Опираясь на статистику легко лгать,
но без статистики очень трудно выяснить истину.
В любом научном исследовании главное — это полученные результаты. Однако, для того чтобы из них можно было сделать выводы, требуется статистическая обработка полученных данных.
Для тех, кто хорошо разбирается в математике, статистика не вызывает серьезных затруднений. Тем не менее разнообразные исследования показывают, что значительная доля научных публикаций содержит те или иные статистические ошибки. Об ошибках при переводе научных работ читайте в статье.
В. Джонсон из Техасского университета считает, что плохая статистика является одной из главных причин недостаточной воспроизводимости результатов в психологических исследованиях.
В этой статье мы расскажем о часто встречающихся ошибках статистического анализа и о том, как их избежать. С полезными сервисами для авторов можно ознакомиться здесь.
Содержание статьи
- 1. Сколько вешать в граммах?
- 2. Разбивка непрерывных данных на группы.
- 3. Среднее и сигмальное отклонение, медиана и доверительный интервал.
- 4. p-критерий.
- 5. Адекватность модели.
- 6. Понятие нормы.
- 7. Учет сомнительных и неопределенных результатов.
- 8. Понятие объекта исследования.
- 9. Статистическая значимость полученных результатов.
- 10. Влияние факторов риска.
- Заключение
1. Сколько вешать в граммах?
Любой ученый дорожит полученными результатами. Каждая цифра представляется нам достаточно значимой, чтобы представить ее в том виде, в котором она была получена. Получили вес 60,245 кг — так и запишем. Часто кажется, что, округляя данные, мы обесцениваем собственный труд.
Однако, с точки зрения читателя излишняя точность скорее мешает. Цифры с длинными хвостами трудно воспринимать и оценивать. Если их можно округлить без ущерба для точности выводов, нужно это сделать. Например, ни для каких целей нет смысла указывать вес взрослого человека с точностью до грамма.
Учитывайте при округлении точность приборов. Если весы дают погрешность более 100 граммов, указывать десятые доли килограмма не стоит.
При округлении процентов в научных статьях рекомендуется использовать следующие правила: если выборка больше 1 000, результат округляется до сотых; от 100 до 1 000 – до десятых; от 20 до 100 – до целых значений процентов. Для выборки менее 20, лучше дать абсолютные значения. В маленьких группах проценты скорее запутывают читателя и часто выглядят курьезно: в результате лечения 33, 333% животных выздоровели; 33, 333% погибли; третья мышь убежала.
Количество знаков после запятой должно быть одинаковым во всей статье. Если все результаты округляются до сотых, а какой-то из них имеет вид целого числа, то его нужно записать так же, как все остальные цифры, например 24,00.
2. Разбивка непрерывных данных на группы.
Такие данные, как рост, вес или возраст часто делят на категории. Разбивка упрощает статистический анализ, но в любом случае необходимо обосновать принципы, по которым это сделано.
Деление на категории может приводить к некорректным выводам. Например, если выборку разделили на пациентов с нормальной массой тела, дефицитом и избытком массы, то различия между людьми с весом 80 и 150 килограммов могут быть больше, чем между людьми с весом 70 и 80 килограммов, хотя в первом случае они входят в одну группу (с избытком массы), а во втором — в разные.
3. Среднее и сигмальное отклонение, медиана и доверительный интервал.
Представление в статье только средних групповых значений без учета индивидуальных различий может приводить к неверным выводам. Пресловутая средняя температура по больнице не дает представления не только обо всех пациентах, но даже о большинстве из них.
Средняя величина и среднее квадратическое отклонение или сигмальное отклонение δ (standard deviation — sd) описывают вариабельность выборки.
Среднее квадратическое отклонение применяется только в случае нормального распределения данных, то есть когда 68% показателей находятся в пределах ±1δ, 95% в пределах ±2δ, и 99% в пределах ±3δ.
При асимметричном распределении данных среднее квадратическое отклонение не дает правильного представления о выборке. В этом случае используется медиана median и межквартильный диапазон interquartile range (IQR) (как правило, от 25 до 75 центиля).
Точечные данные характеризуют такие показатели, как стандартная ошибка среднего и доверительный интервал.
Стандартная ошибка среднего standard error of the mean (m) показывает отличие фактических данных от значений, полученных на модели. Она позволяет оценить точность модели.
Доверительный интервал confidence interval (CI) демонстрирует, насколько выборка отражает свойства генеральной совокупности. В медицинских исследованиях обычно указывают 95% доверительный интервал.
Средняя величина, указанная без доверительного интервала, не дает полного и правильного представления о полученном эффекте. Например, если среднее снижение артериального давления 20 мм. рт. ст., эффект может показаться клинически значимым. Однако при 95% доверительном интервале от 5 до 30 мм. рт. ст. целесообразность применяемой схемы лечения уже представляется сомнительной, так как снижение показателя на 5 мм. рт. ст. клинически несущественно. Окончательный вывод о целесообразности изучаемой схемы лечения из этих результатов сделать нельзя.
Важно: в медицинских исследованиях результаты, подчиняющиеся нормальному распределению, встречаются довольно редко. Кроме того, средняя величина и среднее квадратическое отклонение плохо работают на малых выборках.
4. p-критерий.
Критерий р недостаточно информативен в медицинских и биологических исследованиях.
Дело в том, что статистическая значимость не равна клиническому значению и целесообразности использования тех или иных выводов на практике. Решение о рациональности использования препарата не может опираться только на статистическую значимость полученного клинического эффекта. Например, статистически значимое снижение артериального давления на 10 мм. рт. ст. клинически можно расценивать как отсутствие эффекта.
р-критерий не может равняться нулю. Это значило бы, что между группами есть действительно достоверное различие. Однако, такое различие невозможно установить методами статистики. Обычно эта ошибка связана с тем, что программы для статистической обработки данных приводят очень малые значения как р=0,00000. На самом деле это означает p<0,000001, что и должно быть указано в статье.
р-критерий не применяется к генеральной совокупности. Он показывает, что имеющиеся различия не являются случайностью и такой же результат может быть получен на другой выборке. В случае генеральной совокупности этот показатель не имеет смысла, так как речь о случайности различий не идет.
Если в исследовании участвует несколько групп, определение нескольких p-критериев повышает вероятность принять случайное совпадение фактов за причинно-следственную связь. Существует несколько методов решения проблемы множественных сравнений, их использование должно быть обосновано и описано.
В рандомизированных клинических исследованиях р-критерий указывать необязательно, так как исходные различия между группами всегда имеют место в силу случайности выбора.
5. Адекватность модели.
Регрессионные модели не работают, если зависимость между переменными не имеет линейного характера.
Чтобы подтвердить или опровергнуть линейный характер связи между величинами, нужно изучить остатки residuals, то есть отклонение реальных данных от линии регрессии, построенной на основании модели.
Регрессионная модель хорошо объясняет реальное положение дел, если остатки:
- независимы
- подчиняются нормальному распределению
- имеют нулевое среднее
- в их величинах нет тренда
Дисперсия остатков variance of the residuals показывает те изменения полученных данных, которые не объясняются моделью. Чем меньше дисперсия, тем лучше работает модель.
6. Понятие нормы.
Отсутствие четкого понимания, что следует принять за норму является серьезным недостатком клинических исследований.
Для определения нормы существует несколько подходов:
- результат говорит о наличии или отсутствии заболевания
- является показанием к назначению лечения
- указывает на риск развития болезни
- встречается у здоровых лиц
- укладывается в определенный диапазон значений
Далеко не во всех случаях норма клинически значима. Например, несовпадение индивидуальных сроков прорезывания зубов с нормальными, как правило, ни о чем не говорит.
Причины, по которым тот или иной показатель принят за норму, должны быть обоснованы.
7. Учет сомнительных и неопределенных результатов.
В медицинских и клинических исследованиях не всегда ясно, как учитываются сомнительные результаты при определении чувствительности и специфичности тестов. При наличии значительного процента сомнительных результатов практическая значимость выводов снижается.
Результат нельзя однозначно оценить как отрицательный или положительный если:
- получены пограничные значения показателя;
- интенсивность окрашивания препарата недостаточная;
- ответы на вопросы психологических тестов неоднозначные;
- нарушены стандарты при проведении исследования.
Если в статистический анализ включены не все результаты и не все участники исследования, возникают вопросы:
- Данные пропустили по ошибке или сознательно исключили из анализа, поскольку они противоречат первоначальной гипотезе и выводам?
- Не приведет ли исключение некоторых данных к тому, что результаты не будут воспроизводиться на другой выборке или при повторном исследовании?
- Если данные не были представлены полностью, то можно ли доверять другим фактам, содержащимся в статье?
Все это не украшает автора и снижает ценность его работы в глазах читателя и редактора журнала. Поэтому в статье нужно указать наличие и количество сомнительных и неопределенных результатов; пояснить, включались ли они в статистический анализ и как были интерпретированы.
8. Понятие объекта исследования.
Неверное определение объекта исследования может приводить к ошибкам и неточностям.
В клинических исследованиях объектом принято считать пациента. Когда в работе о методах лечения переломов единицей учета является не пациент, а сломанная кость, возникает вопрос, сколько больных участвовали в исследовании. Тем более непонятно, что означает 50% эффективность.
Если объектом исследования является язвенная болезнь, то размер выборки будет соответствовать количеству выявленных случаев заболевания, а не количеству обследованных пациентов.
В работах, основанных на заключениях специалистов, может быть необходимым исследовать выборку специалистов, а не общий массив заключений.
9. Статистическая значимость полученных результатов.
Статистическая значимость Statistical significance не равна клиническому значению.
При сравнении больших выборок статистически значимыми могут оказаться различия, не имеющие никакой реальной важности. Например, при среднем сроке службы приборов 5 лет различия на 1-2 недели клинического значения не имеют.
Наоборот, в малых выборках статистически незначимые различия могут быть важными клинически. Например, если в группе из нескольких больных в терминальном состоянии выжил хотя бы один, это безусловно клинически значимо.
10. Влияние факторов риска.
Истинное влияние фактора риска показывает относительный риск relative risk (RR) — отношение риска наступления исхода у подвергавшихся воздействию фактора к риску в контрольной группе. Этот показатель можно рассчитать, если группы набираются по принципу наличия и отсутствия фактора риска.
Если же группы набираются по принципу наличия или отсутствия исхода, то влияние можно оценить только приблизительно, используя показатель отношения шансов odds ratio (OR), описывающий силу связи между факторами.
Заключение
Главный вывод из сказанного: методы статистического анализа должны соответствовать характеру данных. Выбор тех или иных методов анализа нужно обосновать. Во избежание ошибок учтите:
- Характер распределения данных. Нормальное и асимметричное распределение требует разных подходов к анализу.
- Для анализа независимых выборок и парных данных (относящихся к одному и тому же участнику исследования) используются разные методы.
- Характер связи между переменными. Линейный характер связи позволяет использовать регрессионные модели. Чтобы подтвердить или опровергнуть линейную зависимость, нужно проанализировать остатки.
- В медицинских исследованиях клиническая значимость имеет приоритет над статистической.
- Норма должна быть клинически значимой; а выбор значения, принимаемого за норму, нужно обосновать.
- При наличии сомнительных или неопределенных результатов следует объяснить, как они учитываются в статистическом анализе.
- Объектом исследования следует считать человека или животное, а не болезнь и не клинический случай, так как два и более клинических случая могут иметь отношение к одному пациенту.
Статистические показатели в любом случае можно улучшить увеличением числа участников. По мнению В. Джонсона, принимая эталонное значение р-критерия в медицинских и биологических исследованиях на уровне <0.0005, можно существенно повысить качество статистики.
Часто ошибки статистического анализа вытекают из того, что эксперимент или исследование было изначально неправильно спланировано. В сомнительных случаях стоит обратиться к специалистам по статистике, однако делать это нужно на этапе подготовки, а не тогда, когда все работы уже завершены и возник вопрос, что же теперь делать с этими цифрами.
Современные программы для статистической обработки данных сильно облегчают вычисления, однако они не решают проблему выбора адекватных методов анализа и соответствия их характеру полученных данных. Поэтому залог успеха — тщательная подготовка исследования. Убедитесь, что материалы и методы, статистический анализ результатов и выводы соответствуют цели исследования.
Присоединяйтесь, чтобы моментально узнавать о новых статьях в нашем научном блоге, акциях и получать только полезные материалы!
Опираясь на статистику легко лгать,
но без статистики очень трудно выяснить истину.
В любом научном исследовании главное — это полученные результаты. Однако, для того чтобы из них можно было сделать выводы, требуется статистическая обработка полученных данных.
Для тех, кто хорошо разбирается в математике, статистика не вызывает серьезных затруднений. Тем не менее разнообразные исследования показывают, что значительная доля научных публикаций содержит те или иные статистические ошибки. Об ошибках при переводе научных работ читайте в статье.
В. Джонсон из Техасского университета считает, что плохая статистика является одной из главных причин недостаточной воспроизводимости результатов в психологических исследованиях.
В этой статье мы расскажем о часто встречающихся ошибках статистического анализа и о том, как их избежать. С полезными сервисами для авторов можно ознакомиться здесь.
Содержание статьи
- 1. Сколько вешать в граммах?
- 2. Разбивка непрерывных данных на группы.
- 3. Среднее и сигмальное отклонение, медиана и доверительный интервал.
- 4. p-критерий.
- 5. Адекватность модели.
- 6. Понятие нормы.
- 7. Учет сомнительных и неопределенных результатов.
- 8. Понятие объекта исследования.
- 9. Статистическая значимость полученных результатов.
- 10. Влияние факторов риска.
- Заключение
1. Сколько вешать в граммах?
Любой ученый дорожит полученными результатами. Каждая цифра представляется нам достаточно значимой, чтобы представить ее в том виде, в котором она была получена. Получили вес 60,245 кг — так и запишем. Часто кажется, что, округляя данные, мы обесцениваем собственный труд.
Однако, с точки зрения читателя излишняя точность скорее мешает. Цифры с длинными хвостами трудно воспринимать и оценивать. Если их можно округлить без ущерба для точности выводов, нужно это сделать. Например, ни для каких целей нет смысла указывать вес взрослого человека с точностью до грамма.
Учитывайте при округлении точность приборов. Если весы дают погрешность более 100 граммов, указывать десятые доли килограмма не стоит.
При округлении процентов в научных статьях рекомендуется использовать следующие правила: если выборка больше 1 000, результат округляется до сотых; от 100 до 1 000 – до десятых; от 20 до 100 – до целых значений процентов. Для выборки менее 20, лучше дать абсолютные значения. В маленьких группах проценты скорее запутывают читателя и часто выглядят курьезно: в результате лечения 33, 333% животных выздоровели; 33, 333% погибли; третья мышь убежала.
Количество знаков после запятой должно быть одинаковым во всей статье. Если все результаты округляются до сотых, а какой-то из них имеет вид целого числа, то его нужно записать так же, как все остальные цифры, например 24,00.
2. Разбивка непрерывных данных на группы.
Такие данные, как рост, вес или возраст часто делят на категории. Разбивка упрощает статистический анализ, но в любом случае необходимо обосновать принципы, по которым это сделано.
Деление на категории может приводить к некорректным выводам. Например, если выборку разделили на пациентов с нормальной массой тела, дефицитом и избытком массы, то различия между людьми с весом 80 и 150 килограммов могут быть больше, чем между людьми с весом 70 и 80 килограммов, хотя в первом случае они входят в одну группу (с избытком массы), а во втором — в разные.
3. Среднее и сигмальное отклонение, медиана и доверительный интервал.
Представление в статье только средних групповых значений без учета индивидуальных различий может приводить к неверным выводам. Пресловутая средняя температура по больнице не дает представления не только обо всех пациентах, но даже о большинстве из них.
Средняя величина и среднее квадратическое отклонение или сигмальное отклонение δ (standard deviation — sd) описывают вариабельность выборки.
Среднее квадратическое отклонение применяется только в случае нормального распределения данных, то есть когда 68% показателей находятся в пределах ±1δ, 95% в пределах ±2δ, и 99% в пределах ±3δ.
При асимметричном распределении данных среднее квадратическое отклонение не дает правильного представления о выборке. В этом случае используется медиана median и межквартильный диапазон interquartile range (IQR) (как правило, от 25 до 75 центиля).
Точечные данные характеризуют такие показатели, как стандартная ошибка среднего и доверительный интервал.
Стандартная ошибка среднего standard error of the mean (m) показывает отличие фактических данных от значений, полученных на модели. Она позволяет оценить точность модели.
Доверительный интервал confidence interval (CI) демонстрирует, насколько выборка отражает свойства генеральной совокупности. В медицинских исследованиях обычно указывают 95% доверительный интервал.
Средняя величина, указанная без доверительного интервала, не дает полного и правильного представления о полученном эффекте. Например, если среднее снижение артериального давления 20 мм. рт. ст., эффект может показаться клинически значимым. Однако при 95% доверительном интервале от 5 до 30 мм. рт. ст. целесообразность применяемой схемы лечения уже представляется сомнительной, так как снижение показателя на 5 мм. рт. ст. клинически несущественно. Окончательный вывод о целесообразности изучаемой схемы лечения из этих результатов сделать нельзя.
Важно: в медицинских исследованиях результаты, подчиняющиеся нормальному распределению, встречаются довольно редко. Кроме того, средняя величина и среднее квадратическое отклонение плохо работают на малых выборках.
4. p-критерий.
Критерий р недостаточно информативен в медицинских и биологических исследованиях.
Дело в том, что статистическая значимость не равна клиническому значению и целесообразности использования тех или иных выводов на практике. Решение о рациональности использования препарата не может опираться только на статистическую значимость полученного клинического эффекта. Например, статистически значимое снижение артериального давления на 10 мм. рт. ст. клинически можно расценивать как отсутствие эффекта.
р-критерий не может равняться нулю. Это значило бы, что между группами есть действительно достоверное различие. Однако, такое различие невозможно установить методами статистики. Обычно эта ошибка связана с тем, что программы для статистической обработки данных приводят очень малые значения как р=0,00000. На самом деле это означает p<0,000001, что и должно быть указано в статье.
р-критерий не применяется к генеральной совокупности. Он показывает, что имеющиеся различия не являются случайностью и такой же результат может быть получен на другой выборке. В случае генеральной совокупности этот показатель не имеет смысла, так как речь о случайности различий не идет.
Если в исследовании участвует несколько групп, определение нескольких p-критериев повышает вероятность принять случайное совпадение фактов за причинно-следственную связь. Существует несколько методов решения проблемы множественных сравнений, их использование должно быть обосновано и описано.
В рандомизированных клинических исследованиях р-критерий указывать необязательно, так как исходные различия между группами всегда имеют место в силу случайности выбора.
5. Адекватность модели.
Регрессионные модели не работают, если зависимость между переменными не имеет линейного характера.
Чтобы подтвердить или опровергнуть линейный характер связи между величинами, нужно изучить остатки residuals, то есть отклонение реальных данных от линии регрессии, построенной на основании модели.
Регрессионная модель хорошо объясняет реальное положение дел, если остатки:
- независимы
- подчиняются нормальному распределению
- имеют нулевое среднее
- в их величинах нет тренда
Дисперсия остатков variance of the residuals показывает те изменения полученных данных, которые не объясняются моделью. Чем меньше дисперсия, тем лучше работает модель.
6. Понятие нормы.
Отсутствие четкого понимания, что следует принять за норму является серьезным недостатком клинических исследований.
Для определения нормы существует несколько подходов:
- результат говорит о наличии или отсутствии заболевания
- является показанием к назначению лечения
- указывает на риск развития болезни
- встречается у здоровых лиц
- укладывается в определенный диапазон значений
Далеко не во всех случаях норма клинически значима. Например, несовпадение индивидуальных сроков прорезывания зубов с нормальными, как правило, ни о чем не говорит.
Причины, по которым тот или иной показатель принят за норму, должны быть обоснованы.
7. Учет сомнительных и неопределенных результатов.
В медицинских и клинических исследованиях не всегда ясно, как учитываются сомнительные результаты при определении чувствительности и специфичности тестов. При наличии значительного процента сомнительных результатов практическая значимость выводов снижается.
Результат нельзя однозначно оценить как отрицательный или положительный если:
- получены пограничные значения показателя;
- интенсивность окрашивания препарата недостаточная;
- ответы на вопросы психологических тестов неоднозначные;
- нарушены стандарты при проведении исследования.
Если в статистический анализ включены не все результаты и не все участники исследования, возникают вопросы:
- Данные пропустили по ошибке или сознательно исключили из анализа, поскольку они противоречат первоначальной гипотезе и выводам?
- Не приведет ли исключение некоторых данных к тому, что результаты не будут воспроизводиться на другой выборке или при повторном исследовании?
- Если данные не были представлены полностью, то можно ли доверять другим фактам, содержащимся в статье?
Все это не украшает автора и снижает ценность его работы в глазах читателя и редактора журнала. Поэтому в статье нужно указать наличие и количество сомнительных и неопределенных результатов; пояснить, включались ли они в статистический анализ и как были интерпретированы.
8. Понятие объекта исследования.
Неверное определение объекта исследования может приводить к ошибкам и неточностям.
В клинических исследованиях объектом принято считать пациента. Когда в работе о методах лечения переломов единицей учета является не пациент, а сломанная кость, возникает вопрос, сколько больных участвовали в исследовании. Тем более непонятно, что означает 50% эффективность.
Если объектом исследования является язвенная болезнь, то размер выборки будет соответствовать количеству выявленных случаев заболевания, а не количеству обследованных пациентов.
В работах, основанных на заключениях специалистов, может быть необходимым исследовать выборку специалистов, а не общий массив заключений.
9. Статистическая значимость полученных результатов.
Статистическая значимость Statistical significance не равна клиническому значению.
При сравнении больших выборок статистически значимыми могут оказаться различия, не имеющие никакой реальной важности. Например, при среднем сроке службы приборов 5 лет различия на 1-2 недели клинического значения не имеют.
Наоборот, в малых выборках статистически незначимые различия могут быть важными клинически. Например, если в группе из нескольких больных в терминальном состоянии выжил хотя бы один, это безусловно клинически значимо.
10. Влияние факторов риска.
Истинное влияние фактора риска показывает относительный риск relative risk (RR) — отношение риска наступления исхода у подвергавшихся воздействию фактора к риску в контрольной группе. Этот показатель можно рассчитать, если группы набираются по принципу наличия и отсутствия фактора риска.
Если же группы набираются по принципу наличия или отсутствия исхода, то влияние можно оценить только приблизительно, используя показатель отношения шансов odds ratio (OR), описывающий силу связи между факторами.
Заключение
Главный вывод из сказанного: методы статистического анализа должны соответствовать характеру данных. Выбор тех или иных методов анализа нужно обосновать. Во избежание ошибок учтите:
- Характер распределения данных. Нормальное и асимметричное распределение требует разных подходов к анализу.
- Для анализа независимых выборок и парных данных (относящихся к одному и тому же участнику исследования) используются разные методы.
- Характер связи между переменными. Линейный характер связи позволяет использовать регрессионные модели. Чтобы подтвердить или опровергнуть линейную зависимость, нужно проанализировать остатки.
- В медицинских исследованиях клиническая значимость имеет приоритет над статистической.
- Норма должна быть клинически значимой; а выбор значения, принимаемого за норму, нужно обосновать.
- При наличии сомнительных или неопределенных результатов следует объяснить, как они учитываются в статистическом анализе.
- Объектом исследования следует считать человека или животное, а не болезнь и не клинический случай, так как два и более клинических случая могут иметь отношение к одному пациенту.
Статистические показатели в любом случае можно улучшить увеличением числа участников. По мнению В. Джонсона, принимая эталонное значение р-критерия в медицинских и биологических исследованиях на уровне <0.0005, можно существенно повысить качество статистики.
Часто ошибки статистического анализа вытекают из того, что эксперимент или исследование было изначально неправильно спланировано. В сомнительных случаях стоит обратиться к специалистам по статистике, однако делать это нужно на этапе подготовки, а не тогда, когда все работы уже завершены и возник вопрос, что же теперь делать с этими цифрами.
Современные программы для статистической обработки данных сильно облегчают вычисления, однако они не решают проблему выбора адекватных методов анализа и соответствия их характеру полученных данных. Поэтому залог успеха — тщательная подготовка исследования. Убедитесь, что материалы и методы, статистический анализ результатов и выводы соответствуют цели исследования.
Присоединяйтесь, чтобы моментально узнавать о новых статьях в нашем научном блоге, акциях и получать только полезные материалы!
Ошибки при статистическом анализе: какие бывают и чем вызваны
-
16.11.2021
Статистический анализ данных применительно к медицине – серьёзная наука, которая подчиняется определённым законам. И если им не следовать, результат будет неудовлетворительным. Статическая обработка данных в научном исследовании, продумывается ещё на этапе его планирования. Если же вспомнить о ней только по окончанию основной части работы, то систематизировать полученные данные будет практически невозможно. Даже специалистам будет весьма проблематично выудить из «кучи мусора» действительно важные показатели, чтобы исследователь получил ожидаемый результат. Поэтому, если вы не можете похвастаться высоким уровнем квалификации в биостатистике, обратиться за помощью к профессионалам в данном направлении, стоит ещё до начала экспериментальной работы. Это позволит избежать ошибок, которые могут поставить под сомнение результаты всего процесса.
Статистические ошибки – какими они бывают
Проведение любого эксперимента требует создания статистической выборке. О том, какими они бывают, на каких принципах строятся и их характеристики, вы можете прочесть в нашей статье. Статистическая обработка данных в научном исследовании и проводится на основании результатов, полученных в данных выборках. А затем, перекладывается на всю популяцию.
Объём выборки, напрямую связан с вероятностью появления статистических ошибок. Они бывают первого и второго рода.
- Статистические ошибки первого рода. Они могут появляться из-за того, что в процессе исследования, осуществляется изучение не всей популяции, а только её части. Таким образом, ошибка первого рода является ошибочным отклонением от нулевой гипотезы. При этом, важно понимать, что собой представляет сама нулевая гипотеза. Это предположение, что все изучаемые группы взяты из одной генеральной совокупности, а значит, любые различия или напротив – связи между ними, являются случайными. По аналогии с диагностическим тестированием, можно говорить, что ошибка первого рода – это ложноположительный результат.
- Статистические ошибки второго рода. Они являются неверным отклонением альтернативной гипотезы. В свою очередь, альтернативная гипотеза говорит о том, что совпадения или различия между группами не случайны, а обусловлены влиянием изучаемых факторов. Если снова затронуть диагностическую ошибку, то в данном случае, результат будет ложноотрицательным. При таком результате, в силу вступает понятие мощности, определяющее насколько подобранный статистический метод является эффективным для конкретных условий. Для вычисления мощности используется формула 1-β, где β – это вероятность ошибки второго рода.
Что касается ошибки второго рода, то показатель мощности, в большинстве случаев, имеет прямую зависимость от численности выборки. В больших по объёму группах, ниже вероятность ошибки второго рода и выше мощность статистических критериев. Данная зависимость является не менее чем квадратичной. Это значит, что при уменьшении объема выборки в два раза, последует падение мощности не менее чем в 4 раза. При этом, минимально допустимая мощность должна составлять не менее 80%, а максимально допустимый уровень ошибки – не выше 5%.
Стоит учитывать, что чётких границ не существует. Задаются они произвольно и в зависимости от особенностей исследования, его целей и характера, могут быть изменены. В большинстве случаев, научное сообщество произвольное изменение мощности, однако в подавляющем большинстве случаев уровень ошибки первого рода не может превышать 5%.
Особенности процедуры анализа
Статистическая обработка данных в научном исследовании предполагает соблюдение процедуры анализа. Он может осуществляться с использованием двух разновидностей техник – описательной или доказательной, которую ещё называют аналитической. Что касается описательных техник, то с их помощью, данные можно предоставить в компактном и понятном виде. Это могут быть графики, таблицы, абсолютные и относительные частоты, меры центральной тенденции, меры разброса данных и другие. Все они дают характеристику изучаемым выборкам.
Описание групп осуществляется по чётким критериям, и специалисты подбирают их совокупность индивидуально. Таким образом, результат получается максимально объективным. По завершению данного процесса, требуется выявить взаимоотношения между группами и, если это возможно, перенести результаты исследования на всю популяцию. Здесь в дело вступают аналитические методы биостатистики. Традиционно, данный этап специалисты называют «тестирование статистических гипотез».
При тестировании гипотез, все задачи разделяются на две большие группы. Работая с первой, необходимо выявить, есть ли различия между группами по уровню определённого показателя. Например – печеночных трансаминаз среди здоровых реципиентов и людей с подтверждённым гепатитом. А работая со второй группой, наличие связей исследуется уже не по одному, а нескольким параметрам. Для примера – функции печени и иммунной системы.
Если переменная, которая подлежит изучению, является качественной, сравниваются между собой две группы, то эффективно используется критерий «хи-квадрат». Стоит учитывать, что если наблюдений недостаточно, он будет непоказательным. В таком случае, применяются такие методы как поправка Йейтса на непрерывность и точный метод Фишера.
Что касается количественной переменной, то применяется один из двух видов статистических критериев. Так, критерии первого вида основываются на конкретном типе распределения генеральной совокупности и оперируют параметрами этой совокупности. Они имеют название «параметрические». А вот критерии второго вида – непараметрические, основываются на теории о типе распределения генеральной совокупности, и они не используют ее параметры. Иногда, их называют свободными от распределения. При этом важно учитывать, что распределения во всех сравниваемых группах должны быть идентичными, чтобы не получить ложноположительный результат.
а) Виды ошибок
В процессе исследования явлений может
возникать отклонение исчисленных
показателей от их действительной
величины, то есть могут возникать ошибки
статистического наблюдения.
По источникам происхождения ошибки
наблюдения можно подразделить на
следующие:
-
преднамеренные;
-
непреднамеренные,
которые в свою очередь делятся на:
-
случайные;
-
систематические;
-
репрезентативности
(представительности).
Преднамеренные(сознательные, злостные) получаются в
результате того, что сознательно
сообщаются неправильные данные. Например,
сокрытие фирмами прибыли от налогообложения,
искажение сведений об объеме выпускаемой
продукции, приписки и т. д.
Законом
предусматривается применение экономических
и административных мер к предприятиям
и лицам за злостные ошибки (иногда и
уголовная ответственность).
Непреднамеренные
случайныеошибки чаще связаны с
невнимательностью регистратора,
небрежностью в заполнении документов,
неточностью измерительных приборов,
ошибками в ответах опрашиваемых.
Непреднамеренные
систематическиеошибки возникают
при округлении признака в большую или
меньшую сторону, при использовании ЭВМ.
Ошибки
репрезентативности(представительности)
свойственны несплошному наблюдению,
они возникают вследствие неправильного
выбора единиц для обследования, нарушен
принцип случайного отбора, и выборочная
совокупность не полно характеризует
генеральную.
Б) Способы предотвращения ошибок статистического наблюдения
Чтобы
предупредить возникновение ошибок или
уменьшить их размеры необходимо:
-
обеспечивать
правильный подбор и подготовку кадров; -
вести широкую
разъяснительную работу, применять меры
взыскания за искажение фактов; -
проводить
систематический контроль.
Контроль может
быть: счетным и логическим.
Счетный контроль
заключается в проверке точности
арифметических расчетов.
Логический
контроль проводится путем сопоставления
полученных данных с известными признаками,
логическое осмысление, сопоставление
с данными за прошлый период.
Например, о
заработной плате работников предприятия
можно судить по отчету, по труду и по
отчету о себестоимости продукции.
Сведения о заработной плате должны быть
одинаковыми, сопоставимыми (приведите
примеры).
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
План
1. Понятие о статистике.
2. Медицинская статистика здоровья и здравоохранения.
3. Организация и этапы медико-статистического исследования.
4. Метод стандартизации.
5. Основные ошибки статистического анализа.
- Понятие о статистике
- Медицинская статистика здоровья и здравоохранения
Слово «статистика» происходит от латинского слова «status»
— состояние, положение. Впервые это слово при описании состояния государства в середине XVIII века
применил немецкий ученый Ахенваль.
Как наука статистика возникла в Англии в XVIII веке в
трудах «политических арифметиков».
В настоящее время слово «статистика» употребляется в трех
значениях.
Первое значение: статистика — это общественная наука,
которая изучает количественную сторону общественных, массовых явлений в неразрывной связи с их
качественной стороной.
Второе значение: статистика — это сбор цифровых,
статистических данных, характеризующих то или другое общественное явление или процесс (статистическая
технология).
Третье значение: статистика — это сами цифры,
характеризующие эти явления и процессы.
Таким образом, «статистические данные», или «данные
статистики» — цифры, которые характеризуют количественные аспекты массовых явлений, процессов,
состояний.
Как наука статистика включает в себя общую теорию
статистики, статистику народного хозяйства и различные отраслевые статистики.
Общая теория статистики излагает общие принципы и методы
статистической науки.
Статистические методы широко применяют в различных областях
знаний: в математике, физике, астрономии, биологии, медицине и т.д.
Как каждая наука, статистика имеет свой предмет
исследования — массовые явления и процессы общественной жизни, свои методы исследования —
статистические, математические, разрабатывает системы и подсистемы показателей, в которых отражаются
размеры и качественные соотношения общественных явлений.
Статистика изучает количественные уровни и соотношения
общественной жизни в неразрывной связи с их качественной стороной.
Статистика имеет и свои собственные методы. Это метод массового
наблюдения, группировок, таблиц и графиков. В литерату- ре, как правило, не проводят разграничения
математических и статистических методов, применяющихся в статистике, более того, вообще говорят о
статистическом методе, или о математической статистике, объединяя, таким образом, все методы,
применяемые в статистике.
Главная задача статистики, как и всякой другой науки, заключается в
установлении закономерностей изучаемых явлений.
Нельзя установить закономерность на основе наблюдения единичного факта,
явления, для этого нужно наблюдать совокупность однородных фактов, т.е. нужно массовое наблюдение, так
как закономерность проявляется только при достаточно большом числе наблюдений. Это основное положение
закона больших чисел, на котором зиждется вся статистика и который выражает диалектику случайного и
необходимого. Закон больших чисел был открыт Я. Бернулли.
Одной из отраслей статистики является статистика
медицинская, которая изучает количественную сторону массовых явлений и процессов в медицине.
Медицинскую и так называемую санитарную статистику не
разделяют. Однако нам представляется более правильным выделить в
составе медицинской статистики статистику здоровья и
здравоохранения, которую со времен земства называли санитарной статистикой.
Санитарная статистика является разделом науки об
общественном здоровье и здравоохранении, в свою очередь, она состоит из статистики здоровья и
статистики здравоохранения. Статистика здоровья изучает здоровье общества в целом и
отдельных его групп и устанавливает зависимость здоровья от различных факторов социальной среды.
Статистика здравоохранения анализирует данные о сети медицинских и санитарных
учреждений, их деятельности и кадрах, оценивает эффективность различных организационных мероприятий по
профилактике и лечению болезней. Статистика и статистический метод широко используются врачами в
практической и научной работе.
3. Организация и этапы медико-статистического
исследования
1-й этап — составление программы и плана исследования; 2-й
этап — сбор материала; 3-й этап — разработка материала; 4-й этап — анализ, выводы, предложения.
2-й этап: сбор материала
3-й этап: разработка материала
1. Проверка собранного материала.
2. Разметка признаков по группам выбранных классификаций, шифровка (если
она не проведена на этапе сбора материала).
3. Раскладка по группам.
4. Подсчет и внесение данных в таблицы.
5. Составление вариационных и динамических рядов.
6. Вычисление статистических показателей.
7. Графическое изображение данных.
4-й этап: анализ, выводы, предложения
1. Осмысление полученных абсолютных данных, графических изображений и
статистических показателей, их сравнение:
— с имеющимися нормативами;
— со средними уровнями показателей;
— со стандартами, например, физического развития;
— с данными по другим учреждениям и территориям;
— в динамике.
2. Оформление работы.
3. Выводы.
4. Проверка соответствия полученных выводов принятой гипотезе и задачам
исследования.
5. Предложения для внедрения в практику.
Теперь более подробно обо всех этапах исследования.
4. Метод стандартизации
Для получения более точных данных при сравнении
статистических величин прибегают к методу, исключающему различия признаков этих величин
(возрастно-половых и др.), т.е. к стандарту.
Существуют прямой, косвенный и обратный методы
стандартизации.
Суть прямого метода состоит в вычислении
общих интенсивных показателей в одинаковых признаках (единиц наблюдения), совокупностях; для чего
рассчитывают частные показатели в сравниваемых группах, по которым судят об их истинном соотношении в
исследуемых совокупностях; предполагают, что сравниваемые совокупности одинаковы, т.е. стандартны по
составу.
Метод применяется при сравнении общих интенсивных
показателей здоровья различных по составу (по полу, возрасту и другим признакам) групп населения.
Суть метода состоит в исключении влияния на общий
показатель разного состава совокупностей по одному, двум признакам или более.
За стандарт принимают средний состав обеих групп, одну из
сравниваемых групп или какую-то третью группу, близкую к сравниваемым.
Рассчитывают условные величины в каждой группе стандарта и
общие стандартизированные показатели, которые тоже являются условными.
Косвенный метод стандартизации применяется
тогда, когда показатели в сравниваемых группах неизвестны или известны, но недостаточно. За стандарт
выбирают какой-то хорошо известный коэффициент (но не из числа сравниваемых) такого же характера, что
и сравниваемый, и с ним с учетом его величины и структуры
сравнивают имеющиеся недостоверные показатели.
Обратный метод стандартизации применяется
тогда, когда необходимых для сравнения и оценки показателей нет. Их «конструируют» от «обратных»
показателей, например, по данным о смертности и заболеваемости, которые следует возможно более
объективно воспроизводить на основе имеющейся справочной информации численности и состава населения,
среди которого и следует сравнить и определить заболеваемость и смертность.
Косвенный и обратный методы менее точны и объективны, чем
прямой.
5. Основные ошибки статистического анализа
Наиболее частые ошибки на 4-м этапе исследований объединяют в 3 группы:
ошибки методики; неправильная оценка показателей; логические ошибки.
К ошибкам методики (первая группа) относят, прежде
всего, арифметические ошибки, мысль о которых должна возникать каждый раз, когда получается
неожиданный результат. Проверка и перепроверка вычислений — непременное условие всякого исследования.
Недостаточное число наблюдений ведет к получению недостоверных
результатов. Исследователь должен рассчитывать необходимый объем наблюдений, чтобы застраховать себя
от получения недостоверных результатов.
Нередко имеет место неправильное определение единицы наблюдения. В
клинико-статистическом исследовании часто это неправильный диагноз.
В социально-гигиенических исследованиях неправильное определение единицы
наблюдения также возможно из-за невнимательности и недостаточной компетентности исследователя
(неправильное определение случая заболевания, утраты трудоспособности и т.д.).
Использование слишком сложных таблиц, содержащих много признаков, ведет
к тому, что получаются очень малочисленные группы и основная закономерность теряется. В комбинационных
таблицах не рекомендуется иметь более 3-4 сказуемых. Следует избегать группировок
признаков-подлежащих, расположенных по строкам.
Причиной неправильного анализа может быть и недостаточная обработка
данных. Например, не рассчитаны относительные показатели, вывод делается только на основании
абсолютных чисел, не составлены динамические ряды и не рассчитаны показатели, характеризующие динамику
процессов, явлений, не рассчитаны коэффициенты корреляции и т.д.
Неправильности группировки — очень частая ошибка статистического
анализа. Это, прежде всего, ошибки, имеющие в основе качественную неоднородность групп и недоучет
изменений в классификациях. Классическим примером ошибочного вывода, связанного с качественной
неоднородностью групп, является неправильный вывод народников, отрицавших развитие капитализма в
сельском хозяйстве России. Крестьянские дворы группировали по числу душ в семье, наделу земли, т.е. по
формальному признаку, и объединяли «вместе бедняка, который сдает землю, и богача, который арендует
или получает землю». Примером неправильного анализа, связанного с недоучетом изменений в
классификации, является анализ заболеваемости и травматизма при разработке данных по МКБ разных
пересмотров: в МКБ-10 1985 г. внесены значительные изменения в сравнении с МКБ-9 1975 г., в частности,
в классе «Травмы, несчастные случаи, отравления».
Вторая большая группа ошибок статистического анализа —
неправильная оценка показателей.
Подчас происходит смешение экстенсивных и интенсивных показателей. Вывод
о большей или меньшей частоте каких-то явлений, процессов можно и нужно делать только на основании
интенсивных показателей.
В практическом здравоохранении смешение экстенсивных и интенсивных
показателей — самая частая ошибка статистического анализа.
Довольно частая ошибка статистического анализа, — когда делается вывод
на искусственно неравнозначных группах. Например, испытывают новое медикаментозное средство для
лечения какого-то заболевания, но оно имеет определенные противопоказания. Проводят курсы лечения в
соответствии с инструкцией. Однако результаты сравнивают с группой больных, которых лечили прежним
методом — медикаментами, к которым не было никаких противопоказаний. Результаты несопоставимы, так как
группы больных неравнозначны; результат мог зависеть также и от того, что больные, леченные новым
методом, имели более легкую форму заболевания.
Нельзя оценивать темп роста без учета исходного уровня показателя.
Существует статистическая закономерность, в соответствии с которой чем ниже исходный уровень каждого
явления, тем выше темп роста, и наоборот.
Иногда представляются слишком общие сведения, преднамеренно или
непреднамеренно не проводится детальный анализ материала.
К числу ошибок статистического анализа относят неиспользование метода
стандартизации при анализе показателей, характеризующих статистические совокупности, имеющие разный
состав по каким-то признакам (полу, возрасту, нозологии заболеваний и т.д.).
Третья группа ошибок статистического анализа — это логические
ошибки.
Иногда вывод делают на основе простого сравнения цифр без учета
качественной характеристики явления. Этого недостаточно, так как статистический анализ всегда
предполагает не только констатацию цифр по различным группам, но установление взаимосвязи с
особенностями влияющих факторов и т.д.
Такой вывод нельзя считать правильным. После этого — не значит
вследствие этого.
Статистический анализ — это не только анализ цифр и явлений, но в
значительной мере искусство специалиста, умение выделить из ряда последовательных событий ведущие,
установить достоверную связь между ними, наметить пути воздействия.
Статистический анализ будет ошибочным, если не изучены всесторонние
связи явления. Эта ошибка тесно связана с предыдущими.
Контрольные вопросы
1. Понятие о «статистических данных».
2. Предмет изучения статистики здоровья и здравоохранения.
3. Дайте характеристику основным этапам медико-статистического
исследования.
4. Суть прямого метода стандартизации.
5. Характеристика косвенного метода стандартизации.
6. Основные характеристики обратного метода стандартизации.
7. Виды ошибок статистического анализа.