Система обработки ошибок

Существует две фундаментальные стратегии: обработка исправимых ошибок (исключения, коды возврата по ошибке, функции-обработчики) и неисправимых (assert(), abort()). В каких случаях какую стратегию лучше использовать?

Виды ошибок

Ошибки возникают по разным причинам: пользователь ввёл странные данные, ОС не может дать вам обработчика файла или код разыменовывает (dereferences) nullptr. Каждая из описанных ошибок требует к себе отдельного подхода. По причинам ошибки делятся на три основные категории:

  • Пользовательские ошибки: здесь под пользователем подразумевается человек, сидящий перед компьютером и действительно «использующий» программу, а не какой-то программист, дёргающий ваш API. Такие ошибки возникают тогда, когда пользователь делает что-то неправильно.
  • Системные ошибки появляются, когда ОС не может выполнить ваш запрос. Иными словами, причина системных ошибок — сбой вызова системного API. Некоторые возникают потому, что программист передал системному вызову плохие параметры, так что это скорее программистская ошибка, а не системная.
  • Программистские ошибки случаются, когда программист не учитывает предварительные условия API или языка программирования. Если API требует, чтобы вы не вызывали foo() с 0 в качестве первого параметра, а вы это сделали, — виноват программист. Если пользователь ввёл 0, который был передан foo(), а программист не написал проверку вводимых данных, то это опять же его вина.

Каждая из описанных категорий ошибок требует особого подхода к их обработке.

Пользовательские ошибки

Сделаю очень громкое заявление: такие ошибки — на самом деле не ошибки.

Все пользователи не соблюдают инструкции. Программист, имеющий дело с данными, которые вводят люди, должен ожидать, что вводить будут именно плохие данные. Поэтому первым делом нужно проверять их на валидность, сообщать пользователю об обнаруженных ошибках и просить ввести заново.

Поэтому не имеет смысла применять к пользовательским ошибкам какие-либо стратегии обработки. Вводимые данные нужно как можно скорее проверять, чтобы ошибок не возникало.

Конечно, такое не всегда возможно. Иногда проверять вводимые данные слишком дорого, иногда это не позволяет сделать архитектура кода или разделение ответственности. Но в таких случаях ошибки должны обрабатываться однозначно как исправимые. Иначе, допустим, ваша офисная программа будет падать из-за того, что вы нажали backspace в пустом документе, или ваша игра станет вылетать при попытке выстрелить из разряженного оружия.

Если в качестве стратегии обработки исправимых ошибок вы предпочитаете исключения, то будьте осторожны: исключения предназначены только для исключительных ситуаций, к которым не относится большинство случаев ввода пользователями неверных данных. По сути, это даже норма, по мнению многих приложений. Используйте исключения только тогда, когда пользовательские ошибки обнаруживаются в глубине стека вызовов, вероятно, внешнего кода, когда они возникают редко или проявляются очень жёстко. В противном случае лучше сообщать об ошибках с помощью кодов возврата.

Системные ошибки

Обычно системные ошибки нельзя предсказать. Более того, они недетерминистские и могут возникать в программах, которые до этого работали без нареканий. В отличие от пользовательских ошибок, зависящих исключительно от вводимых данных, системные ошибки — настоящие ошибки.

Но как их обрабатывать, как исправимые или неисправимые?

Это зависит от обстоятельств.

Многие считают, что ошибка нехватки памяти — неисправимая. Зачастую не хватает памяти даже для обработки этой ошибки! И тогда приходится просто сразу же прерывать выполнение.

Но падение программы из-за того, что ОС не может выделить сокет, — это не слишком дружелюбное поведение. Так что лучше бросить исключение и позволить catch аккуратно закрыть программу.

Но бросание исключения — не всегда правильный выбор.

Кто-то даже скажет, что он всегда неправильный.

Если вы хотите повторить операцию после её сбоя, то обёртывание функции в try-catch в цикле — медленное решение. Правильный выбор — возврат кода ошибки и цикличное исполнение, пока не будет возвращено правильное значение.

Если вы создаёте вызов API только для себя, то просто выберите подходящий для своей ситуации путь и следуйте ему. Но если вы пишете библиотеку, то не знаете, чего хотят пользователи. Дальше мы разберём подходящую стратегию для этого случая. Для потенциально неисправимых ошибок подойдёт «обработчик ошибок», а при других ошибках необходимо предоставить два варианта развития событий.

Обратите внимание, что не следует использовать подтверждения (assertions), включающиеся только в режиме отладки. Ведь системные ошибки могут возникать и в релизной сборке!

Программистские ошибки

Это худший вид ошибок. Для их обработки я стараюсь сделать так, чтобы мои ошибки были связаны только с вызовами функций, то есть с плохими параметрами. Прочие типы программистских ошибок могут быть пойманы только в runtime, с помощью отладочных макросов (assertion macros), раскиданных по коду.

При работе с плохими параметрами есть две стратегии: дать им определённое или неопределённое поведение.

Если исходное требование для функции — запрет на передачу ей плохих параметров, то, если их передать, это считается неопределённым поведением и должно проверяться не самой функцией, а оператором вызова (caller). Функция должна делать только отладочное подтверждение (debug assertion).

С другой стороны, если отсутствие плохих параметров не является частью исходных требований, а документация определяет, что функция будет бросать bad_parameter_exception при передаче ей плохого параметра, то передача — это хорошо определённое поведение (бросание исключения или любая другая стратегия обработки исправимых ошибок), и функция всегда должна это проверять.

В качестве примера рассмотрим получающие функции (accessor functions) std::vector<T>: в спецификации на operator[] говорится, что индекс должен быть в пределах валидного диапазона, при этом at() сообщает нам, что функция кинет исключение, если индекс не попадает в диапазон. Более того, большинство реализаций стандартных библиотек обеспечивают режим отладки, в котором проверяется индекс operator[], но технически это неопределённое поведение, оно не обязано проверяться.

Примечание: необязательно бросать исключение, чтобы получилось определённое поведение. Пока это не упомянуто в исходных условиях для функции, это считается определённым. Всё, что прописано в исходных условиях, не должно проверяться функцией, это неопределённое поведение.

Когда нужно проверять только с помощью отладочных подтверждений, а когда — постоянно?

К сожалению, однозначного рецепта нет, решение зависит от конкретной ситуации. У меня есть лишь одно проверенное правило, которому я следую при разработке API. Оно основано на наблюдении, что проверять исходные условия должен вызывающий, а не вызываемый. А значит, условие должно быть «проверяемым» для вызывающего. Также условие «проверяемое», если можно легко выполнить операцию, при которой значение параметра всегда будет правильным. Если для параметра это возможно, то это получается исходное условие, а значит, проверяется только посредством отладочного подтверждения (а если слишком дорого, то вообще не проверяется).

Но конечное решение зависит от многих других факторов, так что очень трудно дать какой-то общий совет. По умолчанию я стараюсь свести к неопределённому поведению и использованию только подтверждений. Иногда бывает целесообразно обеспечить оба варианта, как это делает стандартная библиотека с operator[] и at().

Хотя в ряде случаев это может быть ошибкой.

Об иерархии std::exception

Если в качестве стратегии обработки исправимых ошибок вы выбрали исключения, то рекомендуется создать новый класс и наследовать его от одного из классов исключений стандартной библиотеки.

Я предлагаю наследовать только от одного из этих четырёх классов:

  • std::bad_alloc: для сбоев выделения памяти.
  • std::runtime_error: для общих runtime-ошибок.
  • std::system_error (производное от std::runtime_error): для системных ошибок с кодами ошибок.
  • std::logic_error: для программистских ошибок с определённым поведением.

Обратите внимание, что в стандартной библиотеке разделяются логические (то есть программистские) и runtime-ошибки. Runtime-ошибки — более широкое определение, чем «системные». Оно описывает «ошибки, обнаруживаемые только при выполнении программы». Такая формулировка не слишком информативна. Лично я использую её для плохих параметров, которые не являются исключительно программистскими ошибками, а могут возникнуть и по вине пользователей. Но это можно определить лишь глубоко в стеке вызовов. Например, плохое форматирование комментариев в standardese приводит к исключению при парсинге, проистекающему из std::runtime_error. Позднее оно ловится на соответствующем уровне и фиксируется в логе. Но я не стал бы использовать этот класс иначе, как и std::logic_error.

Подведём итоги

Есть два пути обработки ошибок:

  • как исправимые: используются исключения или возвращаемые значения (в зависимости от ситуации/религии);
  • как неисправимые: ошибки журналируются, а программа прерывается.

Подтверждения — это особый вид стратегии обработки неисправимых ошибок, только в режиме отладки.

Есть три основных источника ошибок, каждый требует особого подхода:

  • Пользовательские ошибки не должны обрабатываться как ошибки на верхних уровнях программы. Всё, что вводит пользователь, должно проверяться соответствующим образом. Это может обрабатываться как ошибки только на нижних уровнях, которые не взаимодействуют с пользователями напрямую. Применяется стратегия обработки исправимых ошибок.
  • Системные ошибки могут обрабатываться в рамках любой из двух стратегий, в зависимости от типа и тяжести. Библиотеки должны работать как можно гибче.
  • Программистские ошибки, то есть плохие параметры, могут быть запрещены исходными условиями. В этом случае функция должна использовать только проверку с помощью отладочных подтверждений. Если же речь идёт о полностью определённом поведении, то функции следует предписанным образом сообщать об ошибке. Я стараюсь по умолчанию следовать сценарию с неопределённым поведением и определяю для функции проверку параметров лишь тогда, когда это слишком трудно сделать на стороне вызывающего.

Гибкие методики обработки ошибок в C++

Иногда что-то не работает. Пользователи вводят данные в недопустимом формате, файл не обнаруживается, сетевое соединение сбоит, в системе кончается память. Всё это ошибки, и их надо обрабатывать.

Это относительно легко сделать в высокоуровневых функциях. Вы точно знаете, почему что-то пошло не так, и можете обработать это соответствующим образом. Но в случае с низкоуровневыми функциями всё не так просто. Они не знают, что пошло не так, они знают лишь о самом факте сбоя и должны сообщить об этом тому, кто их вызвал.

В C++ есть два основных подхода: коды возврата ошибок и исключения. Сегодня широко распространено использование исключений. Но некоторые не могут / думают, что не могут / не хотят их использовать — по разным причинам.

Я не буду принимать чью-либо сторону. Вместо этого я опишу методики, которые удовлетворят сторонников обоих подходов. Особенно методики пригодятся разработчикам библиотек.

Проблема

Я работаю над проектом foonathan/memory. Это решение предоставляет различные классы выделения памяти (allocator classes), так что в качестве примера рассмотрим структуру функции выделения.

Для простоты возьмём malloc(). Она возвращает указатель на выделяемую память. Если выделить память не получается, то возвращается nullptr, то есть NULL, то есть ошибочное значение.

У этого решения есть недостатки: вам нужно проверять каждый вызов malloc(). Если вы забудете это сделать, то выделите несуществующую память. Кроме того, по своей натуре коды ошибок транзитивны: если вызвать функцию, которая может вернуть код ошибки, и вы не можете его проигнорировать или обработать, то вы тоже должны вернуть код ошибки.

Это приводит нас к ситуации, когда чередуются нормальные и ошибочные ветви кода. Исключения в таком случае выглядят более подходящим решением. Благодаря им вы сможете обрабатывать ошибки только тогда, когда вам это нужно, а в противном случае — достаточно тихо передать их обратно вызывающему.

Это можно расценить как недостаток.

Но в подобных ситуациях исключения имеют также очень большое преимущество: функция выделения памяти либо возвращает валидную память, либо вообще ничего не возвращает. Это функция «всё или ничего», возвращаемое значение всегда будет валидным. Это полезное следствие согласно принципу Скотта Майера «Make interfaces hard to use incorrectly and easy to use correctly».

Учитывая вышесказанное, можно утверждать, что вам следует использовать исключения в качестве механизма обработки ошибок. Этого мнения придерживается большинство разработчиков на С++, включая и меня. Но проект, которым я занимаюсь, — это библиотека, предоставляющая средства выделения памяти, и предназначена она для приложений, работающих в реальном времени. Для большинства разработчиков подобных приложений (особенно для игроделов) само использование исключений — исключение.

Каламбур детектед.

Чтобы уважить эту группу разработчиков, моей библиотеке лучше обойтись без исключений. Но мне и многим другим они нравятся за элегантность и простоту обработки ошибок, так что ради других разработчиков моей библиотеке лучше использовать исключения.

Так что же делать?

Идеальное решение: возможность включать и отключать исключения по желанию. Но, учитывая природу исключений, нельзя просто менять их местами с кодами ошибок, поскольку у нас не будет внутреннего кода проверки на ошибки — весь внутренний код опирается на предположение о прозрачности исключений. И даже если бы внутри можно было использовать коды ошибок и преобразовывать их в исключения, это лишило бы нас большинства преимуществ последних.

К счастью, я могу определить, что вы делаете, когда обнаруживаете ошибку нехватки памяти: чаще всего вы журналируете это событие и прерываете программу, поскольку она не может корректно работать без памяти. В таких ситуациях исключения — просто способ передачи контроля другой части кода, которая журналирует и прерывает программу. Но есть старый и эффективный способ передачи контроля: указатель функции (function pointer), то есть функция-обработчик (handler function).

Если у вас включены исключения, то вы просто их бросаете. В противном случае вызываете функцию-обработчика и затем прерываете программу. Это предотвратит бесполезную работу функции-обработчика, та позволит программе продолжить выполняться в обычном режиме. Если не прервать, то произойдёт нарушение обязательного постусловия функции: всегда возвращать валидный указатель. Ведь на выполнении этого условия может быть построена работа другого кода, да и вообще это нормальное поведение.

Я называю такой подход обработкой исключений и придерживаюсь его при работе с памятью.

Решение 1: обработчик исключений

Если вам нужно обработать ошибку в условиях, когда наиболее распространённым поведением будет «журналировать и прервать», то можно использовать обработчика исключений. Это такая функция-обработчик, которая вызывается вместо бросания объекта-исключения. Её довольно легко реализовать даже в уже существующем коде. Для этого нужно поместить управление обработкой в класс исключений и обернуть в макрос выражение throw.

Сначала дополним класс и добавим функции для настройки и, возможно, запрашивания функции-обработчика. Я предлагаю делать это так же, как стандартная библиотека обрабатывает std::new_handler:

class my_fatal_error
{
public:
    // тип обработчика, он должен брать те же параметры, что и конструктор,
    // чтобы у них была одинаковая информация
    using handler = void(*)( ... );

    // меняет функцию-обработчика
    handler set_handler(handler h);

    // возвращает текущего обработчика
    handler get_handler();

    ... // нормальное исключение
};

Поскольку это входит в область видимости класса исключений, вам не нужно именовать каким-то особым образом. Отлично, нам же легче.

Если исключения включены, то для удаления обработчика можно использовать условное компилирование (conditional compilation). Если хотите, то также напишите обычный подмешанный класс (mixin class), дающий требуемую функциональность.

Конструктор исключений элегантен: он вызывает текущую функцию-обработчика, передавая ей требуемые аргументы из своих параметров. А затем комбинирует с последующим макросом throw:

If```cpp #if EXCEPTIONS #define THROW(Ex) throw (Ex) #else #define THROW(Ex) (Ex), std::abort() #endif

> Такой макрос throw также предоставляется [foonathan/compatiblity](https://github.com/foonathan/compatibility).

Можно использовать его и так:

```cpp
THROW(my_fatal_error(...))

Если у вас включена поддержка исключений, то будет создан и брошен объект-исключение, всё как обычно. Но если поддержка выключена, то объект-исключение всё равно будет создан, и — это важно — только после этого произойдёт вызов std::abort(). А поскольку конструктор вызывает функцию-обработчика, то он и работает, как требуется: вы получаете точку настройки для журналирования ошибки. Благодаря же вызову std::abort() после конструктора пользователь не может нарушить постусловие.

Когда я работаю с памятью, то при включённых исключениях у меня также включён и обработчик, который вызывается при бросании исключения.

Так что при этой методике вам ещё будет доступна определённая степень кастомизации, даже если вы отключите исключения. Конечно, замена неполноценная, мы только журналируем и прерываем работу программы, без дальнейшего продолжения. Но в ряде случаев, в том числе при исчерпании памяти, это вполне пригодное решение.

А если я хочу продолжить работу после бросания исключения?

Методика с обработчиком исключений не позволяет этого сделать в связи с постусловием кода. Как же тогда продолжить работу?

Ответ прост — никак. По крайней мере, это нельзя сделать так же просто, как в других случаях. Нельзя просто так вернуть код ошибки вместо исключения, если функция на это не рассчитана.
Есть только одно решение: сделать две функции. Одна возвращает код ошибки, а вторая бросает исключения. Клиенты, которым нужны исключения, будут использовать второй вариант, остальные — первый.

Извините, что говорю такие очевидные вещи, но ради полноты изложения я должен был об этом сказать.

Для примера снова возьмём функцию выделения памяти. В этом случае я использую такие функции:

void* try_malloc(..., int &error_code) noexcept;

void* malloc(...);

При сбое выделения памяти первая версия возвращает nullptr и устанавливает error_code в коде ошибки. Вторая версия не возвращает nullptr, зато бросает исключение. Обратите внимание, что в рамках первой версии очень легко реализовать вторую:

void* malloc(...)
{
    auto error_code = 0;
    auto res = try_malloc(..., error_code);
    if (!res)
        throw malloc_error(error_code);
    return res;
}

Не делайте этого в обратной последовательности, иначе вам придётся ловить исключение, а это дорого. Также это не даст нам скомпилировать код без включённой поддержки исключений. Если сделаете, как показано, то можете просто стереть другую перегрузку (overload) с помощью условного компилирования.

Но даже если у вас включена поддержка исключений, клиенту всё равно может понадобиться вторая версия. Например, когда нужно выделить наибольший возможный объём памяти, как в нашем примере. Будет проще и быстрее вызывать в цикле и проверять по условию, чем ловить исключение.

Решение 2: предоставить две перегрузки

Если недостаточно обработчика исключений, то нужно предоставить две перегрузки. Одна использует код возврата, а вторая бросает исключение.

Если рассматриваемая функция не имеет возвращаемого значения, то можете её использовать для кода ошибки. В противном случае вам придётся возвращать недопустимое значение для сигнализирования об ошибке — как nullptr в вышеприведённом примере, — а также установить выходной параметр для кода ошибки, если хотите предоставить вызывающему дополнительную информацию.

Пожалуйста, не используйте глобальную переменную errno или что-то типа GetLastError()!

Если возвращаемое значение не содержит недопустимое значение для обозначения сбоя, то по мере возможности используйте std::optional или что-то похожее.

Перегрузка исключения (exception overload) может — и должна — быть реализована в рамках версии с кодом ошибки, как это показано выше. Если компилируете без исключений, сотрите перегрузку с помощью условного компилирования.

std::system_error

Подобная система идеально подходит для работы с кодами ошибок в С++ 11.

Она возвращает непортируемый (non-portable) код ошибки std::error_code, то есть возвращаемый функцией операционной системы. С помощью сложной системы библиотечных средств и категорий ошибок вы можете добавить собственные коды ошибок, или портируемые std::error_condition. Для начала почитайте об этом здесь. Если нужно, то можете использовать в функции кода ошибки std::error_code. А для функции исключения есть подходящий класс исключения: std::system_error. Он берёт std::error_code и применяется для передачи этих ошибок в виде исключений.

Эту или подобную систему должны использовать все низкоуровневые функции, являющиеся закрытыми обёртками ОС-функций. Это хорошая — хотя и сложная — альтернатива службе кодов ошибок, предоставляемой операционной системой.

Да, и мне ещё нужно добавить подобное в функции виртуальной памяти. На сегодняшний день они не предоставляют коды ошибок.

std::expected

Выше упоминалось о проблеме, когда у вас нет возвращаемого значения, содержащего недопустимое значение, которое можно использовать для сигнализирования об ошибке. Более того, выходной параметр — не лучший способ получения кода ошибки.

А глобальные переменные вообще не вариант!

В № 4109 предложено решение: std::expected. Это шаблон класса, который также хранит возвращаемое значение или код ошибки. В вышеприведённом примере он мог бы использоваться так:

std::expected<void*, std::error_code> try_malloc(...);

В случае успеха std::expected будет хранить не-null указатель памяти, а при сбое — std::error_code. Сейчас эта методика работает при любых возвращаемых значениях. Комбинация std::expected и функции исключения определённо допускает любые варианты использования.

Заключение

Если вы создаёте библиотеки, то иногда приходится обеспечивать максимальную гибкость использования. Под этим подразумевается и разнообразие средств обработки ошибок: иногда требуются коды возврата, иногда — исключения.

Одна из возможных стратегий — улаживание этих противоречий с помощью обработчика исключений. Просто удостоверьтесь, что когда нужно, то вызывается callback, а не бросается исключение. Это замена для критических ошибок, которая в любом случае будет журналироваться перед прерыванием работы программы. Как таковой этот способ не универсален, вы не можете переключаться в одной программе между двумя версиями. Это лишь обходное решение при отключённой поддержке исключений.

Более гибкий подход — просто предоставить две перегрузки, одну с исключениями, а вторую без. Это даст пользователям максимальную свободу, они смогут выбирать ту версию, что лучше подходит в их ситуации. Недостаток этого подхода: вам придётся больше потрудиться при создании библиотеки.

Обработка ошибок и проектирование компилятора

Перевод статьи Error Handling in Compiler Designopen in new window.

Задача по обработке ошибок (Error Handling) включает в себя: обнаружение ошибок, сообщения об ошибках пользователю, создание стратегии восстановления и реализации обработки ошибок. Кроме того система обработки ошибок должна работать быстро.

Типы источников ошибок

Источники ошибок делятся на два типа: ошибки времени выполнения (run-time error) и ошибки времени компиляции (compile-time error).

Ошибки времени выполнения возникают когда программа запущена. Обычно они связаны с неверными входными данными. Примеры таких ошибок: недостаток памяти, конфликт с другим приложением, логические ошибки. Логическая ошибка означает что запуск программы не приводит к ожидаемому результату. Логические ошибки лучше всего обрабатывать тщательным тестированием и отладкой программы.

Ошибки времени компиляции возникают во время компиляции, до запуска программы. Примеры таких ошибок: синтаксическая ошибка или отсутствие файла с кодом на который есть ссылка.

Типы ошибок времени компиляции

Ошибки компиляции разделяются на:

  • Лексические (Lexical): включают в себя опечатки идентификаторов, ключевых слов и операторов
  • Синтаксические (Syntactical): пропущенная точка с запятой или незакрытая скобка
  • Семантические (Semantical): несовместимое значение при присвоении или несовпадение типов между оператором и операндом
  • Логические (Logical): недостижимый код, бесконечный цикл

Парсер, обрабатывая текст, пытается как можно раньше обнаружить ошибку. В современных средах разработки синтаксические ошибки отображаются прямо в редакторе кода, предотвращая последующий неверный ввод. Обнажение ошибки происходит когда введённый префикс не совпадает с префиксами строк верными в выбранном языке программирования. Например префикс for(;) может привести к сообщению об ошибке, так как обычно внутри for должно быть две точки с запятой.

Восстановление после ошибок

Базовое требование к компилятору — прервать компиляцию и выдать сообщение при появлении ошибки. Кроме этого есть несколько методов восстановления после ошибки.

Panic mode recovery

Это самый простой способ восстановления после ошибок и он предотвращает бесконечные циклы в компиляторе при попытках исправить ошибку. Парсер отклоняет следующие за ошибкой символы до того как будет обнаружен специальный символ (например, разделитель команд, точка с запятой). Такой подход адекватен если низкая вероятность нескольких ошибок в одной конструкции.

Пример: рассмотрим выражение с ошибкой (1 + + 2) + 3. При обнаружении второго + пропускаются все символы до следующего числа.

Phase level recovery

Производится локальное изменение входного потока чтобы исправить ошибку.

Error productions

Разработчики компиляторов знают часто встречаемые ошибки. При появлении таких ошибок могут применяться расширения грамматики для их обработки. Например: написание 5x вместо 5*x.

Global correction

Производится как можно меньше изменений чтобы преобразовать код с ошибкой в корректный код. Эту стратегию дорого реализовывать.

Система обработки ошибок

Система обработки ошибок MS-DOS проста и
удобна. Для обнаружения ошибок, возникающих
при вызове прерываний MS-DOS, как правило,
используется флаг переноса процессора.
Если после обращения к прерыванию MS-DOS
флаг переноса установлен в 1, произошла
ошибка. Для того чтобы проанализировать
ошибку и предпринять какие-то действия,
можно вызвать соответствующую функцию
MS-DOS, которая вернет уточняющую информацию
об ошибке и предоставит соответствующие
рекомендации (разумеется, лишь в виде
кодов, находящихся в регистрах процессора).

Если произошла критическая ошибка
ввода/вывода (например, невозможно
прочитать дискету), вызывается стандартная
процедура MS-DOS, которая выводит на экран
запрос о дальнейших действиях. Программа
может подключить вместо системной свою
функцию обработки критических ошибок.

Служба времени

Любой компьютер оборудован системными
часами. Это часы с питанием от аккумулятора.
Их содержимое не сбрасывается при
выключении компьютера.

Дополнительно для формирования временных
интервалов используется таймер, постоянно
вырабатывающий прерывания. Программа
может использовать прерывания таймера
для регулярного выполнения каких-либо
функций.

Операционная система MS-DOS ведет подсчет
времени и хранит текущие показания
часов, а также текущую дату. Программа
может опросить часы, обратившись к
MS-DOS через одну из функций прерывания
INT 21h, или установить новое состояние
часов.

В составе операционной системы MS-DOS
имеется драйвер устройства CLOCK$. Прикладная
программа может обратиться к этому
устройству для чтения показания часов
или для установки часов.

Работа с консолью оператора

Консоль оператора состоит из двух
устройств — клавиатуры и дисплея. Эти
два устройства обслуживаются одним
драйвером — драйвером консоли CON. Вы
можете рассматривать консоль как одно
устройство с именем CON.

Операционная система обслуживает
консоль с помощью функций прерывания
INT 21h, обеспечивающих ввод и вывод символов
на устройство CON. Для работы с клавиатурой
и видеоконтроллером этот драйвер
вызывает прерывания BIOS.

Другие системы ms-dos

MS-DOS имеет драйверы для работы с
параллельными и последовательными
портами, которые обеспечивают обмен
данными в символьном режиме и управление
подключенными к ним устройствами (обычно
это принтеры, мышь или факс-модемы).

Кроме того, для печати текста в фоновом
режиме в состав MS-DOS входит программа
print.com. Эта практически единственная
«мультизадачная» программа MS-DOS
является примером стандартной резидентной
программы. Она позволяет выполнять
почти любую работу (такую, например, как
редактирование текста или прием файла
через модем) параллельно с печатью
текста.

Специально следует отметить драйверы
электронного диска и кэш-памяти. Драйвер
электронного диска называется
ramdrive.sys. Этот драйвер организует в
расширенной или в дополнительной памяти
компьютера быстрый псевдодиск. Можно
организовать электронный диск и в
основной памяти, но основной памяти
всегда мало!

Операционная система MS-DOS версии 6.22
имеет в своем составе систему управления
дополнительной и расширенной памятью,
которая реализуется драйверами himem.sys
и emm386.exe. Эти драйверы позволяет программам,
составленным специальным образом,
использовать расширенную или дополнительную
память для хранения данных и выполнения
программ (в некоторых случаях).

С помощью программы memmaker.exe и перечисленных
выше драйверов пользователь может в
автоматическом режиме освободить первый
мегабайт оперативной памяти, переместив
драйверы и резидентные программы в
расширенную память.

Если подключен драйвер himem.sys, то с помощью
драйвера smartdrv.exe можно создать кэш-память
(или просто кэш) для жесткого диска.
Особенно эффективно применение кэша
для работы с базами данных, когда вам
периодически требуется одна и та же
информация. Если данные были считаны с
диска, то в следующий раз, когда они
потребуются снова, с большой вероятностью
данные будут доступны без повторного
обращения к диску.

Такое широко распространенное и ставшее
стандартным для любого персонального
компьютера устройство, как мышь, не
поддерживается операционной системой
MS-DOS. Для использования мыши следует
подключить драйвер, который обычно
поставляется вместе с этим устройством.

Другие периферийные устройства (сканеры,
плоттеры, стримеры, факс-модемы и т. п.)
также не поддерживаются MS-DOS. Для этих
устройств фирмы-изготовители поставляют
специальные программы, а также драйверы,
которые надо подключить к операционной
системе.

Соседние файлы в предмете Операционные системы

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    02.05.201410.11 Mб100Эндрю Таненбаум. Современные операционные системы. 2 издание полная версия.djvu

При работе над веб-приложениями программисту легко попасть в ловушку: разрабатывать и тестировать только понятные сценарии, в которых всё происходит правильно. К сожалению, в реальности встречаются ситуации, в которых всё идёт не так, как планировалось. Обработка ошибок — важная часть пользовательского опыта любого приложения. Если приложение реагирует на ошибки правильно, ваши пользователи будут знать, что делать дальше, даже если что-то идёт не так.

  • Обработка ошибок в бэкенд- и фронтенд-приложениях: в чём разница
  • Как правильно обрабатывать ошибки
  • Как работать с ошибками в AJAX-запросах и что нужно знать о кодах ответа HTTP
  • Как перехватывать ошибки во фронтенд-приложениях
  • Главное об обработке ошибок во фронтенд-приложениях

Большинство ошибок, с которыми сталкиваются пользователи веб-приложений, можно отнести к одной из перечисленных ниже категорий.

Ошибки ввода

Они возникают, когда приложение по каким-либо причинам не может принять введённую пользователем информацию. Например, такое происходит, если пользовательские данные не проходят валидацию, человек повторно отправляет форму, вводит неуникальный юзернейм, приложение не может найти запрошенные ресурсы и так далее.

Ошибки авторизации

Такое происходит, когда пользователь пытается совершить действие, которое ему не разрешено. Например, если рядовой пользователь форума пытается удалить чужое сообщение или незарегистрированный человек хочет опубликовать пост в блоге.

Ошибки доступности

Эти ошибки возникают, когда ресурс, нужный для завершения действия пользователя, по каким-то причинам недоступен. Такие ошибки бывают запланированными (плановое обновление сайта) и незапланированными (выход из строя сервера).

Неожиданные ошибки

Это ошибки, которые обычно говорят о багах в приложении, например, о необработанных исключениях.

Практически во всех приложениях случаются ошибки из перечисленных выше категорий. Правильная обработка ошибок — ключ к тому, чтобы пользователи оставались довольными, когда во время работы с приложением случается ошибка.

Примечание — тема обработки ошибок во фронтенд-приложениях подробно рассматривается в рамках профессии «Фронтенд-программист». Базовые курсы в этой профессии, включая «Введение в программирование», «Основы командной строки», «Настройка окружения», «Системы контроля версий», доступны бесплатно после регистрации.

Обработка ошибок в бэкенд- и фронтенд-приложениях: в чём разница

Обработка ожидаемых ошибок в бэкенде веб-приложений обычно происходит так: приложение отвечает сообщением об ошибке или отображает это сообщение пользователю. Неожиданные ошибки ломают нормальный процесс ответа и приводят к отображению общей страницы ошибки.

Плохо настроенные приложения могут даже показывать конечному пользователю информацию о внутренних ошибках. В большинстве случаев бэкенд-приложения не очень хорошо помогают человеку справиться с ошибкой и вернуться к нормальному использованию приложения. Но они хорошо справляются с задачей информирования пользователя об ошибках.

У фронтенд-приложений нет встроенного механизма, позволяющего остановить работу и показать сообщение об ошибке. После возникновения ошибки в JavaScript обычно происходит одно из описанных ниже событий:

  • Приложение работает, но не выполняет действий, которые ожидает пользователь. Самая распространённая реакция пользователей в такой ситуации — попробовать ещё раз в надежде, что в этот раз приложение поведёт себя ожидаемо.
  • Приложение останавливается, но не сообщает об остановке пользователю. Здесь пользователь повторит действие или попробует выполнить новое действие, но у него ничего не получится.
  • Если ошибка происходит достаточно рано, пользователь может увидеть белый экран из-за неудачной попытки приложения отобразить страницу.

Все эти сценарии ужасные с точки зрения пользовательского опыта. Они могут разочаровать пользователя, заставить его чувствовать беспомощность и даже злость. Фронтенд-приложения во многом более гибкие в плане обработки ошибок по сравнению с бэкенд-приложениями. Но позаботиться об обработке ошибок должны разработчики, так как встроенные в браузеры инструменты практически бесполезны для конечных пользователей.

Читайте полезную статью
Что такое магические числа в программировании и как снять это заклятие.

Как правильно обрабатывать ошибки

Есть много способов обработки ошибок в JavaScript-приложениях. Вы можете определить глобальный обработчик ошибок, который будет отображать переданные в него сообщения. Также вы можете построить приложение так, чтобы каждый его компонент самостоятельно обрабатывал ошибки, которые в нём возникают.

Один из простых способов обработки ошибок заключается в том, чтобы создать общую схему для реакции на все ошибки и использовать систему событий браузеров, чтобы перехватывать всплывающие ошибки и обрабатывать их. Например, ошибку валидации формы можно перехватить на элементе form или соответствующем инпуте и показать пользователю сообщение об этой ошибке. А нераспознанная системная ошибка может всплыть на уровень document. В этом случае пользователь увидит обобщённое сообщение об ошибке.

Взаимодействие с пользователем при возникновении ошибки играет очень важную роль. Вы должны сообщить человеку, что пошло не так, а также объяснить, что делать дальше. В целом, сообщения могут иметь такой смысл:

  • Измените что-то и повторите действие. Если пользователь ввёл невалидные данные и не смог отправить форму, благодаря сообщению об ошибке он сможет исправить данные и отправить форму.
  • Попробуйте позже. Пользователь не смог отправить форму из-за ошибки сети. Благодаря сообщению он вернётся через 10 минут и успешно отправит форму.
  • Свяжитесь с нами. Пользователь не смог отправить форму из-за неожиданной ошибки. Благодаря сообщению об ошибке он свяжется со службой поддержки и решит свои задачи.

При обработке ошибок на стороне клиента часто возникает необходимость выбрать между остановкой и продолжением работы приложения. Если ошибка влияет только на часть системы, можно разрешить человеку пользоваться приложением дальше. Если ошибка критическая или она влияет на разные части приложения, можно показать сообщение в модальном окне, которое невозможно закрыть. Также можно заменить контент страницы сообщением об ошибке. Это защитит пользователя от бесполезных попыток выполнить желаемое действие.

Как работать с ошибками в AJAX-запросах и что нужно знать о кодах ответа HTTP

Самый простой и очень эффективный способ сообщить пользователю об ошибке — правильно использовать коды ответов HTTP. Коды статуса HTTP могут самостоятельно дать пользователю достаточно информации о том, почему возникла ошибка запроса, а также подсказать, что делать дальше.

«Ошибочные» коды ответов HTTP объединяются в две группы: ответы 4XX и ответы 5XX. Первые говорят о проблеме с запросом (клиентские ошибки), а вторые — о проблеме с сервером (серверные ошибки). Ниже перечислены самые распространённые «ошибочные» коды статусов HTTP, которые можно получить при работе с веб-приложением:

  • 400 — Bad Request. Обычно этот статус связан с ошибкой ввода, например, если пользователь вводит некорректный адрес электронной почты.
  • 401 — Unauthorized. Этот статус связан с ситуацией, когда пользователь пытается получить доступ к чему-либо без авторизации там, где авторизация требуется. Также этот код ошибки подходит в ситуации, когда пользователь пытается выполнить действие, на которое у него нет прав.
  • 403 — Forbidden. Разница между этим статусом и статусом 400 незначительная. Обычно код 403 говорит о том, что сервер понял запрос, но не может его выполнить. Например, такой статус можно возвращать, если пользователь ввёл номер акционного купона с истекшим сроком действия.
  • 404 — Not Found. Это самый известный из «ошибочных» кодов ответа. Он сообщает, что запрошенный ресурс не найден. Это может произойти из-за некорректного URL, удалённой или перемещённой страницы.
  • 409 — Conflict. В большинстве случаев этот статус говорит о конфликте управления версиями. Например, такое происходит, если пользователь пробует загрузить версию файла, которая старше загруженной ранее версии этого файла. Также этот код может говорить об ограничениях уникальности, например, если пользователь пытается повторно отправить электронное письмо (второй раз нажимает кнопку «Отправить», не дождавшись завершения действия).
  • 500 — Internal Server Error. Этот статус говорит об ошибке, которую можно описать так: «Что-то пошло не так, но мы не знаем, что именно».
  • 503 — Unavailable. Сервер вышел из строя, ошибка может быть запланированной или незапланированной.

Если вы хорошо знаете эти коды, вам будет проще обрабатывать ошибки, которые возникают при работе с AJAX-запросами.

Примечание — Обратите внимание на сервис httpstat.us, он пригодится вам для тестирования реакций на ошибки при разработке фронтенд-приложений.

Как перехватывать ошибки во фронтенд-приложениях

Вы можете определить обработчик глобально с помощью функции window.onerror. В этом случае обработчик переопределит дефолтное поведение браузеров, благодаря чему ваше приложение будет показывать пользователям полезную информацию при возникновении ошибок.

window.onerror = (message, url, lineNumber) => {
  // определяем, знаем ли мы, как обрабатывать ошибку
  if (errorCanBeHandled) {
    // показываем сообщение об ошибке пользователю
    displayErrorMessage(message);
    // возвращаем true и запускаем дефолтную
    // реакцию приложения на фатальные ошибки
    return true;
  } else {
    // запускаем дефолтную обработку ошибок браузером
    return false;
  }
}

Этот подход работает. Но иногда бывает сложно понять точную причину проблемы с помощью выброшенного исключения. При обработке ошибок в AJAX-запросах лучше использовать функцию обработки ошибок библиотеки, которой вы пользуетесь для выполнения запросов. Она позволит определить код ответа и корректно на него среагировать.

Изучайте фронтенд-разработку на Хекслете! Первые курсы в профессии «Фронтенд-программист» доступны бесплатно. Регистрируйтесь и стартуйте в удобное время.

Главное об обработке ошибок во фронтенд-приложениях

Главный факт об обработке ошибок заключается в том, что вы должны их обрабатывать. Любая попытка сообщить пользователю что-то полезное, когда возникает ошибка — отличный ход. Даже информирование с помощью alert() лучше, чем отсутствие информации. Помните, что при проектировании UI вашего приложения нужно учитывать все возможные ситуации, включая различные ошибки.

Адаптированный перевод статьи Front-End Error Handling by Static Apps. Мнение администрации Хекслета может не совпадать с мнением автора оригинальной публикации.

Собственно, их два: анализ кода возврата (или, как вариант, возвращаемого методом значения) и обработка исключений.

Анализ кода возврата активно используется при работе с методами Windows API. Например, если вы используете методы обработки сообщений Windows, то вам нужно обрабатывать возвращаемое значение, чтобы узнать, корректно ли было обработано сообщение.

Примеры обработки исключений, уверен, вы можете найти и в своём собственном коде. Многие классы базовых библиотек .NET и Java содержат методы, при выполнении которых в случае ошибки генерируется исключительная ситуация, т.е. возникает экземпляр некого класса, содержащего информацию о произошедшей ошибке. Так, если вы попытаетесь делить что-то на 0, вы получите исключение DevideByZeroException, или ArithmeticException, или что-то ещё в зависимости от того, какой язык вы используете.

Не буду погружаться глубоко в теорию, которую вы можете прочитать в любом учебнике программирования. Более интересен вопрос о том, в каких случаях лучше использовать один подход, а в каких — другой. Для этого посмотрим основные отличия двух подходов.

Обработка ошибок на основе анализа возвращаемого значения производится вне метода, в котором возникла ошибка. Т.е. для использования такого подхода вы должны быть уверены, что метод хоть что-то вернёт, какая бы ошибка внутри него не возникла. Велика вероятность, что вы об этом не узнаете: если возникнет ошибка, ваша программа может быть просто остановлена системой.

Механизм обработки ошибок на основе исключений работает внутри метода и, если обработчик исключения в этом методе не найден, то распространяется на следующий метод в стеке (тот, из которого был вызван метод, в котором произошло исключение) и т.д. И только если обработчик исключения так и не будет найден, система аварийно завершит выполнение вашей программы.

Из этого напрашивается первый вывод: даже если вы используете анализ кода возврата вне метода, вы должны использовать обработку исключений внутри метода, чтобы он гарантированно вернул какой-нибудь результат. Но тогда возникает вопрос: какой смысл использовать код возврата, если можно сгенерировать исключение? И верно, внутри одного потока или одного процесса лучше пользоваться механизмом исключений, т.к. он более универсален, гибок и надёжен.

Всё меняется, когда вы начинаете использовать сетевое или межпроцессное взаимодействие. Например, вы вызываете метод некоторого сервиса, написанного на другом языке программирования. Классы исключений в вашей программе и в коде сервиса разные, и в общем случае договориться не удастся. Что делать?

Приходится возвращаться к анализу результата вашего запроса. Конечно, в ответе сервис может прислать сериализованный объект с информацией об ошибке, но вы в любом случае должны проанализировать этот объект в своём коде и сгенерировать соответствующее исключение самостоятельно. Т.е. речь идёт о чистой воды анализе кода возврата, где код может быть или числом, или строкой, или сериализованным объектом, но это не меняет сути.

Поэтому, если вы собираетесь реализовать некий программный интерфейс (API), который будет вызываться из других процессов, закладывайтесь на возврат кода ошибки, а обработку исключений оставьте внутри своей программы.

Кстати, то же самое справедливо в отношении пользовательских интерфейсов: пользователь не умеет обрабатывать исключения, он анализирует текст сообщения об ошибке. Поэтому так важно перехватить исключение внутри программы и выдать на UI удобоваримое сообщение, поддающееся осмыслению несовершенным человеческим мозгом.

Понравилась статья? Поделить с друзьями:
  • Система обнаружила на этом диске ошибки восстановите диск
  • Система нпб бмв е70 ошибка
  • Система нашла драйвер но при установке произошла ошибка
  • Система мониторинга ошибок
  • Система измерения струна ошибка е 50