в весовую форму. Состав весовой формы должен точно соответствовать определенной химической формуле иначе невозможно провести вычисление результатов анализа. Например, осадок гидроокиси железа Fe(OH)3 в результате прокаливания полностью переходит в оксид железа Fe2O3. Последнюю и на­зывают весовой формой и именно ее взвешивают в конце анализа.

Помимо этого, весовая форма не должна изменять своей массы на воздухе из-за поглощения паров воды и двуокиси углерода или вслед­ствие частичного разложения. Для точности определения желательно также, чтобы весовая форма имела возможно большую молекулярную массу и содержала как можно меньше атомов определяемого элемента в молекуле. При этом погрешности определения (ошибки взвешивания, потери при перенесении осадка на фильтр и т. п.) меньше сказываются на результате анализа.

4.Кроме всех этих требований, предъявляемых к осадку при выборе осадителя, учитывают летучесть последнего. В качестве осадителя всегда предпочитают более летучее вещество, если примеси его не будут полностью удалены из осадка промыванием, то они улетучатся при последующем прокаливании. Например, для осаждения Ba2+ в виде сульфата бария пользуются серной кислотой, а не ее раствори­мыми солями (К2S04), так как кислота более летуча. По тем же соображениям ион Fe3+ осаждают из раствора действием летучего NH4OH, а не NaOH или KOH.

5. Выбираемый осадитель должен в той или иной мере обладать селективностью по отношению к осаждаемому иону. В противном случае приходится предварительно удалять другие ионы, мешающие определению. Такая селективность особенно характерна для органических реагентов, находящих применение не только в качественном, но и в количественном анализе.

Расчет количества осадителя. Необходимое количество осадителя вычисляют исходя из содержания осаждаемого иона в растворе и величины навески анализируемого вещества.

Пример. Для количественного определения Ba2+ растворили навеску BaCl2•2H2O в 0,4526 г. Какой объем 2 н. раствора серной кислоты потребуется для полного осаждения ионов Ba2+?

Решение: Из уравнения реакции видно, что одна грамм-молекула хлорида бария взаимодействует с одной грамм-молекулой серной кислоты:

BaCl2•2H2O + H2SO4 = BaSO4 + 2HC1 + 2H2O

Следовательно, на взаимодействие с 244,31 г BaCl2•2H2O расходуется 98 г H2SO4, которые содержатся в 1000 мл 2 н. раствора кислоты. Поэтому можно составить следующую пропорцию:

на 244,31 г BaCl2•2H2O идет 1000 мл 2 н. H2SO4
0,4526 г BaCl2•2H2O идет x мл 2 н. H2SO4

Отсюда

х = (0,4526 • 1000)/244,31 =2 мл

Казалось бы, в этом примере для полного осаждения ионов Ba2+ достаточно взять 2 мл 2 н. H2SO4. Однако это не так. Абсолютно нерастворимых веществ не существует, и над осадком сульфата бария в растворе еще будут находиться неосажденные ионы Ba+. Поэтому необходимо принять меры, чтобы понизить концентрацию их в растворе, т. е. добиться практической полноты осаждения ионов Ba2+.

Известно, что жидкость над осадком представляет собой насыщенный раствор электролита. Произведение концентраций его ионов при неизменной температуре сохраняет постоянное значение, равное произведению растворимости. В рассматриваемом примере

ПРBaSO4 = [Ва2+] [SO42- ] = 1,1•10-10

Следовательно, чтобы понизить концентрацию ионов Ba2+, еще остающихся в растворе после осаждения, нужно повысить концентрацию других ионов (SO42-), т. е. действовать избытком осадителя (серной кислоты).

Опытным путем установлено, что для практически полного осаждения иона достаточно полуторного избытка осадителя. Добавление большего избытка осадителя может повысить растворимость осадка вследствие образования комплексных соединений, кислых солей и т. д.

Ответ: в рассматриваемом случае для полного осаждения ионов нужно взять не 2 мл, а 3 мл 2 н. H2SO4.

Наиболее благоприятные условия получения кристаллических и аморфных осадков неодинаковы.

При осаждении в растворе протекают два взаимосвязанных процесса: возникновение мельчайших зародышевых кристаллов и их дальнейший рост. Следовательно, надо по возможности уменьшить число центров кристаллизации и усилить рост уже образовавшихся кристаллов. Для достижения этих целей необходимо, чтобы раствор был возможно менее пересыщенным по отношению к осаждаемому соединению. Действительно, из сильно пересыщенного раствора осаждается множество мельчайших зародышевых кристаллов, которые почти не укрупняются. И, наоборот, в мало пересыщенном растворе создаются условия для дальнейшего роста небольшого количества образовавшихся кристаллов.

Возможно малое пресыщение раствора и получение крупнокристаллического осадка достигается при соблюдении особых условий. Разумеется, даже при соблюдении этих условий, помимо крупных кристаллов, получается и некоторое количество мелких. Чтобы их было меньше, осадок оставляют стоять на несколько часов (или до следующего занятия) для созревания (старения). Известно, что мелкие кристаллы любого вещества растворяются несколько быстрее, чем крупные, так как имеют большую поверхность соприкосновения с растворителем. Поэтому при созревании мелкие кристаллы растворяются и за их счет растут крупные. Поскольку крупные кристаллы имеют меньшую поверхность, соосаждение примесей понижается. Более быстрому созреванию осадка содействует повышение температуры, ускоряющее движение ионов в растворе. Поэтому стакан с осадком обычно оставляют в теплом месте, например на горячей водяной бане.

Проба на полноту осаждения. Как только раствор над осадком становится совершенно прозрачным, делают пробу на полноту осаждения иона. Для этого по стенке стакана прибавляют еще 2—3 капли раствора осадителя. Если при этом в месте смешения растворов появится хотя бы легкая муть, то считают, что полнота осаждения не достигнута. В таком случае добавляют к жидкости еще несколько миллилитров осадителя, перемешивают стеклянной палочкой, снова нагревают и оставляют стоять для созревания осадка. Иногда пробу на полноту осаждения приходится повторить несколько раз. Ее рекомендуется сделать и перед самым фильтрованием.

5. Фильтрование

Фильтрованием отделяют полученный осадок от раствора, содержащего посторонние примеси. Тщательность выполнения этой операции сказывается на точности определений.

В гравиметрическом анализе применяют не обычную фильтровальную бумагу, а так называемые беззольные фильтры. В процессе изготовления их промывают кислотами (HCl), удаляя большую часть минеральных веществ. Масса золы, образующейся при сжигании одного беззольного фильтра, бывает мала, поэтому ею пренебрегают.

Промышленность выпускает беззольные фильтры нескольких сортов, различающиеся по диаметру и плотности.

Черная (или красная) лента – наименее плотные, т.е. быстрофильтрующие и крупнопористые и используют для отделения аморфных осадков гидроксидов железа, алюминия и др.

Белая лента — фильтры средней плотности, применяемые для отделения большинства кристаллических осадков

Синяя лента — фильтры мелкопористые, наиболее плотные и медленно фильтрующие; применяют их для отделения мелкокристаллических осадков сульфата бария BaSО4 , эти фильтры называют также «баритовыми».

Иногда для фильтрования используют фарфоровую воронку Бюхнера, на дно которой помещают бумажный фильтр. Через нее фильтруют также при помощи вакуум-насоса.

6.Соосаждение. Промывание осадка

Осадок увлекает с собой посторонние вещества из раствора. Это явление, называемое соосаждением, — одно из серьезных помех при выполнении гравиметрического определения. Можно выделить четыре основных вида соосаждений.

Окклюзия — процесс захвата примесей микрокомпонента внутрь растущих кристаллов осадка основного компонента. Удаление окклюдированных примесей из осадка представляет трудную задачу.

Изоморфное соосаждение — процесс образования «смешанных кристаллов» с ионами основного компонента и микрокомпонента, имеющими близкие радиусы. Например, осадок сульфата бария может увлекать с собой из раствора примеси перманганата калия, так как эти вещества изоморфны, т.е. образуют совместную пространственную кристаллическую решетку.

Соосаждение с образованием химических соединений с осаждаемым веществом и присутствующими в растворе примесями также довольно распространено. Если осаждать из раствора ионы Ba2+ действием серной кислоты, то вместе с ними соосаждаются и примеси Fe3+ в виде комплексного сульфата Ва3[Fe(SO4)3]. В таких случаях необходимо предварительное удаление примесей из раствора. Так, перед осаждением ионов Ba2+ примеси Fe3+ приходится осадить аммиаком и отфильтровать гидроокись железа.

Иногда для удаления примесей используют так называемое переосаждение. Например, осадок оксалата кальция CaC2O4, содержащий примеси оксалата магния MgC2O4, растворяют в соляной кислоте, нейтрализуют раствор и переосаждают ион Ca2+, т. е. повторяют осаждение его оксалатом аммония. Поскольку переосаждение происходит при значительно меньшей концентрации ионов Mg2+, чем в первый раз, осадок CaC2O4 оказывается практически свободным от примесей MgC3O4.

Соосаждение в результате поверхностной адсорбции примесей осадком особенно часто встречается при осаждении аморфных веществ, имеющих разветвленную поверхность (гидроксиды железа и алюминия, кремневая кислота и т. п.).

Но адсорбция — это обратимый процесс. При длительном промывании осадка той или иной жидкостью поглощенные им примеси могут быть десорбированы, вымыты и удалены. Десорбции содействует также применение горячей промывной жидкости. Задача промывания и состоит в удалении посторонних примесей, адсорбированных осадком из раствора.

Иногда осаждаемое вещество увлекает примеси из раствора в результате сочетания нескольких видов соосаждения (адсорбционная окклюзия, химическая окклюзия и т. п.).

При промывании необходимо исключить потери осажденного вещества. Поэтому выбор промывной жидкости определяется свойствами промываемого осадка.

Промывание разбавленным раствором осадителя. При промывании большинства осадков дистиллированной водой возможно частичное растворение их, приводящее к потере осажденного вещества. Во избежание потерь такие осадки промывают разбавленным раствором осадителя, т. е. в промывную жидкость вводят осаждающий ион. Например, осадок оксалата кальция CaC3O4, заметно растворимый в воде, промывают разбавленным раствором осадителя, т. е, оксалата аммония (NH4) C2O4.

Промывание раствором электролита-коагулятора. Если осажденное вещество склонно к пептизации, то возможна потеря его в результате прохождения коллоида через фильтр. Чтобы этого избежать, такой осадок промывают разбавленным раствором электролита-коагулятора, препятствующего пептизации. Электролитами-коагуляторами обычно служат летучие вещества, легко удаляющиеся при последующем прокаливании осадка. Так, аморфные осадки гидроксидов Fe(OH)3 и Al(OH)3 промывают разбавленным раствором нитрата аммония.

Промывание дистиллированной водой. Промывание водой возможно только в тех немногих случаях, когда промываемый осадок практически не растворяется в воде, не пептизируется и не гидролизуется. Так, например, осадок сульфата бария BaSO4 промывают на фильтре дистиллированной водой.

Когда повышение температуры не увеличивает потери осажденного вещества используют не холодную, а горячую промывную жидкость, так как нагревание ускоряет десорбцию примесей.

Самое промывание производят сначала декантацией, т. е. приливают в стакан с осадком 15—20 мл промывной жидкости, тщательно перемешивают, дают осадку осесть и сливают жидкость по палочке на фильтр. При таком способе отмывание примесей значительно ускоряется. Промывание декантацией обычно производят 3—4 раза. Затем осадок количественно, без потерь, переносят на фильтр. Для этого наливают в стакан небольшую порцию промывной жидкости, взмучивают осадок и полученную суспензию осторожно сливают на фильтр по стеклянной палочке. Выполняя эту операцию нельзя терять ни одной капли жидкости. Пользуясь промывалкой, многократно обмывают стенки стакана небольшими порциями промывной жидкости и каждый раз сливают ее на фильтр. Частицы осадка, приставшие к стенкам стакана, сначала тщательно оттирают резиновым наконечником палочки, смывают на фильтр, а затем следы осадка снимают кусочком фильтра, который помещают в ту же воронку. Стеклянную палочку также обтирают кусочком фильтра и помещают его в воронку с осадком.

Наконец, когда ни в стакане, ни на палочке больше не останется частиц осажденного вещества, приступают к промыванию осадка на фильтре. Промывают его большим числом маленьких порций жидкости, которой всякий раз дают полностью стекать. Это обеспечивает более быстрое удаление примесей, чем в случае больших порций жидкости. Попутно осадок смывают в нижнюю часть фильтра.

Повторив промывание 4—5 раз, делают пробу на полноту удаления примесей. Для этого собирают из воронки в пробирку небольшую порцию фильтрата и прибавляют к нему реактив, дающий характерную реакцию с удаляемым из осадка ионом. Например, выполняя пробу на полноту удаления Cl из осадка BaSO4, берут 1—2 мл фильтрата, подкисляют его азотной кислотой и действуют нитратом серебра. Если муть хлорида серебра при этом не появляется, то промывание прекращают. Фильтрат при гравиметрических определениях обычно не анализируют и отбрасывают, если он совершенно прозрачен, т. е. не содержит частиц осадка.

Фильтрование и промывание осадка следует выполнять на одном и том же занятии; отфильтрованный осадок сильно высыхает при хранении и не поддается промыванию.

7. Высушивание и прокаливание осадка

Отфильтрованный и промытый осадок еще содержит влагу; обычно его высушивают и прокаливают. Эти операции позволяют получить вещество со строго определенным химическим составом.

Высушивание осадка. Осадок высушивают вместе с фильтром. Воронку с осадком накрывают листком влажной фильтровальной бумаги. Ее края плотно прижимают к наружной поверхности воронки, лишнюю бумагу удаляют. Получается бумажная крышечка, плотно сидящая на воронке и защищающая осадок от пыли.

После этого воронку с осадком следует поместить на 20—30 мин в сушильный шкаф, имеющий полки с круглыми отверстиями. В одно из них и вставляют воронку. Температуру в шкафу поддерживают не выше 90—105° С — при более сильном нагреве фильтр обугливается и распадается.

Прокаливают осадки в фарфоровых тиглях различных размеров. Прежде чем приступить к прокаливанию, необходимо узнать массу пустого тигля. Для этого тигель предварительно прокаливают до постоянной массы, т. е. до тех пор, пока масса его перестанет изменяться. Прокаливают тигли в электрической муфельной печи, в тигельной печи или на газовой горелке, но обязательно при тех же температурных условиях, при которых предполагается прокаливать осадок. О температуре прокаливания ориентировочно судят по цвету каления муфельной (тигельной) печи:

Начало темно-красного каления …………………………… ~525°С
Темно-красное каление…………………………………………. –7000C
Светло-красное каление………………………………………… –900 – 10000C
Светло-оранжевое каление …………………………………… ~1200°С
Белое каление …………………………………………………….. –13000C
Ослепительно-белое каление………………………………… –1400 – 15000C

Предназначенный для прокаливания тигель берут тигельными щипцами за край и помещают в муфельную печь. После 25—30 мин прокаливания его вынимают из печи, дают остыть на листе асбеста (или на гранитной плитке) и переносят в эксикатор. Последний закрывают крышкой не сразу, а спустя 1—2 мин; иначе при охлаждении в эксикаторе создается разрежение и крышку будет трудно открыть. Затем эксикатор относят в весовую комнату и оставляют на 15—20 мин, чтобы тигель принял температуру весов.

Взвесив тигель на аналитических весах, его снова прокаливают 15—20 мин, охлаждают в эксикаторе и повторяют взвешивание. Если результат последнего взвешивания будет отличаться от предыдущего не более чем на ±0,0002 г, считают, что тигель доведен для постоянной массы, т. е. подготовлен для прокаливания осадка. В противном случае тигель прокаливают, охлаждают и взвешивают еще раз. Результаты всех взвешиваний непременно записывают в лабораторный журнал.

Прокаливание осадка. Кристаллизационная, или конституционная вода, которую может содержать даже высушенный осадок, должна быть полностью удалена путем прокаливания. Кроме того, при прокаливании нередко происходит химическое разложение вещества. Например, оксалат кальция CaC2О4•Н2О, получаемый при осаждении ионов Са2+ оксалатом аммония, уже при высушивании теряет кристаллизационную воду:

CaC2O4 • H2O → CaC2O4 + H2O

При слабом прокаливании он выделяет окись углерода и превращается в карбонат кальция:

CaC2O4 → СО2 + СаСО3

Наконец, при сильном прокаливании карбонат кальция разлагается с образованием двуокиси углерода и окиси кальция:

CaCO3 → CaO + CO2

По массе окиси кальция и вычисляют результат определения. Температура и продолжительность прокаливания осадков могут быть различны.

В самой технике прокаливания различают два случая.

1. Прокаливание осадка без отделения фильтра. Этот способ используют, когда прокаливаемый осадок не взаимодействует с углеродом обуглившегося фильтра. Так, без удаления фильтра прокаливают осадки оксидов Al2O3, CaO и некоторые другие.

Фарфоровый тигель, доведенный до постоянной массы, ставят на глянцевую (лучше черную) бумагу. Осторожно извлекают из воронки высушенный фильтр с осадком и, держа над тиглем, свертывают. После этого аккуратно укладывают его в тигель. Если при внимательном осмотре на воронке обнаруживают следы осадка, то тщательно вытирают внутреннюю поверхность ее кусочком беззольного фильтра, который помещают в тот же тигель. Наконец, крупинки осадка, просыпавшиеся на бумагу при свертывании фильтра, также стряхивают в тигель. Затем ставят тигель на электрическую плитку и осторожно озоляют (сжигают) фильтр. Иногда вместо этого тигель вставляют в фарфоровый треугольник на кольце штатива и нагревают на небольшом пламени горелки. Желательно, чтобы фильтр медленно обуглился и истлел, не вспыхивая, так как горение приводит к потере мельчайших частиц осадка. Если он все-таки загорится, то пламя ни в коем случае не задувают, а только перестают нагревать и ждут, когда горение прекратится.

Закончив озоление фильтра, переносят тигель в муфельную печь и прокаливают 25—30 мин. Охлаждают тигель в эксикаторе, взвешивают и записывают значение его массы в лабораторный журнал. Повторяют прокаливание (15—20 мин), охлаждение и взвешивание до тех пор, пока не будет достигнута постоянная масса тигля с осадком.

2. Прокаливание осадка с отделением фильтра. К этому способу прибегают, когда осадок при обугливании фильтра может химически взаимодействовать с углеродом (восстанавливаться). Например, осадок хлорида серебра AgCl восстанавливается углеродом до свободного серебра; прокаливать его вместе с фильтром нельзя.

Хорошо высушенный осадок возможно полнее высыпают из фильтра на глянцевую бумагу и накрывают химическим стаканом (или опрокинутой воронкой), чтобы предотвратить потери. Фильтр с оставшимися на нем частицами осадка укладывают в тигель (доведенный до постоянной массы), сжигают и прокаливают. К прокаленному остатку в том же тигле присоединяют ранее отделенный осадок. После этого, как обычно, содержимое тигля прокаливают до постоянной массы.

Если осадок отфильтровывают с помощью стеклянного тигля, то вместо прокаливания прибегают к высушиванию до постоянной массы. Разумеется, фильтрующий тигель должен быть предварительно доведен до постоянной массы при той же температуре.

Если в ходе анализа будет допущена непоправимая ошибка (например, потеряна часть осадка, пролита часть раствора с осадком и т. п.), то определение следует начать снова, не расходуя время на получение заведомо неверного результата.

8. Взвешивание

Взвешивание производят на аналитических весах с точностью до 10-6 г. (ВЛР 200)

9. Вычисления в гравиметрическом анализе

Выше уже были рассмотрены некоторые сравнительно простые вычисления, а именно: расчет величины навески и количества осадителя, нахождение относительной ошибки определения. Вычисление результатов анализа также не отличается сложностью.

Обычно результаты гравиметрических определений выражают в процентах от исходного количества вещества. Для этого нужно знать величину навески анализируемого вещества, массу полученного осадка и его химическую формулу.

Гравиметрические определения преследуют различные цели. В одних случаях необходимо определить содержание того или иного элемента в химически чистом веществе, например содержание бария в хлориде бария BaCl2•2H2O. В других случаях требуется найти содержание действующего начала в каком-нибудь техническом продукте или вообще в веществе, имеющем примеси. Например, приходится определять содержание хлорида бария BaCl2•2H2O в продажном хлориде бария.

Техника определений в обоих приведенных случаях может оставаться одинаковой, но вычисления при этом будут различны. Рассмотрим ход вычислений на конкретных примерах.

Пример 1. Определить содержание чистого BaCl2•2H2O в образце технического хлорида бария. Навеска составляет 0,5956 г. Масса осадка сульфата бария BaSO4 после прокаливания равна 0,4646 г.

Решение: Определение основано на реакции, протекающей по уравнению

BaCl2•2H2O + H2SO4 = BaSO4 + 2HCl + 2H2O

М=244,30 г/моль М= 233,40 г/моль

Прежде всего вычисляют, какому количеству BaCl2•2H2O соответствует найденное в анализе количество BaSO4:

233,40 г BaSO4 получаются из 244,30 г BaCl2•2H2O
0,4646 г BaSO4 получаются из Х г BaCl2•2H2O

х = (0,4646 • 244.30)/233.40 = 0.4862 г BaCl2 • 2H2O.

Затем выражают содержание чистого BaCl2•2H2O в процентах от исходной навески технического хлорида бария:

0,5956 г технического продукта составляют 100 %
0,4862 г чистого BaCl2•2H2O составляют х %

х = (0,4862•100)/0.5956 = 81.83%.

Ответ: технический хлорид бария содержит 81.83% чистого BaCl2•2H2O.

Пример 2. Определить содержание бария в образце химически чистого хлорида бария BaCl2•2H2O. Навеска чистого BaCl2•2H2O равна 0,4872 г. Масса осадка сульфата бария BaSO4 после прокаливания 0.4644 г.

Решение. Сначала вычисляют, сколько бария (атомная масса 137,40) содержится в полученном осадке сульфата бария:

в 233,40 г BaSO4 содержится 137,40 г Ba
в 0,4644 г BaSO4 содержится х г Ba

х = (0,4644•137,40)/233,40 = 0,2733 г.

Очевидно, что это же количество бария входило до реакции в состав навески BaCl2•2H2O. Поэтому можно составить пропорцию:

0,4872 г BaCl2•2H2O составляют 100 %
0,2733 г Ba составляют х %

х = (0,2733 • 100)/0,4872 = 56,09%

Ответ: следовательно, хлорид бария BaCl2•2H2O содержит 56.09% бария.

Нередко для вычислений в гравиметрическом анализе используют факторы пересчета, называемые также аналитическими или весовыми факторами.

Фактор пересчета (F) представляет собой отношение атомной (или молекулярной) массы определяемого вещества к молекулярной массе вещества, находящегося в осадке:

Фактор пересчета показывает, сколько граммов определяемого вещества содержит 1 г осадка. В конкретных случаях факторы пересчета находят следующим образом:

При определении бария путем взвешивания в виде сульфата BaSO4 фактор пересчета равен:

F = ABa/MBaSO4 = 137,40 / 233,40 = 0,5887

Пользуясь факторами пересчета, делают вычисления по готовым формулам. Например, чтобы вычислить содержание элемента (или другой составной части) в сложном веществе, используют формулу:

% = (mF/G)•100,

где m— масса полученного осадка, г;

F — фактор пересчета;

G — навеска исследуемого вещества, г.

По этой формуле можно рассчитать и процентное содержание бария в хлориде бария BaCl2•2H2O:

Ba, % = (mF/C)•100 = [(0,4644•0,5887)/0,4872] • 100 = 56,09 %.

Понравилась статья? Поделить с друзьями:
  • Ошибки двигателя ваз 2110 8 клапанов
  • Ошибки двигателя крайслер газ 31105
  • Ошибки глобал фриз
  • Ошибки гофман скачать
  • Ошибки двигателя scania