Расчет индикаторной ошибки

Индикаторные погрешности титрования

При титровании возможны случайные и
систематические погрешности. Случайные
погрешности связаны с измерением объема
и массы навески, но и значительную часть
погрешности титрования составляют
систематические погрешности, в частности,
индикаторная.

Случайные погрешности обрабатываются
по законам математической статистики.

Индикаторные погрешности связаны с
тем, что pT индикатора не
совпадает со значением pH
в ТЭ. Конечная точка титрования с данным
индикатором не совпадает с ТЭ.

При недотитровывании:

При перетитровывании:

Возьмем индикаторы хризоидин (pT=5,50)
и хлорфеноловый красный (pT
= 5,80). В данном случае в КТТ pH
будет больше, чем pH в ТЭ
(pH = 5,28), а, следовательно,
в растворе будет неотитрованное
основание. Эта погрешность, обусловленная
содержанием неоттитрованного основания,
называется щелочной, будет определяться
уравнением


.

На данном этапе титрования pH
будет определяться по формуле

.
В КТТ pH раствора равен
pT. Следовательно, можно
найти и f
в КТТ:


.

Отсюда,

.

Посчитаем ПТ для данных индикаторов:

хризоидин:

хлорфеноловый красный:

Оба эти индикатора подойдут для нашего
титрования. Рассмотрим ПТ для индикатора
розоловая кислота (pT=7,1).
По данной формуле получается ПТ=–0,70%,
что превышает обычно задаваемое значение
погрешности (±0,2%).

Рассмотрим же теперь случай, когда мы
используем индикаторы с pT
меньшим, чем pH в ТЭ. В КТТ
раствор будет перетитрован, и pH
будет определяться концентрацией
сильной кислоты (водородная погрешность),
и в нашей задаче определяться уравнением

.

Погрешность будет определяться по
формуле

Возьмем для примера индикаторы лакмоид
(pT=5,20), ализариновый красный
C (pT=4,45) и
бромфеноловый синий (pT=3,80).

pH раствора в КТТ равен
pT:

.


.

Рассчитаем ПТ для наших индикаторов:

Лакмоид:

Ализариновый красный C:

Бромфеноловый синий:

Вполне очевидно, что из двух предложенных
индикаторов наиболее подходящим является
ализариновый красный C.

Учитывая все расчеты, приходим к выводу,
что самыми подходящими для нашего опыта
индикаторами являются хризоидин (с
интервалом перехода 4,0 – 7,0, оранжевая
– желтая) и лакмоид (4,0 – 6,4, красная –
синяя).

Выводы

По кривой титрования аммиака можно
сделать ряд выводов.

В ходе титрования заметно плавное
уменьшение pH и заметен
скачок в области точки эквивалентности.
Скачок титрования полностью находится
в кислой области.

Точка эквивалентности расположена при
pH 5,28 и, очевидно, не
совпадает с точкой нейтральности. Скачок
титрования 0,1 М аммиака в пределах ±0,1%
от точки эквивалентности находится в
пределах pH от 6,25 до 4,30 и
составляет примерно 2 единицы pH,
что намного меньше скачка сильной щелочи
(6 единиц pH). С уменьшением
концентрации и увеличением температуры
скачок уменьшается.

В нашем случае одними из самых подходящих
являются лакмоид и хризоидин.

Окислительно-восстановительное титрование

Метод основан на реакциях
окисления-восстановления. Их называют
по применяемому тированному раствору
реагента, например: перманганатометрия,
йодометрия, бихроматометрия. В этих
методах в качестве титрантов применяют,
соответственно, KMnO4,
I2, K2Cr2O7.

В основе метода лежит изменение
окислительно-восстановительного
потенциала, обусловленного протеканием
окислительно-восстановительной реакции
между титрантом и определяемым веществом.

В процессе титрования происходит
изменение концентраций окисленной и
восстановленной форм, а, следовательно,
изменяется окислительно-восстановительный
потенциал титруемого раствора, включающей
две редоксопары.

В соответствии с уравнением Нернста
окислительно-восстановительный потенциал
для любой редоксопары:

Для каждого отдельного метода
окислительно-восстановительного
титрования используются свои стандартные
растворы.

Рассмотрим наш случай – перманганатометрия.
Рабочим раствором этого метода является
раствор перманганата калия KMnO4,
он неустойчив из-за реакции с водой,
катализируемый диоксидом марганца и
на свету:

Поэтому растворы перманганата калия
следует готовить, используя чистую воду
(органические примеси в воде могут
реагировать с

и давать MnO2, ускоряющий
разложение реагента), отфильтровать от
диоксида марганца и хранить в темных
склянках; раствор следует выдержать
несколько недель для окончания протекания
всех процессов. Очевидно, что раствор
следует стандартизировать, для чего
используют оксалат натрия и другие
восстановители. Реакция

катализируется ионами Mn2+.
Первые капли перманганата даже в горячем
растворе обесцвечиваются очень медленно.
В ходе титрования концентрация ионов
Mn2+ возрастает и
скорость реакции увеличивается: реакция
автокаталитическая.

Титр перманганата калия можно установить
также по оксиду мышьяка(III)
или металлическому железу.

В перманганатометрии применяют также
растворы восстановителей – слои Fe(II),
щавелевую кислоту и некоторые другие
– для определения окислителей методом
обратного титрования. Соединения Fe(II)
на воздухе медленно окисляются, особенно
в нейтральном растворе. Подкисление
замедляет процесс окисления, однако
обычно рекомендуется перед применением
раствора Fe(II)
в анализе проверить его титр. Оксалаты
и щавелевая кислота в растворе медленно
разлагаются. Этот процесс ускоряется
на свету, поэтому растворы оксалатов
рекомендуется хранить в темных склянках.
Подкисленные растворы оксалатов более
устойчивы, чем нейтральные или щелочные.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Расчет индикаторных погрешностей кислотно-основного титрования

Согласно ионно-хромофорной теории индикаторов, интервал перехода окраски индикатора Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (табл. 12). Середина области перехода окраски (при этом pH близко к Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения) называется показателем титрования с данным индикатором или рТ индикатора. Индикаторные погрешности отсутствуют, когда рТ индикатора практически совпадает с pH в ТЭ. Основой для выбора индикатора является расчет и построение кривой титрования, определение области скачка и pH в ТЭ.

Таблица 8.12

Важнейшие кислотно-основные индикаторы

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

При правильно выбранном индикаторе индикаторная ПТ не должна превышать заданную погрешность измерения объема раствора в титриметрии. Типы (виды) индикаторных ПТ кислотно-осиовиого титрования и названия, встречающиеся в разных учебниках и сборниках задач, происхождение погрешностей и формулы для расчета приведены в табл. 8.13. Формулы легко выводятся из определения погрешности титрования как отношения недотитро-ванного или перетитрованного количества кислоты или основания к первоначально взятому для титрования (то есть к произведению Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Погрешность выражают в %, а вид и знак устанавливают по ходу процесса (кривой) титрования и составу раствора в КТТ (табл. 8.13, примеры 8.28 и 8.29).

Таблица 8.13

Индикаторные погрешности кислотно-основного титрования

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.28.

Выберите подходящие индикаторы, определите тип индикаторных погрешностей и рассчитайте ПТ при титровании а) Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и б) Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения рабочим раствором Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения в условиях примера 8.21, если считать относительную погрешность измерения объема 0,4 %.

Решение:

а). Как следует из табл. 8.4 и рис. 8.1(1), для случая титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения при погрешности определения объема 0,4 % область скачка на кривой титрования соответствует изменению pH от 3,4 до 10,9, а Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения равен 7,0. Следовательно, для титрования можно выбрать индикаторы от №2 до №10 (табл. 8.12), т. к. их рТ и интервалы перехода окраски находятся в области скачка кривой.

Однако используемые для расчета ПТ формулы показывают, что чем ближе рТ и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, тем меньше ПТ. «Идеально» подходит бромтимоловый синий, поскольку его рТ 7 практически совпадает с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Рассчитаем величину ПТ с двумя индикаторами: с рТ < Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и с р Г > Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и проверим их пригодность для титрования в заданных условиях.

С индикатором метиловым красным (рТ 5,5 < Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения) в растворе остается неоттитрованная сильная кислота, следовательно, возникает протонная ошибка со знаком «-» (см. формулы в табл. 8.13):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

С индикатором фенолфталеином (рТ 9,0 > Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения) в растворе -избыток сильного основания, в результате чего ПТ представляет собой Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения— ошибку (гидроксидную) со знаком «+»:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

В данном случае оба индикатора пригодны, поскольку вычисленные значения ПТ не превышают заданную погрешность титрования (0,4%), но с метиловым красным систематическая индикаторная погрешность меньше.

б). При титровании Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (табл. 8.5, рис. 8.1(2)) для той же точности титрования (99,6%) величина скачка меньше и составляет 7,2 — 10,9, а Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — 8,9. Круг пригодных индикаторов сужается до №7 — №9. Для индикаторов с рТ > Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, как и в случае (а), ПТ соответствует Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — ошибке (гидроксидной) со знаком «+».

Например, при выборе фенолфталеина (рТ = 9,0):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

а при выборе тимолфталеина (рТ = 10,0) погрешность возрастает в 10 раз: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Выбор фенолфталеина приводит к меньшей индикаторной погрешности титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, но могут использоваться оба индикатора.

При титровании с индикаторами, для которых рТ < рНтэ, в растворе остается неоттитрованная слабая кислота, т. е. присутствует НА-ошибка (кислотная) со знаком «-» (см. табл. 8.13). Если использовать индикатор бромтимоловый синий (рТ 7,0), то вычисленная ПТ не удовлетворяет заданной точности, индикатор не пригоден:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

или при проведении расчета по приближенной формуле:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.29.

Какой индикатор позволяет оттитровать 0,1000 М гидразин Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения 0,1000 М раствором Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения с меньшей погрешностью: бромкрезоловый пурпурный (рТ 6,0) или метиловый красный (рТ 5,5)?

Решение:

Реакция титрования:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

приводит к образованию слабой сопряженной кислоты Расчет индикаторных погрешностей кислотно-основного титрования с примерами решенияРасчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Тогда Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и вычисляется с учетом того, что Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Сравнивая рТ индикаторов и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, видим, что в обоих случаях остается неоттитрованный гидразин, поэтому для оценки ПТ рассчитываем Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения ошибку (основную) со знаком «-». С бромкрезоловым пурпурным (рТ 6):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

и с метиловым красным (рТ 5,5):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Из предложенных индикаторов метиловый красный позволяет провести титрование гидразина с меньшей погрешностью.

Расчет индикаторных погрешностей окислительно-восстановительного титрования

При использовании окислительно-восстановительных (редокс) индикаторов потенциал в ТЭ Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения может не совпадать с потенциалом Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, который связан с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. (табл. 8.14) и интервалом перехода его окраски Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Таблица 8.14

Примеры распространенных окислительно-восстановительных индикаторов

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Полуреакция восстановления и интервал перехода индикатора:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Наиболее часто в полуреакции восстановления (окисления) индикатора участвуют 2 электрона. Для индикаторов №1 — №6 Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения слабо зависит от pH. При расчете ПТ необходимо:

  • сравнить Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения для выбора редокс-пары участников реакции титрования и уравнения Нернста для расчета ПТ.

Например, если Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения при титровании восстановителя (пример 8.30-а), то реакция не завершена; из уравнения Нернста для полуреакции титруемого компонента находят (объемы раствора в числителе и знаменателе одинаковы):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Сумма числителя и знаменателя здесь составляет 100 % титруемого вещества. Индикатор считается пригодным, если ПТ не превышает 0,1 -0,2%.

Пример 8.30.

Выберите подходящие индикаторы, определите тип индикаторных погрешностей и рассчитайте ПТ при титровании раствора соли Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения раствором соли Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Решение:

Как следует из табл. 8.8 и рис. 8.3 (кривая 1, пример 8.25), область скачка (при относительной погрешности измерения объема 0,1 %) на кривой титрования 0,95 — 1,26 В, а Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Следовательно, для титрования можно выбрать индикаторы от №3 до №5 (табл. 8.14).

Выберем для рассмотрения порядка расчета два индикатора:

а) с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения-дипиридил, для которого Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

б) с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, например нитрофенантролин Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

В случае а) интервал перехода индикатора:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Изменение окраски заканчивается при Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 1,0 В. В растворе остаются неоттитрованными ионы Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (оттитрованные ионы -ионы Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения). Для расчета ПТ используем уравнение Нернста для ре-докс- пары титруемого компонента (Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения/Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Тогда: ПТ = Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

В случае б) интервал перехода индикатора нитрофенантролина в виде комплекса с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения составляет:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Изменение окраски заканчивается при Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 1,28 В и раствор перетитровывается. В этом случае ПТ имеет положительный знак и рассчитывается по уравнению Нернста для редокс-пары, образуемой титрантом Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения .

Тогда количество Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (после ТЭ образования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения не происходит) соответствует количеству взятых для титрования ионов Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, а количество Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — их перетитрованному количеству.

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Таким образом, оба выбранных индикатора оказались приемлемыми.

Расчет индикаторных погрешностей комплексонометрического титрования

В конечной точке титрования общие концентрации определяемого иона с(М) и титранта c(Y) можно представить выражениями {для упрощения записи в общем виде упустим заряды ионов):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

где Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — концентрация всех форм определяемого иона, кроме входящего в комплекс Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — концентрация всех форм титранта, кроме входящего в комплекс MY.

Условные константы устойчивости (см. выражение 8.16) связывают Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Отсюда относительная погрешность титрования (ПТ) определяется выражением (с учетом (8.18) и (8.19)):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Подставляем в это уравнение выражение для Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (8.20):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Вблизи ТЭ Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения очень мала, поэтому Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения,

следовательно: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Выражение (8.21) тождественно выражению: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Если конечная точка титрования находится после точки эквивалентности (степень оттитрованности Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения), то относительная погрешность будет положительной. В случае недотитровывания, т. е. когда конечная точка титрования будет зафиксирована с помощью индикатора до точки эквивалентности Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, ПТ будет со знаком «-».

Конечная точка титрования определяется интервалом перехода окраски индикатора (интервалом рМ, в котором индикатор меняет свою окраску):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, где Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Интервал перехода окраски Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения индикатора эриохром черный Т Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, образующего комплексы с ионами металлов при pH 10, составляет для ионов: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.31.

Рассчитайте погрешность титрования 0,1 ОМ раствора Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения 0,10 М раствором ЭДТА в присутствии индикатора эриохром черный Т в аммиачном буферном растворе при pH 10 и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 0,2 моль/л (см. условия в примере 8.27).

Решение:

В данных условиях Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения,

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (пример 8.23). Интервал перехода окраски индикатора: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения или в интервале концентраций магния от Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Точка эквивалентности попадает в указанный интервал, индикатор считается пригодным для титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, КТТ наступает после ТЭ, когда Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения моль/л.

Погрешность титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения с «эриохром черным Т»:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.32.

Докажите возможность использования индикатора эриохром черный Т для титрования 0,010 М раствора Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения 0,010 М раствором ЭДТА при pH = 10 и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 0,10 моль/л. Рассчитайте погрешность титрования при использовании этого индикатора.

Решение:

1. Рассчитаем условную константу Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Общие константы устойчивости для аммиачных комплексов Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (табл. 4 приложения): Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Для свободных ионов Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения по формуле (2.8) предварительно рассчитаем Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

По табл. 7 и табл. 4 приложения находим Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Константа устойчивости комплекса Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения с ЭДТА при заданных условиях с учетом выражения (8.16):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

В точке эквивалентности:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Интервал перехода окраски индикатора эриохром черный Т в случае титрования ионов цинка при pH 10: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, т.е. от 9,8 до 11,8 или от Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения моль/л. Точка эквивалентности попадает в интервал концентраций, при которых индикатор меняет свою окраску. Следовательно, эриохром черный Т пригоден для титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения при заданных условиях.

2. Конечная точка титрования наступает при [Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения], равной Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения моль/л, отсюда концентрация всех форм Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, за исключением связанных в комплекс с ЭДТА, составляет:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Эти примеры взяты со страницы примеров решения задач по аналитической химии:

Решение задач по аналитической химии

Возможны вам будут полезны эти страницы:

Расчет индикаторных погрешностей кислотно-основного титрования

Согласно ионно-хромофорной теории индикаторов, интервал перехода окраски индикатора Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (табл. 12). Середина области перехода окраски (при этом pH близко к Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения) называется показателем титрования с данным индикатором или рТ индикатора. Индикаторные погрешности отсутствуют, когда рТ индикатора практически совпадает с pH в ТЭ. Основой для выбора индикатора является расчет и построение кривой титрования, определение области скачка и pH в ТЭ.

Таблица 8.12

Важнейшие кислотно-основные индикаторы

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

При правильно выбранном индикаторе индикаторная ПТ не должна превышать заданную погрешность измерения объема раствора в титриметрии. Типы (виды) индикаторных ПТ кислотно-осиовиого титрования и названия, встречающиеся в разных учебниках и сборниках задач, происхождение погрешностей и формулы для расчета приведены в табл. 8.13. Формулы легко выводятся из определения погрешности титрования как отношения недотитро-ванного или перетитрованного количества кислоты или основания к первоначально взятому для титрования (то есть к произведению Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Погрешность выражают в %, а вид и знак устанавливают по ходу процесса (кривой) титрования и составу раствора в КТТ (табл. 8.13, примеры 8.28 и 8.29).

Таблица 8.13

Индикаторные погрешности кислотно-основного титрования

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.28.

Выберите подходящие индикаторы, определите тип индикаторных погрешностей и рассчитайте ПТ при титровании а) Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и б) Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения рабочим раствором Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения в условиях примера 8.21, если считать относительную погрешность измерения объема 0,4 %.

Решение:

а). Как следует из табл. 8.4 и рис. 8.1(1), для случая титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения при погрешности определения объема 0,4 % область скачка на кривой титрования соответствует изменению pH от 3,4 до 10,9, а Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения равен 7,0. Следовательно, для титрования можно выбрать индикаторы от №2 до №10 (табл. 8.12), т. к. их рТ и интервалы перехода окраски находятся в области скачка кривой.

Однако используемые для расчета ПТ формулы показывают, что чем ближе рТ и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, тем меньше ПТ. «Идеально» подходит бромтимоловый синий, поскольку его рТ 7 практически совпадает с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Рассчитаем величину ПТ с двумя индикаторами: с рТ < Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и с р Г > Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и проверим их пригодность для титрования в заданных условиях.

С индикатором метиловым красным (рТ 5,5 < Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения) в растворе остается неоттитрованная сильная кислота, следовательно, возникает протонная ошибка со знаком «-» (см. формулы в табл. 8.13):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

С индикатором фенолфталеином (рТ 9,0 > Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения) в растворе -избыток сильного основания, в результате чего ПТ представляет собой Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения— ошибку (гидроксидную) со знаком «+»:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

В данном случае оба индикатора пригодны, поскольку вычисленные значения ПТ не превышают заданную погрешность титрования (0,4%), но с метиловым красным систематическая индикаторная погрешность меньше.

б). При титровании Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (табл. 8.5, рис. 8.1(2)) для той же точности титрования (99,6%) величина скачка меньше и составляет 7,2 — 10,9, а Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — 8,9. Круг пригодных индикаторов сужается до №7 — №9. Для индикаторов с рТ > Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, как и в случае (а), ПТ соответствует Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — ошибке (гидроксидной) со знаком «+».

Например, при выборе фенолфталеина (рТ = 9,0):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

а при выборе тимолфталеина (рТ = 10,0) погрешность возрастает в 10 раз: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Выбор фенолфталеина приводит к меньшей индикаторной погрешности титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, но могут использоваться оба индикатора.

При титровании с индикаторами, для которых рТ < рНтэ, в растворе остается неоттитрованная слабая кислота, т. е. присутствует НА-ошибка (кислотная) со знаком «-» (см. табл. 8.13). Если использовать индикатор бромтимоловый синий (рТ 7,0), то вычисленная ПТ не удовлетворяет заданной точности, индикатор не пригоден:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

или при проведении расчета по приближенной формуле:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.29.

Какой индикатор позволяет оттитровать 0,1000 М гидразин Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения 0,1000 М раствором Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения с меньшей погрешностью: бромкрезоловый пурпурный (рТ 6,0) или метиловый красный (рТ 5,5)?

Решение:

Реакция титрования:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

приводит к образованию слабой сопряженной кислоты Расчет индикаторных погрешностей кислотно-основного титрования с примерами решенияРасчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Тогда Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения и вычисляется с учетом того, что Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Сравнивая рТ индикаторов и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, видим, что в обоих случаях остается неоттитрованный гидразин, поэтому для оценки ПТ рассчитываем Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения ошибку (основную) со знаком «-». С бромкрезоловым пурпурным (рТ 6):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

и с метиловым красным (рТ 5,5):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Из предложенных индикаторов метиловый красный позволяет провести титрование гидразина с меньшей погрешностью.

Расчет индикаторных погрешностей окислительно-восстановительного титрования

При использовании окислительно-восстановительных (редокс) индикаторов потенциал в ТЭ Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения может не совпадать с потенциалом Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, который связан с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. (табл. 8.14) и интервалом перехода его окраски Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Таблица 8.14

Примеры распространенных окислительно-восстановительных индикаторов

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Полуреакция восстановления и интервал перехода индикатора:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Наиболее часто в полуреакции восстановления (окисления) индикатора участвуют 2 электрона. Для индикаторов №1 — №6 Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения слабо зависит от pH. При расчете ПТ необходимо:

  • сравнить Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения для выбора редокс-пары участников реакции титрования и уравнения Нернста для расчета ПТ.

Например, если Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения при титровании восстановителя (пример 8.30-а), то реакция не завершена; из уравнения Нернста для полуреакции титруемого компонента находят (объемы раствора в числителе и знаменателе одинаковы):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Сумма числителя и знаменателя здесь составляет 100 % титруемого вещества. Индикатор считается пригодным, если ПТ не превышает 0,1 -0,2%.

Пример 8.30.

Выберите подходящие индикаторы, определите тип индикаторных погрешностей и рассчитайте ПТ при титровании раствора соли Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения раствором соли Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Решение:

Как следует из табл. 8.8 и рис. 8.3 (кривая 1, пример 8.25), область скачка (при относительной погрешности измерения объема 0,1 %) на кривой титрования 0,95 — 1,26 В, а Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Следовательно, для титрования можно выбрать индикаторы от №3 до №5 (табл. 8.14).

Выберем для рассмотрения порядка расчета два индикатора:

а) с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения-дипиридил, для которого Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

б) с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, например нитрофенантролин Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

В случае а) интервал перехода индикатора:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Изменение окраски заканчивается при Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 1,0 В. В растворе остаются неоттитрованными ионы Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (оттитрованные ионы -ионы Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения). Для расчета ПТ используем уравнение Нернста для ре-докс- пары титруемого компонента (Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения/Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Тогда: ПТ = Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

В случае б) интервал перехода индикатора нитрофенантролина в виде комплекса с Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения составляет:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Изменение окраски заканчивается при Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 1,28 В и раствор перетитровывается. В этом случае ПТ имеет положительный знак и рассчитывается по уравнению Нернста для редокс-пары, образуемой титрантом Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения .

Тогда количество Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (после ТЭ образования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения не происходит) соответствует количеству взятых для титрования ионов Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, а количество Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — их перетитрованному количеству.

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Таким образом, оба выбранных индикатора оказались приемлемыми.

Расчет индикаторных погрешностей комплексонометрического титрования

В конечной точке титрования общие концентрации определяемого иона с(М) и титранта c(Y) можно представить выражениями {для упрощения записи в общем виде упустим заряды ионов):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

где Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — концентрация всех форм определяемого иона, кроме входящего в комплекс Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения — концентрация всех форм титранта, кроме входящего в комплекс MY.

Условные константы устойчивости (см. выражение 8.16) связывают Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Отсюда относительная погрешность титрования (ПТ) определяется выражением (с учетом (8.18) и (8.19)):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Подставляем в это уравнение выражение для Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (8.20):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Вблизи ТЭ Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения очень мала, поэтому Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения,

следовательно: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Выражение (8.21) тождественно выражению: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Если конечная точка титрования находится после точки эквивалентности (степень оттитрованности Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения), то относительная погрешность будет положительной. В случае недотитровывания, т. е. когда конечная точка титрования будет зафиксирована с помощью индикатора до точки эквивалентности Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, ПТ будет со знаком «-».

Конечная точка титрования определяется интервалом перехода окраски индикатора (интервалом рМ, в котором индикатор меняет свою окраску):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, где Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Интервал перехода окраски Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения индикатора эриохром черный Т Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, образующего комплексы с ионами металлов при pH 10, составляет для ионов: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.31.

Рассчитайте погрешность титрования 0,1 ОМ раствора Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения 0,10 М раствором ЭДТА в присутствии индикатора эриохром черный Т в аммиачном буферном растворе при pH 10 и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 0,2 моль/л (см. условия в примере 8.27).

Решение:

В данных условиях Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения,

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (пример 8.23). Интервал перехода окраски индикатора: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения или в интервале концентраций магния от Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Точка эквивалентности попадает в указанный интервал, индикатор считается пригодным для титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, КТТ наступает после ТЭ, когда Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения моль/л.

Погрешность титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения с «эриохром черным Т»:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Пример 8.32.

Докажите возможность использования индикатора эриохром черный Т для титрования 0,010 М раствора Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения 0,010 М раствором ЭДТА при pH = 10 и Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения = 0,10 моль/л. Рассчитайте погрешность титрования при использовании этого индикатора.

Решение:

1. Рассчитаем условную константу Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения.

Общие константы устойчивости для аммиачных комплексов Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения (табл. 4 приложения): Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Для свободных ионов Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения по формуле (2.8) предварительно рассчитаем Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

По табл. 7 и табл. 4 приложения находим Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения. Константа устойчивости комплекса Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения с ЭДТА при заданных условиях с учетом выражения (8.16):

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

В точке эквивалентности:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Интервал перехода окраски индикатора эриохром черный Т в случае титрования ионов цинка при pH 10: Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, т.е. от 9,8 до 11,8 или от Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения моль/л. Точка эквивалентности попадает в интервал концентраций, при которых индикатор меняет свою окраску. Следовательно, эриохром черный Т пригоден для титрования Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения при заданных условиях.

2. Конечная точка титрования наступает при [Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения], равной Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения моль/л, отсюда концентрация всех форм Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения, за исключением связанных в комплекс с ЭДТА, составляет:

Расчет индикаторных погрешностей кислотно-основного титрования с примерами решения

Эти примеры взяты со страницы примеров решения задач по аналитической химии:

Решение задач по аналитической химии

Возможны вам будут полезны эти страницы:

Понравилась статья? Поделить с друзьями:
  • Расчет вероятности ошибок первого и второго рода
  • Расчет ошибки прогноза
  • Расчет вероятности битовой ошибки
  • Расчет ошибки нейронной сети
  • Расчет абсолютной и относительной ошибки