Приборы для измерения ошибок

Погрешности измерений, представление результатов эксперимента

  1. Шкала измерительного прибора
  2. Цена деления
  3. Виды измерений
  4. Погрешность измерений, абсолютная и относительная погрешность
  5. Абсолютная погрешность серии измерений
  6. Представление результатов эксперимента
  7. Задачи

п.1. Шкала измерительного прибора

Шкала – это показывающая часть измерительного прибора, состоящая из упорядоченного ряда отметок со связанной с ними нумерацией. Шкала может располагаться по окружности, дуге или прямой линии.

Примеры шкал различных приборов:

п.2. Цена деления

Цена деления измерительного прибора равна числу единиц измеряемой величины между двумя ближайшими делениями шкалы. Как правило, цена деления указана на маркировке прибора.

Алгоритм определения цены деления
Шаг 1. Найти два ближайшие пронумерованные крупные деления шкалы. Пусть первое значение равно a, второе равно b, b > a.
Шаг 2. Посчитать количество мелких делений шкалы между ними. Пусть это количество равно n.
Шаг 3. Разделить разницу значений крупных делений шкалы на количество отрезков, которые образуются мелкими делениями: $$ triangle=frac{b-a}{n+1} $$ Найденное значение (triangle) и есть цена деления данного прибора.

Пример определения цены деления:

Пример определения цены деления Определим цену деления основной шкалы секундомера.
Два ближайших пронумерованных деления на основной шкале:a = 5 c
b = 10 cМежду ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления.

Цена деления: begin{gather*} triangle=frac{b-a}{n+1}\ triangle=frac{10-5}{24+1}=frac15=0,2 c end{gather*}

п.3. Виды измерений

Вид измерений

Определение

Пример

Прямое измерение

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Косвенное измерение

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Погрешность измерений – это отклонение измеренного значения величины от её истинного значения.

Составляющие погрешности измерений

Причины

Инструментальная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Погрешность метода

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Погрешность оператора

Определяется субъективным фактором, ошибками экспериментатора.

Инструментальная погрешность измерений принимается равной половине цены деления прибора: $$ d=frac{triangle}{2} $$

Если величина (a_0) — это истинное значение, а (triangle a) — погрешность измерения, результат измерений физической величины записывают в виде (a=a_0pmtriangle a).

Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины: $$ triangle a=|a-a_0| $$

Отношение абсолютной погрешности измерения к истинному значению, выраженное в процентах, называют относительной погрешностью измерения: $$ delta=frac{triangle a}{a_0}cdot 100text{%} $$

Относительная погрешность является мерой точности измерения: чем меньше относительная погрешность, тем измерение точнее. По абсолютной погрешности о точности измерения судить нельзя.
На практике абсолютную и относительную погрешности округляют до двух значащих цифр с избытком, т.е. всегда в сторону увеличения.

Значащие цифры – это все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

  • определение длины с помощью линейки или мерной ленты;
  • определение объема с помощью мензурки.

Пример получения результатов прямых измерений с помощью линейки:

Пример получения результатов прямых измерений с помощью линейки Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{1+1}=0,5 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,5}{2}=0,25 text{см} end{gather*} Истинное значение: (L_0=4 text{см})
Результат измерений: $$ L=L_0pm d=(4,00pm 0,25) text{см} $$ Относительная погрешность: $$ delta=frac{0,25}{4,00}cdot 100text{%}=6,25text{%}approx 6,3text{%} $$
Пример получения результатов прямых измерений с помощью линейки Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{9+1}=0,1 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,1}{2}=0,05 text{см} end{gather*} Истинное значение: (L_0=4,15 text{см})
Результат измерений: $$ L=L_0pm d=(4,15pm 0,05) text{см} $$ Относительная погрешность: $$ delta=frac{0,05}{4,15}cdot 100text{%}approx 1,2text{%} $$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Алгоритм определения истинного значения и абсолютной погрешности в серии измерений
Шаг 1. Проводим серию из (N) измерений, в каждом из которых получаем значение величины (x_1,x_2,…,x_N)
Шаг 2. Истинное значение величины принимаем равным среднему арифметическому всех измерений: $$ x_0=x_{cp}=frac{x_1+x_2+…+x_N}{N} $$ Шаг 3. Находим абсолютные отклонения от истинного значения для каждого измерения: $$ triangle_1=|x_0-x_1|, triangle_2=|x_0-x_2|, …, triangle_N=|x_0-x_N| $$ Шаг 4. Находим среднее арифметическое всех абсолютных отклонений: $$ triangle_{cp}=frac{triangle_1+triangle_2+…+triangle_N}{N} $$ Шаг 5. Сравниваем полученную величину (triangle_{cp}) c инструментальной погрешностью прибора d (половина цены деления). Большую из этих двух величин принимаем за абсолютную погрешность: $$ triangle x=maxleft{triangle_{cp}; dright} $$ Шаг 6. Записываем результат серии измерений: (x=x_0pmtriangle x).

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: begin{gather*} m_0=frac{99,8+101,2+100,3}{3}=frac{301,3}{3}approx 100,4 text{г} end{gather*} Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности (m_0) и измерения. begin{gather*} triangle_1=|100,4-99,8|=0,6\ triangle_2=|100,4-101,2|=0,8\ triangle_3=|100,4-100,3|=0,1 end{gather*} Находим среднее абсолютное отклонение: begin{gather*} triangle_{cp}=frac{0,6+0,8+0,1}{3}=frac{1,5}{3}=0,5 text{(г)} end{gather*} Мы видим, что полученное значение (triangle_{cp}) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: begin{gather*} triangle m=maxleft{triangle_{cp}; dright}=maxleft{0,5; 0,05right} text{(г)} end{gather*} Записываем результат: begin{gather*} m=m_0pmtriangle m\ m=(100,4pm 0,5) text{(г)} end{gather*} Относительная погрешность (с двумя значащими цифрами): begin{gather*} delta_m=frac{0,5}{100,4}cdot 100text{%}approx 0,050text{%} end{gather*}

п.6. Представление результатов эксперимента

Результат измерения представляется в виде $$ a=a_0pmtriangle a $$ где (a_0) – истинное значение, (triangle a) – абсолютная погрешность измерения.

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Погрешность суммы и разности
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, то

  • абсолютная погрешность их суммы равна сумме абсолютных погрешностей

$$ triangle (a+b)=triangle a+triangle b $$

  • абсолютная погрешность их разности также равна сумме абсолютных погрешностей

$$ triangle (a-b)=triangle a+triangle b $$

Погрешность произведения и частного
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, с относительными погрешностями (delta_a=frac{triangle a}{a_0}cdot 100text{%}) и (delta_b=frac{triangle b}{b_0}cdot 100text{%}) соответственно, то:

  • относительная погрешность их произведения равна сумме относительных погрешностей

$$ delta_{acdot b}=delta_a+delta_b $$

  • относительная погрешность их частного также равна сумме относительных погрешностей

$$ delta_{a/b}=delta_a+delta_b $$

Погрешность степени
Если (a=a_0+triangle a) результат прямого измерения, с относительной погрешностью (delta_a=frac{triangle a}{a_0}cdot 100text{%}), то:

  • относительная погрешность квадрата (a^2) равна удвоенной относительной погрешности

$$ delta_{a^2}=2delta_a $$

  • относительная погрешность куба (a^3) равна утроенной относительной погрешности

$$ delta_{a^3}=3delta_a $$

  • относительная погрешность произвольной натуральной степени (a^n) равна

$$ delta_{a^n}=ndelta_a $$

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?
Задача 1

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n (triangle=frac{b-a}{n+1}), мл
1 20 40 4 (frac{40-20}{4+1}=4)
2 100 200 4 (frac{200-100}{4+1}=20)
3 15 30 4 (frac{30-15}{4+1}=3)
4 200 400 4 (frac{400-200}{4+1}=40)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем (V_0), мл Абсолютная погрешность
(triangle V=frac{triangle}{2}), мл
Относительная погрешность
(delta_V=frac{triangle V}{V_0}cdot 100text{%})
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0pm 0,1) text{м}, x_2=(4,0pm 0,03) text{м} $$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: begin{gather*} delta_1=frac{0,1}{4,0}cdot 100text{%}=2,5text{%}\ delta_2=frac{0,03}{4,0}cdot 100text{%}=0,75text{%} end{gather*} Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: (delta_2lt delta_1), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ triangle v_1=frac{10}{2}=5 (text{км/ч}), triangle v_2=frac{1}{2}=0,5 (text{км/ч}) $$ Показания каждого из спидометров: $$ v_1=(54pm 5) text{км/ч}, v_2=(72pm 0,5) text{км/ч} $$ Скорость сближения равна сумме скоростей: $$ v_0=v_{10}+v_{20}, v_0=54+72=125 text{км/ч} $$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ triangle v=triangle v_1+triangle v_2, triangle v=5+0,5=5,5 text{км/ч} $$ Скорость сближения с учетом погрешности равна: $$ v=(126,0pm 5,5) text{км/ч} $$ Относительная погрешность: $$ delta_v=frac{5,5}{126,0}cdot 100text{%}approx 4,4text{%} $$ Ответ: (v=(126,0pm 5,5) text{км/ч}, delta_vapprox 4,4text{%})

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки (d=frac{0,1}{2}=0,05 text{см})
Результаты прямых измерений длины и ширины: $$ a=(90,20pm 0,05) text{см}, b=(60,10pm 0,05) text{см} $$ Относительные погрешности (не забываем про правила округления): begin{gather*} delta_1=frac{0,05}{90,20}cdot 100text{%}approx 0,0554text{%}approx uparrow 0,056text{%}\ delta_2=frac{0,05}{60,10}cdot 100text{%}approx 0,0832text{%}approx uparrow 0,084text{%} end{gather*} Площадь столешницы: $$ S=ab, S=90,2cdot 60,1 = 5421,01 text{см}^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ delta_S=delta_a+delta_b=0,056text{%}+0,084text{%}=0,140text{%}=0,14text{%} $$ Абсолютная погрешность: begin{gather*} triangle S=Scdot delta_S=5421,01cdot 0,0014=7,59approx 7,6 text{см}^2\ S=(5421,0pm 7,6) text{см}^2 end{gather*} Ответ: (S=(5421,0pm 7,6) text{см}^2, delta_Sapprox 0,14text{%})

Обязательными
элементами современных сетей связи
являются системы сетевого управления,
с помощью которых решаются такие задачи,
как реконфигурация сети, непрерывный
мониторинг параметров системы связи,
фиксация аварийных состояний, защитные
переключения, хранение и обработка
результатов мониторинга и т. д. Все
указанные операции выполняются, как
правило, авторматически, с помощью
встроенных аппаратных и программных
средств.

В
то же время зачастую при обслуживании
сетей связи не удается обойтись без
ручных операций с применением портативных
измерительных приборов. Одним из таких
средств измерения является универсальный
сетевой анализатор ANT-20.

ANT-20
– настольный анализатор потоков на
скоростях от Е1 до STM-16 –
применяется как при тестировании
участков существующих линий, так и при
вводе в эксплуатацию новых. Прибор может
оснащаться электрическими и оптическими
интерфейсами, различными функциональными
опциями.

ANT-20
выполнен в настольном формате и работает
на базе встроенного ПК. Прибор может
оснащаться сенсорным дисплеем, специальной
ручкой-стилусом, клавиатурой и всеми
необходимыми разъемами для подключения
внешних устройств и носителей.
Интуитивно-понятное управление и
дружественный интерфейс делают работу
с анализатором доступной даже для
неподготовленного специалиста.

11.5. Анализ ошибок в цифровых системах передачи

Основное преимущество
цифровой передачи по сравнению с
аналоговой заключается в отсутствии
накопления помех вдоль линии. Это
достигается за счет восстановления
формы передаваемого сигнала на каждом
регенерационном участке.

Все
факторы, от которых зависит длина
участка, можно разделить на внутренние
и внешние.

Наиболее важными
внутренними считают затухание линии,
межсимвольные помехи, нестабильность
тактовой частоты системы, вариацию
задержки, возрастание уровня шумов
вследствие старения системы.

К
существенным внешним факторам обычно
относят переходные и импульсные помехи,
внешние электромагнитные влияния,
механические повреждения контактов
при вибрации или ударах, ухудшение
свойств передающей среды вследствие
перепадов температуры.

Все
они обычно предопределяют ухудшение
самого чувствительного к ошибкам
параметра цифровой передачи – соотношения
сигнал/шум. Действительно, снижение
величины данного соотношения всего на
1 дБ приводит к увеличению обобщенного
параметра качества цифровых систем
передачи, которым является коэффициент
битовых ошибок (Bit Error
Rate, BER), по
крайней мере на порядок.

Согласно определению,
BER представляет собой
отношение числа ошибочно принятых битов
к общему числу принятых битов. Его
величина статистически колеблется
около значения среднего коэффициента
ошибок за длительный промежуток времени.
Разница между непосредственно измеренным
коэффициентом ошибок и долговременным
средним значением зависит от числа
контролируемых бит и тем самым от
длительности измерения.

База
времени формируется при помощи двух
основных методов.

В
соответствии с первым из них, на
принимающем конце задается фиксированное
число наблюдаемых бит и регистрируется
соответствующее число бит с ошибками.

Например, если
число ошибочно принятых бит оказалось
равным 20, а заданное общее число
принимаемых бит – 106, то коэффициент
ошибок составит 20/106=20*10-6=2*10-5.

Достоинством
такого подхода является точно известное
вреся измерения, а недостатком –
невысокая надежность измерения при
малом числе ошибок.

Согласно второму
методу, время измерений определяется
заданным числом ошибок. Измерение длится
до тех пор, пока, например, не будет
зафиксировано 100 ошибок. Затем на
основании соответствующего числа битов
данных вычисляется коэффициент ошибок.

Его
недостаток заключается в том, что
неизвестно время измерений, которое
при малых коэффициентах ошибок может
оказаться очень большим. Кроме того,
вполне возможно, что счетчик бит данных
заполнится полностью, и измерения
прекратятся. Поэтому такой способ
используется редко.

На
начальном этапе развития цифровых
систем передачи они применялись главным
образом для передачи аналогового
телефонного сигнала, и потому требования
к качеству цифровых систем передачи
определялись характеристиками этого
сигнала.

Ошибка в цифровом
сигнале приводит к быстрому изменению
величины сигнала АИМ на входе канального
демодулятора, и абонент слышит неприятный
щелчок на выходе канала ИКМ. Экспериментально
установлено, что заметные щелчки
возникают только при ошибках в одном
из первых двух наибольших по весу
символов кодовой группы, что соответствует
максимальному (положительному или
отрицательному) изменению сигнала АИМ.
Качество связи считается удовлетворительным,
если в каждом канале наблюдается не
более одного щелчка в минуту. При частоте
дискретизации, равной 8 кГц, по каналу
передается 8000*60=480000 кодовых групп в
минуту, причем опасными в отношении
щелчков являются 960000 старших разрядов.
Если считать, что вероятность ошибки
для любого разряда кодовой группы
одинакова, то при допущении одного
щелчка в минуту вероятность ошибки в
линейном тракте не должна быть более
1/960000=10-6.

С
учетом передачи данных, которая более
чувствительна к ошибкам передачи, для
эталонного международного соединения
протяженностью 27500 км величина BER
не должна превышать 10-7.

Ошибки можно
обнаружить во время приемки и настройки
линий связи, поиске неисправностей и
ремонте выполняются измерения с перерывом
связи, которые реализуются по трем
схемам подключения: точка-точка, шлейф,
транзит.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИ
ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ
Измеренная прибором величина всегда отличается от истинного значения на некоторое число, называемое погрешностью прибора. Погрешности измерительных приборов определяют поверкой, т. е. сравнением показаний по­веряемого прибора с показаниями более точного, образцового прибора при измерении ими од­ной и той же величины. Значение измеряемой величины, определенное по образцовому прибо­ру, принято считать действительным. Однако действительное значение отличается от истинно­го на погрешность, присущую данному образцовому прибору. Различают абсолютную, относительную и приведенную погрешности измерения.

Абсолютной погрешностью

измерительного прибора называют разность между его показанием и действительным значением измеряемой величины.

Относительной погрешностью

называют отношение абсолютной погрешности к действительному зна­чению измеряемой величины, выраженное в относительных единицах или в процентах.

Приведенная погрешность

– это отношение наибольшей абсолютной погрешности к верхнему пределу измерений прибора.

По значению приведенной погрешности измерительные приборы делят на группы по классу точности. Класс точности

обобщенная характеристика измерительного прибора, определяющая пре­делы допустимых погрешностей. Для электроизмерительных приборов класс точности указывается в вида числа, равного максимальной допустимой приведенной погреш­ности (в %). Согласно ГОСТ 1845-59, электроизмерительные приборы делят на 8 классов по точности: 0,05; 0,1; 0,2 – образцовые приборы; 0,5; 1,0 – лабораторные; 1,5; 2,5; 4,0 – технические приборы. Об­разцовые приборы считаются более высокого класса точности по отношению к лабораторным и техническим приборам, а лабораторные – по отношению к техническим.

Определим по классу точности прибора его погрешности. Если прибор (например, вольтметр с верхним пределом измерений 150 В) имеет класс точности 1,0, то основная приведенная погрешность не превышает 1 %

. Максимальная абсолютную по­грешность, которую может иметь прибор в любой точке шкалы не будет превышать Относительная же погрешность при этом зависит от измеряемого напряжения.

Если этим вольтметром можно измерять напряжение 10 В, то относительная погрешность может составить . Если же измерять напряжение 100 В, то относительная погрешность может составить

Из этого примера видно, что для повышения точности измерения прибор надо выбирать так, чтобы, во-первых, он имел более высокий класс точности, и чтобы, во-вторых, предел измерения был бли­зок к значению измеряемой величины. Это означает, что для получения возможно меньших относительных ошибок, надо добиваться достаточно большого отклонения стрелки (желательно, чтобы использовалась последняя треть шкалы).

С другой стороны, для того чтобы добиться большой точности при измерении прибором более низкого класса, необходимо выбрать прибор с наименьшим возможным диапазоном измерений.

Следует правильно формулировать предложение, в котором дана количественная оценка по­грешности. Например: «Измерение тока с абсолютной погрешностью до 1 мА», «Измерение то­ка с относительной погрешностью до 1 %.

(Выражение «Измерение тока с точностью до 1 мА» неправильно).

Источник: kursak.net

Классы точности приборов

По приведенной погрешности (по классу точности) приборы делятся на восемь классов: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.

Приборы класса точности 0,05; 0,1; 0,2; 0,5 применяются для точных лабораторных измерений и называются прецизионными

(от англ. precision – точность). В технике применяются приборы классов 1,0; 1,5: 2,5 и 4,0 (технические).

Класс точности прибора указывается на шкале прибора. Если на шкале такого обозначения нет, то данный прибор внеклассный, то есть его приведенная погрешность превышает 4%.Производитель, выпускающий прибор, гарантирует относительную погрешность измерения данным прибором, равную классу точности (приведенной погрешности) прибора при измерении величины, дающей отброс указателя на всю шкалу. Определив по шкале прибора класс точности и предельное значение, легко рассчитать его абсолютную погрешность ΔX = ± гXпр / 100%, которую принимают одинаковой на всей шкале прибора. Знаки «+» и «–» означают, что по-грешность может быть допущена как в сторону увеличения, так и в сторону уменьшения от действительного значения измеряемой величины.

При использовании приборов для конкретных измерений редко бывает так, чтобы измеряемая величина давала отброс стрелки прибора на всю его шкалу. Как правило, измеряемая величина меньше. Это увеличивает относительную погрешность измерения. Для оптимального использования приборов их подбирают так, чтобы значения измеряемой величины приходились на конец шкалы прибора, это уменьшит относительную погрешность измерения и приблизит ее к классу точности прибора. В тех случаях, когда на приборе класс точности не указан, абсолютная погрешность принимается равной половине цены наименьшего деления.

Источник: fevt.ru

Виды маркирования

Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.

Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.

Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.

Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.

Определение класса точности прибора

Класс точности измерительного прибора — это обобщенная характеристика, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых установлены в стандартах на отдельные виды средств измерений. Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых при помощи этих средств.

Для того чтобы заранее оценить погрешность, которую внесет данное средство измерений в результат, пользуются нормированными значениями погрешности. Под ними понимают предельные для данного типа средства измерений погрешности.

Погрешности отдельных измерительных приборов данного типа могут быть различными, иметь отличающиеся друг от друга систематические и случайные составляющие, но в целом погрешность данного измерительного прибора не должна превосходить нормированного значения. Границы основной погрешности и коэффициентов влияния заносят в паспорт каждого измерительного прибора.

Основные способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ.

На шкале измерительного прибора маркируют значение класса точности измерительного прибора в виде числа, указывающего нормированное значение погрешности. Выраженное в процентах, оно может иметь значения 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001 и т. д.

Если обозначаемое на шкале значение класса точности обведено кружком, например 1,5, это означает, что погрешность чувствительности δs = 1,5%. Так нормируют погрешности масштабных преобразователей (делителей напряжения, измерительных шунтов, измерительных трансформаторов тока и напряжения и т. п.).

Это означает, что для данного измерительного прибора погрешность чувствительности δs = dx/x — постоянная величина при любом значении х. Граница относительной погрешности δ(х) постоянна и при любом значении х просто равна значению δs, а абсолютная погрешность результата измерений определяется как dx = δsx

Для таких измерительных приборов всегда указывают границы рабочего диапазона, в которых такая оценка справедлива.

Если на шкале измерительного прибора цифра класса точности не подчеркнута, например 0,5, это означает, что прибор нормируется приведенной погрешностью нуля δо = 0,5 %. У таких приборов для любых значений х граница абсолютной погрешности нуля dx = dо = const, а δо = dо/хн.

При равномерной или степенной шкале измерительного прибора и нулевой отметке на краю шкалы или вне ее за хн принимают верхний предел диапазона измерений. Если нулевая отметка находится посредине шкалы, то хн равно протяженности диапазона измерений, например для миллиамперметра со шкалой от -3 до +3 мА, хн= 3 — (-3)=6 А.

Однако будет грубейшей ошибкой полагать, что амперметр класса точности 0,5 обеспечивает во всем диапазоне измерений погрешность результатов измерений ±0,5 %. Значение погрешности δо увеличивается обратно пропорционально х, то есть относительная погрешность δ(х) равна классу точности измерительного прибора лишь на последней отметке шкалы (при х = хк). При х = 0,1хк она в 10 раз больше класса точности. При приближении х к нулю δ(х) стремится к бесконечности, то есть такими приборами делать измерения в начальной части шкалы недопустимо.

На измерительных приборах с резко неравномерной шкалой (например на омметрах) класс точности указывают в долях от длины шкалы и обозначают как 1,5 с обозначением ниже цифр знака «угол».

Нормирование

Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й

Нормирование осуществляется по:

  • абсолютной;
  • относительной;
  • приведенной.

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.

Скачать ГОСТ 8.401-80

Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.

Как определить класс точности манометра

Манометр — измерительный прибор, который позволяет установить значение избыточного давления, действующего в трубопроводе или в рабочих частях различных видов оборудования.

Такие приборы широко применяются в системах отопления, водоснабжения, газоснабжения, других инженерных сетях коммунального и промышленного назначения. В зависимости от условий эксплуатации измерителя существуют определенные ограничения по допустимому пределу его погрешности. Поэтому важно знать, как определить класс точности манометра.

Электростатические КИП

Эти приборы работают на принципе взаимодействия заряженных электродов, которые разделены диэлектриком. Конструктивно они выглядят практически как плоский конденсатор. При этом, при перемещении подвижной части емкость системы также изменяется.

Наиболее известные из них – это устройства с линейным и поверхностным механизмом. У них немного разный принцип действия. У приборов с поверхностным механизмом емкость изменяется за счет колебаний активной площади электродов

В другом случае важно расстояние между ними

К достоинствам таких устройств относятся небольшая мощность потребления, класс точности ГОСТ, достаточно широкий частотный диапазон и т.д.

Недостатками являются небольшая чувствительность прибора, необходимость экранирования и пробой между электродами.

Что такое класс точности манометра, и как его определить

Класс точности манометра является одной из основных величин, характеризующих прибор. Это процентное выражение максимально допустимая погрешность измерителя, приведенная к его диапазону измерений.

Абсолютная погрешность представляет собой величину, которая характеризует отклонение показаний измерительного прибора от действительного значения давления. Также выделяют основную допустимую погрешность, которая представляет собой процентное выражение абсолютного допустимого значения отклонения от номинального значения. Именно с этой величиной связан класс точности.

Существует два типа измерителей давления — рабочие и образцовые.

Рабочие применяются для практического измерения давления в трубопроводах и оборудовании. Образцовые — специальные измерители, которые служат для поверки показаний рабочих приборов и позволяют оценить степень их отклонения. Соответственно, образцовые манометры имеют минимальный класс точности.

Классы точности современных манометров регламентируются в соответствии с ГОСТ 2405-88 Они могут принимать следующие значения:

Таким образом, этот показатель имеет прямую зависимость с погрешностью. Чем он ниже, тем ниже максимальное отклонение, которое может давать измеритель давления, и наоборот. Соответственно, от этого параметра зависит, насколько точными являются показания измерителя. Высокое значение указывает на меньшую точность измерений, а низкое соответствует повышенной точности. Чем ниже значение класса точности, тем более высокой является цена устройства.

Узнать этот параметр достаточно просто. Он указан на шкале в виде числового значения, перед которым размещаются литеры KL или CL. Значение указывается ниже последнего деления шкалы.

Указанная на приборе величина является номинальной. Чтобы определить фактический класс точности, нужно выполнить поверку и рассчитать его. Для этого проводят несколько измерений давления образцовым и рабочим манометром. После этого необходимо сравнить показания обоих измерителей, выявить максимальное фактическое отклонение. Затем остается только посчитать процент отклонения от диапазона измерений прибора.

Советы по выбору счетчиков

Выбор приборов учета в магазинах — достаточно большой.

Анализируя, какой счетчик электроэнергии лучше, рекомендуется обратить внимание на следующие аспекты:

  • стоимость счетчика (но нельзя кидаться на слишком дешевую продукцию, так как при ее изготовлении могли применяться низкокачественные комплектующие, снижающие срок службы оборудования);
  • производителя устройства, сделав выбор в пользу проверенных компаний;
  • гарантийный срок прибора;
  • потребление электроэнергии самими счетчиками;
  • уровень шума прибора;
  • возможность осуществлять сервисное обслуживание.

Не нужно сразу отказываться от покупки немного морально устаревших индукционных моделей. Они, как и электронные приборы, имеют свои преимущества. Нет необходимости также приобретать устройства, имеющие множество функций, которые не будут использоваться. К тому же большое количество микросхем в счетчиках повышает риск его выхода из строя.

Также при покупке следует убедиться в наличии хорошо читаемых пломб, начальных показаний и заводских штампов в паспорте, гарантийного талона. Приобретение регистраторов рекомендуется осуществлять в специализированных магазинах.

Важно тщательно проверить дату проведенной поверки счетчика.

Согласно ПУЭ вновь устанавливаемые приборы должны иметь пломбы госповерки с давностью:

  • для трехфазных моделей: до одного года;
  • для однофазных: до двух лет.

Таким образом, если дата поверки истекла, прибор не поставят на учет без проведения новой.

Важно! Рекомендации, какой счетчик электроэнергии выбрать, есть на сайте поставщика электроэнергии. В различных регионах могут быть рекомендованы к установке счетчики разных марок.

Помимо известных зарубежных производителей, продукция которых давно пользуется популярностью (ABB, GE) на рынке представлены и модели отечественных компаний (Энергомера — производитель одноименных приборов, Инкотекс, выпускающий счетчики Меркурий, Тайпит, предлагающий регистраторы Нева). Причем, их качество порой не уступает импортным, а цена — гораздо ниже.

Определение погрешности

Владельцев измерительных приборов интересует, прежде всего, величина максимальной погрешности, характерной для манометра. Она зависит не только от класса точности, но и от диапазона измерений. Таким образом, чтобы получить значение погрешности, нужно произвести некоторые вычисления. Например, для манометра с диапазоном измерений, равным 6 МПа, и классом точности 1,5 погрешность будет рассчитываться по формуле 6*1,5/100=0,09 МПа.

Необходимо отметить, что таким способом можно посчитать только основную погрешность.

Ее величина определяется идеальными условиями эксплуатации. На нее оказывают влияние только конструктивные характеристики, а также особенности сборки прибора, например, точность градуировки делений на шкале, сила трения в измерительном механизме. Однако эта величина может отличаться от фактической, поскольку существует также дополнительная погрешность, определяемая условиями, в которых эксплуатируется манометр. На нее может влиять вибрация трубопровода или оборудования, температура, уровень влажности и другие параметры.

Также точность измерения давления зависит от еще одной характеристики манометра — величины его вариации, которую определяют в ходе поверки. Это максимальная разница показаний измерителя, выявленная по результатам нескольких измерений.

Величина вариации в значительной мере зависит от конструкции манометра, а именно от способа уравновешивания, которое может быть жидкостным (давлением столба жидкости) или механическим (пружиной). Механические манометры имеют более выраженную вариацию, что часто обусловлено дополнительным трением при плохой смазке или износе деталей, потере упругости пружины и другими факторами.

Источник: grom.ru

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

Пример расчета погрешности

Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.

Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.

Технические характеристики

Согласно документации, на схемах сети вольтметры принято обозначение окружностью с вписанной латинской буквой «V». На русских смехах он может заменяться на русскую букву «В». Более того, первая цифра после буквы в маркировке отображает тип устройства и специфику его использования. Например, В2 — вольтметр для постоянного тока, В3 — для переменного, В4 — для импульсного и т.д.

Вам это будет интересно Разновидности бытовых и промышленных электрических выключателей

Оценка характеристик прибора включает в себя следующие компоненты:

  • Диапазон измерений. Он ограничивается наименьшим и наибольшим показателем, который способен изменить аппарат. Современные устройства обладают диапазоном от милливольт до киловольт. Промышленные аналоги же способны измерять как меньшие, так и большие напряжения;
  • Точность измерений. Далеко не каждый домашний тестер отличается повышенной точностью измерений. Как уже было сказано, это зависит от его внутреннего сопротивления. Новые вольтметры при сравнительно небольших размерах обладают маленькими погрешностями измерений;
  • Диапазон частот. Показывает чувствительность прибора к тем или иным сигналам с разными частотами, регистрируемых в сети;
  • Температура и другие факторы. Эти параметры определяют показатели, при которых аппарат обладает минимальной погрешностью измерений, доступной для него;
  • Собственно само внутреннее сопротивление (импеданс). Чем выше этот параметр, тем вольтметр более точен.

Важно! Технические характеристики аналоговых приборов сильно зависят от чувствительности магнитоэлектрического прибора. Чем меньше его ток полного отклонения, тем более высокосопротивительные резисторы можно использовать

Для чего используются

Разнообразные виды измерительных трансформаторов встречаются как в небольших приборах размером со спичечный коробок, так и в крупных энергетических установках. Их основное назначение – понижать первичные токи и напряжения до значений, необходимых для измерительных устройств, защитных реле и автоматики. Применение понижающих катушек обеспечивает защиту цепи низшего и высшего ранга, поскольку они разделены между собой.

Понижающие средства разделяют по признакам эксплуатации и предназначены для:

  • измерений. Они передают вторичный ток на приборы;
  • защиты токовых цепей;
  • применения в лабораториях. Такие понижающие средства имеют высокую классность точности;
  • повторного конвертирования, они относятся к промежуточным инструментам.

Измерение

Измерительный трансформатор необходим для понижения высокого тока основного напряжения и передачу его на измерительные устройства. Для подключения стандартных приборов к высоковольтной сети потребовались бы громоздкие установки. Реализовывать инструменты таких размеров экономически не выгодно и не целесообразно.

Использование понижающих трансформаторов позволяет применять обычные устройства измерения в обычном режиме, что расширяет спектр их применения. Благодаря снижению напряжения, они не требуют дополнительных модификаций. Трансформатор отделяет высоковольтное напряжение сети от питающего напряжения приборов, обеспечивая безопасность из использования. От их классности зависит точность учета электрической энергии.

Защита

Кроме питания измерительных приборов понижающие трансформаторы подают напряжение на системы защиты и автоматической блокировки. Поскольку в сетевой электросети происходят перепады и скачки напряжения, которое губительно для высокоточного оборудования цепи.

В энергетических установках оборудование делится на силовое и вторичное, которое контролирует процессы первичной схемы подключения устройств. Высоковольтная аппаратура располагается на открытых площадках или устройствах. Вторичное оборудование находится на релейных планках внутри распределительных шкафов.

Промежуточным элементом передачи информации между силовыми агрегатами и средствами измерения, управления, контроля и защиты являются понижающие или измерительные трансформаторы. Они разделяют первичную и вторичную цепь от пагубного воздействия силовых агрегатов на чувствительные измерительные приборы, а также защищают обслуживающий персонал от повреждений.

Содержание

Виды измерительных инструментов

  1. Измерительные инструменты: виды и назначение

    1. Поверочные линейки
    2. Поверочные призмы
    3. Штангенглубиномеры
    4. Штангензубомеры
    5. Штангенциркули
    6. Микрометры
    7. Нутромеры
    8. Угломеры
    9. Радиусные и резьбовые шаблоны
    10. Кронциркули
    11. Штангенрейсмасы
    12. Щупы
    13. Концевые меры длины
    14. Наборы образцов шероховатости
  2. Основные правила использования и хранения измерительных инструментов

    1. Эксплуатация контрольно-измерительных инструментов
    2. Хранение измерительных инструментов
  3. Где купить измерительные инструменты

В этой статье мы расскажем о них. Вы узнаете:

  1. какие измерительные инструменты применяют при металлообработке;

  2. для чего они предназначены;

  3. соблюдения каких правил требуют использование и хранение приспособлений.

Измерительные инструменты: виды и назначение

При металлообработке, в машиностроении и при слесарных операциях применяют следующие виды измерительных инструментов.

  1. Микрометры.

  2. Нутромеры.

  3. Штангенглубиномеры.

  4. Штангензубомеры.

  5. Штангенциркули.

  6. Штангенрейсмасы.

  7. Поверочные линейки.

  8. Угломеры.

  9. Поверочные призмы.

  10. Кронциркули.

  11. Наборы образцов шероховатости.

  12. Концевые меры длины.

  13. Щупы.

  14. Радиусные и резьбовые шаблоны и пр.

01_Измерительные инструменты применяемые при металлообработке.jpg

Фотография №1: измерительные инструменты, применяемые при металлообработке

Расскажем о назначении, конструкции и особенностях использования данных измерительных инструментов.

Поверочные линейки 

Эти ручные измерительные инструменты слесари и мастера иных профилей применяют для контроля отклонений от плоскостности и прямолинейности поверхностей изделий и деталей. На изготовление приспособлений идут сталь и чугун. Требования устанавливает ГОСТ 8026-92.

Существуют следующие виды таких измерительных инструментов, как поверочные линейки.

·        ЛТ — лекальные трехгранные поверочные линейки. Эти измерительные инструменты для проверки плоскостности и прямолинейности поверхностей методами определения линейных отклонений, а также световой щели «на просвет».

02_Лекальная трехгранная поверочная линейка.jpg

Фотография №2: лекальная трехгранная поверочная линейка

Измерительный инструмент слесаря этого типа в сечении имеет равносторонний треугольник. На каждой стороне имеются радиусные выемки.

·        ЛД — лекальные поверочные линейки с двухсторонними скосами. Применяются при слесарных, контрольных и лекальных операциях.

03_Лекальная поверочная линейка с двухсторонним скосом.jpg

Фотография №3: лекальная поверочная линейка с двухсторонним скосом

Такие линейки имеют ножевидную форму. Измерительные инструменты 1 и 0 классов точности изготавливают из качественной закаленной стали. Линейки, длина которых превышает 200 мм, оснащают накладками для теплоизоляции.

·        ЛЧ — четырехгранные лекальные поверочные линейки. Эти инструменты имеют 4 рабочих грани. Углы — 90°. Для удобства имеются ручки. Линейки типа ЛЧ изготавливаются с 0-м и 1-м классами точности.

04_Лекальная четырехгранная поверочная линейка.jpg

Фотография №4: лекальная четырехгранная поверочная линейка

·        ШД — поверочные линейки двутаврового сечения.

05_Конструкция поверочных линеек двутаврового сечения.jpg

Изображение №1: конструкция поверочных линеек двутаврового сечения

Эти измерительные инструменты слесаря-ремонтника изготавливаются из высокоуглеродистых инструментальных сталей марок Ст50, У7 и пр. Классы точности приспособлений — 0, 1 и 2.

·        ШП — поверочные линейки прямоугольного сечения. Их применяют для проверке плоскостности и прямолинейности плоскостей при монтажных работах и сборке машин.

06_Поверочная линейка прямоугольного сечения.jpg

Фотография №5: поверочная линейка прямоугольного сечения

Измерительные инструменты этого типа также изготавливают из высокоуглеродистых инструментальных сталей марок У7 и Ст50. Твердость рабочих поверхностей — не ниже 51 HRC.

·        ШМ и ШМ-ТК — поверочные линейки типа «мостик». Имеют широкие рабочие поверхности. Изготавливаются из чугуна (ШМ) и гранита (ШМ-ТК).

07_Поверочная линейка типа мостик.jpg

Фотография №6: поверочная линейка типа «мостик»

Рабочие поверхности таких измерительных инструментов могут быть шаброванными и шлифованными. Приспособления используют для контроля качества плоскостей станков, столов и иных изделий, а также при сборке различного оборудования.

·        УТ — угловые трехгранные поверочные линейки. Две их пересекающиеся поверхности образуют углы 45, 55 или 60°.

08_Угловая трехгранная поверочная линейка.jpg


Фотография №7: угловая трехгранная поверочная линейка

Эти измерительные инструменты предназначены для контроля плоскостности пересекающихся поверхностей методом «на каску».

Иные типы поверочных линеек применяются реже.

Поверочные призмы

Чаще всего измерительные инструменты этого типа применяют для разметки, позиционирования и выверки осей и валов.

09_Поверочные призмы.jpg

Фотография №8: поверочные призмы

Поверочные призмы также можно использовать для проверки параллельности и вертикальности деталей. Еще одна сфера применения — закрепление деталей при механической обработке.

Штангенглубиномеры

Предназначены для измерения глубин пазов и отверстий. Это часто нужно при:

  1. ремонте машин и агрегатов;

  2. обработке деталей на различных станках;

  3. строительстве;

  4. выполнении иных работ.

10_Цифровой штангенглубиномер.jpg

Фотография №9: цифровой штангенглубиномер

При помощи механических штангенглубиномеров можно измерять глубины отверстий и пазов с точностью до 0,05–0,1 мм. Точность электронных измерительных инструментов — 0,01 мм.

Штангензубомеры

Штангензубомер — это сочетание штангенглубиномера и штангенциркуля. Устройство предназначено для определения параметров зубьев реек и шестеренок. Прибор имеет две штанги — горизонтальную и вертикальную.

11_Штангензубомер.jpeg

Фотография №10: штангензубомер

При помощи горизонтальных штанг измеряют толщину зубьев, а при помощи вертикальных — высоту.

Штангенциркули

Штангенциркули — это применяемые в машиностроении и металлобоработке универсальные измерительные инструменты, предназначенные для определения линейных (наружных и внутренних) размеров деталей и изделий. Приспособления бывают механическими и электронными.

12_Электронный штангенциркуль.jpg


Фотография №11: электронный штангенциркуль

Для измерения линейного параметра детали нужно:

  1. зажать ее губками измерительного инструмента;

  2. зафиксировать рамку при помощи стопорного винта;

  3. вытащить деталь;

  4. ·считать показания инструмента.

Микрометры

Измерительные инструменты этого типа предназначены для определения линейных параметров различных деталей и изделий.

13_Микрометр.jpg

Фотография №12: обычный механический микрометр

Назначение микрометров варьируется в зависимости от типов инструментов.

  1. Гладкие. Их используют для измерения наружных габаритов деталей и изделий абсолютным прямым методом.

  2. Призматические. Применяются для измерения параметров ножей и лезвий.

  3. Листовые. С их помощью измеряют толщину листов и лент.

  4. Резьбовые. Предназначены для определения параметров метрических и дюймовых резьб.

  5. Трубные. Назначение измерительных инструментов этого типа — измерение диаметров труб.

  6. Зубомерные. Измеряют габариты зубьев.

  7. Рычажные. Их применяют для определения размеров прецизионных деталей.

Нутромеры

Их назначение — определение размеров отверстий, пазов и внутренних поверхностей различных деталей и изделий.

14_Нутромер.jpg

Фотография №13: нутромер

Существуют две основные разновидности нутромеров.

1.      Микрометрические. Инструменты этой группы применяют для выполнения абсолютных измерений. В состав микрометрического нутромера входят стебель с измерительным наконечником, жестко закрепленный барабан и микрометрический винт. Для наращивания габаритов применяют специальные удлинители.

15_Конструкция микрометрического нутромера.jpg

Изображение №2: конструкция микрометрического нутромера

Выполнение измерений проводится по следующей схеме.

1.      Прибор устанавливается строго перпендикулярно оси вращения детали.

2.      Один конец прибора прикладывается к внешнему краю отверстия.

3.      Второй конец передвигают в диаметральной плоскости.

4.      Для получения результатов затягивают микрометрический винт.

Точность измерений микрометрическими нутромерами – 0,01 мм.

2.      Индикаторные. Их применяют для выполнения относительных измерений. Стандартный индикаторный нутромер включает в себя индикаторную головку с часовым циферблатом и измерительную часть.

16_Устройство индикаторного нутромера.jpg

Изображение №3: устройство индикаторного нутромера

Индикатор имеет 2 шкалы. Первая указывает на количество полных оборотов второй шкалы, а она — на размер в пределах 1 мм при цене деления 0,01 мм.

Для измерения стержень прибора выдвигают. Стандартное расстояние — 10 мм. Пределы измерений увеличивают с использованием дополнительных стержней.

С учетом этого выполняют замеры по следующей технологии.

  1. Измерительный инструмент помещается в отверстие строго перпендикулярно его оси.

  2. По наклону стрелки определяется отклонение размера в большую или меньшую сторону при легких покачиваниях прибора.

Если стрелка отклоняется вправо, то диаметр измеряемого отверстия меньше заданного, а если влево, то больше на показанное значение.

Угломеры

Эти измерительные инструменты применяют для контроля точности углов между деталями механизмов, узлами оборудования, элементами и поверхностями конструкций.

При металлообработке используют слесарные угломеры. Их оснащают нониусными шкалами для выполнения высокоточных измерений.

17_Слесарный угломер.jpg


Фотография № 14: слесарный угломер

Радиусные и резьбовые шаблоны

Эти измерительные инструменты широко применяют при слесарных работах. Шаблон — это набор пластин из углеродистой стали, предназначенный для выполнения контрольных операций.

·        Радиусные шаблоны. Их используют для определения радиусов кривизны вогнутых и выпуклых поверхностей. При помощи выпуклых пластин измеряют внутренние диаметры отверстий, и при помощи вогнутых — внешние.

18_Радиусный шаблон.jpg

Фотография №15: радиусный шаблон

·        Резьбовые шаблоны. Их используют для контроля параметров метрических и дюймовых резьб. Определяются такие характеристики, как:

  1. номинальный шаг (метрические резьбы);

  2. количество ниток на один дюйм (дюймовые резьбы).

19_Резьбовые шаблоны.png

Фотография №16: резьбовые шаблоны

Для выполнения измерений шаблоны прикладывают к контролируемым поверхностям.

Кронциркули

Кронциркуль — один из древнейших измерительных приборов. Человечество пользуется им уже более 2500 лет. При помощью кронциркулей сравнивают реальные параметры изделий и деталей с эталонными значениями.

20_Кронциркуль.jpg

Фотография №17: кронциркуль

При помощи этих измерительных инструментов определяют:

  1. линейные размеры (высота, длина, ширина, толщина, диаметр) деталей;

  2. параметры стенок с выступами;

  3. характеристики ступеней, перемычек и интервалов.

Порядок выполнения измерений наружного параметра детали таков.

1.      Ножки инструмента разводятся на нужное расстояние.

2.      Лапки сводятся до момента соприкосновения с контролируемой деталью.

3.      Расстояние между ножками измеряется.

Штангенрейсмасы

Предназначены для вертикальной разметки деталей, а также для определения высот предметов.

21_Конструкция штангенрейсмаса.jpg

Изображение №4: конструкция штангенрейсмаса

Прибор состоит из следующих элементов.

1.      Тяжелое основание (обычно изготавливается из чугуна).

2.      Отсчетная призма (для измерения высот) или разметочная ножка (для выполнения вертикальной разметки деталей).

3.      Основная рамка.

4.      Нониус.

5.      Винтовая пара.

6.      Штанга с измерительной линейкой.

7.      Микрометрическая рамка.

8.      Микрометрический фиксатор.

9.      Основной фиксатор.

Технология выполнения контрольных операций выглядит так.

1.      Производится поверка штангенрейсмаса.

2.      Прибор подводится к детали (держать инструмент необходимо за массивное основание).

3.      Основную измерительную рамку перемещают до полного контакта отсчетной призмы с поверхностью контролируемой детали.

4.      Обе шкалы фиксируются.

5.      Производится считывание результатов. К показаниям основной шкалы добавляются показания нониусов.

Максимальной точностью обладают цифровые штангенрейсмасы.

22_Цифровой штангенрейсмас.jpg


Фотография №18: цифровой штангенрейсмас

Щупы

Выпускаются наборами. В них входят измерительные пластины разной толщины. Она варьируется в пределах от 0,02 до 1 мм.

23_Измерительные щупы.jpg


Фотография №19: измерительные щупы

При помощи щупов определяют параметры зазоров между поверхностями изделий и сопряженными деталями.

24_Измерение зазоров щупами.jpg


Изображение №5: измерение зазоров щупами

Для измерения пластины (по одной или по две) вводятся в зазоры до тех пор, пока какой-либо из измерительных инструментов не окажется подходящим по толщине.

Концевые меры длины

Это отполированные контрольно-измерительные инструменты, изготавливаемые из высоколегированной стали и керамики. Приспособления выпускают наборами и упаковывают в деревянные или пластиковые футляры. Каждая плитка находится в определенной ячейке. Под ними указываются размеры инструментов.

25_Стальные концевые меры длины.jpg


Фотография №20: стальные концевые меры длины

Концевые меры длины применяют для:

  1. проверки точности различных измерительных приборов;

  2. ремонта металлорежущих станков и иного промышленного и слесарного оборудования;

  3. разметочных работ;

  4. выполнения иных операций.

Наборы образцов шероховатости

Применяются для решения следующих задач.

  1. Контроль шероховатости металлов и изделий из них.

  2. Определение качества поверхностей в труднодоступных местах.

  3. Оперативный контроль качества деталей и изделий на различных этапах производства.

Измерительные инструменты этого типа также выпускают наборами и упаковывают в специальные футляры.

26_Набор образцов шероховатости.jpeg


Фотография №21: набор образцов шероховатости

Образцы шероховатости применяют для контроля поверхностей, полученных после выполнения таких операций, как:

  1. торцевое точение;

  2. расточка;

  3. обтачивание на токарном станке;

  4. цилиндрическое, торцевое и перекрещивающееся фрезерование;

  5. шлифование (чашеобразное, цилиндрическое, плоское, торцевое).

Принцип контролирования заключается в визуальном и тактильном сравнении получаемых поверхностей с эталонными.

Основные правила использования и хранения измерительных инструментов

Расскажем, как правильно использовать и хранить измерительные инструменты, применяемые слесарями, слесарями-ремонтниками и мастерами иных профилей.

Эксплуатация контрольно-измерительных инструментов

1.      Все измерительные инструменты имеют инструкции по эксплуатации. Обязательно изучайте их перед использованием приспособлений и отправкой их на хранение.

2.      При фиксации инструментов не прилагайте слишком больших усилий. Это чревато не только ухудшением точности показаний, но и поломками приспособлений.

3.      Деталь или ее части перед измерениями должны быть очищены от различного рода загрязнений и заусенцев.

4.      Измерительные инструменты при необходимости нужно смазывать.

5.      После окончания работ приспособления должны быть очищены, смазаны и уложены в футляры.

6.      Необходимо оберегать изделия от влаги, падений и ударов.

7.      Измеряемые детали и изделия должны иметь температуру от +15 до +20 °С. В этом случае измерения будут максимально точными.

8.      Измерения обрабатываемых деталей проводится при выключенных станках.

9.      В промежутках между измерениями приспособления необходимо укладывать на сухие и чистые поверхности.

10. Эксплуатация измерительных инструментов требует регулярного проведения поверок.

Хранение измерительных инструментов

  1. Хранить измерительные инструменты необходимо в сухих и отапливаемых помещениях.

  2. Для защиты от негативных факторов желательно помещать приспособления в индивидуальные футляры и тубусы.

  3. Рекомендованная температура хранения — от +10 до +35 °С.

  4. В воздухе не должны содержаться агрессивные примеси.

  5. Перед отправкой на хранение измерительные поверхности разъединяют, а фиксаторы — ослабляют.

27_Хранение измерительных инструментов.jpg


Фотография №22: хранение измерительных инструментов

Соблюдение вышеперечисленных правил помогает получить максимально точные результаты измерений и продлевает срок службы контрольных приспособлений.

Где купить измерительные инструменты

Купить все вышеперечисленные и иные контрольно-измерительные инструменты для слесарей и мастеров иных профилей вы можете в нашем интернет-магазине. Предлагаем широкий ассортимент, максимально низкие цены и оперативную доставку.

Изучите каталог и выберите подходящие приспособления. Если не найдете нужные контрольно-измерительные инструменты, мы закажем их специально для вас.

  • Погрешности измерений : понятие, определение, виды, классификация

Основной метрологической характеристикой измерительных приборов и измерительной цепи в целом является погрешность измерения.

  • Погрешность результата измерения — отклонение результата измерения от действительного (истинного) значения измеряемой величины;
  • Погрешности средств измерений — отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).

Основные виды погрешностей :

Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели.

  • Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.

Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.

Статическая погрешность измерений — погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей.

  • Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях.

Динамическая погрешность измерений — погрешность результата измерений, свойственная условиям динамического измерения.

  • Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Систематическая погрешность измерения — составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, влажности, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов.

Причинами возникновения систематических составляющих погрешности измерения являются:

  • отклонение параметров реального средства измерений от расчетных значений, предусмотренных схемой;
  • неуравновешенность некоторых деталей средства измерений относительно их оси вращения, приводящая к дополнительному повороту за счет зазоров, имеющихся в механизме;
  • упругая деформация деталей средства измерений, имеющих малую жесткость, приводящая к дополнительным перемещениям;
  • погрешность градуировки или небольшой сдвиг шкалы;
  • неточность подгонки шунта или добавочного сопротивления, неточность образцовой измерительной катушки сопротивления;
  • неравномерный износ направляющих устройств для базирования измеряемых деталей;
  • износ рабочих поверхностей, деталей средства измерений, с помощью которых осуществляется контакт звеньев механизма;
  • усталостные измерения упругих свойств деталей, а также их естественное старение;
  • неисправности средства измерений.

Случайной погрешностью называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения, дискретностью счета. Они принципиально не могут быть устранены или учтены при измерениях.

Погрешность градуировки средства измерений — погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.

  • Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет.

Абсолютная погрешность — алгебраическая разность между номинальным и действительным значениями измеряемой величины.

  • Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина, в расчетах её принято обозначать греческой буквой — ∆. На рисунке ниже ∆X и ∆Y — абсолютные погрешности.


Относительная погрешность — отношение абсолютной погрешности к тому значению, которое принимается за истинное. Относительная погрешность является безразмерной величиной, либо измеряется в процентах, в расчетах обозначается буквой — δ.


Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле :

где Xn — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

  • если шкала прибора односторонняя и нижний предел измерений равен нулю (например диапазон измерений 0…100), то Xn определяется равным верхнему пределу измерений (Xn=100);
  • если шкала прибора односторонняя, нижний предел измерений больше нуля, то Xn определяется как разность между максимальным и минимальным значениями диапазона (для прибора с диапазоном измерений 30…100, Xn=Xmax-Xmin=100-30=70);
  • если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора (диапазон измерений -50…+50, Xn=100).

Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.

Приведенная погрешность пропорциональна абсолютной погрешности, поэтому, если абсолютная погрешность измерительного прибора постоянна во всем диапазон измерения, то приведенная будет также постоянной. Следовательно она характеризует точность измерительного  прибора независимо от значения измеряемого параметра и ее считают основной метрологической характеристикой измерительного прибора.

Приведенная погрешность изменяется под действием изменения окружающей  температуры, давления, вибрации и т. д. В связи с этим  для каждого прибора регламентируют нормальные условия эксплуатации (температуру, влажность, напряжение питания и т.д)

Основная погрешность измерительного прибора  — погрешность при его эксплуатации в нормальных условиях;

Дополнительная погрешность — погрешность при эксплуатации прибора в отличных от нормальных условиях.

Наличие различных показателей точности – абсолютной и приведенной, основной и дополнительной погрешностей, затрудняет сравнение измерительных приборов. Необходима обобщенная характеристика их метрологических свойств. Такой характеристикой является класс точности измерительного прибора.

  • Класс точности – это максимально допустимая приведенная погрешность  (в процентах) при нормальных условиях эксплуатации.

Погрешность в каждом отдельном измерении может быть и меньше максимальной. Поэтому класс точности не может служить непосредственным показателем точности прибора, он лишь определяет предельное  возможное значение приведенной погрешности. ГОСТом  установлены стандартные классы точности: 0,005,  0,002,  0,05,  0,1, 0,25,  0,5,  1,0,  1,5,  2,5,  4,0.

Аддитивная погрешность погрешность, постоянная в каждой точке шкалы прибора.

Мультипликативная погрешность погрешность, линейно возрастающая или убывающая с ростом измеряемой величины.

Различать аддитивные и мультипликативные погрешности легче всего по полосе погрешностей :

Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (а). Иногда аддитивную погрешность называют погрешностью нуля.
Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (б). Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).

Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений для аддитивной и мультипликативной погрешностей:

  • для аддитивной погрешности:

    где Х — верхний предел шкалы, ∆0 — абсолютная аддитивная погрешность.

  • для мультипликативной погрешности:
  • это условие определяет порог чувствительности прибора (измерений).

Понравилась статья? Поделить с друзьями:
  • Приведите примеры ошибок восприятия иллюзии стрелок
  • Приборная панель шкода октавия ошибки
  • Приведите примеры ошибок восприятия иллюзии перспективы
  • Приборная панель форд транзит 2006 ошибки
  • Приведите пример ошибок восприятия