Pcc 1301 коды ошибок

Панель управления Power Command PCC 1301 Панель управления PCC 1301 включает в себя все,Панель управления Power Command PCC 1301 Панель управления PCC 1301 включает в себя все, что необходимо для пуска, установки и управления ДГУ. Это устройство отличают высокие показатели надежности, удобство эксплуатации, широкий диапазон температур эксплуатации, полностью защищенное от воздействия внешней среды исполнение. • Разработана для использования с опциональной панелью удаленного мониторинга или переключателем «Авто/Выкл. /Ручн. » • Способность полного мониторинга ДГУ • Система полной защиты двигателя • Измерение напряжения и тока по 3 -м фазам • Управление запуском двигателя • По два входных и выходных сигнала пользователя • Встроенный AVR (автоматический регулятор напряжения) • Температурный режим от -40° С до +70° С • Компактные размеры 224 х149 х65 мм (Шх. Гх. В) • Универсальный сервис-инструментарий

система индикации и управления  • Возможность использования нескольких панелей с одной ДГУ путемсистема индикации и управления • Возможность использования нескольких панелей с одной ДГУ путем коммуникации через встроенный RS 485 • Возможность удаления панели на расстоянии до 300 м от ДГУ • Отсутствие наружных переключателей • Мгновенное отображение статусных и аварийных сообщений • Полное отображение состояния ДГУ: 3 -х фазное напряжение и ток, температура ОЖ, давление масла, напряжение батарей, частота, история ошибок • Возможность настройки и • регулировки ДГУ • Компактные размеры 141 х111 х33, 5 мм (Шх. Гх. В) • Защита дисплея IP

Компоненты системы управления Система управления PCC 1301 модульной конструкции, состоит из следующих элементов: –Компоненты системы управления Система управления PCC 1301 модульной конструкции, состоит из следующих элементов: – PCC 1301 (Основное устройство) – HMI 211 (Интерфейс человек-машина) – HMI 113 (Универсальный сигнализатор — Опция) – Aux 101 и Aux 102 (Модули Входа / Выхода – Опция) В данном курсе рассмотрим функции контроллера PCC 1301 и функции дисплея оператора HMI

Структура системы управления  PCC 1301 HMI 211 HMI 113 (Опция) Информационная сеть (4Структура системы управления PCC 1301 HMI 211 HMI 113 (Опция) Информационная сеть (4 кабеля) Шина Modbus. Двигатель Генератор AUX 101 (Опция) (Service Tool) Конвертер. На некоторых моделях

Функции компонентов Контроллер PCC 1301 (Основной элемент): Эта плата является “сердцем” системы управления. ПлатаФункции компонентов Контроллер PCC 1301 (Основной элемент): Эта плата является “сердцем” системы управления. Плата содержит все логические элементы и устройства ввода/вывода для работы ДГУ.

Функции панели управления PCC 1301 – Защита двигателя  • давление масла,  •Функции панели управления PCC 1301 – Защита двигателя • давление масла, • температура двигателя, • превышение оборотов двигателя, • проблемы с пуском, • неисправность датчика оборотов. – Защита генератора • пониженное напряжение, • повышенное напряжение, • пониженная частота тока, • превышение силы тока – требуются трансформаторы тока. – Задержка времени пуска/останова – Режим энергосбережения • пониженное энергопотребление в режимах Off и Auto – Программируемые I/O пользователя • (2 входа и 2 выхода) – Интерфейс Modbus (RS 485 RTU) – Взаимодействие с сервисным ПО – Защита от воздействий окружающей среды (NEMA 3 R/IP 53)

HMI 211 Дисплей оператора HMI 211 (Интерфейс взаимодействия человек - машина): Модуль HMI используетсяHMI 211 Дисплей оператора HMI 211 (Интерфейс взаимодействия человек — машина): Модуль HMI используется для измерения параметров работы генератора и двигателя. Поддерживается режим оповещения о неисправностях (коды неисправностей и описание) облегченный вариант системы управления без сервисного ПО.

Функции дисплея HMI 211 Свойства Дисплей оператора HMI 211 :  • Подсвечиваемый ЖКФункции дисплея HMI 211 Свойства Дисплей оператора HMI 211 : • Подсвечиваемый ЖК дисплей • Символьный или текстовый экран оператора поддерживает только английский язык • Встроенный переключатель Пуск/Выключение/Авто с программируемым кодом доступа (key switch) Показания : • Двигатель – Давление масла , температура ОЖ , – заряд батареи, скорость вращения • Генератор – напряжение, ток, частота, – KVA – полная мощность • Может быть дополнительно установлен дистанционно

Дисплей оператора 10 1 32 54 6 7 8 911 Дисплей оператора

Дисплей оператора Органы управления дисплея Светодиоды: – 1 не в автоматическом режиме – 2Дисплей оператора Органы управления дисплея Светодиоды: – 1 не в автоматическом режиме – 2 останов – 3 внимание – 4 дистанционный пуск – 5 автоматический режи – 6 ручной режим Кнопки: – 7 режим генераторной установки «Окл» (переход в главное меню) – 8 предыдущий экран – 9 кнопки с функциями определяемыми символами на дисплее Дисплей: – 10 строка меню (4 символа кнопок) – 11 графический ЖК дисплей

режимы дисплея  Текстовый режим Символьный режим режимы дисплея Текстовый режим Символьный режим

Отображаемые символы в символьном режиме Отображаемые символы в символьном режиме

Дисплей - системные сообщения Системные сообщения отображаются  при включении напряжения питания или приДисплей — системные сообщения Системные сообщения отображаются при включении напряжения питания или при сбое обмена данными с контроллером РСС 1301. При потери связи с контроллером сообщение отображается до восстановления связи с контроллером Когда индицируются коммуникационные сообщения, можно выбрать режим работы автоматический / ручной. При подаче питания Если на экране остаётся любое коммуникационное сообщение (и другие меню просмотреть невозможно), то значит связь между дисплеем и контроллером РСС 1301 утеряна. Обратитесь за помощью к официальному дистрибьютору. При потери связи

Дисплей - Сообщения о событиях Когда активируются запрограммированные события (пуск или останов),  индицируютсяДисплей — Сообщения о событиях Когда активируются запрограммированные события (пуск или останов), индицируются сообщения о событиях, показывающие время, остающееся до завершения события. Сообщение о неисправности является индикатором состояния «Внимание!» или «Останов», еще одним индикатором которого является включения лампы. Текстовое сообщение о неисправности содержит номер кода неисправности, краткое описание и время возникновения неисправности ( текстовом режиме ) Символьные сообщения о неисправностях содержат номер кода неисправности и символы, указывающие на тип неисправности ( символьном режиме дисплея) Подтверждение приема неисправности. Для подтверждения приема сигнала неисправности/останова следует нажать кнопку «Откл. » на панели дисплея или кнопки стрелок, при этом сообщение о неисправности удаляется с дисплея. Сообщение о неисправности появляется повторно если сигнал неисправности не устранен.

Меню оператора дисплея Состояние двигателя • напряжение АКБ,  температуру ОЖ, давление масла, моточасы.Меню оператора дисплея Состояние двигателя • напряжение АКБ, температуру ОЖ, давление масла, моточасы. Состояние генератора переменного тока • нагрузку генератора (КВА), частоту (Гц), обороты двигателя (об/мин). Линейные напряжения • линейные напряжения L 1 -L 2, L 2 -L 3, L 3 -L 1 только для 3 -фазных систем. Фазные напряжения • фазные напряжения L 1, L 2, L 3 только в конфигурации звезда, • В конфигурации «треугольник» это меню не показывается, • напряжения L 1 -N, L 2 -N и L 1 -L 2 только для однофазных систем. Токи генератора • показываются результаты измерений токов L 1, L 2 и L 3.

блок-схема меню оператора блок-схема меню оператора

 автоматический и ручной режимы ВНИМАНИЕ! ПРИ ИЗМЕНЕНИИ РЕЖИМОВ ГЕНЕРАТОРНАЯ УСТАНОВКА МОЖЕТ ЗАПУСТИТЬСЯ ИЛИ автоматический и ручной режимы ВНИМАНИЕ! ПРИ ИЗМЕНЕНИИ РЕЖИМОВ ГЕНЕРАТОРНАЯ УСТАНОВКА МОЖЕТ ЗАПУСТИТЬСЯ ИЛИ ОСТАНОВИТЬСЯ БЕЗ ПРЕДУПРЕЖДЕНИЯ. УБЕДИТЕСЬ, ЧТО ИЗМЕНЕНИИ РЕЖИМА НЕ СОЗДАДУТ ОПАСНОСТИ ДЛЯ ПЕРСОНАЛА ИЛИ ОБОРУДОВАНИЯ. Смена режима автоматический / ручной из режима «Откл. » можно произвести следующим образом: • из любого меню оператора, • при сообщении «Установление связи» , • при сообщении «Восстановление связи» . Если при наладке пульта управления была активирована функция пароля для изменения режимов «Авт. » , «Ручн. » или «Откл. » , то необходимо ввести пароль в субменю «Изменение режима» с помощью кнопок «>» , «+» , «-» . Пароль оператора 121. По окончании ввода нажать кнопку с символом «>» .

 Выбор Режима   «АВТ. » Выбор Режима «АВТ. »

 Выбор Режима   «РУЧН. » Выбор Режима «РУЧН. »

  Выбор Режима    «ОТКЛ. » Выбор Режима «ОТКЛ. »

61-я ошибка — самая наверное частая, но порой очень неприятная. В норме эта ошибка возникает если контроллер ДГУ PCC1301 не видит короткого замыкания на контактах 15 и 16 разъема ТВ1. Проще говоря: на данные клеммы сводятся все сухие тревожные нормально-замкнутые контакты, от тревожных кнопок (красный «грибок»на панели ДГУ, красный «грибок» в щите аварийного управления), контакты пожарной сигнализации. Т.е. при срабатывании этих кнопок или при пожарной тревоге ДГУ остановится, на панели будет гореть индикатор «Shutdown».

Но бывает и такое, что все кнопки отжаты, шлейфы ОПС в порядке, но индикатор «Shutdown» светится и ДГУ не заводится. В этом случае надо определить где неисправность: в контроллере PCC1301 или в коммутации кнопок и проводов, приходящих на разъем ТВ1. Для этого самое простое:

  • отключить питание ДГУ (автомат Q4 в шкафу автоматики), сбросить положительную клемму с аккумулятора ДГУ
  • убедиться что дисплей ДГУ не реагирует на нажатия кнопок
  • отвинтить 8 болтов передней лицевой панели ДГУ, снять и сдвинуть ее в сторону
  • вставить перемычку в разъем ТВ1 (зеленный, вверху платы контроллера), между 15 и 16 контактами (самые правые), предварительно вынув из них провода
  • накинуть плюсовую клемму аккумулятора ДГУ. На дисплее ДГУ нажать любую кнопку, подождать пока он загрузится. Если индикатор  «Shutdown» погас — значит проблема в коммутации кнопок и шлейфов, ищем там разрыв с помощью тестера
  • если ндикатор  «Shutdown» не погас — неисправна плата PCC1301. Обратитесь в сервисную службу для ее замены по гарантии или постгарантии.

Ниже фото разобранной панели ДГУ C22D5 (красным выделены контакты 15 и 16):

PCC1301 0327-1513-01

По многочисленным просьбам наших покупателей выкладываем коды ошибок
двигателей Cummins.

ISF 2.8,
ISF 3.8,
ISB,
ISC,
ISLe,
4ISBe,
6ISBe,
ISDe,
ISM,
QSM,
ISX,
QSX.

Поиск по коду ошибки


Двигатель
Ошибка
Расшифровка

111
ISF (ISF 2.8, ISF 3.8), ISB, QSB, QSC, ISL, QSL, ISM, QSM, ISX, QSX
Внутренний отказ модуля ЕСМ.
Данный код неисправности может возникнуть только в случае проблемы внутри модуля ЕСМ. Модуль ЕСМ ремонту не подлежит.

115
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISDe, QSB 3.3
Потеря сигналов основного и резервного датчиков частоты вращения/положения коленчатого вала.
Модуль ECM обнаруживает, что сигнальные входы датчиков положения коленчатого вала и положения распределительного вала подключены в обратном порядке.

122
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь датчика давления во впускном коллекторе — напряжение выше нормы или короткое замыкание.
Модуль ECM определяет, что напряжение сигнала датчика давления во впускном коллекторе превышает значение, заданное в калибровке, в течение более 1 секунды.

123
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь датчика давления во впускном коллекторе — напряжение ниже нормы или короткое замыкание.
Модуль ECM определяет, что напряжение сигнала датчика давления во впускном коллекторе меньше значения, заданного в калибровке, в течение более 1 секунды.

124
ISB
Цепь датчика давления во впускном коллекторе — данные точные, но превышают норму.
Этот код неисправности становится активным, когда давление во впускном коллекторе превышает максимально допустимую величину для данной номинальной мощности двигателя.

115
QSX
Не обнаружен сигнал оборотов двигателя от датчика положения распределительного вала.
Возможные причины появления этого кода неисправности — повреждение датчика положения распределительного вала, обрыв или короткое замыкание в цепи или неисправность в цепи питания.

121
QSX
Не обнаружен сигнал оборотов двигателя от датчика положения коленчатого вала.
Возможные причины появления этого кода неисправности — повреждение датчика положения коленчатого вала, обрыв или короткое замыкание в цепи или неисправность в цепи питания.

141
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика давления масла обнаружены низкое напряжение сигнала или обрыв цепи.
Модуль ECM определяет, что напряжение сигнала датчика давления масла менее 0,25 В постоянного тока в течение более 16 секунд.

131
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика положения педали или рычага акселератора обнаружено высокое напряжение.
Модуль ECM определяет, что напряжение сигнала датчика положения педали акселератора превышает значение, заданное в калибровке, в течение более 1 секунды.

153
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика температуры во впускном коллекторе обнаружено высокое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика температуры во впускном коллекторе превышает значение, заданное в калибровке, в течение более 1 секунды.

154
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика температуры во впускном коллекторе обнаружено низкое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение сигнала температуры во впускном коллекторе вне допустимого диапазона (ниже нормы).

155
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Сигнал датчика температуры во впускном коллекторе указывает, что она выше критического предела системы защиты двигателя.
Модуль ECM определяет, что температура воздуха во впускном коллекторе превышает 132°C в течение 5 секунд.

132
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика положения педали или рычага акселератора обнаружено низкое напряжение.
Модуль ECM обнаруживает, что напряжение сигнала педали акселератора вне допустимого диапазона (ниже нормы).

133
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В сигнальной цепи датчика положения педали или рычага акселератора дистанционного управления обнаружено высокое напряжение.
Модуль ECM обнаруживает, что напряжение сигнала педали акселератора дистанционного управления вне допустимого диапазона (выше нормы).

134
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика положения педали или рычага акселератора дистанционного управления обнаружено низкое напряжение.
Модуль ECM обнаруживает, что напряжение сигнала педали акселератора дистанционного управления вне допустимого диапазона (ниже нормы).

145
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика температуры охлаждающей жидкости
обнаружено низкое напряжение сигнала.

Модуль ECM обнаруживает, что напряжение сигнала температуры охлаждающей жидкости двигателя вне допустимого диапазона (ниже нормы).

146
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Температура охлаждающей жидкости выше предела выдачи сигнала предупреждения системой защиты двигателя.
Модуль ECM определяет, что температура охлаждающей жидкости превышает предел, заданный в калибровке.

151
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Сигнал датчика температуры охлаждающей жидкости
указывает, что она выше критического предела системы защиты двигателя.

Модуль ECM определяет, что температура охлаждающей жидкости превышает предел защиты двигателя.

195
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика уровня охлаждающей жидкости обнаружено высокое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение сигнала уровня охлаждающей жидкости вне допустимого диапазона (выше нормы).

196
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика уровня охлаждающей жидкости обнаружено низкое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение сигнала уровня охлаждающей жидкости вне допустимого диапазона (ниже нормы).

197
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Обнаружен низкий уровень охлаждающей жидкости.
Модуль ECM определяет, что уровень охлаждающей жидкости ниже нормы.

221
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика атмосферного давления обнаружено высокое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение сигнала атмосферного давления вне допустимого диапазона (выше нормы).

222
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика атмосферного давления обнаружено низкое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение сигнала атмосферного давления вне допустимого диапазона (ниже нормы).

234
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Сигнал частоты вращения двигателя указывает на то, что этот параметр превышает предел включения системы защиты двигателя.
Модуль ECM обнаруживает, что частота вращения двигателя превышает предел, заданный в калибровке.

238
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи питания датчика частоты вращения двигателя +5 В обнаружено низкое напряжение.
Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (ниже нормы).

239
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи питания датчика частоты вращения двигателя 5 В обнаружено высокое напряжение.
Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (выше нормы).

241
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В модуль ECM не поступает сигнал скорости транспортного средства, или этот сигнал меняется хаотически.
Модуль ECM определяет потерю сигнала скорости транспортного средства, когда другие условия работы двигателя указывают на то, что транспортное средство находится в движении.

245
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь управления вентилятором — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. В цепи управления вентилятором при подаче команды на включение обнаружено низкое напряжение сигнала.
Модуль ECM обнаруживает, что уровень ШИМ-сигнала управления вентилятором не равен напряжению питания системы, когда для этого сигнала задано включение.

249
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика температуры окружающего воздуха обнаружено высокое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение сигнала температуры окружающего воздуха вне допустимого диапазона (выше нормы).

256
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика температуры окружающего воздуха обнаружено низкое напряжение.
Модуль ECM обнаруживает, что напряжение сигнала температуры окружающего воздуха вне допустимого диапазона (ниже нормы).

269
ISF (ISF 2.8, ISF 3.8)
Индикатор прохождения проверки пароля противоугонной системы — хаотичный характер или неправильность данных. Попытка запуска двигателя без разрешения противоугонной системы.
Этот код неисправности становится активным, если противоугонная система не была отключена.

271
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи исполнительного клапана топливной системы обнаружено низкое напряжение сигнала.
В цепи исполнительного клапана топливной системы не обнаружен сигнал с широтно-импульсной модуляцией с уровнем, равным напряжению питания системы, когда этот сигнал включен.

272
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи исполнительного клапана топливной системы обнаружены высокое напряжение сигнала или обрыв цепи.
Модуль ECM определяет наличие короткого замыкания на цепь питания, короткое замыкание между контактами или обрыв в цепи исполнительного клапана топливного насоса.

285
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Модуль ECM не получает сообщения от устройства, подключенного к мультиплексной сети, своевременно или не получает его вообще.
Модуль ECM не получает сообщения по мультиплексной сети от подключенного к ней устройства. Модуль ECM определяет наличие обрыва цепи или короткого замыкания в жгуте проводов канала связи J1939.

286
ISF (ISF 2.8, ISF 3.8)
Модуль ECM получил только часть ожидаемой им информации от сетевого устройства.
Модуль ECM получает недопустимое сообщение канала связи J1939 от мультиплексного устройства более 1 секунды.

287
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Электронный модуль управления транспортным средством (VECU), входящий в комплектное оборудование, обнаружил неисправность акселератора.
Модуль ECM не получает сообщения по мультиплексной сети от подключенного к ней устройства.

288
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Электронный модуль управления транспортным средством (VECU) обнаружил неисправность акселератора дистанционного управления.
Модуль ECM по каналу связи J1939 получил сообщение от блока VECU (комплектное оборудование), указывающее на то, что цепь сигнала акселератора дистанционного управления или выключатель дистанционного управления имеет короткое замыкание на цепь высокого или низкого напряжения.

291
ISF (ISF 2.8, ISF 3.8)
Сбой в работе защищенного канала связи (канал связи с комплектным оборудованием/транспортным средством) — темп обновления данных не соответствует норме. Противоугонная система не будет работать нормально. Двигатель может не запускаться.
Модуль ECM не может обмениваться данными с противоугонной системой по каналу связи J1939

319
ISF (ISF 2.8, ISF 3.8)
Прерывание питания часов реального времени — хаотичный характер или неправильность данных. Пропадание питания часов реального времени.
Модуль ECM определяет, что данные часов реального времени потеряны вследствие отключения питания.

322
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В форсунке 1 обнаруживается ток при выключенном напряжении.
Модуль ECM обнаружил внутреннюю сбой в цепи форсунки
(форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

324
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В форсунке 3 обнаруживается ток при выключенном напряжении.
Модуль ECM обнаружил внутреннюю сбой в цепи форсунки
(форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

331
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В форсунке 2 обнаруживается ток при выключенном напряжении.
Модуль ECM обнаружил внутреннюю сбой в цепи форсунки
(форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

332
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В форсунке 4 обнаруживается ток при выключенном напряжении.
Модуль ECM обнаружил внутреннюю сбой в цепи форсунки
(форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

124
QSB 3.3
Давление во впускном коллекторе превысило максимально допустимую величину для данной номинальной мощности двигателя.
Этот код неисправности становится активным, когда давление во впускном коллекторе превышает максимально допустимую величину для данной номинальной мощности двигателя.

135
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика давления масла обнаружено высокое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика давления масла превышает 4,75 В постоянного тока в течение более 16 секунд.

143
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Сигнал датчика давления масла указывает, что оно ниже предела выдачи сигнала предупреждения системой защиты двигателя.
Модуль ECM определяет, что напряжение сигнала датчика давления масла меньше предела, установленного системой защиты двигателя.

242
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика уровня охлаждающей жидкости обнаружено высокое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика уровня охлаждающей жидкости превышает 5,124 В постоянного тока в течение более 20 секунд.

281
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Модуль подачи топливного насоса — реакция механической системы не соответствует норме, или нарушена регулировка
Этот код неисправности переходит в активное состояние, когда в топливном насосе обнаруживается рассогласование давления нагнетания между двумя плунжерами высокого давления.

292
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Вход вспомогательного датчика температуры — специальные инструкции.
Проверьте правильность калибровки электронного модуля управления (ECM).

293
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи вспомогательного датчика температуры комплектного оборудования обнаружены высокое напряжение сигнала или обрыв цепи.
Проверьте правильность калибровки электронного модуля управления (ECM).

294
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи вспомогательного датчика температуры комплектного оборудования обнаружено низкое напряжение сигнала.
Проверьте правильность калибровки электронного модуля управления (ECM).

295
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Атмосферное давление — хаотичный характер или неправильность данных.
Хаотичный характер сигнала датчика давления окружающего воздуха при первом повороте пускового включателя в положение ВКЛ.

296
QSB 3.3
Входной сигнал вспомогательного датчика давления — специальные инструкции
Проверьте правильность калибровки электронного модуля управления (ECM).

297
QSB 3.3
В цепи датчика давления комплектного оборудования обнаружено высокое напряжение сигнала.
Проверьте правильность калибровки электронного модуля управления (ECM).

298
QSC 3.3
В цепи вспомогательного датчика давления комплектного оборудования обнаружены низкое напряжение сигнала или обрыв цепи.
Проверьте правильность калибровки электронного модуля управления (ECM).

323
ISB, ISC, ISL, ISLe, ISDe
В форсунке 5 обнаруживается ток при выключенном напряжении.
Модуль ECM обнаружил внутреннюю сбой в цепи форсунки
(форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

325
ISB, ISC, ISL, ISLe, ISDe
В форсунке 6 обнаруживается ток при выключенном напряжении.
Модуль ECM обнаружил внутреннюю сбой в цепи форсунки
(форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

334
QSB 3.3
Сигнал температуры охлаждающей жидкости не изменяется в зависимости от условий работы двигателя.
Модуль ECM обнаруживает, что напряжение сигнала температуры охлаждающей жидкости двигателя вне допустимого диапазона.

343
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Предупреждение о внутреннем отказе модуля ECM — Неисправность логического устройства. Обнаружены неисправности источника питания модуля ECM.
Этот код неисправности регистрируется, когда внутренняя процедура диагностики модуля ECM определяет внутреннюю ошибку записи или чтения в модуле.

351
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь питания форсунок — Неисправность логического устройства. Измеренное модулем ECM напряжение включения форсунки
низкое.

Модуль ECM определяет, что напряжение в цепи питания форсунок меньше заданного значения.

352
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь питания форсунок — Неисправность логического устройства. Измеренное модулем ECM напряжение включения форсунки
низкое.

Модуль ECM определяет, что напряжение в цепи питания форсунок меньше заданного значения.

386
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи питания датчиков 1 обнаружено высокое напряжение.
Модуль ECM определяет, что напряжение в цепи питания датчиков выше нормы

415
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Сигнал давления масла указывает, что оно ниже критического предела системы защиты двигателя
Модуль ECM определяет, что напряжение сигнала датчика давления масла меньше минимального рабочего предела.

418
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Сигнал наличия воды в топливе — данные точные, но выше нормы — самый низкий уровень серьезности. Обнаружено наличие воды в топливном фильтре.
Модуль ECM определяет, что уровень воды в топливном фильтре выше уровня датчика.

427
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Потеря связи между модулем ECM и другим устройством по каналу SAE J1939.
Модуль ЕСМ определяет наличие обрыва цепи или короткого замыкания в жгуте проводов канала связи J1939.

428
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь датчика наличия воды в топливе — Напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что напряжение в сигнальной цепи датчика превышает 4,95 В постоянного тока в течение 1 секунды.

429
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь датчика наличия воды в топливе — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что напряжение в сигнальной цепи датчика менее 0,05 В постоянного тока в течение 1 секунды.

431
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь датчика проверки холостого хода — хаотичный характер или неправильность данных.
Модуль ECM обнаруживает одновременное появление напряжения сигнала на контактах наличия и отсутствия холостого хода датчика проверки холостого хода. Напряжение должно появляться только в одной из цепей.

432
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь проверки положения холостого хода педали или рычага акселератора — нарушение калибровки.
Модуль ECM определяет, что показания датчика положения педали акселератора и сигнал датчика проверки холостого хода не соответствуют друг другу.

435
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Давление в главной магистрали системы смазки — хаотичный характер или неправильность данных
Модуль ECM определил, что величина давления масла выше или ниже показаний других датчиков абсолютного давления

441
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Напряжение аккумуляторной батареи — данные точные, но ниже нормы. Напряжение питания модуля ECM ниже минимального уровня.
Модуль ECM определяет, что напряжение основной аккумуляторной батареи меньше 6 В постоянного тока.

442
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Напряжение аккумуляторной батареи — данные точные, но выше нормы. Напряжение питания модуля ECM выше максимального уровня.
Модуль ECM определяет, что напряжение основной аккумуляторной батареи превышает 36 В постоянного тока.

449
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь датчика давления в общем топливопроводе высокого давления — данные точные, но превышают норму.
Модуль ECM обнаружил, что давление в общем топливопроводе высокого давления выше давления топливного редукционного клапана.

451
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика давления в общем топливопроводе высокого давления обнаружено высокое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика давления подачи топлива менее 0,20 В постоянного тока в течение более 1 секунды.

452
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика давления в общем топливопроводе высокого давления обнаружено низкое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика давления подачи топлива превышает 4,80 В постоянного тока в течение более 1 секунды.

471
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Уровень масла в двигателе ниже нормы
Датчиком уровня масла обнаружен низкий уровень масла.

488
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Сигнал датчика температуры во впускном коллекторе указывает, что она выше предела предупреждения системы защиты двигателя.
Модуль ECM определяет, что напряжение сигнала датчика температуры во впускном коллекторе превышает калиброванный предел, установленный в модуле ECM

499
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь датчика уровня масла — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM обнаружил, что в датчике уровня масла обнаружен внутренний отказ.

528
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Дополнительный переключатель выбора кривой крутящего момента — хаотичный характер или неправильность данных.
Модуль ECM определяет, что обнаружен обрыв в цепи переключателя выбора кривой крутящего момента.

529
QSB 3.3
Вспомогательный вход/выход — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что в цепи вспомогательного входа/выхода обнаружено высокое напряжение сигнала.

553
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь датчика давления в общем топливопроводе высокого давления — данные точные, но превышают норму.
Модуль ЕСМ обнаружил, что давление топлива выше заданного.

554
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь датчика давления в общем топливопроводе высокого давления — хаотичный характер или неправильность данных.
Модуль ECM обнаружил отсутствие изменений сигнала датчика давления топлива.

555
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Давление картерных газов — данные точные, но выше нормы — средний уровень серьезности
Модуль ECM определил, что давление картерных газов выше заданного уровня.

556
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Давление картерных газов — данные точные, но выше нормы — самый высокий уровень серьезности.
Модуль ECM определил, что давление картерных газов выше заданного уровня.

559
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь датчика давления в общем топливопроводе высокого давления — данные точные, но ниже нормы — средний уровень серьезности.
Модуль ECM обнаружил, что давление топлива ниже заданного.

584
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Управляющая цепь реле стартера — Напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Обнаружены обрыв цепи или высокое напряжение в цепи блокировки стартера.

585
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Управляющая цепь реле стартера — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Обнаружено низкое напряжение в цепи блокировки стартера.

596
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Функция контроля напряжения аккумуляторной батареи обнаружила, что оно высокое.
Модуль ECM определяет, что напряжение аккумуляторной батареи превышает заданное в калибровке.

597
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Функция контроля напряжения аккумуляторной батареи обнаружила, что оно низкое.
Модуль ECM определяет, что напряжение аккумуляторной батареи меньше заданного в калибровке.

598
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Функция контроля напряжения аккумуляторной батареи обнаружила, что оно очень низкое.
Модуль ECM определяет, что напряжение аккумуляторной батареи меньше заданного в калибровке.

599
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Величина сигналов сдвоенных выходов превысила предел включения системы защиты двигателя.
Модуль ECM определил, что величина сигналов сдвоенных выходов превысила предел включения системы защиты двигателя.

649
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Замените моторное масло и фильтр.
Модуль ECM определил, что в соответствии с программируемым параметром функции контроля операций обслуживания требуется замена моторного масла и фильтра.

686
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Частота вращения турбонагнетателя — хаотичный характер или неправильность данных.
Модуль ECM обнаружил недопустимый сигнал частоты вращения турбонагнетателя.

687
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Частота вращения турбонагнетателя — данные точные, но ниже нормы — средний уровень серьезности.
Модуль ECM обнаружил низкую частоту вращения турбонагнетателя.

688
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Уровень масла в двигателе — данные точные, но выше нормы.
Датчиком уровня масла обнаружен высокий уровень масла.

689
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Частота вращения/положение коленчатого вала двигателя — хаотичный характер или неправильность данных.
Модуль ECM обнаружил ошибку сигнала датчика положения коленчатого вала.

691
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика температуры на входе компрессора турбонагнетателя обнаружено высокое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика температуры на входе компрессора турбонагнетателя превышает 4,8 В постоянного тока в течение более 1 секунды.

692
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика температуры на входе компрессора турбонагнетателя обнаружено низкое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика температуры на входе компрессора турбонагнетателя меньше 0,2 В постоянного тока в течение более 1 секунды.

698
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
В цепи датчика температуры модуля ECM обнаружены низкое напряжение сигнала или обрыв цепи.
Модуль ECM определил наличие короткого замыкания цепи внутреннего датчика температуры на «массу».

699
ISF (ISF 2.8, ISF 3.8)
Зафиксирована ошибочная или недопустимая температура внутри модуля ECM.
Модуль ECM обнаруживает, что сигнал датчика внутренней температуры модуля ECM имеет недопустимое значение.

731
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Сигналы от датчика частоты вращения двигателя и датчика положения распределительного вала не согласованы.
Модуль ECM определил, что положение коленчатого вала не соответствует сигналу датчика положения распределительного вала, поступающему на вход модуля ECM.

778
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Модуль ECM обнаружил ошибку сигнала датчика положения распределительного вала.
Модуль ECM обнаружил пропадание сигнала датчика частоты вращения/положения распределительного вала в течение более 1 секунды.

779
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Цепь входа датчика вспомогательного оборудования — исходная причина неизвестна
Величина сигнала от вспомогательного устройства комплектного оборудования превысила предел включения системы защиты двигателя.

784
ISB, ISC, ISL, ISLe, ISDe, QSB 3.3
Потеря связи с системой адаптивного круиз-контроля.
Модуль ECM не получает достоверного сообщения по мультиплексной сети J1939 от модуля адаптивного круиз-контроля в течение более 1 секунды.

779
ISB, ISC, ISL, ISLe, ISDe, QSB
Цепь входа датчика вспомогательного оборудования — исходная причина неизвестна
Величина сигнала от вспомогательного устройства комплектного оборудования превысила предел включения системы защиты двигателя.

784
ISB, ISC, ISL, ISLe, ISDe, QSB
Потеря связи с системой адаптивного круиз-контроля.
Модуль ECM не получает достоверного сообщения по мультиплексной сети J1939 от модуля адаптивного круиз-контроля в течение более 1 секунды.

1117
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Пропадание питания при установке пускового включателя в положение ВКЛ. — хаотичный характер или неправильность данных.
Напряжение в цепи питания модуля кратковременно падает ниже предела, заданного в калибровке, или отключение питания от модуля ЕСМ происходит неправильно.

1239
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи датчика положения педали или рычага акселератора обнаружено высокое напряжение.
Модуль ECM определяет, что напряжение сигнала датчика положения педали акселератора больше значения, заданного в калибровке, в течение более 1 секунды.

1241
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи датчика положения педали или рычага акселератора 2 обнаружено низкое напряжение.
Модуль ECM определяет, что напряжение сигнала датчика положения педали акселератора менее значения, заданного в калибровке, в течение более 1 секунды.

1242
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Датчики положения педали или рычага акселератора — Хаотичный характер или неправильность данных.
Модуль ECM определил, что показания датчика положения акселератора 1 отличаются от показаний датчика положения акселератора более чем на 2%.

1663
ISB, ISC, ISL, ISLe, ISDe, QSB
Датчики температуры на входе каталитического нейтрализатора и на выходе из него перепутаны местами — состояние сохраняется.
Модуль управления двигателем (ECM) определяет, что температура на входе каталитического нейтрализатора системы очистки отработавших газов превышает температуру на входе фильтра твердых частиц в ходе активной регенерации фильтра твердых частиц.

1664
ISB, ISC, ISL, ISLe, ISDe, QSB
Нет каталитического нейтрализатора в выпускной системе.
Электронный модуль управления (ECM) определяет, что температура на входе каталитического нейтрализатора и температура на входе фильтра твердых частиц одинаковы в ходе активной регенерации системы очистки отработавших газов.

1665
ISB, ISC, ISL, ISLe, ISDe, QSB
В цепи датчика температуры на входе каталитического нейтрализатора обнаружено низкое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика температуры на входе каталитического нейтрализатора менее 0,1 В постоянного тока в течение более чем 2 секунд.

1666
ISB, ISC, ISL, ISLe, ISDe, QSB
В цепи датчика температуры на входе каталитического нейтрализатора обнаружено высокое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика температуры на входе каталитического нейтрализатора превышает 4,97 В постоянного тока в течение более чем 2 секунд.

1667
ISB, ISC, ISL, ISLe, ISDe, QSB
Сигнал датчика температуры на входе каталитического нейтрализатора не изменяется при изменении условий работы двигателя.
Модуль ECM определяет, что сигнал датчика температуры на входе каталитического нейтрализатора не изменяется при изменении условий работы двигателя.

1668
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи датчика уровня обнаружено низкое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение сигнала уровня жидкости в баке жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

1669
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи датчика уровня жидкости в баке системы очистки отработавших газов дизельных двигателей обнаружено высокое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение сигнала уровня жидкости в баке жидкости для очистки отработавших газов вне допустимого диапазона (выше нормы).

1671
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Уровень жидкости для очистки отработавших газов в баке очень низок.
В баке системы очистки отработавших газов обнаружен низкий уровень жидкости.

1673
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Уровень жидкости для очистки отработавших газов в баке снизился до критического уровня.
Критически низкий уровень жидкость для очистки отработавших газов в баке.

1674
ISB, ISC, ISL, ISLe, ISDe, QSB
В цепи датчика температуры на входе фильтра твердых частиц системы очистки отработавших газов обнаружено низкое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика температуры на входе фильтра твердых частиц менее 0,1 В постоянного тока в течение более 2 секунд.

1675
ISB, ISC, ISL, ISLe, ISDe, QSB
В цепи датчика температуры на входе фильтра твердых частиц системы очистки отработавших газов обнаружено высокое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика температуры на входе фильтра твердых частиц превышает 4,97 В постоянного тока в течение более 2 секунд.

1676
ISB, ISC, ISL, ISLe, ISDe, QSB
Сигнал датчика температуры на входе фильтра твердых частиц не изменяется при изменении условий работы двигателя.
Модуль ECM определяет, что сигнал датчика температуры на входе фильтра твердых частиц не изменяется при изменении условий работы двигателя.

1677
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Цепь датчика температуры жидкости в баке системы очистки отработавших газов — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM обнаруживает, что напряжение сигнала температуры в бака жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

1678
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Цепь датчика температуры жидкости в баке системы очистки отработавших газов дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что сигнал датчика температуры на входе фильтра твердых частиц не изменяется при изменении условий работы двигателя.

1682
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Блок дозирования жидкости для очистки отработавших газов не обеспечивает заполнение системы.
Блок дозирования жидкости для очистки отработавших газов не обеспечивает успешное заполнение системы после нескольких попыток.

1683
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Высокое напряжение сигнала обнаружено в цепи нагревателя жидкости в баке системы очистки отработавших газов.
Модуль ECM обнаруживает короткое замыкание на «плюс» аккумуляторной батареи или обрыв в цепи нагревателя бака жидкости для очистки отработавших газов.

1684
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи нагревателя жидкости в баке системы очистки отработавших газов дизельных двигателей обнаружено пониженное напряжение сигнала.
Модуль ECM обнаруживает пониженное напряжение сигнала или короткое замыкание на «массу» в цепи нагревателя бака жидкости для очистки отработавших газов.

1689
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Прерывание питания часов реального времени — хаотичный характер или неправильность данных.
Модуль ECM определяет, что данные часов реального времени потеряны вследствие отключения питания.

1691
ISB, ISC, ISL, ISLe, ISDe, QSB
Увеличение температуры на каталитическом нейтрализаторе системы очистки отработавших газов меньше ожидаемого.
Модуль ECM расчетным путем определил, что эффективность каталитического нейтрализатора ниже требуемой для успешного завершения регенерации.

1694
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Обнаружено несоответствие норме сигнала датчика содержания окислов азота.
Модуль ECM определяет, что сигнал датчика содержания окислов азота не изменяется при изменении условий работы двигателя.

1695
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи питания датчиков в жгуте проводов комплектного оборудования обнаружено высокое напряжение.
Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (выше нормы).

1696
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи питания датчиков в жгуте проводов комплектного оборудования обнаружено низкое напряжение.
Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (ниже нормы).

1712
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Нагреватель жидкости для очистки отработавших газов не может растопить замерзшую жидкость.
Модуль ECM обнаруживает, что нагреватель жидкости для очистки отработавших газов не может растопить замерзшую жидкость.

1713
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Нагреватель жидкости в баке системы очистки отработавших газов — данные точные, но выше нормы — средний уровень серьезности. Нагреватель жидкости для очистки отработавших газов в баке постоянно включен.
Модуль ECM определил, что температура жидкости для очистки отработавших газов в баке превышает 75°C

1843
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи датчика давления картерных газов обнаружено высокое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика давления картерных газов превышает 4,8 В постоянного тока в течение более 1 секунды.

1844
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи датчика давления картерных газов обнаружено низкое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика давления картерных газов менее 0,2 В постоянного тока в течение более 1 секунды.

1852
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Датчик наличия воды в топливе указывает на уровень воды, превышающий предел для выдачи предупреждения.
Модуль ECM определяет наличие воды в топливе в течение длительного времени.

1866
ISB, ISC, ISL, ISLe, ISDe, QSB
Цепь датчика перепада давления на клапане системы рециркуляции отработавших газов — хаотичный характер или неправильность данных.
Обнаружена ошибка сигнала датчика перепада давления системы рециркуляции отработавших газов или датчик не прошел проверку автоматической установки нуля.

1876
ISB, ISC, ISL, ISLe, ISDe, QSB
В цепи датчика температуры на выходе фильтра твердых частиц системы очистки отработавших газов обнаружено высокое напряжение сигнала или обрыв цепи.
Модуль ECM определяет, что напряжение сигнала датчика температуры на выходе фильтра твердых частиц превышает 4,97 В постоянного тока в течение более 2 секунд.

1877
ISB, ISC, ISL, ISLe, ISDe, QSB
В цепи датчика температуры на выходе фильтра твердых частиц системы очистки отработавших газов обнаружено низкое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика температуры на выходе фильтра твердых частиц менее 0,1 В постоянного тока в течение более 2 секунд.

1878
ISB, ISC, ISL, ISLe, ISDe, QSB
Сигнал датчика температуры на выходе фильтра твердых частиц не изменяется при изменении условий работы двигателя.
Температура в системе очистки отработавших газов — хаотичный характер или неправильность данных.

1879
ISB, ISC, ISL, ISLe, ISDe, QSB
В цепи датчика перепада давления в системе очистки отработавших газов обнаружено высокое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика перепада давления на фильтре твердых частиц превышает 4,75 В постоянного тока в течение более 1 секунды.

1881
ISB, ISC, ISL, ISLe, ISDe, QSB
В цепи датчика перепада давления на фильтре твердых частиц системы очистки отработавших газов обнаружены низкое напряжение сигнала или обрыв цепи.
Модуль ECM определяет, что напряжение сигнала датчика перепада давления на фильтре твердых частиц менее 0,25 В постоянного тока в течение более 1 секунды.

1883
ISB, ISC, ISL, ISLe, ISDe, QSB
Датчик перепада давления на фильтре твердых частиц системы очистки отработавших газов — хаотичный характер или неправильность данных.
Хаотичный характер сигнала датчика перепада давления на фильтре твердых частиц системы очистки отработавших газов.

1896
ISB, ISC, ISL, ISLe, ISDe, QSB
Контроллер клапана системы рециркуляции отработавших газов — неправильная калибровка.
Не выполнена процедура автоматической калибровки клапана системы рециркуляции отработавших газов

1887
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Цепь датчика содержания окислов азота на выходе системы очистки отработавших газов — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Обнаружена внутренняя неисправность датчика содержания окислов азота на выходе системы очистки отработавших газов.

1899
ISB, ISC, ISL, ISLe, ISDe, QSB
Датчик перепада давления в системе рециркуляции отработавших газов обнаружил низкий расход газа в системе рециркуляции отработавших газов, или показания датчика перепада давления не соответствуют условиям работы двигателя.
Перепад давления на клапане системы рециркуляции отработавших газов — данные точные, но выше нормы — средний уровень серьезности.

1911
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISF (ISF 2.8, ISF 3.8)
Цепь датчика давления в общем топливопроводе высокого давления, но превышают норму.
Модуль ECM обнаружил, что давление в общем топливопроводе высокого давления выше заданного.

1921
ISB, ISC, ISL, ISLe, ISDe, QSB
Количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает рекомендованные пределы.
Модуль ECM определяет, что количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает норму (средний уровень серьезности). Для удаления сажи необходима регенерация системы очистки отработавших газов.

1922
ISB, ISC, ISL, ISLe, ISDe, QSB3
Количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает рекомендованные пределы.
Модуль ECM определяет, что количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает максимальный допустимый предел.

1938
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Привод управления изменением геометрии турбонагнетателя обнаружил пониженное напряжение питания от аккумуляторной батареи.
Напряжение питания электронного модуля управления — данные точные, но превышают норму — средний уровень серьезности.

1942
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Модуль ECM определил, что сигнал датчика давления картерных газов не меняется при изменении условий работы двигателя.
Модуль ECM определяет, что сигнал датчика температуры имеет хаотический характер.

1943
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX, ISM
Крутящий момент двигателя снижен по причине работы транспортного средства на большой высоте над уровнем моря.
Модуль ECM определил, что давление окружающего воздуха ниже калиброванного значения.

1962
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Обнаружена высокая внутренняя температура привода изменения геометрии турбонагнетателя.
Этот код неисправности регистрируется, когда внутренняя температура привода изменения геометрии турбонагнетателя превышает 125°C непрерывно в течение 30 минут.

1966
ISB, ISC, ISL, ISLe, ISDe, QSB
Температура отработавших газов, поступающих в систему очистки отработавших газов, превышает предел защиты двигателя.
ECM определяет наличие повышенной температуры в системе очистки отработавших газов, при условии, что активная регенерация фильтра твердых частиц системы очистки отработавших газов не производится.

1968
ISB, ISC, ISL, ISLe, ISDe, QSB
Показания датчика температуры №2 на входе фильтра твердых частиц превысили максимальный предел температуры.
Показания датчика температуры №2 на входе фильтра твердых частиц превышают 649°C в течение 5 секунд и затем снижаются до величины ниже 550°C.

1969
ISB, ISC, ISL, ISLe, ISDe, QSB
Показания датчика температуры №2 на входе фильтра твердых частиц превысили максимальный предел системы защиты двигателя по температуре.
Показания датчика температуры №2 на входе фильтра твердых частиц — критические.

1972
ISB, ISC, ISL, ISLe, ISDe, QSB
Показания датчика температуры №3 на входе фильтра твердых частиц превысили максимальный предел температуры.
Показания датчика температуры на выходе фильтра твердых частиц превышают 649°C в течение 5 секунд и затем снижаются до величины ниже 575°C.

1973
ISB, ISC, ISL, ISLe, ISDe, QSB
Показания датчика температуры №3 на входе фильтра твердых частиц превысили максимальный предел системы защиты двигателя по температуре.
Показания датчика температуры №3 на входе фильтра твердых частиц — критические.

1974
ISB, ISC, ISL, ISLe, ISDe, QSB
Фильтр системы вентиляции картера требует обслуживания.
Модуль ЕСМ определил, что давление картерных газов превышает калиброванный уровень.

1981
ISB, ISC, ISL, ISLe, ISDe, QSB
Перепад давления на фильтре твердых частиц превысил максимальный рабочий предел, или фильтр твердых частиц засорен.
Модуль ECM определяет, что фильтр твердых частиц системы очистки отработавших газов засорен, или что перепад давления на фильтре твердых частиц превышает максимальный предел.

1993
ISB, ISC, ISL, ISLe, ISDe, QSB
Фильтр твердых частиц системы очистки отработавших газов отсутствует.
Отсутствие фильтра твердых частиц системы очистки отработавших газов.

2182
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В сигнальной цепи электромагнитного клапана моторного тормоза обнаружены обрыв цепи или высокое напряжение.
В цепи моторного тормоза обнаружен сигнал с широтно-импульсной модуляцией с уровнем больше требуемого, когда этот сигнал выключен модулем ECM.

2183
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В сигнальной цепи электромагнитного клапана моторного тормоза обнаружено низкое напряжение.
В цепи моторного тормоза не обнаружен сигнал с широтно-импульсной модуляцией с уровнем, равным напряжению питания системы, когда этот сигнал включен.

2185
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Обнаружено высокое напряжение в цепи питания (5 В) датчика положения акселератора.
Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (выше нормы).

2186
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи питания (+5) В датчика положения педали акселератора обнаружено низкое напряжение.
Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (ниже нормы).

2195
ISB, ISC, ISL, ISLe, ISDe, QSB
Обнаружено открытие двери запасного выхода транспортного средства.
Код неисправности регистрируется, когда дверь запасного выхода транспортного средства открыта.

2198
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Контроллер турбонагнетателя с изменяемой геометрией не распознает правильно сообщения стандарта J1939, получаемые по мультиплексной сети от модуля ECM.
Модуль ECM не получает достоверного сообщения по мультиплексной сети J1939 от модуля ECM более 1 секунды.

2265
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В сигнальной цепи подкачивающего насоса обнаружены высокое напряжение или обрыв цепи.
В цепи подкачивающего топливного насоса обнаружен сигнал с широтно-импульсной модуляцией с уровнем больше 0 В, когда этот сигнал выключен модулем ECM.

2266
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи подкачивающего топливного насоса обнаружено низкое напряжение сигнала.
В цепи подкачивающего топливного насоса обнаружен сигнал с широтно-импульсной модуляцией с уровнем 0 В, когда этот сигнал включен модулем ECM и должен быть равен напряжению питания системы.

2272
ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX
В цепи датчика положения клапана системы рециркуляции отработавших газов обнаружено низкое напряжение сигнала.
Модуль ECM определяет, что все датчики положения показывают сигнал высокого уровня (или все датчики положения показывают сигнал низкого уровня).

2273
ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX
В цепи датчика перепада давления в системе рециркуляции отработавших газов обнаружено высокое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика перепада давления на клапане системы рециркуляции отработавших газов превышает 4,8 В постоянного тока в течение более 4 секунд.

2274
ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX
В цепи датчика перепада давления в системе рециркуляции отработавших газов обнаружено низкое напряжение сигнала.
Модуль ECM определяет, что напряжение сигнала датчика перепада давления на клапане системы рециркуляции отработавших газов менее 0,26 В постоянного тока в течение более 2 секунд.

2288
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Модуль ECM обнаружил высокую частоту вращения турбонагнетателя.
Модуль ECM определил, что частота вращения турбонагнетателя превышает максимальный предел, заданный в калибровке.

2311
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Слишком высокое или слишком низкое сопротивление цепи исполнительного клапана топливной системы.
Код неисправности регистрируется при наличии исчезающих отказов цепи исполнительного клапана топливного насоса.

2321
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Периодическое нарушение синхронизации датчика частоты вращения коленчатого вала.
Модуль ECM определяет наличие исчезающего или ослабленного сигнала датчика частоты вращения/положения коленчатого вала по истечении некоторого времени работы двигателя.

2322
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Периодическое нарушение синхронизации датчика частоты вращения распределительного вала.
Модуль ECM обнаружил исчезающее пропадание сигнала датчика частоты вращения/положения распределительного вала.

2345
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Датчик частоты вращения турбонагнетателя показывает ошибку при определении частоты вращения.
Модуль ECM определил, что частота вращения турбонагнетателя увеличивается быстрее, чем это физически достижимо для турбонагнетателя.

2346
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Температура на входе в турбину турбонагнетателя превысила предел включения защиты двигателя.
Модуль ECM определил, что расчетная величина температуры на входе турбины превышает значение, заданное в калибровке.

2347
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Высокая температура воздуха на выходе компрессора турбонагнетателя (рассчитывается модулем ECM)
Модуль ECM определил, что расчетное значение температуры на выходе компрессора турбонагнетателя превышает 238°C.

2349
ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX
Модуль ECM определил наличие обрыва выводов или обмотки электродвигателя.
Модуль (ECM) определил наличие обрыва в жгуте проводов двигателя или в обмотке электродвигателя клапана системы рециркуляции отработавших газов.

2351
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Модуль ECM определил наличие короткого замыкания выводов или обмотки электродвигателя на «массу» или цепь питания.
Модуль ЕСМ определил наличие короткого замыкания в цепях электродвигателя клапана системы рециркуляции отработавших газов.

2357
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Длительность цикла работы электродвигателя клапана системы рециркуляции отработавших газов превышена, что указывает на заедание клапана в открытом положении.
Этот код неисправности регистрируется, когда рабочий цикл, требуемый для открытия клапана системы рециркуляции отработавших газов, превышает 95% в течение 3 секунд. Контроллер клапана системы рециркуляции отработавших газов попытается открыть клапан повторно через 10 секунд. Код неисправности регистрируется после трех неудачных попыток.

2359
ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX
Датчик перепада давления в системе рециркуляции отработавших газов обнаружил высокий расход газа в системе рециркуляции отработавших газов, или показания датчика перепада давления не соответствуют условиям работы двигателя.
Перепад давления в системе рециркуляции отработавших газов превышает значение, заданное в калибровке.

2363
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В сигнальной цепи электромагнитного клапана моторного тормоза обнаружено низкое напряжение.
В цепи моторного тормоза не обнаружен сигнал с широтно-импульсной модуляцией с уровнем, равным напряжению питания системы, когда этот сигнал включен.

2367
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
В сигнальной цепи электромагнитного клапана моторного тормоза обнаружены обрыв цепи или высокое напряжение.
В цепи моторного тормоза обнаружен сигнал с широтно-импульсной модуляцией с уровнем, равным напряжению питания системы, когда этот сигнал выключен.

2369
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
В цепи управления моторным тормозом обнаружено низкое напряжение сигнала.
Модуль ECM обнаруживает, что цепь управления моторным тормозом имеет короткое замыкание на цепь низкого напряжения.

2371
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Цепь привода моторного тормоза — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM обнаруживает, что цепь управления моторным тормозом имеет короткое замыкание на цепь высокого напряжения.

2373
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Цепь датчика давления в выпускной системе — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что напряжение сигнала датчика давления в выпускной системе превышает 4,75 В постоянного тока в течение более 4 секунд.

2374
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Цепь датчика давления в выпускной системе — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что напряжение сигнала датчика давления в выпускной системе менее 0,25 В постоянного тока в течение более 4 секунд.

2375
ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX
Цепь датчика температуры в системе рециркуляции отработавших газов — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что напряжение сигнала датчика температуры в системе рециркуляции отработавших газов превышает 5,1 В постоянного тока в течение более 1 секунды.

2376
ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX
Цепь датчика температуры в системе рециркуляции отработавших газов — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что напряжение сигнала датчика температуры в системе рециркуляции отработавших газов ниже 0,09 В постоянного тока в течение более 1 секунды.

2377
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Цепь управления вентилятором — Напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM обнаруживает в цепи управления вентилятором сигнал с широтно-импульсной модуляцией с уровнем больше 0 В, когда этот сигнал выключен модулем ECM.

2387
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Логический контроллер изменения геометрии турбонагнетателя обнаружил неправильные крайние положения, или привод изменения геометрии турбонагнетателя не может перейти в закрытое положение.
Код неисправности устанавливается, когда фактическое положение привода изменения геометрии турбонагнетателя не соответствует заданному в течение более 10 секунд.

2448
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Обнаружен низкий уровень охлаждающей жидкости.
Модуль ECM определяет, что уровень охлаждающей жидкости ниже предела для нормальных условий работы.

2449
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Контроллер привода изменения геометрии турбонагнетателя — неправильная калибровка.
Положение привода при начальном включении питания не определяется внутренними средствами вследствие заедания механизма или внутренних неисправностей. Фактическое положение привода изменения геометрии турбонагнетателя неизвестно.

2451
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Температура на входе в турбину турбонагнетателя превысила предел включения защиты двигателя.
Модуль ECM определил, что расчетная величина температуры на входе турбины превышает значение, заданное в калибровке.

2554
ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX
Хаотичный характер сигнала датчика давления в выпускной системе при первом повороте пускового включателя в положение ВКЛ.
1. Модуль ECM определил, что величина давления в выпускной системе выше или ниже показаний других датчиков абсолютного давления в двигателе после установки пускового включателя в положение ВКЛ., когда двигатель не работает. 2. Модуль ECM определил, что давление в выпускной системе при обычной работе двигателя меньше значения, задаваемого в калибровке.

2555
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи нагревателя впускной системы обнаружено высокое напряжение сигнала.
В цепи управления вентилятором обнаружен сигнал с широтно-импульсной модуляцией с уровнем больше 0 В, когда этот сигнал выключен модулем ECM.

2556
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи нагревателя впускной системы обнаружено низкое напряжение сигнала.
В цепи нагревателя впускной системы не обнаружен сигнал с широтно-импульсной модуляцией с уровнем, равным напряжению питания системы, когда этот сигнал включен.

2557
QSB
Вспомогательная цепь сигналов с широтно-импульсной модуляцией — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
В цепи аналогового сигнала крутящего момента обнаружено высокое напряжение сигнала.

2558
QSB
Вспомогательная цепь сигналов с широтно-импульсной модуляцией — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
В цепи аналогового сигнала крутящего момента обнаружено низкое напряжение сигнала.

2634
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Логический контроллер турбонагнетателя с изменяемой геометрией обнаружил внутреннюю ошибку.
Привод изменения геометрии турбонагнетателя обнаружил внутреннюю ошибку в логическом контроллере турбонагнетателя.

2635
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Обнаружено несоответствие калибровки привода изменения геометрии турбонагнетателя и модуля ECM.
1.Модуль ECM обнаружил несовместимость калибровки привода изменения геометрии турбонагнетателя и модуля ECM. 2.Привод изменения геометрии турбонагнетателя обнаружил, что напряжение питания не соответствует установленному приводу с учетом номера по каталогу. 3.Модуль ECM определил, что на турбонагнетателе установлен несоответствующий привод изменения геометрии.

2636
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Цепь привода изменения геометрии турбонагнетателя — темп обновления данных не соответствует норме.
Основной модуль ECM двигателя не получает достоверного сообщения по мультиплексной сети J1939 от привода изменения геометрии турбонагнетателя более 1 секунды.

2637
ISB, ISC, ISL, ISLe, ISDe, QSB
Обнаружено засорение сажей передней торцевой поверхности каталитического нейтрализатора.
Модуль ECM определяет наличие условий для засорения торца каталитического нейтрализатора и возможность того, что засорение произошло.

2638
ISB, ISC, ISL, ISLe, ISDe, QSB
Увеличение температуры на каталитическом нейтрализаторе системы очистки отработавших газов меньше ожидаемого.
Модуль ECM расчетным путем определил, что эффективность каталитического нейтрализатора ниже требуемой для успешного завершения регенерации.

2639
ISB, ISC, ISL, ISLe, ISDe, QSB
Количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает рекомендованные пределы.
Модуль ECM определяет, что количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает норму (самый низкий уровень серьезности). Для удаления сажи необходима регенерация системы очистки отработавших газов.

2646
ISB, ISC, ISL, ISLe, ISDe, QSB
Клапан системы рециркуляции отработавших газов закрыт для снижения температуры охлаждающей жидкости.
Температура охлаждающей жидкости — состояние сохраняется.

2659
ISB, ISC, ISL, ISLe, ISDe, QSB
Клапан системы рециркуляции отработавших газов закрыт для снижения температуры охлаждающей жидкости.
Температура охлаждающей жидкости — состояние сохраняется.

2728
ISB, ISC, ISL, ISLe, ISDe, QSB
Обнаружено, что активная регенерация фильтра твердых частиц системы очистки отработавших газов будет неэффективна.
Система очистки отработавших газов определила, что длительность активной регенерации превышает время, заданное в калибровке, и что температура в системе очистки отработавших газов не достигла минимального значения для выполнения полной регенерации фильтра твердых частиц.

2742
ISB, ISC, ISL, ISLe, ISDe, QSB
Температуры в системе очистки отработавших газов не достигают значений, необходимых для регенерации в стационарных условиях.
1.Модуль ECM определяет, что измеренная температура на входе каталитического нейтрализатора не соответствует уровню, необходимому для регенерации в стационарных условиях. 2.Модуль ECM определяет, что температура отработавших газов, поступающих в систему очистки отработавших газов, недостаточно высока для удаления воды из системы при длительной работе двигателя на холостом ходу.

2743
ISB, ISC, ISL, ISLe, ISDe, QSB
Температуры в системе очистки отработавших газов не достигают значений, необходимых для регенерации в стационарных условиях.
1.Модуль ECM определяет, что измеренная температура на входе каталитического нейтрализатора не соответствует уровню, необходимому для регенерации в стационарных условиях. 2.Модуль ECM определяет, что температура отработавших газов, поступающих в систему очистки отработавших газов, недостаточно высока для удаления воды из системы при длительной работе двигателя на холостом ходу.

2754
ISB, ISC, ISL, ISLe, ISDe, QSB
Обнаружено повышенное количество черного дыма, поступающего из двигателя в фильтр твердых частиц системы очистки отработавших газов.
Этот код неисправности регистрируется, когда накопление сажи внутри фильтра твердых частиц происходит быстрее, чем при обычных условиях.

2765
ISB, ISC, ISL, ISLe, ISDe, QSB
Штрихкоды группы форсунок — неправильная калибровка. Введена неправильная информация с штрихкодов форсунок.
Модуль ECM определяет, что значения штрихкодов форсунок введены в модуль ECM неправильно.

2771
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Датчик содержания окислов азота на выходе системы очистки отработавших газов — Темп обновления данных не соответствует норме.
Нарушение обмена данными между модулем ECM и датчиком содержания окислов азота в отработавших газах по каналу связи SAE J1939.

2772
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Датчик содержания окислов азота на выходе системы очистки отработавших газов — данные точные, но выше нормы — самый низкий уровень серьезности. Величина сигнала датчика содержания окислов азота превышает рекомендованный уровень.
Этот код неисправности регистрируется, когда процедура диагностики определяет, что выходной сигнал датчика содержания окислов азота превышает значение, заданное в калибровке, для двух последовательных циклов зажигания.

2773
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Содержание окислов азота на выходе системы очистки отработавших газов — данные точные, но выше нормы — самый высокий уровень серьезности. Величина сигнала датчика содержания окислов азота превышает рекомендованный уровень.
Этот код неисправности регистрируется, когда процедура диагностики определяет, что выходной сигнал датчика содержания окислов азота превышает значение, заданное в калибровке, для двух последовательных циклов зажигания.

2777
ISB, ISC, ISL, ISLe, ISDe, QSB
Регенерация фильтра твердых частиц отключена, поскольку переключатель запрета регенерации установлен в положение запрета.
Этот код неисправности регистрируется, когда переключатель запрета регенерации установлен в положение запрета, и код неисправности 1921, 1922 или 2639 переходит в активное состояние вследствие большого количества сажи в фильтре твердых частиц.

2778
ISB, ISC, ISL, ISLe, ISDe, QSB
Требуется замена моторного масла вследствие его возможного разбавления топливом.
Этот код неисправности регистрируется, когда модуль ECM обнаруживает возможность разжижения моторного масла топливом.

2813
ISB, ISC, ISL, ISLe, ISDe, QSB
Клапан системы регенерации отработавших газов закрыт во время регенерации фильтра твердых частиц системы очистки отработавших газов.
Система управления очисткой отработавших газов определила, что температура отработавших газов во время активной регенерации фильтра твердых частиц системы очистки отработавших газов недостаточно высока.

2961
ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX
Температура в системе рециркуляции отработавших газов — данные точные, но превышают норму — самый низкий уровень серьезности. Температура в системе рециркуляции отработавших газов превысила предел включения защиты двигателя.
Модуль ECM определяет, что температура в системе рециркуляции отработавших газов превышает заданную в колибровке в течение более 5 секунд.

2962
ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX
Температура в системе рециркуляции отработавших газов — данные точные, но выше нормы — средний уровень серьезности. Температура в системе рециркуляции отработавших газов превысила предел включения защиты двигателя.
Модуль ECM определяет, что температура в системе рециркуляции отработавших газов превышает 246°C в течение более 5 секунд.

2963
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Температура охлаждающей жидкости — данные точные, но превышают норму — самый низкий уровень серьезности. Температура охлаждающей жидкости превышает предел предупреждения системы защиты двигателя.
Модуль ECM определяет, что напряжение сигнала датчика температуры охлаждающей жидкости
превышает калиброванный предел, установленный в модуле ECM.

2964
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Температура во впускном коллекторе — данные точные, но превышают норму — самый низкий уровень серьезности. Сигнал датчика температуры во впускном коллекторе указывает, что она выше предела предупреждения системы защиты двигателя.
Модуль ECM определяет, что напряжение сигнала датчика температуры во впускном коллекторе превышает калиброванный предел, установленный в модуле ECM.

2973
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX
Модуль ECM обнаружил, что сигнал датчика давления во впускном коллекторе не соответствует норме для данных условий работы двигателя.
Модуль ECM определяет, что сигнал датчика давления во впускном коллекторе не изменяется при изменении условий работы двигателя или имеет хаотический характер при повороте пускового включателя в положение ВКЛ.

3142
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Высокое напряжение сигнала обнаружено в цепи датчика температуры на входе каталитического нейтрализатора.
Модуль ECM определяет, что напряжение сигнала датчика температуры на входе каталитического нейтрализатора более 4,4 В постоянного тока в течение более 2 секунд.

3143
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Низкое напряжение сигнала обнаружено в цепи датчика температуры.
Модуль ECM определяет, что напряжение сигнала датчика температуры на входе каталитического нейтрализатора менее 0,13 В постоянного тока в течение более 2 секунд.

3144
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Сигнал датчика температуры на входе в каталитический нейтрализатор не меняется при изменении условий работы двигателя.
Модуль ECM определяет, что сигнал датчика температуры на входе каталитического нейтрализатора недопустим (противоречит здравому смыслу) в течение более 5 минут.

3164
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Обнаружена высокая температура на входе каталитического нейтрализатора.
Модуль ECM определил, что температура на входе каталитического нейтрализатора превышает значение, заданное в калибровке.

3236
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Обнаружена высокая температура на выходе каталитического нейтрализатора.
Модуль ECM определил, что температура на выходе каталитического нейтрализатора превышает значение, заданное в калибровке.

3242
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Нагреватель жидкости для очистки отработавших газов — реакция механической системы не соответствует норме или нарушена регулировка.
Модуль ECM выдал команду на включение нагревателя жидкости в баке системы очистки отработавших газов, но датчик температуры в баке не зафиксировал ее увеличения.

3326
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Модуль ECM не получает своевременно ожидаемых данных от датчика положения акселератора, подключенного к мультиплексной сети, или не получает их вообще.
Модуль ECM не получает сообщения по мультиплексной сети от подключенного к ней устройства.

3492
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Часы реального времени указывают на остановку таймера выключенного состояния двигателя.
Таймер выключенного состояния двигателя работает неправильно, и его показания не соответствуют показаниям других таймеров в модуле ECM.

3558
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Блок дозирования жидкости для систем выпуска дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM обнаруживает, что в цепи клапана дозирования жидкости для очистки отработавших газов имеется короткое замыкание на цепь высокого или низкого напряжения или имеется обрыв цепи.

3559
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Блок дозирования жидкости для систем выпуска дизельных двигателей — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM обнаруживает, что напряжение сигнала или питания блока дозирования жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

3567
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи клапана дозирования жидкости для очистки отработавших газов обнаружена внутренняя ошибка.
Модуль ECM обнаруживает, что в цепи клапана дозирования жидкости для очистки отработавших газов имеется короткое замыкание на цепь высокого или низкого напряжения или имеется обрыв цепи.

3568
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Обнаружена механическая неисправность дозирующего клапана жидкости для систем очистки отработавших газов.
Модуль ECM определяет, что давление жидкости для очистки отработавших газов превышает порог.

3571
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи датчика давления жидкости для очистки отработавших газов обнаружено высокое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение сигнала датчика давления жидкости для очистки отработавших газов вне допустимого диапазона (выше нормы).

3572
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи датчика давления жидкости для очистки отработавших газов обнаружено низкое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение сигнала датчика давления жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

3574
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В блоке дозирования обнаружено низкое давление жидкости.
Модуль ECM определяет, что давление жидкости для очистки отработавших газов ниже порога.

3575
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Блок дозирования жидкости для очистки отработавших газов обнаружил засорение в возвратном трубопроводе жидкости для очистки отработавших газов.
Модуль ECM определяет, что давление жидкости для очистки отработавших газов превышает порог.

3577
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Клапан слива жидкости в системе очистки отработавших газов дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM обнаруживает, что напряжение на клапане слива жидкости для очистки отработавших газов вне допустимого диапазона (выше нормы), или имеется обрыв цепи.

3578
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
В цепи клапана слива жидкости для систем выпуска дизельных двигателей обнаружено низкое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение на клапане слива жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

3616
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Положение сопла турбонагнетателя с изменяемой геометрией — реакция механической системы не соответствует норме или нарушена регулировка.
Модуль ECM определил, что на привод изменения геометрии турбонагнетателя находится в неправильном положении при установке пускового включателя в положение ВКЛ.

3681
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Датчик содержания окислов азота обнаружил неисправность цепи питания датчика.
Модуль ECM определяет, что напряжение питания датчика содержания окислов азота выше или ниже порога, определяемого калибровкой.

3697
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Внутренняя ошибка модуля ECM, связанная со сбоями программного обеспечения.
Модуль ECM обнаружил ошибку программного обеспечения или калибровки.

3738
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM
Подача жидкости для систем выпуска дизельных двигателей в блок дозирования прервана.
Блок дозирования определяет, что во время дозированной подачи жидкости для систем выпуска дизельных двигателей в систему очистки отработавших газов прервана подача воздуха.

4157
ISF (ISF 2.8, ISF 3.8)
Клапан слива жидкости для очистки отработавших газов — реакция механической системы отсутствует или нарушена регулировка.
Модуль ECM обнаруживает, что давление жидкости для очистки отработавших газов не падает, когда на клапан слива жидкости для очистки отработавших газов подана команда на включение.

4172
ISF (ISF 2.8, ISF 3.8)
Высокое напряжение сигнала обнаружено в цепи датчика давления воздуха в системе дозирования.
Модуль ECM обнаруживает, что напряжение в цепи сигнала датчика давления воздуха в системе дозирования жидкости для очистки отработавших газов вне допустимого диапазона (выше нормы)

4173
ISF (ISF 2.8, ISF 3.8)
Датчик абсолютного давления воздуха в системе дозирования — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Низкое напряжение сигнала обнаружено в цепи датчика давления воздуха в системе дозирования.
Модуль ECM обнаруживает, что напряжение в цепи сигнала датчика давления воздуха в системе дозирования жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы)

4174
ISF (ISF 2.8, ISF 3.8)
Датчик температуры в системе дозирования жидкости для очистки отработавших газов — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. В цепи датчика температуры в системе дозирования жидкости для очистки отработавших газов обнаружено высокое напряжение сигнала.
Модуль ECM обнаруживает, что напряжение в цепи сигнала датчика температуры в системе дозирования жидкости для очистки отработавших газов вне допустимого диапазона (выше нормы).

4175
ISF (ISF 2.8, ISF 3.8)
Датчик температуры в системе дозирования жидкости для очистки отработавших газов — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Низкое напряжение сигнала обнаружено в цепи сигнала датчика температуры в системе дозирования жидкости для очистки отработавших газов.
Модуль ECM обнаруживает, что напряжение в цепи сигнала датчика температуры в системе дозирования жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

4176
ISF (ISF 2.8, ISF 3.8)
Воздушный клапан системы дозирования реагента — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Высокое напряжение сигнала обнаружено в цепи воздушного клапана системы дозирования.
Модуль ECM обнаруживает, что цепь воздушного клапана системы дозирования имеет короткое замыкание на цепь высокого напряжения.

4177
ISF (ISF 2.8, ISF 3.8)
Воздушный клапан системы дозирования жидкости для очистки отработавших газов — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Низкое напряжение сигнала обнаружено в цепи воздушного клапана системы дозирования.
Модуль ECM обнаруживает, что цепь воздушного клапана системы дозирования имеет короткое замыкание на цепь низкого напряжения.

4238
ISF (ISF 2.8, ISF 3.8)
Давление воздуха в системе дозирования жидкости для очистки отработавших газов — данные точные, но ниже нормы, средний уровень серьезности. В блоке дозирования обнаружено низкое давление воздуха.
Модуль ECM обнаруживает, что давление воздуха в системе дозирования вне допустимого диапазона (ниже нормы).

4239
ISF (ISF 2.8, ISF 3.8)
Давление воздуха в системе дозирования жидкости для очистки отработавших газов — данные точные, но выше нормы, средний уровень серьезности. В блоке дозирования обнаружено высокое давление воздуха.
Модуль ECM обнаруживает, что давление воздуха в системе дозирования вне допустимого диапазона (выше нормы).

4271
ISF (ISF 2.8, ISF 3.8)
Воздушный клапан блока дозирования жидкости для очистки отработавших газов — реакция механической системы не соответствует норме, или нарушена регулировка. Высокое давление воздуха обнаружено в блоке дозирования при заправке системы, когда на воздушный клапан блока дозирования подан сигнал на закрытие.
Модуль ECM обнаруживает, что давление воздуха в системе дозирования вне допустимого диапазона (выше нормы).

175
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM
Цепь привода дроссельной заслонки с электронным управлением — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет наличие короткого замыкания на цепь питания или обрыв в цепи питания электродвигателя дроссельной заслонки на впуске.

176
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM
Цепь привода дроссельной заслонки с электронным управлением — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM обнаруживает короткое замыкание на «массу» в цепи питания электродвигателя привода дроссельной заслонки на впуске.

177
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM
Привод дроссельной заслонки с электронным управлением — реакция механической системы не соответствует норме или нарушена регулировка.
Модуль ECM обнаруживает, что реакция механической системы привода дроссельной заслонки с электронным управлением не соответсвует норме.

187
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь питания датчиков — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что напряжение в цепи питания датчиков меньше значения, заданного в калибровке, в течение более 1 секунды.

191
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM
Сигнал муфты кондиционера во включенном состоянии указывает на короткое замыкание на «массу».
Модуль ECM определяет, что сигнал муфты кондиционера указывает на короткое замыкание

212
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика температуры моторного масла — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что напряжение сигнала датчика температуры масла превышает значение, заданное в калибровке, в течение более 1 секунды.

213
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика температуры моторного масла — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что напряжение сигнала датчика температуры масла ниже значения, заданного в калибровке, в течение более 1 секунды.

214
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Температура моторного масла — данные точные, но выше нормы — самый высокий уровень серьезности.
Модуль ECM определяет, что температура масла превышает 122°C в течение 5 секунд.

227
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь питания датчиков — Напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что напряжение в цепи питания датчиков превышает значение, заданное в калибровке, в течение более 1 секунды.

252
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM
Уровень масла в двигателе — хаотичный характер или неправильность данных.
Модуль ECM определяет, что с датчика уровня масла поступает хаотичный сигнал.

253
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM
Уровень масла в двигателе — данные точные, но ниже нормы — самый высокий уровень серьезности
Модуль ECM получает сигнал от датчиком уровня масла — обнаружен очень низкий уровень масла.

254
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь клапана отсечки топлива — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что в цепи клапана отсечки топлива обнаружено низкое напряжение.

255
ISF (ISF 2.8, ISF 3.8), ISB, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь клапана отсечки топлива — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что в цепи клапана отсечки топлива обнаружены обрыв или короткое замыкание на источник питания.

256
ISF (ISF 2.8, ISF 3.8), ISB, ISL, ISLe, ISDe, ISM
Цепь датчика температуры окружающего воздуха 1 — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что напряжение сигнала датчика температуры окружающего воздуха менее 0,12 В постоянного тока в течение более 1 секунды.

257
ISF (ISF 2.8, ISF 3.8), ISB, ISL, ISLe, ISDe, ISM
Клапан отсечки топлива — реакция механической системы не соответствует норме, или нарушена регулировка.
Модуль ECM пределяет, что произошло механическое заедание клапана отсечки топлива в открытом положении, или имеется утечка.

311
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь реле электромагнитного клапана форсунки
цилиндра 1 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 1 при выключенном напряжении.

Модуль ECM определяет, что в цепи форсунки
имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки
.

312
ISB, ISD, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь реле электромагнитного клапана форсунки
цилиндра 5 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 5 при выключенном напряжении.

Модуль ECM определяет, что в цепи форсунки
имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки
.

313
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь реле электромагнитного клапана форсунки
цилиндра 3 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 3 при выключенном напряжении.

Модуль ECM определяет, что в цепи форсунки
имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки
.

314
ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь реле электромагнитного клапана форсунки
цилиндра 6 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 6 при выключенном напряжении.

Модуль ECM определяет, что в цепи форсунки
имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки
.

315
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь реле электромагнитного клапана форсунки
цилиндра 2 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 2 при выключенном напряжении.

Модуль ECM определяет, что в цепи форсунки
имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки
.

321
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь реле электромагнитного клапана форсунки
цилиндра 4 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 4 при выключенном напряжении.

Модуль ECM определяет, что в цепи форсунки
имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки
.

338
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь вспомогательного реле выключения двигателя при длительной работе на холостом ходу — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что в цепи вспомогательного реле выключения двигателя при длительной работе на холостом ходу/зажигания обнаружен обрыв или короткое замыкание.

339
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь вспомогательного реле выключения двигателя при длительной работе на холостом ходу — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
В цепи вспомогательного реле выключения двигателя при длительной работе на холостом ходу/зажигания обнаружено низкое напряжение, когда на реле подан сигнал включения.

346
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Программное обеспечение для калибровки модуля ECM — неисправность логического устройства.
Модуль ECM обнаруживает недопустимую настройку конфигурации контактных датчиков, задаваемую с помощью настраиваемых параметров.

356
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика массового расхода воздуха на впуске — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что сигнал датчика массового расхода воздуха превышает допустимый максимальный предел.

357
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика массового расхода воздуха на впуске — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что сигнал датчика массового расхода воздуха меньше допустимого минимального предела.

358
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика массового расхода воздуха на впуске — хаотичный характер или неправильность данных.
Сигнал датчика массового расхода воздуха не соответствует условиям работы двигателя.

425
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Температура масла двигателя — Хаотичный характер или неправильность данных
Модуль ECM определяет, что показания датчика температуры масла двигателя выше или ниже показаний других датчиков, установленных на двигателе, после длительного пребывания двигателя в выключенном состоянии.

436
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика температуры во впускном коллекторе — хаотичный характер или неправильность данных.
Модуль ECM определяет, что показания датчика температуры во впускном коллекторе выше или ниже показаний других датчиков, установленных на двигателе, после длительного пребывания двигателя в выключенном состоянии.

465
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь управления клапаном перепуска турбонагнетателя — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что в цепи управления клапаном перепуска турбонагнетателя обнаружено высокое напряжение.

466
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь управления клапаном перепуска турбонагнетателя — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что в цепи управления клапаном перепуска турбонагнетателя обнаружено низкое напряжение.

477
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Напряжение, подаваемое на контроллер впрыска жидкости для систем выпуска дизельных двигателей, ниже напряжения в системе электрооборудования.
Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает, что напряжение питания от аккумуляторной батареи ниже порогового значения.

478
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Напряжение, подаваемое на контроллер впрыска жидкости для систем выпуска дизельных двигателей, превышает напряжение в системе электрооборудования.
Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает, что напряжение питания от аккумуляторной батареи превышает пороговое значение.

491
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь управления клапаном перепуска турбонагнетателя — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что в цепи управления клапаном перепуска турбонагнетателя обнаружено высокое напряжение.

492
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь управления клапаном перепуска турбонагнетателя — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что в цепи управления клапаном перепуска турбонагнетателя обнаружено низкое напряжение.

498
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика уровня масла — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM обнаруживает короткое замыкание сигнальной цепи на плюс аккумуляторной батареи или обрыв цепи «массы».

545
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь управления клапаном перепуска турбонагнетателя — реакция механической системы не соответствует норме или нарушена регулировка.
Модуль ECM определяет, что давление во впускном коллекторе превысило максимально допустимую величину для данной номинальной мощности двигателя.

693
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Температура на входе компрессора турбонагнетателя — хаотичный характер или неправильность данных.
Модуль ECM обнаруживает, что показания датчика температуры на входе компрессора турбонагнетателя слишком высокие или слишком низкие для данных условий работы двигателя.

697
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика внутренней температуры модуля ECM — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определил наличие короткого замыкания цепи внутреннего датчика температуры на цепь питания.

1228
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Положение клапана системы рециркуляции отработавших газов — хаотичный характер или неправильность данных.
Модуль ECM определяет, что датчик положения клапана системы рециркуляции отработавших газов выдает хаотичный сигнал, либо положение клапана системы рециркуляции отработавших газов не меняется при изменении условий работы двигателя.

1688
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Контроллер впрыска жидкости для системы очистки отработавших газов — неисправность логического устройства.
В контроллере впрыска жидкости для системы очистки отработавших газов обнаружена внутренняя ошибка. Данные об ошибке переданы в модуль ECM по каналу связи.

1697
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Клапан подачи воздуха — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что в цепи воздушного электромагнитного клапана блока дозирования жидкости для очистки отработавших газов обнаружено высокое напряжение сигнала.

1698
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Клапан подачи воздуха — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что в цепи воздушного электромагнитного клапана блока дозирования жидкости для очистки отработавших газов обнаружено низкое напряжение сигнала.

1711
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Блок дозирования жидкости для системы очистки отработавших газов — темп обновления данных не соответствует норме.
Обмен данными по каналу связи между модулем ECM и блоком дозирования жидкости для системы очистки отработавших газов прерван.

1898
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Контроллер привода изменения геометрии турбонагнетателя — неправильная калибровка.
Модуль ECM пределил, что не выполнена процедура автоматической калибровки турбонагнетателя с изменяемой геометрией при первом повороте пускового включателя в положение ВКЛ.

2271
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика положения клапана системы рециркуляции отработавших газов — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что напряжение датчика положения клапана системы рециркуляции отработавших газов превышает значение, заданное в калибровке.

2352
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь управления клапаном системы рециркуляции отработавших газов — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что в цепи электродвигателя клапана системы рециркуляции отработавших газов обнаружено высокое напряжение.

2398
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Температура окружающего воздуха — хаотичный характер или неправильность данных.
Модуль ECM пределил хаотичный характер сигнала датчика температуры окружающего воздуха.

2442
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Реле электромагнитного клапана форсунки
цилиндра 1 — Неправильная калибровка. Введена неправильная информация с штрихкодов форсунок.

Модуль ECM определяет, что значение штрихкода форсунки
цилиндра 1 было введено в модуль ECM неправильно.

2443
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Реле электромагнитного клапана форсунки
цилиндра 2 — неправильная калибровка. Введена неправильная информация с штрихкодов форсунок.

Модуль ECM определяет, что значение штрихкода форсунки
цилиндра 2 было введено в модуль ECM неправильно.

2444
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Реле электромагнитного клапана форсунки
цилиндра 3 — Неправильная калибровка. Введена неправильная информация с штрихкодов форсунок.

Модуль ECM определяет, что значение штрихкода форсунки
цилиндра 3 было введено в модуль ECM неправильно.

2445
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Реле электромагнитного клапана форсунки
цилиндра 4 — Неправильная калибровка. Введена неправильная информация с штрихкодов форсунок.

Модуль ECM определяет, что значение штрихкода форсунки
цилиндра 4 было введено в модуль ECM неправильно.

2976
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Температура блока дозирования жидкости для систем выпуска дизельных двигателей — Хаотичный характер или неправильность данных. В блоке дозирования жидкости для систем выпуска дизельных двигателей обнаружена внутренняя ошибка.
Модуль ECM определяет, что сигнал датчика внутренней температуры блока дозирования жидкости для систем выпуска дизельных двигателей не согласуется с сигналами других датчиков температуры, установленных на двигателе, для двух последовательных циклов зажигания в ходе диагностики.

3145
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Датчик температуры на входе каталитического нейтрализатора — Темп изменения не соответствует норме. Датчик температуры на входе каталитического нейтрализатора не реагирует на изменение условий работы двигателя.
Модуль ECM определяет, что температура на входе каталитического нейтрализатора не меняется при изменении условий работы двигателя.

3146
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика температуры на выпуске каталитического нейтрализатора SCR — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM обнаруживает, что напряжение сигнала датчика температуры на выходе каталитического нейтрализатора превышает значение, заданное в калибровке, когда пусковой включатель находится в положении ВКЛ.

3147
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика температуры на выходе каталитического нейтрализатора — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM обнаруживает, что напряжение сигнала датчика температуры на выходе каталитического нейтрализатора меньше значения, заданного в калибровке, когда пусковой включатель находится в положении ВКЛ.

3149
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Датчик температуры на выходе каталитического нейтрализатора не реагирует на изменение условий работы двигателя.
Модуль ECM определяет, что температура на выходе каталитического нейтрализатора не меняется при изменении условий работы двигателя.

3151
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Отсутствие каталитического нейтрализатора в системе очистки отработавших газов — состояние сохраняется.
Модуль ECM определяет, что в выпускной системе отсутствует селективный каталитический нейтрализатор.

3163
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Неправильное подключение датчика температуры на входе каталитического нейтрализатора — Неправильная калибровка. Перепутаны местами разъемы датчиков температуры на входе и на выходе каталитического нейтрализатора.
Модуль ECM определяет, что сигналы датчиков температуры на входе и на выходе каталитического нейтрализатора перепутаны местами.

3237
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
В цепи нагревателя магистрали жидкости для систем выпуска дизельных двигателей обнаружено высокое напряжение сигнала.
Контроллер впрыска жидкости в системе очистки отработавших газов дизельных двигателей определяет, что напряжение на нагревателе магистрали превышает значение, заданное в калибровке.

3238
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
В цепи реле нагревателя магистрали жидкости для системы очистки отработавших газов обнаружено низкое напряжение сигнала.
Модуль ECM определяет, что напряжение на нагревателе магистрали превышает значение, заданное в калибровке.

3239
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
В цепи нагревателя 2 магистрали жидкости для систем выпуска дизельных двигателей обнаружено высокое напряжение сигнала.
Модуль ECM определяет, что напряжение на нагревателе магистрали ниже значения, заданного в калибровке.

3258
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь нагревателя магистрали жидкости для системы очистки отработавших газов — ток ниже нормы или обрыв цепи.
Контроллер впрыска жидкости для системы очистки отработавших газов обнаруживает обрыв или короткое замыкание на «массу» в цепи нагревателя магистрали.

3261
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь нагревателя 2 магистрали жидкости для систем выпуска дизельных двигателей — ток ниже нормы или обрыв цепи.
Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает обрыв или короткое замыкание на «массу» в цепи нагревателя магистрали.

3382
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Система рециркуляции отработавших газов — данные точные, но ниже нормы — средний уровень серьезности.
Модуль ECM определяет, что фактический расход в системе рециркуляции отработавших газов ниже заданного, исходя из текущих условий работы двигателя.

3383
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Система рециркуляции отработавших газов — данные точные, но выше нормы — средний уровень серьезности.
Модуль ECM определяет, что фактический расход в системе рециркуляции отработавших газов выше заданного, исходя из текущих условий работы двигателя.

3422
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь нагревателя 3 жидкости в системе очистки отработавших газов дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Контроллер жидкости в системе очистки отработавших газов дизельных двигателей определяет, что напряжение на нагревателе магистрали превышает значение, заданное в калибровке.

3425
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь нагревателя 3 жидкости в системе очистки отработавших газов дизельных двигателей — ток ниже нормы или обрыв цепи.
Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает обрыв или короткое замыкание на «массу» в цепи нагревателя магистрали.

3426
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь нагревателя 4 жидкости в системе очистки отработавших газов дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Контроллер впрыска жидкости в системе очистки отработавших газов дизельных двигателей определяет, что напряжение на нагревателе превышает значение, заданное в калибровке.

3429
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь нагревателя 4 жидкости в системе очистки отработавших газов дизельных двигателей — ток ниже нормы или обрыв цепи.
Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает обрыв в цепи нагревателя.

3539
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика положения привода дроссельной заслонки на впуске — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Модуль ECM определяет, что напряжение датчика положения привода дроссельной заслонки превышает значение, заданное в калибровке.

3541
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь датчика положения привода дроссельной заслонки на впуске — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Модуль ECM определяет, что напряжение датчика положения привода дроссельной заслонки на впуске меньше значения, заданного в калибровке.

3542
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Датчик положения привода дроссельной заслонки на впуске выдает хаотичный сигнал, либо положение привода дроссельной заслонки на впуске не меняется при изменении условий работы двигателя.
Модуль ECM определяет, что датчик положения привода дроссельной заслонки на впуске выдает хаотичный сигнал, либо положение привода дроссельной заслонки на впуске не меняется при изменении условий работы двигателя.

3548
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Вытекание из блока дозирования жидкости для системы очистки отработавших газов — есть неисправность
Модуль ECM определяет, что блок дозирования не обеспечивает заполнение системы.

3557
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Контроллер впрыска жидкости в системе очистки отработавших газов дизельных двигателей — хаотичный характер или неправильность данных.
Контроллер впрыска жидкости в системе очистки отработавших газов дизельных двигателей обнаружил слишком высокое или слишком низкое напряжение в одной из цепей блока дозирования.

3561
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Блок дозирования жидкости для систем выпуска дизельных двигателей — ток ниже нормы или обрыв цепи.
Модуль ECM обнаружил обрыв в цепи блока дозирования жидкости для систем выпуска дизельных двигателей.

3562
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает, что напряжение в цепи реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей превышает значение, заданное в калибровке.

3563
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает, что напряжение в цепи реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей меньше значения, заданного в калибровке.

3564
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Цепь реле нагревателя жидкости в системе очистки отработавших газов дизельных двигателей — Ток ниже нормы или обрыв цепи. Обнаружен обрыв цепи реле нагревателя жидкости в системе очистки отработавших газов дизельных двигателей.
Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает обрыв в цепи реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей.

3565
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Дозирующий клапан жидкости для системы очистки отработавших газов — напряжение выше нормы или короткое замыкание на цепь высокого напряжения.
Контроллер впрыска жидкости для системы очистки отработавших газов обнаруживает, что напряжение на дозирующем клапане жидкости для системы очистки отработавших газов превышает значение, заданное в калибровке.

3566
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Дозирующий клапан жидкости для системы очистки отработавших газов — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения.
Контроллер впрыска жидкости для системы очистки отработавших газов обнаруживает, что напряжение на дозирующем клапане жидкости для системы очистки отработавших газов меньше значения, заданного в калибровке.

3569
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Входные магистрали блока дозирования жидкости для систем выпуска дизельных двигателей — реакция механической системы не соответствует норме или нарушена регулировка.
Контроллер впрыска жидкости в системе очистки отработавших газов дизельных двигателей обнаружил механическую неисправность входных трубопроводов блока дозирования, и жидкость для систем выпуска дизельных двигателей не подается на дозирующий клапан.

3579
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Клапан слива жидкости для систем выпуска дизельных двигателей — ток ниже нормы или обрыв цепи.
Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает обрыв в цепи клапана слива жидкости для систем выпуска дизельных двигателей.

3596
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Датчик давления жидкости в выпускной системе дизельных двигателей зафиксировал слишком низкое или слишком высокое для рабочих условий значение.
Блок дозирования жидкости для систем выпуска дизельных двигателей не может поддерживать заданное давление жидкости для систем выпуска дизельных двигателей.

3597
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Контроллер впрыска жидкости для системы очистки отработавших газов — Темп обновления данных не соответствует норме.
Модуль ECM определяет, что обмен данными по каналу связи между модулем ECM и контроллером впрыска жидкости для системы очистки отработавших газов прерван.

3598
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Контроллер впрыска жидкости для систем выпуска дизельных двигателей — по сети получены неправильные данные.
Модуль ECM определяет, что данные, переданные модулем ECM в контроллер впрыска жидкости для систем выпуска дизельных двигателей, не читаются или отсутствуют.

3612
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Блок дозирования жидкости для систем выпуска дизельных двигателей — реакция механической системы не соответствует норме или нарушена регулировка. Система очистки отработавших газов с селективным каталитическим нейтрализатором обнаруживает незавершенный цикл при отключении питания.
Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает незавершенный цикл продувки при выключении питания.

3648
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Температура контроллера впрыска жидкости для очистки отработавших газов — данные точные, но выше нормы — средний уровень серьезности.
Модуль ECM определил, что внутренняя температура контроллера впрыска жидкости для очистки отработавших газов превышает предел выдачи предупреждения.

3651
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Температура жидкости в баке системы очистки отработавших газов дизельных двигателей — данные точные, но ниже нормы — средний уровень серьезности.
Модуль ECM определяет, что температура жидкости в баке выпускной системы дизельных двигателей не может достичь установленного уровня.

3679
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Блок дозирования жидкости для очистки отработавших газов — исходная причина неизвестна. Не удалось инициализировать блок дозирования жидкости для очистки отработавших газов.
Блок дозирования и контроллер впрыска жидкости для систем выпуска дизельных двигателей не могут провести начальный обмен данными между собой при первом повороте пускового включателя в положение ВКЛ. и не могут выполнить инициализацию.

3713
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей — реакция механической системы не соответствует норме или нарушена регулировка.
Модуль ECM определяет, что в цепи питания нагревателя магистрали жидкости для систем выпуска дизельных двигателей было обнаружено короткое замыкание на цепь питания от аккумуляторной батареи.

3726
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Датчик содержания окислов азота на входе системы очистки отработавших газов — данные точные, но выше нормы — средний уровень серьезности.
Модуль ECM обнаруживает, что блок дозирования жидкости для системы очистки отработавших газов не обеспечивает заданную дозированную подачу жидкости.

3735
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Переключатель вспомогательного регулятора — Темп обновления данных не соответствует норме.
Модуль ECM не получает достоверного сообщения по мультиплексной сети J1939 от подключенного к ней устройства более 1 секунды. Модуль ECM определил наличие обрыва цепи или короткого замыкания в жгуте проводов сети J1939.

3736
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Возникло неожиданное состояние обмена данными в канале связи между модулем ECM и контроллером жидкости в системе очистки отработавших газов дизельных двигателей.
Модуль ECM отправил на контроллер впрыска жидкости для систем выпуска дизельных двигателей неожиданное сообщение, которое не удалось распознать.

3749
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Сигнал датчика содержания окислов азота на выходе системы очистки отработавших газов остается постоянным при изменении условий работы двигателя.
Модуль ECM определил, что показания датчика содержания окислов азота не меняются при изменении условий работы двигателя.

3866
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Качество жидкости для очистки отработавших газов — данные точные, но ниже нормы — самый высокий уровень серьезности.
Модуль ECM определил, что качество жидкости для очистки отработавших газов ниже критического порогового значения.

3867
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Качество жидкости для очистки отработавших газов — данные точные, но ниже нормы — средний уровень серьезности.
Модуль ECM определил, что качество жидкости для очистки отработавших газов ниже критического порогового значения.

3868
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Качество жидкости для очистки отработавших газов — темп обновления данных не соответствует норме.
Модуль ECM определил, что качество жидкости для очистки отработавших газов — реакция механической системы не соответствует норме или нарушена регулировка.

3876
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Датчик качества жидкости для очистки отработавших газов не распознает наличие жидкости.
Модуль ECM определил, что качество жидкости для очистки отработавших газов — реакция механической системы не соответствует норме или нарушена регулировка.

3877
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Датчик качества жидкости для очистки отработавших газов обнаруживает внутреннюю ошибку.
Модуль ECM определил, что датчик качества жидкости для очистки отработавших газов — неисправен.

3878
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Датчик качества жидкости для очистки отработавших газов обнаруживает перегрев.
Модуль ECM определил, что датчик качества жидкости для отчистки газов перегрелся.

3879
ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX
Качество жидкости для очистки отработавших газов — данные точные, но выше нормы.
Датчик качества жидкости для очистки отработавших газов обнаруживает, что концентрация жидкости возросла выше критического порогового значения.

Вернуться к списку статей

3577 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Клапан слива жидкости в системе очистки отработавших газов дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM обнаруживает, что напряжение на клапане слива жидкости для очистки отработавших газов вне допустимого диапазона (выше нормы), или имеется обрыв цепи.

3578 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи клапана слива жидкости для систем выпуска дизельных двигателей обнаружено низкое напряжение сигнала. Модуль ECM обнаруживает, что напряжение на клапане слива жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

3616 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Положение сопла турбонагнетателя с изменяемой геометрией — реакция механической системы не соответствует норме или нарушена регулировка. Модуль ECM определил, что на привод изменения геометрии турбонагнетателя находится в неправильном положении при установке пускового включателя в положение ВКЛ.

3681 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Датчик содержания окислов азота обнаружил неисправность цепи питания датчика. Модуль ECM определяет, что напряжение питания датчика содержания окислов азота выше или ниже порога, определяемого калибровкой.

3697 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Внутренняя ошибка модуля ECM, связанная со сбоями программного обеспечения. Модуль ECM обнаружил ошибку программного обеспечения или калибровки.

3738 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Подача жидкости для систем выпуска дизельных двигателей в блок дозирования прервана. Блок дозирования определяет, что во время дозированной подачи жидкости для систем выпуска дизельных двигателей в систему очистки отработавших газов прервана подача воздуха.

4157 ISF (ISF 2.8, ISF 3.8) Клапан слива жидкости для очистки отработавших газов — реакция механической системы отсутствует или нарушена регулировка. Модуль ECM обнаруживает, что давление жидкости для очистки отработавших газов не падает, когда на клапан слива жидкости для очистки отработавших газов подана команда на включение.

4172 ISF (ISF 2.8, ISF 3.8) Высокое напряжение сигнала обнаружено в цепи датчика давления воздуха в системе дозирования. Модуль ECM обнаруживает, что напряжение в цепи сигнала датчика давления воздуха в системе дозирования жидкости для очистки отработавших газов вне допустимого диапазона (выше нормы)

4173 ISF (ISF 2.8, ISF 3.8) Датчик абсолютного давления воздуха в системе дозирования — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Низкое напряжение сигнала обнаружено в цепи датчика давления воздуха в системе дозирования. Модуль ECM обнаруживает, что напряжение в цепи сигнала датчика давления воздуха в системе дозирования жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы)

4174 ISF (ISF 2.8, ISF 3.8) Датчик температуры в системе дозирования жидкости для очистки отработавших газов — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. В цепи датчика температуры в системе дозирования жидкости для очистки отработавших газов обнаружено высокое напряжение сигнала. Модуль ECM обнаруживает, что напряжение в цепи сигнала датчика температуры в системе дозирования жидкости для очистки отработавших газов вне допустимого диапазона (выше нормы).

4175 ISF (ISF 2.8, ISF 3.8) Датчик температуры в системе дозирования жидкости для очистки отработавших газов — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Низкое напряжение сигнала обнаружено в цепи сигнала датчика температуры в системе дозирования жидкости для очистки отработавших газов. Модуль ECM обнаруживает, что напряжение в цепи сигнала датчика температуры в системе дозирования жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

4176 ISF (ISF 2.8, ISF 3.8) Воздушный клапан системы дозирования реагента — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Высокое напряжение сигнала обнаружено в цепи воздушного клапана системы дозирования. Модуль ECM обнаруживает, что цепь воздушного клапана системы дозирования имеет короткое замыкание на цепь высокого напряжения.

4177 ISF (ISF 2.8, ISF 3.8) Воздушный клапан системы дозирования жидкости для очистки отработавших газов — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Низкое напряжение сигнала обнаружено в цепи воздушного клапана системы дозирования. Модуль ECM обнаруживает, что цепь воздушного клапана системы дозирования имеет короткое замыкание на цепь низкого напряжения.

4238 ISF (ISF 2.8, ISF 3.8) Давление воздуха в системе дозирования жидкости для очистки отработавших газов — данные точные, но ниже нормы, средний уровень серьезности. В блоке дозирования обнаружено низкое давление воздуха. Модуль ECM обнаруживает, что давление воздуха в системе дозирования вне допустимого диапазона (ниже нормы).

4239 ISF (ISF 2.8, ISF 3.8) Давление воздуха в системе дозирования жидкости для очистки отработавших газов — данные точные, но выше нормы, средний уровень серьезности. В блоке дозирования обнаружено высокое давление воздуха. Модуль ECM обнаруживает, что давление воздуха в системе дозирования вне допустимого диапазона (выше нормы).

4271 ISF (ISF 2.8, ISF 3.8) Воздушный клапан блока дозирования жидкости для очистки отработавших газов — реакция механической системы не соответствует норме, или нарушена регулировка. Высокое давление воздуха обнаружено в блоке дозирования при заправке системы, когда на воздушный клапан блока дозирования подан сигнал на закрытие. Модуль ECM обнаруживает, что давление воздуха в системе дозирования вне допустимого диапазона (выше нормы).

175 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM Цепь привода дроссельной заслонки с электронным управлением — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет наличие короткого замыкания на цепь питания или обрыв в цепи питания электродвигателя дроссельной заслонки на впуске.

176 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM Цепь привода дроссельной заслонки с электронным управлением — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM обнаруживает короткое замыкание на «массу» в цепи питания электродвигателя привода дроссельной заслонки на впуске.

177 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM Привод дроссельной заслонки с электронным управлением – реакция механической системы не соответствует норме или нарушена регулировка. Модуль ECM обнаруживает, что реакция механической системы привода дроссельной заслонки с электронным управлением не соответсвует норме.

187 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь питания датчиков — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM определяет, что напряжение в цепи питания датчиков меньше значения, заданного в калибровке, в течение более 1 секунды.

191 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM Сигнал муфты кондиционера во включенном состоянии указывает на короткое замыкание на «массу». Модуль ECM определяет, что сигнал муфты кондиционера указывает на короткое замыкание

212 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика температуры моторного масла — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что напряжение сигнала датчика температуры масла превышает значение, заданное в калибровке, в течение более 1 секунды.

213 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика температуры моторного масла — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM определяет, что напряжение сигнала датчика температуры масла ниже значения, заданного в калибровке, в течение более 1 секунды.

214 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Температура моторного масла — данные точные, но выше нормы — самый высокий уровень серьезности. Модуль ECM определяет, что температура масла превышает 122°C в течение 5 секунд.

227 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь питания датчиков — Напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что напряжение в цепи питания датчиков превышает значение, заданное в калибровке, в течение более 1 секунды.

252 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM Уровень масла в двигателе — хаотичный характер или неправильность данных. Модуль ECM определяет, что с датчика уровня масла поступает хаотичный сигнал.

253 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM Уровень масла в двигателе — данные точные, но ниже нормы -самый высокий уровень серьезности. Модуль ECM получает сигнал от датчиком уровня масла – обнаружен очень низкий уровень масла.

254 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь клапана отсечки топлива — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM определяет, что в цепи клапана отсечки топлива обнаружено низкое напряжение.

255 ISF (ISF 2.8, ISF 3.8), ISB, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь клапана отсечки топлива — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что в цепи клапана отсечки топлива обнаружены обрыв или короткое замыкание на источник питания.

257 ISF (ISF 2.8, ISF 3.8), ISB, ISL, ISLe, ISDe, ISM Клапан отсечки топлива — реакция механической системы не соответствует норме, или нарушена регулировка. Модуль ECM пределяет, что произошло механическое заедание клапана отсечки топлива в открытом положении, или имеется утечка.

311 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь реле электромагнитного к л а п а н а форсунки цилиндра 1 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 1 при выключенном напряжении. Модуль ECM определяет, что в цепи форсунки имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки .

312 ISB, ISD, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь реле электромагнитного к л а п а н а форсунки цилиндра 5 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 5 при выключенном напряжении. Модуль ECM определяет, что в цепи форсунки имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки

313 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь реле электромагнитного к л а п а н а форсунки цилиндра 3 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 3 при выключенном напряжении. Модуль ECM определяет, что в цепи форсунки имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки

314 ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь реле электромагнитного к л а п а н а форсунки цилиндра 6 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 6 при выключенном напряжении. Модуль ECM определяет, что в цепи форсунки имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки .

315 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь реле электромагнитного к л а п а н а форсунки цилиндра 2 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 2 при выключенном напряжении. Модуль ECM определяет, что в цепи форсунки имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки .

321 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь реле электромагнитного к л а п а н а форсунки цилиндра 4 — ток выше нормы или замыкание на «массу». Ток, обнаруживаемый на форсунке 4 при выключенном напряжении. Модуль ECM определяет, что в цепи форсунки имеется короткое замыкание на цепь питания, короткое замыкание на плюс аккумуляторной батареи или низкое сопротивление электромагнита форсунки .

338 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь вспомогательного реле выключения двигателя при длительной работе на холостом ходу — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что в цепи вспомогательного реле выключения двигателя при длительной работе на холостом ходу/зажигания обнаружен обрыв или короткое замыкание.

339 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь вспомогательного реле выключения двигателя при длительной работе на холостом ходу — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. В цепи вспомогательного реле выключения двигателя при длительной работе на холостом ходу/зажигания обнаружено низкое напряжение, когда на реле подан сигнал включения.

346 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Программное обеспечение для калибровки модуля ECM — неисправность логического устройства. Модуль ECM обнаруживает недопустимую настройку конфигурации контактных датчиков, задаваемую с помощью настраиваемых параметров.

356 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика массового расхода воздуха на впуске — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что сигнал датчика массового расхода воздуха превышает допустимый максимальный предел.

357 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика массового расхода воздуха на впуске — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM определяет, что сигнал датчика массового расхода воздуха меньше допустимого минимального предела.

358 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика массового расхода воздуха на впуске — хаотичный характер или неправильность данных. Сигнал датчика массового расхода воздуха не соответствует условиям работы двигателя.

425 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Температура масла двигателя — Хаотичный характер или неправильность данных Модуль ECM определяет, что показания датчика температуры масла двигателя выше или ниже показаний других датчиков, установленных на двигателе, после длительного пребывания двигателя в выключенном состоянии.

436 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика температуры во впускном коллекторе — хаотичный характер или неправильность данных. Модуль ECM определяет, что показания датчика температуры во впускном коллекторе выше или ниже показаний других датчиков, установленных на двигателе, после длительного пребывания двигателя в выключенном состоянии.

465 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь управления клапаном перепуска турбонагнетателя — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что в цепи управления клапаном перепуска турбонагнетателя обнаружено высокое напряжение.

466 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь управления клапаном перепуска турбонагнетателя — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM определяет, что в цепи управления клапаном перепуска турбонагнетателя обнаружено низкое напряжение.

477 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Напряжение, подаваемое на контроллер впрыска жидкости для систем выпуска дизельных двигателей, ниже напряжения в системе электрооборудования. Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает, что напряжение питания от аккумуляторной батареи ниже порогового значения.

478 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Напряжение, подаваемое на контроллер впрыска жидкости для систем выпуска дизельных двигателей, превышает напряжение в системе электрооборудования. Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает, что напряжение питания от аккумуляторной батареи превышает пороговое значение.

491 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь управления клапаном перепуска турбонагнетателя — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что в цепи управления клапаном перепуска турбонагнетателя обнаружено высокое напряжение.

492 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь управления клапаном перепуска турбонагнетателя — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM определяет, что в цепи управления клапаном перепуска турбонагнетателя обнаружено низкое напряжение.

498 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика уровня масла — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM обнаруживает короткое замыкание сигнальной цепи на плюс аккумуляторной батареи или обрыв цепи «массы».

545 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь управления клапаном перепуска турбонагнетателя — реакция механической системы не соответствует норме или нарушена регулировка. Модуль ECM определяет, что давление во впускном коллекторе превысило максимально допустимую величину для данной номинальной мощности двигателя.

693 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Температура на входе компрессора турбонагнетателя — хаотичный характер или неправильность данных. Модуль ECM обнаруживает, что показания датчика температуры на входе компрессора турбонагнетателя слишком высокие или слишком низкие для данных условий работы двигателя.

697 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика внутренней температуры модуля ECM — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определил наличие короткого замыкания цепи внутреннего датчика температуры на цепь питания.

1228 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Положение клапана системы рециркуляции отработавших газов — хаотичный характер или неправильность данных. Модуль ECM определяет, что датчик положения клапана системы рециркуляции отработавших газов выдает хаотичный сигнал, либо положение клапана системы рециркуляции отработавших газов не меняется при изменении условий работы двигателя.

1688 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Контроллер впрыска жидкости для системы очистки отработавших газов — неисправность логического устройства. В контроллере впрыска жидкости для системы очистки отработавших газов обнаружена внутренняя ошибка. Данные об ошибке переданы в модуль ECM по каналу связи.

2636 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Цепь привода изменения геометрии турбонагнетателя — темп обновления данных не соответствует норме. Основной модуль ECM двигателя не получает достоверного сообщения по мультиплексной сети J1939 от привода изменения геометрии турбонагнетателя более 1 секунды.

2637 ISB, ISC, ISL, ISLe, ISDe, QSB Обнаружено засорение сажей передней торцевой поверхности каталитического нейтрализатора. Модуль ECM определяет наличие условий для засорения торца каталитического нейтрализатора и возможность того, что засорение произошло.

2638 ISB, ISC, ISL, ISLe, ISDe, QSB Увеличение температуры на каталитическом нейтрализаторе системы очистки отработавших газов меньше ожидаемого. Модуль ECM расчетным путем определил, что эффективность каталитического нейтрализатора ниже требуемой для успешного завершения регенерации.

2639 ISB, ISC, ISL, ISLe, ISDe, QSB Количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает рекомендованные пределы. Модуль ECM определяет, что количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает норму (самый низкий уровень серьезности). Для удаления сажи необходима регенерация системы очистки отработавших газов.

2646 ISB, ISC, ISL, ISLe, ISDe, QSB Клапан системы рециркуляции отработавших газов закрыт для снижения температуры охлаждающей жидкости. Температура охлаждающей жидкости — состояние сохраняется.

2659 ISB, ISC, ISL, ISLe, ISDe, QSB Клапан системы рециркуляции отработавших газов закрыт для снижения температуры охлаждающей жидкости. Температура охлаждающей жидкости — состояние сохраняется.

2728 ISB, ISC, ISL, ISLe, ISDe, QSB Обнаружено, что активная регенерация фильтра твердых частиц системы очистки отработавших газов будет неэффективна. Система очистки отработавших газов определила, что длительность активной регенерации превышает время, заданное в калибровке, и что температура в системе очистки отработавших газов не достигла минимального значения для выполнения полной регенерации фильтра твердых частиц.

2742 ISB, ISC, ISL, ISLe, ISDe, QSB Температуры в системе очистки отработавших газов не достигают значений, необходимых для регенерации в стационарных условиях. 1.Модуль ECM определяет, что измеренная температура на входе каталитического нейтрализатора не соответствует уровню, необходимому для регенерации в стационарных условиях. 2.Модуль ECM определяет, что температура отработавших газов, поступающих в систему очистки отработавших газов, недостаточно высока для удаления воды из системы при длительной работе двигателя на холостом ходу.

2743 ISB, ISC, ISL, ISLe, ISDe, QSB Температуры в системе очистки отработавших газов не достигают значений, необходимых для регенерации в стационарных условиях. 1.Модуль ECM определяет, что измеренная температура на входе каталитического нейтрализатора не соответствует уровню, необходимому для регенерации в стационарных условиях. 2.Модуль ECM определяет, что температура отработавших газов, поступающих в систему очистки отработавших газов, недостаточно высока для удаления воды из системы при длительной работе двигателя на холостом ходу.

2754 ISB, ISC, ISL, ISLe, ISDe, QSB Обнаружено повышенное количество черного дыма, поступающего из двигателя в фильтр твердых частиц системы очистки отработавших газов. Этот код неисправности регистрируется, когда накопление сажи внутри фильтра твердых частиц происходит быстрее, чем при обычных условиях.

2765 ISB, ISC, ISL, ISLe, ISDe, QSB Штрихкоды группы форсунок — неправильная калибровка. Введена неправильная информация с штрихкодов форсунок. Модуль ECM определяет, что значения штрихкодов форсунок введены в модуль ECM неправильно.

2771 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Датчик содержания окислов азота на выходе системы очистки отработавших газов — Темп обновления данных не соответствует норме. Нарушение обмена данными между модулем ECM и датчиком содержания окислов азота в отработавших газах по каналу связи SAE J1939.

2772 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Датчик содержания окислов азота на выходе системы очистки отработавших газов — данные точные, но выше нормы — самый низкий уровень серьезности. Величина сигнала датчика содержания окислов азота превышает рекомендованный уровень. Этот код неисправности регистрируется, когда процедура диагностики определяет, что выходной сигнал датчика содержания окислов азота превышает значение, заданное в калибровке, для двух последовательных циклов зажигания.

2773 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, Содержание окислов азота на выходе системы очистки отработавших газов — данные точные, но выше нормы — самый высокий уровень серьезности. Величина сигнала датчика содержания окислов азота превышает рекомендованный уровень. Этот код неисправности регистрируется, когда процедура диагностики определяет, что выходной сигнал датчика содержания окислов азота превышает значение, заданное в калибровке, для двух последовательных циклов зажигания.

2777 ISB, ISC, ISL, ISLe, ISDe, QSB Регенерация фильтра твердых частиц отключена, поскольку переключатель запрета регенерации установлен в положение запрета. Этот код неисправности регистрируется, когда переключатель запрета регенерации установлен в положение запрета, и код неисправности 1921, 1922 или 2639 переходит в активное состояние вследствие большого количества сажи в фильтре твердых частиц.

2778 ISB, ISC, ISL, ISLe, ISDe, QSB Требуется замена моторного масла вследствие его возможного разбавления топливом. Этот код неисправности регистрируется, когда модуль ECM обнаруживает возможность разжижения моторного масла топливом.

2813 ISB, ISC, ISL, ISLe, ISDe, QSB Клапан системы регенерации отработавших газов закрыт во время регенерации фильтра твердых частиц системы очистки отработавших газов. Система управления очисткой отработавших газов определила, что температура отработавших газов во время активной регенерации фильтра твердых частиц системы очистки отработавших газов недостаточно высока.

2961 ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX Температура в системе рециркуляции отработавших газов — данные точные, но превышают норму — самый низкий уровень серьезности. Температура в системе рециркуляции отработавших газов превысила предел включения защиты двигателя. Модуль ECM определяет, что температура в системе рециркуляции отработавших газов превышает заданную в колибровке в течение более 5 секунд.

2962 ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX Температура в системе рециркуляции отработавших газов — данные точные, но выше нормы — средний уровень серьезности. Температура в системе рециркуляции отработавших газов превысила предел включения защиты двигателя. Модуль ECM определяет, что температура в системе рециркуляции отработавших газов превышает 246°C в течение более 5 секунд.

2963 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Температура охлаждающей жидкости — данные точные, но превышают норму — самый низкий уровень серьезности. Температура охлаждающей жидкости превышает предел предупреждения системы защиты двигателя. Модуль ECM определяет, что напряжение сигнала датчика температуры охлаждающей жидкости превышает калиброванный предел, установленный в модуле ECM.
2964 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Температура во впускном коллекторе — данные точные, но превышают норму — самый низкий уровень серьезности. Сигнал датчика температуры во впускном коллекторе указывает, что она выше предела предупреждения системы защиты двигателя. Модуль ECM определяет, что напряжение сигнала датчика температуры во впускном коллекторе превышает калиброванный предел, установленный в модуле ECM.

2973 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Модуль ECM обнаружил, что сигнал датчика давления во впускном коллекторе не соответствует норме для данных условий работы двигателя. Модуль ECM определяет, что сигнал датчика давления во впускном коллекторе не изменяется при изменении условий работы двигателя или имеет хаотический характер при повороте пускового включателя в положение ВКЛ.

3142 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Высокое напряжение сигнала обнаружено в цепи датчика температуры на входе каталитического нейтрализатора. Модуль ECM определяет, что напряжение сигнала датчика температуры на входе каталитического нейтрализатора более 4,4 В постоянного тока в течение более 2 секунд.

3143 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Низкое напряжение сигнала обнаружено в цепи датчика температуры. Модуль ECM определяет, что напряжение сигнала датчика температуры на входе каталитического нейтрализатора менее 0,13 В постоянного тока в течение более 2 секунд.

3144 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Сигнал датчика температуры на входе в каталитический нейтрализатор не меняется при изменении условий работы двигателя. Модуль ECM определяет, что сигнал датчика температуры на входе каталитического нейтрализатора недопустим (противоречит здравому смыслу) в течение более 5 минут.

3164 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Обнаружена высокая температура на входе каталитического нейтрализатора. Модуль ECM определил, что температура на входе каталитического нейтрализатора превышает значение, заданное в калибровке. 3236 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Обнаружена высокая температура на выходе каталитического нейтрализатора. Модуль ECM определил, что температура на выходе каталитического нейтрализатора превышает значение, заданное в калибровке.

3242 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Нагреватель жидкости для очистки отработавших газов — реакция механической системы не соответствует норме или нарушена регулировка. Модуль ECM выдал команду на включение нагревателя жидкости в баке системы очистки отработавших газов, но датчик температуры в баке не зафиксировал ее увеличения.

3326 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Модуль ECM не получает своевременно ожидаемых данных от датчика положения акселератора, подключенного к мультиплексной сети, или не получает их вообще. Модуль ECM не получает сообщения по мультиплексной сети от подключенного к ней устройства.

3492 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Часы реального времени указывают на остановку таймера выключенного состояния двигателя. Таймер выключенного состояния двигателя работает неправильно, и его показания не соответствуют показаниям других таймеров в модуле ECM.

3558 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Блок дозирования жидкости для систем выпуска дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM обнаруживает, что в цепи клапана дозирования жидкости для очистки отработавших газов имеется короткое замыкание на цепь высокого или низкого напряжения или имеется обрыв цепи.

3559 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Блок дозирования жидкости для систем выпуска дизельных двигателей — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM обнаруживает, что напряжение сигнала или питания блока дозирования жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

3567 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи клапана дозирования жидкости для очистки отработавших газов обнаружена внутренняя ошибка. Модуль ECM обнаруживает, что в цепи клапана дозирования жидкости для очистки отработавших газов имеется короткое замыкание на цепь высокого или низкого напряжения или имеется обрыв цепи.

3568 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Обнаружена механическая неисправность дозирующего клапана жидкости для систем очистки отработавших газов. Модуль ECM определяет, что давление жидкости для очистки отработавших газов превышает порог.

3571 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи датчика давления жидкости для очистки отработавших газов обнаружено высокое напряжение сигнала. Модуль ECM обнаруживает, что напряжение сигнала датчика давления жидкости для очистки отработавших газов вне допустимого диапазона (выше нормы).

3572 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи датчика давления жидкости для очистки отработавших газов обнаружено низкое напряжение сигнала. Модуль ECM обнаруживает, что напряжение сигнала датчика давления жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

3574 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В блоке дозирования обнаружено низкое давление жидкости. Модуль ECM определяет, что давление жидкости для очистки отработавших газов ниже порога.

3575 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Блок дозирования жидкости для очистки отработавших газов обнаружил засорение в возвратном трубопроводе жидкости для очистки отработавших газов. Модуль ECM определяет, что давление жидкости для очистки отработавших газов превышает порог.

2183 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В сигнальной цепи электромагнитного клапана моторного тормоза обнаружено низкое напряжение. В цепи моторного тормоза не обнаружен сигнал с широтно-импульсной модуляцией с уровнем, равным напряжению питания системы, когда этот сигнал включен.

2185 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Обнаружено высокое напряжение в цепи питания (5 В) датчика положения акселератора. Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (выше нормы).

2186 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи питания (+5) В датчика положения педали акселератора обнаружено низкое напряжение. Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (ниже нормы).

2195 ISB, ISC, ISL, ISLe, ISDe, QSB Обнаружено открытие двери запасного выхода транспортного средства. Код неисправности регистрируется, когда дверь запасного выхода транспортного средства открыта.

2198 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Контроллер турбонагнетателя с изменяемой геометрией не распознает правильно сообщения стандарта J1939, получаемые по мультиплексной сети от модуля ECM. Модуль ECM не получает достоверного сообщения по мультиплексной сети J1939 от модуля ECM более 1 секунды.

2265 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В сигнальной цепи подкачивающего насоса обнаружены высокое напряжение или обрыв цепи. В цепи подкачивающего топливного насоса обнаружен сигнал с широтно-импульсной модуляцией с уровнем больше 0 В, когда этот сигнал выключен модулем ECM.

2266 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи подкачивающего топливного насоса обнаружено низкое напряжение сигнала. В цепи подкачивающего топливного насоса обнаружен сигнал с широтно-импульсной модуляцией с уровнем 0 В, когда этот сигнал включен модулем ECM и должен быть равен напряжению питания системы.

2272 ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX В цепи датчика положения клапана системы рециркуляции отработавших газов обнаружено низкое напряжение сигнала. Модуль ECM определяет, что все датчики положения показывают сигнал высокого уровня (или все датчики положения показывают сигнал низкого уровня).

2273 ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX В цепи датчика перепада давления в системе рециркуляции отработавших газов обнаружено высокое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика перепада давления на клапане системы рециркуляции отработавших газов превышает 4,8 В постоянного тока в течение более 4 секунд.

2274 ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX В цепи датчика перепада давления в системе рециркуляции отработавших газов обнаружено низкое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика перепада давления на клапане системы рециркуляции отработавших газов менее 0,26 В постоянного тока в течение более 2 секунд.

2288 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Модуль ECM обнаружил высокую частоту вращения турбонагнетателя. Модуль ECM определил, что частота вращения турбонагнетателя превышает максимальный предел, заданный в калибровке.

2311 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Слишком высокое или слишком низкое сопротивление цепи исполнительного клапана топливной системы. Код неисправности регистрируется при наличии исчезающих отказов цепи исполнительного клапана топливного насоса.

2321 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Периодическое нарушение синхронизации датчика частоты вращения коленчатого вала. Модуль ECM определяет наличие исчезающего или ослабленного сигнала датчика частоты вращения/положения коленчатого вала по истечении некоторого времени работы двигателя.

2322 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Периодическое нарушение синхронизации датчика частоты вращения распределительного вала. Модуль ECM обнаружил исчезающее пропадание сигнала датчика частоты вращения/положения распределительного вала.

2345 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Датчик частоты вращения турбонагнетателя показывает ошибку при определении частоты вращения. Модуль ECM определил, что частота вращения турбонагнетателя увеличивается быстрее, чем это физически достижимо для турбонагнетателя.

2346 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Температура на входе в турбину турбонагнетателя превысила предел включения защиты двигателя. Модуль ECM определил, что расчетная величина температуры на входе турбины превышает значение, заданное в калибровке.

2347 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Высокая температура воздуха на выходе компрессора турбонагнетателя (рассчитывается модулем ECM) Модуль ECM определил, что расчетное значение температуры на выходе компрессора турбонагнетателя превышает 238°C.

2349 ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX Модуль ECM определил наличие обрыва выводов или обмотки электродвигателя. Модуль (ECM) определил наличие обрыва в жгуте проводов двигателя или в обмотке электродвигателя клапана системы рециркуляции отработавших газов.

2351 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Модуль ECM определил наличие короткого замыкания выводов или обмотки электродвигателя на «массу» или цепь питания. Модуль ЕСМ определил наличие короткого замыкания в цепях электродвигателя клапана системы рециркуляции отработавших газов.

2357 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Длительность цикла работы электродвигателя клапана системы рециркуляции отработавших газов превышена, что указывает на заедание клапана в открытом положении. Этот код неисправности регистрируется, когда рабочий цикл, требуемый для открытия клапана системы рециркуляции отработавших газов, превышает 95% в течение 3 секунд. Контроллер клапана системы рециркуляции отработавших газов попытается открыть клапан повторно через 10 секунд. Код неисправности регистрируется после трех неудачных попыток.

2359 ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX Датчик перепада давления в системе рециркуляции отработавших газов обнаружил высокий расход газа в системе рециркуляции отработавших газов, или показания датчика перепада давления не соответствуют условиям работы двигателя. Перепад давления в системе рециркуляции отработавших газов превышает значение, заданное в калибровке.

2363 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В сигнальной цепи электромагнитного клапана моторного тормоза обнаружено низкое напряжение. В цепи моторного тормоза не обнаружен сигнал с широтно-импульсной модуляцией с уровнем, равным напряжению питания системы, когда этот сигнал включен.

2367 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX В сигнальной цепи электромагнитного клапана моторного тормоза обнаружены обрыв цепи или высокое напряжение. В цепи моторного тормоза обнаружен сигнал с широтно-импульсной модуляцией с уровнем, равным напряжению питания системы, когда этот сигнал выключен.

2369 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX В цепи управления моторным тормозом обнаружено низкое напряжение сигнала. Модуль ECM обнаруживает, что цепь управления моторным тормозом имеет короткое замыкание на цепь низкого напряжения.

2371 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Цепь привода моторного тормоза — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM обнаруживает, что цепь управления моторным тормозом имеет короткое замыкание на цепь высокого напряжения.

2373 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Цепь датчика давления в выпускной системе — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что напряжение сигнала датчика давления в выпускной системе превышает 4,75 В постоянного тока в течение более 4 секунд.

2374 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Цепь датчика давления в выпускной системе — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM определяет, что напряжение сигнала датчика давления в выпускной системе менее 0,25 В постоянного тока в течение более 4 секунд.

2375 ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX Цепь датчика температуры в системе рециркуляции отработавших газов — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что напряжение сигнала датчика температуры в системе рециркуляции отработавших газов превышает 5,1 В постоянного тока в течение более 1 секунды.

2376 ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX Цепь датчика температуры в системе рециркуляции отработавших газов — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM определяет, что напряжение сигнала датчика температуры в системе рециркуляции отработавших газов ниже 0,09 В постоянного тока в течение более 1 секунды.

2377 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM, ISX, QSX Цепь управления вентилятором — Напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM обнаруживает в цепи управления вентилятором сигнал с широтно- импульсной модуляцией с уровнем больше 0 В, когда этот сигнал выключен модулем ECM.

2387 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Логический контроллер изменения геометрии турбонагнетателя обнаружил неправильные крайние положения, или привод изменения геометрии турбонагнетателя не может перейти в закрытое положение. Код неисправности устанавливается, когда фактическое положение привода изменения геометрии турбонагнетателя не соответствует заданному в течение более 10 секунд.

2448 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Обнаружен низкий уровень охлаждающей жидкости. Модуль ECM определяет, что уровень охлаждающей жидкости ниже предела для нормальных условий работы.

2449 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Контроллер привода изменения геометрии турбонагнетателя — неправильная калибровка. Положение привода при начальном включении питания не определяется внутренними средствами вследствие заедания механизма или внутренних неисправностей. Фактическое положение привода изменения геометрии турбонагнетателя неизвестно.

2451 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Температура на входе в турбину турбонагнетателя превысила предел включения защиты двигателя. Модуль ECM определил, что расчетная величина температуры на входе турбины превышает значение, заданное в калибровке.

2554 ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX Хаотичный характер сигнала датчика давления в выпускной системе при первом повороте пускового включателя в положение ВКЛ. 1. Модуль ECM определил, что величина давления в выпускной системе выше или ниже показаний других датчиков абсолютного давления в двигателе после установки пускового включателя в положение ВКЛ., когда двигатель не работает. 2. Модуль ECM определил, что давление в выпускной системе при обычной работе двигателя меньше значения, задаваемого в калибровке.

2555 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи нагревателя впускной системы обнаружено высокое напряжение сигнала. В цепи управления вентилятором обнаружен сигнал с широтно- импульсной модуляцией с уровнем больше 0 В, когда этот сигнал выключен модулем ECM.

2556 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи нагревателя впускной системы обнаружено низкое напряжение сигнала. В цепи нагревателя впускной системы не обнаружен сигнал с широтно-импульсной модуляцией с уровнем, равным напряжению питания системы, когда этот сигнал включен.

2557 QSB Вспомогательная цепь сигналов с широтно- импульсной модуляцией — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. В цепи аналогового сигнала крутящего момента обнаружено высокое напряжение сигнала.

2558 QSB Вспомогательная цепь сигналов с широтно- импульсной модуляцией — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. В цепи аналогового сигнала крутящего момента обнаружено низкое напряжение сигнала.

2634 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Логический контроллер турбонагнетателя с изменяемой геометрией обнаружил внутреннюю ошибку. Привод изменения геометрии турбонагнетателя обнаружил внутреннюю ошибку в логическом контроллере турбонагнетателя.

2635 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Обнаружено несоответствие калибровки привода изменения геометрии турбонагнетателя и модуля ECM. 1.Модуль ECM обнаружил несовместимость калибровки привода изменения геометрии турбонагнетателя и модуля ECM 2.Привод изменения геометрии турбонагнетателя обнаружил, что напряжение питания не соответствует установленному приводу с учетом номера по каталогу. 3.Модуль ECM определил, что на турбонагнетателе установлен несоответствующий привод изменения геометрии.

1663 ISB, ISC, ISL, ISLe, ISDe, QSB Датчики температуры на входе каталитического нейтрализатора и на выходе из него перепутаны местами — состояние сохраняется. Модуль управления двигателем (ECM) определяет, что температура на входе каталитического нейтрализатора системы очистки отработавших газов превышает температуру на входе фильтра твердых частиц в ходе активной регенерации фильтра твердых частиц.
1664 ISB, ISC, ISL, ISLe, ISDe, QSB Нет каталитического нейтрализатора в выпускной системе. Электронный модуль управления (ECM) определяет, что температура на входе каталитического нейтрализатора и температура на входе фильтра твердых частиц одинаковы в ходе активной регенерации системы очистки отработавших газов.

1665 ISB, ISC, ISL, ISLe, ISDe, QSB В цепи датчика температуры на входе каталитического нейтрализатора обнаружено низкое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика температуры на входе каталитического нейтрализатора менее 0,1 В постоянного тока в течение более чем 2 секунд.

1666 ISB, ISC, ISL, ISLe, ISDe, QSB В цепи датчика температуры на входе каталитического нейтрализатора обнаружено высокое Модуль ECM определяет, что напряжение сигнала датчика температуры на входе каталитического нейтрализатора напряжение сигнала. превышает 4,97 В постоянного тока в течение более чем 2 секунд.

1667 ISB, ISC, ISL, ISLe, ISDe, QSB Сигнал датчика температуры на входе каталитического нейтрализатора не изменяется при изменении условий работы двигателя. Модуль ECM определяет, что сигнал датчика температуры на входе каталитического нейтрализатора не изменяется при изменении условий работы двигателя.

1668 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи датчика уровня обнаружено низкое напряжение сигнала. Модуль ECM обнаруживает, что напряжение сигнала уровня жидкости в баке жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

1669 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи датчика уровня жидкости в баке системы очистки отработавших газов дизельных двигателей обнаружено высокое напряжение сигнала. Модуль ECM обнаруживает, что напряжение сигнала уровня жидкости в баке жидкости для очистки отработавших газов вне допустимого диапазона (выше нормы).

1671 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Уровень жидкости для очистки отработавших газов в баке очень низок. В баке системы очистки отработавших газов обнаружен низкий уровень жидкости.

1673 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Уровень жидкости для очистки отработавших газов в баке снизился до критического уровня. Критически низкий уровень жидкость для очистки отработавших газов в баке.

1674 ISB, ISC, ISL, ISLe, ISDe, QSB В цепи датчика температуры на входе фильтра твердых частиц системы очистки отработавших газов обнаружено низкое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика температуры на входе фильтра твердых частиц менее 0,1 В постоянного тока в течение более 2 секунд.

1675 ISB, ISC, ISL, ISLe, ISDe, QSB В цепи датчика температуры на входе фильтра твердых частиц системы очистки Модуль ECM определяет, что напряжение сигнала датчика температуры на входе фильтра твердых отработавших газов обнаружено высокое напряжение сигнала. частиц превышает 4,97 В постоянного тока в течение более 2 секунд.

1676 ISB, ISC, ISL, ISLe, ISDe, QSB Сигнал датчика температуры на входе фильтра твердых частиц не изменяется при изменении условий работы двигателя. Модуль ECM определяет, что сигнал датчика температуры на входе фильтра твердых частиц не изменяется при изменении условий работы двигателя.

1677 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Цепь датчика температуры жидкости в баке системы очистки отработавших газов — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM обнаруживает, что напряжение сигнала температуры в бака жидкости для очистки отработавших газов вне допустимого диапазона (ниже нормы).

1678 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Цепь датчика температуры жидкости в баке системы очистки отработавших газов дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что сигнал датчика температуры на входе фильтра твердых частиц не изменяется при изменении условий работы двигателя.

1682 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Блок дозирования жидкости для очистки отработавших газов не обеспечивает заполнение системы. Блок дозирования жидкости для очистки отработавших газов не обеспечивает успешное заполнение системы после нескольких попыток.

1683 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Высокое напряжение сигнала обнаружено в цепи нагревателя жидкости в баке системы очистки отработавших газов. Модуль ECM обнаруживает короткое замыкание на «плюс» аккумуляторной батареи или обрыв в цепи нагревателя бака жидкости для очистки отработавших газов.

1684 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи нагревателя жидкости в баке системы очистки отработавших газов дизельных двигателей обнаружено пониженное напряжение Модуль ECM обнаруживает пониженное напряжение сигнала или короткое замыкание на «массу» в цепи нагревателя бака жидкости для очистки отработавших газов.

1689 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Прерывание питания часов реального времени — хаотичный характер или неправильность данных. Модуль ECM определяет, что данные часов реального времени потеряны вследствие отключения питания.

1691 ISB, ISC, ISL, ISLe, ISDe, QSB Увеличение температуры на каталитическом нейтрализаторе системы очистки отработавших газов меньше ожидаемого. Модуль ECM расчетным путем определил, что эффективность каталитического нейтрализатора ниже требуемой для успешного завершения регенерации.

1694 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Обнаружено несоответствие норме сигнала датчика содержания окислов азота. Модуль ECM определяет, что сигнал датчика содержания окислов азота не изменяется при изменении условий работы двигателя.

1695 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи питания датчиков в жгуте проводов комплектного оборудования обнаружено высокое напряжение. Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (выше нормы).

1696 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи питания датчиков в жгуте проводов комплектного оборудования обнаружено низкое напряжение. Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (ниже нормы).

1712 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Нагреватель жидкости для очистки отработавших газов не может растопить замерзшую жидкость. Модуль ECM обнаруживает, что нагреватель жидкости для очистки отработавших газов не может растопить замерзшую жидкость.

1713 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Нагреватель жидкости в баке системы очистки отработавших газов — данные точные, но выше нормы — средний уровень серьезности. Нагреватель жидкости для очистки отработавших газов в баке постоянно включен.

1843 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи датчика давления картерных газов обнаружено высокое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика давления картерных газов превышает 4,8 В постоянного тока в течение более 1 секунды.

1844 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи датчика давления картерных газов обнаружено низкое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика давления картерных газов менее 0,2 В постоянного тока в течение более 1 секунды.

1852 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Датчик наличия воды в топливе указывает на уровень воды, превышающий предел для выдачи предупреждения. Модуль ECM определяет наличие воды в топливе в течение длительного времени.

1866 ISB, ISC, ISL, ISLe, ISDe, QSB Цепь датчика перепада давления на клапане системы рециркуляции отработавших газов — хаотичный характер или неправильность данных. Обнаружена ошибка сигнала датчика перепада давления системы рециркуляции отработавших газов или датчик не прошел проверку автоматической установки нуля.

1876 ISB, ISC, ISL, ISLe, ISDe, QSB В цепи датчика температуры на выходе фильтра твердых частиц системы очистки отработавших газов обнаружено высокое напряжение сигнала или обрыв цепи. Модуль ECM определяет, что напряжение сигнала датчика температуры на выходе фильтра твердых частиц превышает 4,97 В постоянного тока в течение более 2 секунд.

1877 ISB, ISC, ISL, ISLe, ISDe, QSB В цепи датчика температуры на выходе фильтра твердых частиц системы очистки отработавших газов обнаружено низкое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика температуры на выходе фильтра твердых частиц менее 0,1 В постоянного тока в течение более 2 секунд.

1878 ISB, ISC, ISL, ISLe, ISDe, QSB Сигнал датчика температуры на выходе фильтра твердых частиц не изменяется при изменении условий работы двигателя. Температура в системе очистки отработавших газов — хаотичный характер или неправильность данных.

1879 ISB, ISC, ISL, ISLe, ISDe, QSB В цепи датчика перепада давления в системе очистки отработавших газов обнаружено высокое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика перепада давления на фильтре твердых частиц превышает 4,75 В постоянного тока в течение более 1 секунды.

1881 ISB, ISC, ISL, ISLe, ISDe, QSB В цепи датчика перепада давления на фильтре твердых частиц системы очистки отработавших газов обнаружены низкое напряжение сигнала или обрыв цепи. Модуль ECM определяет, что напряжение сигнала датчика перепада давления на фильтре твердых частиц менее 0,25 В постоянного тока в течение более 1 секунды.

1883 ISB, ISC, ISL, ISLe, ISDe, QSB Датчик перепада давления на фильтре твердых частиц системы очистки отработавших газов — хаотичный характер или неправильность данных. Хаотичный характер сигнала датчика перепада давления на фильтре твердых частиц системы очистки отработавших газов.

1896 ISB, ISC, ISL, ISLe, ISDe, QSB Контроллер клапана системы рециркуляции отработавших газов — неправильная калибровка. Не выполнена процедура автоматической калибровки клапана системы рециркуляции отработавших газов.

1887 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Цепь датчика содержания окислов азота на выходе системы очистки отработавших газов — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Обнаружена внутренняя неисправность датчика содержания окислов азота на выходе системы очистки отработавших газов.

1899 ISB, ISC, ISL, ISLe, ISDe, QSB Датчик перепада давления в системе рециркуляции отработавших газов обнаружил низкий расход газа в системе рециркуляции отработавших газов, или показания датчика перепада давления не соответствуют условиям работы двигателя. Перепад давления на клапане системы рециркуляции отработавших газов — данные точные, но выше нормы — средний уровень серьезности.

1911 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISF (ISF 2.8, ISF 3.8) Цепь датчика давления в общем топливопроводе высокого давления, но превышают норму. Модуль ECM обнаружил, что давление в общем топливопроводе высокого давления выше заданного.

1921 ISB, ISC, ISL, ISLe, ISDe, QSB Количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает рекомендованные пределы. Модуль ECM определяет, что количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает норму (средний уровень серьезности). Для удаления сажи необходима регенерация системы очистки отработавших газов.

1922 ISB, ISC, ISL, ISLe, ISDe, QSB3 Количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает рекомендованные пределы. Модуль ECM определяет, что количество сажи в фильтре твердых частиц системы очистки отработавших газов превышает максимальный допустимый предел.

1938 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Привод управления изменением геометрии турбонагнетателя обнаружил пониженное напряжение питания от аккумуляторной батареи. Напряжение питания электронного модуля управления — данные точные, но превышают норму — средний уровень серьезности.

1942 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Модуль ECM определил, что сигнал датчика давления картерных газов не меняется при изменении условий работы двигателя. Модуль ECM определяет, что сигнал датчика температуры имеет хаотический характер.

1943 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISX, QSX, ISM Крутящий момент двигателя снижен по причине работы транспортного средства на большой высоте над уровнем моря. Модуль ECM определил, что давление окружающего воздуха ниже калиброванного значения.

1962 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Обнаружена высокая внутренняя температура привода изменения геометрии турбонагнетателя. Этот код неисправности регистрируется, когда внутренняя температура привода изменения геометрии турбонагнетателя превышает 125°C непрерывно в течение 30 минут.

1966 ISB, ISC, ISL, ISLe, ISDe, QSB Температура отработавших газов, поступающих в систему очистки отработавших газов, превышает предел защиты двигателя. ECM определяет наличие повышенной температуры в системе очистки отработавших газов, при условии, что активная регенерация фильтра твердых частиц системы очистки отработавших газов не производится.

1968 ISB, ISC, ISL, ISLe, ISDe, QSB Показания датчика температуры №2 на входе фильтра твердых частиц превысили максимальный предел температуры. Показания датчика температуры №2 на входе фильтра твердых частиц превышают 649°C в течение 5 секунд и затем снижаются до величины ниже 550°C.

1969 ISB, ISC, ISL, ISLe, ISDe, QSB Показания датчика температуры №2 на входе фильтра твердых частиц превысили максимальный предел системы защиты двигателя по температуре. Показания датчика температуры №2 на входе фильтра твердых частиц — критические.

1972 ISB, ISC, ISL, ISLe, ISDe, QSB Показания датчика температуры №3 на входе фильтра твердых частиц превысили максимальный предел температуры. Показания датчика температуры на выходе фильтра твердых частиц превышают 649°C в течение 5 секунд и затем снижаются до величины ниже 575°C.

1973 ISB, ISC, ISL, ISLe, ISDe, QSB Показания датчика температуры №3 на входе фильтра твердых частиц превысили максимальный предел системы защиты двигателя по температуре. Показания датчика температуры №3 на входе фильтра твердых частиц — критические.

1974 ISB, ISC, ISL, ISLe, ISDe, QSB Фильтр системы вентиляции картера требует обслуживания. Модуль ЕСМ определил, что давление картерных газов превышает калиброванный уровень.

1981 ISB, ISC, ISL, ISLe, ISDe, QSB Перепад давления на фильтре твердых частиц превысил максимальный рабочий предел, или фильтр твердых частиц засорен. Модуль ECM определяет, что фильтр твердых частиц системы очистки отработавших газов засорен, или что перепад давления на фильтре твердых частиц превышает максимальный предел.

1993 ISB, ISC, ISL, ISLe, ISDe, QSB Фильтр твердых частиц системы очистки отработавших газов отсутствует. Отсутствие фильтра твердых частиц системы очистки отработавших газов.

2182 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В сигнальной цепи электромагнитного клапана моторного тормоза обнаружены обрыв цепи или высокое напряжение. В цепи моторного тормоза обнаружен сигнал с широтно-импульсной модуляцией с уровнем больше требуемого, когда этот сигнал выключен модулем ECM.

1697 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Клапан подачи воздуха — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что в цепи воздушного электромагнитного клапана блока дозирования жидкости для очистки отработавших газов обнаружено высокое напряжение сигнала.

1698 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Клапан подачи воздуха — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM определяет, что в цепи воздушного электромагнитного клапана блока дозирования жидкости для очистки отработавших газов обнаружено низкое напряжение сигнала.

1711 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Блок дозирования жидкости для системы очистки отработавших газов — темп обновления данных не соответствует норме. Обмен данными по каналу связи между модулем ECM и блоком дозирования жидкости для системы очистки отработавших газов прерван.

1898 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Контроллер привода изменения геометрии турбонагнетателя — неправильная калибровка. Модуль ECM пределил, что не выполнена процедура автоматической калибровки турбонагнетателя с изменяемой геометрией при первом повороте пускового включателя в положение ВКЛ.

2271 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика положения клапана системы рециркуляции отработавших газов — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что напряжение датчика положения клапана системы рециркуляции отработавших газов превышает значение, заданное в калибровке.

2352 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь управления клапаном системы рециркуляции отработавших газов — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что в цепи электродвигателя клапана системы рециркуляции отработавших газов обнаружено высокое напряжение.

2398 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Температура окружающего воздуха — хаотичный характер или неправильность данных. Модуль ECM пределил хаотичный характер сигнала датчика температуры окружающего воздуха.

2442 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Реле электромагнитного к л а п а н а форсунки цилиндра 1 — Неправильная калибровка. Введена неправильная информация с штрихкодов форсунок. Модуль ECM определяет, что значение штрихкода ф о р с у н к и цилиндра 1 было введено в модуль ECM неправильно.

2443 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Реле электромагнитного к л а п а н а форсунки цилиндра 2 — неправильная калибровка. Введена неправильная информация с штрихкодов форсунок. Модуль ECM определяет, что значение штрихкода ф о р с у н к и цилиндра 2 было введено в модуль ECM неправильно.

2444 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Реле электромагнитного к л а п а н а форсунки цилиндра 3 — Неправильная калибровка. Введена неправильная информация с штрихкодов форсунок. Модуль ECM определяет, что значение штрихкода ф о р с у н к и цилиндра 3 было введено в модуль ECM неправильно.

2445 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Реле электромагнитного к л а п а н а форсунки цилиндра 4 — Неправильная калибровка. Введена неправильная информация с штрихкодов форсунок. Модуль ECM определяет, что значение штрихкода ф о р с у н к и цилиндра 4 было введено в модуль ECM неправильно.

2976 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Температура блока дозирования жидкости для систем выпуска дизельных двигателей — Хаотичный характер или неправильность данных. В блоке дозирования жидкости для систем выпуска дизельных двигателей обнаружена внутренняя ошибка. Модуль ECM определяет, что сигнал датчика внутренней температуры блока дозирования жидкости для систем выпуска дизельных двигателей не согласуется с сигналами других датчиков температуры, установленных на двигателе, для двух последовательных циклов зажигания в ходе диагностики.

3145 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Датчик температуры на входе каталитического нейтрализатора — Темп изменения не соответствует норме. Датчик температуры на входе каталитического нейтрализатора не реагирует на изменение условий работы двигателя. Модуль ECM определяет, что температура на входе каталитического нейтрализатора не меняется при изменении условий работы двигателя.

3146 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика температуры на выпуске каталитического нейтрализатора SCR — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM обнаруживает, что напряжение сигнала датчика температуры на выходе каталитического нейтрализатора превышает значение, заданное в калибровке, когда пусковой включатель находится в положении ВКЛ.

3147 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика температуры на выходе каталитического нейтрализатора — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM обнаруживает, что напряжение сигнала датчика температуры на выходе каталитического нейтрализатора меньше значения, заданного в калибровке, когда пусковой включатель находится в положении ВКЛ.

3149 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Датчик температуры на выходе каталитического нейтрализатора не реагирует на изменение условий работы двигателя. Модуль ECM определяет, что температура на выходе каталитического нейтрализатора не меняется при изменении условий работы двигателя.

3151 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Отсутствие каталитического нейтрализатора в системе очистки отработавших газов – состояние сохраняется. Модуль ECM определяет, что в выпускной системе отсутствует селективный каталитический нейтрализатор.

3163 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Неправильное подключение датчика температуры на входе каталитического нейтрализатора — Неправильная калибровка. Перепутаны местами разъемы датчиков температуры на входе и на выходе каталитического нейтрализатора. Модуль ECM определяет, что сигналы датчиков температуры на входе и на выходе каталитического нейтрализатора перепутаны местами.
3237 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX В цепи нагревателя магистрали жидкости для систем выпуска дизельных двигателей обнаружено высокое напряжение сигнала. Контроллер впрыска жидкости в системе очистки отработавших газов дизельных двигателей определяет, что напряжение на нагревателе магистрали превышает значение, заданное в калибровке.

3238 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX В цепи реле нагревателя магистрали жидкости для системы очистки отработавших газов обнаружено низкое напряжение сигнала. Модуль ECM определяет, что напряжение на нагревателе магистрали превышает значение, заданное в калибровке.

3239 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX В цепи нагревателя 2 магистрали жидкости для систем выпуска дизельных двигателей обнаружено высокое напряжение сигнала. Модуль ECM определяет, что напряжение на нагревателе магистрали ниже значения, заданного в калибровке.

3258 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь нагревателя магистрали жидкости для системы очистки отработавших газов — ток ниже нормы или обрыв цепи. Контроллер впрыска жидкости для системы очистки отработавших газов обнаруживает обрыв или короткое замыкание на «массу» в цепи нагревателя магистрали.

3261 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь нагревателя 2 магистрали жидкости для систем выпуска дизельных двигателей — ток ниже нормы или обрыв цепи. Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает обрыв или короткое замыкание на «массу» в цепи нагревателя магистрали.

3382 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Система рециркуляции отработавших газов — данные точные, но ниже нормы — средний уровень серьезности. Модуль ECM определяет, что фактический расход в системе рециркуляции отработавших газов ниже заданного, исходя из текущих условий работы двигателя.

3383 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Система рециркуляции отработавших газов — данные точные, но выше нормы — средний уровень серьезности. Модуль ECM определяет, что фактический расход в системе рециркуляции отработавших газов выше заданного, исходя из текущих условий работы двигателя.

3422 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь нагревателя 3 жидкости в системе очистки отработавших газов дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Контроллер жидкости в системе очистки отработавших газов дизельных двигателей определяет, что напряжение на нагревателе магистрали превышает значение, заданное в калибровке.

3425 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь нагревателя 3 жидкости в системе очистки отработавших газов дизельных двигателей — ток ниже нормы или обрыв цепи. Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает обрыв или короткое замыкание на «массу» в цепи нагревателя магистрали.

3426 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь нагревателя 4 жидкости в системе очистки отработавших газов дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Контроллер впрыска жидкости в системе очистки отработавших газов дизельных двигателей определяет, что напряжение на нагревателе превышает значение, заданное в калибровке.

3429 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь нагревателя 4 жидкости в системе очистки отработавших газов дизельных двигателей — ток ниже нормы или обрыв цепи. Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает обрыв в цепи нагревателя.

3539 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика положения привода дроссельной заслонки на впуске — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что напряжение датчика положения привода дроссельной заслонки превышает значение, заданное в калибровке.

3541 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь датчика положения привода дроссельной заслонки на впуске — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM определяет, что напряжение датчика положения привода дроссельной заслонки на впуске меньше значения, заданного в калибровке.

3542 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Датчик положения привода дроссельной заслонки на впуске выдает хаотичный сигнал, либо положение привода дроссельной заслонки на впуске не меняется при изменении условий работы двигателя. Модуль ECM определяет, что датчик положения привода дроссельной заслонки на впуске выдает хаотичный сигнал, либо положение привода дроссельной заслонки на впуске не меняется при изменении условий работы двигателя.

3548 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Вытекание из блока дозирования жидкости для системы очистки отработавших газов — есть неисправность Модуль ECM определяет, что блок дозирования не обеспечивает заполнение системы.

3557 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Контроллер впрыска жидкости в системе очистки отработавших газов дизельных двигателей — хаотичный характер или неправильность данных. Контроллер впрыска жидкости в системе очистки отработавших газов дизельных двигателей обнаружил слишком высокое или слишком низкое напряжение в одной из цепей блока дозирования.

3561 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Блок дозирования жидкости для систем выпуска дизельных двигателей — ток ниже нормы или обрыв цепи. Модуль ECM обнаружил обрыв в цепи блока дозирования жидкости для систем выпуска дизельных двигателей.

3562 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает, что напряжение в цепи реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей превышает значение, заданное в калибровке.

3563 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает, что напряжение в цепи реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей меньше значения, заданного в калибровке.

3564 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Цепь реле нагревателя жидкости в системе очистки отработавших газов дизельных двигателей — Ток ниже нормы или обрыв цепи. Обнаружен обрыв цепи реле нагревателя жидкости в системе очистки отработавших газов дизельных двигателей. Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает обрыв в цепи реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей.

3565 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Дозирующий клапан жидкости для системы очистки отработавших газов — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Контроллер впрыска жидкости для системы очистки отработавших газов обнаруживает, что напряжение на дозирующем клапане жидкости для системы очистки отработавших газов превышает значение, заданное в калибровке.

3566 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Дозирующий клапан жидкости для системы очистки отработавших газов — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Контроллер впрыска жидкости для системы очистки отработавших газов обнаруживает, что напряжение на дозирующем клапане жидкости для системы очистки отработавших газов меньше значения, заданного в калибровке.

3569 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Входные магистрали блока дозирования жидкости для систем выпуска дизельных двигателей — реакция механической системы не соответствует норме или нарушена регулировка. Контроллер впрыска жидкости в системе очистки отработавших газов дизельных двигателей обнаружил механическую неисправность входных трубопроводов блока дозирования, и жидкость для систем выпуска дизельных двигателей не подается на дозирующий клапан.

3579 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Клапан слива жидкости для систем выпуска дизельных двигателей — ток ниже нормы или обрыв цепи. Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает обрыв в цепи клапана слива жидкости для систем выпуска дизельных двигателей.

3596 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Датчик давления жидкости в выпускной системе дизельных двигателей зафиксировал слишком низкое или слишком высокое для рабочих условий значение. Блок дозирования жидкости для систем выпуска дизельных двигателей не может поддерживать заданное давление жидкости для систем выпуска дизельных двигателей.

3597 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Контроллер впрыска жидкости для системы очистки отработавших газов — Темп обновления данных не соответствует норме. Модуль ECM определяет, что обмен данными по каналу связи между модулем ECM и контроллером впрыска жидкости для системы очистки отработавших газов прерван.

3598 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Контроллер впрыска жидкости для систем выпуска дизельных двигателей — по сети получены неправильные данные. Модуль ECM определяет, что данные, переданные модулем ECM в контроллер впрыска жидкости для систем выпуска дизельных двигателей, не читаются или отсутствуют.

3612 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Блок дозирования жидкости для систем выпуска дизельных двигателей — реакция механической системы не соответствует норме или нарушена регулировка. Система очистки отработавших газов с селективным каталитическим нейтрализатором обнаруживает незавершенный цикл при отключении питания. Контроллер впрыска жидкости для систем выпуска дизельных двигателей обнаруживает незавершенный цикл продувки при выключении питания.

3648 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Температура контроллера впрыска жидкости для очистки отработавших газов — данные точные, но выше нормы — средний уровень серьезности. Модуль ECM определил, что внутренняя температура контроллера впрыска жидкости для очистки отработавших газов превышает предел выдачи предупреждения.

3651 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Температура жидкости в баке системы очистки отработавших газов дизельных двигателей — данные точные, но ниже нормы — средний уровень серьезности. Модуль ECM определяет, что температура жидкости в баке выпускной системы дизельных двигателей не может достичь установленного уровня.

3679 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Блок дозирования жидкости для очистки отработавших газов — исходная причина неизвестна. Не удалось инициализировать блок дозирования жидкости для очистки отработавших газов. Блок дозирования и контроллер впрыска жидкости для систем выпуска дизельных двигателей не могут провести начальный обмен данными между собой при первом повороте пускового включателя в положение ВКЛ. и не могут выполнить инициализацию.

3713 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Реле нагревателя магистрали жидкости для систем выпуска дизельных двигателей — реакция механической системы не соответствует норме или нарушена регулировка. Модуль ECM определяет, что в цепи питания нагревателя магистрали жидкости для систем выпуска дизельных двигателей было обнаружено короткое замыкание на цепь питания от аккумуляторной батареи.

3726 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Датчик содержания окислов азота на входе системы очистки отработавших газов — данные точные, но выше нормы — средний уровень серьезности. Модуль ECM обнаруживает, что блок дозирования жидкости для системы очистки отработавших газов не обеспечивает заданную дозированную подачу жидкости.

3735 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Переключатель вспомогательного регулятора — Темп обновления данных не соответствует норме. Модуль ECM не получает достоверного сообщения по мультиплексной сети J1939 от подключенного к ней устройства более 1 секунды. Модуль ECM определил наличие обрыва цепи или короткого замыкания в жгуте проводов сети J1939.

3736 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Возникло неожиданное состояние обмена данными в канале связи между модулем ECM и контроллером жидкости в системе очистки отработавших газов дизельных двигателей. Модуль ECM отправил на контроллер впрыска жидкости для систем выпуска дизельных двигателей неожиданное сообщение, которое не удалось распознать.

3749 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Сигнал датчика содержания окислов азота на выходе системы очистки отработавших газов остается постоянным при изменении условий работы двигателя. Модуль ECM определил, что показания датчика содержания окислов азота не меняются при изменении условий работы двигателя.

3866 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Качество жидкости для очистки отработавших газов — данные точные, но ниже нормы — самый высокий уровень серьезности. Модуль ECM определил, что качество жидкости для очистки отработавших газов ниже критического порогового значения.

3867 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Качество жидкости для очистки отработавших газов — данные точные, но ниже нормы — средний уровень серьезности. Модуль ECM определил, что качество жидкости для очистки отработавших газов ниже критического порогового значения.

3868 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Качество жидкости для очистки отработавших газов — темп обновления данных не соответствует норме. Модуль ECM определил, что качество жидкости для очистки отработавших газов — реакция механической системы не соответствует норме или нарушена регулировка.

3876 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Датчик качества жидкости для очистки отработавших газов не распознает наличие жидкости. Модуль ECM определил, что качество жидкости для очистки отработавших газов — реакция механической системы не соответствует норме или нарушена регулировка.

3877 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Датчик качества жидкости для очистки отработавших газов обнаруживает внутреннюю ошибку. Модуль ECM определил, что датчик качества жидкости для очистки отработавших газов — неисправен.

3878 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Датчик качества жидкости для очистки отработавших газов обнаруживает перегрев. Модуль ECM определил, что датчик качества жидкости для отчистки газов перегрелся.

3879 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, ISM, QSM, ISX, QSX Качество жидкости для очистки отработавших газов — данные точные, но выше нормы. Датчик качества жидкости для очистки отработавших газов обнаруживает, что концентрация жидкости возросла выше критического порогового значения.

111 Внутренний отказ модуля ЕСМ. Данный код неисправности может возникнуть только в случае проблемы внутри модуля ЕСМ. Модуль ЕСМ ремонту не подлежит. 115 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISDe, QSB 3.3 Потеря сигналов основного и резервного датчиков частоты вращения/положения коленчатого вала. Модуль ECM обнаруживает, что сигнальные входы датчиков положения коленчатого вала и положения распределительного вала подключены в обратном порядке.

122 Цепь датчика давления во впускном коллекторе — напряжение выше нормы или короткое замыкание. Модуль ECM определяет, что напряжение сигнала датчика давления во впускном коллекторе превышает значение, заданное в калибровке, в течение более 1 секунды.

123 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь датчика давления во впускном коллекторе — напряжение ниже нормы или короткое замыкание. Модуль ECM определяет, что напряжение сигнала датчика давления во впускном коллекторе меньше значения, заданного в калибровке, в течение более 1 секунды.

115 QSX Не обнаружен сигнал оборотов двигателя от датчика положения распределительного вала. Возможные причины появления этого кода неисправности — повреждение датчика положения распределительного вала, обрыв или короткое замыкание в цепи или неисправность в цепи питания.

112 QSX Не обнаружен сигнал оборотов двигателя от датчика положения коленчатого вала. Возможные причины появления этого кода неисправности — повреждение датчика положения коленчатого вала, обрыв или короткое замыкание в цепи или неисправность в цепи питания.

141 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика давления масла обнаружены низкое напряжение сигнала или обрыв цепи. Модуль ECM определяет, что напряжение сигнала датчика давления масла менее 0,25 В постоянного тока в течение более 16 секунд.

131 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика положения педали или рычага акселератора обнаружено высокое напряжение. Модуль ECM определяет, что напряжение сигнала датчика положения педали акселератора превышает значение, заданное в калибровке, в течение более 1 секунды.

144 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика температуры охлаждающей жидкости обнаружены высокое напряжение сигнала или обрыв цепи. Модуль ECM определяет, что напряжение сигнала датчика температуры охлаждающей жидкости превышает 5,13 В постоянного тока в течение более 1 секунды.

153 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика температуры во впускном коллекторе обнаружено высокое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика температуры во впускном коллекторе превышает значение, заданное в калибровке, в течение более 1 секунды.

154 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика температуры во впускном коллекторе обнаружено низкое напряжение сигнала. Модуль ECM обнаруживает, что напряжение сигнала температуры во впускном коллекторе вне допустимого диапазона (ниже нормы).

155 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Сигнал датчика температуры во впускном коллекторе указывает, что она выше критического предела системы защиты двигателя. Модуль ECM определяет, что температура воздуха во впускном коллекторе превышает 132°C в течение 5 секунд.

132 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика положения педали или рычага акселератора обнаружено низкое напряжение. Модуль ECM обнаруживает, что напряжение сигнала педали акселератора вне допустимого диапазона (ниже нормы).

133 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В сигнальной цепи датчика положения педали или рычага акселератора дистанционного управления обнаружено высокое напряжение. Модуль ECM обнаруживает, что напряжение сигнала педали акселератора дистанционного управления вне допустимого диапазона (выше нормы).

134 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика положения педали или рычага акселератора дистанционного управления обнаружено низкое напряжение. Модуль ECM обнаруживает, что напряжение сигнала педали акселератора дистанционного управления вне допустимого диапазона (ниже нормы).

145 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика температуры охлаждающей жидкости обнаружено низкое напряжение сигнала. Модуль ECM обнаруживает, что напряжение сигнала температуры охлаждающей жидкости двигателя вне допустимого диапазона (ниже нормы).

146 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Температура охлаждающей жидкости выше предела выдачи сигнала предупреждения системой защиты двигателя. Модуль ECM определяет, что температура охлаждающей жидкости превышает предел, заданный в калибровке.

151 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 С и г н а л датчика температуры охлаждающей жидкости указывает, что она выше критического предела системы защиты двигателя. Модуль ECM определяет, что температура охлаждающей жидкости превышает предел защиты двигателя.

195 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика уровня охлаждающей жидкости обнаружено высокое напряжение сигнала. Модуль ECM обнаруживает, что напряжение сигнала уровня охлаждающей жидкости вне допустимого диапазона (выше нормы).

196 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика уровня охлаждающей жидкости обнаружено низкое напряжение сигнала. Модуль ECM обнаруживает, что напряжение сигнала уровня охлаждающей жидкости вне допустимого диапазона (ниже нормы).

197 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Обнаружен низкий уровень охлаждающей жидкости. Модуль ECM определяет, что уровень охлаждающей жидкости ниже нормы.

221 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика атмосферного давления обнаружено высокое напряжение сигнала. Модуль ECM обнаруживает, что напряжение сигнала атмосферного давления вне допустимого диапазона (выше нормы).
222 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика атмосферного давления обнаружено низкое напряжение сигнала. Модуль ECM обнаруживает, что напряжение сигнала атмосферного давления вне допустимого диапазона (ниже нормы).

234 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Сигнал частоты вращения двигателя указывает на то, что этот параметр превышает предел Модуль ECM обнаруживает, что частота вращения двигателя превышает включения системы защиты двигателя. предел, заданный в калибровке.

238 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи питания датчика частоты вращения двигателя +5 В обнаружено низкое напряжение. Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (ниже нормы).

239 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи питания датчика частоты вращения двигателя 5 В обнаружено высокое напряжение. Модуль ECM обнаруживает, что напряжение питания датчиков вне допустимого диапазона (выше нормы).

241 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В модуль ECM не поступает сигнал скорости транспортного средства, или этот сигнал меняется хаотически. Модуль ECM определяет потерю сигнала скорости транспортного средства, когда другие условия работы двигателя указывают на то, что транспортное средство находится в движении.

245 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь управления вентилятором — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. В цепи управления вентилятором при подаче команды на включение обнаружено низкое напряжение сигнала. Модуль ECM обнаруживает, что уровень ШИМ-сигнала управления вентилятором не равен напряжению питания системы, когда для этого сигнала задано включение.

249 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика температуры окружающего воздуха обнаружено высокое напряжение сигнала. Модуль ECM обнаруживает, что напряжение сигнала температуры окружающего воздуха вне допустимого диапазона (выше нормы).

256 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика температуры окружающего воздуха обнаружено низкое напряжение. Модуль ECM обнаруживает, что напряжение сигнала температуры окружающего воздуха вне допустимого диапазона (ниже нормы).

269 ISF (ISF 2.8, ISF 3.8) Индикатор прохождения проверки пароля Этот код неисправности становится активным, противоугонной системы — хаотичный характер или неправильность данных. Попытка запуска двигателя без разрешения противоугонной системы. если противоугонная система не была отключена.

271 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи исполнительного клапана топливной системы обнаружено низкое напряжение сигнала. В цепи исполнительного клапана топливной системы не обнаружен сигнал с широтно- импульсной модуляцией с уровнем, равным напряжению питания системы, когда этот сигнал включен.

272 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи исполнительного клапана топливной системы обнаружены высокое напряжение сигнала или обрыв цепи. Модуль ECM определяет наличие короткого замыкания на цепь питания, короткое замыкание между контактами или обрыв в цепи исполнительного клапана топливного насоса.

285 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Модуль ECM не получает сообщения от устройства, подключенного к мультиплексной сети, своевременно или не получает его вообще. Модуль ECM не получает сообщения по мультиплексной сети от подключенного к ней устройства. Модуль ECM определяет наличие обрыва цепи или короткого замыкания в жгуте проводов канала связи J1939.

286 Модуль ECM получил только часть ожидаемой им информации от сетевого устройства. Модуль ECM получает недопустимое сообщение канала связи J1939 от мультиплексного устройства более 1 секунды.

287 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Электронный модуль управления транспортным средством (VECU), входящий в комплектное оборудование, обнаружил неисправность акселератора.

288 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Электронный модуль управления транспортным средством (VECU) обнаружил неисправность акселератора дистанционного управления. Модуль ECM по каналу связи J1939 получил сообщение от блока VECU (комплектное оборудование), указывающее на то, что цепь сигнала акселератора дистанционного управления или выключатель дистанционного управления имеет короткое замыкание на цепь высокого или низкого напряжения.

291 ISF (ISF 2.8, ISF 3.8) Сбой в работе защищенного канала связи (канал связи с комплектным оборудованием/транспортным средством) — темп обновления данных не соответствует норме. Противоугонная система не будет работать нормально. Двигатель может не запускаться. Модуль ECM не может обмениваться данными с противоугонной системой по каналу связи J1939

319 ISF (ISF 2.8, ISF 3.8) Прерывание питания часов реального времени — хаотичный характер или неправильность данных. Пропадание питания часов реального времени. Модуль ECM определяет, что данные часов реального времени потеряны вследствие отключения питания.

322 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В форсунке 1 обнаруживается ток при выключенном напряжении. Модуль ECM обнаружил внутреннюю сбой в цепи ф о р с у н к и (форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

324 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В форсунке 3 обнаруживается ток при выключенном напряжении. Модуль ECM обнаружил внутреннюю сбой в цепи ф о р с у н к и (форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

331 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В форсунке 2 обнаруживается ток при выключенном напряжении. Модуль ECM обнаружил внутреннюю сбой в цепи ф о р с у н к и (форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

332 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В форсунке 4 обнаруживается ток при выключенном напряжении. Модуль ECM обнаружил внутреннюю сбой в цепи ф о р с у н к и (форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

124 QSB 3.3 Давление во впускном коллекторе превысило максимально допустимую величину для данной номинальной мощности двигателя. Этот код неисправности становится активным, когда давление во впускном коллекторе превышает максимально допустимую величину для данной номинальной мощности двигателя.

135 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика давления масла обнаружено высокое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика давления масла превышает 4,75 В постоянного тока в течение более 16 секунд.

143 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Сигнал датчика давления масла указывает, что оно ниже предела выдачи сигнала предупреждения системой защиты двигателя. Модуль ECM определяет, что напряжение сигнала датчика давления масла меньше предела, установленного системой защиты двигателя.

242 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика уровня охлаждающей жидкости обнаружено высокое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика уровня охлаждающей жидкости превышает 5,124 В постоянного тока в течение более 20 секунд.

281 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Модуль подачи топливного насоса — реакция механической Этот код неисправности переходит в активное состояние, когда в системы не соответствует норме, или нарушена регулировка топливном насосе обнаруживается рассогласование давления нагнетания между двумя плунжерами высокого давления.

292 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Вход вспомогательного датчика температуры — специальные инструкции. Проверьте правильность калибровки электронного модуля управления (ECM).

293 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи вспомогательного датчика температуры комплектного оборудования обнаружены высокое напряжение сигнала или обрыв цепи. Проверьте правильность калибровки электронного модуля управления (ECM).

294 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи вспомогательного датчика температуры комплектного оборудования обнаружено низкое напряжение сигнала. Проверьте правильность калибровки электронного модуля управления (ECM).

295 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Атмосферное давление — хаотичный характер или неправильность данных. Хаотичный характер сигнала датчика давления окружающего воздуха при первом повороте пускового включателя в положение ВКЛ.

296 QSB 3.3 Входной сигнал вспомогательного датчика давления — специальные инструкции Проверьте правильность калибровки электронного модуля управления (ECM).

297 QSB 3.3 В цепи датчика давления комплектного оборудования обнаружено высокое напряжение сигнала. Проверьте правильность калибровки электронного модуля управления (ECM).

298 QSC 3.3 В цепи вспомогательного датчика давления комплектного оборудования обнаружены низкое напряжение сигнала или обрыв цепи. Проверьте правильность калибровки электронного модуля управления (ECM).

323 ISB, ISC, ISL, ISLe, ISDe В форсунке 5 обнаруживается ток при Модуль ECM обнаружил внутреннюю сбой в цепи выключенном напряжении. ф о р с у н к и (форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

325 ISB, ISC, ISL, ISLe, ISDe В форсунке 6 обнаруживается ток при выключенном напряжении. Модуль ECM обнаружил внутреннюю сбой в цепи ф о р с у н к и (форсунок). Если окажется, что ток выше нормы, модуль ECM прекратит впрыск через неисправную форсунку (форсунки).

334 QSB 3.3 Сигнал температуры охлаждающей жидкости не изменяется в зависимости от условий работы двигателя. Модуль ECM обнаруживает, что напряжение сигнала температуры охлаждающей жидкости двигателя вне допустимого диапазона.

343 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Предупреждение о внутреннем отказе модуля ECM — Неисправность логического устройства. Обнаружены неисправности источника питания модуля ECM. Этот код неисправности регистрируется, когда внутренняя процедура диагностики модуля ECM определяет внутреннюю ошибку записи или чтения в модуле.

351 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь питания форсунок — Неисправность логического устройства. Измеренное модулем ECM напряжение в к л ю ч е н и я форсунки низкое. Модуль ECM определяет, что напряжение в цепи питания форсунок меньше заданного значения.

352 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь питания форсунок — Неисправность логического устройства. Измеренное модулем ECM напряжение в к л ю ч е н и я форсунки низкое. Модуль ECM определяет, что напряжение в цепи питания форсунок меньше заданного значения.

386 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи питания датчиков 1 обнаружено высокое напряжение. Модуль ECM определяет, что напряжение в цепи питания датчиков выше нормы

415 ISF (ISF 2.8, ISF 3.8), ISB, Сигнал давления масла Модуль ECM определяет, ISC, ISL, ISLe, ISDe, QSB 3.3 указывает, что оно ниже критического предела системы защиты двигателя что напряжение сигнала датчика давления масла меньше минимального рабочего предела.

418 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Сигнал наличия воды в топливе — данные точные, но выше нормы — самый низкий уровень серьезности. Обнаружено наличие воды в топливном фильтре. Модуль ECM определяет, что уровень воды в топливном фильтре выше уровня датчика.

427 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Потеря связи между модулем ECM и другим устройством по каналу SAE J1939. Модуль ЕСМ определяет наличие обрыва цепи или короткого замыкания в жгуте проводов канала связи J1939.

428 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь датчика наличия воды в топливе — Напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что напряжение в сигнальной цепи датчика превышает 4,95 В постоянного тока в течение 1 секунды.

429 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь датчика наличия воды в топливе — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM определяет, что напряжение в сигнальной цепи датчика менее 0,05 В постоянного тока в течение 1 секунды.

431 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь датчика проверки холостого хода — хаотичный характер или неправильность данных. Модуль ECM обнаруживает одновременное появление напряжения сигнала на контактах наличия и отсутствия холостого хода датчика проверки холостого хода. Напряжение должно появляться только в одной из цепей.

432 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь проверки положения холостого хода педали или рычага акселератора — нарушение калибровки. Модуль ECM определяет, что показания датчика положения педали акселератора и сигнал датчика проверки холостого хода не соответствуют друг другу.

435 ISF (ISF 2.8, ISF 3.8), ISB, Давление в главной Модуль ECM определил, ISC, ISL, ISLe, ISDe, QSB 3.3 магистрали системы смазки — хаотичный характер или неправильность данных что величина давления масла выше или ниже показаний других датчиков абсолютного давления

441 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Напряжение аккумуляторной батареи — данные точные, но ниже нормы. Напряжение питания модуля ECM ниже минимального уровня. Модуль ECM определяет, что напряжение основной аккумуляторной батареи меньше 6 В постоянного тока.

442 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Напряжение аккумуляторной батареи — данные точные, но выше нормы. Напряжение питания модуля ECM выше максимального уровня. Модуль ECM определяет, что напряжение основной аккумуляторной батареи превышает 36 В постоянного тока.

449 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь датчика давления в общем топливопроводе высокого давления — данные точные, но превышают норму. Модуль ECM обнаружил, что давление в общем топливопроводе высокого давления выше давления топливного редукционного клапана.

451 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика давления в общем топливопроводе высокого давления обнаружено высокое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика давления подачи топлива менее 0,20 В постоянного тока в течение более 1 секунды.

452 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика давления в общем топливопроводе высокого давления обнаружено низкое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика давления подачи топлива превышает 4,80 В постоянного тока в течение более 1 секунды.

471 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Уровень масла в двигателе ниже нормы Датчиком уровня масла обнаружен низкий уровень масла.

488 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Сигнал датчика температуры во впускном коллекторе указывает, что она выше предела предупреждения системы защиты двигателя. Модуль ECM определяет, что напряжение сигнала датчика температуры во впускном коллекторе превышает калиброванный предел, установленный в модуле ECM

499 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь датчика уровня масла — напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Модуль ECM обнаружил, что в датчике уровня масла обнаружен внутренний отказ.

528 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Дополнительный переключатель выбора кривой крутящего момента — хаотичный характер или неправильность данных. Модуль ECM определяет, что обнаружен обрыв в цепи переключателя выбора кривой крутящего момента.

529 QSB 3.3 Вспомогательный вход/выход — напряжение выше нормы или короткое замыкание на цепь высокого напряжения. Модуль ECM определяет, что в цепи вспомогательного входа/выхода обнаружено высокое напряжение сигнала.

553 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь датчика давления в общем топливопроводе высокого давления — данные точные, но превышают норму. Модуль ЕСМ обнаружил, что давление топлива выше заданного.

554 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь датчика давления в общем топливопроводе высокого давления — хаотичный характер или неправильность данных. Модуль ECM обнаружил отсутствие изменений сигнала датчика давления топлива.

555 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Давление картерных газов — данные точные, но выше нормы — средний уровень серьезности Модуль ECM определил, что давление картерных газов выше заданного уровня.

556 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Давление картерных газов — данные точные, но выше нормы — самый высокий уровень серьезности. Модуль ECM определил, что давление картерных газов выше заданного уровня.

559 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь датчика давления в общем топливопроводе высокого давления — данные точные, но ниже нормы — средний уровень серьезности. Модуль ECM обнаружил, что давление топлива ниже заданного.

584 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Управляющая цепь реле стартера — Напряжение выше нормы или короткое замыкание на цепь Обнаружены обрыв цепи или высокое напряжение в цепи блокировки стартера высокого напряжения.

585 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Управляющая цепь реле стартера — Напряжение ниже нормы или короткое замыкание на цепь низкого напряжения. Обнаружено низкое напряжение в цепи блокировки стартера.

596 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Функция контроля напряжения аккумуляторной батареи обнаружила, что оно высокое. Модуль ECM определяет, что напряжение аккумуляторной батареи превышает заданное в калибровке.

597 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Функция контроля напряжения аккумуляторной батареи обнаружила, что оно низкое. Модуль ECM определяет, что напряжение аккумуляторной батареи меньше заданного в калибровке.

598 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Функция контроля напряжения аккумуляторной батареи обнаружила, что оно очень низкое. Модуль ECM определяет, что напряжение аккумуляторной батареи меньше заданного в калибровке.

599 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Величина сигналов сдвоенных выходов превысила предел включения системы защиты двигателя. Модуль ECM определил, что величина сигналов сдвоенных выходов превысила предел включения системы защиты двигателя.

649 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Замените моторное масло и фильтр. Модуль ECM определил, что в соответствии с программируемым параметром функции контроля операций обслуживания требуется замена моторного масла и фильтра.

686 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Частота вращения турбонагнетателя — хаотичный характер или неправильность данных. Модуль ECM обнаружил недопустимый сигнал частоты вращения турбонагнетателя.

687 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Частота вращения турбонагнетателя — данные точные, но ниже нормы — средний уровень серьезности. Модуль ECM обнаружил низкую частоту вращения турбонагнетателя.

688 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Уровень масла в двигателе — данные Датчиком уровня масла обнаружен высокий точные, но выше нормы. уровень масла.

689 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Частота вращения/положение коленчатого вала двигателя — хаотичный характер или неправильность данных. Модуль ECM обнаружил ошибку сигнала датчика положения коленчатого вала.

691 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика температуры на входе компрессора турбонагнетателя обнаружено высокое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика температуры на входе компрессора турбонагнетателя превышает 4,8 В постоянного тока в течение более 1 секунды.

692 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика температуры на входе компрессора турбонагнетателя обнаружено низкое напряжение сигнала. Модуль ECM определяет, что напряжение сигнала датчика температуры на входе компрессора турбонагнетателя меньше 0,2 В постоянного тока в течение более 1 секунды.

698 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 В цепи датчика температуры модуля ECM обнаружены низкое напряжение сигнала или обрыв цепи. Модуль ECM определил наличие короткого замыкания цепи внутреннего датчика температуры на «массу».

699 ISF (ISF 2.8, ISF 3.8) Зафиксирована ошибочная или недопустимая температура внутри модуля ECM. Модуль ECM обнаруживает, что сигнал датчика внутренней температуры модуля ECM имеет недопустимое значение.

731 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Сигналы от датчика частоты вращения двигателя и датчика положения распределительного вала не согласованы. Модуль ECM определил, что положение коленчатого вала не соответствует сигналу датчика положения распределительного вала, поступающему на вход модуля ECM.

778 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Модуль ECM обнаружил ошибку сигнала датчика положения распределительного вала. Модуль ECM обнаружил пропадание сигнала датчика частоты вращения/положения распределительного вала в течение более 1секунды.

779 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Цепь входа датчика вспомогательного оборудования — исходная причина неизвестна Величина сигнала от вспомогательного устройства комплектного оборудования превысила предел включения системы защиты двигателя.

784 ISB, ISC, ISL, ISLe, ISDe, QSB 3.3 Потеря связи с системой адаптивного круиз- контроля. Модуль ECM не получает достоверного сообщения по мультиплексной сети J1939 от модуля адаптивного круиз- контроля в течение более 1 секунды.

1117 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Пропадание питания при установке пускового включателя в положение ВКЛ. — хаотичный характер или неправильность данных. Напряжение в цепи питания модуля кратковременно падает ниже предела, заданного в калибровке, или отключение питания от модуля ЕСМ происходит неправильно.

1239 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи датчика положения педали или рычага акселератора обнаружено высокое напряжение. Модуль ECM определяет, что напряжение сигнала датчика положения педали акселератора больше значения, заданного в калибровке, в течение более 1 секунды.

1241 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM В цепи датчика положения педали или рычага акселератора 2 Модуль ECM определяет, что напряжение сигнала датчика положения обнаружено низкое напряжение. педали акселератора менее значения, заданного в калибровке, в течение более 1 секунды.

1242 ISF (ISF 2.8, ISF 3.8), ISB, ISC, ISL, ISLe, ISDe, QSB, ISM Датчики положения педали или рычага акселератора — Хаотичный характер или неправильность данных. Модуль ECM определил, что показания датчика положения акселератора 1 отличаются от показаний датчика положения акселератора более чем на 2%.

Caution: This document contains mixed page sizes (8.5 x 11 or 11 x 17), which may may affect printing. printing. Please adjust adjust your printer settings settings according to the size of each page you wish to print.

Service Manual GenSet Model

GNAA, GNAB, GNAC

with PowerCommand® Control PCC1301

Service Manual GenSet Model

GNAA, GNAB, GNAC

with PowerCommand® Control PCC1301

Printed in U.S.A.

967-0510

04-2006

Service Manual GenSet Model

GNAA, GNAB, GNAC

with PowerCommand® Control PCC1301

Printed in U.S.A.

967-0510

04-2006

Table of Contents SECTION

TITLE

PAGE

IMPORTANT SAFETY INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 1

INTRODUCTION

 About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Generator Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . How to Obtain Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3

4

5

1-1 1-1 1-2 1-2 1-2

CONTROL OPERATION (WITHOUT DISPLAY)

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CONTROL OPERATION (WITH DISPLAY) General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control Panel Power On/Off Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting Auto, Manual Run and OFF Modes . . . . . . . . . . . . . . . . . . . . . . . Operator Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Service Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . History/About Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Screen Adjust Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault History Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CIRCUIT BOARD General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2-1 2-1 3-1 3-1 3-2 3-5 3-7 3-10 3-14 3-16 3-18 3-20 4-1 4-3

TROUBLESHOOTING

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 InPower Service Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Network Applications and Customer Inputs . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Safety Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Reading Fault Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 Troubleshooting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

i

SECTION 6

TITLE

PAGE

CONTROL ADJUSTMENT AND SERVICE

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit Board Removal/Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Genset Service Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Genset Service Submenus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Automatic Voltage Regulator Submenus . . . . . . . . . . . . . . . . . . . . . . . . . . Electronic Governor Submenus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Customer I/O Submenus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Metering Submenus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Annunciator Submenus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Genset Setup Submenus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Genset Submenus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Protection Submenus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Protection Submenus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine Protection Submenus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TB1 Base Board Customer Connections . . . . . . . . . . . . . . . . . . . . . . . . . . Engine Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic Speed Pickup Unit (MPU) Installation . . . . . . . . . . . . . . . . . . . . Current Transformer (CT) Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6-1 6-2 6-3 6-4 6-6 6-12 6-14 6-16 6-18 6-20 6-25 6-28 6-34 6-36 6-38 6-44 6-45 6-46 6-47

SERVICING THE GENERATOR

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 Generator/Base Board Isolation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Testing the Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 Generator Disassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 Generator Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 8

ENGINE

Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine Disasembly and Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dimensions of Wearing Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engine Block Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lubricating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crankcase Breather System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ignition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuel System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Governor Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

WIRING DIAGRAMS

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A

8-1 8-2 8-6 8-8 8-29 8-31 8-33 8-34 8-37 8-39 9-1

MENU SEQUENCE DIAGRAMS

General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii

A-1

IMPORTANT SAFETY INSTRUCTIONS SAVE THESE INSTRUCTIONS − This manual contains important instructions that should be followed during installation and maintenance of the generator and batteries.

tend to gather in sumps or low areas. NFPA code requires all persons handling propane to be trained and qualified. • Be sure all fuel supplies have a positive shutoff 

valve.

Before operating the generator set (genset), read the Operator’s Manual and become familiar with it and the equipment. Safe and efficient operation can be achieved only if the equipment is properly operated and maintained. Many accidents are caused by failure to follow fundamental rules and precautions.

• Be sure battery area has been well-ventilated prior

to servicing near it. Lead-acid batteries emit a highly explosive hydrogen gas that can be ignited by arcing, sparking, smoking, etc.

EXHAUST GASES ARE DEADLY 

The following symbols, found throughout this manual, alert you to potentially dangerous conditions to the operator, service personnel, or the equipment.

• Provide an adequate exhaust system to properly

expel discharged gases away from enclosed or sheltered areas and areas where individuals are likely to congregate. Visually and audibly inspect the exhaust daily for leaks per the maintenance schedule. Make sure that exhaust manifolds are secured and not warped. Do not use exhaust gases to heat a compartment.

  This symbol warns of immediate  hazards which will result in severe personal in jury or death.  This symbol refers to a hazard or un safe practice which can result in severe person al injury or death. WARNING

• Be sure the unit is well ventilated. • Engine exhaust and some of its constituents are

 This symbol refers to a hazard or un safe practice which can result in personal injury  or product or property damage. CAUTION

known to the state of California to cause cancer, birth defects, and other reproductive harm.

MOVING PARTS CAN CAUSE SEVERE PERSONAL INJURY OR DEATH

FUEL AND FUMES ARE FLAMMABLE Fire, explosion, and personal injury or death can result from improper practices.

• Keep your hands, clothing, and jewelry away from

• DO NOT fill fuel tanks while engine is running, un-

• Before starting work on the generator set, discon-

less tanks are outside the engine compartment. Fuel contact with hot engine or exhaust is a potential fire hazard.

nect battery charger from its AC source, then disconnect starting batteries, negative (-) cable first. This will prevent accidental starting.

• DO NOT permit any flame, cigarette, pilot light,

• Make sure that fasteners on the generator set are

spark, arcing equipment, or other ignition source near the generator set or fuel tank.

secure. Tighten supports and clamps, keep guards in position over fans, drive belts, etc.

• Fuel lines must be adequately secured and free of 

• Do not wear loose clothing or jewelry in the vicinity of 

leaks. Fuel connection at the engine should be made with an approved flexible line. Do not use copper piping on flexible lines as copper will become brittle if continuously vibrated or repeatedly bent.

moving parts, or while working on electrical equipment. Loose clothing and jewelry can become caught in moving parts. Jewelry can short out electrical contacts and cause shock or burning.

moving parts.

• If adjustment must be made while the unit is run-

• Natural gas is lighter than air, and will tend to gather

ning, use extreme caution around hot manifolds, moving parts, etc.

under hoods. Propane is heavier than air, and will

MS-4

iii

ELECTRICAL SHOCK CAN CAUSE SEVERE PERSONAL INJURY OR DEATH

Used engine oils have been identified by some state or federal agencies as causing cancer or reproductive toxicity. When checking or changing engine oil, take care not to ingest, breathe the fumes, or contact used oil.

Keep multi-class ABC fire extinguishers handy. Class A fires involve ordinary combustible materials such as wood and cloth; Class B fires, combustible and flammable liquid fuels and gaseous fuels; Class C fires, live electrical equipment. (ref. NFPA No. 10).

Make sure that rags are not left on or near the engine.

Make sure generator set is mounted in a manner to prevent combustible materials from accumulating under the unit.

Remove all unnecessary grease and oil from the unit. Accumulated grease and oil can cause overheating and engine damage which present a potential fire hazard.

Keep the generator set and the surrounding area clean and free from obstructions. Remove any debris from the set and keep the floor clean and dry.

Do not work on this equipment when mentally or physically fatigued, or after consuming any alcohol or drug that makes the operation of equipment unsafe.

Substances in exhaust gases have been identified by some state or federal agencies as causing cancer or reproductive toxicity. Take care not to breath or ingest or come into contact with exhaust gases.

Do not store any flammable liquids, such as fuel, cleaners, oil, etc., near the generator set. A fire or explosion could result.

Wear hearing protection when going near an operating generator set.

To prevent serious burns, avoid contact with hot metal parts such as radiator, turbo charger and exhaust system.

• Remove electric power before removing protective

shields or touching electrical equipment. Use rubber insulative mats placed on dry wood platforms over floors that are metal or concrete when around electrical equipment. Do not wear damp clothing (particularly wet shoes) or allow skin surface to be damp when handling electrical equipment. • Use extreme caution when working on electrical

components. High voltages can cause injury or death. DO NOT tamper with interlocks. • Follow all applicable state and local electrical

codes. Have all electrical installations performed by a qualified licensed electrician. Tag and lock open switches to avoid accidental closure. • DO NOT CONNECT GENERATOR SET DIRECT-

LY TO ANY BUILDING ELECTRICAL SYSTEM. Hazardous voltages can flow from the generator set into the utility line. This creates a potential for electrocution or property damage. Connect only through an approved isolation switch or an approved paralleling device.

GENERAL SAFETY PRECAUTIONS •

Coolants under pressure have a higher boiling point than water. DO NOT open a radiator or heat exchanger pressure cap while the engine is running.  Allow the generator set to cool and bleed the system pressure first. Benzene and lead, found in some gasoline, have been identified by some state and federal agencies as causing cancer or reproductive toxicity. When checking, draining or adding gasoline, take care not to ingest, breathe the fumes, or contact gasoline.

KEEP THIS MANUAL NEAR THE GENSET FOR EASY REFERENCE

iv

1. Introduction ABOUT THIS MANUAL This manual provides troubleshooting and repair information regarding the PowerCommand ® 1301 Control (PCC) and generators for the generator sets (gensets) listed on the front cover. Engine service instructions are in the applicable engine service manual. Operating and maintenance instructions are in the applicable Operator’s Manual. This manual does not have instructions for servicing printed circuit board assemblies. After determining that a printed circuit board assembly is faulty, replace it, do not repair it. Attempts to repair a printed circuit board can lead to costly damage to the equipment. This manual contains basic (generic) wiring diagrams and schematics that are included to help in troubleshooting. Service personnel must use the actual wiring diagram and schematic shipped with each unit. The wiring diagrams and schematics that are maintained with the unit should be updated when modifications are made to the unit. Read Important Safety Instructions and carefully observe all instructions and precautions in this manual.

PCC 1301 (WITHOUT DISPLAY)

GENERATOR SET CONTROL There are two versions of the PCC 1301 that can be configured with this genset. For reference only, they are referred to as PCC 1301 (Without Display) and PCC 1301 (With Display) in this manual (Figure 1-1).

PCC 1301 (WITH DISPLAY)

Sections in this manual that are specific to either PCC 1301 control are noted in the section title. All other sections apply to both versions.

FIGURE 1-1. CONTROL PANEL CONFIGURATIONS

1-1

SYSTEM OVERVIEW

The PCC is a microprocessor-based control for Cummins Power Generation generator sets. All generator set control functions are contained on one circuit board (Base board). The Base board provides fuel control, main alternator voltage output regulation and complete generator set control and monitoring. The operating software provides control of the generator set and its performance characteristics, and displays performance information on a digital display panel. It accepts menu-driven control and setup input from the push button switches on the front panel.

• • • • • •

Jumper Leads. Tachometer or Frequency Meter. Wheatstone Bridge or Digital Ohmmeter. Variac. Load Test Panel. Megger or Insulation Resistance Meter. InPower ™ Service Tool (PC based genset service tool).

HOW TO OBTAIN SERVICE  Always give the complete Model, Specification and Serial number of the generator set as shown on the nameplate when seeking additional service information or replacement parts. The nameplate is located on the back of the control box.

TEST EQUIPMENT To perform the test procedures in this manual, the following test equipment must be available • True RMS meter for accurate measurement of  small AC and DC voltages. Fluke models 87 or 8060A are good choices. • Grounding wrist strap to prevent circuit board damage due to electrostatic discharge (ESD). • Battery Hydrometer.

WARNING  Incorrect

service or replacement of   parts can result in severe personal injury or  death, and/or equipment damage. Service per sonnel must be trained and experienced to perform electrical and mechanical service. Read   and follow Important Safety Instructions on  pages iii and iv.

Copyright© 2005 Cummins Power Generation. All rights reserved. Cummins and PowerCommand are registered trademarks of Cummins Inc. InPower is a registered trademarks of Cummins Inc.

1-2

2. Control Operation (Without Display) under load should be avoided to help prolong the reliability of the generator set.

GENERAL The following describes the function and operation of the PowerCommand ® 1301 Control (without display). The switch/indicator and hour meter are located on the face of the control panel as illustrated in Figure 2-1.

The OFF mode is also used to acknowledge shutdown messages after the fault has been corrected. Moving the switch to the OFF position clears the switch fault indication and resets the control.  REMOTE (Auto) Mode: The Remote (Auto) mode is enabled by moving the control rocker switch to the bottom position. The Remote mode enables start/stop control of the genset from a remote location.

CONTROL PANEL Figure 2-1 shows the features of the front panel. It includes one−three position rocker switch to operate the genset and a total hours genset meter.

START Mode: The Start mode is enabled by moving the control rocker switch to the top position. When moved to this position, the control will activate the starting system.

Start/Off/Remote (Auto) Switch This rocker switch is used to select the three operating modes of the genset (Start/Off/Remote). This switch also contains a lamp which is used to indicate engine genset running and genset fault codes.

Switch Indicator Used to indicate the following genset status:

OFF Mode: The OFF mode is enabled by moving the control rocker switch to the middle position. The OFF mode will disable the control Auto or Manual modes.

If moved to the OFF position during generator set operation (manual or remote start), the engine will immediately shut down. If possible, hot shutdown

Genset running − constant on

Genset fault code − flashing (refer to Section 5 to interpret fault code indicator)

Total Hours Meter Displays the total hours of genset operation.

THREE POSITION ROCKER SWITCH

HOUR METER

FIGURE 2-1. FRONT PANEL (WITHOUT DISPLAY)

2-1

THIS PAGE LEFT INTENTIONALLY BLANK 

2-2

3. Control Operation (With Display) When all conditions are met (i.e., no unacknowledged faults and the control is in the Off or Auto mode) the Sleep mode is activated after five minutes of keypad inactivity.

GENERAL The following describes the function and operation of the PowerCommand ®  1301 Control (with display). All indicators, control buttons and graphical display are located on the face of the control panel as illustrated in Figure 3-2.

To activate the control and view the menu display without starting the generator set, press any control button.

CONTROL PANEL POWER ON/OFF MODES

When shipped from the factory, Sleep mode is enabled for both modes (Off and Auto mode). Internal adjustment of the control also allows the Sleep mode to be active only during the Off mode (Base board switch S1) or disabled for both modes (installation of jumper). When disabled, the operating software will always remain active (Power On mode).

The power on/off modes of the control panel and operating software are Power On and Sleep. Power On Mode: In this mode, power is continuously supplied to the control panel. The control’s operating software and control panel LEDs/graphical display will remain active until the Sleep mode is activated.

S1 switch setting: OFF   = Sleep mode is enabled for Auto and Off  modes. ON = Sleep mode is enabled for Off mode only.

Sleep Mode: In the Sleep mode, the control’s operating software is inactive and the LEDs and the graphical display on the control panel are all off. Sleep mode is a feature used to reduce battery power consumption when the control is not being used and is in either the Off or Auto mode.

J1/J2  jumper installation: Install jumper between J1-3 and J1-4 to disable sleep mode. (J1 and J2 are identical, either one can be used for jumper.)

J1-5 J2 J1

S1 SLEEP MODE SELECTION SWITCH

J1-4 BASE BOARD

 ADD JUMPER TO DISABLE SLEEP MODE FOR AUTO  AND OFF MODE

FIGURE 3-1. SLEEP MODE ACTIVATION SETTINGS

3-1

GRAPHICAL DISPLAY

LED INDICATORS

OFF MODE BUTTON

DISPLAY MENU SELECTION BUTTONS

PREVIOUS MENU LEVEL BUTTON

FIGURE 3-2. FRONT PANEL (WITH DISPLAY)

CONTROL PANEL

TABLE 3-1. SYMBOLS SYMBOL

Figure 3-2 shows the features of the front panel. It includes six LED indicators, the graphical display, and six buttons used to navigate through the menus and adjust parameters.

DESCRIPTION

Generator Warning Fault Generator Shutdown Fault

Graphical Display This graphical display is used to view menus of the menu-driven operating system. The bottom of the graphical display indicates the functions that are available by pressing the four selection buttons. Refer to the menu trees later in this section.

Coolant Temperature Oil Pressure

System messages (communication, event, and fault) are also shown on the graphical display. For more information, see System Messages later this section.

Voltage Alternating Current (VAC)

Display Text / Symbolic Versions

 AC Current

Voltage Direct Current (VDC)

This graphical display can be set up to show either text or symbolic versions for fault messages, some Operator menus, and the Mode Change menu. A description of commonly used symbols used are included in Table 3-1. Combinations of symbols are used to display some fault conditions. Additional specialized symbols are also used for some faults (see Section 5).

Hz

Frequency Battery Out of Range High or Pre-High Low or Pre-Low

When shipped from the factory, symbolic display is selected. (Refer to Setup menu in Section 6 to change to text or symbolic display.)

 Annunciator

3-2

Display Menu Selection Buttons

menu that was displayed before the Auto or Manual Run mode was selected.

Four momentary soft-key buttons are used to step through the various menus and to adjust parameters. These selection buttons are “active” when a word or symbol in the graphical display is shown above the button. Some submenus do not include any active buttons. The function of the four selection buttons varies with each menu. •

When the symbol is displayed, the selection button can be used to switch to Auto mode.

When the symbol is displayed, the selection button can be used to switch to Manual Run mode.

When ADJUST is displayed, the selection button is used to display an adjustable menu. When the ADJUST button is pressed, the first adjustable parameter or value in the submenu is highlighted.

When the symbol is displayed, the selection button is used to navigate to an editable field within a menu.

When the + and − symbols are displayed, the selection buttons are used to increase or decrease a parameter or value shown on the screen. When changing values, pressing the button below the + symbol increase the value and pressing the button below the − symbol decreases the value.

When the up and down triangles ( and ) are displayed, the selection buttons are used to navigate between a series of submenus.

NOTE: When any Operator menu (Figure 3-12 is displayed, a series of Service menus can be viewed by simultaneously pressing the and selection buttons for two seconds.

When SAVE is displayed, the selection button is used to save changes made in a submenu. If the Previous Menu button is pressed before pressing SAVE, the changes are not saved.

Some menus include a list of numbered sub jects. These menus include numbers in parenthesis (for example, (1)) displayed above the selection buttons. The selection buttons are then used to display submenus of the subjects included in the list.

NOTE: When a fault is displayed, it can be cleared from the front panel by pressing the or button. •

When a symbol is displayed, the selection button can be used to abort the Auto or Manual Run mode and return to the Operator

3-3

When a black box is displayed, the selection button has no function.

Previous Main Menu Button

Off Button

Press the menu.

Press the button to switch to the Off mode. The Off mode will disable the control Auto or Manual modes.

button to view the previous main

NOTE: In the Screen Adjust menu, settings are not saved when the button is pressed.

If the button is pressed during generator set operation (manual or remote start), the engine will immediately shut down. If possible, hot shutdown under load should be avoided to help prolong the reliability of the generator set.

The button is also used to acknowledge warning and shutdown messages after the fault has been corrected. Pressing this button clears the fault from the front panel display and the previous menu is redisplayed.

The button is also used to acknowledge warning and shutdown messages after the fault has been corrected. Pressing this button clears the fault from the front panel and resets the control.

NOTE: Pressing the or button also clears the fault from the front panel display.

Not in Auto Indicator This red lamp is lit when the control is not in the Auto mode.

Shutdown Status Indicator This red lamp is lit when the control detects a Shutdown condition. The generator set cannot be started when this lamp is on. After the condition is corrected, the lamp can be reset by pressing the  (off) button.

Warning Indicator This yellow lamp is lit whenever the control detects a warning condition. This lamp is automatically shut off when the warning condition no longer exists.

OFF BUTTON

Remote Start Indicator This green lamp indicates the control is receiving a remote run signal.

Auto Indicator PREVIOUS MAIN MENU BUTTON

This green lamp indicates the control is in Auto mode. Auto mode can be selected by pressing the  selection button from any of the Operator menus (see Figure 3-12).

Manual Run Indicator This green lamp indicates the control is in the Manual Run mode. Manual Run mode can be selected by pressing the selection button from any of the Operator menus (see Figure 3-12).

FIGURE 3-3. PREVIOUS MAIN MENU AND OFF BUTTONS

3-4

SYSTEM MESSAGES  A system pop-up message is displayed when the event it is displaying becomes active. These pop-up messages remain displayed until pre-empted by another pop-up message or until the or the display button is pressed. Once the or the button is pressed, the previous screen is redisplayed.

Communication Messages System messages are displayed for initial power-up or when there is a subsequent loss of communications. Note that the Auto and Manual Run modes can be selected when communication messages are displayed.

FIGURE 3-4. ESTABLISHING COMMUNICATION WITH CONTROL

Upon initial power-up, the message “Establishing communication with control” is displayed (see Figure 3-4). This menu also displays the screen’s software number and version. When the display detects that it is no longer communicating with the control, the Shutdown, Warning, and Remote Start LEDs are turned off. If communications are lost, the message “Re-establishing communication with control” is displayed until communications have been re-established (see Figure 3-5). The LEDs then return to the state determined by the control. If either communication message remains displayed (cannot view other menus), this indicates that communications between the control panel and the control logic is lost.

FIGURE 3-5. RE-ESTABLISHING COMMUNICATION WITH CONTROL

3-5

Event Messages When pre-set events (time delay to start or stop) are activated, Event messages are displayed showing the time remaining until the event occurs (see Figure 3-6).

 = TIME DELAY Event  = TO START, or STOP

Fault Messages  A Fault message is an indicator of a Warning Warning or Shutdown condition. It includes the fault number, a short description, and when the fault occurred (see Figure 3-7). Symbolic fault messages include the fault code number and symbols, indicating the type of fault (see Figure 3-8). With the symbolic versions of fault messages, the and symbols flash. Section 5 provides a list of fault codes, fault types, messages displayed, and descriptions descriptions of the faults.

FIGURE 3-6. EVENT MESSAGE

 = WARNING Fault  = or SHUTDOWN

Five of the most recent faults are placed in a fault history file that can be viewed using the Fault History Menus (see Figure 3-18).

Fault Acknowledgement Shutdown faults must be acknowledged after the faults have been corrected. If in Auto or Manual Run mode, the control must be set to “O” (off). Also, faults are acknowledged when in Auto and the Remote Start command is removed. Faults are cleared from the control panel display by pressing the , , or button.

FIGURE 3-7. FAULT MESSAGE

EXAMPLE OF  A SYMBOLIC WARNING FAULT

214

Faults are re-announced if they are detected again after being acknowledged.

EXAMPLE OF  A SYMBOLIC SHUTDOWN FAULT

1

FIGURE 3-8. FAULT MESSAGES − SYMBOLIC VERSION

3-6

SELECTING AUTO, MANUAL RUN AND OFF MODES  Auto, Manu Manual al Run, Run, and Off Off modes modes can be selec selected: ted: • From any of the Operator menus • When the message “Establishing communication with control” is displayed • When the message “Re-establishing communication with control” is displayed Switching to Auto, Manual Run, or Off mode can be restricted to authorized personnel. personnel. If a control panel is set up with the mode change access code feature enabled, an access code must first be entered before the mode can be changed.

TEXT VERSION

SYMBOLIC VERSION

The InPower service tool or access to the Genset Service submenu is required to enable/disable the mode change “Access Code” feature. Refer to Section 6.

FIGURE 3-9. MODE CHANGE MENU

Entering the Mode Change Access Code If the mode change access code feature is enabled, an access code must be entered to switch to Auto, Manual Run, or Off mode. The text and symbolic versions of the Mode Change menu are shown in Figure 3-9. To enter the mode change access code, 1. With the first first character character highlighted, highlighted, press press the button butto n below to the the + or − symbols until the value reads “1.” 2. Press the arrow selection selection button to the next numeric character.

to move

3. Press the butto button n below below the + or − symbols until the value reads “2.” 4. Press the arrow selection button to the next numeric character.

to move

5. Press the butto button n below below the + or − symbols until the value reads “1.” 6. After you have have completed completed entering entering the passpassword, press the arrow selection button . NOTE:If an incorrect password is entered, the Operator menu that was displayed before  Auto, Manual Run, or Off mode was selected is redisplayed.

3-7

Selecting Auto Mode To switch to Auto mode (see Figure 3-10): 1. Press the button on any of the Operator menus or the “Establishing/Re-establishing communication with control” menus. 2. If the mode change change access access code feature feature is enabled, the Mode Change Access Code menu is displayed. Enter the mode change access code as described above.

THIS MENU IS DISPLAYED ONLY IF THE MODE CHANGE  ACCESS CODE FEATURE FEATURE IS ENABLED

3. A menu with with alternating alternating arrows is displayed above a second symbol. Press the second button. The Operator menu that was displayed before Auto mode was selected is redisplayed and the Auto indicator is lit. 4. To disable auto mode, press the

button.  ALTERNATING  ALTERNATING  ARROWS ARE DISPLAYED

NOTE:Manual Run mode can also be selected while in Auto mode.

 AUTO MODE SELECTED

FIGURE 3-10. SELECTING AUTO MODE

3-8

Selecting Manual Run Mode To switch to Manual Run mode (see Figure 3-11): 1. Press the button on any of the Operator menus or if displayed, the “Establishing/Re-establishing communication with control” menus. 2. If the mode change access code feature is enabled, the Mode Change Access Code menu is displayed. Enter the mode change access code as described on the previous page.

THIS MENU IS DISPLAYED ONLY IF THE MODE CHANGE  ACCESS CODE FEATURE IS ENABLED

3. A menu with alternating arrows is displayed above a second symbol. Press the second button to start the genset. The Operator menu that was displayed before Manual Run mode was selected is redisplayed and the Manual Run indicator is lit. To disable Manual Run mode, press the

 ALTERNATING  ARROWS ARE DISPLAYED

button.

NOTE: Auto mode can also be selected while in Manual Run mode. Switching to Auto mode may result in the generator set shutting down.

Aborting the Transition to Auto or Manual Run Mode If the Mode Change Access Code menu or the menu showing alternating arrows above the or   buttons is displayed, the transition to Auto or Manual Run mode is aborted when: •

Either the ,

, or

The or button is not pressed within ten seconds.

MANUAL RUN MODE SELECTED

button is pressed.

FIGURE 3-11. SELECTING MANUAL RUN MODE

If the transition to Auto or Manual Run mode is aborted, the Operator menu that was displayed before Auto or Manual Run mode was selected is redisplayed.

3-9

OPERATOR MENUS

sure, and hours of engine operation. (Oil pressure only available on some models).

Figures 3-12 and 3-13 show block representations of the following Operator menus.

Alternator Status Menu

 Alternator Status

This menu displays genset power (in kVA), frequency, and engine speed (RPM). (In applications without current transformers, the kVA is not shown.)

Line-to-Line Voltage

Alternator Line-to-Line Voltage Menu

Line-to-Neutral Voltage

• •

Engine Status

This menu displays L1-L2, L2-L3, and L3-L1 line-toline voltages for three phase applications only.

 Alternator Amperage

To navigate between the Operator menus, press the buttons next to the and symbols in the graphical display.

Alternator Line-to-Neutral Voltage Menu This menu displays line-to-neutral voltages for L1, L2, and L3 for three phase wye configurations only. (In delta configurations, this menu is not shown.)

The Operator menus can be used to select Auto or Manual Run modes.

Alternator Single Phase Voltage Menu

Appendix A provides a block diagram that illustrates the sequence of how the Operator Menus are displayed.

This menu displays L1-N, L2-N, and L1-L2 voltages for single phase applications only.

Alternator Amperage Menu

Engine Status Menu

This menu displays L1, L2, and L3 amperage. (In applications without current transformers, this menu is not shown.)

This menu displays the engine starting battery voltage, engine coolant temperature, engine oil pres-

3-10

OPERATOR MENUS − Text Version

THREE PHASE ONLY

SINGLE PHASE ONLY

THREE PHASE WYE ONLY

CURRENT SENSE ONLY

FIGURE 3-12. OPERATOR MENUS (TEXT VERSION)

3-11

OPERATOR MENUS − Symbolic Version

THREE PHASE ONLY

SINGLE PHASE ONLY

THREE PHASE WYE ONLY

CURRENT SENSE ONLY

FIGURE 3-13. OPERATOR MENUS (SYMBOLIC VERSION)

3-12

THIS PAGE LEFT INTENTIONALLY BLANK 

3-13

SERVICE MENUS

Figure 3-14 shows a block representation of the menus available from the Service Menus.

The third Service Menu can be viewed by pressing the selection button on the second Service Menu. The third Service Menu provides access to the Network Status menus.

Appendix A provides a block diagram that illustrates the sequence of how the Service Menus are displayed.

Status Menu

The first Service Menu can be viewed from any of  the Operator menus by simultaneously pressing the and selection buttons for two seconds. The first Service Menu provides access to the following menus: •

Lamp Test − The six LEDs on the control panel should light as long as the (6) button is pressed.

The Status menu is displayed when the (5) button is pressed on the second Service Menu. The Status menu shows the following:

Setup Menus − Used by Service personnel.  Adjusting the Setup menus is restricted by a password and is described in Section 6. To view the Setup menus only, press the VIEW button on the Setup password menu.

Voltage regulator (drive) level, in percentage of duty cycle

Governor regulator (drive) level, in percentage of duty cycle. This value is only displayed if the governor is enabled.

History / About − see page 3-16

Network Status Menus

Screen Adjust − see page 3-18

The Network Status menus are displayed when the (7) button is pressed on the third Service Menu. Two menus are used to display the quantity of the following devices that are connected to the network.

To return to the Operator menu that was displayed prior to viewing the Service Menu, press the button.

The second Service Menu can be viewed by pressing the selection button on the first Service Menu. The second Service Menu provides access to the following menus:

• • • •

Fault History − see page 3-20

Status − see below

3-14

 Auto Mains Failure (AMF) modules Universal Annunciators Bar graphs Battery chargers Controls I/O modules Operator panels (any type)

1ST SERVICE MENU

SETUP MENUS (SECTION 6)

HISTORY / ABOUT MENUS SEE PAGE 3-16

2ND SERVICE MENU

SCREEN ADJUST MENU SEE PAGE 3-18

3RD SERVICE MENU

FAULT HISTORY MENUS SEE PAGE 3-20

FIGURE 3-14. SERVICE MENUS

3-15

HISTORY / ABOUT MENUS

About Genset Submenu

Figure 3-15 shows a block representation of the History / About menu. The first History / About submenu is displayed when the (2) button is pressed on the Service Menu.

This submenu displays the generator set model number and rating.

About Control Submenu

Press the buttons next to the and symbols in the graphical display to navigate between the History / About submenus. Press the button to return to the Service Menu.

This submenu displays the control’s part number, serial number (up to 11 characters), software part number, and software version.

History Submenu

About Display Submenu

This submenu displays the number of engine starts, hours of operation for the engine, and hours of operation for the control.

This submenu displays the optional control panel software part number, software version, screen part number, and screen version of the display.

3-16

HISTORY / ABOUT MENUS

FIGURE 3-15. HISTORY / ABOUT MENUS

3-17

SCREEN ADJUST MENU

NOTE: If the Previous Menu button is pressed before pressing the SAVE button, the changes are not saved.

Figure 3-16 shows a block representation of the Screen Adjust menu. The Screen Adjust submenu is displayed when the (3) button is pressed in the first Service Menu.

5. Press the Menu.

button to return to the Service

Screen Adjust Menu

Adjusting Values/Parameters

This menu allows for adjusting the screen’s contrast and brightness and for selecting the units of measurement (SAE or SI) to be displayed.

1. Press the ADJUST selection button to select the first parameter or value to be changed. 2. Press the + or − selection buttons to adjust values or select parameters. 3. Press the arrow selection button to navigate to the next or previous adjustable value or parameter. 4. After adjusting values/selecting parameters, press the SAVE button to save your settings.

Contrast and Brightness: Press the + or − selection buttons to adjust the screen’s contrast and brightness. Changing the brightness setting also affects the brightness of the LEDs on the control panel.

Units: Press the + or − selection buttons to select SAE ( F, PSI) or SI (C, kPa) units of  measurement to be displayed. 

SCREEN ADJUST MENU

FIGURE 3-16. SCREEN ADJUST MENU

3-18

THIS PAGE LEFT INTENTIONALLY BLANK 

3-19

FAULT HISTORY MENU TIME FAULT OCCURRED

Figure 3-18 shows a block representation of the Fault History menu. The first Fault menu is displayed when the (4) button is pressed on the second Service Menu. If there are any active fault submenus, an “Active Fault” heading is displayed for the most recent active fault. All other fault submenus display a “Fault History” heading. Five of the most recent faults can be viewed. An example of  how a fault code is displayed is shown in Figure 3-17.

FAULT CODE

FAULT DESCRIPTION

and symbols in Press the buttons next to the the graphical display to navigate between menus. Press the

FIGURE 3-17. FAULT HISTORY MENU EXAMPLE

button to return to the Service Menu.

Information on faults is found in Section 5.

3-20

FAULT HISTORY MENU Active Fault

Fault 1

OR

Fault 2

Oldest Fault (Maximum of 5)

FIGURE 3-18. FAULT HISTORY MENU

3-21

THIS PAGE LEFT INTENTIONALLY BLANK 

3-22

4. Circuit Board GENERAL  HAZARDOUS VOLTAGE. Touching uninsulated parts inside the control box can re sult in severe personal injury or death. Mea surements and adjustments adjustments must be done with with care to avoid touching hazardous hazardous voltage parts.

This section describes the function of the PowerCommand ® 1301 Control (PCC) Base board that is contained in the control box (Figure 4-1). The block diagram in Figure 4-2, shows the external connections of the PCC system. The system schematics are provided in Section 9 of this manual.

Stand on a dry wooden platform or rubber insu lating mat, make sure your clothing and shoes  are dry, dry, remove jewelry and use tools tools with with insuinsu lated handles.

 Electrostatic discharge will damage circuit boards. Always wear a grounding wrist   strap when touching touching or handli handling ng circui circuitt boards. boards.

WARNING

CAUTION

GRAPHICAL DISPLAY PANEL ASSE MBLY MBLY OR SWITCH PANEL ASSEMBLY

BASE BOARD

FIGURE 4-1. BASE BOARD LOCATION

4-1

 *CT1

4  -2 

F  I    G  U R E  4  -2  . B L   O  C  K D I   A  G R A M

BASE BOARD The Base board (Figure 4-3) contains all of the electronic circuitry required to operate the generator set. The Base board provides fuel control, main alternator voltage output regulation and complete generator set control and monitoring. The following paragraphs describe the connectors (J), terminal board (TB), relays (R) and the LED status indicator. Figure 4-3 shows the pin locations for all Base board connectors. Refer to Block diagram in Section 9 for each connector pin input/output signal.

TB1 Customer Connections Display panel B+/data link and customer monitor/  control connections are attached to terminal board TB1. Optional equipment such as sensing devices used to monitor genset operation, remote start/stop switches and etc. are attached to this terminal. Re-

 *CT2  *CT3

fer to Block Diagram and Customer Connections diagram in Section 9 for TB1 connections.

DS1 LED Status Indicator The status indicator lamp is illuminated when the Base board is in the Power On mode (processor is operating).

S1 Sleep Mode Selection Refer to Control Panel On/Off Modes in Section 3.

Relay K7 The Starter Control (pilot) relay is used by the Base board to energize the starter solenoid.

Relay K8 The Fuel Control (pilot) relay is used by the Base board to control the engine fuel solenoid(s).

BASE BOARD

fer to Block Diagram and Customer Connections diagram in Section 9 for TB1 connections.

The Base board (Figure 4-3) contains all of the electronic circuitry required to operate the generator set. The Base board provides fuel control, main alternator voltage output regulation and complete generator set control and monitoring.

DS1 LED Status Indicator The status indicator lamp is illuminated when the Base board is in the Power On mode (processor is operating).

The following paragraphs describe the connectors (J), terminal board (TB), relays (R) and the LED status indicator. Figure 4-3 shows the pin locations for all Base board connectors. Refer to Block diagram in Section 9 for each connector pin input/output signal.

S1 Sleep Mode Selection Refer to Control Panel On/Off Modes in Section 3.

Relay K7

TB1 Customer Connections

The Starter Control (pilot) relay is used by the Base board to energize the starter solenoid.

Display panel B+/data link and customer monitor/  control connections are attached to terminal board TB1. Optional equipment such as sensing devices used to monitor genset operation, remote start/stop switches and etc. are attached to this terminal. Re-

RS-485 COMMUNICATIONS

Relay K8 The Fuel Control (pilot) relay is used by the Base board to control the engine fuel solenoid(s).

SLEEP MODE SELECTION

CUSTOMER CONNECTIONS

S1

TB2

TB1

DS1

J11

STATUS INDICATOR

J13

VOLTAGE/  FIELD

ENGINE HARNESS

K8 FUEL SHUTOFF RELAY

K7

J12

STARTER RELAY

CT’S

FIGURE 4-4. BASE BOARD CONNECTOR/TERMINAL PIN LOCATIONS

4-3

THIS PAGE LEFT INTENTIONALLY BLANK 

4-4

5. Troubleshooting Make sure that parameter adjustments and time delays, related to the fault condition, have been appropriately set for the application. It may be necessary to write the initial capture file to the device or update the calibration file.

GENERAL The PowerCommand® 1301 Control (PCC) continuously monitors engine sensors for abnormal conditions when genset is operating, such as low oil pressure and high coolant temperature. If any of  these conditions occur, the control (with graphical display) will light a yellow Warning lamp or a red Shutdown lamp and display a message on the graphical display. A control without the graphical display indicates a shutdown condition by intermittent flashing of the status indicator.

Updating a calibration file requires the InPower Pro version. Confirm that the installed calibration part number matches the serial plate information.  Using the wrong calibration file can  result in equipment damage. Do not swap Base  boards from another genset model and only use the calibration file shown on the nameplate. CAUTION

INPOWER SERVICE TOOL

Some features are not available until the hardware for that feature is installed and InPower Pro is used to update (enable) that feature. Confirm that the feature is installed and enabled prior to troubleshooting the base board for symptoms related to a feature.

The InPower service tool can be used in troubleshooting to perform tests, verify control inputs and outputs, and test protective functions. Refer to the InPower User’s Guide, provided with the InPower software for test procedures.

NETWORK APPLICATIONS AND CUSTOMER INPUTS

InPower, when used improperly, can cause symptoms like warnings and shutdowns that appear to be a defective base board. When these problems occur, always verify that a self-test or fault simulation (override) have not been left enabled with InPower. If you do not have InPower, or the enabled fault simulation(s) can not be found using InPower, disconnect battery power to disable the test or override condition.

In applications with networks and remote customer inputs, the genset may start unexpectedly or fail to crank as a result of these inputs. These symptoms may appear to be caused by the base board. Verify that the remote input is not causing the symptom or isolate the control from these inputs before troubleshooting the control.

5-1

SAFETY CONSIDERATIONS

READING FAULT CODES

  Contacting high voltage compo nents can cause electrocution, resulting in severe personal injury or death. Keep the output   box covers in place during troubleshooting.

If the genset contains the graphical display and a fault occurs, the fault code/message can be viewed in the display. If the control does not contain the graphical display, the fault code is read from the control switch indicator.

WARNING

High voltages are present when the genset is running. Do not open the generator output box while the genset is running.

 After the fault is acknowledged and corrected, the recorded fault will be deleted from the control panel memory, but will remain in a data log to maintain a fault code history. The InPower service tool is required to view this data log.

 Ignition of explosive battery gases can cause severe personal injury or death. Arc ing at battery terminals, light switch or other  equipment, flame, pilot lights and sparks can ig nite battery gas. Do not smoke, or switch trouble light ON or OFF near battery. Discharge  static electricity from body before touching batteries by first touching a grounded metal surface. WARNING

 Reading Fault Codes Using Graphical Display: Refer to Fault History Menu in Section 4, which describes how to view fault codes using the graphical display.  Reading Fault Codes Using Control Switch Indicator (PCC without display):   The control panel rocker switch contains a status indicator lamp. This lamp is used to flash genset status and shutdown fault codes. (Only the last shutdown fault code is flashed.)

Ventilate battery area before working on or near   battery—Wear goggles—Stop genset and disconnect charger before disconnecting battery  cables—Disconnect negative ( − ) cable first and   reconnect last.

Warning fault codes are not displayed by the status indicator lamp. The InPower service tool is needed to read warning fault codes.

 Disconnect battery charger from AC  source before disconnecting battery cables. Otherwise, disconnecting cables can result in voltage spikes damaging to DC control circuits of the genset. CAUTION

The following describes how to interpret the status indicator light.

 Accidental starting of the generator   set can cause severe personal injury or death.  Prevent accidental starting by disconnecting the negative ( − ) cable from the battery terminal. WARNING

Do not move the control switch to the OFF position before interpreting the fault code. Moving the switch to OFF will clear the fault indication.

When troubleshooting a generator set that is shut down, make certain the generator set cannot be accidentally restarted as follows: 1. Without Display: Move the StartOff/Remote switch on the control panel to the OFF position. With Display: Press the the Off mode.

Constant On = Genset running.

Intermittent Flashing = A genset Shutdown fault condition exists ( Warning conditions are not displayed). All of the Shutdown faults described in Table 5-1 can be announced with the status indicator lamp.

 An example of a single digit  fault code − Two blinks, followed by a two-second pause indicates a fault code of “2”.

button to switch to

2. Turn off or remove AC power from the battery charger.

 An example of a two digit fault code − first digit in the code is flashed, followed by a half-second pause, and then the second digit is flashed, followed by a two-second pause.

3. Remove the negative (−) battery cable from the generator set starting battery.

5-2

TROUBLESHOOTING PROCEDURE

Figure 5-1 shows the location of the components within the control panel that are referenced in the following troubleshooting procedures. Connector locations for the Base board are provided in Section  3. The control wiring and circuit board connections are shown in Section 9.

The following tables are a guide to help you evaluate problems with the generator set. You can save time if you read through the manual ahead of time and understand the system. Try to think through the problem. Go over what was done during the last service call. The problem could be as simple as a loose wire, an opened fuse or a tripped circuit breaker.

 Always make sure that the PCC is in the OFF mode before disconnecting or con necting harness connectors. Otherwise, disconnecting the harness connectors can result   in voltage spikes high enough to damage the  DC control circuits of the set. CAUTION

NOTE: Each fault code “warning” can be changed to “shutdown” using InPower. Default settings are used in this manual. It is recommended that all changes to settings be recorded at each site to aid in the troubleshooting of the genset.

 Electrostatic discharge will damage circuit boards. Always wear a wrist strap when  handling circuit boards or when disconnecting or connecting harness connectors. See Circuit  Board Removal/Replacement in Section 6. CAUTION

This section contains the following information: •

Table 5-1 and 5-2: Describes how to troubleshoot a local/remote fail to crank problem when control panel does not indicate fault condition. • Table 5-3: Describes how to troubleshoot engine problems that are not within the detectable range of the PCC control. • Table 5-4: Describes each status, warning and shutdown code, warning and shutdown limits where applicable, and basic corrective actions, such as, checking fluid levels, control reset functions, battery connections, etc. • Fault Code Tables:  Provide detailed troubleshooting procedures. In the following tables, the fault codes are used as the table reference number and are arranged in numeric order.

 Voltage/Continuity Testing Voltage and continuity tests are required in the following tables. In some cases, it is necessary to remove a plug to complete the test. The following corrective actions will mention when it is necessary to remove a plug for testing. In other cases, the plug must not be removed for testing. When plug removal is not mentioned, testing must be performed by inserting a narrow meter probe into the back of the plug.

5-3

GRAPHICAL DISPLAY PANEL OR SWITCH PANEL ASSEMBLY K10

K11

T26 (SW B+)

CURRENT TRANSFORMERS

PANEL FUSES F1, F3, F4

TB1

 AC TERMINALS BASE BOARD

FIGURE 5-1. PCC 1301 COMPONENTS

Relay K5

to energize the starter solenoid. K7 is mounted on the Base board adjacent to K8 shown in Figure 5-1.

This relay is used by the Base board to power switched B+ (battery voltage) terminal T26. It is fused at 20 amps. It is tied in the engine wiring harness.

Relay K8 The Fuel Control relay is used by the Base board to control battery B+ to the fuel solenoid(s). K8 is mounted on the Base board.

Relay K6 This relay is used by the Base board to control battery B+ to the governor actuator and the ignition control module.

Run Relays K10, K11 The optional Run relays are used to control auxiliary equipment such as fans, pumps and motorized air dampers. The relays are energized when the control receives a run command.

Relay K7 The Starter Control relay is used by the Base board

5-4

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

TABLE 5-1. ENGINE DOES NOT CRANK IN MANUAL MODE (NO FAULT MESSAGE) Reason: This indicates that the PCC has not received or recognized a manual start signal. Effect: Engine will not start.

POSSIBLE CAUSE 1. No power supplied to control.

CORRECTIVE ACTION a. Poor battery cable connections. Clean the battery cable terminals and tighten all connections. b. Remove connector P11 and check for B+ at P11-3 & 15 and GND at P11-9 & 10. If B+ or ground missing, isolate to harness and TB BAT+ terminal mounted in control box. If B+ and ground check OK, cycle power to Base board by reconnecting P11 and retry operation.

2. PCC with display: No power supplied to front membrane panel.

Check for B+ at TB1-1 and GND at TB1-4. If B+ or ground missing, the Base board is bad. If B+ and ground check OK, remove P1 from back of front membrane panel. Check for B+ at P1-3 and ground at P1-5. If B+ or ground missing, repair harness.

3. Base board not properly calibrated or corrupt calibration.

Confirm that the installed calibration part number matches the serial plate information. Re-enter calibration file if necessary.

4. The Emergency Stop switch or wiring is defective.

With Emergency Stop push button not activated (switch closed), remove customer leads from TB1-15 and TB1-16 and check for continuity between these two leads. If circuit is open, isolate to Emergency Stop switch and wiring. If there is continuity, go to next step.

5. PCC without display : The Manual input is not getting from the Manual select switch (S12) to the Base board indicting that S12, Base board or the harness is bad.

Remove connector P11 from the Base board. With S12 in START position, check for continuity between P11-4 (RUN) to P11-8 (GND). If no continuity, isolate to switch and wiring. If there is continuity, the Base board is bad.

6. PCC with display : The menu display manual Run button, harness or the Base board is bad.

Check for continuity between P11-4 (RUN) to P11-8 (GND). If no continuity when pressing the manual Run button, isolate to front membrane panel and wiring. If there is continuity, the Base board is bad.

7. Oil pressure sender setup is incorrect or wiring to sender is defective.

a. Verify control is configured for the type of switch installed (sender not switch type). b. Remove P11 connection and check wiring from P11-5, P11-6 and P11-17 to the sender. c. Verify operation of oil sender.

5-5

TABLE 5-2. ENGINE DOES NOT CRANK IN REMOTE MODE (NO FAULT MESSAGE) Reason: This indicates that the PCC has not received or recognized a remote start signal. Effect: Engine will not start in remote mode, but starts in manual mode.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. The remote start switch or customer wiring is faulty.

Reset the control. Attempt to start, and check for ground at TB1-16. If ground level is not present, isolate to the remote switch or customer wiring. Repair as necessary. If ground is present, go to next step.

2. PCC without display: The Auto mode input is not getting from the Remote (Auto) select switch (S12) to the Base board indicting that S12, Base board or the harness is bad.

Remove connector P11 from the Base board. With S12 in Remote (Auto) position, check for continuity from P11-16 (AUTO) to P11-8 (GND). If no continuity, isolate to switch or wiring harness. If there is continuity, the Base board is bad.

3. PCC with display:   The menu display  Auto button, harness or the Base board is bad.

Check for continuity between P11-16 (AUTO) to P11-8 (GND). If no continuity when pressing the menu display Auto button, isolate to front membrane panel or wiring harness. If there is continuity, the Base board is bad.

TABLE 5-3. ENGINE LACKS POWER OR IS UNSTABLE (NO FAULT MESSAGE) Reason: This indicates that the PCC has not received or recognized a genset fault. Effect: Engine approaching level at which unpredictable operation may occur.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Current ambient conditions cause a derate, limiting power to less than rated power.

Determine proper derates for ambient conditions. Refer to specification sheet for site derating factors.

2. The engine air filter element is dirty.

Replace the air filter element.

3. The gaseous fuel is of insufficient energy content.

Check with the propane supplier or the gas utility to confirm the energy content of the gaseous fuel being used. Propane must have approximately 2500 BTU’s per cubic foot and natural gas 1000 BTU’s per cubic foot.

4. Incorrect main fuel valve adjustment.

Refer to Fuel System, Section 8.

5. Engine hunting at 90% to 100 % of full load.

Governor Gain misadjusted. Refer to Electronic Governor Subme nus in Section 6.

6. Engine misfires

a. b. c. d.

Air fuel ratio too lean. Adjust main fuel valve. Refer to Section 8. Inspect spark plugs/gap. Check spark plug wires. Check ignition coil. See Ignition System, Section 8.

7. Excessive crank time (seven seconds or more) before starting

a. See step 8 in this table. b. Gas regulator may require adjustment. See Fuel System, Section 8.

5-6

TABLE 5-3. ENGINE LACKS POWER OR IS UNSTABLE (NO FAULT MESSAGE) (CONT.) Reason: This indicates that the PCC has not received or recognized a genset fault. Effect: Engine approaching level at which unpredictable operation may occur.

POSSIBLE CAUSE

CORRECTIVE ACTION

8. Gaseous fuel delivery t o the set is inadequate or fuel pressure is too high at light loads.

Check the gas supply pressure at the regulator input. Refer to Section 8.

9. The engine is worn.

Service the engine according to Section 8.

5-7

 Hazards present in troubleshooting can cause equipment damage, severe personal   injury or death. Only trained and experienced service personnel with knowledge of fuels, electric ity, and machinery hazards should perform service procedures. Read Safety Precautions page  and observe all instructions and precautions in this manual. WARNING

TABLE 5-4. WARNING AND SHUTDOWN CODES FAULT CODE 1 HIGH COOLANT TEMP Lamp: Shutdown

CORRECTIVE ACTION Indicates engine has overheated (coolant temperature has risen above the shutdown trip point).  Allow engine to cool down completely before proceeding with the following checks: a. Check coolant level and replenish if low. Look for possible coolant leakage points and repair if necessary. b. Check for obstructions to cooling airflow and correct as necessary. c. Check fan belt and repair or tighten if necessary. d. Check blower fan and circulation pumps on remote radiator installations. e. Reset control and restart after locating and correcting problem.

2 LOW OIL PRESSURE Lamp: Shutdown

Indicates engine oil pressure has dropped below the shutdown trip point. Check oil level. If oil level is low, replenish. Reset control and restart.

12 HIGH AC VOLTAGE Lamp: Shutdown

Indicates that one or more of the phase voltages has exceeded 130% of nominal for 1.0 second, or has exceeded 110% of nominal for 10 seconds.

13 LOW AC VOLTAGE Lamp: Shutdown

Indicates that one or more of the phase voltages has dropped below 85% of nominal for 10 seconds.

14 OVER FREQUENCY  Lamp: Shutdown

Indicates frequency is 10% above base frequency for 10 seconds.

15 UNDER FREQUENCY  Lamp: Shutdown

Indicates that engine speed has dropped below 90% of nominal for 10 seconds.

27 EXCITATION FAULT Lamp: Shutdown

Indicates a loss of all three voltage sense leads or failure in excitation circuit. Check field wiring (X1 and X2) for shorts or opens. (Refer to Section 7 .)

31 OVERSPEED Lamp: Shutdown

Indicates engine has exceeded normal operating speed. The threshold is 1725 RPM (50 Hz) or 2075 RPM (60 Hz).

38 FIELD OVERLOAD Lamp: Shutdown

Indicates that the Field AVR Duty Cycle has been at the maximum for at least 15 seconds.

45 SPEED SIGNAL LOST Lamp: Shutdown

Indicates that no magnetic pickup pulses are sensed for a Loss of Speed delay.

46 HIGH AC CURRENT Lamp: Shutdown

Indicates that an individual phase of alternator output current has exceeded 150% of the rated output current continuously for more than 10 seconds.

Check fuel supply pressure, intake air supply and load.

Possible cause − single step large block load removal. Reset control and restart.

Check load and load lead connections.

5-8

WARNING  Hazards present in troubleshooting can cause equipment damage, severe personal   injury or death. Only trained and experienced service personnel with knowledge of fuels, electric ity, and machinery hazards should perform service procedures. Read Safety Precautions page  and observe all instructions and precautions in this manual.

TABLE 5-4. WARNING AND SHUTDOWN CODES (CONT.) FAULT CODE 61 EMERGENCY STOP Lamp: Shutdown

CORRECTIVE ACTION Indicates Emergency Stop. To reset the Emergency Stop button: 1. Open (disable) emergency stop button. 2. Move the rocker switch to the OFF position or press the OFF button. 3. Select the desired operating mode (manual or remote).

71 SPEED HZ MATCH Lamp: Shutdown

Indicates that measured speed and measured AC output frequency do not agree. Check genset setup for number of flywheel teeth.

72 FAIL TO CRANK  Lamp: Shutdown

The genset has failed to sense rotation for two start attempts. Indicates possible fault with control, speed sensing or starting system.

73 FAIL TO START Lamp: Shutdown

Indicates possible fuel system problem. (Engine cranks but fails t o start) a. Check for dirty or plugged air filter and replace if necessary. b. Restricted fuel supply (e.g., closed fuel shutoff valve, low fuel pressure/supply, etc.) c. Reset the control and restart after correcting the problem.

75, 76 CUSTOMER INPUT #1 & #2 Lamp: Shutdown

The nature of the fault is an optional customer selection. Example inputs: Low Coolant Level, Low Fuel Pressure, Ground Fault, etc. Each of the fault functions can be programmed (using service tool), as follows: •

Warning or Shutdown (Default: Warning) (See fault code 204/205 for Warning)

Change display name using up to 32 characters.

81, 82, 83 ANNUNCIATOR FAULT 1, 2, 3 Lamp: Shutdown

The nature of the annunciator fault is an optional customer selection.

202 PRE-HIGH COOL TMP Lamp: Warning

Indicates engine is operating near cooling system capacity (monitor condition). Increase in load or higher ambient temperature may cause High C oolant Temp (1) shutdown. Review code 1 correction list for other possible causes.

203 LOW COOLANT TEMP Lamp: Warning

Indicates engine coolant heater is not operating or is not circulating coolant. Check for the following conditions: a. Coolant heater not connected to power supply. Check for blown fuse or disconnected heater cord and correct as required. b. Check for low coolant level and replenish if required. Look for possible coolant leakage points and repair as required. c. Open heater element. Check current draw of heater.

Set is not operating. Warning occurs when engine coolant temperature is 70° F (21° C) or lower. NOTE: In applications where the ambient temperature falls below 40 ° F (4° C), Low Coolant Temp may be indicated even though the coolant heaters are operating.

Coolant temperature must be below 70° F (default setting) for one minute to activate warning and be above 70° F for five minutes before the warning can be cleared.

5-9

WARNING  Hazards present in troubleshooting can cause equipment damage, severe personal   injury or death. Only trained and experienced service personnel with knowledge of fuels, electric ity, and machinery hazards should perform service procedures. Read Safety Precautions page  and observe all instructions and precautions in this manual.

TABLE 5-4. WARNING AND SHUTDOWN CODES (CONT.) FAULT CODE 204, 205 CUSTOMER INPUT #1, #2 Lamp: Warning

CORRECTIVE ACTION The nature of the fault is an optional customer selection. Example inputs: Low Coolant Level, Low Fuel Pressure, Ground Fault, etc. Each of the fault functions can be programmed (using service tool), as follows: •

Warning or Shutdown (Default: Warning) (See fault code 75/76 for Shutdown)

Change display name using up to 32 characters.

212 COOL SENSOR OUT OF RANGE Lamp: Warning

Indicates that the control has sensed that the engine coolant temperature sensor output is out of range (high or low). Check sender/connectors/wires.

213 LOW BATTERY  Lamp: Warning

Indicates battery voltage supply to the control is approaching a low level at which unpredictable operation will occur. a. Discharged or defective battery. Check the battery charger fuse. Recharge or replace the battery. b. Poor battery cable connections. Clean the battery cable terminals and tighten all connections. c. Check battery wiring/calibration. d. Check engine DC alternator. Replace engine DC alternator if normal battery charging voltage is not obtained. e. Check battery charge voltage float level if applicable (raise float level).

214 HIGH BATTERY  Lamp: Warning

Indicates battery voltage supply to the control is approaching a high level at which damage to the control can occur. Check float level on battery charger if applicable (lower float level). Check battery wiring/calibration.

215 PRE-LOW OIL PRESSURE Lamp: Warning

Indicates engine oil pressure has dropped below the warning trip point. If generator is powering critical loads and cannot be shut down, wait until next shutdown period and then follow code 2 procedure.

216 HIGH AC CURRENT Lamp: Warning

Indicates that one or more of the phase currents has exceeded 110% of nominal for 60 seconds.

217 OIL PRESS SENSOR OUT OF RANGE Lamp: Warning

Indicates that the control has sensed that the engine oil pressure sensor output is out of range (high or low). Check sender/connectors/wires.

219 CHARGER FAILURE Lamp: Warning

Indicates the battery charging alternator has not reached an acceptable voltage range within the selected period (default = 120 seconds). a. Fault threshold is not set correctly. Refer to Engine Protection Submenus in Section 6. b. Charging alternator is defective. Refer to engine service manual.

221 WEAK BATTERY  Lamp: Warning

Indicates that during cranking, the battery voltage is at or below the weak battery warning trip point for a time greater than or equal to the weak battery set time. See code 213 for corrective action.

Check load and load lead connections.

5-10

WARNING  Hazards present in troubleshooting can cause equipment damage, severe personal   injury or death. Only trained and experienced service personnel with knowledge of fuels, electric ity, and machinery hazards should perform service procedures. Read Safety Precautions page  and observe all instructions and precautions in this manual.

TABLE 5-4. WARNING AND SHUTDOWN CODES (CONT.) FAULT CODE

CORRECTIVE ACTION

222, 223, 224 ANNUNCIATOR FAULT 1, 2, 3 Lamp: Warning

The nature of the annunciator fault is an optional customer selection.

225 ANNUNCIATOR OUTPUT CONFIGURATION ERROR Lamp: Warning

Indicates a mismatch in the configuration of one of the annunciator relay outputs.

5-11

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 1/202 − HIGH OR PRE-HIGH COOLANT TEMPERATURE (SHUTDOWN/WARNING) Reason: Engine coolant temperature has exceeded the warning threshold for pre-high/high coolant temperature. Effect: Calibration-dependent. No action is taken by the PCC for code 202. Engine will shut down for code 1.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Fault simulation was enabled with InPower.

With InPower, verify that the fault simulation is not enabled for the coolant sensor. If you do not have InPower, remove battery power from the control to disable fault simulation overrides.

2. Engine or sensor circuitry problem.

Check the sensor accuracy with a thermocouple or similar temperature probe. •

If the PCC coolant temperature reading is accurate, the engine may be overheating. Refer to the engine service manual.

If the PCC coolant temperature reading is not accurate, go to next step.

3. The sensor could be bad.

Disconnect the sensor and connect a coolant temperature sensor simulator to the harness. If the control responds to the simulator, replace the sensor. If control does not respond, go to next step.

4. The harness or Base board could be bad.

Measure the resistance of the coolant sensor and reconnect harness to sensor. Remove connector P11 from Base board and check resistance between pins P11-18 (H20) and P11-6 (COM). •

If resistance is not the same, harness is bad.

If resistance is the same, Base board is bad.

5-12

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 2/215 − LOW OR PRE-LOW OIL PRESSURE (WARNING/SHUTDOWN) Reason: Engine oil pressure has dropped below the warning/shutdown threshold for low/high oil pressure. Effect: Calibration-dependent. No action is taken by the PCC for code 215. Engine will shut down for code 2.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Fault simulation was enabled with InPower.

With InPower, verify that the fault simulation is not enabled for the oil pressure sensor. If you do not have InPower, remove battery power from the control to disable fault simulation overrides.

2. Low oil level. Clogged lines or filters.

Check oil level, lines and filters. If oil system is OK but oil level is low, replenish.

3. Sensor or oil pump could be bad. Or the generator set may be shutting down on another fault.

Disconnect the oil pressure sensor leads, and connect an oil pressure sensor simulator to the harness. a. If the control responds to the simulator, reconnect the sensor, disconnect the + signal wire at the fuel solenoid, and crank the engine. Check the oil pressure reading on the digital display. •

If the display shows an acceptable oil pressure, the problem may not be in the oil or oil sensing system. The genset may be shutting down on another fault (out of fuel, intermittent connector). Restart the genset and monitor the PCC display panel for other faults.

If the display does not show an acceptable oil pressure, replace the sensor. If the PCC still doesn’t display oil pressure while cranking, the oil pump may be bad. Refer to the engine service manual. b. If the control does not respond to the simulator, go to next step. •

4. Harness or Base board could be bad.

If the control does not respond to the simulator, the Base board or the harness is bad. a. Check for +5 VDC at the sensor (Orange/Green lead). If there is no 5 VDC at the sensor: •

Check for 5 VDC at P11-5.

If yes, harness is bad. If no, Base board is bad.

b. If there is 5 VDC at the sensor, use the sensor simulator to generate a signal to P11-17 (SIGNAL). If the pressure signal (.5 to 4.5 VDC) does not get to P11, isolate to the harness. If the pressure signal does go to P11, the Base board is bad.

5-13

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 12 − HIGH AC VOLTAGE (SHUTDOWN) Reason: One or more of the phase voltages has exceeded 130% of nominal for 1.0 second, or has exceeded 110% of nominal for 10 seconds. Effect: Engine will shut down.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Fault simulation was enabled with InPower.

With InPower, verify that the related fault simulation is not enabled. If you do not have InPower, remove battery power from the control to disable fault simulation overrides.

2. Single step large block load removal.

Clear fault and restart genset.

3. Fault threshold is not set correctly.

Reset the threshold to the highest allowable setting. Determine the required operating range before adjusting the threshold. Refer to Voltage Protection Submenus in Section 6.

4. Base board or generator is bad.

Refer to Generator/Base Board Isolation Procedure in Section 7  to determine if the generator or the Base board is causing the high AC voltage shutdown fault.

CODE 13 − LOW AC VOLTAGE (SHUTDOWN) Reason: One or more of the phase voltages has dropped below 85% of nominal for 10 seconds. Effect: Engine will shut down.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Fault simulation was enabled with InPower.

With InPower, verify that the related fault simulation is not enabled. If you do not have InPower, remove battery power from the control to disable fault simulation overrides.

2. Fault threshold is not set correctly.

Reset the threshold to the lowest allowable setting. Determine the required operating range before adjusting the threshold. Refer to Voltage Protection Submenus in Section 6.

3. Overload.

Check the load and correct any overload. Check operation by disconnecting load and restarting generator set.

4. Improper connections have been made at the generator output terminals.

Reconnect according to the appropriate reconnection diagram. Refer to Section 9.

5. Voltage sense wiring connection could be incorrect.

Check that Sense leads P13-1 through P13-4 are connected to the correct voltage/terminals on the reconnect terminal block. If misconnected to a high voltage, the AVR fault will shut down excitation and cause Low AC Voltage condition. Refer to Section 9.

6. The rotating rectifier assembly (diodes CR1 through CR6) is faulty.

Check each diode. Refer to Section 7 .

7. Loose connector or Base board is bad.

Repair connections (P13) or replace the Base board if necessary.

5-14

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 14 − OVER FREQUENCY (SHUTDOWN) Reason: Generator AC output frequency is high. Effect: Generator set will shut down.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Fault threshold is not set correctly.

Reset the threshold to the highest allowable setting. Determine the required operating range before adjusting the threshold. Refer to Voltage Protection Submenus in Section 6.

2. Fuel or air delivery problem.

Refer to Fuel System, Section 8.

3. Loose connector or Base board is bad.

Repair connections (P13) or replace the Base board if necessary.

CODE 15 − UNDER FREQUENCY (SHUTDOWN) Reason: Generator AC output frequency is low. Effect: Generator set will shut down.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Fault simulation was enabled with InPower.

With InPower, verify that the related fault simulation is not enabled. If you do not have InPower, remove battery power from the control to disable fault simulation overrides.

2. Fault threshold is not set correctly.

Reset the threshold to the lowest allowable setting. Determine the required operating range before adjusting the threshold. Refer to Voltage Protection Submenus in Section 6.

3. Overload.

Check the load and correct any overload. Check operation by disconnecting load and restarting generator set.

4. Fuel or air delivery problem.

Refer to Fuel System, Section 8.

5. Loose connector or Base board is bad.

Repair connections (P13) or replace the Base board if necessary.

5-15

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 31 − OVERSPEED (SHUTDOWN) Reason: Engine speed signal indicates an engine speed greater than shutdown threshold. Effect: Engine will shut down.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Cold engine (no coolant heaters)

Overspeed can occur when starting a very cold engine. Clear fault and restart genset.

2. Single step large block load removal.

Clear fault and restart genset.

3. Fault simulation was enabled with InPower.

With InPower, verify that the fault simulation is not enabled for the coolant sensor. If you do not have InPower, remove battery power from the control to disable fault simulation overrides.

4. Fault threshold is not set correctly.

Reset the threshold to the highest allowable setting. Determine the required operating range before adjusting the threshold. Refer to Engine Protection Submenus in Section 6.

5. Monitor the engine rpm using InPower.

If the RPM is not correct, refer to fault code45 for corrective action.

6. Binding of mixer throttle plate.

Mechanical binding of throttle plate in mixer. With genset off, remove air filter cover. Mixer assembly OK if throttle plate completely closed.

CODE 45 − SPEED SIGNAL LOST (SHUTDOWN) Reason: This indicates that the PCC is not sensing the magnetic pickup signal. Effect: Engine will shut down.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Loose or damaged magnetic pickup (MPU) wires/connector pins.

Inspect the wires/connector pins, and repair or replace as necessary.

2. The magnetic pickup, harness or Base board could be bad.

To isolate the problem, reset the control and attempt to start the set. If 72 (Fail To Crank) is displayed, or if the engine starts, but then shuts down on 45 (Speed Signal Lost), the MPU sender could be bad. Remove the MPU connectors and check for 3.5 to 15 VAC at the MPU while cranking. •

If no output, check for damage or debris. Also check for improper adjustment of the MPU. (Refer to Section 6.) If there is still no output, replace the MPU sender.

If the MPU output is OK, check for MPU voltage at P11−12 (MAG PICK+) to P11-24 (MAG PICK −) while cranking. If OK, replace the Base board. If not OK, use continuity checks to isolate connectors/harness.

5-16

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 46 − HIGH AC CURRENT (SHUTDOWN) Reason: Indicates that an individual phase of alternator output current has exceeded 150% of the rated output current continuously for more than 10 seconds. Effect: Generator set will shut down.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Fault threshold is not set correctly.

Reset the threshold to the highest allowable setting. Determine the required operating range before adjusting the threshold. Refer to Current Protection Submenus in Section 6.

2. Short or overload.

Check the load and load cables. Repair if necessary. Check operation by disconnecting load and restarting generator set.

3. Incorrect CTs or CT connections.

Check CTs and CT connections. Correct if necessary. Refer to Cur rent Transformer Installation in Section 6.

4. The problem may be the Base board or harness connections.

Remove connector P12 from the Base board. Check continuity from P12 to CTs. P12-1 (CT1) to P12-4 (CT1-COM) P12-2 (CT2) to P12-5 (CT2-COM) P12-3 (CT3) to P12-6 (CT3-COM)

5-17

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 72 − FAIL TO CRANK (SHUTDOWN) (LOCAL OR REMOTE) Reason: This indicates that the engine failed to crank after the PCC received a start signal. Effect: Engine will not start.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Starter is bad.

Reset the control. Attempt to start, and check for battery voltage (B+) at starter solenoid terminal (brown lead). Replace the starter motor if there is voltage but the motor does not start. If B+ is not present at the starter, go to next step.

2. The Emergency Stop switch or wiring is defective.

With Emergency Stop push button not activated, remove customer leads from TB1-15 and TB1-16 and check for continuity between these two leads. If circuit is open, isolate to Emergency Stop switch and wiring. If there is continuity, go to next step.

3. TB BAT+ is not present at starter motor (B1 SW) due to: a. External wiring. b. Base board/K7 Starter relay is bad.

Check wiring continuity between K7 relay and starter motor. If OK, replace Base board.

4. MPU/circuit or Base board is bad.

Refer to Code 45 instructions.

5-18

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 73 − FAIL TO START (SHUTDOWN) Reason: This indicates that the engine failed to start after expiration of last crank time. Effect: Engine will not start.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. The air cleaner is blocked. 2. Restricted fuel supply.

Service as necessary. a. Open any closed fuel shutoff valve, (Valves closed for maintenance or new installations may require several crank cycles to get fuel to genset.) b. Fill the propane supply tank. For natural gas fueled sets, check with the gas utility. c. Check fuel pressure at regulator (refer to Section 8.) High fuel pressure will prevent solenoid from opening.) d. Check fuel solenoid (VDC present at solenoid during cranking). If  not present, go to step 3.

3. TB BAT+ is not present at fuel solenoid or pressure sensor due to: a. External wiring. b. Base board/K8 Fuel Control relay is bad. 4. The engine ignition system is malfunctioning. Refer to wiring diagrams in Section 9.

5. Incorrect main fuel valve adjustment.

Check wiring continuity between K8 relay and fuel solenoid or pressure sensor. If OK, replace Base board.

c. d. e. f.

Check for battery VDC at coil pack connector while cranking. Check for spark. (Remove lead and connect to spare spark plug). Check crank shaft position sensor. Replace ignition coils. See Ignition System, Section 8. Refer to Fuel System, Section 8.

5-19

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 75/76 − CUSTOMER INPUT (SHUTDOWN) Reason: The nature of the fault is an optional customer selection. Effect: Shutdown.

POSSIBLE CAUSE 1. If there is no actual fault, the problem may be an external wiring problem.

CORRECTIVE ACTION Disconnect the signal lead from TB1 and reset the control. •

CUST_IN1 − TB1-14

CUST_IN2 − TB1-12

If the message drops out, the external wiring has a short circuit. Grounding of either input activates fault.

CODE 202 − PRE-HIGH COOLANT TEMP (WARNING) Reason: Effect:

POSSIBLE CAUSE 1. Refer to code 1.

CORRECTIVE ACTION Refer to code 1.

5-20

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 203 − LOW COOLANT TEMPERATURE (WARNING) Reason: Engine coolant temperature has dropped below the warning threshold for low coolant temperature. Effect: No action is taken by the PCC. Engine may not start due to slow cranking speed.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Fault simulation was enabled with InPower.

With InPower, verify that the fault simulation is not enabled for the coolant sensor. If you do not have InPower, remove battery power from the control to disable fault simulation overrides.

2. Fault threshold is not set correctly.

Reset the threshold to the lowest allowable setting. Determine the required operating range before adjusting the threshold. Refer to Engine Protection Submenus in Section 6.

3. The engine coolant heater could be bad. (Radiant heat should be felt with hand held close to outlet hose.)

4. The sensor connections could be bad. 5. The sensor could be bad.

6. The harness or Base board could be bad.

Coolant heater not operating due to: a. Coolant heater not connected to power. Check for blown fuse, or disconnected heater cord and correct as required. b. Low coolant level. Look for possible coolant leakage points and repair as required. c. Defective heater element/thermostat. With coolant heater removed from engine and power disconnected, flush with cold tap water for two minutes to close internal heater thermostat (opens at 100° F and closes at 80 ° F). Check resistance across input power leads: •

Open − replace coolant heater.

Closed −coolant heater OK (coil resistance of 10 to 60 ohms)

Inspect the sensor and engine harness connector pins. Repair or replace as necessary. . Disconnect the sensor, and plug in a resistive sensor simulator to isolate the fault. If the control responds to the simulator, replace the sensor. If control does not respond, harness or Base board is bad. Measure the resistance of the coolant temperature sensor and reconnect harness to sensor. Remove connector P11 from Base board and check resistance between pins P11-18 (H20) and P11-6 (COM). •

If resistance is not the same, harness is bad.

If resistance is the same, Base board is bad.

5-21

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 204/205 − CUSTOMER INPUT (WARNING) Reason: The nature of the fault is an optional customer selection. Effect: Warning.

POSSIBLE CAUSE

CORRECTIVE ACTION

If there is no actual fault, the problem may be Disconnect the signal lead from TB1 and reset the control. an external wiring problem. • CUST_IN1 − TB1-14 •

CUST_IN2 − TB1-12

If the message drops out, the external wiring has a short circuit. Grounding of either input activates fault.

CODE 212 − COOLANT SENSOR OUT OF RANGE (HIGH/LOW) (WARNING) Reason: This indicates that the coolant temperature sensor signal is out of range − shorted high or low. Effect: No engine protection for coolant temperature during genset operation.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. The sensor connections could be bad.

Inspect the sensor and engine harness connector pins. Repair or replace as necessary.

2. The sensor could be bad.

Disconnect the sensor, and plug in a resistive sensor simulator to isolate the fault. If the control responds to the simulator, replace the sensor. If control does not respond, go to next step.

3. The harness or Base board could be bad.

a. Remove connector P11 from Base board and disconnect sensor. Check pins P11-18 (H20) and P11-6 (COM) for short circuit as follows: •

Check for a short circuit to the engine block ground (more than 200k ohms OK).

Check for a short circuit from pin to pin (more than 200k ohms OK). Repair or replace as necessary. b. Measure the resistance of the coolant sensor and reconnect harness to sensor. Remove connector P11 from Base board and check resistance between pins P11-18 (H20) and P11-6 (COM). •

If resistance is not the same, harness is bad.

If resistance is the same, Base board is bad.

5-22

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 213 − LOW BATTERY (WARNING) Reason: Low voltage has been detected for battery. Effect: PCC voltage supply approaching level at which unpredictable operation may occur.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Weak or discharged battery.

Recharge or replace the battery. Specific gravity for a fully charged battery is approximately 1.260 at 80° F (27° C).

2. Low electrolyte level in battery.

Replenish electrolyte and recharge battery.

3. Battery connections loose or dirty.

Clean and tighten or replace the battery cable connectors and cables at the battery and the set.

4. Insufficient battery charging voltage.

Adjust charge rate of AC powered battery charging circuit, according to manufactures instructions.

5. Engine DC alternator could be bad.

Replace engine DC alternator if normal battery charging voltage (12 to 14 / 24 to 28 VDC) is not obtained.

6. If the batteries are OK, the problem may be the harness or the Base board.

Remove connector P11 from Base board and check battery voltage at P11−3 & 15 (B+) to P11-9 & 10 (GND).

7. Fault threshold setting incorrect.

If the voltage at P11 is not the same as the battery voltage, the harness is bad.

If the voltage at P11 is OK, the Base board is bad.

Check fault threshold against requirement of the application. Refer to Genset Submenus in Section 6.

CODE 214 − HIGH BATTERY VOLTAGE (WARNING) Reason: High voltage has been detected for battery. Effect: PCC damage will occur.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Excessive battery charging voltage.

Adjust charge rate of AC powered battery charging circuit according to manufacturers instructions.

2. Engine DC alternator could be bad.

Replace engine DC alternator if normal battery charging voltage (12 to 14 / 24 to 28 VDC) is not obtained.

3. Fault threshold setting incorrect.

Check fault threshold against requirement of the application. Refer to Genset Submenus in Section 6.

5-23

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 215 − PRE-LOW OIL PRESSURE (WARNING) Reason: This indicates engine oil pressure has dropped below the warning trip point. Effect: Warning.

POSSIBLE CAUSE 1. Refer to code 2.

CORRECTIVE ACTION Refer to code 2.

CODE 216 − HIGH AC CURRENT (WARNING) Reason: This indicates that one or more of the phase currents has exceeded 110% of nominal for 60 seconds. Effect: Warning.

POSSIBLE CAUSE 1. Refer to code 46.

CORRECTIVE ACTION Refer to code 46.

CODE 217 − OIL PRESSURE SENSOR OUT OF RANGE (HIGH/LOW) (WARNING) Reason: This indicates that the engine oil pressure sensor signal is out of range − shorted high or low. Effect: No engine protection for oil pressure during genset operation.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. The sensor connections could be bad.

Inspect the sensor and engine harness connector pins. Repair or replace as necessary.

2. The sensor could be bad.

Disconnect the oil pressure sensor leads, and connect an oil pressure sensor simulator to the harness. “OIL PRESSURE SENSOR OUT OF RANGE” warning is displayed after the fault condition is sensed for 10 seconds.

If the control responds to the simulator, replace the sensor. If control does not respond, go to next step. 3. The harness could be bad.

Remove connector P11 from Base board and connector from sensor. Check P11-5, 6 & 17 as follows: •

Check for a short circuit from pin to pin (more than 200k ohms OK).

Check for an open circuit (10 ohms or less OK).

Repair or replace as necessary. 4. The Base board could be bad.

With all connectors attached, check pressure signal (.5 to 4.5 VDC) at P11-17 (SIGNAL) and P11-6 (COM). If in range, replace Base board.

5-24

WARNING  Hazards

present in troubleshooting can cause equipment damage, severe personal injury  or death. Only trained and experienced service personnel with knowledge of fuels, electricity, and machinery hazards should perform service procedures. Read Safety Precautions page and observe all   instructions and precautions in this manual.

CODE 221 − WEAK BATTERY (WARNING) Reason: Effect:

POSSIBLE CAUSE 1. Refer to code 213.

CORRECTIVE ACTION Refer to code 213.

CODE 222 THRU 224 − ANNUNCIATOR FAULT #1 THRU #4 (WARNING) Reason: The nature of the fault is an optional customer selection. Effect: Warning.

POSSIBLE CAUSE 1. If there is no actual fault, the problem may be an external wiring problem.

CORRECTIVE ACTION Disconnect the signal lead from TB1 and rewet the control. Check the following pins. These connections are on the Universal Annunciator. •

CUST_FAULT #1 − TB1-1

CUST_FAULT #2 − TB1-2

CUST_FAULT #3 − TB1-3

If the message drops out, the external wiring has a short circuit. Grounding of either input activates fault.

CODE 225 − ANNUNCIATOR OUT CONFIGURATION ERROR (WARNING) Reason: Indicates that more then one network device is configured to activate one of the annunciator output relays. Effect: Warning.

POSSIBLE CAUSE

CORRECTIVE ACTION

1. Network configuration is bad.

Check setup of devices on the network against duplicate use of the same annunciator relay output.

2. Bad device on network.

Troubleshoot network for malfunctioning devices.

5-25

THIS PAGE LEFT INTENTIONALLY BLANK 

5-26

6. Control Adjustment and Service GENERAL

 Incorrect service or replacement of   parts can result in severe personal injury or  death, and/or equipment damage. Service per sonnel must be trained and experienced to perform electrical and mechanical service. WARNING

This section contains circuit board removal and replacement procedures and system parameter ad justment procedures for the genset control. This section also describes the function and operation of engine sensors, genset options, and other special features of the genset control system, such as, customer connection points, magnetic speed pickup unit and current transformers. Installation information is also provided for these items where necessary.

  HAZARDOUS VOLTAGE. The  PCC1301 control box must be opened only by  technically qualified personnel. Voltages of up to 600 VAC are present in the PCC box. These voltages can cause electrical shock, resulting  in personal injury. WARNING

6-1

CIRCUIT BOARD REMOVAL/REPLACEMENT

 Ignition of explosive battery gases can cause severe personal injury or death. Arc ing at battery terminals, light switch or other  equipment, flame, pilot lights and sparks can ig nite battery gas. Do not smoke, or switch trouble light ON or OFF near battery. Discharge  static electricity from body before touching batteries by first touching a grounded metal surface. WARNING

No special tools (other than a grounding wrist strap and InPower Service tool ) are required to remove a circuit board from inside the control box. The InPower Service tool is required when replacing the Base board.

Ventilate battery area before working on or near   battery—Wear goggles—Stop genset and disconnect charger before disconnecting battery  cables—Disconnect negative ( − ) cable first and   reconnect last.

Before replacing the Base board, make sure that a capture file of the genset’s parameter values has been created using InPower. (During genset installation, it was suggested that a capture file be made before and after changes were made to the genset operating parameters.)

 Disconnect battery charger from AC  source before disconnecting battery cables. Otherwise, disconnecting cables can result in voltage spikes damaging to DC control circuits of the genset. CAUTION

 After replacing the Base board, use the capture file as a template to write the previous settings to the new Base board software.

 Accidental starting of the generator   set can cause severe personal injury or death.  Prevent accidental starting by disconnecting the negative ( − ) cable from the battery terminal. WARNING

Refer to INPOWER User’s Guide for specifics.

Circuit Board Removal Safety Precautions CHASSIS GROUND SCREW

Turn off or remove AC power from the battery charger and then remove the negative ( −) battery cable from the set starting battery. This is to make sure that the set will not start while working on it and to avoid circuit board damage, caused by voltage spikes when removing and replacing circuit board connectors. To prevent circuit board damage due to electrostatic discharge (ESD), a grounding wrist strap must be worn when handling circuit boards or socketmounted IC’s. (The wrist strap does not provide a direct short to ground, but is typically rated at approximately 1 megohm to ground.)

WRIST STRAP

GROUND LEAD CLIP

 Attach the clip to the chassis ground screw in the control box and place the strap around your wrist before handling a circuit board.  Electrostatic discharge will damage circuit boards. Always wear a grounding wrist   strap when handling circuit boards or socket mounted IC’s. CAUTION

FIGURE 6-1. WRIST STRAP

6-2

SETUP MENU The Setup Menus menu (Figure 6-2) provides access to genset menus with system parameters that can be viewed and, if a password is entered, ad justed. The Setup “Password” menu is displayed when the “1“ button is pressed on the Service Menu (Figure 3-14). Pressing the VIEW button in the Setup “Password” menu, will display the 1st Genset Service menu (see Figure 6-3). Note that when viewing the Genset Service menus, the ADJUST button will not be displayed as shown in Figure 6-3.  After entering the password from the Setup “Password” menu, a second Setup menu is displayed that provides access to the following two categories of  genset adjust menus. •

Genset Service menus − Go to page 6-4.

Genset Setup menus − Go to page 6-25.

FIGURE 6-2. SETUP MENUS

6-3

To enter the Genset Service Menus password 574:

GENSET SERVICE MENUS

1. With the first character highlighted, press the button below to the + or − symbols until the value reads “5.”

In the following menu entry descriptions, the default parameter/value is not shown because the default value is subject to change by model. Always create and refer to the initial capture file for factory default settings of system parameters/values.

2. Press the arrow selection button to the next numeric character.

The Genset Service menus are available by pressing the (1) button in the Setup menu (see Figure 6-3).

3. Press the button below the + or − symbols until the value reads “7.” 4. Press the arrow selection button to the next numeric character.

This section covers Genset Service menus only. For information on Genset Setup menus, go to page 6-25.

6. After you have completed entering the password, press the arrow selection button . The first main Setup menu is displayed.  After the correct password is entered, it will be remembered until five minutes of button inactivity has elapsed. If five minutes of button inactivity has elapsed, you will have to re-enter the password to access and change the Genset Service submenus.

 Viewing and Adjusting Figure 6-3 is a block representation of the two Genset Service menus that are available from the Setup menu after the correct password has been entered. The Genset Service menus provide access to the following categories. Genset

Customer I/O

Meter Calibration

to move

5. Press the button below the + or − symbols until the value reads “4.”

If a password is entered, the settings in the Genset Service menus can be adjusted. However, if a password is not entered, these menus can still be viewed.

to move

Adjusting Values/Parameters Once the correct password has been entered after Genset Service (1) is selected on the Setup Menus menu, the first Genset Service menu is displayed. 1. Press the buttons above the and symbols in the digital display to navigate between submenus.

 Annunciator

Setup Password Menu

2. Press the ADJUST selection button to select the first parameter or value to be changed.

 Adjusting the Genset Service submenus is restricted to service personnel and a password must be entered to modify these menus.

3. Press the + or − selection buttons to adjust values or select parameters.

When the Password menu is displayed, the first numeric character (0) is highlighted (see Figure 6-3).

4. Press the arrow selection button to navigate to the next or previous adjustable value or parameter.

NOTE: When selected (highlighted), each character initially turns to “0” and the remaining characters turn to “X”.

5. After adjusting values/selecting parameters, press the SAVE button to save your settings.

NOTE: Make sure that each numeric character is correct before you move to the next character. If a wrong character is entered, you will not be able to go back and correct it. If the wrong password is entered, you will be able to view the Genset Service menus but you won’t be able to change them.

NOTE: If the button is pressed before pressing the SAVE button, the changes are not saved.

6. Press the Menu.

6-4

button to return to the Service

GENSET SERVICE MENUS

1ST GENSET SERVICE MENU

2ND GENSET SERVICE MENU

SEE PAGE 6-16

SEE PAGE 6-6

SEE PAGE 6-18

FIGURE 6-3. GENSET SERVICE MENUS

6-5

SEE PAGE 6-20

− The average engine speed (if a magnetic pickup unit is installed)

GENSET SERVICE SUBMENUS The Genset Service submenus are available by pressing the (1) button on the first Genset Service menu (see Figure 6-3).

− The average frequency − The charging alternator voltage (if the Charging Alt feature is enabled)

Appendix A provides a block diagram that illustrates the sequence of how the Genset Service Submenus are displayed.

The Charging Alt. Enable menu is used to enable or disable the Charging Alt feature. This menu provides a means to disable the control’s charging alternator logic if it is not supported by the alternator. If the alternator does not support this functionality, the Charger Failure warning (fault code 219) will constantly be displayed unless this setting is changed to “No.” When disabled (set to “No”), the start disconnect signal is based only on the average engine speed or frequency and the Charger Failure warning is disabled.

The Genset Service submenus consist of nine basic menus. •

Genset, Part 1

Genset, Part 2

Start/Stop Time Delays

Cycle Crank

Battle Short

 Automatic Voltage Regulator Setup

Electronic Governor

Genset Model and Serial Number

Display Setup

Start/Stop Delay Menu

The time delay after receiving a valid start signal, until the genset starts, can be adjusted. The time delay that the genset is allowed to run at rated speed after receiving a stop signal, until the genset stops, can also be adjusted. These time delays do not apply to manual start/runs.

Genset Menu, Part 1

The first genset menu displays the preset AC Voltage, genset frequency, number of phases, and phase type. •

Volts AC: Displays the AC voltage (190, 200, 208, 220, 230, 240, 380, 400, 416, 440, 460, or 480 VAC).

Hertz: Displays the genset frequency (50 or 60 Hz). The control selects limits, gains, and frequency values based upon this selection.

Start: The genset start time delay can be ad justed from 0 to 300 seconds.

Stop: The genset stop time delay can be ad justed from 0 to 600 seconds.

Cycle Crank Menu

No. of Phases: Displays the number of  phases (1 or 3).

The Cycle Crank menu allows for configuring the generator for all starting modes (manual and remote), as follows:

Phase: Displays the phase type (Delta or Wye).

Genset Menu, Part 2

Crank: The cranking period can be set from 3 to 30 seconds. This time limit is used to determine a Fail to Start status.

Rest: The minimum amount of time between crank attempts can be set from 0 to 60 seconds.

 Attempts: The maximum number of times the starter can be engaged when attempting to start the engine with cycle cranking can be set from 1 to 7 attempts.

The second genset menu allows for enabling or disabling glow plugs and charging alternators. •

Glow Plug: Allows control of Glow Plugs for a particular genset (Yes or No)

Charging Alt. Enable:

 A starter disconnect will occur whenever any one of the following three possible signals reaches its disconnect setpoint.

6-6

GENSET SERVICE SUBMENUS PART 1

PART 2

B

 A CONTINUED ON PAGE 6-9

FIGURE 6-4. GENSET SERVICE SUBMENUS (SHEET 1 OF 3)

6-7

Battle Short Menu

 AVR Setup Menu

(Only available on some models.) This menu is displayed only if the PC service tool has been used to enable the Battle Short feature. Before the Battle Short feature can be used, one of three available activation sources must be selected. If the activation source switch input is set to “Operator Panel,” then Battle Short functionality can be enabled or disabled with this menu. •

The AVR Setup menu is used to enable or disable the automatic voltage regulator. If enabled, two additional menus are displayed that can be used to adjust the AVR settings (see page 6-13). Electronic Governor Menu

Switch Input: The Switch Input can be set for Customer Input 1, Customer Input 2, Operator Panel, or None.

The engine Electronic Governor Enable menu is used to enable or disable the electronic governor on gensets with electronic governors and magnetic pickup sensors. If enabled (set to “Yes”), four additional menus are displayed that can be used to ad just governor settings (see page 6-15).

Battle Short: Battle Short functionality can be enabled or disabled (set to Active or Inactive). This subject will only be displayed if the switch input is set to “Operator Panel.”

6-8

GENSET SERVICE SUBMENUS (Continued) RETURN TO PAGE 6-7

 A

B THIS MENU IS ONLY DISPLAYED IF THE BATTLE SHORT FEATURE HAS BEEN ENABLED USING THE PC SERVICE TOOL “BATTLE SHORT:  ACTIVE/INACTIVE” IS ONLY DISPLAYED IF THE SWITCH INPUT IS SET TO “OPERATOR PANEL”

F

 YES

NO

OR

G

C GO TO AVR SETUP MENUS ON PAGE 6-13

IF AVR IS NOT ENABLED OR  YES

IF AVR IS ENABLED

NO OR

H E D

CONTINUED ON PAGE 6-11

GO TO GOVERNOR SETUP MENUS ON PAGE 6-15

FIGURE 6-4. GENSET SERVICE SUBMENUS (SHEET 2 OF 3)

6-9

GO TO PAGE 6-13

Genset Number Menu

The Genset Number menu is used to enter the genset’s model and serial numbers. Each allow up to 16 characters to be entered.

 Display Setup Menu

The Display Setup menu is used to set the display for Local (Auto/Off/Manual Run switch functions on the operator panel are turned on) or Remote (Auto/  Off/Manual Run switch functions on the operator panel are turned off).

6-10

Connection: A display can be set up to be Local or Remote.  Access Code: A display can be set up to require or not require entering the mode change access code. If enabled, an access code must be entered to change genset mode of operation (Auto, Manual Run or Off). Symbols: A display can be set up to display international symbols on the Operator menus.

GENSET SERVICE SUBMENUS (Continued) RETURN TO PAGE 6-9 G

E

FIGURE 6-4. GENSET SERVICE SUBMENUS (SHEET 3 OF 3)

6-11

AUTOMATIC VOLTAGE REGULATOR SUBMENUS

NOMINAL

The Automatic Voltage Regulator (AVR) submenus are available only if the AVR is enabled (see page 6-9).

KNEE FREQUENCY

NOMINAL (100%)

SLOPE VOLTAGE

VOLTAGE SETPOINT CURVE FREQUENCY

Two Automatic Voltage Regulator (AVR) submenus (see Figure 6-6) can be used to adjust Volts/Hz Rolloff and Regulator Gains settings.

FIGURE 6-5. KNEE FREQUENCY AND SLOPE

Volts/Hz Rolloff Menu

The Volts/Hz Rolloff function helps optimize the genset’s response to added load. If the engine speed drops below nominal frequency, the control automatically drops the voltage until the engine speed starts to recover. This menu allows for adjusting the knee frequency and voltage setpoint slope parameters. The knee frequency is the value below nominal frequency at which the rolloff function begins. For example, if the knee frequency is set to 5 Hz on a 60 Hz genset, this function begins when the frequency drops below 55 Hz.

V/Hz Knee: The Knee Frequency can be ad justed from 0.0 to 10.0 Hertz in 0.1 Hz increments. When generator set speed decreases by more than the value of the knee frequency, the generator set voltage decreases by the %/Hz value.

V/Hz Rolloff : The Rolloff setting can be ad justed from 0.0 to 5.0 percent of rated voltage, in 0.1% increments.

 Regulator Gains Menu

The Regulator menu allows for setting proportional Gain, Integral Gain, and Damping values.

Slope refers to how fast the voltage is rolled off below the knee frequency. The voltage is rolled off the slope percent setting for every 1 Hz below the knee. For example, on a 60 Hz genset, if the slope is set to 5% and the knee frequency is set to 5 Hz, then if the frequency drops to 54 Hz, the voltage set point is reduced 5%. If the frequency drops to 53 Hz, the voltage set point is reduced 10%, etc.

6-12

Gain: The proportional Gain (K1) multiplier can be set from 5 to 1000%. This allows for a scale factor of 0.05 to 10.0.

Int: The Integral Gain (K2) multiplier can be set from 5 to 1000%.

D: The Damping adjustment can be set from 95 to 105%.

AUTOMATIC VOLTAGE REGULATOR SUBMENUS

NOTE: These menus are only available if  the Automatic Voltage Regulator (AVR) is enabled (see page 6-9).

RETURN TO PAGE 6-9 F

C

H

K  RETURN TO PAGE 6-9

FIGURE 6-6. AUTOMATIC VOLTAGE REGULATOR SUBMENUS

6-13

ELECTRONIC GOVERNOR SUBMENUS

The Electronic Governor submenus are available only if the governor is enabled (see page 6-9).

Int: The integral governor gain (K2) multiplier can be set from 5 to 1000%.

D: The governor Damping adjustment can be set from 95 to 105%.

Four Electronic Governor submenus (see Figure 6-7) can be used to adjust governor settings.

Electronic Governor Menu

Governor Crank Fuel Menu

The Electronic Governor menu allows for setting Crank Exit Fuel DC, Dither Factor, and Damping values. This menu is displayed only if the governor has been enabled with the Engine Electronic Governor Enable menu.

The Governor Crank Fuel menu allows for setting the Initial Crank Fuel Duty Cycle, the Initial Crank Fueling Period, the Crank Fuel Ramp Rate, and the Maximum Crank Fuel Duty Cycle. •

Initial DC: The Initial Crank Fuel Duty Cycle is the initial value assigned to the Governor Duty Cycle parameter when cranking begins. This value can be set from 0 to 50 percent.

Initial Time: The Initial Crank Fueling Period is the amount of time for which the value of  Initial Crank Fuel Duty Cycle is assigned to the governor duty cycle after cranking begins. This value can be set from 0 to 10 seconds.

Ramp Rate: The Crank Fuel Ramp Rate is the rate at which the value of the Governor Duty Cycle is ramped up by during the Crank State, after expiration of the Initial Crank Fueling Period. This value can be set from 5 to 100. Max DC: The Maximum Crank Fuel Duty Cycle is the maximum level to which the Governor Duty Cycle should be limited to during a crank state. This value can be set from 50 to 100%.

Crank Exit Fuel DC:  The Crank Exit Fuel Duty Cycle is the value at which the governor duty cycle is held after disengaging the starter until the governor is enabled. This value can be set from 0 to 100%.

Dither Factor: Dither is a signal that is superimposed on the PWM (pulse with modulation) duty cycle to prevent the actuator valve from sticking. The Dither Factor is the dither percent added to the current duty cycle. The Dither Factor can be set from 0 to 30%. The dither function is disabled when the dither factor is set to 0%.

Ramp Time: This feature is used to set the minimum governor speed reference ramp rate. The governor Ramp Time can be set from 0.00 to 30.0 seconds, in 0.01 second increments.

Electronic Governor Enable Speed Menu

The Electronic Governor Enable Speed menu allows for setting the minimum and maximum governor duty cycle.

Electronic Governor Regulator Menu

The Electronic Governor Regulator menu allows for setting proportional Gain, Integral Gain, and Damping values. •

Gain: The proportional governor gain (K1) multiplier can be set from 5 to 1000%. This allows for a scale factor of 0.05 to 10.0.

6-14

Min. Gov DC: The Minimum Governor Duty Cycle can be set from 0 to 100%.

Max. Gov DC: The Maximum Governor Duty Cycle (with dithered value) can be set from 0 to 100%).

ELECTRONIC GOVERNOR SUBMENUS NOTE: These menus are only available if the governor is enabled (see page 6-9).

D

RETURN TO PAGE 6-9 G

E RETURN TO PAGE 6-11

FIGURE 6-7. ELECTRONIC GOVERNOR SUBMENUS

6-15

and fault name to be displayed for the two configurable customer outputs.

CUSTOMER I/O SUBMENUS The Customer I/O submenus are available by pressing the (2) button on the first Genset Service menu (see Figure 6-3).

Four Customer I/O submenus (see Figure 6-8) can be used to define customer input messages and output maps. •

Customer Inputs

The Customer Input Text message menus are used to enter an event type and description for two events. •

Type: Enter the event type (Warning, Shutdown or Event.

Enter a brief description of the event (up to 32 characters). Example inputs: Low Coolant Level, Low Fuel Pressure, Ground Fault, etc.

Number: Enter a code number 0 to 255 for the event. Refer to Table 5-3 which provides a list of all warning and shutdown codes. The following list contains event codes that are not shown in Table 5-3.

 A brief description of the event is automatically displayed. EVENT CODES

CODE

150 151 152 153 154 155 156 157 158 159 160 161 162

Customer Outputs

Two Customer Outputs are configurable to display common warning alarms. The two Customer Output Map menus allow for entering a fault number

6-16

DESCRIPTION

READY TO LOAD UTILITY CONNECTIONS GENSET CONNECTED NOT IN AUTO PTC TEST MODE ACTIVE COMMON ALARM COMMON WARNING COMMON SHUTDOWN CUSTOMER FAULT INPUT 1 CUSTOMER FAULT INPUT 2  ANNUNCIATOR FAULT 1  ANNUNCIATOR FAULT 2  ANNUNCIATOR FAULT 3

CUSTOMER I/O SUBMENUS

FIGURE 6-8. CUSTOMER I/O SUBMENUS

6-17

4. Calibrate voltage reading for L1  so that the reading on the display agrees with the calibrated voltmeter.

METERING SUBMENUS The Metering submenus are available by pressing the (3) button on the first Genset Service menu (see Figure 6-3).

5. After adjusting, press the SAVE button to save the setting.

Three Metering submenus (see Figure 6-9) can be used to adjust regulated voltage, frequency, line-toneutral voltage, and line current settings.

6. Shut the generator set OFF. 7. Repeat steps 1 through 6 for L2 and L3. (In step 1, attach meter to the AC output from L2 to L3 to calibrate L2, and L3 to L1 to calibrate  L3.)

 Meter Calib Menu

 Metering Current Adjust Menu

The Meter Calib menu allows for adjusting the actual output voltage of the genset. The percentage can be set from 90 to 110%. The alternator voltage is also shown on this menu.

The Metering Current Adjust menu allows for ad justing metered amps. 1. With the genset OFF, attach a calibrated ammeter to L1.

Freq. Adjust Menu

2. Start the genset and allow it to reach normal operating speed.

The Frequency Adjust menu allows for adjusting the genset frequency. The frequency can be adjust from −6.0 to +6.0 Hz. The actual frequency is also shown on this menu.

3. Display the Metering Current Adjust  menu. 4. Load the genset to maximum rated kVA at rated voltage.

 Metering Voltage Adjust Menu

The Metering Voltage Adjust menu allows for ad justing metered genset line voltage.

5. Calibrate the reading for  L1 current so that the reading on the display agrees with calibrated ammeter.

1. With the genset OFF, attach a calibrated voltmeter to the AC output from L1 to L2. (L1 to Neutral for single phase alternators.)

6. After adjusting, press the SAVE button to save the setting. 7. Shut the generator set OFF.

2. Start the genset and allow it to reach normal operating speed.

8. Repeat steps 1 through 7 for L2 and L3. (In step 1, attach meter to L2 to calibrate L2 current, and L3 to calibrate  L3 current.)

3. Display the Metering Voltage Adjust  menu.

6-18

METERING SUBMENUS

FIGURE 6-9. METERING SUBMENUS

6-19

ANNUNCIATOR SUBMENUS

 Annunciator Inputs

The annunciator has three possible customer-defined fault conditions that can be shown on the PCC 1301 display. The Annunciator Fault Text message menus are used to enter an event type and description for those three customer-defined annunciator faults.

The Annunciator submenus are available by pressing the (4)  button on the second Genset Service menu (see Figure 6-3). Seven annunciator submenus (see Figure 6-10) can be used to define three Annunciator Fault Text messages and four Annunciator Output Maps.

6-20

Type: Enter the event type (Warning, Shutdown or Event.

Enter a brief description of the event (up to 32 characters).

ANNUNCIATOR SUBMENUS

B

 A CONTINUED ON PAGE 6-23

FIGURE 6-10. ANNUNCIATOR SUBMENUS (SHEET 1 OF 2)

6-21

 Annunciator Outputs

EVENT CODES

 An annunciator has four custom (N.O.) relays that can be controlled by the PCC 1301. When a specified event becomes active, a message can be sent by the PCC 1301 to the annunciator to turn the relay on or off. Only one event per relay is allowed. The four annunciator outputs of the PCC 1301 are configurable to display common warning alarms. The four Annunciator Output Map menus allow for entering a fault number and fault name to be displayed for the configurable annunciator outputs. • Number: Enter a code number 0 to 255 for the event. Refer to Table 5-3 which provides a list of all warning and shutdown codes. The following list contains event codes that are not shown in Table 5-3. • Description: A brief description of the event is automatically displayed.

CODE

150 151 152 153 154 155 156 157 158 159 160 161 162

6-22

DESCRIPTION

READY TO LOAD UTILITY CONNECTIONS GENSET CONNECTED NOT IN AUTO PTC TEST MODE ACTIVE COMMON ALARM COMMON WARNING COMMON SHUTDOWN CUSTOMER FAULT INPUT 1 CUSTOMER FAULT INPUT 2  ANNUNCIATOR FAULT 1  ANNUNCIATOR FAULT 2  ANNUNCIATOR FAULT 3

ANNUNCIATOR SUBMENUS (Continued) RETURN TO PAGE 6-21  A

B

FIGURE 6-10. ANNUNCIATOR SUBMENUS (SHEET 2 OF 2)

6-23

THIS PAGE LEFT INTENTIONALLY BLANK 

6-24

GENSET SETUP SUBMENUS SETUP PASSWORD MENU

In the following menu entry descriptions, the default parameter/value is not shown because the default value is subject to change by model. Always create and refer to the initial capture file for factory default settings of system parameters/values.

The first Setup “Password” menu is displayed when the (1) button is pressed on the Service Menu. From the Setup Password menu, a Setup Menus menu is displayed that provides access to the following two categories of genset adjust menus. •

Genset Service menus − Go to page 6-4

Genset Setup menus

SETUP MENUS MENU

This section covers Genset Setup menus only. To access the Genset Setup menus: 1. Enter the password into the Setup Password Menu. Refer to page 6-4 to enter password.

GENSET SETUP PASSWORD MENU

2. Press the 2 button in the Setup Menus to display the Genset Setup Password Menu. 3. Enter the password into the Genset Setup menu − go to page 6-26 or press the View only button.

FIGURE 6-11. SETUP PASSWORD MENUS

6-25

 Viewing and Adjusting

4. Press the arrow selection button to the next numeric character.

Figure 6-12 is a block representation of the two Genset Setup menus that are available after the correct password has been entered or the View button is pressed in the Genset Setup Password menu. The Genset Setup menus provide access to the following categories. •

Genset

Voltage Protection

Current Protection

Engine Protection

to move

5. Press the button below the + or − symbols until the value reads “0.” 6. Press the arrow selection button to the next numeric character.

to move

7. Press the button below the + or − symbols until the value reads “9.” 8. After you have completed entering the pass. word, press the arrow selection button The first main Setup menu is displayed.  After the correct password is entered, it will be remembered until five minutes of button inactivity has elapsed. If five minutes of button inactivity has elapsed, you will have to re-enter the password to access and change Genset Setup menus.

Genset Setup Password Menu  Adjusting the Genset Setup menus is restricted to service personnel and a password must be entered to modify these menus.

Adjusting Values/Parameters Once the correct password has been entered on the Genset Setup Password menu, the first Genset Setup submenu is displayed.

Once the Genset Setup button (2) is selected on the Setup Menus menu (see Figure 6-11), the Genset Setup Password menu is displayed.

1. Press the buttons above the and symbols in the digital display to navigate between submenus.

When the Genset Setup Password menu is displayed, the first numeric character (0) is highlighted (see Figure 6-12).

2. Press the ADJUST selection button to select the first parameter or value to be changed.

NOTE: When selected (highlighted), each character initially turns to “0” and the remaining characters turn to “X”.

3. Press the + or − selection buttons to adjust values or select parameters.

NOTE: Make sure that each numeric character is correct before you move to the next character. If a wrong character is entered, you will not be able to go back and correct it. If the wrong password is entered, you will be able to view the Genset Setup menus but you won’t be able to change them.

4. Press the arrow selection button to navigate to the next or previous adjustable value or parameter. 5. After adjusting values/selecting parameters, press the SAVE button to save your settings.

To enter the Genset Setup password 1209:

NOTE: If the button is pressed before pressing the SAVE button, the changes are not saved.

1. With the first character highlighted, press the button below to the + or − symbols until the value reads “1.” to move

6. Press the button to return to the genset Setup Menus menu.

3. Press the button below the + or − symbols until the value reads “2.”

7. To return to the Service Menu from the genset Setup Menus menu, press the button.

2. Press the arrow selection button to the next numeric character.

6-26

GENSET SETUP MENUS

1ST GENSET SETUP MENU

2ND GENSET SETUP MENU

SEE PAGE 6-35

SEE PAGE 29

SEE PAGE 2-37

FIGURE 6-12. GENSET SETUP MENUS

6-27

SEE PAGE 2-39

GENSET SUBMENUS

Standby kVA Rating Menu

The kVA Rating menu displays the kVA rating of  single-phase or three-phase, 50 or 60 hertz standby genset systems. These value are used by the control to determine what is 100% load. The values must match the kVA rating of the genset application and cannot be more than 2000 kVA.

The Genset submenus are available by pressing the (1) button on the first Genset Setup menu (see Figure 6-12). Appendix A provides a block diagram that illustrates the sequence of how the Genset Setup Submenus are displayed.

Figure 6-13 (3 sheets) is a block representation of  the Genset Submenus.

 3Ph/50Hz: The three phase, 50 Hertz rating can be set from 0 to 2000 kVA.

 3Ph/60Hz: The three phase, 60 Hertz rating can be set from 0 to 2000 kVA.

Genset Menu

The Genset menu is used to set the CT Ratio, enable the Magnetic Pickup Unit (MPU), set the number of teeth pulses per revolution on the Flywheel, and set the Speed/Frequency Ratio. •

MPU Enable: Displays whether or not the Magnetic Pickup Unit is installed (Yes or No).

Fly. Teeth: The total number of teeth pulses per revolution on the flywheel (used for electronic governed systems) can be set from 0 to 256.

1Ph/50Hz: The single phase, 50 Hertz rating can be set from 0 to 2000 kVA.

1Ph/60Hz: The single phase, 60 Hertz rating can be set from 0 to 2000 kVA.

 Prime kVA Rating Menu

CT Ratio: The CT Ratio value must be set to match the CT Ratio of the current transformers on the genset.

The kVA Rating menu displays the kVA rating of  single-phase or three-phase, 50 or 60 hertz prime genset systems. These value are used by the control to determine what is 100% load. The values must match the kVA rating of the genset application and cannot be more than 2000 kVA.

RPM/Hz Ratio: Allows for setting the Speed/  Frequency Ratio to 20, 30, or 60 RPM/Hz.

 Application Rating Select Menu

The genset application rating can be set to either Standby or Prime.

6-28

 3Ph/50Hz: The three phase, 50 Hertz rating can be set from 0 to 2000 kVA.

 3Ph/60Hz: The three phase, 60 Hertz rating can be set from 0 to 2000 kVA.

1Ph/50Hz: The single phase, 50 Hertz rating can be set from 0 to 2000 kVA.

1Ph/60Hz: The single phase, 60 Hertz rating can be set from 0 to 2000 kVA.

GENSET SUBMENUS

B

 A CONTINUED ON PAGE 6-31

FIGURE 6-13. GENSET SETUP SUBMENUS (SHEET 1 OF 3)

6-29

is displayed is dependent upon the battery voltage entered in the Battery Select menu.

Battery Select Menu

The Battery Select menu is used to set the nominal battery voltage. •

Low Batt: The low battery voltage threshold can be set from 11.0 to 13.0 VDC for 12 volt batteries and from 22.0 to 27.0 VDC for 24 volt batteries, in 0.1 VDC increments.

High Batt: The high battery voltage threshold can be set from 14.0 to 17.0 VDC for 12 volt batteries and from 28.0 to 34.0 VDC for 24 volt batteries, in 0.1 VDC increments.

Weak Batt: The weak battery voltage threshold can be set from 6.0 to 10.0 VDC for 12 volt batteries and from 12.0 to 16.0 VDC for 24 volt batteries, in 0.1 VDC increments.

Nominal Battery Voltage: Allows for setting the nominal battery voltage (12 or 24V).

Battery Thresholds Menus

The Battery Thresholds menu is used to set the low and high voltage values to determine when the battery voltage is out of the set range during normal operation. This menu is also used to determine when the battery voltage is below weak battery thresholds during cranking. The Battery Thresholds menu that

6-30

GENSET SUBMENUS (Continued) RETURN TO PAGE 6-29  A

B

12V

24V OR

D

C CONTINUED ON PAGE 6-33

FIGURE 6-13. GENSET SETUP SUBMENUS (SHEET 2 OF 3)

6-31

D

Battery Delay Setup Menu

Oil Pressure Setup Menus

This menu is used to determine when, after determining that the battery condition is out of the preset operating range, a warning message is announced.

 A menu is available to set the sensor type. If the sensor type is Switch, then another menu is available to set the sensor polarity. If the sensor type is Sender, then another menu is available to set the sender type.

L. Batt TD:  A time delay from 2 to 60 seconds can be set before the Low Battery warning message (fault code 213) is announced. H. Batt TD:  A time delay from 2 to 60 seconds can be set before the High Battery warning message (fault code 214) is announced. Wk Batt TD:  A time delay from 1 to 5 seconds can be set before the Weak Battery warning message (fault code 221) is announced.

6-32

Sensor Type: The sensor type can be set for either Switch or Sender.

Sensor Polarity: This menu is displayed only if the sensor type is set to Switch. Sensor polarity can be set to either Active Low or Active High.

Sender Type: This menu is displayed only if  the sensor type is set to Sender. The sender type can be set to either 2 Wire or 3 Wire.

GENSET SUBMENUS (Continued) RETURN TO PAGE 6-31 C

D

SWITCH

SENDER OR

FIGURE 6-13. GENSET SETUP SUBMENUS (SHEET 3 OF 3)

6-33

 VOLTAGE PROTECTION SUBMENUS

Overfrequency Menu

The Voltage Protection submenus are available by pressing the (2)  button on the first Genset Setup menu (see Figure 6-12).

This menu is used to determine when an overfrequency fault condition exists and for how long the fault condition should be present before the engine is shut down.

Figure 6-14 is a block representation of the four Voltage Protection submenus that are available.

Overfrequency Threshold: This threshold is used to set the amount of Hertz that the alternator line frequency can be over to activate an Overfrequency fault condition. This value can be set from 2 to 10 Hz.

Overfrequency Delay: A time delay of 100 to 2000 half cycles must expire before the engine shuts down because of an overfrequency fault condition. If the fault condition is active for the duration of this time delay, the engine shuts down and the Overfrequency shutdown message (fault code 14) is announced.

 High AC Voltage Menu

This menu is used to determine when a high AC voltage fault condition exists and for how long the fault condition should be present before the engine is shut down. •

High AC Voltage Threshold: This threshold is used to set the percentage of desired voltage necessary to activate a High AC Voltage fault condition. This value can be set from 105 to 125%.

High AC Voltage Time Delay: A time delay of  1 to 10 seconds must expire before the engine shuts down because of a high AC voltage fault condition. If the fault condition is active for the duration of this time delay, the engine shuts down and the High AC Voltage shutdown message (fault code 12) is announced.

Underfrequency Menu

This menu is used to determine when an underfrequency fault condition exists and for how long the fault condition should be present before the engine is shut down.

Low AC Voltage Menu •

Underfrequency Threshold: This threshold is used to set the Hertz number that the alternator line frequency can be under to activate an Underfrequency fault condition. This value can be set from 2 to 10 Hz.

Underfrequency Time Delay: A time delay of  500 and 2000 half cycles must expire before the engine shuts down because of an underfrequency fault condition. If the fault condition is active for the duration of this time delay, the engine shuts down and the Underfrequency shutdown message (fault code 15) is announced.

This menu is used to determine when a low AC voltage fault condition exists and for how long the fault condition should be present before the engine is shut down. •

Low AC Voltage Threshold: This threshold is used to set the percentage of desired voltage necessary to activate a Low AC Voltage fault condition. This value can be set from 50 to 95%.

Low AC Voltage Time Delay: A time delay of  2 to 20 seconds must expire before the engine shuts down because of a low AC voltage fault condition. If the fault condition is active for the duration of this time delay, the engine shuts down and the Low AC Voltage shutdown message (fault code 13) is announced.

6-34

 VOLTAGE PROTECTION SUBMENUS

FIGURE 6-14. VOLTAGE PROTECTION SUBMENUS

6-35

CURRENT PROTECTION SUBMENUS

 High AC Current Shutdown Menu

The Current Protection submenus are available by pressing the (3)  button on the first Genset Setup menu (see Figure 6-12).

This menu is used to determine when a high AC current shutdown fault condition exists and for how long the fault condition should be present before the engine is shut down.

Figure 6-15 is a block representation of the two Current Protection submenus.  High AC Current Warning Menu

This menu is used to determine when a high AC current warning fault condition exists and for how long the fault condition should be present before the High AC Current warning message is announced. •

H. Curr Warning Threshold: This threshold is used to set the percentage of rated AC current at which the High AC Current warning fault condition becomes active. This value can be set from 110 to 130%. H. Curr Warning Time Delay: A time delay of  10 to 60 seconds must expire before a warning message is announced. If the fault condition is active for the duration of this time delay, the High AC Current warning message (fault code 216) is announced.

6-36

H. Curr Shutdown Threshold: This threshold is used to set the percentage of rated AC current at which the High AC Current shutdown fault condition becomes active. This value can be set from 130 to 190%.

H. Curr Shutdown Time Delay: A time delay of 2 to 60 seconds must expire before the engine shuts down because of a high AC current fault condition. If the fault condition is active for the duration of this time delay, the engine shuts down and the High AC Current shutdown message (fault code 46) is announced.

CURRENT PROTECTION SUBMENUS

FIGURE 6-15. CURRENT PROTECTION SUBMENUS

6-37

ENGINE PROTECTION SUBMENUS

Engine Protection Speed/Frequency Menu

This menu is used to determine when a speed/frequency conflict shutdown fault condition exists and for how long the fault condition should be present before the engine is shut down.

The Engine Protection submenus are available by  (4) button on the second Genset Setup pressing the (4) menu (see Figure 6-12). The Engine Protection submenus (see Figure 6-16) are used to set thresholds to determine when engine fault conditions exist and time delays to determine how long a fault condition is present before the fault message is announced and, if necessary, shut down the engine.

Speed/Freq Fault Threshold: This threshold is used to set the value necessary to activate the speed/frequency conflict shutdown fault condition. This value can be set from 0.1 to 20.0 Hz.

Speed/Freq Fault Time Delay: A time delay of 0.2 to 10.0 seconds must expire before the warning message is announced because of a speed/frequency conflict shutdown fault condition. If the fault condition is active for the duration of this time delay, the genset is shut down and the Speed Hz Match shutdown message (fault code 71) is announced.

Engine Protection Overspeed Menu

This menu is used to set the value necessary necessary to shut down the genset and activate an Overspeed shutdown message (fault code 31) on 50 and 60 Hz gensets, indicating that the engine has exceeded normal operating speed. •

Low Oil Pressure Warning Menu

This menu is used to determine when a low oil pressure warning fault condition exists and for how long the fault condition must be present before the warning message is announced.

Overspeed (50Hz) Threshold: This threshold is used to set the overspeed value necessary to activate an Overspeed shutdown fault condition on 50 Hz gensets. This value can be set from 0 to 8192 RPM, in 25 RPM increments. Overspeed (60Hz) Threshold: This threshold is used to set the overspeed value necessary to activate an Overspeed shutdown fault condition on 60 Hz gensets. This value can be set from 0 to 24,096 RPM, in 25 RPM increments.

6-38

LOP Warning Threshold: This threshold is used to set the oil pressure value necessary to activate a Pre-Low Oil Pressure warning fault condition. This value can be set from 0 to 100 psi.

LOP Warning Time Delay: A time delay of 2 to 15 seconds must expire before the warning message is announced because of a low oil pressure warning fault condition. If the fault condition is active for the duration of this time delay, the Pre-Low Oil Pressure warning message (fault code 215) is announced.

ENGINE PROTECTION SUBMENUS

B

 A CONTINUED ON PAGE 6-41

FIGURE 6-16. ENGINE PROTECTION SUBMENUS (SHEET 1 OF 3)

6-39

Low Oil Pressure Shutdown Menu

This menu is used to determine when a low oil pressure shutdown fault condition exists and for how long the fault condition should be present before the engine is shut down. •

LOP Shutdown Threshold: This threshold is used to set the oil pressure value necessary to activate a Low Oil Pressure Shutdown fault condition. This value can be set from 0 to 100 psi.

 High Coolant Temperature Shutdown Menu

This menu is used to determine when a high coolant temperature shutdown fault condition exists and for how long the fault condition should be present before the engine is shut down.

LOP Shutdown Time Delay: A time delay of 2 to 15 seconds must expire before the engine shuts down because of a low oil pressure fault condition. If the fault condition is active for the duration of this time delay, the engine shuts down and the Low Oil Pressure shutdown message (fault code 2) is announced.

HCT Shutdown Threshold: This threshold is used to set the temperature value necessary to activate a High Coolant Temperature Shutdown fault condition. This value can be set from 200 to 230 degrees F.

HCT Shutdown Time Delay:  A time delay of 2 to 10 seconds must expire before the engine shuts down because of a high coolant temperature fault condition. If the fault condition is active for the duration of this time delay, the engine shuts down and the High Coolant Temperature shutdown message (fault code 1) is announced.

 High Coolant Temperature Warning Menu

This menu is used to determine when a high coolant temperature warning fault condition exists and for how long the fault condition should be present before the warning message is announced. •

HCT Warning Time Delay:  A time delay of 2 to 10 seconds must expire before the warning message is announced. If the fault condition is active for the duration of this time delay, the High Coolant Temperature warning message (fault code 202) is announced.

HCT Warning Threshold: This threshold is used to set the temperature value necessary to activate a High Coolant Temperature Warning fault condition. This value can be set from 180 to 220 degrees F.

6-40

ENGINE PROTECTION SUBMENUS (Continued) RETURN TO PAGE 6-39  A

B

D

C CONTINUED ON PAGE 6-43

FIGURE 6-16. ENGINE PROTECTION SUBMENUS (SHEET 2 OF 3)

6-41

The fault condition exists when either the low or high threshold is reached.

Engine Protection Low Coolant Temperature  and Battery Charger Menus

The low coolant temperature menu is used to determine when the genset’s coolant temperature is too low and a Low Coolant Temperature warning message (fault code 203) is announced. This warning message is not announced unless the coolant temperature has been determined to be low for one minute. •

LCT Warning Threshold: This threshold is used to set the temperature value necessary to activate a Low Coolant Temperature Warning fault condition. This value can be set from 32 to 100 degrees F.

These charging menus are used to determine when the alternator charger failure condition exists and when the warning message should be announced.

6-42

Charger Failed H Threshold: This threshold is used to set the high charging alternator voltage value. This value can be set from 13.0 to 20.0 VDC for 12V units and from 25.0 to 40.0 VDC for 24V units.

Charger Failed L Threshold: This threshold is used to set the low charging alternator voltage value. This value can be set from 2.0 to 13.0 VDC for 12V units and from 2.0 to 25.0 VDC for 24V units.

Charger Failed Time Delay: A time delay of  2 to 300 seconds must expire before the warning message is announced. If the fault condition is active for the duration of this time delay, the Charger Failure warning message (fault code 219) is announced.

ENGINE PROTECTION SUBMENUS (Continued) RETURN TO PAGE 6-41 C

D

FIGURE 6-16. ENGINE PROTECTION SUBMENUS (SHEET 3 OF 3)

6-43

TB1 BASE BOARD CUSTOMER CONNECTIONS The PCC Base board (Figure 6-17) provides connection points (TB1) for remote control and monitor options.

Status, Warning or Shutdown. Default = Warning.

Enter a brief description of the event (up to 32 characters).

TB1 Customer Inputs

The InPower service tool or access to the Genset Service Menus is required to modify the customer fault inputs.

Available options will vary between PCC1301 control models (PCC with or without display).

TB1 Customer Outputs

Refer to Page 9-6 for typical connections to TB1.

Available options will vary between PCC1300 control models (PCC with or without display).

 Remote Start: When the control is in Auto/Remote mode, grounding this input initiates the engine cranking and start sequence. This circuit must be opened to permit resetting a shutdown condition with the Reset input. (The remote stop is actually the removal of the remote start signal to the control.)

Refer to Page 9-6 for typical connections to TB1. Customer Outputs 1 and 2: One set of normally open (NO) contacts, rated for 2 amps at 30 VDC for each of the two output signals. The relays can be used to control small devices and indicator lamps.

Local/Remote Emergency Stop: Grounding this input causes an immediate shutdown. Emergency stop must be reset at the front panel.

The nature of the customer output signal (contacts closed) is an optional customer selection. Example outputs: Genset running (event), common warning, common shutdown, etc. (Refer to Table 5-3 for the warning and shutdown code listing and page 5-3 for the event code listing.)

Customer Fault Inputs 1 and 2:  Grounding any one of these inputs activates the corresponding warning or shutdown sequence.

External sensing equipment must be connected to the designated digital input.

Each relay can be independently programmed to energize by entering the a code number (0 through 255, default = 0) for the desired event.

The nature of the fault is an optional customer selection. Example inputs: Low Coolant Level, Low Fuel Pressure, Ground Fault, etc.

The InPower service tool or access to the Genset Service Menus is required to modify the customer outputs.

Each of the two fault functions can be programmed as follows:

TB1

BASE BOARD

FIGURE 6-17. CONTROL BOX 

6-44

ENGINE SENSORS

Oil Sensor

Figure 6-18 shows the locations of the coolant temperature and oil pressure senders.

The oil pressure sensing device is a capacitive oil pressure sender.

Coolant Temperature Sensor

The output signal of the capacitive sender is approximately 0.5 VDC at 0 psi and 4.5 VDC at 100 psi. This sender enables the Base board to detect pre-low (Warning) and low oil pressure (Shutdown).

The coolant temperature sensing device is a resistive temperature sender (700 to 1804 ohms [0 to 230 degree F]). With 5VDC supplied to the sensor, the output signal (which varies with temperature) is supplied to the Base board. The coolant sender enables the Base board to detect low, pre-high and high coolant temperatures.

OIL SENDER

TEMPERATURE SENDER

FIGURE 6-18. ENGINE SENSORS

6-45

MAGNETIC SPEED PICKUP UNIT (MPU) INSTALLATION To install the MPU sensor, bar the engine until a gear tooth on the flywheel lines up in the center of  the mounting hole. Thread the sensor in gently by hand until it just touches the gear tooth. Back it out one quarter turn and set the locknut.

MPU SENSOR

To troubleshoot the MPU, refer to fault code 45 in Section 5.  Do not use fan blade to bar over en gine. That can damage blades and cause property damage and personal injury. CAUTION

ENGINE FLYWHEEL RING GEAR

FIGURE 6-19. MPU SENSOR

6-46

CURRENT TRANSFORMER (CT) INSTALLATION

CT Installation Requirements:

 A. The CT has a dot on one side. This dot must be facing toward the generator reconnection terminal block (conventional current flowing into the dot). A dot is also used to indicate pin 1 of  the CT.

The optional current transformers (CT’s) are used to display genset load in kVA and alternator amperage. The CT’s must be installed as noted in the following CT Installation Requirements.

B. Route the load lead (U, V or W) through the appropriate CT (refer to Reconnection Diagram).

Refer to the Reconnection Diagram to identify the generator output leads/phase that must be routed through each CT, and also appropriate transformer post selection for control sensing leads. The transformers are labeled CT1, CT2 and CT3 on the reconnection wiring diagram. (The Reconnection Diagram is located on the control box cover.)

C. The CT’s have dual secondaries (3 pins). The CT secondary wire marked 1 is connected to pin 1 of the CT. CT secondary wire marked 2/3 is connected to pin 3 for low voltage gensets. (Refer to Reconnection Diagram.)

6-47

THIS PAGE LEFT INTENTIONALLY BLANK 

6-48

7. Servicing the Generator GENERAL

 sonnel must must be trained trained and experien experienced ced to perform electrical and mechanical service.

This section describes how to isolate a voltage fault to the Base board or generator, and the procedures to test, disassemble and reassemble the generator (Figure 7-1).

  HAZARDOUS VOLTAGE. The  PCC1301 control box must be opened only by  technically qualified personnel. Voltages of up to 600 VAC are present in the PCC box. These voltages can cause electrical shock, resulting  in personal injury. WARNING

 Incorrect service or replacement of   parts can result in severe personal injury or  death, and/or equipment damage. Service perWARNING

END COVER

STATOR LEADS

STATOR

DRIVE DISC

ROTOR SHAFT BEARING

MAIN ROTOR

O-RING

EXCITER ROTOR

END BELL

COOLING BLADES

EXCITER STATOR

THROUGH STUD

FIGURE 7-1. GENERATOR

7-1

4. Bring two jumpers jumpers from a 12 volt volt battery for for connection to the excitor stator F1 (Field +) and F2 (Field −) leads.

GENERATOR/BASE BOARD ISOLATION PROCEDURE The following procedure is used to determine if the generator or the control Base board is causing a voltage fault condition.

Connect the jumper from the positive ( +) post of the battery to the F1 lead. Be prepared to connect the jumper from the negative ( −) post of the battery to the F2 lead. If one of the 12 volt cranking batteries is used, bring the jumpers from the battery connected on the grounded side of the system to avoid inadvertently imposing 24 volts on the system.

1. Throw Throw the line circuit circuit breaker breaker OFF  and shut down the set.  This test involves unregulated  excitation excita tion of the generator. generator. To prevent dam age to the generator due to overcurrent,  make sure that that all loads loads have been discon nected and that all faults faults have have been been cleared  cleared  from the power output terminals of the generator. CAUTION

5. Check polarity polarity again. Polarity must must be correct correct or this test will be inconclusive because the induced and residual magnetic polarities in the exciter stator will be opposed.

  HAZARDOUS VOLTAGE. Touching uninsulated parts inside the control box can result in severe personal injury  or death. Measurements and adjustments  must be done with care to avoid touching  hazardous voltage parts. WARNING

Genset may shut down on a fault condition within 5 to 15 seconds due to the excitor stator leads being disconnected from the Base board. Clear fault and start genset to check next phase.

6. Start the set set and connect connect the jumper from the the battery negative ( −) terminal to the F2 lead.

Stand on a clean, dry wooden platform or   rubber insulating mat, make sure your  clothing and shoes are dry, remove jewelry   and use tools with insulated handles.

7. The generator generator circuitry is probably probably okay if rated output voltage or higher is obtained and the voltages for all phases are balanced when the exciter is powered by a 12 volt battery. Refer to Section 4 to troubleshoot the PCC control circuitry. (Normal excitation voltage ranges from approximately 10 VDC at no-load to approximately 40 VDC at full −load.)

2. Remove the end end bell cover cover from the generator generator to access the exciter stator leads ( F1 and F2). Disconnect the F1 and F2 leads from the stator connection board (quick connect type connectors). (See Figure 7-2.) 3. Remove the top top cover of of the control control box box to access generator load connection terminal block. Prepare to measure output voltage across the generator terminal block while the set is running.

8. If the voltages voltages are unbalanced, unbalanced, troubleshoot troubleshoot the main stator first. If the voltages are uniformly low, troubleshoot the exciter and field circuits first. Perform the Winding Resistance Test  pro procedure for the desired windings as noted in this section.

7-2

TESTING THE GENERATOR

Insulation Resistance Testing The insulation resistance test should be performed before the initial start-up of the generator set or when low insulation is suspected, e.g. damp or wet windings.

These tests can be performed without removing the generator. Before starting tests, disconnect the negative (−) cable from the battery to make sure the engine will not start while performing these tests.

 A 500 VAC megger is recommended for insulation testing. A test consists of applying the test potential between the winding and ground (winding laminations).

 Ignition of explosive battery gases can cause severe personal injury or death. Arc ing at battery terminals, light switch or other  equipment, flame, pilot lights and sparks can ig nite battery gas. Do not smoke, or switch trouble light ON or OFF near battery. Discharge  static electricity from body before touching batteries by first touching a grounded metal surface. WARNING

Resistance values of at least 5 megohms should be obtained for a new generator with dry windings. For a set that has been in service, the resistance reading should not be less than 1 megohm. If low readings are obtained, the cause should be investigated and corrected before the generator set is returned to service.

Ventilate battery area before working on or near   battery—Wear goggles—Stop genset and disconnect charger before disconnecting battery  cables—Disconnect negative ( − ) cable first and   reconnect last.

If moisture is determined to be the cause of low test readings, a winding drying process will be required.  Megger Testing:  Disconnect plugs P12 and P13 from the Base board and perform the insulation resistance test for the desired windings as noted in this section.

 Disconnect battery charger from AC  source before disconnecting battery cables. Otherwise, disconnecting cables can result in voltage spikes damaging to DC control circuits of the set. CAUTION

 Drying the Windings: If low readings are obtained or the set has been in standby for a long time in high humidity conditions, the windings should be dried out and the test repeated. Use the generator standby heaters (if so equipped) or blow warm air through the generator with a fan.

 Accidental starting of the generator   set can cause severe personal injury or death.  Prevent accidental starting by disconnecting the negative ( − ) cable from the battery terminal. WARNING

7-3

between exciter stator leads F1 and F2 with a digital ohmmeter. Replace the exciter stator if winding resistance is not 13 to 16 ohms.

Exciter Stator Winding Insulation Resistance:   Disconnect exciter stator leads F1 and F2 from their connectors in the AC generator wiring harness, isolate them from ground, connect either one to the megger and conduct the test as instructed under Testing Winding Insulation Resistance.

Flashing the Field: If necessary, flash the exciter field before or after installation. Apply 12 VDC for one to two seconds to the F1 and F2 leads of the exciter stator. The generator must be shut down, and the Base board disconnected. See the diagram.

Winding Resistance: Measure winding resistance

END BELL CASTING NUMBER MUST BE UP WHEN REASSEMBLING

EXCITER STATOR LEADS F1 AND F2

STATOR MOUNTING SCREWS 8 LB-FT (11 N-M) TORQUE

BEARING BORE O-RING

 — FLASHING THE FIELD —   APPLY 12 VDC FROM A BATTERY TO THE EXCITER STATOR FOR 1 TO 2 SECONDS WITH THE F1 AND F2 LEADS DISCONNECTED FROM THE BASE BOARD

+ F1

DIODE 12 VDC BATTERY

EXCITER STATOR

BASE BOARD

F2

− FIGURE 7-2. EXCITER STATOR AND END BELL

7-4

DISCONNECT BASE BOARD LEADS TO EXCITER STATOR

Exciter Rotor and Rotating Rectifiers

CR6). Each assembly has a field terminal ( F1+ or F2−) for connecting the leads from the main rotor (generator field) and voltage suppressor.

Winding Insulation Resistance: Disconnect all six exciter rotor leads from diode terminals CR1 through CR6 and isolate them from ground. Connect any lead to the megger and conduct the test as instructed under Testing Winding Insulation Resistance.

Diode Resistance: Using a digital ohmmeter, measure electrical resistance between diode terminals CR1, CR2 and CR3 and field terminal F1+ on the positive diode assembly and between diode terminals CR4, CR5 and CR6 and field terminal F2− on the negative diode assembly. Reverse the meter test probes and repeat the tests. The electrical resistance across each diode should be high in one direction and low in the other. If the resistance is high or low in both directions, replace the whole diode assembly.

Winding Resistance: With a Wheatstone bridge, measure electrical resistance across each pair of  rotor windings: T11-T12, T21-T22, T12-T13, T22-T23, T13-T11 and T23-T21. See the connection schematic. Replace the whole rotor shaft assembly if the resistance of any winding is not 0.52 to 0.64 ohms.

Replacing Diode Assembly:   Make sure the replacement diode assembly is of the correct polarity, positive (+) or negative ( −). Then disconnect all leads from the defective diode assembly and remove the two mounting screws. Mount the new diode assembly, reconnect all leads and torque the terminal screws to 24 lb-in (2.6 N-m).

The rotating rectifier assembly is mounted on the back face of the exciter rotor. It consists of one positive (+) and one negative ( −) diode assembly. Each assembly carries three diodes in an epoxy potting. Each diode has a terminal for connecting the appropriate lead from the exciter rotor ( CR1 through ONE OF SIX DIODE TERMINALS FOR CONNECTING THE EXCITER WINDING LEADS. TORQUE THE TERMINAL NUTS TO 24 LB-IN (2.6 N-M) AND USE A FLAT WASHER TO PROTECT THE LEAD CONNECTOR

POSITIVE (+) DIODE ASSEMBLY—MOUNT ON LEFT-HAND SIDE WHEN ROTOR KEY IS UP

NEGATIVE (−) DIODE ASSEMBLY—MOUNT ON RIGHT-HAND SIDE WHEN ROTOR KEY IS UP

ONE OF TWO MOUNTING SCREWS FOR EACH DIODE  ASSEMBLY

TERMINALS F1+ AND F2− ARE FOR CONNECTING THE MAIN ROTOR AND VOLTAGE SUPPRESSOR LEADS—TORQUE THE TERMINAL NUTS TO 24 LB-IN (2.6 N-M)

CONNECTION DIAGRAM

FIGURE 7-3. ROTATING RECTIFIER ASSEMBLY 

7-5

Main Rotor And Surge Suppressor

Winding Resistance: Measure electrical resistance between the two main rotor leads with a digital ohmmeter. Replace the rotor if the resistance is not as specified in Table 7-1.

Winding Insulation Resistance: Disconnect the main rotor and voltage suppressor leads from terminals F1+ and F2+ on the rotating rectifier assemblies and isolate them from ground. Tag and mark each lead with its terminal number ( F1+ or F2+).

Surge Suppresser:  A voltage suppressor is mounted on the rotor shaft between the main rotor and the exciter rotor. Its leads are connected to terminals F1+ and F2− on the rotating rectifier assemblies. Disconnect the leads from their terminals and measure resistance between the leads with a digital ohmmeter. Replace the whole rotor shaft assembly if resistance is not infinite on the highest scale of the meter.

 Because of the opposing residual   magnetism of the rotor, it might be difficult to reestablish self excitation if the polarity of the  main rotor leads is reversed upon reassembly. CAUTION

Connect either or both leads to the megger and conduct the test as instructed under Testing Winding Insulation Resistance.

Reconnect the rotor and surge suppressor leads and torque the terminals to 24 lb-in (2.7 N-m) when reassembling.

TWO SETS OF LEADS—FOR THE MAIN ROTOR AND FOR A SURGE SUPPRESSOR—PASS THROUGH THE EXCITER ROTOR AND ARE CONNECTED TO THE F1+ AND F2− TERMINALS ON THE ROTATING RECTIFIER ASSEMBLY. DISCONNECT THE LEADS FROM THE TERMINALS WHEN TESTING THE MAIN ROTOR WINDINGS AND THE SURGE SUPPRESSOR.

MAIN ROTOR

EXCITER ROTOR

FIGURE 7-4. MAIN ROTOR

7-6

Main Stator Winding Insulation Resistance: Test each winding separately. Disconnect the winding lead from its grounded neutral connection and isolate it (see reconnection drawing). Leave the other windings grounded. Connect either or both winding leads to the megger and conduct the test as instructed under Testing Winding Insulation Resistance.

MEASURE WINDING RESISTANCE BETWEEN LEAD PAIRS.

Winding Resistance:  Disconnect all main stator leads from the terminals to which they are connected. Using a Wheatstone bridge having at least 0.001 ohm precision, measure electrical resistance across each pair of stator leads. Replace the stator if the resistance of any winding is not as specified in Table 7-1.

The resistances measured across lead pairs on  4-lead generators should be twice the value in Table 7-1 since each lead pair is connected to two winding coil groups, which are connected in series.

FIGURE 7-5. MAIN STATOR WINDINGS

7-7

TABLE 7-1. MAIN STATOR AND ROTOR WINDING RESISTANCES REFERENCE LENGTH MILLIMETERS (INCHES)1

REFERENCE STACK  LENGTH MILLIMETERS (INCHES)1

MAIN STATOR WINDING RESISTANCE OHMS2

MAIN ROTOR WINDING RESISTANCE OHMS2

4-Lead Generators (Single-Phase) 349 (13.7)

73 (2.88)

0.179-0.197

2.57-3.10

364 (14.3)

87 (3.44)

0.127-0.141

1.88-2.30

386 (15.2)

110 (4.31)

0.080-0.088

2.12-2.59

422 (16.6)

146 (5.75)

0.053-0.059

2.48-3.03

454 (17.9)

178 (7.00)

0.039-0.043

1.78-2.18

12-Lead Generators (Three-Phase) 349 (13.7)

73 (2.88)

0.417-0.461

2.57-3.10

364 (14.3)

87 (3.44)

0.257-0.284

1.88-2.30

386 (15.2)

110 (4.31)

0.191-0.172

2.12-2.59

422 (16.6)

146 (5.75)

0.105-0.117

2.48-3.03

454 (17.9)

178 (7.00)

0.086-0.096

1.78-2.18

6-Lead, 347/600 Volt Generators (Three-Phase) 349 (13.7)

73 (2.88)

1.317-1.456

2.57-3.10

364 (14.3)

87 (3.44)

0.786-0.868

1.88-2.30

386 (15.2)

110 (4.31)

0.542-0.599

2.12-2.59

422 (16.6)

146 (5.75)

0.338-0.374

2.48-3.03

454 (17.9)

178 (7.00)

0.273-0.301

1.78-2.18

REFERENCE STACK  LENGTH

REFERENCE LENGTH 1. These are approximate reference dimensions for aiding generator identification. The corresponding rotor stack lengths are slightly greater than the stator stack lengths. 2. Stator resistances are ± 5% of nominal at 77° F (25° C) and rotor resistance are± 10%.

7-8

GENERATOR DISASSEMBLY 

1. Disconnect all power output and remote control connections and conduit at the generator. For easier reconnections later, make sure each lead is clearly marked.

The generator is heavy. You will need an assistant and hoist of sufficient capacity to remove the generator.

2. Disconnect the generator leads and control wiring if the control box is to be removed from the generator.

 Accidentally dropping the generator can damage it and cause severe personal in jury and death. The hoist and straps must have  sufficient capacity and be attached properly so that the load cannot shift. WARNING

3. Cinch a hoisting strap around the middle of the generator stator and take up slack with a hoist.

Before starting, disconnect the starting battery cables (negative [-] first) to make sure the set will not start while working on it.

4. Before separating the generator stator from the flywheel housing and end bell, scribe lines to register the parts for easier reassembly.

  Accidental starting can cause severe personal injury or death. To prevent accidental starting, push the control panel switch to OFF and disconnect the negative ( − ) battery  cable from the battery before working on the  generator set. WARNING

5. Remove the four nuts and washers on the generator through-studs and tap the end bell free of the stator assembly. 6. Tap the generator stator free of the adaptor housing and carefully draw the stator straight back until it clears the ends of the throughstuds.

 Arcing can ignite battery gases and cause severe personal injury and can cause voltage  spikes that can damage generator set control  circuits. To reduce arcing:

7. Remove the generator through-studs. 8. If it is necessary to remove the rotor, cinch a hoisting strap around the middle of the main rotor laminations and then remove the bolts securing the generator drive disc to the flywheel.

 Never disconnect the battery cables while the  generator set is cranking or running.  Always disconnect a battery charger from its  AC source before disconnecting the battery  cables.

9. Remove the two mounting screws if it is necessary to remove the exciter stator from the generator end bell.

 Always disconnect the negative ( − ) cable first   and reconnect it last. (This prevents arcing if the tool on the positive terminal touches grounded   metal.)

10. Use a gear puller if it is necessary to remove the rotor bearing.

7-9

5. Thread the generator through-studs into the flywheel housing before attempting to mount and align the generator stator. The ends having the shorter lengths of thread must be threaded into the flywheel housing. Make sure the studs bottom.

GENERATOR REASSEMBLY  Reassembly is the reverse of disassembly. Note the following when reassembling the generator: 1. If the rotor bearing was removed, press a new rotor bearing on flush with the end of the shaft. (The end of the shaft must not extend more than 0.020 inch (0.5 mm) beyond the side of the bearing. Apply force to the inner race of the rotor bearing when pressing it onto the shaft so as not to damage the bearing.

6. When mating the generator stator and flywheel housing, make sure the scribed index lines (Step 4, Disassembly) register.

2. If the drive disc was removed from the rotor, torque the eight bolts to 68 lb-ft (92 N-m) when remounting. Make sure that:

7. If the exciter stator was removed from the generator end bell, torque the two screws to 8 lb-ft (11 N-m) when remounting. The leads must exit away from the end bell and be in the top half of the assembly (see Figure 7-2).

 A. The chamfered edge of the drive disc perimeter faces away from the rotor to make assembly to the flywheel easier.

8. Wipe the bearing bore in the end bell lightly with molybdenum disulfide grease and make sure the rubber O-ring is in place.

B. The fan blade assembly goes on first. (It will be secured with the disc-to-flywheel bolts.)

9. Mount the end bell to the stator assembly, making sure the rotor bearing is fully seated in the bore and that the end bell part number is at the top. Torque the nuts on the generator throughstuds to 28 lb-ft (38 N-m). Pull the field leads out the same opening as the main stator leads.

C. The rounded edges of the washers are on the disc side. 3. If the rotor was removed from the engine flywheel, torque the eight drive disc-to-flywheel bolts to 39 lb-ft (52 N-m) when remounting.

10. Secure the end bell cover plate and torque the four screws to 8 lb-in (3.8 N-m). 11. Reconnect or remount all the other components that were disconnected or removed under Disassembly.

4. If the flywheel housing was removed, torque the bolts to 60 lb-ft (81 N-m) when remounting.

7-10

8. Engine TROUBLESHOOTING

Checking crankcase vacuum is a good way to tell how worn the engine is.  An engine in good condition will have a crankcase vacuum of  at least   20 mm (0.79 inch) water column (WC). Low and/or fluctuating vacuum indicates piston blow-by or faulty oil seals or valves. Check vacuum at the oil dipstick hole.

Use Table 8-1 as a guide for engine troubleshooting. See the Table of Contents to locate troubleshooting information in other sections of this manual.

TABLE 8-1. ENGINE PROBLEMS DIFFICULT STARTING Closed manual gas valve Low fuel level (LPG) Low gas pressure Clogged gas filter Unsuitable lubricating oil Misadjusted ignition timing Leaking valves Sticking piston rings Sticking exhaust valves Low compression

KNOCKING Piston striking stuck valve (exhaust) Worn connecting rod bushing Worn piston pin bushing Too little piston-to-head clearance Early ignition timing Too much camshaft or crankshaft end play Carbon deposits on pistons Too much piston-to-cylinder clearance Loose engine mounts Loose flywheel

ENGINE STOPS RUNNING Low fuel level (LPG) Low gas pressure Clogged gas filter Overload Overheating Low oil pressure

LOSS OF POWER OR SPEED Dirty air filter Clogged gas filter Low gas pressure Misadjusted ignition timing Misadjusted governor Blocked exhaust system Low compression

OVERHEATING Recirculating cooling air Obstructed cooling air inlet or outlet Dirty radiator fins Loose fan belt Loss of coolant Overload Oil level too high or too low Misadjusted ignition timing

LOW COMPRESSION Piston ring gaps lined up Valves leaking Cylinder head gasket leaking Piston rings worn Cylinders worn

DARK BLUE SMOKE Worn piston rings Worn cylinder bore

LOSS OF OIL PRESSURE Low oil level Low oil viscosity Worn crankshaft bearings Failed oil pump

EXCESSIVE CARBON FORMATION Clogged air filter Blocked exhaust system Unsuitable lubricating oil Late ignition timing Excessive operation at low load Low-temperature operation

HIGH OIL CONSUMPTION Worn valve guides Worn piston rings Worn cylinder High oil level

HUNTING OR SURGING Binding governor linkage Misadjusted ignition timing Misadjusted fuel mixture Misadjusted governor

LOW OR FLUCTUATING CRANKCASE VACUUM Worn piston rings Worn cylinders Worn oil seals High oil level Unseated oil fill cap

LEAKING OIL SEAL High oil level Loss of crankcase vacuum Worn seal

8-1

ENGINE DISASSEMBLY AND REASSEMBLY 

alternator. See Step 22 if it is necessary to free the belt from the crankshaft pulley.

Contact an Onan/Cummins distributor for the special tools required for engine disassembly and reassembly.

5. Remove the radiator fan (turn the nut clockwise).

The following procedures for disassembly and reassembly are meant more as checklists than as sequences that must be rigidly followed. It is assumed that the generator set housing and generator have already been removed and that the engine electrical harness and fuel supply have been disconnected  and that coolant and oil have been drained .

7. Remove the ignition coils if necessary.

6. Remove the fuel gas components.

8. Remove the inlet and exhaust manifolds. 9. Remove the cylinder head covers. 10. Remove the lifting eye(s). 11. Remove the valve rockers and push rods.

 Hot coolant is under pressure and  can cause severe burns. Always let the engine cool down before removing the pressure/fill  cap. WARNING

12. Remove the coolant pump. 13. Remove the cylinder head and gasket. 14. Lift out the push rod tubes, rubber seals and washers.

  Accidental starting can cause severe personal injury or death. To prevent accidental starting, push the control panel switch to OFF and disconnect the negative ( − ) battery  cable from the battery before working on the  generator set. WARNING

15. Remove the oil filter. 16. Remove the dipstick and crankcase door. 17. Remove the oil pressure relief valve and oil strainer.

 Arcing can ignite battery gases and cause severe personal injury and can cause voltage  spikes that can damage generator set control  circuits. To reduce arcing:

18. Remove the connecting rod caps. 19. Carefully remove any carbon build-up from the top of the cylinder bore.

 Never disconnect the battery cables while the  generator set is cranking or running.

20. Turn the crankshaft until the piston is at TDC. 21. Lift out the piston and connecting rod.

 Always disconnect a battery charger from its  AC source before disconnecting the battery  cables.

22. Remove the ignition pickup module bracket (leave modules attached to bracket) and magnetic rotor only if it is necessary to remove the gear cover (Step 26).

 Always disconnect the negative ( − ) cable first   and reconnect it last. (This prevents arcing if the tool on the positive terminal touches grounded   metal.)

23. Remove the fan belt. To do so if the pickup module bracket is not being removed (Step 22), remove only the long lower right bracket bolt and spacer (Page 8-35).

Disassembly 1. Remove the radiator hoses.

24. Install the flywheel locking tool.

2. Remove the radiator.

25. Remove the crankshaft pulley ( turn the bolt  clockwise).

3. Remove the starter motor.

26. Remove the gear cover (front end).

4. Loosen the alternator to free the fan belt from the alternator and fan pulleys and remove the

27. Remove the two camshaft thrust plate screws.

8-2

28. Carefully withdraw the camshaft.

8. Install the flywheel housing.

29. Remove the oil pump.

9. Install the flywheel. 10. Heat the crankshaft pinion and install it with its key and with its timing marks outward.

30. Remove the crankshaft pinion. 31. Remove the flywheel.

11. Install the oil pump.

32. Remove the flywheel housing.

12. Install the camshaft, aligning the timing marks and making sure the thrust plate is located correctly.

33. Remove the main bearing housing (flywheel end).

13. Install the hydraulic valve tappets.

34. Use a manifold bolt to remove the center main bearing locating dowel(s): 1 on 2-cylinder, 2 on 3-cylinder and 3 on 4-cylinder engines.

14. Install the gear cover (front end). 15. Install the flywheel locking tool.

35. Gently withdraw the crankshaft.

16. Install the crankshaft pulley ( turn the bolt  counterclockwise).

36. Remove the front main bearing and camshaft bearing shells.

17. Remove the flywheel locking tool.

Reassembly

18. Install the ignition magnetic rotor.

See Table 8-2 for thread torques and Table 8-3 for recommended gasket and shim sealers and thread sealing and lubricating compounds.  Always use  new gaskets when reassembling an engine.

19. Secure the ignition pickup modules to their bracket if they have been removed. 20. Place the belt over the crankshaft pulley and install the ignition pickup module bracket.  The  belt goes outside the left and upper bracket   bolts but inside the lower right bolt  (Page 8-35 ).

Use engine lubricating oil on all moving parts, especially on bearing surfaces, valve stems and push rod cups. The piston/connecting rod assembly should be submerged in oil and then thoroughly drained just before installing it in the cylinder.

21. Install the pistons and connecting rods.

1. Install the main (crankshaft) and camshaft bearing shells.

22. Install the oil pump relief valve and strainer.

2. Install the front (gear-end) crankshaft thrust bearings.

24. Install the oil filter.

23. Install the crankcase door and dipstick.

25. Install the push rod tube seals, washers and tubes.

3. Install the crankshaft making sure the center bearing dowel hole(s) line up correctly: 1 on 2-cylinder, 2 on 3-cylinder and 3 on 4-cylinder engines.

26. Install the cylinder head and gasket. 27. Install the push rods and the valve rockers.

4. Install the rear (flywheel-end) crankshaft thrust bearings.

28. Install the cylinder head covers. 29. Install the coolant pump.

5. Install the crankshaft main bearing housing.

30. Install the manifolds.

6. Check crankshaft end play.

31. Install the ignition coils.

7. Install the center main bearing locating dowel(s): 1 on 2-cylinder, 2 on 3-cylinder and 3 on 4-cylinder engines.

32. Install the radiator fan ( turn the nut counterclockwise).

8-3

33. Install the alternator.

36. Install the radiator.

34. Adjust the fan belt.

37. Install the radiator hoses.

35. Install the starter motor.

38. Install the fuel system and governor.

TABLE 8-2. ENGINE THREAD TORQUES BOLT, NUT OR PART ASSEMBLED

N-m

lb-ft

5.89-11.77

4.34-8.68

9

6.5 .

11

8

16

12

21

15.5

Main Bearing Housing Bolts1

27

20

Radiator Fan Nut2

30

22

Valve Rocker Nut

34

25

Connecting Rod Bolts

35

26

41

30

Cylinder Head Nut1 Stage One Stage Two Stage Three

8 48 88

6 35 65

Flywheel Bolts

68

50

Crankshaft Pulley Bolt2

300

221

Starter Motor Terminal Nuts Gear Cover Nuts and

Bolts1

Manifold Bolts Oil Pump Screws Camshaft Thrust Pate Screws Rocker Cover Nuts Crankcase Door Bolts1  Alternator Adjusting Link Screws Fixing Bolt to Back Plate Coolant Pump Studs (not bolts)  Alternator Bolt Coolant Pump Bolts and Nuts Deep Sump Bolt Center Bearing Housing Bolts Oil Strainer Tube Nut

Starter Motor Bolts Oil Pump Relief Valve Oil Filter Adapter Bolt

1. See Figure 8-1. 2. Left-hand thread—turn clockwise to loosen and counterclockwise to tighten.

8-4

TABLE 8-3. GASKET AND SHIM SEALERS AND THREAD SEALING AND LUBRICATING COMPOUNDS GASKET OR SHIM

COMPOUND

Cylinder Head Cover

All surfaces must be clean and dry.

Core Hole Plugs

Apply Loctite 572 or equivalent to the bore. Make sure the compound does not enter the camshaft bore.

Oil Sump Drain Plug

Apply Loctite 572 or equivalent to the threads.

Oil Seals

Lightly grease the sealing lip before installing.

Cylinder Head Gasket

All surfaces must be clean and dry.

Push Rod Tube Seals

Lightly coat the seal bore with grease to aid assembly.

Main Bearing Housing Shim

Coat both sides of the shim with Locktite 609 or equivalent.

Dipstick

Lightly coat the “O” ring with grease.

Crankcase Door Studs

Coat the threads that thread into the crankcase with Locktite 270 or equivalent.

Camshaft Bores

Journals

and

 All other Gaskets and Shims

Coat the journals (except for gear end) with Molydisulfide grease or equivalent. All surfaces must be clean and dry.

1. Crankcase Doors—2, 3 and 4 cylinder engines 2. Gear Cover 3. Main Bearing Housing 4. Cylinder Heads—2, 3 and 4 cylinder engines

FIGURE 8-1. BOLT TIGHTENING SEQUENCES

8-5

DIMENSIONS OF WEARING PARTS

The firing ring side clearance is measured with a new ring flush with the top piston land.

Table 8-5 indicates the extent to which components may wear without appreciable loss of performance. Therefore, one or more of the components affecting the clearance should be replaced when the “Maximum Clearance” value has been reached.

Undersize and Oversize Replacement Parts: Oversize pistons and rings, and undersize big end and main bearing shells are available (Table 8-4). TABLE 8-4. UNDERSIZES AND OVERSIZES Bearing Undersizes

Cylinder Bore Wear: The maximum advisable piston/cylinder clearance given is the clearance between the bottom of the piston skirt, across the faces, and the cylinder bore measured in the region of travel of the piston skirt. The clearance is  not to  be measured at the top of the bore.

Piston and Piston Ring Oversizes

0.254 mm (0.010 in) 0.508 mm (0.020 in) 0.508 mm (0.020 in)

Non-standard sized parts are marked with the amount they are under or over sized. The marking appears as a suffix to the part number, which is located as follows:

 Piston Ring Wear: The ring gaps given in Table 8-5 are those to be anticipated when checking rings in an unworn part of the bore. Note that for every 0.01 mm (0.0004 in) by which the actual bore size exceeds the initial dimension, the ring gap will increase by approximately 0.03 mm (0.0012 in).

1. Piston Rings—on the face of the ring. 2. Pistons—on the top surface. 3. Bearings—on the outside surface

8-6

TABLE 8-5. DIMENSIONS OF WEARING PARTS  All clearances and wear limits are in millimeters unless otherwise indicated

New Part Dimension

Cylinder Bore

86.000-86.025

Piston Diameter—bottom of skirt, across thrust face

85.891-85.901

Piston Ring Gaps

0.25-0.50

Top Piston Ring Width

1.728-1.740

Top Piston Ring Groove Width

1.830-1.850

Second Piston Ring Width

1.978-1.990

Second Piston Ring Groove Width

2.040-2.060

Oil Piston Ring Width

3.978-3.990

Oil Piston Ring Groove Width

4.040-4.060

Connecting Rod Big End Bore

53.525-53.545

Bearing Shell Thickness

1.740-1.750

Crankpin Diameter

49.985-50.000

Flywheel-End Main Bearing Housing Bore

74.040-74.065

Bearing Shell Thickness

1.990-2.000

Crankshaft Journal Diameter

69.985-70.000

Gear-End Main Bearing Housing Bore

58.535-58.560

Bearing Shell Thickness

1.740-1.750

Crankshaft Journal Diameter

54.985-55.000

Center Main Bearing Housing Bore

58.5335-58.560

Bearing Shell Thickness

1.740-1.750

Crankshaft Journal Diameter

New Part Clearance

Maximum Clearance

0.099-0.134

0.40

0.25-0.58

1.39

0.090-0.122

0.17

0.050-0.082

0.14

0.050-0.082

0.14

0.025-0.080 . .

0.12 .

0.04-0.10 . .

0.14 .

0.035-0.095 . .

0.135 .

0.035-0.095 . .

0.135 .

0.010-0.120

0.17

0.050-0.105

0.17

0.050-0.105

0.17

0.0075-0.0245

0.05

0.020-0.064

0.11

0.025-0.095

0.165

0.020-0.100

0.14

0.025-0.150

0.20

54.985-55.000

Thrust Washer Thickness1

2.310-2.360

Gear-End Camshaft Bushing Bore

34.990-35.085

Gear-End Camshaft Journal Diameter

34.965-34.980

Center Camshaft Bushing Bore

35.030-35.070

Center Camshaft Journal Diameter

34.965-34.980

Flywheel-End Camshaft Bushing Bore

35.030-35.070

Flywheel-End Camshaft Journal Diameter

34.965-34.980

Camshaft Thrust Plate

2.850-2.900

Connecting Rod Small-End Bushing Bore

25.005-25.017

Piston Pin Diameter

24.9925-24.9975

Hydraulic Tappet Diameter

21.386-21.405

Hydraulic Tappet Bore

21.425-21.450

Valve Spring Free Length2

43.7-45.5

Valve Guide Bore (assembled)

7.195-7.250

Valve Stem Diameter

7.155-7.170

Fuel Pump Tappet Diameter

21.950-21.980

Fuel Pump Tappet Bore

22.000-22.050

Backlash Between Gears

1. Replace the thrust washer if the thickness is less than 2.20 mm (0.0866 inch). 2. Replace the spring if the length is 42.5 mm (1.67 inch) or less.

8-7

ENGINE BLOCK SYSTEMS The Cylinder Head Individual cylinder head covers are attached to the top of the cylinder heads with two nuts and an O-ring under each nut. The cover provides access to the crankcase breather pipe and the valve rockers.  Removing a Cylinder Head:

1. Remove the inlet and exhaust manifolds. 2. Remove the lifting eye(s). 3. Remove the cylinder head covers and gaskets. 4. Remove the valve rocker retaining nuts (Figure 8-2, Item A).

FIGURE 8-2. VALVE ROCKERS

5. Remove the valve rockers (B). 6. Lift out the push rods. 7. Remove the cylinder head retaining bolts. To prevent possible damage to the exhaust manifold studs, use a long socket. 8. Lift off the cylinder head(s). 9. Remove the cylinder head gasket(s).  Installing the Cylinder Head: The cylinder head clearance is 0.7-0.9 mm (0.027-0.035 inch) and is maintained by a single gasket under the head. New cylinder head bolts and push rod seals (Figure 8-3) should be used each time the head is installed.

1. Install the hydraulic valve tappets in the crankcase if they have been removed (Page  8-13).

 A — Cylinder Head Seal B — Crankcase Seal C — Crankcase Seal Washer

2. Lightly coat the bores of the new push rod tube seals (Figure 8-3) with grease. FIGURE 8-3. PUSH ROD TUBE SEALS

3. Fit the seals into the crankcase and cylinder head(s) making sure that the washers which are fitted underneath the crankcase seals are in position. 4. Place the gasket on the crankcase making sure the holes in the gasket coincide with those in the crankcase.

8-8

5. Insert the push rod tubes into the cylinder head seals. 6. Turn the crankshaft so that no cylinder is at TDC and carefully lower the cylinder head into position, checking that the push rod tubes enter the seals in the crankcase.   To keep pistons and valves from interfering with each other while the  hydraulic valve tappets are “bleeding down”, make sure no piston is at TDC when  installing the head and that the crankshaft   is not turned while waiting. CAUTION

7. Thread new cylinder head bolts in finger tight. Make sure the spacers (Figure 8-4, Item X) are in place. 8. Tighten down the head bolts in stages and in the sequence shown in Figure 8-1 (Page 8-5). The tightening stages are as follows:  A — Type A B — Type B C — Type C X — Spacer

 A. 8.0 N-m (6.0 lb-ft) B. 48.0 N-m (35.0 lb-ft) C. 88.0 N-m (65.0 lb-ft)

FIGURE 8-4. CYLINDER HEAD BOLT LOCATIONS

9. Install the valve push rods. 10. Install the valve rockers (Figure 8-2). Torque the rocker lever nuts to 34.0 N-m (25.0 lb-ft). Make sure the crank is not turned while waiting for the hydraulic tappets to “bleed down”. Bleed-down under valve spring pressure takes about 45 minutes. (New tappets not filled with oil do not have to bleed down.) A hydraulic tappet tool (Figure 8-5) is available to speed up the process.  Too much force on the hydrau lic tappet tool can bend the pushrods. CAUTION

11. Replace the cylinder head covers and torque the cover nuts to 9.0 N-m (6.5 lb-ft). 12. Replace the manifolds.

FIGURE 8-5. HYDRAULIC TAPPET TOOL

8-9

The Valves The valves are pre-finished and therefore no lapping or further processing is required. They are sunk below the combustion surface of the head. See The Valve Seats (Page  8-11). Keep each valve and its associated parts together for reassembly together at the same location.  Removing a Valve:

1. Lay the head upright on a bench and place a suitable circular block of wood under the head of the valve.

FIGURE 8-6. VALVE SPRING COMPRESSOR

2. Place the adaptor (Figure 8-6, Item A) on the valve spring carrier with the two indentations facing outwards. 3. Fit the tool (B) into the two plate indentations and push down on the tool to compress the valve spring until the collets (keepers) can be removed (Figure 8-7, Item F). 4. Gently release the tool and remove the carrier, valve spring, valve stem sealing ring and valve spring plate. 5. Turn the cylinder head over and remove the valve.  Installing a Valve: Valves, springs and stem seals should be replaced during a major overhaul.

 A — Valve B — Valve Spring Plate C — Valve Stem Seal (Intake Only) D — Valve Spring E — Valve Spring Carrier F — Collets

1. Examine the valve and replace if it is pitted or damaged. 2. Lightly lubricate the valve stem and insert the valve.

FIGURE 8-7. VALVE ASSEMBLY 

3. Lay the head upright on the bench and place a circular block of wood under the head of the valve being replaced.

8-10

4. Place the valve spring plate (Figure 8-7, Item B) in position. 5. Install a new intake valve stem oil seal (Figure 8-7, Item C) on the valve making sure it is correctly located over the guide and is not distorted. 6. Install the valve spring (Figure 8-7, Item D) and spring carrier (Item E). 7. Fit the adaptor (Figure 8-6, Item A) over the valve spring carrier with the two indentations facing outwards. 8. Push down on the tool lever until the keepers (Figure 8-7, Item F) can be inserted in position with their tops slightly sunk in the valve spring carrier.

 A — Adjustable Mandrel B — Cutting Tool C — “T” Handle D — Adaptor E — Allen Wrench

9. Gently release the tool and check that the keepers are positioned correctly.

The Valve Seats FIGURE 8-8. VALVE SEAT CUTTER KIT

The valve seats must be finished and recessed so that the valves are recessed below the combustion surface of the head the following distances: Inlet—0.95-1.26 mm (0.0374-0.0496 inch) Exhaust—1.33-1.64 mm (0.0524-0.0646 inch) Valve Seat Finishing and Recessing:

1. Fit the correct adjustable mandrel (Figure 8-8, Item A) into the valve guide and turn the adjuster until the flutes just bind in the guide.   The valve guide can be dam aged if the mandrel is adjusted too tight in the bore. Do not remove more metal than  necessary. CAUTION

2. Select the necessary cutting tool (B) and assemble it to the handle (C). 3. Place the cutter over the mandrel and adjust the three individual blades, using the Allen wrench, if necessary. 4. Rotate the tool in a clockwise direction until the valve seat recess and finish are satisfactory.

8-11

The Valve Guides The valve guides are press fit into the cylinder head and protrude 11.75-12.25 mm (0.462-0.482 inch) above the top machined face of the cylinder head. This dimension will be achieved when the depth stop is used with the guide removal and replacement tool (Figure 8-10). The intake valve stem oil seals are of the umbrellatype and grip the valves (Figure 8-9).  Removing a Valve Guide:

1. Remove the cylinder head (Page 8-8). 2. Remove the valve (Page 8-10). 3. Remove the valve stem oil seal from the guide. 4. Secure the cylinder head on its side in a soft jawed vice.

FIGURE 8-9. VALVE GUIDE AND OIL SEAL

5. Screw the correct mandrel (Figure 8-10, Item A) into the tool (B). 6. Place the sleeve (C) onto the tool. 7. Fit the bevelled adaptor (D) into the sleeve (C) and locate the bevel in the valve seat. 8. Push the mandrel through the guide from the valve seat side. 9. Screw the small threaded sleeve (E) into the mandrel on the valve rocker side. 10. Holding the sliding handle firmly to prevent rotation, turn the double-handle lever clockwise until the guide is withdrawn through the head. If it is found difficult to start moving the guides, a sharp tap with a soft-faced hammer should break the seal.

FIGURE 8-10. VALVE GUIDE TOOL

8-12

 Installing a Valve Guide:

1. Fit the correct mandrel into the valve guide hole from the valve rocker end. 2. Place the valve guide over the mandrel with the counterbored end of the guide facing towards the valve seats. 3. Place the depth stop (Figure 8-10, Item F) over the mandrel and screw on the threaded sleeve (E). 4. Fit the tool, complete with the bevelled adaptor, onto the mandrel on the valve seat side. 5. Holding the sliding handle firmly to prevent rotation, turn the double-handle lever clockwise until the depth stop prevents any further movement. At this point the guide will protrude the correct distance above the cylinder head.

FIGURE 8-11. HYDRAULIC VALVE TAPPET

6. Install a new intake valve stem oil seal.  Hydraulic Valve Tappets:  All engines are equipped with hydraulic valve tappets (Figure 8-11). No adjustment is necessary or possible. Removal of any part of the valve gear will allow the hydraulic tappet to extend and hydraulically lock. See Item 10 on Page 8-9 for the procedure for bleeding the valve tappets when installing the valve rockers. When new hydraulic tappets have been  installed, the engine must be cranked for at   least 15 seconds before attempting to start it to fill the tappets with oil.

8-13

The Crankcase Door The crankcase door (Figure 8-12) must be removed for access to the sump, connecting rods, oil pump pickup tube and strainer and oil pressure relief  valve. Note that, together, the crankcase door and crankcase form the main lubricating oil gallery. Drilled passages from the gallery distribute oil to the crankshaft and camshaft journal bores and valve and fuel pump tappet bores.  Removing the Crankcase Door:

1. Disconnect the fuel hoses from the fuel lift pump. 2. Remove the dipstick and oil filter for access to the lower left-hand corner door bolt. 3. Loosen the bolts and stud nuts in the sequence shown to prevent distortion of the door and possible oil leaks upon reassembly. If a stud comes out, remove the nut and replace the stud. Use Locktite 270 or equivalent on the stud threads. 4. Remove the crankcase door and gasket.

 A — 2-cylinder—Nos. 4 and 9 are studs B — 3-cylinder—Nos. 8, 1 and 9 are studs C — 4-cylinder—Nos. 13, 4, 3 and10 are studs

 Installing the Crankcase Door:

1. Clean and dry the door and crankcase mating surfaces. 2. Install the crankcase door with a new, dry gasket and torque the bolts to 11 N-m (8 lb-ft) in the sequence shown.

FIGURE 8-12. CRANKCASE DOOR TIGHTENING SEQUENCES

8-14

The Gear Cover The gear cover is located by two dowels and is secured to the crankcase by seven bolts. If the two dowels are being replaced, make sure the flat end enters the crankcase fully. The tapered ends provide engagement with the gear cover. The crankshaft oil seal in the gear cover is of the liptype, for which an installation tool is available. See THE LUBRICATING SYSTEM (Page 8-29) for further information on oil seals.  Removing the Gear Cover:

1. Thread the flywheel locking tool (Figure 8-20, Item B, on Page 8-22) into the flywheel housing making sure that it locks in the flywheel. If  the locking tool is not available, wedge the crankshaft with a suitable piece of wood. 2. Loosen the alternator and remove the fan drive belt. FIGURE 8-13. GEAR COVER TORQUE SEQUENCE

3. Remove the crankshaft pulley bolt and pulley. Turn the bolt clockwise to loosen it. 4. Remove the flywheel locking tool. 5. To protect the crankshaft oil seal, insert the seal tool into the gear cover. 6. Remove the gear cover retaining bolts. 7. Remove the gear cover, tapping lightly with a soft-faced hammer if necessary. 8. Clean all traces of the old gasket from the crankcase and cover. 9. Remove the old oil seal if it is being replaced.  Installing the Crankshaft Oil Seal:

1. Remove the gear cover. 2. Lightly grease the sealing lip of the new seal. 3. Place the seal onto the outside neck of the gear cover, lip-side first, and position it squarely on the shoulder of the seal boss. Do not use any sealing compound. 4. Drive the seal in with the seal tool.

8-15

The Camshaft

 Installing the Gear Cover:

The camshaft operates the hydraulic valve tappets. The camshaft is carried in pressure-lubricated bores in the crankcase. The front (gear end) bore has a bearing, which is not pressure lubricated. A camshaft thrust plate is located behind the gear. The camshaft gear is not a separately replaceable part.

1. Clean all traces of the old gasket from the crankcase and cover. 2. Place a new, dry gasket over the two dowels on the crankcase. 3. Fit the oil seal tool into the outside face of the oil seal.

 Removing the Camshaft:

1. Remove the cylinder heads (Page 8-8), gear cover (Page 8-15), valve rockers and push rods (Page 8-8).

4. Install the gear cover, making sure the new gasket is not damaged and that the cover fits correctly over the dowels.

2. Lift out the hydraulic valve tappets with a suitable magnet.

5. Tighten the bolts finger tight.

3. Turn the camshaft until the large holes in it coincide with the two thrust plate bolts.

6. Following the sequence shown in Figure 8-13, torque the bolts to 9.0 N-m (6.5 lb-ft).

4. Remove the two thrust plate bolts.

7. Replace the pulley and bolt. Turn the bolt  counterclockwise to tighten it , and torque it to 300 N-m (221 lb-ft).

5. Gently ease the camshaft out of the crankcase, keeping it perpendicular to the front face of the crankcase.

8-16

 Inspecting the Camshaft:

1. Examine the camshaft bushing for scoring and wear. 2. Check the camshaft gearwheel and crankshaft pinion teeth for wear. 3. Make sure the cams are not chipped or damaged. 4. Check the tappets and cam faces for scoring and damage.  Installing the Camshaft:

1. Install the oil pump if it has been removed (Page 8-30). 2. Carefully insert the camshaft into the crankcase keeping it perpendicular to the front face of the crankcase at all times and taking care to line up the “0” timing marks on the crankshaft and camshaft gears exactly (Figure 8-14).

FIGURE 8-14. TIMING MARKS

3. Turn the camshaft until the large holes in the gear, the two thrust plate bolt holes, and the two threaded holes in the crankcase all line up. 4. Install the two thrust plate bolts through the camshaft gear and thrust plate. Torque the two bolts to 9.0 N-m (6.5 lb-ft). 5. Install the valve tappets. 6. Install the cylinder heads (Page 8-8). 7. Install the gear cover (Page 8-15).

8-17

Checking Camshaft End Play: Camshaft end play can be measured with a dial indicator after the gear cover has been removed. Replace the camshaft if  end play is greater than 0.10-0.28 mm (0.004-0.011 in). To measure end play:

1. Push the camshaft towards the flywheel end. 2. Secure a dial indicator in position against the gear wheel. 3. Zero the gauge. 4. Move the camshaft as far as it will go towards the gear end (front). The movement recorded on the gauge is the end play.

The Camshaft Bushing FIGURE 8-15. CAMSHAFT BUSHING TOOL

 Removing the Bushing:

1. Fit the tool guide (Figure 8-15, Item A) into the bushing from inside the crankcase. 2. Fit the slide hammer (B) onto the guide threads. 3. Use the slide hammer to remove the bushing.  Installing a new Bushing: Before installing a new camshaft bushing, the outside diameter must be lightly oiled with engine lubricating oil.

When installing the bushing locate the split on top so that it will be opposite the load-bearing side. 1. Fit the new bushing over the guide threads. 2. Screw on the depth plate (Figure 8-15, Item C). 3. Fit the slide hammer onto the guide threads. 4. Place the assembly squarely into the crankcase bushing bore from the outside of the crankcase. 5. Use the slide hammer to drive in the bushing.

8-18

The Piston The piston has a recessed combustion chamber in the crown and is equipped with three rings. The crown is stamped “Camshaft Side” to indicate the proper orientation for assembly. The piston pin is a clearance fit in the piston and is retained by two circlips. The connecting rod has a bushing in the small end. Oil jets from the crankshaft bearings cool the pistons.  Piston Rings:  Piston rings are available as sets and should only be installed as sets (Figure 8-16):  A — Firing Ring B — Compression Ring C — Oil Control Ring X — Piston Ring Gap Positions

Firing Ring (Top):   This is a barrel-lapped chrome ring. The side marked “TOP” must face up when installed.

FIGURE 8-16. PISTON RING AND GAP LOCATIONS

Compression Ring (Middle):  This ring has a tapered face in contact with the piston barrel. The side marked “TOP” must face up when installed. Oil Control Ring (Bottom):  This is a conformable type ring with a spring expander.  Removing the Piston:

1. Remove the crankcase door (Page 8-14). 2. Remove the cylinder head(s) (Page 8-8). 3. If the No. 1 piston is being removed, it will be necessary to remove the oil pressure relief  valve and oil strainer (Page 8-30). 4. Rotate the crankshaft sufficiently to give access to the connecting rod bearing cap bolts. 5. Remove the two bolts and the bearing cap. 6. Carefully scrape any buildup of carbon from the top of the cylinder bore.

FIGURE 8-17. PISTON LIFTING TOOL

7. Rotate the crankshaft until the piston is at TDC. 8. Screw the piston removal tool into the nearest connecting rod bearing cap bolt hole. 9. Lever the piston out the top of the crankcase until the rings are clear, using the tool on the connecting rod as the push point (Figure 8-17).

8-19

10. Lift out the piston and connecting rod. 11. Reassemble the bearing cap and connecting rod to keep them together. 12. Remove the piston rings with a standard ring expander. 13. Remove the piston pin by releasing the circlip from one end and pushing it out.  Inspecting and Servicing the Piston:

1. Thoroughly clean the cylinder bore and check for scoring and wear. 2. Clean the piston, removing all traces of carbon from both the upper and under sides of the crown and the ring grooves. 3. Place each ring square in an unworn section of  the cylinder bore to check for the correct gap. See DIMENSIONS OF WEARING PARTS (Page 8-6).

FIGURE 8-18. CONNECTING ROD AND CAP IDENTIFICATION

4. Clean the connecting rod. 5. Examine the small-end bushing for wear. 6. If the big end has been dismantled because of  metal failure, examine the oil passages in the crankshaft for obstructions and metal fragments.  Installing the Piston:

1. Assemble the piston and connecting rod. The “Camshaft Side” stamp on the piston must be on the same side as the identification marks on the connecting rod big end and cap (Figure 8-18). 2. Insert the piston pin and circlips. 3. Install the piston rings using a piston ring expander. 4. Turn the crankshaft journal to TDC. 5. If necessary, install new connecting rod bigend bearing shells making sure they are correctly located in both the connecting rod and cap. The bearing shells are steel backed copper-lead and should not be scraped or touched up in any way.

8-20

6. Stagger the piston ring gaps as shown at “X” in Figure 8-16. Each ring gap must be set at 90 to the adjacent rings and 45  from the piston pin axis.

7. Insert the piston and rod into the cylinder while compressing the piston rings with a suitable piston ring compressor. Make sure the stamp, “Camshaft Side” is on the camshaft (crankcase door) side of the crankcase. 8. Push down on the piston crown and turn the crankshaft clockwise (looking from the gear end) until the big end is almost at BDC. 9. Make sure the identification marks on the cap and rod (Figure 8-18) are identical and that they face the camshaft side of the engine.

FIGURE 8-19. CHECKING BEARING CLEARANCE

10. Use two new bolts and torque them to 35.0 N-m (26.0 lb-ft). New connecting rod bolts are recommended at every major overhaul. Checking Bearing Clearance:

1. Place a piece of the correct-size “Plastigauge” approximately 6.35 mm (0.25 in) off center, and across the full width of one bearing shell, as shown in Figure 8-19. 2. Install the bearing and torque the bolts to 24.0 N-m (18.0 lb-ft). 3. Remove the bearing shell and use the scale to check the width of the flattened “Plastigauge”. See DIMENSIONS OF WEARING PARTS (Page 8-6). Make sure the crankshaft is not turned when the Plastigauge is in place. Remove all traces of the Plastigauge before final assembly of the bearing.

8-21

The Flywheel The flywheel rotates within the flywheel housing and is equipped with a starter ring gear. It is located with a dowel and held in position with 5 bolts (6 on turbocharged engines). Face (axial) and radial runouts must not exceed 0.25 mm (0.010 in).  Removing the Flywheel:

1. Remove the starter motor. 2. Thread the flywheel locking tool (Figure 8-20, Item B) into the flywheel housing making sure that it locks in the flywheel. If the locking tool is not available, wedge the crankshaft with a suitable piece of wood.  A — Puller B — Locking Tool

3. Loosen the flywheel mounting bolts two turns. 4. Remove the locking tool. 5. Turn the flywheel until the locating dowel is at the top.

FIGURE 8-20. FLYWHEEL TOOLS

6. Bolt the puller plate (A) to the flywheel and turn the tool center bolt clockwise sufficiently to loosen the flywheel. If the puller plate is not available, use a piece of hardwood through the starter motor opening to loosen the flywheel. 7. Remove the service tool and the flywheel bolts. 8. Supporting the flywheel upright, lift it off of the crankshaft and out of the housing.  Installing the Flywheel:

1. Turn the crankshaft until the flywheel locating dowel is at the top. 2. Position the flywheel with the locating dowel hole at the top. 3. Lift the flywheel into the flywheel housing and onto the crankshaft, supporting it until the bolts are on. 4. Thread the mounting bolts in finger tight. 5. Push the flywheel fully into position. 6. Lock the flywheel to keep it from turning. 7. Torque the mounting bolts to 68.0 N-m (50.0 lb-ft). 8. Remove the flywheel locking tool.

8-22

The Flywheel Housing

3. To keep from bending the center bearing locating dowel(s) while removing the main bearing housing, thread inlet manifold bolts into each dowel and pull them out. Leave the dowels and bolts together for reassembly. See Figure 8-23 (Page 8-26) for the locations of the dowels.

 Removing the Flywheel Housing:

1. Remove the flywheel (Page 8-22). 2. Make sure the engine is securely supported other than by the mounting feet bolted to the flywheel housing.

  The center bearing locating dowels can be bent when the main bearing  is being levered off, making them very difficult to remove if the need ever arises. Re move them before attempting to remove the  main bearing housing. CAUTION

3. Remove the four housing retaining bolts. 4. Lift off the flywheel housing.  Installing the Flywheel Housing: The flywheel housing is centered by the main bearing housing flange.

4. Remove the bolts securing the main bearing housing.

1. Lift the housing into position.

5. Remove the bearing housing. If the flywheel housing has been removed, use the two recesses in the 3 O’clock and 9 O’clock positions to lever off the housing. If the flywheel housing is still in place, turn the crank until the rear balance lobe is in position to use as a fulcrum to lever off the housing.

2. Thread the bolts in finger tight. 3. Torque the retaining bolts to 81.0 N-m (60.0 lbft).

The Main Bearing Housing The main bearing housing is secured to the crankcase at the flywheel end. It has an oil drain which must be located at the bottom of the housing when it is installed. A single shim, installed between the housing and the crankcase, determines crankshaft end play. Lubricating oil is supplied through a drilled hole in the side of the bearing housing which lines up with a similar hole in the crankcase.

6. Clean all traces of the old shim and compound from the housing and crankcase. 7. Remove the old oil seal taking care not to damage the bearings if they are to be reused.  Installing the Crankshaft Oil Seal: The crankshaft oil seal can be installed before or after the main bearing housing is installed.

The crankshaft oil seal in the main bearing housing is of the lip-type, for which an installation tool is available. See THE LUBRICATING SYSTEM (Page 8-29) for further information on oil seals.

1. Lightly grease the sealing lip of the new seal. 2. Place the seal squarely on the housing. Do not use any sealing compound.

 Removing the Main Bearing Housing:

3. Hold the oil seal tool onto the outside face of the seal and drive the seal into the bearing housing until it is flush with the outside face of the housing.

1. Remove the flywheel (Page 8-22). 2. Remove the crankcase door (Page 8-14).

8-23

 Installing the Main Bearing Housing: If the bearing shells have been replaced before installing the housing, check that the oil supply holes in the bearing shells and the housing line up.

1. Lightly grease the steel backs of the thrust washer halves and position them in the housing, copper faces out . One of the bearing halves has a locating tab. Make sure the tab is located at 6 O’clock in the housing. (To determine which end of the housing is up, match housing and crankcase bolt holes: they match only one way.) 2. Coat both sides of the new main bearing housing shim with Locktite 609 and place it on the housing with the flat side towards the crankcase. Make sure the notches and holes in the shim match those in the housing.

FIGURE 8-21. BEARING HOUSING TIGHTENING SEQUENCE

3. If the oil seal is in place in the bearing housing, grease the lip of the seal and insert the oil seal tool to protect the lip while installing the housing. 4. Install the housing and shim. 5. Torque the bolts to 27.0 N-m (20.0 lb-ft) in the sequence shown in Figure 8-21. 6. Check the crankshaft end play. See Checking Crankshaft End Play (Page 8-27). 7. Install a new oil seal unless one is already in place. 8. Install the center bearing locating dowel(s): 1 on 2-cylinder, 2 on 3-cylinder and 3 on 4-cylinder engines. The tapped end must face outwards.  Make sure the dowel(s) seat fully:  not in a housing capscrew head recess (Figure 8-23 ).

The Crankshaft Pulley The crankshaft and driven pulleys must have smooth grove finishes and line up within 1.6 mm (0.061 in) as measured at the centers of the grooves. The pulley is secured by a left-hand thread bolt. Turn the bolt clockwise to loosen and counterclockwise to tighten. Torque to 300 N-m (221 lbft).

8-24

The Crankshaft The crankshaft is carried in split, steel-backed, copper-faced main bearings. The center main bearing housing halves are secured together by two capscrews around the crankshaft journal. Two-cylinder engines have 1 center bearing, 3-cylinder engines have 2, and 4-cylinder engines have 3. End thrust is taken on steel-backed, copper-faced, split thrust washers installed at the gear and flywheel ends of the crankcase.  An interference-fit pinion gear is keyed onto the gear end of the crankshaft to drive the camshaft gear.

FIGURE 8-22. GEAR REMOVAL

 Removing the Crankshaft:

1. Remove the crankshaft pulley (Page 8-24). 2. Remove the gear cover (Page 8-15). 3. Remove the pistons and connecting rods (Page 8-19). 4. Remove each center bearing locating dowel by threading an inlet manifold bolt into it and pulling it out. Leave the dowels and bolts together for reassembly. See Figure 8-23 (Page 8-26) for the locations of the dowels. 5. Remove the flywheel (Page 8-22) and main bearing housing (Page 8-23). 6. Remove the camshaft (Page 8-16). 7. Remove the crankshaft gear with a suitable puller (Figure 8-22). 8. Gently withdraw the crankshaft through the flywheel end of the crankcase. 9. Dismantle the center bearing housing(s). 10. Remove the thrust washers from the gear end of the crankcase and the main bearing housing.

8-25

 Inspecting the Crankshaft: Inspect the main bearings for scoring and wear. The bearings can be removed and replaced using the main bearing tool (Page 8-27). Replace bearings and regrind crankshaft journals as necessary. See DIMENSIONS OF WEARING PARTS (Page 8-6). Replace the thrust washers if they are damaged or worn.

If a connecting rod big end bearing has failed, examine the oil passages in the crankshaft for obstructions and metal fragments.  Installing the Crankshaft:

1. If necessary, install new main bearing shells. 2. Reassemble the center main bearing housing(s) around the crankshaft and torque the capscrews to 21.0 N-m (15.5 lb-ft). Make sure “Flywheel End”, embossed on each half of the housing, faces the flywheel end of the crankshaft.

 A — Bearing Housing Locating Hole B — Capscrew Head Recess

3. Lightly grease the steel backs of the thrust washer halves and position them in the gear end of the crankcase, copper faces out . One of the bearing halves has a locating tab. Make sure the tab is located up, at 12 O’clock, in its recess.

FIGURE 8-23. CENTER MAIN BEARING HOUSING AND DOWEL HOLE ALIGNMENT

4. Pass the crankshaft into the crankcase from the flywheel end.  Take care not to score the gearend main bearing. CAUTION

5. To line up the locating dowel holes in the center main bearing housing(s) and crankcase (Figure 8-23, Item A), rotate the bearing housing(s) so that the spilt between the halves lies horizontal. Insert the locating dowel(s). The tapped end of a dowel must face outwards.  Make sure the dowels are fully seated and not in the  housing capscrew head recesses. 6. Install the rear main bearing housing and oil seal (Page 8-23). 7. Make sure that the crankshaft spins freely. 8. Insert the Woodruff key for the crankshaft gear if it has been removed.

8-26

9. Heat the crankshaft pinion gear to 325 ° F (163° C) in an oven and press it onto the crankshaft without delay,   making sure the “O”  mark faces outwards. Insufficient heat could cause the pinion to jam on the crankshaft. Overheating could cause softening of the pinion. 10. Check crankshaft end play. Checking Crankshaft End Play:

1. Set a dial indicator so that the actuating plunger makes contact with the face of the crankshaft (flywheel end). 2. Push the crankshaft firmly towards the gear end of the engine and zero the indicator. FIGURE 8-24. MAIN BEARING TOOL

3. Push the crankshaft firmly towards the flywheel end of the engine and check end play. End play should be 0.18-0.45 mm (0.007-0.018 inch). End play is maintained by a single 0.38 mm (0.015 inch) or 0.55 mm (0.022 inch) aluminum gasket between the main bearing housing flange and the crankcase.

The Crankshaft Center Main Bearing(s) The bearing shells are removed after separating the two halves of the housing by removing the two capscrews (Figure 8-23). When new bearings are being installed, make sure the oil holes in the shells and housing line up. Torque the capscrews to 21.0 N-m (15.5 lb-ft).

The Flywheel-End and Gear-End Main Bearings The procedures for removing and installing the main bearings is identical except that smaller tool components are used at the gear end.  Removing the Bearing: Before attempting to remove the bearings from the main bearing housing, secure the housing firmly in a soft-jawed vice.

1. Remove the oil seal. 2. Place the bolt (Figure 8-24, Item A) through the plain dolly (B). 3. Fit the bolt and dolly into the bearing from the oil seal side (crankcase outside face).

8-27

4. Fit the bridge (C) over the bolt threads until the two legs are against the housing face (crankcase at the gear end). 5. Thread the nut (E) onto the bolt. 6. Using a suitable wrench tighten the nut until the bearing shells are withdrawn.  Installing the Bearing: Before attempting to install the bearings in the main bearing housing, secure the housing firmly in a soft-jawed vice with the small oil feed hole uppermost.

1. Place the large tapered collar (Figure 8-24, Item F) on a bench with the locating pin facing upwards.

FIGURE 8-25. MAIN BEARING HOUSING OIL HOLE

2. Place the new bearing shells into the collar making sure that one oil feed hole is in line with the locating pin and that the end of the shell is in line with the mark on the collar face. 3. Place the driver (G) onto the collar (F) with the cut-out on the driver located over the collar locating pin. 4. Push the driver sufficiently until the bearings come out the other side of the collar to provide a lead-in. 5. Scribe a pencil line in line with the oil hole (Figure 8-25, Item X) on the outside face of the housing (crankcase at the gear end). 6. Install the assembly in the housing from the oil seal side (crankcase outside face at the gear end) with the locating pin in line with the pencil line on the housing (crankcase at the gear end). Take care to line up the locating pin with the inner oil hole (X). 7. Push the bolt (Figure 8-24, A) through the assembly. 8. Fit the bridge (C) and the nut (E) onto the bolt. 9. Tighten the nut until the driver (G) is against the face of the collar (F). 10. Remove the tool. 11. Check that the elongated oil hole (Figure 8-25, Item X) and the small oil hole (Y) in the bearing shell line up with the oil feed holes in the housing (crankcase).

8-28

LUBRICATING SYSTEM Description and Operation The sump is an integral part of the cylinder block. The oil filler, dipstick and filter are located on the crankcase door (Figure 8-26) and the drain below. The oil pump (Figure 8-27) gear is driven by the camshaft gear. The oil pump assembly includes a removable strainer and oil relief valve. Oil in the sump is drawn into the pump through the oil strainer and is then delivered by the pump through a drilling in the crankcase to the hole nearest the outside of the cartridge type oil filter base. Filtered, pressurized oil passes through the center of the filter and into the oil gallery, and from the oil gallery is delivered to the crankshaft and camshaft  journals and tappet bores.

FIGURE 8-26. OIL FILLER, FILTER AND DIPSTICK 

The connecting rod big-end bearings are pressure fed through internal drillings in the crankshaft from the main bearings. Splash oil lubricates the governor and camshaft. Oil jets supply oil under pressure to the piston undersides and camshaft gears.

Oil Seals Lip-type oil seals around the crankshaft are installed in the gear cover (Page  8-15) and the main bearing housing on the flywheel end (Page  8-23).  A lip-type oil seal will not seal if the shaft journal is scratched within 5 mm (0.2 inch) of either side of the path of the lip. The journal surface must be free of  chatter marks and have a finish of 0.4-0.6 microns. No grade of emery cloth provides a suitable finish. Unless the crankshaft is new or has been reground, it is recommended that the oil seals be pressed in an additional 3 mm (0.12 inch) to establish a new sealing path on the journal.

8-29

The Oil Pump, Strainer and Relief Valve  Access to the oil pump, strainer and relief valve requires removal of the gear cover and crankcase door. There are no separately replaceable parts in the oil pump or relief valve.  Do not use rags to wipe the inside of  the crankcase as the residual fluff can clog the oil strainer. CAUTION

 Removing the Pump, Strainer and Relief Valve:

1. Remove the gear cover (Page 8-15) and crankcase door (Page 8-14).

 A — Strainer B — Pump C — Relief Valve

2. Remove the oil strainer bracket bolt, spacer, washer and locknut.

FIGURE 8-27. OIL STRAINER AND PUMP

3. Remove the oil strainer (Figure 8-27, Item A) and the relief valve (C) from inside the crankcase. 4. Remove the two pump retaining bolts. 5. Ease the pump (B) out of the crankcase.  Do not lever the pump out with  a screwdriver as that will damage the seal ing surfaces of the pump flange. CAUTION

6. Check that the pump is working by turning the gear while holding the palm of the hand over the two ports. 7. Clean the strainer.  Installing the Pump, Strainer and Relief Valve: FIGURE 8-28. OIL PUMP LOCATING CUTOUT

1. Install the pump with the cut-out section of the pump flange (Figure 8-28, Item X) facing towards the top of the crankcase. 2. Torque the two pump retaining bolts to 9.0 N-m (6.5 lb-ft). 3. Install the oil strainer, strainer bracket bolt, spacer, washer and locknut. 4. Tighten the oil strainer pipe nut to 27.0 N-m (20.0 lb-ft). Make sure the strainer screen is parallel with the sump base. 5. Install the relief valve in the left-hand pump port and tighten the retaining nut. 6. Replace the camshaft (Page 8-16), gear cover (Page 8-15) and crankcase door (Page 8-14).

8-30

COOLING SYSTEM The engine is cooled by coolant pumped through the engine block and head. The coolant pump and radiator fan are driven by a poly-V belt.

The Thermostat  Removing the Thermostat:

1. Remove the radiator pressure/fill cap, thermostat body drain plug (Figure 8-29, Item A) and radiator top hose.

 Hot coolant is under pressure  and can cause severe burns. Always let the engine cool down before removing the  pressure/fill cap or drain plug. WARNING

FIGURE 8-29. REMOVING THE THERMOSTAT

2. Remove the two cover retaining bolts and lift off  the cover (B) and thermostat (C). 3. Clean any debris and the old seal from the thermostat housing. 4. Submerge the thermostat in a container of water and raise the water temperature to make the thermostat open. Replace the thermostat if it does not start to open at 71 C (160 F) or is not fully open at 85 C (185 F). 

 Installing the Thermostat:

1. Install the thermostat with a new gasket, making sure the jiggle pin (Figure 8-30, Item A) moves freely and is located as shown towards the recess.

FIGURE 8-30. THERMOSTAT

2. Replace the cover, drain plug and radiator hose. 3. Refill the coolant system.

8-31

The Coolant Pump The coolant pump can be removed without removing the thermostat, radiator fan or fan pulley.  Removing the Coolant Pump:

1. Remove the radiator. 2. Loosen the alternator adjusting bolts. 3. Move the alternator inwards towards the crankcase sufficiently to remove the fan drive belt. 4. Remove the five bolts and two stud nuts from the pump assembly. 5. Lift off the pump assembly. 6. Clean any debris and old gasket from the pump assembly and the block.  Installing the Coolant Pump:

1. Install the pump assembly with a new gasket and torque the five bolts and two stud nuts to 21.0 N-m (15.5 lb-ft).

 A — Stud nuts B — Shorter bolts (45 mm) C — Longer bolts (75 mm)

2. Replace the fan drive belt. 3. Install the radiator.

FIGURE 8-31. COOLANT PUMP

4. Refill the system with coolant.

The Radiator Fan Drive Belt The crankshaft and driven pulleys must have smooth grove finishes and line up within 1.6 mm (0.061 in) as measured at the centers of the grooves.

The Radiator Fan  Removing the Fan:

1. Remove the radiator. 2. Remove the fan drive belt. 3. Loosen the fan mounting nut. Turn the nut  clockwise to loosen. 4. Remove the fan.

8-32

cool down before removing the pressure/fill cap or drain plug.

 Replacing the Fan:

1. Install the fan and mounting nut. Tighten the  nut counterclockwise. Torque the nut to 30 N-m (22 lb-ft).

2. Disconnect the radiator hoses from the engine. 3. Remove the two halves of the fan guard.

2. Replace the fan belt.

4. Remove the radiator and shroud from the skid as an assembly.

3. Install the radiator.

5. Remove the radiator from the shroud if necessary.

4. Refill the system with coolant.

The Radiator

 Installing the Radiator: Installation is the reverse of removal.

 Removing the Radiator:

CRANKCASE BREATHER SYSTEM

1. Remove the radiator pressure/fill cap and drain the coolant. Hot coolant is under pressure and can cause severe burns. Always let the engine

See Figure 8-32 to reassemble the breather system correctly.

FIGURE 8-32. CRANKCASE BREATHER

8-33

IGNITION SYSTEM

Spark Plugs

The engine is equipped with an electronic ignition system powered by the 12 volt battery. The ignition system consists of a magnetic rotor bolted to the pulley end of the crankshaft, one or more ignition modules (Hall-effect devices), one or more ignition coils and the spark plugs (Figure 8-33).

The spark plugs must be in good condition and have the proper gap. Always thread a spark plug in by hand to prevent cross threading. If the engine misses or performance deteriorates, remove and examine the spark plugs and look for the following problems:

The ignition module makes and breaks the primary circuit of the ignition coil as the north and south poles of the magnetic rotor pass by one after the other on each revolution. Breaking the primary coil circuit (at the point of ignition timing) causes the field to collapse, inducing 20,000 volts or more in the secondary coil. The energy in the secondary coil is discharged across the spark plug to ignite the fuel in the cylinder.

Light tan, gray or reddish deposits: Normal One spark plug fouled:   Broken spark plug cable or low cylinder compression Oil fouled: Malfunctioning crankcase breather, worn rings, worn valve guides or seals

Quick Ignition Test

Burned or overheated: Leaking intake manifold gaskets, lean fuel mixture

If the engine misfires, test the ignition system as follows.

Worn: Service life up.   Gaseous fuels are flammable and  explosive and can cause severe personal injury  or death. Ventilate the area thoroughly before conducting this test and make sure the manual  fuel shutoff valve is close. Keep a type ABC fire extinguisher handy. WARNING

1. Close the manual fuel shutoff valve to prevent gas from escaping during this test.  HIGH VOLTAGE: To avoid electric shock do not touch the spark plug cables during this test. WARNING

Ignition Coil Inspect the high tension terminals for corrosion, looseness, cracks or other damage. Look for carbon runners and other signs of electrical leakage. Replace a damaged or leaking coil.  Double-Terminal Coils − Replace a double-terminal type of coil (2- and 4-cylinder engines) if primary resistance is not 3 to 5 ohms and secondary resistance 10,000 to 14,000 ohms. Single-Terminal Coils − Replace a single-terminal type of coil (3-cylinder engines) if primary resistance is not 2.8 to 4.4 ohms and secondary resistance 3600 to 5400 ohms.

2. Disconnect each spark plug cable, in turn, from its spark plug and hold the end of the cable near the end of the spark plug terminal with an insulated spark plug cable holder. Crank the engine and observe the spark. Service the ignition system if the spark is weak, inconsistent or missing. If the spark is strong and consistent, the problem is elsewhere.

Rotor-To-Pickup Air Gap If either the magnetic rotor or the pickup modules or bracket have been loosened or removed, check the air gap between the rotor and modules while turning the engine through one complete revolution. Loosen and resecure the bracket if the gap is less than 0.030 inch (0.76 mm) or more than 0.120 inch (2.29 mm) between the rotor and any module.

Spark Plug Cables Replace a spark plug cable if resistance across the cable is not 3,000 to 15,000 ohms or if it appears damaged in any way.

8-34

PRIMARY SIDE (12 VDC)

MAGNETIC ROTOR “FLYWHEEL SIDE” OUT

IGNITION MODULE

SECONDARY SIDE (HIGH TENSION)

SPARK  PLUG

SCHEMATIC—PRIMARY SIDE Red

B+

Red

+

Black

DOUBLE-TERMINAL TYPE OF IGNITION COIL

IGNITION MODULE

SINGLE-TERMINAL TYPE OF IGNITION COIL IGNITION COIL

TEST LIGHT

FIGURE 8-33. IGNITION SYSTEM

8-35

Ignition Timing

1. Disconnect the fuel shutoff solenoid from the engine harness to prevent the engine from starting and push the control switch to Run.

The timing marks on the flywheel are visible through the opening in the flywheel housing on the service side of the engine. Timing can only be adjusted statically (engine stopped) by loosening the magnetic rotor center bolt, turning the rotor to obtain the specified timing and then retightening the center bolt.

2. Connect one lead of a 12 VDC test light to the negative (−) terminal on the number 1 cylinder ignition coil and the other to engine/battery ground (−). Alternatively, use an analog-type DC voltmeter, connecting the positive test lead (red) to the negative coil terminal ( −) and the negative test lead (black) to engine/battery ground (−).

Firing Order for 2 −Cylinder Engines: The firing order is 1−2. The engine has one double-terminal ignition coil and one ignition module, located as shown in Figure 8-33. The ignition module causes both spark plugs, via the coil, to fire once every revolution.*

3. If the light is bright (meter indicates 12 volts), rotate the engine clockwise until the light dims (1 volt or less). Bright light (B+) at the negative ( − ) terminal of the coil indicates that the circuit to ground through the ignition module is open; dim light (1 volt or less) that the circuit to ground is closed (schematic, Figure 8-33 ). The light will stay on for somewhat less than half a revolution.

Firing Order for 4 −Cylinder Engines: The firing order is 1−3−4−2. The engine has two double-terminal ignition coils and two ignition modules, located 180° apart. The ignition modules cause the two sets of spark plugs, via the coils, to fire once every revolution,* 180° apart. Therefore the front coil (closer to the radiator) should be connected to spark plugs 1 and 4 and the rear coil to spark plugs 2 and 3.

4. Continue rotating the engine clockwise, but now very slowly. Stop when the light just becomes bright (meter jumps to 12 volts) and check the timing mark on the flywheel.

Firing Order for 3 −Cylinder Engines: The firing order is 1−2−3. The engine has three single-terminal ignition coils and three ignition modules located 120° apart. The ignition modules cause the spark plugs, via the coils, to fire once every revolution.* The ignition modules should be positioned 1 −3−2 in a clockwise direction on the mounting plate.

5. If the timing is off:  A. Remove the fan/belt guard. B. Loosen the center bolt of the magnetic rotor. C. Rotate the engine so that the pointer in the window in the housing points to 11 ° BTDC or 21° BTDC on the flywheel, as appropriate for the fuel being used.

 Dynamic Timing Check: A dynamic check of timing should indicate 10 ° BTDC for LPG and 20° BTDC for natural gas. Static Timing: Set timing by the following static method to 11 ° BTDC for LPG and 21° BTDC for natural gas. (The static timing settings are necessary to obtain the true [dynamic] timings of the specification.)

D. Rotate the rotor clockwise through at least one rotation to catch the location where the light just becomes bright (meter jumps to 12 volts). Tighten the center bolt at that point.

  Accidental starting can cause severe personal injury or death. Prevent starting  by disconnecting the fuel shutoff solenoid.

E. Recheck timing by repeating Steps 3 and 4 and repeat Substeps C and D if the timing is still off.

WARNING

 * Though power strokes occur only once every other revolution , the spark plugs fire once every revolution because the magnetic rotor rotates at the same speed as the crankshaft. The extra spark has no function.

8-36

FUEL SYSTEM   Gaseous fuels are flammable and  explosive and can cause severe personal injury  or death. Do not smoke if you smell gas or are  near fuel tanks or fuel-burning equipment or are  in an area sharing ventilation with such equip ment. Keep flames, sparks, pilot lights, electrical switches, arc-producing equipment and all  other sources of ignition well away. Keep a type  ABC fire extinguisher handy. WARNING

FUEL SHUTOFF SOLENOID

BALANCE HOSE

PRESSURE REGULATOR

FUEL-AIR MIXER

 NFPA Standard No. 58 requires all persons handling and operating LPG to be trained in proper   handling and operating procedures.

Fuel System Components Figure 8-34 illustrates the fuel system components mounted on the generator set. See the Installation Manual for important information concerning gaseous fuel installations. Note that the means for adjusting gas pressure on the set-mounted pressure regulator and the fuel-air mixture on the fuel-air mixer on generator sets certified by EPA have been sealed and are not to be altered.

FIGURE 8-34. TYPICAL FUEL SYSTEM COMPONENTS

 Unauthorized modifications or re placement of fuel, exhaust, air intake or speed  control system components that affect engine emissions are prohibited by law on generator   sets certified by EPA. WARNING

8-37

Gas Pressure Adjustments   High gas supply pressure can cause gas leaks which can lead to fire and severe personal injury or death. Gas supply pres sure must be adjusted to Specifications by  qualified personnel. WARNING

PRESSURE ADJUSTING SCREW CAP

1. Measure gas supply pressure as close as possible to the gas supply inlet of the set.  A. Size the gas supply system to supply gas at a pressure  not less than  5.5 inch (140 mm) WC (water column) under fullload. (Size an LPG tank to provide adequate fuel vaporization [and thus pressure] at the lowest expected ambient temperature when half full.)

PRESSURE TEST PORT

B. Adjust the supply system pressure regulator to supply gas at a pressure  not greater  than 14 inch (356 mm) WC . FIGURE 8-35. TEST PORT AND ADJUSTMENT (NON-EPA GAS PRESSURE REGULATOR)

 , 2. For non-EPA certified generator sets only   and only if necessary, adjust the pressure regulator under full load by turning the adjusting screw under the cap (Figure 8-35) to obtain the following pressures at the test port:

−1.5 inch (−38 mm) WC for LPG

IDLE AIR BYPASS SCREW

5 inch (127 mm) WC for natural gas

POWER MIXTURE VALVE

Fuel Mixture Adjustments (Non-EPA Certified Generator Sets Only) 1. Make sure the balance hose (Figure 8-34) is properly connected and does not leak. 2. Turn the idle air bypass screw in gently by hand until it seats and then out 2 −1/2 turns (Figure 8-36). 3. Start the engine and let the set warm up under at least 1/4 full-load. 4. Measure gas pressure at the pressure regulator and adjust as necessary (Figure 8-35). THROTTLE LEVER

5. Reconnect full-load and turn the power mixture valve counterclockwise to its full-rich position. Turn the valve clockwise (leaner) very slowly until the throttle lever starts to move. Then turn the valve back (richer) until the engine can carry full-load smoothly.

FIGURE 8-36. FUEL MIXTURE ADJUSTMENTS (NON-EPA FUEL-AIR MIXER)

8-38

GOVERNOR ACTUATOR

lever is not vertical in this position, loosen its clamp screw and reset it on the shaft.

Governor Linkage Adjustment 4. While holding the throttle lever in the closed position (counterclockwise), turn the throttle stop screw in until it just touches the stop, and then 1/4 turn more.

1. Make sure that the governor actuator is securely mounted, that the clevis on the end of the armature has full thread engagement, that its lock nut is set, and that the clevis pin lies horizontal so that the link will not bind. See Figure 8-37. 2. Disconnect the link at the throttle lever and back out the throttle stop screw.

5. Adjust the length of the link until the holes in the link and throttle lever line up while the throttle lever is against its stop and the actuator is in its de-energized position.

3. Gently push the throttle lever counterclockwise as far as it will go (closed throttle). If the throttle

6. Reconnect the link to the throttle lever. Make sure the linkage does not bind.

 ACTUATOR

CLEVIS

LINK 

THROTTLE LEVER

THROTTLE STOP SCREW

FIGURE 8-37. ELECTRONIC GOVERNOR

8-39

THIS PAGE LEFT INTENTIONALLY BLANK 

8-40

9. Wiring Diagrams GENERAL

Page 9-3, Wiring Diagram.

This section consists of the schematic and connection wiring diagrams referenced in the text. The following drawings are included.

Page 9-4, Engine Conrol Harness.

Page 9-5, Generator Conrol Harness.

Page 9-6, Customer Connections.

Page 9-2, AC Reconnect Wiring Diagram.

9-1

THIS IS A REPRESENTATIVE DRAWING. FOR SERVICE, USE DRAWING SUPPLIED WITH GENSET, IF AVAILABLE.

No. 630-2796 sh 1 of 1 Rev. C Modified 12-04

AC RECONNECT WIRING DIAGRAM

9-2

THIS IS A REPRESENTATIVE DRAWING. FOR SERVICE, USE DRAWING SUPPLIED WITH GENSET, IF AVAILABLE.

No. 630-2936 sh 1 of 3 Rev. C Modified 01-05

WIRING DIAGRAM

9-3

THIS IS A REPRESENTATIVE DRAWING. FOR SERVICE, USE DRAWING SUPPLIED WITH GENSET, IF AVAILABLE.

No. 630-2936 sh 1 of 3 Rev. C Modified 01-05

WIRING DIAGRAM

9-3

THIS IS A REPRESENTATIVE DRAWING. FOR SERVICE, USE DRAWING SUPPLIED WITH GENSET, IF AVAILABLE.

No. 0184−0207 Rev. F Modified 05-05

ENGINE CONTROL HARNESS

9-4

THIS IS A REPRESENTATIVE DRAWING. FOR SERVICE, USE DRAWING SUPPLIED WITH GENSET, IF AVAILABLE.

No. 0184−0207 Rev. F Modified 05-05

ENGINE CONTROL HARNESS

9-4

THIS IS A REPRESENTATIVE DRAWING. FOR SERVICE, USE DRAWING SUPPLIED WITH GENSET, IF AVAILABLE.

No. 0184 −0207 Rev. F Modified 05-05

GENERATOR CONTROL HARNESS

9-5

THIS IS A REPRESENTATIVE DRAWING. FOR SERVICE, USE DRAWING SUPPLIED WITH GENSET, IF AVAILABLE.

No. 0184 −0207 Rev. F Modified 05-05

GENERATOR CONTROL HARNESS

9-5

THIS IS A REPRESENTATIVE DRAWING. FOR SERVICE, USE DRAWING SUPPLIED WITH GENSET, IF AVAILABLE.

No. 620-0277 sh 1 of 1 Rev. B Modified 01-05

CUSTOMER CONNECTIONS

9-6

THIS IS A REPRESENTATIVE DRAWING. FOR SERVICE, USE DRAWING SUPPLIED WITH GENSET, IF AVAILABLE.

No. 620-0277 sh 1 of 1 Rev. B Modified 01-05

CUSTOMER CONNECTIONS

9-6

Appendix A. Menu Sequence Diagrams GENERAL

Page A-2, Operator Menus.

This appendix provides block diagrams that illustrate the sequence of how the menus are displayed when viewing the following system menu categories.

Page A-3, Genset Service Menus.

Page A-4, Genset Setup Menus.

Appendix A. Menu Sequence Diagrams GENERAL

Page A-2, Operator Menus.

This appendix provides block diagrams that illustrate the sequence of how the menus are displayed when viewing the following system menu categories.

Page A-3, Genset Service Menus.

Page A-4, Genset Setup Menus.

A-1

OPERATOR MENUS TEXT VERSION

THREE PHASE ONLY

SINGLE PHASE ONLY THREE PHASE WYE ONLY

CURRENT SENSE  AMPERAGE

MANUAL RUN MODE SELECTED

 AUTO MODE SELECTED

A-2

GENSET SERVICE MENUS

A  3 

F  I    G  U R E  A -2  .  G E  N  S  E  T   S  E  R V  I    C  E  M E  N  U  S 

VIEWING AND  ADJUSTING

VIEWING ONLY 

GO TO GENSET SETUP AND SERVICE MENUS ON PAGE A-4

OR

 YES

NO OR

IF AVR IS NOT ENABLED OR  YES

NO OR

IF AVR IS ENABLED

GENSET SETUP AND SERVICE MENUS

OR

GO TO GENSET SERVICE MENUS ON PAGE A-3

VIEWING AND  ADJUSTING

VIEWING ONLY 

OR

A -4 

F  I    G  U R E  A  3  .  G E  N  S  E  T   S  E  T   U P  A N D  S  E  R V  I    C  E  M

12V

 O R

24V

OR

Слайд 1Панель управления Power Command PCC1301

Панель управления PCC1301

включает в себя все, что необходимо для

пуска, установки и управления ДГУ. Это устройство отличают высокие показатели надежности, удобство эксплуатации, широкий диапазон температур эксплуатации, полностью защищенное от воздействия внешней среды исполнение.
Разработана для использования с опциональной панелью удаленного мониторинга или переключателем «Авто/Выкл./Ручн.»
Способность полного мониторинга ДГУ
Система полной защиты двигателя
Измерение напряжения и тока по 3-м фазам
Управление запуском двигателя
По два входных и выходных сигнала пользователя
Встроенный AVR (автоматический регулятор напряжения)
Температурный режим от -40° С до +70° С
Компактные размеры 224х149х65 мм (ШхГхВ)
Универсальный сервис-инструментарий

Панель управления Power Command PCC1301
  Панель управления PCC1301 включает в себя


Слайд 2система индикации и управления
Возможность использования нескольких

панелей с одной ДГУ путем коммуникации через

встроенный RS485
Возможность удаления панели на расстоянии до 300 м от ДГУ
Отсутствие наружных переключателей
Мгновенное отображение статусных и аварийных сообщений
Полное отображение состояния ДГУ:
3-х фазное напряжение и ток,
температура ОЖ, давление масла,
напряжение батарей, частота,
история ошибок
Возможность настройки и
регулировки ДГУ
Компактные размеры
141х111х33,5 мм (ШхГхВ)
Защита дисплея IP54

система индикации и управления  Возможность использования нескольких панелей с одной ДГУ


Слайд 3Компоненты системы управления
Система управления PCC1301 модульной

конструкции, состоит из следующих элементов:
PCC1301 (Основное устройство)
HMI211

(Интерфейс человек-машина)
HMI113 (Универсальный сигнализатор — Опция)
Aux101 и Aux102 (Модули Входа / Выхода – Опция)

В данном курсе рассмотрим функции контроллера PCC1301 и функции дисплея оператора HMI211

Компоненты системы управления  Система управления PCC1301 модульной конструкции, состоит из следующих


Слайд 4Структура системы управления

PCC1301
HMI211
HMI113
(Опция)
Информационная сеть
(4

кабеля)
Шина Modbus
Двигатель

Генератор
AUX101
(Опция)
(Service Tool)

Конвертер
На некоторых моделях

Структура системы управления    PCC1301  HMI211 HMI113 (Опция) Информационная


Слайд 5Функции компонентов
Контроллер PCC1301
(Основной элемент):

Эта плата является

“сердцем” системы управления. Плата содержит все логические

элементы и устройства ввода/вывода
для работы ДГУ.

Функции компонентов Контроллер PCC1301
  (Основной элемент):  Эта плата является “сердцем”


Слайд 6Функции панели управления PCC1301
Защита двигателя
давление масла,

температура двигателя,
превышение оборотов двигателя,
проблемы с

пуском,
неисправность датчика оборотов.
Защита генератора
пониженное напряжение,
повышенное напряжение,
пониженная частота тока,
превышение силы тока – требуются трансформаторы тока .
Задержка времени пуска/останова
Режим энергосбережения
пониженное энергопотребление в режимах Off и Auto
Программируемые I/O пользователя
(2 входа и 2 выхода)
Интерфейс Modbus (RS485 RTU)
Взаимодействие с сервисным ПО
Защита от воздействий окружающей среды (NEMA 3R/IP53)

Функции панели управления PCC1301 Защита двигателя  давление масла,  температура двигателя,


Слайд 7HMI211 Дисплей оператора
HMI211 (Интерфейс взаимодействия человек —

машина):
Модуль HMI используется для измерения параметров работы

генератора и двигателя.

Поддерживается режим оповещения
о неисправностях
(коды неисправностей и описание)
облегченный вариант системы
управления без сервисного ПО.

HMI211 Дисплей оператора HMI211 (Интерфейс взаимодействия человек - машина): Модуль HMI используется


Слайд 8Функции дисплея HMI211
Свойства Дисплей оператора HMI211 :
Подсвечиваемый

ЖК дисплей
Символьный или текстовый экран оператора
поддерживает

только английский язык
Встроенный переключатель Пуск/Выключение/Авто
с программируемым кодом доступа (key switch)
Показания :
Двигатель
Давление масла , температура ОЖ ,
заряд батареи, скорость вращения
Генератор
напряжение, ток, частота,
KVA – полная мощность

Может быть дополнительно установлен дистанционно

Функции дисплея HMI211 Свойства Дисплей оператора HMI211 : Подсвечиваемый ЖК дисплей Символьный


Слайд 10Дисплей оператора
Органы управления дисплея

Светодиоды:
1 не в автоматическом

режиме
2 останов
3 внимание
4 дистанционный пуск
5 автоматический режи
6

ручной режим
Кнопки:
7 режим генераторной установки «Окл» (переход в главное меню)
8 предыдущий экран
9 кнопки с функциями определяемыми символами на дисплее
Дисплей:
10 строка меню (4 символа кнопок)
11 графический ЖК дисплей

Дисплей оператора Органы управления дисплея  Светодиоды: 1 не в автоматическом режиме


Слайд 12Отображаемые символы в символьном режиме

Отображаемые символы в символьном режиме


Слайд 13Дисплей — системные сообщения

Системные сообщения отображаются

при включении напряжения питания или при сбое

обмена данными с контроллером РСС1301.
При потери связи с контроллером сообщение
отображается до восстановления связи с контроллером
Когда индицируются коммуникационные сообщения,
можно выбрать режим работы автоматический / ручной.
При подаче питания
Если на экране остаётся любое
коммуникационное сообщение
(и другие меню просмотреть невозможно),
то значит связь между дисплеем и
контроллером РСС1301 утеряна.
Обратитесь за помощью к официальному дистрибьютору.

При потери связи

Дисплей - системные сообщения  Системные сообщения отображаются 
  при включении


Слайд 14Дисплей — Сообщения о событиях
Когда активируются

запрограммированные события
(пуск или останов), индицируются сообщения

о событиях,
показывающие время, остающееся до завершения события.
Сообщение о неисправности является индикатором
состояния «Внимание!» или «Останов», еще одним
индикатором которого является включения лампы.
Текстовое сообщение о неисправности содержит
номер кода неисправности, краткое описание и
время возникновения неисправности ( текстовом режиме )
Символьные сообщения о неисправностях содержат
номер кода неисправности и символы, указывающие
на тип неисправности ( символьном режиме дисплея)
Подтверждение приема неисправности.
Для подтверждения приема сигнала неисправности/останова
следует нажать кнопку «Откл.» на панели дисплея или
кнопки стрелок, при этом сообщение о неисправности
удаляется с дисплея.
Сообщение о неисправности появляется повторно если
сигнал неисправности не устранен.

Дисплей - Сообщения о событиях  Когда активируются запрограммированные события 
 (пуск


Слайд 15Меню оператора дисплея

Состояние двигателя
напряжение АКБ,

температуру ОЖ, давление масла, моточасы.
Состояние генератора переменного

тока
нагрузку генератора (КВА), частоту (Гц), обороты двигателя (об/мин).
Линейные напряжения
линейные напряжения L1-L2, L2-L3, L3-L1 только для 3-фазных систем.
Фазные напряжения
фазные напряжения L1, L2, L3 только в конфигурации звезда,
В конфигурации «треугольник» это меню не показывается,
напряжения L1-N, L2-N и L1-L2 только для однофазных систем.
Токи генератора
показываются результаты измерений токов L1, L2 и L3.

Меню оператора дисплея  Состояние двигателя   напряжение АКБ, температуру ОЖ,


Слайд 17 автоматический и ручной режимы
ВНИМАНИЕ! ПРИ

ИЗМЕНЕНИИ РЕЖИМОВ ГЕНЕРАТОРНАЯ УСТАНОВКА МОЖЕТ ЗАПУСТИТЬСЯ ИЛИ

ОСТАНОВИТЬСЯ БЕЗ ПРЕДУПРЕЖДЕНИЯ. УБЕДИТЕСЬ, ЧТО ИЗМЕНЕНИИ РЕЖИМА НЕ СОЗДАДУТ ОПАСНОСТИ ДЛЯ ПЕРСОНАЛА ИЛИ ОБОРУДОВАНИЯ.

Смена режима автоматический / ручной из режима «Откл.» можно произвести следующим образом:
из любого меню оператора,
при сообщении «Установление связи»,
при сообщении «Восстановление связи».
Если при наладке пульта управления была
активирована функция пароля для изменения
режимов «Авт.», «Ручн.» или «Откл.», то
необходимо ввести пароль в субменю «Изменение режима»
с помощью кнопок «>», «+», «-». Пароль оператора 121.
По окончании ввода нажать кнопку с символом «>».


Понравилась статья? Поделить с друзьями:
  • Pc speaker коды ошибок
  • Pc radio ошибка при подключении проверьте настройки
  • Pc connect realme ошибка
  • Pc building simulator ошибка 3dmark
  • Pc analyzer коды ошибок на русском