Control structures are probably the most useful (and important) part of PL/pgSQL. With PL/pgSQL‘s control structures, you can manipulate PostgreSQL data in a very flexible and powerful way.
43.6.1. Returning from a Function
There are two commands available that allow you to return data from a function: RETURN
and RETURN NEXT
.
43.6.1.1. RETURN
RETURN expression
;
RETURN
with an expression terminates the function and returns the value of expression
to the caller. This form is used for PL/pgSQL functions that do not return a set.
In a function that returns a scalar type, the expression’s result will automatically be cast into the function’s return type as described for assignments. But to return a composite (row) value, you must write an expression delivering exactly the requested column set. This may require use of explicit casting.
If you declared the function with output parameters, write just RETURN
with no expression. The current values of the output parameter variables will be returned.
If you declared the function to return void
, a RETURN
statement can be used to exit the function early; but do not write an expression following RETURN
.
The return value of a function cannot be left undefined. If control reaches the end of the top-level block of the function without hitting a RETURN
statement, a run-time error will occur. This restriction does not apply to functions with output parameters and functions returning void
, however. In those cases a RETURN
statement is automatically executed if the top-level block finishes.
Some examples:
-- functions returning a scalar type RETURN 1 + 2; RETURN scalar_var; -- functions returning a composite type RETURN composite_type_var; RETURN (1, 2, 'three'::text); -- must cast columns to correct types
43.6.1.2. RETURN NEXT
and RETURN QUERY
RETURN NEXTexpression
; RETURN QUERYquery
; RETURN QUERY EXECUTEcommand-string
[ USINGexpression
[, ... ] ];
When a PL/pgSQL function is declared to return SETOF
, the procedure to follow is slightly different. In that case, the individual items to return are specified by a sequence of sometype
RETURN NEXT
or RETURN QUERY
commands, and then a final RETURN
command with no argument is used to indicate that the function has finished executing. RETURN NEXT
can be used with both scalar and composite data types; with a composite result type, an entire “table” of results will be returned. RETURN QUERY
appends the results of executing a query to the function’s result set. RETURN NEXT
and RETURN QUERY
can be freely intermixed in a single set-returning function, in which case their results will be concatenated.
RETURN NEXT
and RETURN QUERY
do not actually return from the function — they simply append zero or more rows to the function’s result set. Execution then continues with the next statement in the PL/pgSQL function. As successive RETURN NEXT
or RETURN QUERY
commands are executed, the result set is built up. A final RETURN
, which should have no argument, causes control to exit the function (or you can just let control reach the end of the function).
RETURN QUERY
has a variant RETURN QUERY EXECUTE
, which specifies the query to be executed dynamically. Parameter expressions can be inserted into the computed query string via USING
, in just the same way as in the EXECUTE
command.
If you declared the function with output parameters, write just RETURN NEXT
with no expression. On each execution, the current values of the output parameter variable(s) will be saved for eventual return as a row of the result. Note that you must declare the function as returning SETOF record
when there are multiple output parameters, or SETOF
when there is just one output parameter of type sometype
sometype
, in order to create a set-returning function with output parameters.
Here is an example of a function using RETURN NEXT
:
CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLARE r foo%rowtype; BEGIN FOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo();
Here is an example of a function using RETURN QUERY
:
CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS $BODY$ BEGIN RETURN QUERY SELECT flightid FROM flight WHERE flightdate >= $1 AND flightdate < ($1 + 1); -- Since execution is not finished, we can check whether rows were returned -- and raise exception if not. IF NOT FOUND THEN RAISE EXCEPTION 'No flight at %.', $1; END IF; RETURN; END; $BODY$ LANGUAGE plpgsql; -- Returns available flights or raises exception if there are no -- available flights. SELECT * FROM get_available_flightid(CURRENT_DATE);
Note
The current implementation of RETURN NEXT
and RETURN QUERY
stores the entire result set before returning from the function, as discussed above. That means that if a PL/pgSQL function produces a very large result set, performance might be poor: data will be written to disk to avoid memory exhaustion, but the function itself will not return until the entire result set has been generated. A future version of PL/pgSQL might allow users to define set-returning functions that do not have this limitation. Currently, the point at which data begins being written to disk is controlled by the work_mem configuration variable. Administrators who have sufficient memory to store larger result sets in memory should consider increasing this parameter.
43.6.2. Returning from a Procedure
A procedure does not have a return value. A procedure can therefore end without a RETURN
statement. If you wish to use a RETURN
statement to exit the code early, write just RETURN
with no expression.
If the procedure has output parameters, the final values of the output parameter variables will be returned to the caller.
43.6.3. Calling a Procedure
A PL/pgSQL function, procedure, or DO
block can call a procedure using CALL
. Output parameters are handled differently from the way that CALL
works in plain SQL. Each OUT
or INOUT
parameter of the procedure must correspond to a variable in the CALL
statement, and whatever the procedure returns is assigned back to that variable after it returns. For example:
CREATE PROCEDURE triple(INOUT x int) LANGUAGE plpgsql AS $$ BEGIN x := x * 3; END; $$; DO $$ DECLARE myvar int := 5; BEGIN CALL triple(myvar); RAISE NOTICE 'myvar = %', myvar; -- prints 15 END; $$;
The variable corresponding to an output parameter can be a simple variable or a field of a composite-type variable. Currently, it cannot be an element of an array.
43.6.4. Conditionals
IF
and CASE
statements let you execute alternative commands based on certain conditions. PL/pgSQL has three forms of IF
:
-
IF ... THEN ... END IF
-
IF ... THEN ... ELSE ... END IF
-
IF ... THEN ... ELSIF ... THEN ... ELSE ... END IF
and two forms of CASE
:
-
CASE ... WHEN ... THEN ... ELSE ... END CASE
-
CASE WHEN ... THEN ... ELSE ... END CASE
43.6.4.1. IF-THEN
IFboolean-expression
THENstatements
END IF;
IF-THEN
statements are the simplest form of IF
. The statements between THEN
and END IF
will be executed if the condition is true. Otherwise, they are skipped.
Example:
IF v_user_id <> 0 THEN UPDATE users SET email = v_email WHERE user_id = v_user_id; END IF;
43.6.4.2. IF-THEN-ELSE
IFboolean-expression
THENstatements
ELSEstatements
END IF;
IF-THEN-ELSE
statements add to IF-THEN
by letting you specify an alternative set of statements that should be executed if the condition is not true. (Note this includes the case where the condition evaluates to NULL.)
Examples:
IF parentid IS NULL OR parentid = '' THEN RETURN fullname; ELSE RETURN hp_true_filename(parentid) || '/' || fullname; END IF;
IF v_count > 0 THEN INSERT INTO users_count (count) VALUES (v_count); RETURN 't'; ELSE RETURN 'f'; END IF;
43.6.4.3. IF-THEN-ELSIF
IFboolean-expression
THENstatements
[ ELSIFboolean-expression
THENstatements
[ ELSIFboolean-expression
THENstatements
... ] ] [ ELSEstatements
] END IF;
Sometimes there are more than just two alternatives. IF-THEN-ELSIF
provides a convenient method of checking several alternatives in turn. The IF
conditions are tested successively until the first one that is true is found. Then the associated statement(s) are executed, after which control passes to the next statement after END IF
. (Any subsequent IF
conditions are not tested.) If none of the IF
conditions is true, then the ELSE
block (if any) is executed.
Here is an example:
IF number = 0 THEN result := 'zero'; ELSIF number > 0 THEN result := 'positive'; ELSIF number < 0 THEN result := 'negative'; ELSE -- hmm, the only other possibility is that number is null result := 'NULL'; END IF;
The key word ELSIF
can also be spelled ELSEIF
.
An alternative way of accomplishing the same task is to nest IF-THEN-ELSE
statements, as in the following example:
IF demo_row.sex = 'm' THEN pretty_sex := 'man'; ELSE IF demo_row.sex = 'f' THEN pretty_sex := 'woman'; END IF; END IF;
However, this method requires writing a matching END IF
for each IF
, so it is much more cumbersome than using ELSIF
when there are many alternatives.
43.6.4.4. Simple CASE
CASEsearch-expression
WHENexpression
[,expression
[ ... ]] THENstatements
[ WHENexpression
[,expression
[ ... ]] THENstatements
... ] [ ELSEstatements
] END CASE;
The simple form of CASE
provides conditional execution based on equality of operands. The search-expression
is evaluated (once) and successively compared to each expression
in the WHEN
clauses. If a match is found, then the corresponding statements
are executed, and then control passes to the next statement after END CASE
. (Subsequent WHEN
expressions are not evaluated.) If no match is found, the ELSE
statements
are executed; but if ELSE
is not present, then a CASE_NOT_FOUND
exception is raised.
Here is a simple example:
CASE x WHEN 1, 2 THEN msg := 'one or two'; ELSE msg := 'other value than one or two'; END CASE;
43.6.4.5. Searched CASE
CASE WHENboolean-expression
THENstatements
[ WHENboolean-expression
THENstatements
... ] [ ELSEstatements
] END CASE;
The searched form of CASE
provides conditional execution based on truth of Boolean expressions. Each WHEN
clause’s boolean-expression
is evaluated in turn, until one is found that yields true
. Then the corresponding statements
are executed, and then control passes to the next statement after END CASE
. (Subsequent WHEN
expressions are not evaluated.) If no true result is found, the ELSE
statements
are executed; but if ELSE
is not present, then a CASE_NOT_FOUND
exception is raised.
Here is an example:
CASE WHEN x BETWEEN 0 AND 10 THEN msg := 'value is between zero and ten'; WHEN x BETWEEN 11 AND 20 THEN msg := 'value is between eleven and twenty'; END CASE;
This form of CASE
is entirely equivalent to IF-THEN-ELSIF
, except for the rule that reaching an omitted ELSE
clause results in an error rather than doing nothing.
43.6.5. Simple Loops
With the LOOP
, EXIT
, CONTINUE
, WHILE
, FOR
, and FOREACH
statements, you can arrange for your PL/pgSQL function to repeat a series of commands.
43.6.5.1. LOOP
[ <<label
>> ] LOOPstatements
END LOOP [label
];
LOOP
defines an unconditional loop that is repeated indefinitely until terminated by an EXIT
or RETURN
statement. The optional label
can be used by EXIT
and CONTINUE
statements within nested loops to specify which loop those statements refer to.
43.6.5.2. EXIT
EXIT [label
] [ WHENboolean-expression
];
If no label
is given, the innermost loop is terminated and the statement following END LOOP
is executed next. If label
is given, it must be the label of the current or some outer level of nested loop or block. Then the named loop or block is terminated and control continues with the statement after the loop’s/block’s corresponding END
.
If WHEN
is specified, the loop exit occurs only if boolean-expression
is true. Otherwise, control passes to the statement after EXIT
.
EXIT
can be used with all types of loops; it is not limited to use with unconditional loops.
When used with a BEGIN
block, EXIT
passes control to the next statement after the end of the block. Note that a label must be used for this purpose; an unlabeled EXIT
is never considered to match a BEGIN
block. (This is a change from pre-8.4 releases of PostgreSQL, which would allow an unlabeled EXIT
to match a BEGIN
block.)
Examples:
LOOP -- some computations IF count > 0 THEN EXIT; -- exit loop END IF; END LOOP; LOOP -- some computations EXIT WHEN count > 0; -- same result as previous example END LOOP; <<ablock>> BEGIN -- some computations IF stocks > 100000 THEN EXIT ablock; -- causes exit from the BEGIN block END IF; -- computations here will be skipped when stocks > 100000 END;
43.6.5.3. CONTINUE
CONTINUE [label
] [ WHENboolean-expression
];
If no label
is given, the next iteration of the innermost loop is begun. That is, all statements remaining in the loop body are skipped, and control returns to the loop control expression (if any) to determine whether another loop iteration is needed. If label
is present, it specifies the label of the loop whose execution will be continued.
If WHEN
is specified, the next iteration of the loop is begun only if boolean-expression
is true. Otherwise, control passes to the statement after CONTINUE
.
CONTINUE
can be used with all types of loops; it is not limited to use with unconditional loops.
Examples:
LOOP -- some computations EXIT WHEN count > 100; CONTINUE WHEN count < 50; -- some computations for count IN [50 .. 100] END LOOP;
43.6.5.4. WHILE
[ <<label
>> ] WHILEboolean-expression
LOOPstatements
END LOOP [label
];
The WHILE
statement repeats a sequence of statements so long as the boolean-expression
evaluates to true. The expression is checked just before each entry to the loop body.
For example:
WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP -- some computations here END LOOP; WHILE NOT done LOOP -- some computations here END LOOP;
43.6.5.5. FOR
(Integer Variant)
[ <<label
>> ] FORname
IN [ REVERSE ]expression
..expression
[ BYexpression
] LOOPstatements
END LOOP [label
];
This form of FOR
creates a loop that iterates over a range of integer values. The variable name
is automatically defined as type integer
and exists only inside the loop (any existing definition of the variable name is ignored within the loop). The two expressions giving the lower and upper bound of the range are evaluated once when entering the loop. If the BY
clause isn’t specified the iteration step is 1, otherwise it’s the value specified in the BY
clause, which again is evaluated once on loop entry. If REVERSE
is specified then the step value is subtracted, rather than added, after each iteration.
Some examples of integer FOR
loops:
FOR i IN 1..10 LOOP -- i will take on the values 1,2,3,4,5,6,7,8,9,10 within the loop END LOOP; FOR i IN REVERSE 10..1 LOOP -- i will take on the values 10,9,8,7,6,5,4,3,2,1 within the loop END LOOP; FOR i IN REVERSE 10..1 BY 2 LOOP -- i will take on the values 10,8,6,4,2 within the loop END LOOP;
If the lower bound is greater than the upper bound (or less than, in the REVERSE
case), the loop body is not executed at all. No error is raised.
If a label
is attached to the FOR
loop then the integer loop variable can be referenced with a qualified name, using that label
.
43.6.6. Looping through Query Results
Using a different type of FOR
loop, you can iterate through the results of a query and manipulate that data accordingly. The syntax is:
[ <<label
>> ] FORtarget
INquery
LOOPstatements
END LOOP [label
];
The target
is a record variable, row variable, or comma-separated list of scalar variables. The target
is successively assigned each row resulting from the query
and the loop body is executed for each row. Here is an example:
CREATE FUNCTION refresh_mviews() RETURNS integer AS $$ DECLARE mviews RECORD; BEGIN RAISE NOTICE 'Refreshing all materialized views...'; FOR mviews IN SELECT n.nspname AS mv_schema, c.relname AS mv_name, pg_catalog.pg_get_userbyid(c.relowner) AS owner FROM pg_catalog.pg_class c LEFT JOIN pg_catalog.pg_namespace n ON (n.oid = c.relnamespace) WHERE c.relkind = 'm' ORDER BY 1 LOOP -- Now "mviews" has one record with information about the materialized view RAISE NOTICE 'Refreshing materialized view %.% (owner: %)...', quote_ident(mviews.mv_schema), quote_ident(mviews.mv_name), quote_ident(mviews.owner); EXECUTE format('REFRESH MATERIALIZED VIEW %I.%I', mviews.mv_schema, mviews.mv_name); END LOOP; RAISE NOTICE 'Done refreshing materialized views.'; RETURN 1; END; $$ LANGUAGE plpgsql;
If the loop is terminated by an EXIT
statement, the last assigned row value is still accessible after the loop.
The query
used in this type of FOR
statement can be any SQL command that returns rows to the caller: SELECT
is the most common case, but you can also use INSERT
, UPDATE
, or DELETE
with a RETURNING
clause. Some utility commands such as EXPLAIN
will work too.
PL/pgSQL variables are replaced by query parameters, and the query plan is cached for possible re-use, as discussed in detail in Section 43.11.1 and Section 43.11.2.
The FOR-IN-EXECUTE
statement is another way to iterate over rows:
[ <<label
>> ] FORtarget
IN EXECUTEtext_expression
[ USINGexpression
[, ... ] ] LOOPstatements
END LOOP [label
];
This is like the previous form, except that the source query is specified as a string expression, which is evaluated and replanned on each entry to the FOR
loop. This allows the programmer to choose the speed of a preplanned query or the flexibility of a dynamic query, just as with a plain EXECUTE
statement. As with EXECUTE
, parameter values can be inserted into the dynamic command via USING
.
Another way to specify the query whose results should be iterated through is to declare it as a cursor. This is described in Section 43.7.4.
43.6.7. Looping through Arrays
The FOREACH
loop is much like a FOR
loop, but instead of iterating through the rows returned by an SQL query, it iterates through the elements of an array value. (In general, FOREACH
is meant for looping through components of a composite-valued expression; variants for looping through composites besides arrays may be added in future.) The FOREACH
statement to loop over an array is:
[ <<label
>> ] FOREACHtarget
[ SLICEnumber
] IN ARRAYexpression
LOOPstatements
END LOOP [label
];
Without SLICE
, or if SLICE 0
is specified, the loop iterates through individual elements of the array produced by evaluating the expression
. The target
variable is assigned each element value in sequence, and the loop body is executed for each element. Here is an example of looping through the elements of an integer array:
CREATE FUNCTION sum(int[]) RETURNS int8 AS $$ DECLARE s int8 := 0; x int; BEGIN FOREACH x IN ARRAY $1 LOOP s := s + x; END LOOP; RETURN s; END; $$ LANGUAGE plpgsql;
The elements are visited in storage order, regardless of the number of array dimensions. Although the target
is usually just a single variable, it can be a list of variables when looping through an array of composite values (records). In that case, for each array element, the variables are assigned from successive columns of the composite value.
With a positive SLICE
value, FOREACH
iterates through slices of the array rather than single elements. The SLICE
value must be an integer constant not larger than the number of dimensions of the array. The target
variable must be an array, and it receives successive slices of the array value, where each slice is of the number of dimensions specified by SLICE
. Here is an example of iterating through one-dimensional slices:
CREATE FUNCTION scan_rows(int[]) RETURNS void AS $$ DECLARE x int[]; BEGIN FOREACH x SLICE 1 IN ARRAY $1 LOOP RAISE NOTICE 'row = %', x; END LOOP; END; $$ LANGUAGE plpgsql; SELECT scan_rows(ARRAY[[1,2,3],[4,5,6],[7,8,9],[10,11,12]]); NOTICE: row = {1,2,3} NOTICE: row = {4,5,6} NOTICE: row = {7,8,9} NOTICE: row = {10,11,12}
43.6.8. Trapping Errors
By default, any error occurring in a PL/pgSQL function aborts execution of the function and the surrounding transaction. You can trap errors and recover from them by using a BEGIN
block with an EXCEPTION
clause. The syntax is an extension of the normal syntax for a BEGIN
block:
[ <<label
>> ] [ DECLAREdeclarations
] BEGINstatements
EXCEPTION WHENcondition
[ ORcondition
... ] THENhandler_statements
[ WHENcondition
[ ORcondition
... ] THENhandler_statements
... ] END;
If no error occurs, this form of block simply executes all the statements
, and then control passes to the next statement after END
. But if an error occurs within the statements
, further processing of the statements
is abandoned, and control passes to the EXCEPTION
list. The list is searched for the first condition
matching the error that occurred. If a match is found, the corresponding handler_statements
are executed, and then control passes to the next statement after END
. If no match is found, the error propagates out as though the EXCEPTION
clause were not there at all: the error can be caught by an enclosing block with EXCEPTION
, or if there is none it aborts processing of the function.
The condition
names can be any of those shown in Appendix A. A category name matches any error within its category. The special condition name OTHERS
matches every error type except QUERY_CANCELED
and ASSERT_FAILURE
. (It is possible, but often unwise, to trap those two error types by name.) Condition names are not case-sensitive. Also, an error condition can be specified by SQLSTATE
code; for example these are equivalent:
WHEN division_by_zero THEN ... WHEN SQLSTATE '22012' THEN ...
If a new error occurs within the selected handler_statements
, it cannot be caught by this EXCEPTION
clause, but is propagated out. A surrounding EXCEPTION
clause could catch it.
When an error is caught by an EXCEPTION
clause, the local variables of the PL/pgSQL function remain as they were when the error occurred, but all changes to persistent database state within the block are rolled back. As an example, consider this fragment:
INSERT INTO mytab(firstname, lastname) VALUES('Tom', 'Jones'); BEGIN UPDATE mytab SET firstname = 'Joe' WHERE lastname = 'Jones'; x := x + 1; y := x / 0; EXCEPTION WHEN division_by_zero THEN RAISE NOTICE 'caught division_by_zero'; RETURN x; END;
When control reaches the assignment to y
, it will fail with a division_by_zero
error. This will be caught by the EXCEPTION
clause. The value returned in the RETURN
statement will be the incremented value of x
, but the effects of the UPDATE
command will have been rolled back. The INSERT
command preceding the block is not rolled back, however, so the end result is that the database contains Tom Jones
not Joe Jones
.
Tip
A block containing an EXCEPTION
clause is significantly more expensive to enter and exit than a block without one. Therefore, don’t use EXCEPTION
without need.
Example 43.2. Exceptions with UPDATE
/INSERT
This example uses exception handling to perform either UPDATE
or INSERT
, as appropriate. It is recommended that applications use INSERT
with ON CONFLICT DO UPDATE
rather than actually using this pattern. This example serves primarily to illustrate use of PL/pgSQL control flow structures:
CREATE TABLE db (a INT PRIMARY KEY, b TEXT); CREATE FUNCTION merge_db(key INT, data TEXT) RETURNS VOID AS $$ BEGIN LOOP -- first try to update the key UPDATE db SET b = data WHERE a = key; IF found THEN RETURN; END IF; -- not there, so try to insert the key -- if someone else inserts the same key concurrently, -- we could get a unique-key failure BEGIN INSERT INTO db(a,b) VALUES (key, data); RETURN; EXCEPTION WHEN unique_violation THEN -- Do nothing, and loop to try the UPDATE again. END; END LOOP; END; $$ LANGUAGE plpgsql; SELECT merge_db(1, 'david'); SELECT merge_db(1, 'dennis');
This coding assumes the unique_violation
error is caused by the INSERT
, and not by, say, an INSERT
in a trigger function on the table. It might also misbehave if there is more than one unique index on the table, since it will retry the operation regardless of which index caused the error. More safety could be had by using the features discussed next to check that the trapped error was the one expected.
43.6.8.1. Obtaining Information about an Error
Exception handlers frequently need to identify the specific error that occurred. There are two ways to get information about the current exception in PL/pgSQL: special variables and the GET STACKED DIAGNOSTICS
command.
Within an exception handler, the special variable SQLSTATE
contains the error code that corresponds to the exception that was raised (refer to Table A.1 for a list of possible error codes). The special variable SQLERRM
contains the error message associated with the exception. These variables are undefined outside exception handlers.
Within an exception handler, one may also retrieve information about the current exception by using the GET STACKED DIAGNOSTICS
command, which has the form:
GET STACKED DIAGNOSTICSvariable
{ = | := }item
[ , ... ];
Each item
is a key word identifying a status value to be assigned to the specified variable
(which should be of the right data type to receive it). The currently available status items are shown in Table 43.2.
Table 43.2. Error Diagnostics Items
Name | Type | Description |
---|---|---|
RETURNED_SQLSTATE |
text |
the SQLSTATE error code of the exception |
COLUMN_NAME |
text |
the name of the column related to exception |
CONSTRAINT_NAME |
text |
the name of the constraint related to exception |
PG_DATATYPE_NAME |
text |
the name of the data type related to exception |
MESSAGE_TEXT |
text |
the text of the exception’s primary message |
TABLE_NAME |
text |
the name of the table related to exception |
SCHEMA_NAME |
text |
the name of the schema related to exception |
PG_EXCEPTION_DETAIL |
text |
the text of the exception’s detail message, if any |
PG_EXCEPTION_HINT |
text |
the text of the exception’s hint message, if any |
PG_EXCEPTION_CONTEXT |
text |
line(s) of text describing the call stack at the time of the exception (see Section 43.6.9) |
If the exception did not set a value for an item, an empty string will be returned.
Here is an example:
DECLARE text_var1 text; text_var2 text; text_var3 text; BEGIN -- some processing which might cause an exception ... EXCEPTION WHEN OTHERS THEN GET STACKED DIAGNOSTICS text_var1 = MESSAGE_TEXT, text_var2 = PG_EXCEPTION_DETAIL, text_var3 = PG_EXCEPTION_HINT; END;
43.6.9. Obtaining Execution Location Information
The GET DIAGNOSTICS
command, previously described in Section 43.5.5, retrieves information about current execution state (whereas the GET STACKED DIAGNOSTICS
command discussed above reports information about the execution state as of a previous error). Its PG_CONTEXT
status item is useful for identifying the current execution location. PG_CONTEXT
returns a text string with line(s) of text describing the call stack. The first line refers to the current function and currently executing GET DIAGNOSTICS
command. The second and any subsequent lines refer to calling functions further up the call stack. For example:
CREATE OR REPLACE FUNCTION outer_func() RETURNS integer AS $$ BEGIN RETURN inner_func(); END; $$ LANGUAGE plpgsql; CREATE OR REPLACE FUNCTION inner_func() RETURNS integer AS $$ DECLARE stack text; BEGIN GET DIAGNOSTICS stack = PG_CONTEXT; RAISE NOTICE E'--- Call Stack ---n%', stack; RETURN 1; END; $$ LANGUAGE plpgsql; SELECT outer_func(); NOTICE: --- Call Stack --- PL/pgSQL function inner_func() line 5 at GET DIAGNOSTICS PL/pgSQL function outer_func() line 3 at RETURN CONTEXT: PL/pgSQL function outer_func() line 3 at RETURN outer_func ------------ 1 (1 row)
GET STACKED DIAGNOSTICS ... PG_EXCEPTION_CONTEXT
returns the same sort of stack trace, but describing the location at which an error was detected, rather than the current location.
Время на прочтение
2 мин
Количество просмотров 12K
Во встроенном процедурном языке PL/pgSQL для СУБД PostgreSQL отсутствуют привычные операторы TRY / CATCH для для перехвата исключений возникающих в коде во время выполнения. Аналогом является оператор EXCEPTION, который используется в конструкции:
BEGIN
-- код, в котором может возникнуть исключение
EXCEPTION WHEN OTHERS -- аналог catch
THEN
-- код, обрабатывающий исключение
END
Если необходимо обработать только конкретную ошибку, то в условии WHEN нужно указать идентификатор или код конкретной ошибки:
BEGIN
-- код, в котором может возникнуть исключение
EXCEPTION WHEN '<идентификатор_или_код_ошибки>'
THEN
-- код, обрабатывающий исключение
END
Внутри секции EXCEPTION код ошибки можно получить из переменной SQLSTATE, а текст ошибки из переменной SQLERRM:
BEGIN
-- код, в котором может возникнуть исключение
EXCEPTION WHEN OTHERS
THEN
RAISE NOTICE 'ERROR CODE: %. MESSAGE TEXT: %', SQLSTATE, SQLERRM;
END
Более подробную информацию по исключению можно получить командой GET STACKED DIAGNOSTICS:
BEGIN
-- код, в котором может возникнуть исключение
EXCEPTION WHEN OTHERS
THEN
GET STACKED DIAGNOSTICS
err_code = RETURNED_SQLSTATE, -- код ошибки
msg_text = MESSAGE_TEXT, -- текст ошибки
exc_context = PG_CONTEXT, -- контекст исключения
msg_detail = PG_EXCEPTION_DETAIL, -- подробный текст ошибки
exc_hint = PG_EXCEPTION_HINT; -- текст подсказки к исключению
RAISE NOTICE 'ERROR CODE: % MESSAGE TEXT: % CONTEXT: % DETAIL: % HINT: %',
err_code, msg_text, exc_context, msg_detail, exc_hint;
END
Полный список переменных, которые можно получить командой GET STACKED DIAGNOSTICS:
Имя |
Тип |
Описание |
|
|
код исключения |
|
|
имя столбца, относящегося к исключению |
|
|
имя ограничения целостности, относящегося к исключению |
|
|
имя типа данных, относящегося к исключению |
|
|
текст основного сообщения исключения |
|
|
имя таблицы, относящейся к исключению |
|
|
имя схемы, относящейся к исключению |
|
|
текст детального сообщения исключения (если есть) |
|
|
текст подсказки к исключению (если есть) |
|
|
строки текста, описывающие стек вызовов в момент исключения |
Пример обработки исключения
В качестве примера будет рассмотрена обработка ошибки деления на ноль в функции catch_exception:
CREATE OR REPLACE FUNCTION catch_exception
(
arg_1 int,
arg_2 int,
OUT res int
)
LANGUAGE plpgsql
AS $$
DECLARE
err_code text;
msg_text text;
exc_context text;
BEGIN
BEGIN
res := arg_1 / arg_2;
EXCEPTION
WHEN OTHERS
THEN
res := 0;
GET STACKED DIAGNOSTICS
err_code = RETURNED_SQLSTATE,
msg_text = MESSAGE_TEXT,
exc_context = PG_CONTEXT;
RAISE NOTICE 'ERROR CODE: % MESSAGE TEXT: % CONTEXT: %',
err_code, msg_text, exc_context;
END;
END;
$$;
Вызов функции catch_exception со значением 0 в качестве второго параметра вызовет ошибку деления на ноль:
DO $$
DECLARE
res int;
BEGIN
SELECT e.res INTO res
FROM catch_exception(4, 0) AS e;
RAISE NOTICE 'Result: %', res;
END;
$$;
Результаты обработки ошибки будут выведены на консоль:
ERROR CODE: 22012
MESSAGE TEXT: деление на ноль
CONTEXT: функция PL/pgSQL catch_exception(integer,integer), строка 14, оператор
GET STACKED DIAGNOSTICS
SQL-оператор: "SELECT e.res FROM catch_exception(4, 0) AS e"
функция PL/pgSQL inline_code_block, строка 5, оператор SQL-оператор
Result: 0
Summary: in this tutorial, you will learn how to catch PostgreSQL exceptions in PL/pgSQL.
Introduction to the PL/pgSQL Exception clause
When an error occurs in a block, PostgreSQL will abort the execution of the block and also the surrounding transaction.
To recover from the error, you can use the exception
clause in the begin...end
block.
The following illustrates the syntax of the exception
clause:
<<label>>
declare
begin
statements;
exception
when condition [or condition...] then
handle_exception;
[when condition [or condition...] then
handle_exception;]
[when others then
handle_other_exceptions;
]
end;
Code language: PostgreSQL SQL dialect and PL/pgSQL (pgsql)
How it works.
- First, when an error occurs between the
begin
andexception
, PL/pgSQL stops the execution and passes the control to the exception list. - Second, PL/pgSQL searches for the first
condition
that matches the occurring error. - Third, if there is a match, the corresponding
handle_exception
statements will execute. PL/pgSQL passes the control to the statement after theend
keyword. - Finally, if no match found, the error propagates out and can be caught by the
exception
clause of the enclosing block. In case there is no enclosing block with theexception
clause, PL/pgSQL will abort the processing.
The condition names can be no_data_found
in case of a select
statement return no rows or too_many_rows
if the select
statement returns more than one row. For a complete list of condition names on the PostgreSQL website.
It’s also possible to specify the error condition by SQLSTATE
code. For example, P0002
for no_data_found
and P0003
for too_many_rows
.
Typically, you will catch a specific exception and handle it accordingly. To handle other exceptions rather than the one you specify on the list, you can use the when others then
clause.
Handling exception examples
We’ll use the film
table from the sample database for the demonstration.
1) Handling no_data_found exception example
The following example issues an error because the film with id 2000 does not exist.
do
$$
declare
rec record;
v_film_id int = 2000;
begin
-- select a film
select film_id, title
into strict rec
from film
where film_id = v_film_id;
end;
$$
language plpgsql;
Code language: PostgreSQL SQL dialect and PL/pgSQL (pgsql)
Output:
ERROR: query returned no rows
CONTEXT: PL/pgSQL function inline_code_block line 6 at SQL statement
SQL state: P0002
Code language: Shell Session (shell)
The following example uses the exception
clause to catch the no_data_found
exception and report a more meaningful message:
do
$$
declare
rec record;
v_film_id int = 2000;
begin
-- select a film
select film_id, title
into strict rec
from film
where film_id = v_film_id;
-- catch exception
exception
when no_data_found then
raise exception 'film % not found', v_film_id;
end;
$$
language plpgsql;
Code language: PostgreSQL SQL dialect and PL/pgSQL (pgsql)
Output:
ERROR: film 2000 not found
CONTEXT: PL/pgSQL function inline_code_block line 14 at RAISE
SQL state: P0001
Code language: Shell Session (shell)
2) Handling too_many_rows exception example
The following example illustrates how to handle the too_many_rows
exception:
do
$$
declare
rec record;
begin
-- select film
select film_id, title
into strict rec
from film
where title LIKE 'A%';
exception
when too_many_rows then
raise exception 'Search query returns too many rows';
end;
$$
language plpgsql;
Code language: PostgreSQL SQL dialect and PL/pgSQL (pgsql)
Output:
ERROR: Search query returns too many rows
CONTEXT: PL/pgSQL function inline_code_block line 15 at RAISE
SQL state: P0001
Code language: Shell Session (shell)
In this example, the too_many_rows
exception occurs because the select into
statement returns more than one row while it is supposed to return one row.
3) Handling multiple exceptions
The following example illustrates how to catch multiple exceptions:
do
$$
declare
rec record;
v_length int = 90;
begin
-- select a film
select film_id, title
into strict rec
from film
where length = v_length;
-- catch exception
exception
when sqlstate 'P0002' then
raise exception 'film with length % not found', v_length;
when sqlstate 'P0003' then
raise exception 'The with length % is not unique', v_length;
end;
$$
language plpgsql;
Code language: PostgreSQL SQL dialect and PL/pgSQL (pgsql)
Output:
ERROR: The with length 90 is not unique
CONTEXT: PL/pgSQL function inline_code_block line 17 at RAISE
SQL state: P0001
Code language: Shell Session (shell)
4) Handling exceptions as SQLSTATE codes
The following example is the same as the one above except that it uses the SQLSTATE
codes instead of the condition names:
do
$$
declare
rec record;
v_length int = 30;
begin
-- select a film
select film_id, title
into strict rec
from film
where length = v_length;
-- catch exception
exception
when sqlstate 'P0002' then
raise exception 'film with length % not found', v_length;
when sqlstate 'P0003' then
raise exception 'The with length % is not unique', v_length;
end;
$$
language plpgsql;
Code language: PostgreSQL SQL dialect and PL/pgSQL (pgsql)
Output:
ERROR: film with length 30 not found
CONTEXT: PL/pgSQL function inline_code_block line 15 at RAISE
SQL state: P0001
Code language: Shell Session (shell)
Summary
- Use the
exception
clause in thebegin...end
block to catch and handle exceptions.
Was this tutorial helpful ?
Exception handling in PL/pgSQL
PL/pgSQL code is always wrapped into a BEGIN ... END
block. That can be inside the body of a DO
statement or a function. Blocks can be nested inside — but they cannot exist outside, don’t confuse it with plain SQL.
Each block can optionally contain an EXCEPTION
clause for handling exceptions, but functions that need to trap exceptions are more expensive, so it’s best to avoid exceptions a priori. Postgres needs to prepare for the possibility of rolling back to a point in the transaction before the exception happened, similar to an SQL SAVEPOINT
. The manual:
A block containing an
EXCEPTION
clause is significantly more
expensive to enter and exit than a block without one. Therefore, don’t
useEXCEPTION
without need.
Example:
- Is SELECT or INSERT in a function prone to race conditions?
How to avoid an exception in the example
A DO
statement can’t return anything. Create a function that takes table and schema name as parameters and returns whatever you want:
CREATE OR REPLACE FUNCTION f_tbl_value(_tbl text, _schema text = 'public')
RETURNS TABLE (value text)
LANGUAGE plpgsql AS
$func$
DECLARE
_t regclass := to_regclass(_schema || '.' || _tbl);
BEGIN
IF _t IS NULL THEN
value := ''; RETURN NEXT; -- return single empty string
ELSE
RETURN QUERY EXECUTE
'SELECT value FROM ' || _t; -- return set of values
END IF;
END
$func$;
Call:
SELECT * FROM f_tbl_value('my_table');
Or:
SELECT * FROM f_tbl_value('my_table', 'my_schema');
Assuming you want a set of rows with a single text
column or an empty string if the table does not exist.
Also assuming that a column value
exists if the given table exists. You could test for that, too, but you didn’t ask for that.
Both input parameters are only case sensitive if double-quoted. Just like identifiers are handled in SQL statements.
The schema name defaults to 'public'
in my example. Adapt to your needs. You could even ignore the schema completely and default to the current search_path
.
to_regclass()
is new in Postgres 9.4. For older versions substitute:
IF EXISTS (
SELECT FROM information_schema.tables
WHERE table_schema = _schema
AND table_name = _tbl
) THEN ...
This is actually more accurate, because it tests exactly what you need. More options and detailed explanation:
- Table name as a PostgreSQL function parameter
Always defend against SQL injection when working with dynamic SQL! The cast to regclass
does the trick here. More details:
- How to check if a table exists in a given schema
Ошибки, возникающие
при выполнении команд в блоке, отслеживаются
с помощью предложения EXCEPTION,
синтаксис котрого имеет
вид:
BEGIN
… ;
—
тело блока
EXCEPTION
WHEN
условие
[ OR условие … ] THEN
обработчик_исключения
[
WHEN условие
[ OR условие…
] THEN
обработчик_исключения
…
]
END;
Если возникает
ошибка, то выполнение команд в блоке
прерывается и управление передается в
раздел EXCEPTION,
где
производится поиск первого из условий,
удовлетворяющих возникшей ошибке, и
запускается соответствующий обработчик.
После чего управление передается
следующей после END
команде.
Если
ни одно из условий не удовлетворяет
ошибке, обработка исключения передается
первому из объемлющих блоков, в котором
есть раздел EXCEPTION.
Если такого
блока нет, выполнение функции
останавливается и выводится сообщение
об ошибке. Список кодов ошибок приведен
в документации к PostgreSQL в Приложении
А.
Для отслеживания
ошибок при выполнении команд SQL в
PostgreSQL можно использовать специальную
системную переменную FOUND
типа boolean.
Эта переменная является локальной и
меняет исходное значение false
на true
в следующих случаях:
-
SELECT,
UPDATE, INSERT, DELETE
если хотя бы одна строка включается в
результат, т.е. выбирается, модифицируется,
вставляется или удаляется; -
FOR
если выполняется хотя бы одна итерация
цикла; -
RETURN QUERY, RETURN QUERY
EXECUTE
если запрос возвращает хотя бы одну
строку.
Примеры
/*
Добавление
строки в
таблицу
Доставка БД BookShop
*/
DROP
TABLE «Доставка»;
CREATE
TABLE «Доставка»
(
«Заказ»
bigint NOT NULL,
«Курьер»
character varying(40) DEFAULT ‘foo’::character varying,
«Дата_время»
timestamp without time zone DEFAULT now(),
«Доставлен»
boolean DEFAULT false,
CONSTRAINT
«PK_delivery» PRIMARY KEY («Заказ»)
);
CREATE
FUNCTION insert_delivery(
order_id bigint, courier character varying, date_time timestamp
without time zone)
RETURNS
VOID AS
$$
BEGIN
INSERT
INTO “Доставка”
(«Заказ»,
«Курьер» , «Дата_время»)
VALUES
($1,$2,$3);
RETURN;
/*
нарушение ограничения уникальности
для первичного ключа*/
EXCEPTION
WHEN unique_violation THEN
LOOP
UPDATE
“Доставка”
SET «Курьер»
= $2, «Дата_время»
= $3
WHERE
«Заказ»
= $1;
IF
FOUND
THEN
RETURN;
END
LOOP;
END;
$$
LANGUAGE
plpgsql;
В PostgreSQL не
предусмотрен специальный отладчик
процедурных функций,
поэтому для отладки в таких случаях
обычно используют операторы
вывода
сообщений об ошибках
и переменные
состояния.
3Триггеры
Триггеры
–
это специальный тип функций, которые
выполняются автоматически при выполнении
инструкций языка манипулирования
данными (INSERT,
UPDATE,
DELETE).
Триггеры обычно используются для
внесения каскадных изменений в связанные
таблицы или для выполнения сложных
ограничений, которые нельзя реализовать
стандартными средствами SQL.
Триггеры делятся
на два вида: триггеры (FOR EACH ROW), вызываемые
для каждой из строк, участвующих в
операции, и триггеры (FOR EACH STATEMENT), которые
вызываются один раз для каждой операции.
Триггеры также могут вызываться до
(before-триггеры) начала выполнения операции
и после (after-триггеры).
Триггеры создаются
с помощью команды CREATE
TRIGGER, в
которой указывается, какая функция
будет выполняться при вызове триггера.
Эти функции могут создаваться на любом
из поддерживаемых процедурных языков,
например, на PL/pgSQL.
Они должны быть определены без параметров
и с возвращаемым значением типа trigger.
Когда такая функция запускается на
исполнение, в ее основном блоке (блок
самого верхнего уровня) создаются
несколько переменных, в которых
фиксируются параметры соответствующего
триггера, и две буферные переменные:
NEW
переменная
типа RECORD, в которой содержится новая
строка для INSERT/UPDATE-триггеров типа FOR
EACH ROW или значение NULL
для триггеров типа FOR
EACH STATEMENT и для
INSERT/UPDATE-триггеров типа FOR
EACH ROW;
OLD
переменная типа RECORD, в которой содержится
старая строка для UPDATE/DELETE-триггеров
типа FOR EACH ROW
или значение NULL
для триггеров типа FOR
EACH STATEMENT и для
INSERT-триггеров типа FOR
EACH ROW.
Примеры:
/*
Создаем таблицу */
CREATE
TABLE emp (
a
text NOT NULL,
b
integer
NOT
NULL
CHECK (b>0),
last_date
timestamp,
last_user
text
);
/*
Создаем
триггерную функцию */
CREATE
FUNCTION stamp() RETURNS trigger AS
$stamp$
BEGIN
—
Проверка a= null и b= null и b>0′
IF
NEW.a IS NULL THEN
RAISE
EXCEPTION ‘a не может бать null !’;
END
IF;
IF
NEW.b IS NULL THEN
RAISE
EXCEPTION ‘ b
не может бать null ! ‘, NEW.a;
END
IF;
IF
NEW.b < 0 THEN
RAISE
EXCEPTION ‘
b
= %
должно быть положительным !’,
NEW.b;
END
IF;
—
Заносим
в таблицу текущее время и текущего
пользователя
NEW.last_date
:= current_timestamp;
NEW.last_user
:= current_user;
RETURN
NEW;
END;
$stamp$
LANGUAGE plpgsql;
/
* Создаем
тригер */
CREATE
TRIGGER stamp BEFORE INSERT OR UPDATE ON emp
FOR
EACH ROW EXECUTE PROCEDURE stamp();
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #