Системные ошибки программного обеспечения это ошибки

A software bug is an error, flaw or fault in the design, development, or operation of computer software that causes it to produce an incorrect or unexpected result, or to behave in unintended ways. The process of finding and correcting bugs is termed «debugging» and often uses formal techniques or tools to pinpoint bugs. Since the 1950s, some computer systems have been designed to deter, detect or auto-correct various computer bugs during operations.

Bugs in software can arise from mistakes and errors made in interpreting and extracting users’ requirements, planning a program’s design, writing its source code, and from interaction with humans, hardware and programs, such as operating systems or libraries. A program with many, or serious, bugs is often described as buggy. Bugs can trigger errors that may have ripple effects. The effects of bugs may be subtle, such as unintended text formatting, through to more obvious effects such as causing a program to crash, freezing the computer, or causing damage to hardware. Other bugs qualify as security bugs and might, for example, enable a malicious user to bypass access controls in order to obtain unauthorized privileges.[1]

Some software bugs have been linked to disasters. Bugs in code that controlled the Therac-25 radiation therapy machine were directly responsible for patient deaths in the 1980s. In 1996, the European Space Agency’s US$1 billion prototype Ariane 5 rocket was destroyed less than a minute after launch due to a bug in the on-board guidance computer program.[2] In 1994, an RAF Chinook helicopter crashed, killing 29; this was initially blamed on pilot error, but was later thought to have been caused by a software bug in the engine-control computer.[3] Buggy software caused the early 21st century British Post Office scandal, the most widespread miscarriage of justice in British legal history.[4]

In 2002, a study commissioned by the US Department of Commerce’s National Institute of Standards and Technology concluded that «software bugs, or errors, are so prevalent and so detrimental that they cost the US economy an estimated $59 billion annually, or about 0.6 percent of the gross domestic product».[5]

History[edit]

The Middle English word bugge is the basis for the terms «bugbear» and «bugaboo» as terms used for a monster.[6]

The term «bug» to describe defects has been a part of engineering jargon since the 1870s[7] and predates electronics and computers; it may have originally been used in hardware engineering to describe mechanical malfunctions. For instance, Thomas Edison wrote in a letter to an associate in 1878:[8]

… difficulties arise—this thing gives out and [it is] then that «Bugs»—as such little faults and difficulties are called—show themselves[9]

Baffle Ball, the first mechanical pinball game, was advertised as being «free of bugs» in 1931.[10] Problems with military gear during World War II were referred to as bugs (or glitches).[11] In a book published in 1942, Louise Dickinson Rich, speaking of a powered ice cutting machine, said, «Ice sawing was suspended until the creator could be brought in to take the bugs out of his darling.»[12]

Isaac Asimov used the term «bug» to relate to issues with a robot in his short story «Catch That Rabbit», published in 1944.

A page from the Harvard Mark II electromechanical computer’s log, featuring a dead moth that was removed from the device.

The term «bug» was used in an account by computer pioneer Grace Hopper, who publicized the cause of a malfunction in an early electromechanical computer.[13] A typical version of the story is:

In 1946, when Hopper was released from active duty, she joined the Harvard Faculty at the Computation Laboratory where she continued her work on the Mark II and Mark III. Operators traced an error in the Mark II to a moth trapped in a relay, coining the term bug. This bug was carefully removed and taped to the log book. Stemming from the first bug, today we call errors or glitches in a program a bug.[14]

Hopper was not present when the bug was found, but it became one of her favorite stories.[15] The date in the log book was September 9, 1947.[16][17][18] The operators who found it, including William «Bill» Burke, later of the Naval Weapons Laboratory, Dahlgren, Virginia,[19] were familiar with the engineering term and amusedly kept the insect with the notation «First actual case of bug being found.» This log book, complete with attached moth, is part of the collection of the Smithsonian National Museum of American History.[17]

The related term «debug» also appears to predate its usage in computing: the Oxford English Dictionarys etymology of the word contains an attestation from 1945, in the context of aircraft engines.[20]

The concept that software might contain errors dates back to Ada Lovelace’s 1843 notes on the analytical engine, in which she speaks of the possibility of program «cards» for Charles Babbage’s analytical engine being erroneous:

… an analysing process must equally have been performed in order to furnish the Analytical Engine with the necessary operative data; and that herein may also lie a possible source of error. Granted that the actual mechanism is unerring in its processes, the cards may give it wrong orders.

«Bugs in the System» report[edit]

The Open Technology Institute, run by the group, New America,[21] released a report «Bugs in the System» in August 2016 stating that U.S. policymakers should make reforms to help researchers identify and address software bugs. The report «highlights the need for reform in the field of software vulnerability discovery and disclosure.»[22] One of the report’s authors said that Congress has not done enough to address cyber software vulnerability, even though Congress has passed a number of bills to combat the larger issue of cyber security.[22]

Government researchers, companies, and cyber security experts are the people who typically discover software flaws. The report calls for reforming computer crime and copyright laws.[22]

The Computer Fraud and Abuse Act, the Digital Millennium Copyright Act and the Electronic Communications Privacy Act criminalize and create civil penalties for actions that security researchers routinely engage in while conducting legitimate security research, the report said.[22]

Terminology[edit]

While the use of the term «bug» to describe software errors is common, many have suggested that it should be abandoned. One argument is that the word «bug» is divorced from a sense that a human being caused the problem, and instead implies that the defect arose on its own, leading to a push to abandon the term «bug» in favor of terms such as «defect», with limited success.[23] Since the 1970s Gary Kildall somewhat humorously suggested to use the term «blunder».[24][25]

In software engineering, mistake metamorphism (from Greek meta = «change», morph = «form») refers to the evolution of a defect in the final stage of software deployment. Transformation of a «mistake» committed by an analyst in the early stages of the software development lifecycle, which leads to a «defect» in the final stage of the cycle has been called ‘mistake metamorphism’.[26]

Different stages of a «mistake» in the entire cycle may be described as «mistakes», «anomalies», «faults», «failures», «errors», «exceptions», «crashes», «glitches», «bugs», «defects», «incidents», or «side effects».[26]

Prevention[edit]

The software industry has put much effort into reducing bug counts.[27][28] These include:

Typographical errors[edit]

Bugs usually appear when the programmer makes a logic error. Various innovations in programming style and defensive programming are designed to make these bugs less likely, or easier to spot. Some typos, especially of symbols or logical/mathematical operators, allow the program to operate incorrectly, while others such as a missing symbol or misspelled name may prevent the program from operating. Compiled languages can reveal some typos when the source code is compiled.

Development methodologies[edit]

Several schemes assist managing programmer activity so that fewer bugs are produced. Software engineering (which addresses software design issues as well) applies many techniques to prevent defects. For example, formal program specifications state the exact behavior of programs so that design bugs may be eliminated. Unfortunately, formal specifications are impractical for anything but the shortest programs, because of problems of combinatorial explosion and indeterminacy.

Unit testing involves writing a test for every function (unit) that a program is to perform.

In test-driven development unit tests are written before the code and the code is not considered complete until all tests complete successfully.

Agile software development involves frequent software releases with relatively small changes. Defects are revealed by user feedback.

Open source development allows anyone to examine source code. A school of thought popularized by Eric S. Raymond as Linus’s law says that popular open-source software has more chance of having few or no bugs than other software, because «given enough eyeballs, all bugs are shallow».[29] This assertion has been disputed, however: computer security specialist Elias Levy wrote that «it is easy to hide vulnerabilities in complex, little understood and undocumented source code,» because, «even if people are reviewing the code, that doesn’t mean they’re qualified to do so.»[30] An example of an open-source software bug was the 2008 OpenSSL vulnerability in Debian.

Programming language support[edit]

Programming languages include features to help prevent bugs, such as static type systems, restricted namespaces and modular programming. For example, when a programmer writes (pseudocode) LET REAL_VALUE PI = "THREE AND A BIT", although this may be syntactically correct, the code fails a type check. Compiled languages catch this without having to run the program. Interpreted languages catch such errors at runtime. Some languages deliberately exclude features that easily lead to bugs, at the expense of slower performance: the general principle being that, it is almost always better to write simpler, slower code than inscrutable code that runs slightly faster, especially considering that maintenance cost is substantial. For example, the Java programming language does not support pointer arithmetic; implementations of some languages such as Pascal and scripting languages often have runtime bounds checking of arrays, at least in a debugging build.

Code analysis[edit]

Tools for code analysis help developers by inspecting the program text beyond the compiler’s capabilities to spot potential problems. Although in general the problem of finding all programming errors given a specification is not solvable (see halting problem), these tools exploit the fact that human programmers tend to make certain kinds of simple mistakes often when writing software.

Instrumentation[edit]

Tools to monitor the performance of the software as it is running, either specifically to find problems such as bottlenecks or to give assurance as to correct working, may be embedded in the code explicitly (perhaps as simple as a statement saying PRINT "I AM HERE"), or provided as tools. It is often a surprise to find where most of the time is taken by a piece of code, and this removal of assumptions might cause the code to be rewritten.

Testing[edit]

Software testers are people whose primary task is to find bugs, or write code to support testing. On some projects, more resources may be spent on testing than in developing the program.

Measurements during testing can provide an estimate of the number of likely bugs remaining; this becomes more reliable the longer a product is tested and developed.[citation needed]

Debugging[edit]

The typical bug history (GNU Classpath project data). A new bug submitted by the user is unconfirmed. Once it has been reproduced by a developer, it is a confirmed bug. The confirmed bugs are later fixed. Bugs belonging to other categories (unreproducible, will not be fixed, etc.) are usually in the minority

Finding and fixing bugs, or debugging, is a major part of computer programming. Maurice Wilkes, an early computing pioneer, described his realization in the late 1940s that much of the rest of his life would be spent finding mistakes in his own programs.[31]

Usually, the most difficult part of debugging is finding the bug. Once it is found, correcting it is usually relatively easy. Programs known as debuggers help programmers locate bugs by executing code line by line, watching variable values, and other features to observe program behavior. Without a debugger, code may be added so that messages or values may be written to a console or to a window or log file to trace program execution or show values.

However, even with the aid of a debugger, locating bugs is something of an art. It is not uncommon for a bug in one section of a program to cause failures in a completely different section,[citation needed] thus making it especially difficult to track (for example, an error in a graphics rendering routine causing a file I/O routine to fail), in an apparently unrelated part of the system.

Sometimes, a bug is not an isolated flaw, but represents an error of thinking or planning on the part of the programmer. Such logic errors require a section of the program to be overhauled or rewritten. As a part of code review, stepping through the code and imagining or transcribing the execution process may often find errors without ever reproducing the bug as such.

More typically, the first step in locating a bug is to reproduce it reliably. Once the bug is reproducible, the programmer may use a debugger or other tool while reproducing the error to find the point at which the program went astray.

Some bugs are revealed by inputs that may be difficult for the programmer to re-create. One cause of the Therac-25 radiation machine deaths was a bug (specifically, a race condition) that occurred only when the machine operator very rapidly entered a treatment plan; it took days of practice to become able to do this, so the bug did not manifest in testing or when the manufacturer attempted to duplicate it. Other bugs may stop occurring whenever the setup is augmented to help find the bug, such as running the program with a debugger; these are called heisenbugs (humorously named after the Heisenberg uncertainty principle).

Since the 1990s, particularly following the Ariane 5 Flight 501 disaster, interest in automated aids to debugging rose, such as static code analysis by abstract interpretation.[32]

Some classes of bugs have nothing to do with the code. Faulty documentation or hardware may lead to problems in system use, even though the code matches the documentation. In some cases, changes to the code eliminate the problem even though the code then no longer matches the documentation. Embedded systems frequently work around hardware bugs, since to make a new version of a ROM is much cheaper than remanufacturing the hardware, especially if they are commodity items.

Benchmark of bugs[edit]

To facilitate reproducible research on testing and debugging, researchers use curated benchmarks of bugs:

  • the Siemens benchmark
  • ManyBugs[33] is a benchmark of 185 C bugs in nine open-source programs.
  • Defects4J[34] is a benchmark of 341 Java bugs from 5 open-source projects. It contains the corresponding patches, which cover a variety of patch type.

Bug management[edit]

Bug management includes the process of documenting, categorizing, assigning, reproducing, correcting and releasing the corrected code. Proposed changes to software – bugs as well as enhancement requests and even entire releases – are commonly tracked and managed using bug tracking systems or issue tracking systems.[35] The items added may be called defects, tickets, issues, or, following the agile development paradigm, stories and epics. Categories may be objective, subjective or a combination, such as version number, area of the software, severity and priority, as well as what type of issue it is, such as a feature request or a bug.

A bug triage reviews bugs and decides whether and when to fix them. The decision is based on the bug’s priority, and factors such as project schedules. The triage is not meant to investigate the cause of bugs, but rather the cost of fixing them. The triage happens regularly, and goes through bugs opened or reopened since the previous meeting. The attendees of the triage process typically are the project manager, development manager, test manager, build manager, and technical experts.[36][37]

Severity[edit]

Severity is the intensity of the impact the bug has on system operation.[38] This impact may be data loss, financial, loss of goodwill and wasted effort. Severity levels are not standardized. Impacts differ across industry. A crash in a video game has a totally different impact than a crash in a web browser, or real time monitoring system. For example, bug severity levels might be «crash or hang», «no workaround» (meaning there is no way the customer can accomplish a given task), «has workaround» (meaning the user can still accomplish the task), «visual defect» (for example, a missing image or displaced button or form element), or «documentation error». Some software publishers use more qualified severities such as «critical», «high», «low», «blocker» or «trivial».[39] The severity of a bug may be a separate category to its priority for fixing, and the two may be quantified and managed separately.

Priority[edit]

Priority controls where a bug falls on the list of planned changes. The priority is decided by each software producer. Priorities may be numerical, such as 1 through 5, or named, such as «critical», «high», «low», or «deferred». These rating scales may be similar or even identical to severity ratings, but are evaluated as a combination of the bug’s severity with its estimated effort to fix; a bug with low severity but easy to fix may get a higher priority than a bug with moderate severity that requires excessive effort to fix. Priority ratings may be aligned with product releases, such as «critical» priority indicating all the bugs that must be fixed before the next software release.

A bug severe enough to delay or halt the release of the product is called a «show stopper»[40] or «showstopper bug».[41] It is named so because it «stops the show» – causes unacceptable product failure.[41]

Software releases[edit]

It is common practice to release software with known, low-priority bugs. Bugs of sufficiently high priority may warrant a special release of part of the code containing only modules with those fixes. These are known as patches. Most releases include a mixture of behavior changes and multiple bug fixes. Releases that emphasize bug fixes are known as maintenance releases, to differentiate it from major releases that emphasize feature additions or changes.

Reasons that a software publisher opts not to patch or even fix a particular bug include:

  • A deadline must be met and resources are insufficient to fix all bugs by the deadline.[42]
  • The bug is already fixed in an upcoming release, and it is not of high priority.
  • The changes required to fix the bug are too costly or affect too many other components, requiring a major testing activity.
  • It may be suspected, or known, that some users are relying on the existing buggy behavior; a proposed fix may introduce a breaking change.
  • The problem is in an area that will be obsolete with an upcoming release; fixing it is unnecessary.
  • «It’s not a bug, it’s a feature».[43] A misunderstanding has arisen between expected and perceived behavior or undocumented feature.

Types[edit]

In software development projects, a mistake or error may be introduced at any stage. Bugs arise from oversight or misunderstanding by a software team during specification, design, coding, configuration, data entry or documentation. For example, a relatively simple program to alphabetize a list of words, the design might fail to consider what should happen when a word contains a hyphen. Or when converting an abstract design into code, the coder might inadvertently create an off-by-one error which can be a «<» where «<=» was intended, and fail to sort the last word in a list.

Another category of bug is called a race condition that may occur when programs have multiple components executing at the same time. If the components interact in a different order than the developer intended, they could interfere with each other and stop the program from completing its tasks. These bugs may be difficult to detect or anticipate, since they may not occur during every execution of a program.

Conceptual errors are a developer’s misunderstanding of what the software must do. The resulting software may perform according to the developer’s understanding, but not what is really needed. Other types:

Arithmetic[edit]

In operations on numerical values, problems can arise that result in unexpected output, slowing of a process, or crashing.[44] These can be from a lack of awareness of the qualities of the data storage such as a loss of precision due to rounding, numerically unstable algorithms, arithmetic overflow and underflow, or from lack of awareness of how calculations are handled by different software coding languages such as division by zero which in some languages may throw an exception, and in others may return a special value such as NaN or infinity.

Control flow[edit]

Control flow bugs are those found in processes with valid logic, but that lead to unintended results, such as infinite loops and infinite recursion, incorrect comparisons for conditional statements such as using the incorrect comparison operator, and off-by-one errors (counting one too many or one too few iterations when looping).

Interfacing[edit]

  • Incorrect API usage.
  • Incorrect protocol implementation.
  • Incorrect hardware handling.
  • Incorrect assumptions of a particular platform.
  • Incompatible systems. A new API or communications protocol may seem to work when two systems use different versions, but errors may occur when a function or feature implemented in one version is changed or missing in another. In production systems which must run continually, shutting down the entire system for a major update may not be possible, such as in the telecommunication industry[45] or the internet.[46][47][48] In this case, smaller segments of a large system are upgraded individually, to minimize disruption to a large network. However, some sections could be overlooked and not upgraded, and cause compatibility errors which may be difficult to find and repair.
  • Incorrect code annotations.

Concurrency[edit]

  • Deadlock, where task A cannot continue until task B finishes, but at the same time, task B cannot continue until task A finishes.
  • Race condition, where the computer does not perform tasks in the order the programmer intended.
  • Concurrency errors in critical sections, mutual exclusions and other features of concurrent processing. Time-of-check-to-time-of-use (TOCTOU) is a form of unprotected critical section.

Resourcing[edit]

  • Null pointer dereference.
  • Using an uninitialized variable.
  • Using an otherwise valid instruction on the wrong data type (see packed decimal/binary-coded decimal).
  • Access violations.
  • Resource leaks, where a finite system resource (such as memory or file handles) become exhausted by repeated allocation without release.
  • Buffer overflow, in which a program tries to store data past the end of allocated storage. This may or may not lead to an access violation or storage violation. These are frequently security bugs.
  • Excessive recursion which—though logically valid—causes stack overflow.
  • Use-after-free error, where a pointer is used after the system has freed the memory it references.
  • Double free error.

Syntax[edit]

  • Use of the wrong token, such as performing assignment instead of equality test. For example, in some languages x=5 will set the value of x to 5 while x==5 will check whether x is currently 5 or some other number. Interpreted languages allow such code to fail. Compiled languages can catch such errors before testing begins.

Teamwork[edit]

  • Unpropagated updates; e.g. programmer changes «myAdd» but forgets to change «mySubtract», which uses the same algorithm. These errors are mitigated by the Don’t Repeat Yourself philosophy.
  • Comments out of date or incorrect: many programmers assume the comments accurately describe the code.
  • Differences between documentation and product.

Implications[edit]

The amount and type of damage a software bug may cause naturally affects decision-making, processes and policy regarding software quality. In applications such as human spaceflight, aviation, nuclear power, health care, public transport or automotive safety, since software flaws have the potential to cause human injury or even death, such software will have far more scrutiny and quality control than, for example, an online shopping website. In applications such as banking, where software flaws have the potential to cause serious financial damage to a bank or its customers, quality control is also more important than, say, a photo editing application.

Other than the damage caused by bugs, some of their cost is due to the effort invested in fixing them. In 1978, Lientz et al. showed that the median of projects invest 17 percent of the development effort in bug fixing.[49] In research in 2020 on GitHub repositories showed the median is 20%.[50]

Residual bugs in delivered product[edit]

In 1994, NASA’s Goddard Space Flight Center managed to reduce their average number of errors from 4.5 per 1000 lines of code (SLOC) down to 1 per 1000 SLOC.[51]

Another study in 1990 reported that exceptionally good software development processes can achieve deployment failure rates as low as 0.1 per 1000 SLOC.[52] This figure is iterated in literature such as Code Complete by Steve McConnell,[53] and the NASA study on Flight Software Complexity.[54] Some projects even attained zero defects: the firmware in the IBM Wheelwriter typewriter which consists of 63,000 SLOC, and the Space Shuttle software with 500,000 SLOC.[52]

Well-known bugs[edit]

A number of software bugs have become well-known, usually due to their severity: examples include various space and military aircraft crashes. Possibly the most famous bug is the Year 2000 problem or Y2K bug, which caused many programs written long before the transition from 19xx to 20xx dates to malfunction, for example treating a date such as «25 Dec 04» as being in 1904, displaying «19100» instead of «2000», and so on. A huge effort at the end of the 20th century resolved the most severe problems, and there were no major consequences.

The 2012 stock trading disruption involved one such incompatibility between the old API and a new API.

In popular culture[edit]

  • In both the 1968 novel 2001: A Space Odyssey and the corresponding 1968 film 2001: A Space Odyssey, a spaceship’s onboard computer, HAL 9000, attempts to kill all its crew members. In the follow-up 1982 novel, 2010: Odyssey Two, and the accompanying 1984 film, 2010, it is revealed that this action was caused by the computer having been programmed with two conflicting objectives: to fully disclose all its information, and to keep the true purpose of the flight secret from the crew; this conflict caused HAL to become paranoid and eventually homicidal.
  • In the English version of the Nena 1983 song 99 Luftballons (99 Red Balloons) as a result of «bugs in the software», a release of a group of 99 red balloons are mistaken for an enemy nuclear missile launch, requiring an equivalent launch response, resulting in catastrophe.
  • In the 1999 American comedy Office Space, three employees attempt (unsuccessfully) to exploit their company’s preoccupation with the Y2K computer bug using a computer virus that sends rounded-off fractions of a penny to their bank account—a long-known technique described as salami slicing.
  • The 2004 novel The Bug, by Ellen Ullman, is about a programmer’s attempt to find an elusive bug in a database application.[55]
  • The 2008 Canadian film Control Alt Delete is about a computer programmer at the end of 1999 struggling to fix bugs at his company related to the year 2000 problem.

See also[edit]

  • Anti-pattern
  • Bug bounty program
  • Glitch removal
  • Hardware bug
  • ISO/IEC 9126, which classifies a bug as either a defect or a nonconformity
  • Orthogonal Defect Classification
  • Racetrack problem
  • RISKS Digest
  • Software defect indicator
  • Software regression
  • Software rot
  • Automatic bug fixing

References[edit]

  1. ^ Mittal, Varun; Aditya, Shivam (January 1, 2015). «Recent Developments in the Field of Bug Fixing». Procedia Computer Science. International Conference on Computer, Communication and Convergence (ICCC 2015). 48: 288–297. doi:10.1016/j.procs.2015.04.184. ISSN 1877-0509.
  2. ^ «Ariane 501 — Presentation of Inquiry Board report». www.esa.int. Retrieved January 29, 2022.
  3. ^ Prof. Simon Rogerson. «The Chinook Helicopter Disaster». Ccsr.cse.dmu.ac.uk. Archived from the original on July 17, 2012. Retrieved September 24, 2012.
  4. ^ «Post Office scandal ruined lives, inquiry hears». BBC News. February 14, 2022.
  5. ^ «Software bugs cost US economy dear». June 10, 2009. Archived from the original on June 10, 2009. Retrieved September 24, 2012.{{cite web}}: CS1 maint: unfit URL (link)
  6. ^ Computerworld staff (September 3, 2011). «Moth in the machine: Debugging the origins of ‘bug’«. Computerworld. Archived from the original on August 25, 2015.
  7. ^ «bug». Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.) 5a
  8. ^ «Did You Know? Edison Coined the Term «Bug»«. August 1, 2013. Retrieved July 19, 2019.
  9. ^ Edison to Puskas, 13 November 1878, Edison papers, Edison National Laboratory, U.S. National Park Service, West Orange, N.J., cited in Hughes, Thomas Parke (1989). American Genesis: A Century of Invention and Technological Enthusiasm, 1870-1970. Penguin Books. p. 75. ISBN 978-0-14-009741-2.
  10. ^ «Baffle Ball». Internet Pinball Database. (See image of advertisement in reference entry)
  11. ^ «Modern Aircraft Carriers are Result of 20 Years of Smart Experimentation». Life. June 29, 1942. p. 25. Archived from the original on June 4, 2013. Retrieved November 17, 2011.
  12. ^ Dickinson Rich, Louise (1942), We Took to the Woods, JB Lippincott Co, p. 93, LCCN 42024308, OCLC 405243, archived from the original on March 16, 2017.
  13. ^ FCAT NRT Test, Harcourt, March 18, 2008
  14. ^ «Danis, Sharron Ann: «Rear Admiral Grace Murray Hopper»«. ei.cs.vt.edu. February 16, 1997. Retrieved January 31, 2010.
  15. ^ James S. Huggins. «First Computer Bug». Jamesshuggins.com. Archived from the original on August 16, 2000. Retrieved September 24, 2012.
  16. ^ «Bug Archived March 23, 2017, at the Wayback Machine», The Jargon File, ver. 4.4.7. Retrieved June 3, 2010.
  17. ^ a b «Log Book With Computer Bug Archived March 23, 2017, at the Wayback Machine», National Museum of American History, Smithsonian Institution.
  18. ^ «The First «Computer Bug», Naval Historical Center. But note the Harvard Mark II computer was not complete until the summer of 1947.
  19. ^ IEEE Annals of the History of Computing, Vol 22 Issue 1, 2000
  20. ^ Journal of the Royal Aeronautical Society. 49, 183/2, 1945 «It ranged … through the stage of type test and flight test and ‘debugging’ …»
  21. ^ Wilson, Andi; Schulman, Ross; Bankston, Kevin; Herr, Trey. «Bugs in the System» (PDF). Open Policy Institute. Archived (PDF) from the original on September 21, 2016. Retrieved August 22, 2016.
  22. ^ a b c d Rozens, Tracy (August 12, 2016). «Cyber reforms needed to strengthen software bug discovery and disclosure: New America report – Homeland Preparedness News». Retrieved August 23, 2016.
  23. ^ «News at SEI 1999 Archive». cmu.edu. Archived from the original on May 26, 2013.
  24. ^ Shustek, Len (August 2, 2016). «In His Own Words: Gary Kildall». Remarkable People. Computer History Museum. Archived from the original on December 17, 2016.
  25. ^ Kildall, Gary Arlen (August 2, 2016) [1993]. Kildall, Scott; Kildall, Kristin (eds.). «Computer Connections: People, Places, and Events in the Evolution of the Personal Computer Industry» (Manuscript, part 1). Kildall Family: 14–15. Archived from the original on November 17, 2016. Retrieved November 17, 2016.
  26. ^ a b «Testing experience : te : the magazine for professional testers». Testing Experience. Germany: testingexperience: 42. March 2012. ISSN 1866-5705. (subscription required)
  27. ^ Huizinga, Dorota; Kolawa, Adam (2007). Automated Defect Prevention: Best Practices in Software Management. Wiley-IEEE Computer Society Press. p. 426. ISBN 978-0-470-04212-0. Archived from the original on April 25, 2012.
  28. ^ McDonald, Marc; Musson, Robert; Smith, Ross (2007). The Practical Guide to Defect Prevention. Microsoft Press. p. 480. ISBN 978-0-7356-2253-1.
  29. ^ «Release Early, Release Often» Archived May 14, 2011, at the Wayback Machine, Eric S. Raymond, The Cathedral and the Bazaar
  30. ^ «Wide Open Source» Archived September 29, 2007, at the Wayback Machine, Elias Levy, SecurityFocus, April 17, 2000
  31. ^ Maurice Wilkes Quotes
  32. ^ «PolySpace Technologies history». christele.faure.pagesperso-orange.fr. Retrieved August 1, 2019.
  33. ^ Le Goues, Claire; Holtschulte, Neal; Smith, Edward K.; Brun, Yuriy; Devanbu, Premkumar; Forrest, Stephanie; Weimer, Westley (2015). «The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs». IEEE Transactions on Software Engineering. 41 (12): 1236–1256. doi:10.1109/TSE.2015.2454513. ISSN 0098-5589.
  34. ^ Just, René; Jalali, Darioush; Ernst, Michael D. (2014). «Defects4J: a database of existing faults to enable controlled testing studies for Java programs». Proceedings of the 2014 International Symposium on Software Testing and Analysis — ISSTA 2014. pp. 437–440. CiteSeerX 10.1.1.646.3086. doi:10.1145/2610384.2628055. ISBN 9781450326452. S2CID 12796895.
  35. ^ Allen, Mitch (May–June 2002). «Bug Tracking Basics: A beginner’s guide to reporting and tracking defects». Software Testing & Quality Engineering Magazine. Vol. 4, no. 3. pp. 20–24. Retrieved December 19, 2017.
  36. ^ Rex Black (2002). Managing The Testing Process (2Nd Ed.). Wiley India Pvt. Limited. p. 139. ISBN 9788126503131. Retrieved June 19, 2021.
  37. ^ Chris Vander Mey (August 24, 2012). Shipping Greatness — Practical Lessons on Building and Launching Outstanding Software, Learned on the Job at Google and Amazon. O’Reilly Media. pp. 79–81. ISBN 9781449336608.
  38. ^ Soleimani Neysiani, Behzad; Babamir, Seyed Morteza; Aritsugi, Masayoshi (October 1, 2020). «Efficient feature extraction model for validation performance improvement of duplicate bug report detection in software bug triage systems». Information and Software Technology. 126: 106344. doi:10.1016/j.infsof.2020.106344. S2CID 219733047.
  39. ^ «5.3. Anatomy of a Bug». bugzilla.org. Archived from the original on May 23, 2013.
  40. ^ Jones, Wilbur D. Jr., ed. (1989). «Show stopper». Glossary: defense acquisition acronyms and terms (4 ed.). Fort Belvoir, Virginia, USA: Department of Defense, Defense Systems Management College. p. 123. hdl:2027/mdp.39015061290758 – via Hathitrust.
  41. ^ a b Zachary, G. Pascal (1994). Show-stopper!: the breakneck race to create Windows NT and the next generation at Microsoft. New York: The Free Press. p. 158. ISBN 0029356717 – via archive.org.
  42. ^ «The Next Generation 1996 Lexicon A to Z: Slipstream Release». Next Generation. No. 15. March 1996. p. 41.
  43. ^ Carr, Nicholas (2018). «‘It’s Not a Bug, It’s a Feature.’ Trite—or Just Right?». wired.com.
  44. ^ Di Franco, Anthony; Guo, Hui; Cindy, Rubio-González. «A Comprehensive Study of Real-World Numerical Bug Characteristics» (PDF). Archived (PDF) from the original on October 9, 2022.
  45. ^ Kimbler, K. (1998). Feature Interactions in Telecommunications and Software Systems V. IOS Press. p. 8. ISBN 978-90-5199-431-5.
  46. ^ Syed, Mahbubur Rahman (July 1, 2001). Multimedia Networking: Technology, Management and Applications: Technology, Management and Applications. Idea Group Inc (IGI). p. 398. ISBN 978-1-59140-005-9.
  47. ^ Wu, Chwan-Hwa (John); Irwin, J. David (April 19, 2016). Introduction to Computer Networks and Cybersecurity. CRC Press. p. 500. ISBN 978-1-4665-7214-0.
  48. ^ RFC 1263: «TCP Extensions Considered Harmful» quote: «the time to distribute the new version of the protocol to all hosts can be quite long (forever in fact). … If there is the slightest incompatibly between old and new versions, chaos can result.»
  49. ^ Lientz, B. P.; Swanson, E. B.; Tompkins, G. E. (1978). «Characteristics of Application Software Maintenance». Communications of the ACM. 21 (6): 466–471. doi:10.1145/359511.359522. S2CID 14950091.
  50. ^ Amit, Idan; Feitelson, Dror G. (2020). «The Corrective Commit Probability Code Quality Metric». arXiv:2007.10912 [cs.SE].
  51. ^ An overview of the Software Engineering Laboratory (PDF) (Report). Maryland, USA: Goddard Space Flight Center, NASA. December 1, 1994. pp41–42 Figure 18; pp43–44 Figure 21. CR-189410; SEL-94-005. Archived (PDF) from the original on November 22, 2022. Retrieved November 22, 2022. (bibliography: An overview of the Software Engineering Laboratory)
  52. ^ a b Cobb, Richard H.; Mills, Harlan D. (1990). «Engineering software under statistical quality control». IEEE Software. 7 (6): 46. doi:10.1109/52.60601. ISSN 1937-4194. S2CID 538311 – via University of Tennessee – Harlan D. Mills Collection.
  53. ^ McConnell, Steven C. (1993). Code Complete. Redmond, Washington, USA: Microsoft Press. p. 611. ISBN 9781556154843 – via archive.org. (Cobb and Mills 1990)
  54. ^ Holzmann, Gerard (March 6, 2009). «Appendix D – Software Complexity» (PDF). In Dvorak, Daniel L. (ed.). NASA Study on Flight Software Complexity (Report). NASA. pdf frame 109/264. Appendix D p.2. Archived (PDF) from the original on March 8, 2022. Retrieved November 22, 2022. (under NASA Office of the Chief Engineer Technical Excellence Initiative)
  55. ^ Ullman, Ellen (2004). The Bug. Picador. ISBN 978-1-250-00249-5.

External links[edit]

  • «Common Weakness Enumeration» – an expert webpage focus on bugs, at NIST.gov
  • BUG type of Jim Gray – another Bug type
  • Picture of the «first computer bug» at the Wayback Machine (archived January 12, 2015)
  • «The First Computer Bug!» – an email from 1981 about Adm. Hopper’s bug
  • «Toward Understanding Compiler Bugs in GCC and LLVM». A 2016 study of bugs in compilers

A software bug is an error, flaw or fault in the design, development, or operation of computer software that causes it to produce an incorrect or unexpected result, or to behave in unintended ways. The process of finding and correcting bugs is termed «debugging» and often uses formal techniques or tools to pinpoint bugs. Since the 1950s, some computer systems have been designed to deter, detect or auto-correct various computer bugs during operations.

Bugs in software can arise from mistakes and errors made in interpreting and extracting users’ requirements, planning a program’s design, writing its source code, and from interaction with humans, hardware and programs, such as operating systems or libraries. A program with many, or serious, bugs is often described as buggy. Bugs can trigger errors that may have ripple effects. The effects of bugs may be subtle, such as unintended text formatting, through to more obvious effects such as causing a program to crash, freezing the computer, or causing damage to hardware. Other bugs qualify as security bugs and might, for example, enable a malicious user to bypass access controls in order to obtain unauthorized privileges.[1]

Some software bugs have been linked to disasters. Bugs in code that controlled the Therac-25 radiation therapy machine were directly responsible for patient deaths in the 1980s. In 1996, the European Space Agency’s US$1 billion prototype Ariane 5 rocket was destroyed less than a minute after launch due to a bug in the on-board guidance computer program.[2] In 1994, an RAF Chinook helicopter crashed, killing 29; this was initially blamed on pilot error, but was later thought to have been caused by a software bug in the engine-control computer.[3] Buggy software caused the early 21st century British Post Office scandal, the most widespread miscarriage of justice in British legal history.[4]

In 2002, a study commissioned by the US Department of Commerce’s National Institute of Standards and Technology concluded that «software bugs, or errors, are so prevalent and so detrimental that they cost the US economy an estimated $59 billion annually, or about 0.6 percent of the gross domestic product».[5]

History[edit]

The Middle English word bugge is the basis for the terms «bugbear» and «bugaboo» as terms used for a monster.[6]

The term «bug» to describe defects has been a part of engineering jargon since the 1870s[7] and predates electronics and computers; it may have originally been used in hardware engineering to describe mechanical malfunctions. For instance, Thomas Edison wrote in a letter to an associate in 1878:[8]

… difficulties arise—this thing gives out and [it is] then that «Bugs»—as such little faults and difficulties are called—show themselves[9]

Baffle Ball, the first mechanical pinball game, was advertised as being «free of bugs» in 1931.[10] Problems with military gear during World War II were referred to as bugs (or glitches).[11] In a book published in 1942, Louise Dickinson Rich, speaking of a powered ice cutting machine, said, «Ice sawing was suspended until the creator could be brought in to take the bugs out of his darling.»[12]

Isaac Asimov used the term «bug» to relate to issues with a robot in his short story «Catch That Rabbit», published in 1944.

A page from the Harvard Mark II electromechanical computer’s log, featuring a dead moth that was removed from the device.

The term «bug» was used in an account by computer pioneer Grace Hopper, who publicized the cause of a malfunction in an early electromechanical computer.[13] A typical version of the story is:

In 1946, when Hopper was released from active duty, she joined the Harvard Faculty at the Computation Laboratory where she continued her work on the Mark II and Mark III. Operators traced an error in the Mark II to a moth trapped in a relay, coining the term bug. This bug was carefully removed and taped to the log book. Stemming from the first bug, today we call errors or glitches in a program a bug.[14]

Hopper was not present when the bug was found, but it became one of her favorite stories.[15] The date in the log book was September 9, 1947.[16][17][18] The operators who found it, including William «Bill» Burke, later of the Naval Weapons Laboratory, Dahlgren, Virginia,[19] were familiar with the engineering term and amusedly kept the insect with the notation «First actual case of bug being found.» This log book, complete with attached moth, is part of the collection of the Smithsonian National Museum of American History.[17]

The related term «debug» also appears to predate its usage in computing: the Oxford English Dictionarys etymology of the word contains an attestation from 1945, in the context of aircraft engines.[20]

The concept that software might contain errors dates back to Ada Lovelace’s 1843 notes on the analytical engine, in which she speaks of the possibility of program «cards» for Charles Babbage’s analytical engine being erroneous:

… an analysing process must equally have been performed in order to furnish the Analytical Engine with the necessary operative data; and that herein may also lie a possible source of error. Granted that the actual mechanism is unerring in its processes, the cards may give it wrong orders.

«Bugs in the System» report[edit]

The Open Technology Institute, run by the group, New America,[21] released a report «Bugs in the System» in August 2016 stating that U.S. policymakers should make reforms to help researchers identify and address software bugs. The report «highlights the need for reform in the field of software vulnerability discovery and disclosure.»[22] One of the report’s authors said that Congress has not done enough to address cyber software vulnerability, even though Congress has passed a number of bills to combat the larger issue of cyber security.[22]

Government researchers, companies, and cyber security experts are the people who typically discover software flaws. The report calls for reforming computer crime and copyright laws.[22]

The Computer Fraud and Abuse Act, the Digital Millennium Copyright Act and the Electronic Communications Privacy Act criminalize and create civil penalties for actions that security researchers routinely engage in while conducting legitimate security research, the report said.[22]

Terminology[edit]

While the use of the term «bug» to describe software errors is common, many have suggested that it should be abandoned. One argument is that the word «bug» is divorced from a sense that a human being caused the problem, and instead implies that the defect arose on its own, leading to a push to abandon the term «bug» in favor of terms such as «defect», with limited success.[23] Since the 1970s Gary Kildall somewhat humorously suggested to use the term «blunder».[24][25]

In software engineering, mistake metamorphism (from Greek meta = «change», morph = «form») refers to the evolution of a defect in the final stage of software deployment. Transformation of a «mistake» committed by an analyst in the early stages of the software development lifecycle, which leads to a «defect» in the final stage of the cycle has been called ‘mistake metamorphism’.[26]

Different stages of a «mistake» in the entire cycle may be described as «mistakes», «anomalies», «faults», «failures», «errors», «exceptions», «crashes», «glitches», «bugs», «defects», «incidents», or «side effects».[26]

Prevention[edit]

The software industry has put much effort into reducing bug counts.[27][28] These include:

Typographical errors[edit]

Bugs usually appear when the programmer makes a logic error. Various innovations in programming style and defensive programming are designed to make these bugs less likely, or easier to spot. Some typos, especially of symbols or logical/mathematical operators, allow the program to operate incorrectly, while others such as a missing symbol or misspelled name may prevent the program from operating. Compiled languages can reveal some typos when the source code is compiled.

Development methodologies[edit]

Several schemes assist managing programmer activity so that fewer bugs are produced. Software engineering (which addresses software design issues as well) applies many techniques to prevent defects. For example, formal program specifications state the exact behavior of programs so that design bugs may be eliminated. Unfortunately, formal specifications are impractical for anything but the shortest programs, because of problems of combinatorial explosion and indeterminacy.

Unit testing involves writing a test for every function (unit) that a program is to perform.

In test-driven development unit tests are written before the code and the code is not considered complete until all tests complete successfully.

Agile software development involves frequent software releases with relatively small changes. Defects are revealed by user feedback.

Open source development allows anyone to examine source code. A school of thought popularized by Eric S. Raymond as Linus’s law says that popular open-source software has more chance of having few or no bugs than other software, because «given enough eyeballs, all bugs are shallow».[29] This assertion has been disputed, however: computer security specialist Elias Levy wrote that «it is easy to hide vulnerabilities in complex, little understood and undocumented source code,» because, «even if people are reviewing the code, that doesn’t mean they’re qualified to do so.»[30] An example of an open-source software bug was the 2008 OpenSSL vulnerability in Debian.

Programming language support[edit]

Programming languages include features to help prevent bugs, such as static type systems, restricted namespaces and modular programming. For example, when a programmer writes (pseudocode) LET REAL_VALUE PI = "THREE AND A BIT", although this may be syntactically correct, the code fails a type check. Compiled languages catch this without having to run the program. Interpreted languages catch such errors at runtime. Some languages deliberately exclude features that easily lead to bugs, at the expense of slower performance: the general principle being that, it is almost always better to write simpler, slower code than inscrutable code that runs slightly faster, especially considering that maintenance cost is substantial. For example, the Java programming language does not support pointer arithmetic; implementations of some languages such as Pascal and scripting languages often have runtime bounds checking of arrays, at least in a debugging build.

Code analysis[edit]

Tools for code analysis help developers by inspecting the program text beyond the compiler’s capabilities to spot potential problems. Although in general the problem of finding all programming errors given a specification is not solvable (see halting problem), these tools exploit the fact that human programmers tend to make certain kinds of simple mistakes often when writing software.

Instrumentation[edit]

Tools to monitor the performance of the software as it is running, either specifically to find problems such as bottlenecks or to give assurance as to correct working, may be embedded in the code explicitly (perhaps as simple as a statement saying PRINT "I AM HERE"), or provided as tools. It is often a surprise to find where most of the time is taken by a piece of code, and this removal of assumptions might cause the code to be rewritten.

Testing[edit]

Software testers are people whose primary task is to find bugs, or write code to support testing. On some projects, more resources may be spent on testing than in developing the program.

Measurements during testing can provide an estimate of the number of likely bugs remaining; this becomes more reliable the longer a product is tested and developed.[citation needed]

Debugging[edit]

The typical bug history (GNU Classpath project data). A new bug submitted by the user is unconfirmed. Once it has been reproduced by a developer, it is a confirmed bug. The confirmed bugs are later fixed. Bugs belonging to other categories (unreproducible, will not be fixed, etc.) are usually in the minority

Finding and fixing bugs, or debugging, is a major part of computer programming. Maurice Wilkes, an early computing pioneer, described his realization in the late 1940s that much of the rest of his life would be spent finding mistakes in his own programs.[31]

Usually, the most difficult part of debugging is finding the bug. Once it is found, correcting it is usually relatively easy. Programs known as debuggers help programmers locate bugs by executing code line by line, watching variable values, and other features to observe program behavior. Without a debugger, code may be added so that messages or values may be written to a console or to a window or log file to trace program execution or show values.

However, even with the aid of a debugger, locating bugs is something of an art. It is not uncommon for a bug in one section of a program to cause failures in a completely different section,[citation needed] thus making it especially difficult to track (for example, an error in a graphics rendering routine causing a file I/O routine to fail), in an apparently unrelated part of the system.

Sometimes, a bug is not an isolated flaw, but represents an error of thinking or planning on the part of the programmer. Such logic errors require a section of the program to be overhauled or rewritten. As a part of code review, stepping through the code and imagining or transcribing the execution process may often find errors without ever reproducing the bug as such.

More typically, the first step in locating a bug is to reproduce it reliably. Once the bug is reproducible, the programmer may use a debugger or other tool while reproducing the error to find the point at which the program went astray.

Some bugs are revealed by inputs that may be difficult for the programmer to re-create. One cause of the Therac-25 radiation machine deaths was a bug (specifically, a race condition) that occurred only when the machine operator very rapidly entered a treatment plan; it took days of practice to become able to do this, so the bug did not manifest in testing or when the manufacturer attempted to duplicate it. Other bugs may stop occurring whenever the setup is augmented to help find the bug, such as running the program with a debugger; these are called heisenbugs (humorously named after the Heisenberg uncertainty principle).

Since the 1990s, particularly following the Ariane 5 Flight 501 disaster, interest in automated aids to debugging rose, such as static code analysis by abstract interpretation.[32]

Some classes of bugs have nothing to do with the code. Faulty documentation or hardware may lead to problems in system use, even though the code matches the documentation. In some cases, changes to the code eliminate the problem even though the code then no longer matches the documentation. Embedded systems frequently work around hardware bugs, since to make a new version of a ROM is much cheaper than remanufacturing the hardware, especially if they are commodity items.

Benchmark of bugs[edit]

To facilitate reproducible research on testing and debugging, researchers use curated benchmarks of bugs:

  • the Siemens benchmark
  • ManyBugs[33] is a benchmark of 185 C bugs in nine open-source programs.
  • Defects4J[34] is a benchmark of 341 Java bugs from 5 open-source projects. It contains the corresponding patches, which cover a variety of patch type.

Bug management[edit]

Bug management includes the process of documenting, categorizing, assigning, reproducing, correcting and releasing the corrected code. Proposed changes to software – bugs as well as enhancement requests and even entire releases – are commonly tracked and managed using bug tracking systems or issue tracking systems.[35] The items added may be called defects, tickets, issues, or, following the agile development paradigm, stories and epics. Categories may be objective, subjective or a combination, such as version number, area of the software, severity and priority, as well as what type of issue it is, such as a feature request or a bug.

A bug triage reviews bugs and decides whether and when to fix them. The decision is based on the bug’s priority, and factors such as project schedules. The triage is not meant to investigate the cause of bugs, but rather the cost of fixing them. The triage happens regularly, and goes through bugs opened or reopened since the previous meeting. The attendees of the triage process typically are the project manager, development manager, test manager, build manager, and technical experts.[36][37]

Severity[edit]

Severity is the intensity of the impact the bug has on system operation.[38] This impact may be data loss, financial, loss of goodwill and wasted effort. Severity levels are not standardized. Impacts differ across industry. A crash in a video game has a totally different impact than a crash in a web browser, or real time monitoring system. For example, bug severity levels might be «crash or hang», «no workaround» (meaning there is no way the customer can accomplish a given task), «has workaround» (meaning the user can still accomplish the task), «visual defect» (for example, a missing image or displaced button or form element), or «documentation error». Some software publishers use more qualified severities such as «critical», «high», «low», «blocker» or «trivial».[39] The severity of a bug may be a separate category to its priority for fixing, and the two may be quantified and managed separately.

Priority[edit]

Priority controls where a bug falls on the list of planned changes. The priority is decided by each software producer. Priorities may be numerical, such as 1 through 5, or named, such as «critical», «high», «low», or «deferred». These rating scales may be similar or even identical to severity ratings, but are evaluated as a combination of the bug’s severity with its estimated effort to fix; a bug with low severity but easy to fix may get a higher priority than a bug with moderate severity that requires excessive effort to fix. Priority ratings may be aligned with product releases, such as «critical» priority indicating all the bugs that must be fixed before the next software release.

A bug severe enough to delay or halt the release of the product is called a «show stopper»[40] or «showstopper bug».[41] It is named so because it «stops the show» – causes unacceptable product failure.[41]

Software releases[edit]

It is common practice to release software with known, low-priority bugs. Bugs of sufficiently high priority may warrant a special release of part of the code containing only modules with those fixes. These are known as patches. Most releases include a mixture of behavior changes and multiple bug fixes. Releases that emphasize bug fixes are known as maintenance releases, to differentiate it from major releases that emphasize feature additions or changes.

Reasons that a software publisher opts not to patch or even fix a particular bug include:

  • A deadline must be met and resources are insufficient to fix all bugs by the deadline.[42]
  • The bug is already fixed in an upcoming release, and it is not of high priority.
  • The changes required to fix the bug are too costly or affect too many other components, requiring a major testing activity.
  • It may be suspected, or known, that some users are relying on the existing buggy behavior; a proposed fix may introduce a breaking change.
  • The problem is in an area that will be obsolete with an upcoming release; fixing it is unnecessary.
  • «It’s not a bug, it’s a feature».[43] A misunderstanding has arisen between expected and perceived behavior or undocumented feature.

Types[edit]

In software development projects, a mistake or error may be introduced at any stage. Bugs arise from oversight or misunderstanding by a software team during specification, design, coding, configuration, data entry or documentation. For example, a relatively simple program to alphabetize a list of words, the design might fail to consider what should happen when a word contains a hyphen. Or when converting an abstract design into code, the coder might inadvertently create an off-by-one error which can be a «<» where «<=» was intended, and fail to sort the last word in a list.

Another category of bug is called a race condition that may occur when programs have multiple components executing at the same time. If the components interact in a different order than the developer intended, they could interfere with each other and stop the program from completing its tasks. These bugs may be difficult to detect or anticipate, since they may not occur during every execution of a program.

Conceptual errors are a developer’s misunderstanding of what the software must do. The resulting software may perform according to the developer’s understanding, but not what is really needed. Other types:

Arithmetic[edit]

In operations on numerical values, problems can arise that result in unexpected output, slowing of a process, or crashing.[44] These can be from a lack of awareness of the qualities of the data storage such as a loss of precision due to rounding, numerically unstable algorithms, arithmetic overflow and underflow, or from lack of awareness of how calculations are handled by different software coding languages such as division by zero which in some languages may throw an exception, and in others may return a special value such as NaN or infinity.

Control flow[edit]

Control flow bugs are those found in processes with valid logic, but that lead to unintended results, such as infinite loops and infinite recursion, incorrect comparisons for conditional statements such as using the incorrect comparison operator, and off-by-one errors (counting one too many or one too few iterations when looping).

Interfacing[edit]

  • Incorrect API usage.
  • Incorrect protocol implementation.
  • Incorrect hardware handling.
  • Incorrect assumptions of a particular platform.
  • Incompatible systems. A new API or communications protocol may seem to work when two systems use different versions, but errors may occur when a function or feature implemented in one version is changed or missing in another. In production systems which must run continually, shutting down the entire system for a major update may not be possible, such as in the telecommunication industry[45] or the internet.[46][47][48] In this case, smaller segments of a large system are upgraded individually, to minimize disruption to a large network. However, some sections could be overlooked and not upgraded, and cause compatibility errors which may be difficult to find and repair.
  • Incorrect code annotations.

Concurrency[edit]

  • Deadlock, where task A cannot continue until task B finishes, but at the same time, task B cannot continue until task A finishes.
  • Race condition, where the computer does not perform tasks in the order the programmer intended.
  • Concurrency errors in critical sections, mutual exclusions and other features of concurrent processing. Time-of-check-to-time-of-use (TOCTOU) is a form of unprotected critical section.

Resourcing[edit]

  • Null pointer dereference.
  • Using an uninitialized variable.
  • Using an otherwise valid instruction on the wrong data type (see packed decimal/binary-coded decimal).
  • Access violations.
  • Resource leaks, where a finite system resource (such as memory or file handles) become exhausted by repeated allocation without release.
  • Buffer overflow, in which a program tries to store data past the end of allocated storage. This may or may not lead to an access violation or storage violation. These are frequently security bugs.
  • Excessive recursion which—though logically valid—causes stack overflow.
  • Use-after-free error, where a pointer is used after the system has freed the memory it references.
  • Double free error.

Syntax[edit]

  • Use of the wrong token, such as performing assignment instead of equality test. For example, in some languages x=5 will set the value of x to 5 while x==5 will check whether x is currently 5 or some other number. Interpreted languages allow such code to fail. Compiled languages can catch such errors before testing begins.

Teamwork[edit]

  • Unpropagated updates; e.g. programmer changes «myAdd» but forgets to change «mySubtract», which uses the same algorithm. These errors are mitigated by the Don’t Repeat Yourself philosophy.
  • Comments out of date or incorrect: many programmers assume the comments accurately describe the code.
  • Differences between documentation and product.

Implications[edit]

The amount and type of damage a software bug may cause naturally affects decision-making, processes and policy regarding software quality. In applications such as human spaceflight, aviation, nuclear power, health care, public transport or automotive safety, since software flaws have the potential to cause human injury or even death, such software will have far more scrutiny and quality control than, for example, an online shopping website. In applications such as banking, where software flaws have the potential to cause serious financial damage to a bank or its customers, quality control is also more important than, say, a photo editing application.

Other than the damage caused by bugs, some of their cost is due to the effort invested in fixing them. In 1978, Lientz et al. showed that the median of projects invest 17 percent of the development effort in bug fixing.[49] In research in 2020 on GitHub repositories showed the median is 20%.[50]

Residual bugs in delivered product[edit]

In 1994, NASA’s Goddard Space Flight Center managed to reduce their average number of errors from 4.5 per 1000 lines of code (SLOC) down to 1 per 1000 SLOC.[51]

Another study in 1990 reported that exceptionally good software development processes can achieve deployment failure rates as low as 0.1 per 1000 SLOC.[52] This figure is iterated in literature such as Code Complete by Steve McConnell,[53] and the NASA study on Flight Software Complexity.[54] Some projects even attained zero defects: the firmware in the IBM Wheelwriter typewriter which consists of 63,000 SLOC, and the Space Shuttle software with 500,000 SLOC.[52]

Well-known bugs[edit]

A number of software bugs have become well-known, usually due to their severity: examples include various space and military aircraft crashes. Possibly the most famous bug is the Year 2000 problem or Y2K bug, which caused many programs written long before the transition from 19xx to 20xx dates to malfunction, for example treating a date such as «25 Dec 04» as being in 1904, displaying «19100» instead of «2000», and so on. A huge effort at the end of the 20th century resolved the most severe problems, and there were no major consequences.

The 2012 stock trading disruption involved one such incompatibility between the old API and a new API.

In popular culture[edit]

  • In both the 1968 novel 2001: A Space Odyssey and the corresponding 1968 film 2001: A Space Odyssey, a spaceship’s onboard computer, HAL 9000, attempts to kill all its crew members. In the follow-up 1982 novel, 2010: Odyssey Two, and the accompanying 1984 film, 2010, it is revealed that this action was caused by the computer having been programmed with two conflicting objectives: to fully disclose all its information, and to keep the true purpose of the flight secret from the crew; this conflict caused HAL to become paranoid and eventually homicidal.
  • In the English version of the Nena 1983 song 99 Luftballons (99 Red Balloons) as a result of «bugs in the software», a release of a group of 99 red balloons are mistaken for an enemy nuclear missile launch, requiring an equivalent launch response, resulting in catastrophe.
  • In the 1999 American comedy Office Space, three employees attempt (unsuccessfully) to exploit their company’s preoccupation with the Y2K computer bug using a computer virus that sends rounded-off fractions of a penny to their bank account—a long-known technique described as salami slicing.
  • The 2004 novel The Bug, by Ellen Ullman, is about a programmer’s attempt to find an elusive bug in a database application.[55]
  • The 2008 Canadian film Control Alt Delete is about a computer programmer at the end of 1999 struggling to fix bugs at his company related to the year 2000 problem.

See also[edit]

  • Anti-pattern
  • Bug bounty program
  • Glitch removal
  • Hardware bug
  • ISO/IEC 9126, which classifies a bug as either a defect or a nonconformity
  • Orthogonal Defect Classification
  • Racetrack problem
  • RISKS Digest
  • Software defect indicator
  • Software regression
  • Software rot
  • Automatic bug fixing

References[edit]

  1. ^ Mittal, Varun; Aditya, Shivam (January 1, 2015). «Recent Developments in the Field of Bug Fixing». Procedia Computer Science. International Conference on Computer, Communication and Convergence (ICCC 2015). 48: 288–297. doi:10.1016/j.procs.2015.04.184. ISSN 1877-0509.
  2. ^ «Ariane 501 — Presentation of Inquiry Board report». www.esa.int. Retrieved January 29, 2022.
  3. ^ Prof. Simon Rogerson. «The Chinook Helicopter Disaster». Ccsr.cse.dmu.ac.uk. Archived from the original on July 17, 2012. Retrieved September 24, 2012.
  4. ^ «Post Office scandal ruined lives, inquiry hears». BBC News. February 14, 2022.
  5. ^ «Software bugs cost US economy dear». June 10, 2009. Archived from the original on June 10, 2009. Retrieved September 24, 2012.{{cite web}}: CS1 maint: unfit URL (link)
  6. ^ Computerworld staff (September 3, 2011). «Moth in the machine: Debugging the origins of ‘bug’«. Computerworld. Archived from the original on August 25, 2015.
  7. ^ «bug». Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.) 5a
  8. ^ «Did You Know? Edison Coined the Term «Bug»«. August 1, 2013. Retrieved July 19, 2019.
  9. ^ Edison to Puskas, 13 November 1878, Edison papers, Edison National Laboratory, U.S. National Park Service, West Orange, N.J., cited in Hughes, Thomas Parke (1989). American Genesis: A Century of Invention and Technological Enthusiasm, 1870-1970. Penguin Books. p. 75. ISBN 978-0-14-009741-2.
  10. ^ «Baffle Ball». Internet Pinball Database. (See image of advertisement in reference entry)
  11. ^ «Modern Aircraft Carriers are Result of 20 Years of Smart Experimentation». Life. June 29, 1942. p. 25. Archived from the original on June 4, 2013. Retrieved November 17, 2011.
  12. ^ Dickinson Rich, Louise (1942), We Took to the Woods, JB Lippincott Co, p. 93, LCCN 42024308, OCLC 405243, archived from the original on March 16, 2017.
  13. ^ FCAT NRT Test, Harcourt, March 18, 2008
  14. ^ «Danis, Sharron Ann: «Rear Admiral Grace Murray Hopper»«. ei.cs.vt.edu. February 16, 1997. Retrieved January 31, 2010.
  15. ^ James S. Huggins. «First Computer Bug». Jamesshuggins.com. Archived from the original on August 16, 2000. Retrieved September 24, 2012.
  16. ^ «Bug Archived March 23, 2017, at the Wayback Machine», The Jargon File, ver. 4.4.7. Retrieved June 3, 2010.
  17. ^ a b «Log Book With Computer Bug Archived March 23, 2017, at the Wayback Machine», National Museum of American History, Smithsonian Institution.
  18. ^ «The First «Computer Bug», Naval Historical Center. But note the Harvard Mark II computer was not complete until the summer of 1947.
  19. ^ IEEE Annals of the History of Computing, Vol 22 Issue 1, 2000
  20. ^ Journal of the Royal Aeronautical Society. 49, 183/2, 1945 «It ranged … through the stage of type test and flight test and ‘debugging’ …»
  21. ^ Wilson, Andi; Schulman, Ross; Bankston, Kevin; Herr, Trey. «Bugs in the System» (PDF). Open Policy Institute. Archived (PDF) from the original on September 21, 2016. Retrieved August 22, 2016.
  22. ^ a b c d Rozens, Tracy (August 12, 2016). «Cyber reforms needed to strengthen software bug discovery and disclosure: New America report – Homeland Preparedness News». Retrieved August 23, 2016.
  23. ^ «News at SEI 1999 Archive». cmu.edu. Archived from the original on May 26, 2013.
  24. ^ Shustek, Len (August 2, 2016). «In His Own Words: Gary Kildall». Remarkable People. Computer History Museum. Archived from the original on December 17, 2016.
  25. ^ Kildall, Gary Arlen (August 2, 2016) [1993]. Kildall, Scott; Kildall, Kristin (eds.). «Computer Connections: People, Places, and Events in the Evolution of the Personal Computer Industry» (Manuscript, part 1). Kildall Family: 14–15. Archived from the original on November 17, 2016. Retrieved November 17, 2016.
  26. ^ a b «Testing experience : te : the magazine for professional testers». Testing Experience. Germany: testingexperience: 42. March 2012. ISSN 1866-5705. (subscription required)
  27. ^ Huizinga, Dorota; Kolawa, Adam (2007). Automated Defect Prevention: Best Practices in Software Management. Wiley-IEEE Computer Society Press. p. 426. ISBN 978-0-470-04212-0. Archived from the original on April 25, 2012.
  28. ^ McDonald, Marc; Musson, Robert; Smith, Ross (2007). The Practical Guide to Defect Prevention. Microsoft Press. p. 480. ISBN 978-0-7356-2253-1.
  29. ^ «Release Early, Release Often» Archived May 14, 2011, at the Wayback Machine, Eric S. Raymond, The Cathedral and the Bazaar
  30. ^ «Wide Open Source» Archived September 29, 2007, at the Wayback Machine, Elias Levy, SecurityFocus, April 17, 2000
  31. ^ Maurice Wilkes Quotes
  32. ^ «PolySpace Technologies history». christele.faure.pagesperso-orange.fr. Retrieved August 1, 2019.
  33. ^ Le Goues, Claire; Holtschulte, Neal; Smith, Edward K.; Brun, Yuriy; Devanbu, Premkumar; Forrest, Stephanie; Weimer, Westley (2015). «The ManyBugs and IntroClass Benchmarks for Automated Repair of C Programs». IEEE Transactions on Software Engineering. 41 (12): 1236–1256. doi:10.1109/TSE.2015.2454513. ISSN 0098-5589.
  34. ^ Just, René; Jalali, Darioush; Ernst, Michael D. (2014). «Defects4J: a database of existing faults to enable controlled testing studies for Java programs». Proceedings of the 2014 International Symposium on Software Testing and Analysis — ISSTA 2014. pp. 437–440. CiteSeerX 10.1.1.646.3086. doi:10.1145/2610384.2628055. ISBN 9781450326452. S2CID 12796895.
  35. ^ Allen, Mitch (May–June 2002). «Bug Tracking Basics: A beginner’s guide to reporting and tracking defects». Software Testing & Quality Engineering Magazine. Vol. 4, no. 3. pp. 20–24. Retrieved December 19, 2017.
  36. ^ Rex Black (2002). Managing The Testing Process (2Nd Ed.). Wiley India Pvt. Limited. p. 139. ISBN 9788126503131. Retrieved June 19, 2021.
  37. ^ Chris Vander Mey (August 24, 2012). Shipping Greatness — Practical Lessons on Building and Launching Outstanding Software, Learned on the Job at Google and Amazon. O’Reilly Media. pp. 79–81. ISBN 9781449336608.
  38. ^ Soleimani Neysiani, Behzad; Babamir, Seyed Morteza; Aritsugi, Masayoshi (October 1, 2020). «Efficient feature extraction model for validation performance improvement of duplicate bug report detection in software bug triage systems». Information and Software Technology. 126: 106344. doi:10.1016/j.infsof.2020.106344. S2CID 219733047.
  39. ^ «5.3. Anatomy of a Bug». bugzilla.org. Archived from the original on May 23, 2013.
  40. ^ Jones, Wilbur D. Jr., ed. (1989). «Show stopper». Glossary: defense acquisition acronyms and terms (4 ed.). Fort Belvoir, Virginia, USA: Department of Defense, Defense Systems Management College. p. 123. hdl:2027/mdp.39015061290758 – via Hathitrust.
  41. ^ a b Zachary, G. Pascal (1994). Show-stopper!: the breakneck race to create Windows NT and the next generation at Microsoft. New York: The Free Press. p. 158. ISBN 0029356717 – via archive.org.
  42. ^ «The Next Generation 1996 Lexicon A to Z: Slipstream Release». Next Generation. No. 15. March 1996. p. 41.
  43. ^ Carr, Nicholas (2018). «‘It’s Not a Bug, It’s a Feature.’ Trite—or Just Right?». wired.com.
  44. ^ Di Franco, Anthony; Guo, Hui; Cindy, Rubio-González. «A Comprehensive Study of Real-World Numerical Bug Characteristics» (PDF). Archived (PDF) from the original on October 9, 2022.
  45. ^ Kimbler, K. (1998). Feature Interactions in Telecommunications and Software Systems V. IOS Press. p. 8. ISBN 978-90-5199-431-5.
  46. ^ Syed, Mahbubur Rahman (July 1, 2001). Multimedia Networking: Technology, Management and Applications: Technology, Management and Applications. Idea Group Inc (IGI). p. 398. ISBN 978-1-59140-005-9.
  47. ^ Wu, Chwan-Hwa (John); Irwin, J. David (April 19, 2016). Introduction to Computer Networks and Cybersecurity. CRC Press. p. 500. ISBN 978-1-4665-7214-0.
  48. ^ RFC 1263: «TCP Extensions Considered Harmful» quote: «the time to distribute the new version of the protocol to all hosts can be quite long (forever in fact). … If there is the slightest incompatibly between old and new versions, chaos can result.»
  49. ^ Lientz, B. P.; Swanson, E. B.; Tompkins, G. E. (1978). «Characteristics of Application Software Maintenance». Communications of the ACM. 21 (6): 466–471. doi:10.1145/359511.359522. S2CID 14950091.
  50. ^ Amit, Idan; Feitelson, Dror G. (2020). «The Corrective Commit Probability Code Quality Metric». arXiv:2007.10912 [cs.SE].
  51. ^ An overview of the Software Engineering Laboratory (PDF) (Report). Maryland, USA: Goddard Space Flight Center, NASA. December 1, 1994. pp41–42 Figure 18; pp43–44 Figure 21. CR-189410; SEL-94-005. Archived (PDF) from the original on November 22, 2022. Retrieved November 22, 2022. (bibliography: An overview of the Software Engineering Laboratory)
  52. ^ a b Cobb, Richard H.; Mills, Harlan D. (1990). «Engineering software under statistical quality control». IEEE Software. 7 (6): 46. doi:10.1109/52.60601. ISSN 1937-4194. S2CID 538311 – via University of Tennessee – Harlan D. Mills Collection.
  53. ^ McConnell, Steven C. (1993). Code Complete. Redmond, Washington, USA: Microsoft Press. p. 611. ISBN 9781556154843 – via archive.org. (Cobb and Mills 1990)
  54. ^ Holzmann, Gerard (March 6, 2009). «Appendix D – Software Complexity» (PDF). In Dvorak, Daniel L. (ed.). NASA Study on Flight Software Complexity (Report). NASA. pdf frame 109/264. Appendix D p.2. Archived (PDF) from the original on March 8, 2022. Retrieved November 22, 2022. (under NASA Office of the Chief Engineer Technical Excellence Initiative)
  55. ^ Ullman, Ellen (2004). The Bug. Picador. ISBN 978-1-250-00249-5.

External links[edit]

  • «Common Weakness Enumeration» – an expert webpage focus on bugs, at NIST.gov
  • BUG type of Jim Gray – another Bug type
  • Picture of the «first computer bug» at the Wayback Machine (archived January 12, 2015)
  • «The First Computer Bug!» – an email from 1981 about Adm. Hopper’s bug
  • «Toward Understanding Compiler Bugs in GCC and LLVM». A 2016 study of bugs in compilers

Содержание:

Введение

Программное обеспечение, согласно ГОСТ 19781-90, – совокупность программ системы обработки информации и программных документов, необходимых для их эксплуатации.

Существует и другое, более простое определение, согласно которому программное обеспечение представляет собой совокупность компьютерных инструкций. Оно охватывает программы, подпрограммы (разделы программы) и данные. Таким образом, программное обеспечение указывает компьютеру, что делать, как, когда, в какой последовательности и как часто. Нередко программное обеспечение называют просто программой.

Проблема надежности программного обеспечения относится, похоже, к категории «вечных». В посвященной ей монографии Г.Майерса, выпущенной в 1980 году (американское издание — в 1976), отмечается, что, хотя этот вопрос рассматривался еще на заре применения вычислительных машин, в 1952 году, он не потерял актуальности до настоящего времени. Отношение к проблеме довольно выразительно сформулировано в книге Р.Гласса: «Надежность программного обеспечения — беспризорное дитя вычислительной техники». Следует далее отметить, что сама проблема надежности программного обеспечения имеет, по крайней мере, два аспекта: обеспечение и оценка (измерение) надежности. Практически вся имеющаяся литература на эту тему, включая упомянутые выше монографии, посвящена первому аспекту, а вопрос оценки надежности компьютерных программ оказывается еще более «беспризорным». Вместе с тем очевидно, что надежность программы гораздо важнее таких традиционных ее характеристик, как время исполнения или требуемый объем оперативной памяти, однако никакой общепринятой количественной меры надежности программ до сих пор не существует.

Для обеспечения надежности программ предложено множество подходов, включая организационные методы разработки, различные технологии и технологические программные средства, что требует, очевидно, привлечения значительных ресурсов. Однако отсутствие общепризнанных критериев надежности не позволяет ответить на вопрос, насколько надежнее становится программное обеспечение при соблюдении данных процедур и технологий и в какой степени оправданы расходы. Получается, что таким образом, приоритет задачи оценки надежности должен быть выше приоритета задачи ее обеспечения, чего на самом деле не наблюдается.

Цель данной работы – рассмотреть классификацию ошибок программного обеспечения для обеспечения его надежности.

Надежность программного обеспечения

Показатели качества программного обеспечения

Оценка качества программного обеспечения могут проводиться с двух позиций: с позиции положительной эффективности и непосредственной адекватности их характеристик назначению, целям создания и применения, а также с негативной позиции, возможного при этом ущерба – риска от пользования ПС или системы. Показатели качества преимущественно отражают положительный эффект от применения программного обеспечения и основная задача разработчиков проекта состоит в обеспечении высоких значений качества. Риски характеризуют возможные негативные последствия проявившихся в ходе эксплуатации ошибок или ущерб для пользователя при применении и функционировании программного обеспечения.

Согласно ГОСТ 9126[2], качество программного обеспечения – это весь объем признаков и характеристик программного обеспечения, который относится к ее способности удовлетворять установленным или предполагаемым потребностям.

Качество программного обеспечения оценивается следующими характеристиками:

  • Функциональные возможности (Functionality). Набор атрибутов, относящихся к сути набора функций и их конкретным свойствам. Функциями являются те, которые реализуют установленные или предполагаемые потребности.
  • Надежность (Reliability). Набор атрибутов относящихся к способности программного обеспечения сохранять свой уровень качества функционирования при установленных условиях за установленный период времени.
  • Практичность (Usability). Набор атрибутов, относящихся к объему работ, требуемых для использования и индивидуальной оценки такого использования определенным и предполагаемым кругом пользователей.
  • Эффективность (Efficiencies). Набор атрибутов, относящихся к соотношению между уровнем качества функционирования программного обеспечения и объемом используемых ресурсов при установленных условиях.
  • Сопровождаемость (Maintainability). Набор атрибутов, относящихся к объему работ, требуемых для проведения конкретных изменений (модификаций).
  • Мобильность (Portability). Набор атрибутов, относящихся к способности программного обеспечения быть перенесенным из одного окружения в другое.

В общем случае под ошибкой подразумевается неправильность, погрешность или неумышленное искажение объекта или процесса, что может быть причиной ущерба – риска при функционировании или применении программы. При этом предполагается, что известно правильное, эталонное состояние объекта или процесса по отношению к которому может быть определено наличие отклонения. Исходным эталоном для любого программного обеспечения являются спецификации требований заказчика или потенциального пользователя, предъявляемых к программам и ожидаемый пользователем или заказчиком эффект от использования программного обеспечения. Важной особенностью при этом является отсутствие полностью определенной программы – эталона, которой должны соответствовать текст и результаты функционирования разрабатываемой программы. Поэтому определить качество программного обеспечения и наличие ошибок в нем путем сравнения разрабатываемой программы с эталонной программой невозможно.

Риски проявляются как негативные последствия проявления ошибок в программном обеспечении в ходе его пользования и функционирования, которые могут нанести ущерб системе, в которой используется это программное обеспечение, внешней среде или пользователям этой системы в результате отклонения характеристик программного обеспечения заданных или ожидаемых пользователем или заказчиком.

Исходя из определения ошибки в программном обеспечении, приведенном выше, можно сделать вывод, что ошибки, возникающие в ходе использования программного обеспечения, могут изменять некоторые или все показатели качества. В работе рассматриваются ошибки, изменения которых влияют на надежность использования программного обеспечения.

По правилу, установленному в [2], надежность – свойство объекта осуществлять заданные функции, храня во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующим заданным режимам и условиям использования, ремонта, технического обслуживания, хранения, транспортирования.

Рис. 1. Надежность по ГОСТ 27.002 – 89

При этом надежность является комплексным свойством, которое в зависимости от функции объекта и условий его использования может включать безотказность, ремонтопригодность, долговечность, сохраняемость или некоторые сочетания данных свойств (рис. 1). Так как программное обеспечение в процессе эксплуатации не изнашивается, его поломка и ремонт в общепринятом смысле не делается, то надежность программного обеспечения имеет смысл характеризовать только с точки зрения безотказности его функционирования и возможности исправления функционирования после отказов по вызванных проявлениями ошибок.

В [3] надежность программного обеспечения предлагается характеризовать с помощью следующих характеристик (рис. 2): стабильность, устойчивость и восстанавливаемость.

Рис. 2. Надежность программного обеспечения

В этом случае стабильность и устойчивость характеризуют безотказность программного обеспечения, а восстанавливаемость – возможность восстановления функционирования программного обеспечения после его отказа. Для количественной оценки надежности программного обеспечения необходимо определить показатели надежности для каждого свойства и методику их определения (оценки).

Для оценки стабильности программного обеспечения возможно использование показателей характеризующих безотказность технических устройств [2] (рис. 3).

Рис. 3. Показатели безотказности

В большинстве случаев поток программных ошибок может быть описан негомогенным процессом Пуассона [4]. Это означает, что программные ошибки происходят в статистически независимые моменты времени, наработки подчиняются экспоненциальному распределению, а интенсивность проявления ошибок изменяется во времени. Обычно используют убывающую интенсивность проявления ошибок. Это означает, что ошибки, как только они выявлены, эффективно устраняются без введения новых ошибок. Главная цель анализа надежности программного обеспечения заключается в том, чтобы определить форму функции интенсивности проявления ошибок и оценить ее параметры по наблюдаемым данным. Как только функция интенсивности проявления ошибок определена, могут быть найдены такие показатели надежности как:

  • общее количество ошибок;
  • количество остающихся ошибок;
  • время до проявления следующей ошибки;
  • вероятность безошибочной работы;
  • интенсивность проявления ошибок;
  • остаточное время испытаний (до принятия решения);
  • максимальное количество ошибок (относительно срока службы).

При этом следует различать понятия ошибка и отказ. Применительно к надежности программного обеспечения ошибка это погрешность или искажение кода программы, неумышленно внесенные в нее в процессе разработки, которые в ходе функционирования этой программы могут вызвать отказ или снижение эффективности функционирования. Под отказом в общем случае понимают событие, заключающееся в нарушении работоспособности объекта [2]. Состояние объекта, при котором значения всех параметров характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно – технической и (или) конструкторской (проектной) документации – называется работоспособным. При этом критерии отказов, как признаки или совокупность признаков нарушения работоспособного состояния программного обеспечения, должны определяться исходя из его предназначения в нормативно – технической и (или) конструкторской (проектной) документации.

В общем случае отказ программного обеспечения можно определить как:

  • прекращение функционирования программы (искажения нормального хода ее выполнения, зацикливание) на время превышающее заданный порог;
  • прекращение функционирования программы (искажения нормального хода ее выполнения, зацикливание) на время не превышающее заданный порог, но с потерей всех или части обрабатываемых данных;
  • прекращение функционирования программы (искажения нормального хода ее выполнения, зацикливание) потребовавшее перезагрузки ЭВМ, на которой функционирует программное обеспечение.

При этом исходя из [2], все отказы в программном обеспечении следует трактовать как сбои (самоустраняющиеся отказы или однократные отказы, устраняемые незначительным вмешательством оператора), поскольку восстановление работоспособного состояния программного обеспечения может произойти без вмешательства оператора (перезагрузка ЭВМ не требуется), либо при участии оператора или эксплуатирующего персонала (перезагрузка ЭВМ необходима).

Приведенные выше критерии отказов приводят к необходимости анализа временных характеристик функционирования программы и динамических характеристик потребителей данных, полученных в ходе функционирования программного обеспечения. Временная зона перерыва нормальной выдачи информации и потери работоспособности, которую следует рассматривать как зону сбоя (отказа), тем шире, чем более инертный объект находится под воздействием данных, полученным в ходе работы программы. Пороговое время восстановления работоспособного состояния системы, при превышении которого следует соответствующему потребителю (абоненту).

Для любого потребителя данных существует допустимое время отсутствия данных от программы, при котором его характеристики находятся в допустимых пределах. Исходя из этого времени, можно установить границы временной зоны, которая разделяет работоспособное и неработоспособное состояние программного обеспечения и позволяет использовать данные критерии отказов.

Из приведенного выше определения программной ошибки с точки зрения надежности, можно сделать вывод о том, что ошибки, при их проявлении, не всегда вызывают отказ программного обеспечения и каждую ошибку можно характеризовать условной вероятностью возникновения отказа при проявлении этой ошибки. Следует также отметить, что само по себе наличие ошибки в исходном коде не определяет надежность программы до тех пор, пока не произойдет проявления этой ошибки, поэтому пользоваться для оценки надежности программного обеспечения только показателями характеризующие общее количество ошибок в программе, количество оставшихся ошибок и максимального количества ошибок нельзя.

В [5] стабильность предлагается оценивать вероятностью безотказной работы, которая оценивается исходя из модели относительной частоты, при этом применение ее ограничено периодом эксплуатации программного обеспечения, что не всегда приемлемо, поскольку надежность объекта, как правило, необходимо оценивать не только в процессе его эксплуатации, но и до начала эксплуатации этого объекта. Ограничение модели относительной частоты вызвано тем, что в этой модели не учитываются процессы тестирования и отладки, а конкретно то, что при возникновении отказа программного обеспечения, ошибка, вызвавшая этот отказ, исправляется.

Наиболее приемлемыми показателями характеризующими стабильность (безотказность) программного обеспечения представляются показатели сходные с показателями безотказности технических систем: вероятность безотказной работы, интенсивность отказов, и среднее время наработки на отказ. Эти показатели взаимосвязаны и, зная один из них, можно определить другие [2]. При определении этих показателей в большинстве случаев можно исходить из модели надежности, предполагающей, что интенсивность проявления ошибок убывает по мере исправления этих ошибок, время между проявлениями ошибок распределено экспоненциально, а интенсивность проявления ошибок постоянна между двумя соседними проявлениями ошибок. Применение такой модели надежности программного обеспечения позволит оценить надежность программного обеспечения во время тестирования и отладки.

Устойчивость, как свойство или совокупность свойств программного обеспечения, характеризующие его возможность поддерживать приемлемый уровень функционирования при проявлениях ошибок в нем, можно оценивать условной вероятностью безотказной работы при проявлении ошибки. Согласно [5] устойчивость оценивается с помощью трех метрик, включающих двадцать оценочных элементов (рис. 4). Результаты оценки каждой метрики определяются результатами оценки определяющих ее оценочных элементов, а результат оценки устойчивости определяются результатами соответствующих ему метрик. Программное обеспечение по каждому из оценочных элементов оценивается группой экспертов – специалистов, компетентных в решении данной задачи, на базе их опыта и интуиции. Для оценочных элементов принимается единая шкала оценки от 0 до 1.

Недостатком такого подхода является одинаковая оценка устойчивости для всех возможных ошибок. Поскольку вероятность возникновения отказа при проявлении разных ошибок может быть разной, возникает необходимость разделения ошибок на несколько категорий. Признаком, по которому в этом случае можно относить ошибки к той или иной категории, можно считать тяжесть ошибки. Под тяжестью ошибки в этом случае следует понимать количественную или качественную оценку вероятного ущерба при проявлении этой ошибки [6], а если говорить о надежности, то оценку вероятности возникновения отказа при проявлении ошибки. При этом категорией тяжести последствий ошибки будет являться классификационная группа ошибок по тяжести их последствий, характеризуемая определенным сочетанием качественных и/или количественных учитываемых составляющих ожидаемого (вероятного) отказа или нанесенного отказом ущерба.

Рис. 4. Метрики и оценочные элементы устойчивости программного обеспечения по ГОСТ 28195 – 89

В качестве показателя степени тяжести ошибки, позволяющего дать количественную оценку тяжести проявления последствий ошибки целесообразно использовать условную вероятность отказа и его возможных последствий при проявлении ошибок разных категорий. Для программного обеспечения, создаваемого для систем управления, потеря работоспособности которых может повлечь за собой катастрофические последствия, возможные категории тяжести ошибок приведены в таблице 1.

Таблица 1. Категории тяжести ошибки в программном обеспечении, нарушение работоспособности которого могут привести к катастрофическим последствиям

Для программного обеспечения общего применения или программного обеспечения систем, нарушение работоспособности которых не представляет угрозы жизни людей и не приводит к разрушению самой системы, возможные категории тяжести приведены в таблице 2.

Таблица 2. Категории тяжести ошибки в программном обеспечении, нарушение работоспособности которого не приводят к катастрофическим последствиям

Оценку степени тяжести ошибки как условной вероятности возникновения отказа (последствий этого отказа), можно производить согласно [5], используя метрики и оценочные элементы, характеризующие устойчивость программного обеспечения. При этом оценка производится для каждой ошибки в отдельности, а не для всего программного обеспечения. Далее исходя из проведенных оценок возможно определение устойчивости программного обеспечения к проявлениям ошибок каждой из категорий.

Восстанавливаемость программного обеспечения, как свойство или совокупность свойств характеризующих способность программного обеспечения восстановления своего уровня пригодности и восстановления данных, непосредственно поврежденных вследствии проявлении ошибки (отказа), характеризуется полнотой и длительностью восстановления функционирования программ в процессе перезапуска или перезагрузки ЭВМ. В [5] восстанавливаемость предлагается оценивать по среднему времени восстановления. При этом следует учитывать, что время восстановления функционирования программного обеспечения складывается не только из времени потребного для перезагрузки ЭВМ и загрузки самого программного обеспечения, но и из времени необходимого для восстановления данных и это время в ряде случаев может значительно превышать время перезагрузки.

Показатели надежности программного обеспечения в значительной степени адекватны аналогичным характеристикам, принятых для других технических систем. Наиболее широко используется показатель наработки на отказ. Наработка на отказ – это отношение суммарной наработки объекта к математическому ожиданию числа его отказов в течении этой наработки. Для программного обеспечения использование данного показателя затруднено, в силу особенностей тестирования и отладки программного обеспечения (ошибка вызвавшая отказ, как правило, исправляется и больше не повторяется). Поэтому целесообразно использовать показатель средней наработки до отказа – математического ожидания времени функционирования программного обеспечения до отказа. При использовании модели надежности программного обеспечения предполагающей экспоненциальное распределение времени между отказами, среднее время наработки до отказа равно величине обратной интенсивности отказов. Интенсивность отказов можно оценить исходя из оценок стабильности и устойчивости программного обеспечения. Обобщение характеристик отказов и восстановлений производится в показателе коэффициент готовности [2]. Коэффициент готовности программного обеспечения это вероятность того, что программное обеспечение окажется в работоспособном состоянии в произвольный момент времени. Значение коэффициента готовности соответствует доле времени полезной работы программного обеспечения на достаточно большом интервале времени, содержащем отказы и восстановления.

Источники ошибок программного обеспечения

Источниками ошибок в программном обеспечении являются специалисты – конкретные люди с их индивидуальными особенностями, квалификацией, талантом и опытом. Вследствие этого плотность потоков ошибок и размеры необходимых корректировок в модулях и компонентах при разработке и сопровождении программного обеспечения могут различаться в десятки раз. Однако в крупных комплексах программ статистика и распределение ошибок и типов выполняемых изменений, необходимых для их исправления, для коллективов разных специалистов нивелируются и проявляются общие закономерности, которые могут использоваться как ориентиры при выявлении ошибок и их систематизации. Этому могут помогать оценки типовых ошибок, модификаций и корректировок путем их накопления и обобщения по опыту создания определенных классов программного обеспечения.

Основными причинами ошибок программного обеспечения являются:

  • Большая сложность программного обеспечения, например, по сравнению с аппаратурой ЭВМ.
  • Неправильный перевод информации из одного представления в другое на макро и микро уровнях. На макро уровне, уровне проекта, осуществляется передача и преобразование различных видов информации между организациями, подразделениями и конкретными исполнителями на всех этапах жизненного цикла ПО. На микро уровне, уровне исполнителя, производится преобразование информации по схеме: получить информацию, запомнить, выбрать из памяти, воспроизвести информацию.

Источниками ошибок программного обеспечения являются:

Внутренние: ошибки проектирования, ошибки алгоритмизации, ошибки программирования, недостаточное качество средств защиты, ошибки в документации.

Внешние: ошибки пользователей, сбои и отказы аппаратуры ЭВМ, искажение информации в каналах связи, изменения конфигурации системы.

  • Признаками выявления ошибок являются:
  • Преждевременное окончание программы.
  • Увеличение времени выполнения программы.
  • Нарушение последовательности вызова отдельных подпрограмм.

Ошибки выхода информации, поступающей от внешних источников, между входной информацией возникает не соответствие из-за: искажение данных на первичных носителях, сбои и отказы в аппаратуре, шумы и сбои в каналах связи, ошибки в документации.

Ошибки, скрытые в самой программе: ошибка вычислений, ошибка ввода-вывода, логические ошибки, ошибка манипулирования данными, ошибка совместимости, ошибка сопряжения.

Искажения входной информации, подлежащей обработке: искажения данных на первичных носителях информации; сбои и отказы в аппаратуре ввода данных с первичных носителей информации; шумы и сбои в каналах связи при передачи сообщений по линиям связи; сбои и отказы в аппаратуре передачи или приема информации; потери или искажения сообщений в буферных накопителях вычислительных систем; ошибки в документировании; используемой для подготовки ввода данных; ошибки пользователей при подготовки исходной информации.

Неверные действия пользователя:

  • Неправильная интерпретация сообщений.
  • Неправильные действия пользователя в процессе диалога с программным обеспечением.
  • Неверные действия пользователя или по-другому, их можно назвать ошибками пользователя, которые возникают вследствие некачественной программной документации: неверные описания возможности программ; неверные описания режимов работы; неверные описания форматов входной и выходной информации; неверные описания диагностических сообщений.

Неисправности аппаратуры установки: приводят к нарушениям нормального хода вычислительного процесса; приводят к искажениям данных и текстов программ в основной и внешней памяти.

Итак, при рассмотрении основных причин возникновения отказа и сбоев программного обеспечения можно сказать, что эти знания позволяют своевременно принимать необходимые меры по недопущению отказов и сбоев программного обеспечения.

Виды ошибок программного обеспечения

Характеристика основных видов ошибок программного обеспечения

Рассмотрим классификацию ошибок по месту их возникновения, которая рассмотрена в книге С. Канера «Тестирование программного обеспечения». Фундаментальные концепции менеджмента бизнес-приложений. Главным критерием программы должно быть ее качество, которое трактуется как отсутствие в ней недостатков, а также сбоев и явных ошибок. Недостатки программы зависят от субъективной оценкой ее качества потенциальным пользователем. При этом авторы скептически относятся к спецификации и утверждают, что даже при ее наличии, выявленные на конечном этапе недостатки говорят о ее низком качестве. При таком подходе преодоление недостатков программы, особенно на заключительном этапе проектирования, может приводить к снижению надежности. Очевидно, что для разработки ответственного и безопасного программного обеспечения (ПО) такой подход не годится, однако проблемы наличия ошибок в спецификациях, субъективного оценивания пользователем качества программы существуют и не могут быть проигнорированы. Должна быть разработана система некоторых ограничений, которая бы учитывала эти факторы при разработке и сертификации такого рода ПО. Для обычных программ все проблемы, связанные с субъективным оцениванием их качества и наличием ошибок, скорее всего неизбежны.

В краткой классификации выделяются следующие ошибки.

  • ошибки пользовательского интерфейса.
  • ошибки вычислений.
  • ошибки управления потоком.
  • ошибки передачи или интерпретации данных.
  • перегрузки.
  • контроль версий.
  • ошибка выявлена и забыта.
  • ошибки тестирования.

1. Ошибки пользовательского интерфейса.

Многие из них субъективны, т.к. часто они являются скорее неудобствами, чем «чистыми» логическими ошибками. Однако они могут провоцировать ошибки пользователя программы или же замедлять время его работы до неприемлемой величины. В результате чего мы будем иметь ошибки информационной системы (ИС) в целом. Основным источником таких ошибок является сложный компромисс между функциональностью программы и простотой обучения и работы пользователя с этой программой. Проблему надо начинать решать при проектировании системы на уровне ее декомпозиции на отдельные модули, исходя из того, что вряд ли удастся спроектировать простой и удобный пользовательский интерфейс для модуля, перегруженного различными функциями. Кроме того, необходимо учитывать рекомендации по проектированию пользовательских интерфейсов. На этапе тестирования ПО полезно предусмотреть встроенные средства тестирования, которые бы запоминали последовательности действий пользователя, время совершения отдельных операций, расстояния перемещения курсора мыши. Кроме этого возможно применение гораздо более сложных средств психо-физического тестирования на этапе тестирования интерфейса пользователя, которые позволят оценить скорость реакции пользователя, частоту этих реакций, утомляемость и т.п. Необходимо отметить, что такие ошибки очень критичны с точки зрения коммерческого успеха разрабатываемого ПО, т.к. они будут в первую очередь оцениваться потенциальным заказчиком.

2.Ошибки вычислений.

Выделяют следующие причины возникновения таких ошибок:

  • неверная логика (может быть следствием, как ошибок проектирования, так и кодирования);
  • неправильно выполняются арифметические операции (как правило — это ошибки кодирования);
  • неточные вычисления (могут быть следствием, как ошибок проектирования, так и кодирования). Очень сложная тема, надо выработать свое отношение к ней с точки зрения разработки безопасного ПО.

Выделяются подпункты: устаревшие константы; ошибки вычислений; неверно расставленные скобки; неправильный порядок операторов; неверно работает базовая функция; переполнение и потеря значащих разрядов; ошибки отсечения и округления; путаница с представлением данных; неправильное преобразование данных из одного формата в другой; неверная формула; неправильное приближение.

3.Ошибки управления потоком.

В этот раздел относится все то, что связано с последовательностью и обстоятельствами выполнения операторов программы.

Выделяются подпункты:

  • очевидно неверное поведение программы;
  • переход по GOTO;
  • логика, основанная на определении вызывающей подпрограммы;
  • использование таблиц переходов;
  • выполнение данных (вместо команд). Ситуация возможна из-за ошибок работы с указателями, отсутствия проверок границ массивов, ошибок перехода, вызванных, например, ошибкой в таблице адресов перехода, ошибок сегментирования памяти.

4.Ошибки обработки или интерпретации данных.

Выделяются подпункты:

  • проблемы при передаче данных между подпрограммами (сюда включены несколько видов ошибок: параметры указаны не в том порядке или пропущены, несоответствие типов данных, псевдонимы и различная интерпретация содержимого одной и той же области памяти, неправильная интерпретация данных, неадекватная информация об ошибке, перед аварийным выходом из подпрограммы не восстановлено правильное состояние данных, устаревшие копии данных, связанные переменные не синхронизированы, локальная установка глобальных данных (имеется в виду путаница локальных и глобальных переменных), глобальное использование локальных переменных, неверная маска битового поля, неверное значение из таблицы);
  • границы расположения данных (сюда включены несколько видов ошибок: не обозначен конец нуль-терминированной строки, неожиданный конец строки, запись/чтение за границами структуры данных или ее элемента, чтение за пределами буфера сообщения, чтение за пределами буфера сообщения, дополнение переменных до полного слова, переполнение и выход за нижнюю границу стека данных, затирание кода или данных другого процесса);
  • проблемы с обменом сообщений (сюда включены несколько видов ошибок: отправка сообщения не тому процессу или не в тот порт, ошибка распознавания полученного сообщения, недостающие или несинхронизированные сообщения, сообщение передано только N процессам из N+1, порча данных, хранящихся на внешнем устройстве, потеря изменений, не сохранены введенные данные, объем данных слишком велик для процесса-получателя, неудачная попытка отмены записи данных).

5.Повышенные нагрузки.

При повышенных нагрузках или нехватке ресурсов могут возникнуть дополнительные ошибки. Выделяются подпункты: требуемый ресурс недоступен; не освобожден ресурс; нет сигнала об освобождении устройства; старый файл не удален с накопителя; системе не возвращена неиспользуемая память; лишние затраты компьютерного времени; нет свободного блока памяти достаточного размера; недостаточный размер буфера ввода или очереди; не очищен элемент очереди, буфера или стека; потерянные сообщения; снижение производительности; повышение вероятности ситуационных гонок; при повышенной нагрузке объем необязательных данных не сокращается; не распознается сокращенный вывод другого процесса при повышенной загрузке; не приостанавливаются задания с низким приоритетом.

7.Ошибки тестирования.

Являются ошибками сотрудников группы тестирования, а не программы. Выделяются подпункты:

  • пропущенные ошибки в программе;
  • не замечена проблема (отмечаются следующие причины этого: тестировщик не знает, каким должен быть правильный результат, ошибка затерялась в большом объеме выходных данных, тестировщик не ожидал такого результата теста, тестировщик устал и невнимателен, ему скучно, механизм выполнения теста настолько сложен, что тестировщик уделяет ему больше внимания, чем результатам);
  • пропуск ошибок на экране;
  • не документирована проблема (отмечаются следующие причины этого: тестировщик неаккуратно ведет записи, тестировщик не уверен в том, что данные действия программы являются ошибочными, ошибка показалась слишком незначительной, тестировщик считает, что ошибку не будет исправлена, тестировщика просили не документировать больше подобные ошибки).

8.Ошибка выявлена и забыта.

Описываются ошибки использования результатов тестирования. По-моему, раздел следует объединить с предыдущим. Выделяются подпункты: не составлен итоговый отчет; серьезная проблема не документирована повторно; не проверено исправление; перед выпуском продукта не проанализирован список нерешенных проблем.

Необходимо заметить, что изложенные в 2-х последних разделах ошибки тестирования требуют для устранения средств автоматизации тестирования и составления отчетов. В идеальном случае, эти средства должны быть проинтегрированы со средствами и технологиями проектирования ПО. Они должны стать важными инструментальными средствами создания высококачественного ПО. При разработке средств автоматизированного тестирования следует избегать ошибок, которые присущи любому ПО, поэтому нужно потребовать, чтобы такие средства обладали более высокими характеристиками надежности, чем проверяемое с их помощью ПО.

Меры по повышению надежности программного обеспечения

Лучшим и самым оптимальным способом (если не брать во внимание научно-технический прогресс и постоянное развитие IT-технологий, которые способствуют повышению качества характеристик программ) повышения надёжности программного обеспечения является строжайший контроль продукции на выходе с предприятия.

В последние годы сформировалась комплексная система управления качеством продукции TQM (Totaly Quality Management), которая концептуально близка к предшествующей более общей системе на основе стандартов ИСО серии 9000. Система ориентирована на удовлетворение требований потребителя, на постоянное улучшение процессов производства или проектирования, на управление процессами со стороны руководства предприятия на основе фактического состояния проекта. Основные достижения TQM состоят в углублении и дифференциации требований потребителей по реализации процессов, их взаимодействию и обеспечению качества продукции. Системный подход поддержан рядом специализированных инструментальных средств, ориентированных на управление производством продукции. Поэтому эта система пока не находит применения в области обеспечения качества жизненного цикла программных средств.

Применение этого комплекса может служить основой для систем обеспечения качества программных средств, однако требуется корректировка, адаптация или исключение некоторых положений стандартов применительно к принципиальным особенностям технологий и характеристик этого вида продукции. Кроме того, при реализации систем качества необходимо привлечение ряда стандартов, формально не относящихся к этой серии и регламентирующих показатели качества, жизненный цикл, верификацию и тестирование, испытания, документирование и другие особенности комплексов программ.

Активные методы повышения надежности ПС совершенствуются за счет развития средств автоматизации тестирования программ. Сложность ПС и высокие требования по их надежности требуют выработки принципов структурного построения сложных программных средств, обеспечивающих гибкость модификации ПС и эффективность их отладки. К таким принципам в работе относят:

  • модульность и строгую иерархию в структурном построении программ;
  • унификацию правил проектирования, структурного построения и взаимодействия компонент ПС;
  • унификацию правил организации межмодульного интерфейса;
  • поэтапный контроль полноты и качества решения функциональных задач.

Заключение

Несмотря на очевидную актуальность, вопрос надежности программного обеспечения не привлекает должного внимания. Вместе с тем, даже поверхностный анализ проблемы с теоретико-вероятностной точки зрения позволяет выявить некоторые закономерности.

В заключение можно подвести итог:

  • В программном обеспечении имеется ошибка, если оно не выполняет того, что пользователю разумно от него ожидать;
  • Отказ программного обеспечения — это появление в нем ошибки;
  • Надежность программного обеспечения — есть вероятность его работы без отказов в течении определенного периода времени, рассчитанного с учетом стоимости для пользователя каждого отказа.

Из данных определений можно сделать важные выводы:

  • Надежность программного обеспечения является не только внутренним свойством программы;
  • Надежность программного обеспечения — это функция как самого ПО, так и ожиданий (действий) его пользователей.

Основными причинами ошибок программного обеспечения являются:

  • большая сложность ПО, например, по сравнению с аппаратурой ЭВМ;
  • неправильный перевод информации из одного представления в другое.

Список использованной литературы

  1. ГОСТ 27.002 – 89. Надежность в технике. Основные понятия. Термины и определения. // М.: Издательство стандартов, 1990.
  2. ГОСТ Р ИСО/МЭК 9126 – 93. Информационная технология. Оценка программной продукции. Характеристики качества и руководства по их применению. // М.: Издательство стандартов, 1994.
  3. ГОСТ 51901.5 – 2005. Менеджмент риска. Руководство по применению методов анализа надежности. // М.: Издательство стандартов, 2007.
  4. ГОСТ 28195 – 89. Оценка качества программных средств. Общие положения. // М.: Издательство стандартов, 1989.
  5. ГОСТ 27.310 – 95. Надежность в технике. Анализ видов, последствий и критичности отказов. // М.: Издательство стандартов, 1995.
  6. ГОСТ 51901.12 – 2007. Менеджмент риска. Метод анализа видов и последствий отказов. // М.: Издательство стандартов, 2007.
  7. Братчиков И.Л. «Синтаксис языков программирования» Наука, М.:Инси, 2005. — 344 с.
  8. Дейкстра Э. Заметки по структурному программированию.- М.:Дрофа, 2006, — 455 с.
  9. Ершов А.П. Введение в теоретическое программирование.- М.:РОСТО, 2008, — 288 с.
  10. Кнут Д. Искусство программирования для ЭВМ, т.1. М.: 2006, 735 с.
  11. Коган Д.И., Бабкина Т.С. «Основы теории конечных автоматов и регулярных языков. Учебное пособие» Издательство ННГУ, 2002. — 97 с.
  12. Липаев В. В. / Программная инженерия. Методологические основы. // М.: ТЕИС, 2006.
  13. Майерс Г. Надежность программного обеспечения.- М.:Дрофа, 2008, — 360 с.
  14. Рудаков А. В. Технология разработки программных продуктов. М.:Издательский центр «Академия», 2006. — 306 с.
  15. Тыугу, Э.Х. Концептуальное программирование. — М.: Наука, 2001, — 256 с.
  16. Хьюз Дж., Мичтом Дж. Структурный подход к программированию.-М.:Мир, 2000, — 278 с.

СПИСОК ДЛЯ ТРЕНИРОВКИ ССЫЛОК

  • Разработка клиент-серверного приложения по работе с базой данных «Локомотивное депо «
  • Анализ особенности управления мотивацией сотрудников на предприятиях гостиничного и ресторанного бизнеса на примере АО ТГК «Вега»
  • СУЩНОСТЬ И СОДЕРЖАНИЕ БАНКОВСКОГО МАРКЕТИНГА
  • Оформление и ведение учета операций с сомнительными, неплатежеспособными и имеющими признаки подделки денежными знаками
  • Виды, понятия, задачи оплаты труда на предприятии
  • ценообразование на услуги фитнес-клубов (Российский рынок фитнес-услуг)
  • Место и роль спортивной индустрии в экономике России (Теоретические аспекты индустрии спорта)
  • Влияние кадровой стратегии на работу службы персонала. (СОДЕРЖАНИЕ И СУЩНОСТЬ КАДРОВОЙ СТРАТЕГИИ)
  • Эффективный лидер и его команда (Виды лидерства)
  • Межфирменная научно-техническая кооперация
  • Прогнозирование эффективности реальных инвестиций коммерческого банка. Анализ инвестиционной деятельности ПАО «Сбербанк»
  • Страхование и его государственное регулирование в РФ

Ошибки в программировании – дело обычное, хоть и неприятное. В данной статье будет рассказано о том, какими бывают ошибки (баги), а также что собой представляют исключения.

Определение

Ошибка в программировании (или так называемый баг) – это ситуация у разработчиков, при которой определенный код вследствие обработки выдает неверный результат. Причин данному явлению множество: неисправность компилятора, сбои интерфейса, неточности и нарушения в программном коде.

Баги обнаруживаются чаще всего в момент отладки или бета-тестирования. Реже – после итогового релиза готовой программы. Вот несколько вариантов багов:

  1. Появляется сообщение об ошибке, но приложение продолжает функционировать.
  2. ПО вылетает или зависает. Никаких предупреждений или предпосылок этому не было. Процедура осуществляется неожиданно для пользователя. Возможен вариант, при котором контент перезапускается самостоятельно и непредсказуемо.
  3. Одно из событий, описанных ранее, сопровождается отправкой отчетов разработчикам.

Ошибки в программах могут привести соответствующее приложение в негодность, а также к непредсказуемым алгоритмам функционирования. Желательно обнаруживать баги на этапе ранней разработки или тестирования. Лишь в этом случае программист сможет оперативно и относительно недорого внести необходимые изменения в код для отладки ПО.

История происхождения термина

Баг – слово, которое используется разработчиками в качестве сленга. Оно произошло от слова «bug» – «жук». Точно неизвестно, откуда в программировании и IT возник соответствующий термин. Существуют две теории:

  1. 9 сентября 1945 года ученые из Гарварда тестировали очередную вычислительную машину. Она называлась Mark II Aiken Relay Calculator. Устройство начало работать с ошибками. Когда его разобрали, то ученые заметили мотылька, застрявшего между реле. Тогда некая Грейс Хоппер назвала произошедший сбой упомянутым термином.
  2. Слово «баг» появилось задолго до появления Mark II. Термин использовался Томасом Эдисоном и указывал на мелкие недочеты и трудности. Во время Второй Мировой войны «bugs» называли проблемы с радарной электроникой.

Второй вариант кажется более реалистичным. Это факт, который подтвержден документально. Со временем научились различать различные типы багов в IT. Далее они будут рассмотрены более подробно.

Как классифицируют

Ошибки работы программ разделяются по разным факторам. Классификация у рядовых пользователей и разработчиков различается. То, что для первых – «просто программа вылетела» или «глючит», для вторых – огромная головная боль. Но существует и общепринятая классификация ошибок. Пример – по критичности:

  1. Серьезные неполадки. Это нарушения работоспособности приложения, которые могут приводить к непредвиденным крупным изменениям.
  2. Незначительные ошибки в программах. Чаще всего не оказывают серьезного воздействия на функциональность ПО.
  3. Showstopper. Критические проблемы в приложении или аппаратном обеспечении. Приводят к выходу программы из строя почти всегда. Для примера можно взять любое клиент-серверное приложение, в котором не получается авторизоваться через логин и пароль.

Последний вариант требует особого внимания со стороны программистов. Их стараются обнаружить и устранить в первую очередь. Критические ошибки могут отложить релиз исходной программы на неопределенный срок.

Также существуют различные виды сбоев в плане частоты проявления: постоянные и «разовые». Вторые встречаются редко, чаще – при определенных настройках и действиях со стороны пользователя. Первые появляются независимо от используемой платформы и выполненных клиентом манипуляций.

Иногда может получиться так, что ошибка возникает только на устройстве конкретного пользователя. В данном случае устранение неполадки требует индивидуального подхода. Иногда – полной замены компьютера. Связано это с тем, что никто не будет редактировать исходный код, когда он «глючит» только у одного пользователя.

Виды

Существуют различные типы ошибок в программах в зависимости от типовых условий использования приложений. Пример – сбои, которые возникают при возрастании нагрузки на оперативную память или центральный процессор устройства. Есть баги граничных условий, сбоя идентификаторов, несовместимости с архитектурой процессора (наиболее распространенная проблема на мобильных устройствах).

Разработчики выделяют следующие типы ошибок по уровню сложности:

  1. «Борбаг» – «стабильная» неполадка. Она легко обнаруживается на этапе разработки и компилирования. Иногда – во время тестирования наработкой исходной программы.
  2. «Гейзенбаг» – баги с поддержкой изменения свойств, включая зависимость от среды, в которой было запущено приложение. Сюда относят периодические неполадки в программах. Они могут исчезать на некоторое время, но через какой-то промежуток вновь дают о себе знать.
  3. «Мандельбаг» – непредвиденные ошибки. Обладают энтропийным поведением. Предсказать, к чему они приведут, практически невозможно.
  4. «Шрединбаг» – критические неполадки. Приводят к тому, что злоумышленники могут взломать программу. Данный тип ошибок обнаружить достаточно трудно, потому что они никак себя не проявляют.

Также есть классификация «по критичности». Тут всего два варианта – warning («варнинги») и критические весомые сбои. Первые сопровождаются характерными сообщениями и отчетами для разработчиков. Они не представляют серьезной опасности для работоспособности приложения. При компилировании такие сбои легко исправляются. В отдельных случаях компилятор справляется с этой задачей самостоятельно. А вот критические весомые сбои говорят сами за себя. Они приводят к серьезным нарушениям ПО. Исправляются обычно путем проработки логики и значительных изменений программного кода.

Типы багов

Ошибки в программах бывают:

  • логическими;
  • синтаксическими;
  • взаимодействия;
  • компиляционные;
  • ресурсные;
  • арифметические;
  • среды выполнения.

Это – основная классификация сбоев в приложениях и операционных системах. Логические, синтаксические и «среды выполнения» встречаются в разработке чаще остальных. На них будет сделан основной акцент.

Ошибки синтаксиса

Синтаксические баги распространены среди новичков. Они относятся к категории «самых безобидных». С данной категорией ошибок способны справиться компиляторы тех или иных языков. Соответствующие инструменты показывают, где допущена неточность. Остается лишь понять, как исправить ее.

Синтаксические ошибки – ошибки синтаксиса, правил языка. Вот пример в Паскале:

Код написан неверно. Согласно действующим синтаксическим нормам, в Pascal в первой строчке нужно в конце поставить точку с запятой.

Логические

Тут стоит выделить обычные и арифметические типы. Вторые возникают, когда программе при работе необходимо вычислить много переменных, но на каком-то этапе расчетов возникают неполадки или нечто непредвиденное. Пример – получение в результатах «бесконечности».

Логические сбои обычного типа – самые сложные и неприятные. Их тяжелее всего обнаружить и исправить. С точки зрения языка программа может быть написана идеально, но работать неправильно. Подобное явление – следствие логической ошибки. Компиляторы их не обнаруживают.

Выше – пример логической ошибки в программе. Тут:

  1. Происходит сравнение значения i с 15.
  2. На экран выводится сообщение, если I = 15.
  3. В заданном цикле i не будет равно 15. Связано это с диапазоном значений – от 1 до 10.

Может показаться, что ошибка безобидная. В приведенном примере так и есть, но в более крупных программах такое явление приводит к серьезным последствиям.

Время выполнения

Run-time сбои – это ошибка времени выполнения программы. Встречается даже когда исходный код лишен логических и синтаксических ошибок. Связаны такие неполадки с ходом выполнения программного продукта. Пример – в процессе функционирования ПО был удален файл, считываемый программой. Если игнорировать подобные неполадки, можно столкнуться с аварийным завершением работы контента.

Самый распространенный пример в данной категории – это неожиданное деление на ноль. Предложенный фрагмент кода с точки зрения синтаксиса и логики написан грамотно. Но, если клиент наберет 0, произойдет сбой системы.

Компиляционный тип

Встречается при разработке на языках высокого уровня. Во время преобразований в машинный тип «что-то идет не так». Причиной служат синтаксические ошибки или сбои непосредственно в компиляторе.

Наличие подобных неполадок делает бета-тестирование невозможным. Компиляционные ошибки устраняются при разработке-отладке.

Ресурсные

Ресурсный тип ошибок – это сбои вроде «переполнение буфера» или «нехватка памяти». Тесно связаны с «железом» устройства. Могут быть вызваны действиями пользователя. Пример – запуск «свежих» игр на стареньких компьютерах.

Исправить ситуацию помогают основательные работы над исходным кодом. А именно – полное переписывание программы или «проблемного» фрагмента.

Взаимодействие

Подразумевается взаимодействие с аппаратным или программным окружением. Пример – ошибка при использовании веб-протоколов. Это приведет к тому, что облачный сервис не будет нормально функционировать. При постоянном возникновении соответствующей неполадки остается один путь – полностью переписывать «проблемный» участок кода, ответственный за соответствующий баг.

Исключения и как избежать багов

Исключение – событие, при возникновении которых начинается «неправильное» поведение программы. Механизм, необходимый для стабилизации обработки неполадок независимо от типа ПО, платформ и иных условий. Помогают разрабатывать единые концепции ответа на баги со стороны операционной системы или контента.

Исключения бывают:

  1. Программными. Они генерируются приложением или ОС.
  2. Аппаратными. Создаются процессором. Пример – обращение к невыделенной памяти.

Исключения нужны для охвата критических багов. Избежать неполадок помогут отладчики на этапе разработки. А еще – своевременное поэтапное тестирование программы.

P. S. Большой выбор курсов по тестированию есть и в Otus. Присутствуют варианты как для продвинутых, так и для начинающих пользователей.

Дефекты программного обеспечения можно обнаружить на каждом этапе разработки и тестирования продукта. Чтобы гарантировать исправление наиболее серьезных дефектов программного обеспечения, тестировщикам важно иметь хорошее представление о различных типах дефектов, которые могут возникнуть.

20 ВИДОВ ПРОГРАММНЫХ ДЕФЕКТОВ, КОТОРЫЕ ДОЛЖЕН ЗНАТЬ КАЖДЫЙ ТЕСТЕР

В этой статье мы обсудим самые распространенные типы ПО дефекты и способы их выявления.

Что такое дефект?

Дефект программного обеспечения — это ошибка, изъян, сбой или неисправность в компьютерной программе, из-за которой она выдает неправильный или неожиданный результат или ведет себя непреднамеренным образом. Программная ошибка возникает, когда фактические результаты не совпадают с ожидаемыми. Разработчики и программисты иногда допускают ошибки, которые создают ошибки, называемые дефектами. Большинство ошибок возникает из-за ошибок, которые допускают разработчики или программисты.

Обязательно прочтите: Разница между дефектом, ошибкой, ошибкой и сбоем

Типы программных ошибок при тестировании программного обеспечения

Существует множество различных типов дефектов программного обеспечения, и тестировщикам важно знать наиболее распространенные из них, чтобы они могут эффективно тестировать их.

Ошибки программного обеспечения подразделяются на три типа:

  1. Дефекты программного обеспечения по своей природе
  2. Дефекты программного обеспечения по их приоритету
  3. Дефекты программного обеспечения по их серьезности

Обычно мы можем видеть приоритет и серьезность классификаторов в большинстве инструментов отслеживания ошибок. Если мы настроим классификатор в соответствии с характером ошибки, а также приоритетом и серьезностью, это поможет легко управлять распределением обязанностей по исправлению ошибок соответствующим командам.

#1. Дефекты программного обеспечения по своей природе

Ошибки в программном обеспечении имеют широкий спектр природы, каждая из которых имеет свой собственный набор симптомов. Несмотря на то, что таких багов много, сталкиваться с ними можно не часто. Вот наиболее распространенные ошибки программного обеспечения, классифицированные по характеру, с которыми вы, скорее всего, столкнетесь при тестировании программного обеспечения.

#1. Функциональные ошибки

Как следует из названия, функциональные ошибки — это те, которые вызывают сбои в работе программного обеспечения. Хорошим примером этого может служить кнопка, при нажатии на которую должно открываться новое окно, но вместо этого ничего не происходит.

Функциональные ошибки можно исправить, выполнив функциональное тестирование.

#2. Ошибки на уровне модуля

Ошибки на уровне модуля — это дефекты, связанные с функциональностью отдельного программного модуля. Программный модуль — это наименьшая тестируемая часть приложения. Примеры программных модулей включают классы, методы и процедуры. Ошибки на уровне подразделения могут существенно повлиять на общее качество программного обеспечения.

Ошибки на уровне модуля можно исправить, выполнив модульное тестирование.

#3. Ошибки уровня интеграции

Ошибки уровня интеграции — это дефекты, возникающие при объединении двух или более программных модулей. Эти дефекты может быть трудно найти и исправить, потому что они часто требуют координации между несколькими командами. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки интеграции можно исправить, выполнив интеграционное тестирование.

#4. Дефекты юзабилити

Ошибки юзабилити — это дефекты, влияющие на работу пользователя с программным обеспечением и затрудняющие его использование. Дефект юзабилити — это дефект пользовательского опыта программного обеспечения, который затрудняет его использование. Ошибки юзабилити — это такие ошибки, как если веб-сайт сложен для доступа или обойти, или процесс регистрации сложен для прохождения.

Во время тестирования удобства использования тестировщики программного обеспечения проверяют приложения на соответствие требованиям пользователей и Руководству по доступности веб-контента (WCAG) для выявления таких проблем. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки, связанные с удобством использования, можно исправить, выполнив тестирование удобства использования.

#5. Дефекты производительности

Ошибки производительности — это дефекты, влияющие на производительность программного обеспечения. Это может включать в себя такие вещи, как скорость программного обеспечения, объем используемой памяти или количество потребляемых ресурсов. Ошибки уровня производительности сложно отследить и исправить, поскольку они могут быть вызваны рядом различных факторов.

Ошибки юзабилити можно исправить, выполнив тестирование производительности.

#6. Дефекты безопасности

Ошибки безопасности — это тип дефекта программного обеспечения, который может иметь серьезные последствия, если его не устранить. Эти дефекты могут позволить злоумышленникам получить доступ к конфиденциальным данным или системам или даже позволить им получить контроль над уязвимым программным обеспечением. Таким образом, очень важно, чтобы ошибкам уровня безопасности уделялось первоочередное внимание и устранялись как можно скорее.

Ошибки безопасности можно исправить, выполнив тестирование безопасности.

#7. Дефекты совместимости

Дефекты совместимости — это те ошибки, которые возникают, когда приложение несовместимо с оборудованием, на котором оно работает, или с другим программным обеспечением, с которым оно должно взаимодействовать. Несовместимость программного и аппаратного обеспечения может привести к сбоям, потере данных и другому непредсказуемому поведению. Тестировщики должны знать о проблемах совместимости и проводить соответствующие тесты. Программное приложение, имеющее проблемы с совместимостью, не работает последовательно на различных видах оборудования, операционных системах, веб-браузерах и устройствах при подключении к определенным программам или работе в определенных сетевых условиях.

Ошибки совместимости можно исправить, выполнение тестирования совместимости.

#8. Синтаксические ошибки

Синтаксические ошибки являются самым основным типом дефекта. Они возникают, когда код нарушает правила языка программирования. Например, использование неправильной пунктуации или забывание закрыть скобку может привести к синтаксической ошибке. Синтаксические ошибки обычно мешают запуску кода, поэтому их относительно легко обнаружить и исправить.

#9. Логические ошибки

Логические ошибки — это дефекты, из-за которых программа выдает неправильные результаты. Эти ошибки может быть трудно найти и исправить, потому что они часто не приводят к каким-либо видимым ошибкам. Логические ошибки могут возникать в любом типе программного обеспечения, но они особенно распространены в приложениях, требующих сложных вычислений или принятия решений.

Общие симптомы логических ошибок включают:

  • Неверные результаты или выходные данные
  • Неожиданное поведение
  • Сбой или зависание программного обеспечения

Чтобы найти и исправить логические ошибки, тестировщикам необходимо иметь четкое представление о коде программы и о том, как она должна работать. Часто лучший способ найти такие ошибки — использовать инструменты отладки или пошаговое выполнение, чтобы отслеживать выполнение программы и видеть, где что-то идет не так.

#2. Дефекты программного обеспечения по степени серьезности

Уровень серьезности присваивается дефекту по его влиянию. В результате серьезность проблемы отражает степень ее влияния на функциональность или работу программного продукта. Дефекты серьезности классифицируются как критические, серьезные, средние и незначительные в зависимости от степени серьезности.

#1. Критические дефекты

Критический дефект — это программная ошибка, имеющая серьезные или катастрофические последствия для работы приложения. Критические дефекты могут привести к сбою, зависанию или некорректной работе приложения. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение критическим дефектам, поскольку их необходимо исправить как можно скорее.

#2. Серьезные дефекты

Серьезный дефект — это программная ошибка, существенно влияющая на работу приложения. Серьезные дефекты могут привести к замедлению работы приложения или другому неожиданному поведению. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение серьезным дефектам, поскольку их необходимо исправить как можно скорее.

#3. Незначительные дефекты

Незначительный дефект — это программная ошибка, которая оказывает небольшое или незначительное влияние на работу приложения. Незначительные дефекты могут привести к тому, что приложение будет работать немного медленнее или демонстрировать другое неожиданное поведение. Разработчики и тестировщики часто не придают незначительным дефектам приоритет, потому что их можно исправить позже.

#4. Тривиальные дефекты

Тривиальный дефект – это программная ошибка, не влияющая на работу приложения. Тривиальные дефекты могут привести к тому, что приложение отобразит сообщение об ошибке или проявит другое неожиданное поведение. Разработчики и тестировщики часто присваивают тривиальным дефектам самый низкий приоритет, потому что они могут быть исправлены позже.

#3. Дефекты программного обеспечения по приоритету

#1. Дефекты с низким приоритетом

Дефекты с низким приоритетом, как правило, не оказывают серьезного влияния на работу программного обеспечения и могут быть отложены для исправления в следующей версии или выпуске. В эту категорию попадают косметические ошибки, такие как орфографические ошибки, неправильное выравнивание и т. д.

#2. Дефекты со средним приоритетом

Дефекты со средним приоритетом — это ошибки, которые могут быть исправлены после предстоящего выпуска или в следующем выпуске. Приложение, возвращающее ожидаемый результат, которое, однако, неправильно форматируется в конкретном браузере, является примером дефекта со средним приоритетом.

#3. Дефекты с высоким приоритетом

Как следует из названия, дефекты с высоким приоритетом — это те, которые сильно влияют на функционирование программного обеспечения. В большинстве случаев эти дефекты необходимо исправлять немедленно, так как они могут привести к серьезным нарушениям нормального рабочего процесса. Дефекты с высоким приоритетом обычно классифицируются как непреодолимые, так как они могут помешать пользователю продолжить выполнение поставленной задачи.

Некоторые распространенные примеры дефектов с высоким приоритетом включают:

  • Дефекты, из-за которых приложение не работает. сбой
  • Дефекты, препятствующие выполнению задачи пользователем
  • Дефекты, приводящие к потере или повреждению данных
  • Дефекты, раскрывающие конфиденциальную информацию неавторизованным пользователям
  • Дефекты, делающие возможным несанкционированный доступ к системе
  • Дефекты, приводящие к потере функциональности
  • Дефекты, приводящие к неправильным результатам или неточным данным
  • Дефекты, вызывающие проблемы с производительностью, такие как чрезмерное использование памяти или медленное время отклика

#4. Срочные дефекты

Срочные дефекты — это дефекты, которые необходимо устранить в течение 24 часов после сообщения о них. В эту категорию попадают дефекты со статусом критической серьезности. Однако дефекты с низким уровнем серьезности также могут быть классифицированы как высокоприоритетные. Например, опечатка в названии компании на домашней странице приложения не оказывает технического влияния на программное обеспечение, но оказывает существенное влияние на бизнес, поэтому считается срочной.

#4. Дополнительные дефекты

#1. Отсутствующие дефекты

Отсутствующие дефекты возникают из-за требований, которые не были включены в продукт. Они также считаются несоответствиями спецификации проекта и обычно негативно сказываются на пользовательском опыте или качестве программного обеспечения.

#2. Неправильные дефекты

Неправильные дефекты — это те дефекты, которые удовлетворяют требованиям, но не должным образом. Это означает, что хотя функциональность достигается в соответствии с требованиями, но не соответствует ожиданиям пользователя.

#3. Дефекты регрессии

Дефект регрессии возникает, когда изменение кода вызывает непреднамеренное воздействие на независимую часть программного обеспечения.

Часто задаваемые вопросы — Типы программных ошибок< /h2>

Почему так важна правильная классификация дефектов?

Правильная классификация дефектов важна, поскольку она помогает эффективно использовать ресурсы и управлять ими, правильно приоритизировать дефекты и поддерживать качество программного продукта.

Команды тестирования программного обеспечения в различных организациях используют различные инструменты отслеживания дефектов, такие как Jira, для отслеживания дефектов и управления ими. Несмотря на то, что в этих инструментах есть несколько вариантов классификации дефектов по умолчанию, они не всегда могут наилучшим образом соответствовать конкретным потребностям организации.

Следовательно, важно сначала определить и понять типы дефектов программного обеспечения, которые наиболее важны для организации, а затем соответствующим образом настроить инструмент управления дефектами.

Правильная классификация дефектов также гарантирует, что команда разработчиков сможет сосредоточиться на критических дефектах и ​​исправить их до того, как они повлияют на конечных пользователей.

Кроме того, это также помогает определить потенциальные области улучшения в процессе разработки программного обеспечения, что может помочь предотвратить появление подобных дефектов в будущих выпусках.

Таким образом, отслеживание и устранение дефектов программного обеспечения может показаться утомительной и трудоемкой задачей. , правильное выполнение может существенно повлиять на качество конечного продукта.

Как найти лежащие в основе ошибки программного обеспечения?

Определение основной причины программной ошибки может быть сложной задачей даже для опытных разработчиков. Чтобы найти лежащие в основе программные ошибки, тестировщики должны применять систематический подход. В этот процесс входят различные этапы:

1) Репликация. Первым этапом является воспроизведение ошибки. Это включает в себя попытку воспроизвести тот же набор шагов, в котором возникла ошибка. Это поможет проверить, является ли ошибка реальной или нет.
2) Изоляция. После того, как ошибка воспроизведена, следующим шагом будет попытка ее изоляции. Это включает в себя выяснение того, что именно вызывает ошибку. Для этого тестировщики должны задать себе несколько вопросов, например:
– Какие входные данные вызывают ошибку?
– При каких различных условиях возникает ошибка?
– Каковы различные способы проявления ошибки?
3) Анализ: после Изолируя ошибку, следующим шагом будет ее анализ. Это включает в себя понимание того, почему возникает ошибка. Тестировщики должны задать себе несколько вопросов, таких как:
– Какова основная причина ошибки?
– Какими способами можно исправить ошибку?
– Какое исправление было бы наиболее эффективным? эффективно?
4) Отчет. После анализа ошибки следующим шагом является сообщение о ней. Это включает в себя создание отчета об ошибке, который включает всю соответствующую информацию об ошибке. Отчет должен быть четким и кратким, чтобы разработчики могли его легко понять.
5) Проверка. После сообщения об ошибке следующим шагом является проверка того, была ли она исправлена. Это включает в себя повторное тестирование программного обеспечения, чтобы убедиться, что ошибка все еще существует. Если ошибка исправлена, то тестер может подтвердить это и закрыть отчет об ошибке. Если ошибка все еще существует, тестировщик может повторно открыть отчет об ошибке.

Заключение

В индустрии программного обеспечения дефекты — неизбежная реальность. Однако благодаря тщательному анализу и пониманию их характера, серьезности и приоритета дефектами можно управлять, чтобы свести к минимуму их влияние на конечный продукт.

Задавая правильные вопросы и применяя правильные методы, тестировщики могут помочь обеспечить чтобы дефекты обнаруживались и исправлялись как можно раньше в процессе разработки.
TAG: qa

Программная
ошибка

– это расхождение между программой и
её спецификацией, причём тогда и только
тогда, когда спецификация существует
и она правильная.

Программная
ошибка

– это ситуация, когда программа не
делает того, чего пользователь от неё
вполне обоснованно ожидает.

Ошибки
пользовательского интерфейса.

С программой может быть трудно (или даже
невозможно) работать по множеству
причин. Их все можно объединить под
названием “ошибки пользовательского
интерфейса”. Вот несколько разновидностей
таких ошибок.

Функциональность.
Функциональные недостатки имеют место,
если программа не делает того, что
должна, выполняет одну из своих функций
плохо или не полностью. Хотя функции
программы достаточно подробно описываются
в ее спецификации, окончательное
представление о том, что программа
должна делать, существует только в умах
ее пользователей.

Функциональные
недостатки есть абсолютно у всех
программ, поскольку ожидания пользователей
— вещь субъективная: у разных пользователей
они различны. Оправдать их все просто
невозможно, а попытка этого добиться
может привести лишь к усложнению и
потере концептуальной целостности
программного продукта.

Однако
во многих случаях функциональный
недостаток вполне очевиден. Если
предусмотренную программой задачу
трудно выполнить, если она решается
неуклюже или при определенных
обстоятельствах вообще не может быть
решена — проблема налицо. И когда ожидания
пользователей вполне разумны и
обоснованны, эту проблему без колебаний
можно назвать ошибкой.

Взаимодействие
программы с пользователем.
Насколько
сложно пользователю разобраться в том,
как работать с программой? Откуда вообще
он об этом узнает? Как обстоит дело с
экранными инструкциями и подсказками?
Достаточно ли их? Понятны ли они? Имеется
ли в программе интерактивная справка
и может ли пользователь в случае
затруднений найти в ней реальную помощь?
Насколько корректно программа сообщает
пользователю о его ошибках и объясняет,
как их исправить? Нет ли в программе
элементов, которые могут раздражать
пользователя, сбивать его с толку или
просто выглядеть неуклюже?

Организация
программы
.
Насколько легко потеряться в вашей
программе? Нет ли в ней непонятных команд
или таких, которые легко спутать между
собой? Какие ошибки чаще всего делает
пользователь, на что он тратит больше
всего времени и почему?

Пропущенные
команды.

Чего в программе не хватает? Не заставляет
ли программа выполнять некоторые
действия странным, неестественным или
крайне неэффективным способом? Нельзя
ли привести ее в соответствие с привычным
стилем пользователя? Допускает ли она
хотя бы некоторую степень настройки?

Производительность.
В интерактивном программном обеспечении
очень важна скорость. Плохо, если у
пользователя создается впечатление,
что программа работает медленно, если
он чувствует задержки в ее реакции
(особенно если конкурирующие программы
работают ощутимо быстрее).

Выходные
данные
.
Большинство программ так или иначе
формируют выходные данные: отображают
информацию на экране, печатают ее или
сохраняют в файлах. Получаете ли вы то,
что хотите? Правильно ли формируются
отчеты, наглядны ли диаграммы и достаточно
ли отчетливо они выглядят на бумаге?
Сохраняются ли данные в формате, доступном
и для других аналогичных программ?
Обладает ли программа достаточной
гибкостью, чтобы можно было подстраивать
ее под нужды конкретного пользователя?

Обработка
ошибок.
Процедуры
обработки ошибок — это очень важная
часть программы. Но, к сожалению, в них
тоже очень часто встречаются ошибки.
Кроме того, правильно определив ошибку,
программа не всегда выдает о ней
достаточно информативное сообщение.

Ошибки,
связанные с обработкой граничных
условий.

Простейшими граничными условиями
являются числовые. Но существует и много
других граничных ситуаций. Любой аспект
работы программы к которому применимы
понятия больше или меньше, раньше или
позже, первый или последний, короче или
длиннее, обязательно должен быть проверен
на границах диапазона. Внутри диапазонов
программа обычно работает прекрасно,
а вот на их границах случаются самые
неожиданные отклонения.

Ошибки
вычислений.

Программирование даже самых простых
арифметических операций чревато
ошибками. Нечего и говорить о сложных
формулах и расчетах. Одними из самых
распространенных среди математических
ошибок являются ошибки округления.
После нескольких промежуточных вычислений
может оказаться, что 2 + 2 = -1, даже если
на промежуточных этапах не было логических
ошибок.

Ошибки
начального и последующих состояний.

Бывает, что при выполнении какой-либо
функции программы сбой происходит
только однажды — при самом первом
обращении к этой функции. Причиной
такого поведения программы может быть
отсутствие файла с инициализационной
информацией. После первого же запуска
программа создаст такой файл, и дальше
все будет в порядке. Получается, что
такую ошибку невозможно повторить
(точнее, для ее повторения нужно установить
новую копию программы). Но не стоит
думать, что ошибка, проявляющаяся только
при первом запуске программы, безвредна:
ведь это будет первое, с чем столкнется
каждый новый пользователь. Иногда,
программируя процесс, связанный с
последовательными преобразованиями
информации, разработчики забывают о
том, что пользователю может понадобиться
вернуться к исходным данным и изменить
их. Насколько корректно поведет себя
программа в такой ситуации? Позволит
ли она внести нужные изменения и не
будет ли из-за этого потеряна вся
выполненная пользователем работа? Что
увидит пользователь при возвращении к
исходному состоянию программы: свои
данные или стандартные значения, которыми
программа инициализирует переменные
при запуске?

Ошибки
передачи или интерпретации данных.

Один модуль может передавать данные
другому или даже другой программе.
Некоторые данные могут передаваться
между модулями множество раз, и на
каком-то этапе они могут быть разрушены
или неверно интерпретированы. Изменения,
внесенные одной из частей программы,
могут потеряться или достичь не всех
частей системы, где они важны.

Ситуация
гонок.
Классическая
ситуация гонок описывается так.
Предположим, в системе ожидаются два
события, А и Б. Первым может произойти
любое из них. Но если первым произойдет
событие А, выполнение программы
продолжится, а если первым наступит
событие Б, то в работе программы произойдет
сбой. Программист полагал, что первым
всегда должно быть событие А, и не ожидал,
что Б может выиграть гонки. Тестировать
ситуации гонок довольно сложно. Наиболее
типичны они для систем, где параллельно
выполняются взаимодействующие процессы
и потоки, а также для многопользовательских
систем реального времени. Ошибки в таких
системах трудно воспроизвести, и на их
выявление обычно требуется очень много
времени.

Перегрузки.
Программа может не справляться с
повышенными нагрузками. Например, она
может не выдерживать интенсивной и
длительной эксплуатации или не справляться
со слишком большими объемами данных.
Кроме того, сбои могут происходить из-за
нехватки памяти или отсутствия других
необходимых ресурсов. У каждой программы
свои пределы. Вопрос в том, соответствуют
ли реальные возможности и требования
программы к ресурсам спецификации, и
как программа себя поведет при перегрузках.

Некорректная
работа с аппаратным обеспечением
.
Программы могут посылать устройствам
неверные данные, игнорировать сообщения
об ошибках, пытаться использовать
устройства, которые заняты или вообще
отсутствуют. Даже если нужное устройство
просто сломано, программа должна понять
это, а не сбоить при попытке к нему
обратится.

Ошибки
документации
.
Сама по себе документация не является
программным обеспечением, но все же это
часть программного продукта. И если она
плохо написана, пользователь может
подумать, что и сама программа не намного
лучше.

Ошибки
тестирования
.
Обнаружение ошибок, допущенных
тестировщиками, — дело обычное. Конечно,
если таких ошибок будет слишком много,
вы быстро потеряете доверие остальных
членов команды. Но нужно иметь в виду,
что иногда ошибки тестировщика отражают
проблемы пользовательского интерфейса:
если программа заставляет пользователя
делать ошибки, значит, с ней что-то не
так. Конечно, многие ошибки тестирования
вызваны просто неверными тестовыми
данными.

Характерные
ошибки программирования
:

Вид
ошибки

Пример

Неправильная
постановка задачи

Правильное
решение неверно сформулированной
задачи

Неверный
метод (алгоритм)

Выбор
метода (алгоритма) приводящего к
неточному
или не эффективному
решению
задач

Логические
ошибки

Неполный
учет ситуаций, которые
могут
возникнуть

Например,

  • неверное
    указание ветви алгоритма после
    проверки некоторого условия,

  • неверное
    условие выполнения или окончания
    цикла,

  • неполный
    учет возможных условий,

  • пропуск
    в программе одного или более блоков
    алгоритма.

Семантические
ошибки

Непонимание
работы оператора

Синтаксические
ошибки

Нарушение
правил установленных
в
данном языке программирования

Например,

  • неправильная
    запись формата оператора,

  • повторное
    использование имени переменной для
    обозначения другой,

  • ошибочное
    использование одной переменной
    вместо другой,

  • несогласованность
    скобок,

  • пропуск
    разделителей.

Ошибки
времени выполнения

Например,
в Delphi, они называются исключениями
(exception), как правило, легко устранимы.
Они обычно проявляются уже при первых
запусках программы и во время
тестирования. При возникновении
ошибки в программе, запущенной из
Delphi, среда разработки прерывает работу
программы, и на экране появляется
диалоговое окно, которое содержит
сообщение об ошибке и информацию о
типе (классе) ошибки.

Вопросы
для самопроверки:

  1. Дайте
    определение понятия «программная
    ошибка».

  2. Перечислите
    источники ошибок
    программного обеспечения.

  3. Классифицируйте
    ошибки программного обеспечения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • Небольшие технические трудности. В ближайшее время мы появимся в сети и сайт станет чуточку лучше

Windows – наиболее популярная операционная система, которую используют 92% пользователей компьютеров и ноутбуков.

И каждый из них хотя бы раз сталкивался с одним или несколькими видами системных ошибок.

Системные ошибки Windows – это обобщенное название всех сообщений системы, которые сообщают о любых неполадках в работе ОС.

Так как ошибки в работе системы не редкость, пользователю нужно знать как решить ту или иную проблему, уметь восстанавливать нормальное функционирование системы без негативных последствий.

Не все ошибки являются критическими и не всегда нужно вызывать мастера, в большинстве случаев можно решить проблему самостоятельно.

Далее мы поговорим об ошибках в работе Windows 7 и Windows 10, их видах и способах решения.

Что такое системный журнал Windows 7

В операционной системе Windows, начиная с 7 версии, есть функция отслеживания важных событий, все они собраны в специальном журнале.

Именно там можно найти информацию обо всех системных ошибках.

Журнал включает в себя информацию обо всех сбоях: программах, которые не запускаются, нарушениях в работе драйвера, а также неправильном подключении устройств.

Журнал сохраняет все события в хронологическом порядке, позволяет осуществлять контроль над системой, проводит диагностику ошибок и, по возможности, устраняет их.

Общий вид системного журнала

Чтобы сохранить все важные данные, нужно периодически просматривать этот журнал и производить настройку компьютера.

Когда служба журнала событий запущена, она собирает и сохраняет в архив все важные изменения и происшествия.

Функции журнала включают в себя:

  • Возможность просматривать архивные данные.
  • Создавать подписки определенных происшествий для работы с ними в будущем.
  • Фильтры событий для применения их в системе.
  • Настраивать выполнение компьютером определенных действий при появлении ошибки.

Системный журнал есть на любом устройстве, работающем на операционной системе Windows 7 и его правильное использование позволит избежать многих ошибок, в том числе, фатальных.

Как устранить все ошибки на Windows 7

Видео инструкция

Где находится журнал

Чтобы открыть журнал событий, нужно нажать на «Пуск», в левом нижнем углу экрана, затем на «панель управления» и в открывшемся меню выбрать «Администрирование» и «Просмотр событий».

Интерфейс меню «пуск — панель управления»

Интерфейс меню «пуск — панель управления» — «администрирование»

Теперь нажимаете на «просмотр событий» и видите следующий экран:

В операционных системах Windows 7 предусмотрено 2 вида журнала событий: системные архивы и служебный журнал приложений.

В архивах собрана вся информация о происшествиях в системе, а в служебном журнале отметки об их работе в целом.

Чтобы пользователь мог контролировать данные и управлять ими, созданы специальные разделы, вкладка «просмотр» делится на такие пункты:

  • Приложения, в разделе хранятся события определенной программы. Например, антивирусная программа сохраняет там сведения о найденных проблемах и обезвреженных вирусах, а почтовые службы – историю переписок.
  • Раздел установка. При установке любого приложения или драйвера, в операционной системе Windows 7 сохраняются некоторые данные, которые в дальнейшем находятся в разделе установки.
  • Система. В этом разделе данные обо всех событиях в ОС, сбоях в работе приложений, сбоях установки, обновлениях программ и устройств, неправильно подключенных внешних устройствах и так далее.
  • Безопасность. В разделе информация об использовании прав администратора, хранится история выхода и входа в систему пользователем.

Все ошибки и события, сохраненные в журнале, имеют определенные характеристики: источники, уровень, код событий, время и дата и пользователи.

Источники – это приложения или драйверы, которые повлияли на сбои в системе.

Код событий – набор чисел, который необходим техническим специалистам для устранения проблем. Обычный пользователь ПК не сможет использовать код.

Уровень – это степень серьезности ошибки. Всего 6 уровней опасности: сообщение, предостережение, ошибка, опасная ошибка, мониторинг операций по исправлению ошибок, аудит неудачных действий.

Дата и время – отмечают момент появления сообщения или сбоя.

Пользователи – показывает, какой пользователь мог повлиять на появление ошибки. Это могут быть не только реальные пользователи, но и сторонние серверы, системы и программы.

Для контроля над работой системы Windows 7, пользователю нужно заходить в раздел «Просмотр событий».

Здесь собрана вся информация о состоянии программ, драйверов и системы и отражены все ошибки.

Также представлена таблица, в которой оказаны происшествия и сопутствующие характеристики.

Интерфейс журнала событий

Как пользоваться журналом

Пользователь ПК может самостоятельно предотвратить многие сбои системы, для этого ему время от времени нужно просматривать раздел журнала «Приложения».

В этом разделе можно не только увидеть все программы и недавние изменения, связанные с ними, но и выбрать необходимое действие из предложенных.

В разделе «Приложения» вы увидите информацию обо всех происшествиях, степени их серьезности, типе, а также дате появления и сможете своевременно принять меры, чтобы не усугубить ситуацию.

Найти раздел «Приложения» несложно, он находится в меню журнала слева и называется «журнал приложений», как показано на скриншоте:

Но не нужно переживать – большинство ошибок, зафиксированных в журнале, не критичны и не несут опасности компьютеру.

На некоторые из них можно вовсе не обращать внимания, даже на исправно работающем ПК или ноутбуке система может выдавать ошибки.

Пример ошибки, на которую можно не обращать внимания, так как она не мешает работе компьютера

Может показаться, что журнал событий полезен только системным администраторам, но это не всегда так.

Пока ваш компьютер полностью исправен, журнал действительно не нужен, так как на мелкие сбои в системе обычно никто не обращает внимания.

Но как только начинаются серьезные проблемы, журнал поможет вам найти информацию о причинах их возникновения и устранить ошибки самостоятельно, или с помощью специалиста.

Например, если компьютер стал часто перезагружаться, или выдавать «окно смерти» (о нем мы поговорим подробнее ниже), то необходимо как можно быстрее определить причину.

Вы можете посмотреть записи о неудачных запусках системы или драйверов в журнале и по номеру ID ошибки вы найдете немало информации в интернете.

Пример ошибки, которая требует решения. Стрелка указывает на ID, по которому можно найти информацию в интернете.

В данном случае, чтобы получить справку по этому сбою у Гугл или Яндекс, введите в поисковую строку Event 720_ОШИБКИ и найдете инструкции по ее устранению.

Также журнал событий подскажет, когда ваш компьютер был включен и выключен.

Это поможет избежать несанкционированного доступа к технике, так как вы сможете отслеживать процесс включения.

Какие инструменты нужны для исправления системных ошибок

Чтобы системные ошибки вы могли исправить своевременно, в арсенале должны быть загрузочные диски или флешки с программами.

Желательно иметь в наличии и уметь пользоваться такими инструментами:

1. Диск с Windows 7, 8 или 10, который понадобится в крайнем случае, при необходимости переустановить систему полностью или некоторые потерянные данные.

2. Загрузочный диск с Windows РЕ. В виртуальной среде Windows намного проще исправлять многие системные ошибки и чтобы открыть ее и работать, необходим реаниматор, который вы можете записать на внешний цифровой носитель. Например, на флешку. Мы рекомендуем выбрать реаниматор Alkid Live CD/DVD/USB – это оптимальная сборка и его без труда можно скачать в интернете бесплатно.

3. Флешка или диск, при условии наличия дисковода на вашем ПК, с антивирусным сканером.

Очень важно обновлять антивирус хотя бы раз в год, поэтому лучше записать программу на флешку и обновлять по мере появления новых версий. Антивирус можно выбрать любой, например тот, который вы обычно используете на своем компьютере.

4. Сохраненные на цифровом носители драйвера для материнской платы и остальных аппаратных частей компьютера.

Очень важно устанавливать «заводские» драйвера, так как набор других программ может привести к поломке компьютера или нарушениях в его работе. Установка неподходящих драйвером может даже повлиять на исправные составляющие ПК.

5. Загрузочные флешки или диски с программами для управления разделами жесткого диска. При возникновении сбоев в работе системы, больше всего пользователи переживать за сохранность личных данных. Если ошибки исправить невозможно и восстановить операционную систему уже не получится, то можно спасти данные, скопировав их с жесткого диска С, на который и ставится Виндоус, на диск Д или Е. Для этого подойдет загрузочная флешка или специально разработанная программа Minitools Partition Wizard. Она является бесплатной, поэтому интерфейс не такой удобный, как у платных аналогов. Однако свои функции программа вполне способна выполнить.

Если у вас есть все указанные выше инструменты, вы можете приступать к исправлению любых, даже фатальных.

Виды системных ошибок

Описанное выше приложение создано скорее для работы системных администраторов, однако и обычному пользователю оно может быть полезно. Теперь поговорим о распространенных видах ошибок Виндоус.

Считается, что операционные системы Linux и Mac OS гораздо более устойчивы в работе, чем Windows.

Однако, именно Windows пользуется большая часть населения, при этом далеко не все знают какие могут возникнуть сбои, как от них избавиться и избежать в дальнейшем без переустановки системы.

Квалифицировать системные ошибки можно по разным критериям, так как одна и та же может быть вызвана и выходом из строй составной части системного блока, и сбоем программы или вирусом.

Именно поэтому оптимальным вариантом станет классификация по степени опасности.

В соответствии с ней системные ошибки Windows 7 можно поделить на такие группы:

  • Системные сообщения – незначительные сбои в работе, которые могут возникать на исправном компьютере.
  • Ошибки категории «синий экран смерти».
  • Ошибки на уровне загрузчика.

Зная типы ошибок, а также обладая минимальным количеством знаний и навыков, можно устранить сбои и избежать необходимости перезаписи операционной системы и уничтожения данных.

Системные сообщения – наиболее простой тип ошибок

Системные сообщения появляются постоянно, в журнале ошибок можно найти множество таких отметок каждый день.

Это могут быть внезапные закрытия приложений, невозможность запуска приложения и многое другое, такие сообщения обычно не влияют на качество работы ПК или ноутбука.

Пример системного сообщения

Визуально ошибка выглядит как серое окошко с описанием и кодом, а также кнопками вариантов действий «Ок» и «Отмена».

Всего в системе есть до 900 сообщений, поэтому описывать их все мы не будем – в этом нет необходимости.

Кроме того, большая часть из них возникает очень редко, а другие сообщения вовсе не отображаются пользователю, так как они являются внутренними.

Разделить их можно на такие виды:

  • Аппаратные. Сообщения относятся к работе мышки и клавиатуры.
  • Организация окна – это все уведомления, вопросы, подтверждение действий.
  • Организация интерфейса – вывод меню, курсора.
  • Завершение работы. Предупреждения о закрытии фоновых программ.
  • Уведомления о системном ресурсе. Эти сообщения включают в себя уведомления об изменении темы, цветов или шрифтов.
  • Обмены данными. Уведомления от буфера обмена.
  • Частные сообщения.
  • Внутрисистемные, то есть, которые пользователь не видит.

Для примера рассмотрим распространенную ошибку: Ошибка Память не может быть written.

Ошибка Память не может быть written

Ошибка сообщает, что память не может быть записана.

Иногда вместо слова written можно встретить слово read, то есть память не может быть считана.

Это означает, что открытая программа не может корректно работать с оперативной памятью, она не может получать нужные данные или записывать на диск свои.

Причины возникновения такой распространенной ошибки следующие:

  • Поломанные блоки в оперативной памяти.
  • Вирус или патч, которые вызывают некорректную работу системы. «Подцепить» вирус можно, скачивая софт с непроверенных сайтов в интернете.
  • Нарушение во взаимодействии драйверов и программного обеспечение.
  • Несоответствие драйверов операционной системе.
  • Проблемы с питанием компьютера или ноутбука.
  • Установка большого количества противовирусных программ.

Так как причин множество, нужно выявить ту, которая привела к поломке.

Для этого следует исключить все неподходящие варианты и сконцентрироваться на возможных проблемах.

Если программа сразу после установки стала выдавать такую ошибку, то проблема именно в ней или в несовместимости программы с операционной системой.

Возможно она является взломанной версией платного софта, или требует для работы дополнительных сведений и драйверов, или же не совместима с версией операционной системы.

Если программа с самого начала не запускалась без ошибки, можно попробовать запустить ее при помощи режима совместимости с Windows ХР.

Для этого нажмите на свойства исполняемого файла программы, выберите «совместимость» и нажмите на функцию «средство устранения проблем с совместимостью».

Автоматически проблема будет решена и программа начнет запускаться без сбоев.

Запуск программы в режиме совместимости со старой версией Windows

Также причиной может стать несовместимость программ и их компонентов.

Обычно это является причиной в тех ситуациях, когда ранее программа работала исправно и внезапно стала выдавать ошибку.

Возможно вы установили на ПК новый софт, программы, расширения или драйвера и нормальная работа его была нарушена.

Вы можете удалить новые программы и попробовать запустить нужную, выдающую ошибку.

Кстати, удалять программы лучше не просто с диска, а при помощи специального деинсталлятора.

Удаляя папку с загрузочным файлом, вы оставляете на компьютере части программы, которые могут мешать его работе.

А деинсталляторы почистят устройство и от программы, и от созданных ею файлов.

Драйвера лучше удалять стандартными службами системы.

Еще одна распространенная причина появления такой ошибки – активная работа антивируса.

Проверить это легко, просто отключите антивирус и попробуйте запустить программу снова.

Но делать это можно только в том случае, если антивирус не находит опасных файлов в самой программе, то есть предварительно нужно просканировать папку с файлами.

На изображении показано, как отключить антивирус Аваст

Также причиной может служить любая техническая неполадка.

Чтобы это проверить, выключите компьютер и подождите несколько секунд, пока все процессы будут завершены.

Теперь откройте системный блок и аккуратно коснитесь деталей, в частности, платы оперативной памяти.

Если она перегрета, значит в системе сбои и возможно короткое замыкание.

Но это не значит, что плата полностью испорчена и уже не подлежит восстановлению.

Есть вероятность того, что нарушено соединение контактов, в таком случае плату просто переставляют в соседний слот.

Но не все системные сообщения Виндоус выводятся на монитор на русском языке, примерно половина окошек будут заполнены английским текстом.

Это усложняет понимание проблемы, но есть и решение: в окошке всегда написан код ошибки, который представляет собой число в шестнадцатеричной системе счисления. Например, 0х005600b.

Этот код вы можете скопировать и найти информацию и способы решения проблемы в интернете, в специализированных статьях или на форумах, где также можно задавать интересующие вас вопросы.

Описание ошибки «синего экрана смерти» и варианты ее исправления

Понятно, что синий экран является следствием ошибки операционной системы windows 7 и таким способом она пытается донести информацию о поломке до пользователя.

Из-за синего экрана пользоваться компьютером становится невозможно, но при правильных действиях работоспособность системы вы сможете восстановить.

Синий экран не случайно блокирует работу устройства, это делается с определенной целью: помочь пользователю спасти файлы и все данные в компьютере.

В наиболее простых случаях поможет обычная перезагрузка компьютера.

Это относится к случаям, когда ошибка была вызвана некорректной обработкой данных и сбоем при передаче информации.

Если же перезагрузка не помогла, значит причина может быть в сломанных драйверах, жестком диске или модуле.

Так выглядит синий экран смерти

Понять, что именно произошло, помогут коды, которые отражают номер и название поломки.

Коды — это две первые строки на экране монитора.

Иногда компьютер вовсе не выводит синий экран, а просто произвольно перезагружается.

В таком случае определить причину поломки сложнее.

А произойти это может из-за отключения функции вывода на экран сообщений BSoD.

Чтобы исправить это (если ваш компьютер все же работает после перезагрузки), отключите произвольную перезагрузку системы.

Сделать это можно так:

  • Зайти в раздел «Мой компьютер».
  • Зайти в «Свойства».
  • В выбранном окне нажать на «Дополнительные настройки».
  • Здесь вы увидите блок восстановления и загрузки системы, в нем нужно убрать галочку напротив пункта «Выполнить автоматическую перезагрузку».

Меню «свойства», показано, в каком поле убрать галочку

После этого система всегда будет выдавать вам экран с записью об ошибке и определить причину поломки будет проще.

Ошибки синего экрана – экрана смерти

Очень часто пользователей интересует как исправить системные ошибки Windows, которые представляют собой синий экран с написанным кодом.

Обычному пользователю такой экран совершенно непонятен, более того, он пугает и настораживает, так как в большинстве случаев, при появлении синего экрана «смерти», компьютер не может работать.

Если система не загружается, а вместо окна загрузки вы видите синий экран с белым кодом, значит вы столкнулись со стоп-ошибкой Windows, которую именуют экраном смерти.

Но не стоит беспокоиться, очень часто даже такая ошибка не является достаточной причиной для переустановки операционной системы или удаления всех данных с компьютера.

Чтобы спасти систему от переустановки, нужно понять, а чем причина ошибки.

Проще всего это сделать, посмотрев на код сбоя, он указан после слова STOP на странице.

По этому коду вы поймете, в чем причина сбоя и сможете быстро и безопасно его ликвидировать.

На скиншоте показан синий экран смерти и указаны код и тип ошибки для ее быстрой классификации и решения

Помимо кода ошибки, на экране появляется имя системного модуля, который вызвал сбой программ и тип неполадки.

На изображении выше эти параметры указаны стрелочками. Для примера рассмотрим ситуацию на изображении.

В данном случае причиной ошибки является драйвер, который не смог правильно взаимодействовать с модулями операционной системы.

Об этом свидетельствует фраза DRIVER_IRQL_NOT_LESS_OR_EQUAL вверху экрана.

В следующих строках указаны стоп слова, которые возникли из-за ошибки, но они несут для нас мало информации.

В нижней строке написано имя драйвера, то есть в нашей ситуации это tcpip.sys, имя интернет-протокола TCP/IP.

Чтобы исправить системную ошибку, не обязательно ставить новую операционную систему.

Достаточно поменять драйвер сетевой платы компьютера на более подходящий.

Выполните следующий порядок действий, чтобы исправить ошибку:

1. Перезагрузите компьютер. Иногда это помогает, так как часто возникают временные сбои. Если появится доступ к Виндоус, то именно с временной проблемой мы и столкнулись и после перезагрузки система начнет работать нормально.

2. Если после перезагрузки синий экран пропал, но в следующий раз появился снова, значит проблема с драйвером, который не соответствует системе. Возможно драйвер обновился и теперь несовместим с системой. В этом случае нужно сделать откат драйвера до предыдущей версии, если ошибка появилась после обновления. Если обновлений не было, а синий экран время от времени появляется при запуске системы, значит драйвера устарели и нуждаются в обновлении. Небольшой совет: проверяйте системные сообщения Windows на предмет обновлений. Не все обновления устанавливаются автоматически, поэтому следует обращать внимание на сообщения в центре поддержки и устанавливать все предложенные обновления. Это поможет также улучшить защиту компьютера от вирусов.

3. Наиболее серьезный случай, когда синий экран появляется при каждом запуске системы. В такой ситуации вам потребуется загрузочный диск или флешка, восстанавливающие компоненты ОС. Найти подробные инструкции можно в интернете, процесс установки компонентов будет зависеть от типа и кода ошибки. Но в большинстве случаев причиной появления синего экрана смерти является сбой загрузки файловой системы. В такой ситуации нужно загрузить систему с загрузочного диска Windows PE и запустить командную строку. Открыть командную строку можно через Пуск. Войдите в меню «Пуск», нажмите на «Выполнить» и «Команда CMD». В открывшейся строке вбиваем chkdsk C: /f и нажимаем на enter. Эта команда сканирует весь диск С на наличие ошибок, и когда находит автоматически их исправляет. После окончания процесса исправления ошибок, вы можете запускать компьютер в нормальном режиме.

Сканирование диска не всегда может спасти компьютер, но очень часто помогает восстановить нормальные параметры системы.

В любом случае провести его нужно, так как такая процедура точно не усугубит проблему и не навредит системе, но может помочь избавиться от ошибок.

Как расшифровать информацию на экране смерти

Обычный пользователь не сможет понять, что показано на экране, оценить код и определить способы исправления ошибки и мы попытаемся помочь вам разобраться.

Общий вид экрана смерти

Теперь рассмотрим, что изображено на экране в общем.

В поле, отмеченном на скриншоте цифрой 1, указано название ошибки.

Если вы умеете справляться с компьютером и знакомы с основами программирования, то исходя из названия уже сможете найти способы решения.

Если же нет, то сможете ввести код в интернет и найти необходимую информацию по ошибке.

Во втором поле, оно более объемное, содержится подробное описание ошибок и предложены способы их решения.

Действуя по инструкции на экране, вы сможете «вылечить» компьютер без переустановки системы.

Зона номер три содержит информацию с кодом ошибки.

Обычному пользователю код будет малополезен, а вот системный администратор с его помощью сможет быстро исправить поломку.

Пользователь лишь может вводить этот код вместе с названием неисправности в строку браузера, чтобы найти достаточное количество информации.

Четвертое поле содержит информацию о параметрах и характеристиках поломки.

Пятое поле — это название драйвера, при включении которого и возникла неисправность.

Внизу экрана, в шестом поле, найдете информацию о специальном адресе ошибки.

При наличии определенных навыков и знаний, используя информацию на экране можно легко исправить любые ошибки самостоятельно и быстро.

Чтобы решить проблему перепишите название и код с экрана и найдите информацию о поломки в сети.

Если знаете английский — выполните действия, которые предлагает система.

В любом случае, даже если перезагрузка не помогает и ошибка, вызвавшая синий экран смерти является фатальной, не всегда приходится переустанавливать операционную систему.

Очень часто достаточно переустановить драйвер, который прописан в поле 5 на скриншоте, так как именно он вызвал ошибку.

Причины появление экрана смерти

Все причины появления экрана смерти можно разделить на 2 категории: к первой категории относятся поломки, которые возникли после установки программного обеспечения или драйверов.

Вторая категория — это поломки аппаратной части или сбой в работе операционной системы.

К первой группе причин отнесем установку новых, несовместимых с системой драйверов, подключение нового оборудования: установка видеокарты, смена жесткого диска и другое.

Также ошибку может вызвать переустановка Windows, обновление Windows или обновление драйверов.

Ко второй категории относят такие причины как поломка цифровых элементов техники, электронно-вычислительных комплектующих, нарушение соответствия между драйвером и модулем, а также неправильный контакт узлов в процессоре.

Ошибка может возникнуть и из-за сброса процессором частоты и напряжения.

Это возникает из-за перегрева самого процессора и приводит к невозможности работы устройства.

В числе других поломок аппаратной части, которые могут вызвать синий экран смерти, следующие:

  • Работа взаимоисключающих программ. Самый яркий пример — работа двух антивирусников, которые блокируют друг друга.
  • Нет памяти на винчестере.
  • Неправильная работа BIOS.
  • Разгон процессора, видеокарты или оперативной памяти, который также был выполнен неправильно.
  • Опасные вирусы в системе.

Кстати, вызвать экран BSOD можно самостоятельно, чтобы проверить состояние компьютера и выявить проблемы своевременно.

Чтобы вызывать этот экран нужно совершить двойное нажатие SCROLL LOSK при зажатии CTRL при включенной опции.

Какие ошибки синего экрана смерти существуют

Мы перечислим все системные ошибки Windows 10 или Windows 7 и 8. Они также могут встречаться в операционной системе Виста.

1. Код ошибки: 0x00000001: APC_INDEX_MISMATCH. Это внутренний сбой одного из ядер. Может возникнуть из-за несоответствия KeEnterCricticalRegion и KeLeaveCriticalRegion в системе файлов. Также причиной ее появление становится слишком большое число повторных вызовов системы. Это одна из наиболее распространенных проблем.

2. Ошибка 0x0000000A: IRQL_NOT_LESS_OR_EQUAL. Означает, что пользователь (или система), пыталась затронуть внутреннюю память на процессоре, из-за чего система и сбилась. Обычно возникает в том случае, если драйвер устройства использует неправильный адрес. Параметрами ошибки является адрес обращения драйвера, тип операции — операция чтения осуществлялась системой, или операция записи, а также адрес инструкции, которая обнаружила неправильный адрес драйвера. В 9 случаях из 10 возникает из-за установки нелицензионных драйверов Виндоус.

3. 0x00000005: INVALID_PROCESS_ATTACH_ATTEMPT — ошибка свидетельствует об отсутствии доступа к серверу и невозможности запуска операционной системы.

4. 0x0000000D: MUTEX_LEVEL_NUMBER_VIOLATION. Ошибка показывает, что точки взаимодействия получают доступ к системе вне правильной очереди. Найти, какие точки взаимодействия стали причиной сбоя можно с помощью файла заголовков NTOSEXEXLEVELS.H.

5. Очень распространенная ошибка — 0x00000012: TRAP_CAUSE_UNKNOWN. Она показывает, что в системе произошел сбой, но причина не определена. Чтобы выяснить причину и исправить работу компьютера, необходимо отследить, при каких условиях возникла данная ошибка.

6. 0x0000001E: KMODE_EXCEPTION_NOT_HANDLED, также распространенная ошибка. В этом случае обычно появление стоп-экрана вызвано поломанным или исключенным драйвером. Нужно обращать внимание и на тип самого драйвера, и на путь доступа к нему. Эта ошибка не несет особой опасности устройству если она не повторяется слишком часто. В противном случае необходимо будет провести диагностику системы. Иногда причиной ошибки является кэширование процессора и если она возникла повторно, необходимо связаться с производителями этой детали и получить консультацию у них.

7. 0x00000023: FAT_FILE_SYSTEM — указывает на повреждение файловой системы FAT16 или FAT32. Проблема может быть в нарушении работы диска, или с Interrupt Request Packet пакетом.

8. 0x00000020: KERNEL_APC_PENDING_DURING_EXIT. Возникает при повреждении или отключении АРС счетчика. Диагностировать причину легко: если АРС счетчик показывает значение выше 0, то причина именно в нем. Причиной сбоя в работе счетчика может быть неправильная настройка драйверов, которая вызвала неравное количество перезапусков файловых систем.

9. 0x00000024: NTFS_FILE_SYSTEM — ошибка указывает на проблему с чтением определенного драйвера, чтения или записи. Также причиной может служить неправильная работа программного обеспечения, чрезмерная активность антивируса или перегрузка дисков.

10. Ошибка 0x0000002A: INCONSISTENT_IRP указывает на несоответствие состояний IRP. Иногда IRP, который уже выполнил загрузку, система принимает как ожидающий загрузки и наоборот. Из-за этого появляется синий экран.

11. 0x0000002B: PANIC_STACK_SWITCH — ошибка показывает, что область стека ядра переполнена. Обычно причиной является либо ошибка в ядре, либо большой вес драйвера.

12. 0x0000002E: DATA_BUS_ERROR — ошибка памяти системы, возникает когда драйвер обращается к источнику памяти, который уже не существует.

13. 0x00000031: PHASE0_INITIALIZATION_FAILED — появляется в случае, когда система не прошла инициализацию на ранней стадии. Информации этот код практически не дает, поэтому требуется дополнительная диагностика системы.

14. Ошибка с кодом 0x00000025: NPFS_FILE_SYSTEM свидетельствует о том, что память компьютера переполнена и устройство не может нормально работать. В этом случае необходимо увеличить память на жестком диске.

15. Еще один часто встречающийся вариант: 0x00000026: CDFS_FILE_SYSTEM. Показывает, что повреждена файловая система компьютера, есть битые сектора или новый драйвер не совместим с системой. Чтобы исправить ошибку, нужно провести диагностику устройства, ликвидировать битые сектора и добавить объем оперативной памяти.

Это основные ошибки, вызывающие синий экран смерти.

Перечислять все виды сбоев не нужно, так как разобраться в коде обычному пользователю очень сложно и решить проблему самостоятельно ему не удастся.

Диагностика компьютера для поиска поврежденной утилиты

Наиболее часто встречающаяся проблема, вызывающая экран BSOD, это установка нового драйвера или гарнитуры, которые приводят к нехватке незаменимых программных файлов.

Сначала следует провести диагностику внутренних деталей.

Возможно причина в некачественном креплении кабелей или соединений внутри системного блока.

Ваша задача: проверить правильность установки карт и подключения проводов, а также разъемы и их надежность.

Вид системного блока изнутри

Если проблема не обнаружена, нужно проверить температурный режим.

Перегрев внутри системного блока опасен, он может вывести из строя и видеокарту, и сам процессор, что ведет к дополнительным тратам.

Проверить температуру можно в разделе мониторинга BIOS или специальной программой, которую нужно загрузить в операционную систему.

Такие программы покажут, где именно происходит перегрев.

Указанную деталь обязательно нужно заменить или отремонтировать.

Также нужно обязательно проверить состояние оперативной памяти, так как причиной ошибки бывает поломка платы оперативной памяти.

Наличие поломки можно понять благодаря неправильным показателям ячейки памяти, когда она показывает больше (или меньше), чем на самом деле.

Из-за таких поломок работа операционной системы становится нестабильной.

Диагностировать оперативную память можно с помощью специальных утилит, но перед запуском программы следует перезагрузить систему.

Например, можно использовать утилиту Memtest.

Следующий этап — это диагностика жесткого диска.

Для этого откройте «Мой компьютер», выберите программный диск и проведите левой кнопкой мыши нажмите на него.

В появившемся меню выберите «Свойства» и система откроет такое окно:

Диагностика жесткого диска поможет сохранить винчестер, так как очень часто именно он вызывает экраны смерти.

Для запуска тестирования в окне «Свойства» выбирайте «Сервис» и нажмите на «Выполнить проверку».

Компьютер автоматически перезагрузится, а затем начнет сканирование.

Еще один метод — восстановление исходных настроек компьютера.

Система восстановления возвращает состояние компьютера к исходному на определенный участок времени, который вы выставляете самостоятельно.

Помогает устранить ошибку, если она была вызвана присоединенными деталями или установленными недавно программами.

Аппаратная диагностика также поможет проверить состояние компьютера: подключить монитор в специальный разъем на материнской плате, который предназначен для видеокарты, а остальные составляющие части отключить вовсе.

То есть у вас должны быть только процессор, оперативная память, блок питания, клавиатура, винчестер, монитор и материнская плата. Все остальные составляющие отключаются.

Если при наличии только монитора и материнской платы компьютер запускается, нужно начать поочередно присоединять оставшиеся детали до тех пор, пока система не выдаст ошибку.

Именно та деталь, на которой при загрузке появился синий экран, является его причиной.

Правда аппаратный метод можно использовать только с компьютером, так как разобрать ноутбук не получится.

Исключение составляют ноутбуки, которые уже оснащены встроенной программой для аппаратной диагностики.

Еще один способ исправления ошибки, это освобождение свободного места на винчестере.

Чтобы компьютер работал нормально, быстро и без сбоев, на винчестере должно быть не менее 50% свободной памяти диска.

Для нормальной работы системы можно добавить жесткие диски или расширить память на них, если удалять уже нечего.

Если на диске нет места из-за его ограниченной емкости, можно сжать его для экономии памяти или удалить кэшированные данные, загрузки и устаревшие программы.

Для этого войдите в «Мой компьютер» и нажмите на название диска правой кнопкой мыши. появившемся окне выберите «Свойства».

Так выглядят свойства диска

Вы можете нажать на очистку диска, это безопасный метод освободить память, система удалит устаревшие файлы и данные из интернета, в том числе, остатки просмотренных видео и прослушанных аудио.

Функцией «Сжатие диска» пользоваться нужно аккуратно, так как есть вероятность того, что система сожмет файлы, которые отвечают за ее загрузку и в такой ситуации останется только переустанавливать Виндоус.

Также нужно проверить исправность комплектующих, но процедуру ремонта лучше доверить специалисту.

Резюмируем, как вылечить экран смерти

Так как самая распространенная причина появления синего экрана удаление нужных системных файлов или ПО, то нужно уметь пользоваться функцией «Восстановление системы».

Эта функция вернет компьютер в состояние, в котором он находился до удаления нужного файла.

Чтобы выполнить восстановление системы, необходимо:

  • Перейти в меню «Пуск» и набрать в строке поиска «восстановление системы».
  • Открыть файл двойным нажатием мыши.
  • Установить точку даты восстановления, то есть время до удаления нужного файла или установки неподходящего драйвера. Именно к этому времени будет восстановлен Windows.
  • Подождите пока процесс завершится и перезагрузите компьютер, синий экран должен пропасть.

Если же вы не удаляли никаких файлов в последнее время и не устанавливали нового оборудования, вам необходимо прочесть на экране смерти, какая программа вызывает такую ошибку. Понять это можно из кода вверху страницы.

Теперь, зная имя файла, отыщите его через «Панель управления», и нажмите на «Удаление программы».

Совет! Загружать программы, файлы и драйвера лучше только с проверенных, лицензионных сайтов, чтобы избежать таких поломок.

В крайнем случае вы можете переустановить систему полностью, так как в процессе переустановки зайдествован обычно только программный диск, то данные на остальных сохранятся.

Для установки новой Windows нужно иметь загрузочный носитель с официальной версией этой операционной системы.

Инструкция по избавлению от ошибок

На примере операционной системы Windows 7 мы расскажем, как «вылечить» ваш ПК быстро и безболезненно.

Итак, когда на мониторе синий экран с кодом, нужно запустить загрузку компьютера в безопасном режиме.

Для этого нажимайте клавишу F8 до тех пор, пока не появится меню загрузки. Выглядит оно вот так:

На этом экране выбираем, используя стрелочки на клавиатуре, пункт «Безопасный режим с загрузкой сетевых драйверов».

Этот режим предоставляет ограниченный доступ к функциям компьютера, но в нем вы можете воспользоваться интернетом и найти инструкции по избавлению от ошибки или другую нужную информацию.

Здесь же, в безопасном режиме, запустите полное сканирование антивирусом.

Эта программа в фоновом режиме работает постоянно, но иногда и она пропускает «червей» и более опасные вирусные угрозы.

В любом антивируснике функция глубокой проверки предусмотрена, можно воспользоваться ее, или запросить сканирование при загрузке операционной системы и перезагрузить компьютер.

Теперь, если вирусов нет, или программа смогла их обезвредить, нужно обновить Windows 7.

Разработчики Windows постоянно присылают обновления, которые делают использование программы более удобным и расширяют ее функции, но не всегда пользователь их замечает и устанавливает.

И из-за этого также часто возникают системные ошибки разного рода, поэтому все обновления Windows нужно устанавливать: проверять системные сообщения или настроить автоматическую загрузку обновлений.

Но если синий экран уже появился, обычная установка обновлений не поможет решить проблему.

Для этого нужно выполнить обновление всей системы, это альтернатива переустановки программного обеспечения.

Для этого вам нужен загрузочный диск с Windows 7 (или загрузочная флешка), gри этом программа удалит старые файлы и файлы, вызывающие ошибку, и заменит их новыми.

Окно установки Виндоус, выбираем «обновления»

Как не допустить появления «экрана смерти»?

Вам удалось избавиться от такой ошибки, но не хотелось бы ее повторения. Для этого соблюдайте простые правила:

  • Проводите глубокое сканирование системы хотя бы раз в 2-3 месяца.
  • Устанавливайте обновления Windows и читайте системные сообщения.
  • Чистите системный блок от пыли, а клавиатуру от крошек.
  • Проверяйте работу вентилятора.
  • Своевременно меняйте термопасту.

Ошибки при запуске системы

Самый опасный и сложный тип ошибок появляется вовсе не на синем, а на черном экране.

Это ошибки запуска системы. Обычно они появляются в случае, когда произошел серьезный сбой и исправить ситуацию вряд ли удастся — единственным выходом становится перезагрузка системы.

Ошибка запуска с текстом press and key to start, возникающая при загрузке операционной системы может изрядно напугать, но на самом деле она требует лишь нажать любую кнопку для продолжения.

Это распространенный сбой запуска и появляется он как раз-таки на черном экране, но никакой опасности не несет.

Но есть и более весомые причины, которые не дают Виндоус нормально загружаться.

К ним относят ошибки в реестре, повреждения системных файлов и жесткого диска.

Если речь идет о повреждении системных файлов, то страдают обычно hal, dll, ntdetect и ntldr.

В таком случае на черном экране вы увидите надпись «windows could not start because the following file is missing or corrupt».

Далее указан потерянный файл, то есть вся информация есть на экране.

При такой ошибке помочь можно переустановкой операционной системы, если у вас есть резервная копия записанная заранее, или просто загрузочный диск.

Способы исправления системных ошибок

Чаще всего проблемы с загрузкой ПК появляются как следствие проникновения вируса в компьютер, установки неправильных драйверов или программ, а также некорректное завершение работы компьютера, перебои в электросети и удаление нужных файлов или программ.

Есть 3 основных способа ис правления системных ошибок Windows 7: это восстановление системы (мы рассматривали этот метод, как средство «лечения» синего экрана смерти), ручное исправление при использовании командной строки или применение CCleаner — программы для чистки дисков.

Все способы рассмотрим подробно.

1. Восстановление системы. Это стандартная функция, которая есть во всех версиях Windows и создана специально для нормализации работы. Для запуска функции откройте меню «Пуск» в левом нижнем углу экрана. Затем перейдите в «Панель управления». Выбираем раздел «Система и безопасность» и в открывшемся меню нажимаем на «Архивация и сброс», как на скриншоте.

Вам откроется такое окно:

Нажмите на «Запуск восстановления» и выберите точку, к которой система осуществит откат.

Нажмите на кнопку «начать», а после окончания процесса компьютер должен быть перезагружен.

Это может помочь вернуть его работоспособность и восстановить нормальное функционирование без сбоев, так как будут устранены ошибки реестра и драйверов.

2. Ручная настройка. Подойдет, если у вас в компьютере не зафиксированы последние точки отката. В такой ситуации приходится проводить настройку вручную. Но понадобится консоль Windows — встроенная программа с мощным функционалом и без графического интерфейса.Обычные пользователи не работают в консоли Windows и такая перспектива их пугает, но ничего сложного в этой задаче нет. Вам нужно вызвать диалоговое окно для дальнейшей работы, нажмите Win и R одновременно. Появится окно с шапкой «выполнить». Введите в поле

cmd

как показано на изображении и нажмите «ок».

Вам откроется черное окно, которое и является консолью операционной системы.

Теперь нужно проверить наличие ошибок в работе жесткого диска. Для этого введите в поле команду chkdsk c: /f /r, на изображении ниже показано, куда нужно ввести команду и нажать enter.

Когда проверка закончится, просканируйте компьютер с помощью команды « sfc /scannow» на предмет ошибок в состоянии системных файлов.

3. Использовать утилиту CCleaner. Это удобная программа, которой следует пользоваться не только в критических ситуациях, но и при повседневной работе с компьютером. Она позволяет удалять программы с устройства полностью, включая остаточные файлы, раскиданные по разным папкам, чистить интернет-историю и многое другое. С ее помощью можно удалить программу и откорректировать реестр для нормальной работы ПК. Но нас интересует другая функция — инструмент, позволяющий автоматически выявить и исправить ошибки в записях реестра. Запустите программу, в левом меню нажмите на «Реестр». Теперь выделите все пункты в меню и нажмите на поиск проблем, система автоматически выявит несоответствия данных. Для удаления неполадок нажмите «исправить».

Интерфейс программы в разделе реестра

Как исправить ошибки Windows с помощью программы СCleaner

Видео урок

Не загружается операционная система

Вы включили компьютер, появилось окно загрузки, но система не может начать работать полноценно.

Она либо перезагружается, либо зависает, либо выдает непонятные символы и всплывающие окна.

В такой ситуации вам также понадобится функция восстановления системы, но провести ее указанными выше способами не получится, так как устройство не загружается.

Чтобы исправить такую ошибку, вам нужен установочный диск или флешка с выбранной версией операционной системы.

Порядок действий такой:

  1. Флешку подключают к компьютеру и перезагружают устройство.
  2. Когда появится окно перезагрузки, нажмите одну из клавиш, которая переведет вас в bios. Это F2—F12 и delete, в зависимости от модели. Обычно помогает кнопка delete или F8.
  3. В системе bios нужно выставить по умолчанию загрузку с CD/DVD-диска или USB-устройства, в зависимости от типа носителя, на котором у вас записан Виндовс.
  4. Перезагрузите компьютер.

Окно установки windows 7

Теперь выбирайте язык установки и нажимайте «Далее». Вы увидите такое окно, окно установки операционной системы:

Нажимаем на «Восстановление системы», как показано на скриншоте.

Очень важно! Установочный диск с версией Виндоус должен соответствовать вашей старой версии, в противном случае восстановление системы невозможно.

На экране вы увидите все установленные системы, выбираем Windows 7 и ставим галочку напротив названия, нажимаем «Далее».

Система автоматически просканирует компьютер на предмет неисправностей и попытается ликвидировать ошибки. Затем она сделает откат ОС к точке восстановления.

Нужно отметить, что этот способ не всегда является эффективным, и если он не помог — искать проблему нужно по коду или аппаратной диагностике.

Системная ошибка 5: отказ в допуске Windows

Поговорим еще об одной ошибке, ошибке 5, которая не дает доступа к Виндоус и возникает на этапе загрузки.

Ошибка возникает при попытке запуска определенной программы или нескольких программ операционной системы. Выглядит она так:

Найти инструкции по избавлению от ошибки бывает непросто, но мы приведем порядок последовательных действий.

Нужно оговорить, что вряд ли существует один метод исправления этой ошибки, скорее всего действия будут меняться в зависимости от компьютера, драйверов и так далее.

Приведем обобщенную инструкцию, которая поможет в большинстве случаев:

Как избавиться от ошибки, если она возникает при запуске системных действий

Очень часто на компьютерах ограничен полный доступ к диску С, даже если вы пользуетесь ПК как администратор.

Обычно установлен параметр «Только чтение» для всех учетных записей, но эту проблему легко решить.

Чтобы открыть права на все действия с диском, откройте «Мой компьютер», нажмите на диск С, выберите «Свойства» и выберите вкладку «Безопасность».

Нажав на «Безопасность» вы увидите следующее окно:

Вам необходимо нажать на кнопку «Изменить» и в следующем окне нажать на «добавить», как показано на скриншоте:

В открывшемся окне вручную напишите «Все» в пустой строке, это откроет доступ ко всем системным программам и действиям любому пользователю. Теперь нажимаем на кнопку слева, «Проверить имя».

Если проблемы нет и система не против открыть доступ, написанное вами слово «Все» будет подчеркнуто черной линией, как на изображении ниже. После этого нажимаем «Ок».

Теперь, когда все пользователи компьютера имеют доступ к в функциям, если хотите открыть полный доступ, нужно указать это в меню. Для этого просто установите галочки напротив каждого пункта в окне.

Изображение на котором показано, где устанавливать галочки для полного доступа к управлению

Такой способ подойдет для всех, кто пользуется windows 7,8 10, vista.

Для пользователей windows хр нужен несколько другой подход, который мы также расскажем.

Проблема в том, что по умолчанию в интерфейсе windows хр не отображается вкладка «Безопасность» (в свойствах диска С), но эту вкладку можно вернуть всего в несколько действий.

  • Откройте любую папку.
  • Нажмите на «Сервис», кнопка расположена сверху.
  • Нажмите на «Свойства папки».
  • Теперь нажмите на «Вид».
  • Напротив дополнительных параметров убираем отметку возле «Упрощенный общий доступ», именно включение этой функции и не дает полноценно управлять системой.

После этого вкладка «безопасность» в свойствах диска С появится и вы должны выполнить все указанные выше действия, как и в случае с работой в более поздних программах Виндоус. Ошибка 5 должна исчезнуть после выполненного алгоритма.

Специалисты компании Майкрософт предлагают другой способ избавления от ошибки 5.

Он также эффективен, но требует немного больше действий и является более сложным.

  • Откройте командную строку от имени администратора. Вам потребуется открыть командную строку с помощью команды cmd. Как перейти в этот режим мы обсуждали выше, в теме избавления от синего экрана смерти.
  • В появившейся командной строке нужно написать следующее:
    net localgroup Администратор /add networkservice

    для русскоязычной системы, и

    net localgroup Administrator /add networkservice

    для англоязычной системы. Нажимаем на Enter

  • Затем в следующем поле прописываем
    net localgroup Администраторы /add localservice

    или (Administrators) в английской версии.

Командная строка

Теперь закрываем командную строку и перезагружайте устройство.

Если вы все сделали верно, то ошибка 5 исчезнет и вы получите доступ ко всем службам системы.

Есть еще один способ, который позволит убрать ошибку через реестр операционной системы.

Но для этого обязательно нужно знать название службы, которая ограничивает доступ.

Для этого откройте в списке служб свойства нужной службы и посмотрите имя. Затем можно перейти к работе с реестром.

Ниже приведен пример, в котором имя сетевой службы Netman.

Теперь рассмотрим, как запустить реестр. Расскажем о стандартном способе запуска.

Для этого нужно нужно запустить командное окно, нажмите клавиши Win+R или просто зайти в «Пуск» и с правой стороны и всплывающего окна выберите команду «Выполнить».

В открывшемся окне введите команду

regedit

и нажимаем enter, как показано на скриншоте.

Нажмите ОК и откроется окно редактирования реестра, куда можно внести данные об изменении операционной системы и открытии доступа.

Также запустить меню реестров можно просто через Пуск.

Откройте «Пуск» и в нижней строке поиска пропишите команду

regedit

В найденных файлах вы увидите regedit.exe и перейдите в настройки реестра. Запускаем его и продолжаем исправлять ошибки.

В окне реестра переходим по ветке HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServices и в открывшемся списке служб ищем нужную нам по имени, которое мы уже посмотрели в ее свойствах.

Нашли службу и нажимаем на нее правой кнопкой мыши, выбираем пункт «разрешения».

Проверяем, какие функции открыты для администратора, а какие для пользователя и выставляем напротив администратора все галочки. Этот процесс мы уже описывали в первом пункте.

Если вы не хотите разбираться в системе, можно попробовать переустановить антивирусную программу, возможно она блокирует доступ.

Некоторые антивирусные программы берут на себя права использования определенных программ и автоматически могут ограничить доступ пользователя.

Для начала попробуйте просто выключить программу и попробовать запустить службу, которая выдает ошибку 5.

В крайнем случае, когда указанные выше способы не помогают и оказались неэффективными, вы всегда можете переустановить операционную систему.

Не слишком правильно делать это лишь для того, чтобы избавиться от ошибки 5, но если у вас есть и другие проблемы с Виндоус, проще и эффективнее всего будет его переустановка.

Выводы

Из статьи понятно, что от системных ошибок Windows уберечься не получится, и, как и любую болезнь, ошибки проще предотвратить, чем лечить.

Подводя итог скажем, что ошибки обычно возникают в следствие последствий вирусов, нарушения работы драйверов, установки нелицензионных или неподходящих программ, а также сбоев в аппаратной части компьютера.

Итак, сократить шанс появления системной ошибки, можно путем установки лицензионных программ, своевременной установки обновлений, регулярного сканирования антивирусом.

Также не забывайте удалять пыль из кулера и менять термопасту по мере надобности.

Поиск и устранение всех ошибок Windows. Как исправить ошибку?

Видео урок

Источник

Ошибка, недостаток, сбой или сбой в компьютерной программе или системе

A Ошибка программного обеспечения — это ошибка, недостаток или сбой в компьютерной программе или системе, из-за которой она дает неверный или неожиданный результат или ведет себя непредусмотренным образом. Процесс поиска и исправления ошибок называется «отладка » и часто использует формальные методы или инструменты для выявления ошибок, а с 1950-х годов некоторые компьютерные системы были разработаны также для обнаружения, обнаружения или автоматического исправления различных компьютерные ошибки во время работы.

Большинство ошибок возникает из-за ошибок и ошибок, допущенных либо в проекте программы, либо в ее исходном коде, либо в компонентах и ​​операционных системах, используемых такие программы. Некоторые из них вызваны тем, что компиляторы создают неправильный код. Программа, содержащая множество ошибок и / или ошибок, серьезно мешающих ее функциональности, называется ошибочной (дефектной). Ошибки могут вызывать ошибки, которые могут иметь волновой эффект. Ошибки могут иметь незначительные последствия или привести к аварийному завершению работы или зависанию компьютера. Другие ошибки квалифицируются как ошибки безопасности и могут, например, позволить злоумышленнику обойти контроль доступа, чтобы получить неавторизованные привилегии.

Некоторые программные ошибки связаны с катастрофами. Ошибки в коде, который управлял аппаратом Therac-25 лучевой терапии, были непосредственными причинами смерти пациентов в 1980-х годах. В 1996 г. ракета Европейского космического агентства стоимостью 1 миллиард долларов прототип Ariane 5 должна была быть уничтожена менее чем через минуту после запуска из-за ошибки в системе. бортовая компьютерная программа наведения. В июне 1994 года вертолет Royal Air Force Chinook врезался в Mull of Kintyre, в результате чего погибло 29 человек. Первоначально это было отклонено как ошибка пилота, но расследование Computer Weekly убедил запрос Палаты лордов в том, что это могло быть вызвано ошибкой программного обеспечения в компьютере управления двигателем.

самолета. В 2002 году исследование, проведенное по заказу Национальный институт стандартов и технологий Министерства торговли США пришел к выводу, что «программные ошибки или ошибки настолько распространены и настолько пагубны, что обходятся экономике США примерно в 59 миллиардов долларов. ежегодно, или около 0,6 процента валового внутреннего продукта ».

Содержание

  • 1 История
    • 1.1 Отчет« Ошибки в системе »
  • 2 Терминология
  • 3 Профилактика
    • 3.1 Типографические ошибки
    • 3.2 Методологии разработки
    • 3.3 Поддержка языков программирования
    • 3.4 Анализ кода
    • 3.5 Инструментарий
  • 4 Тестирование
  • 5 Отладка
  • 6 Тест ошибок
  • 7 Управление ошибками nt
    • 7.1 Уровень серьезности
    • 7.2 Приоритет
    • 7.3 Версии программного обеспечения
  • 8 Типы
    • 8.1 Арифметика
    • 8.2 Логика
    • 8.3 Синтаксис
    • 8.4 Ресурс
    • 8.5 Многопоточность
    • 8.6 Взаимодействие
    • 8.7 Работа в команде
  • 9 Последствия
  • 10 Хорошо известные ошибки
  • 11 В популярной культуре
  • 12 См. Также
  • 13 Ссылки
  • 14 Внешние ссылки

История

Среднеанглийское слово bugge лежит в основе терминов «bugbear » и «bugaboo » как терминов, используемых для обозначения монстра.

Термин «ошибка» для описания дефектов был частью инженерного жаргона с 1870-х годов и предшествовал электронным компьютерам и компьютерному программному обеспечению; возможно, изначально он использовался в аппаратной инженерии для описания механических неисправностей. Например, Томас Эдисон написал следующие слова в письме своему сотруднику в 1878 году:

Так было во всех моих изобретениях. Первым шагом является интуиция, и она приходит с порывом, затем возникают трудности — эта штука выдает, и [это] затем, что «жуки» — как называются такие маленькие ошибки и трудности — проявляют себя и месяцы интенсивного наблюдения, изучения прежде чем будет достигнут коммерческий успех или провал, необходимы и труд.

Baffle Ball, первая механическая игра в пинбол, в 1931 году рекламировалась как «свободная от ошибок». Проблемы с военным снаряжением во время Второй мировой войны упоминались как ошибки (или сбои ). В фильме 1940 года Flight Command дефект в части радиопеленгатора называется «ошибкой». В книге, опубликованной в 1942 году, Луиза Дикинсон Рич, говоря о механизированной машине для резки льда, сказала: «Распиловка льда была приостановлена ​​до тех пор, пока не будет привлечен создатель, чтобы устранить жучков. своего любимого ».

Исаак Азимов использовал термин« ошибка »для обозначения проблем с роботом в своем рассказе« Поймай этого кролика », опубликованном в 1944 году.

A страница из журнала электромеханического компьютера Harvard Mark II с изображением мертвой мотылька, удаленной с устройства.

Термин «ошибка» использовался в описании компьютерного первопроходца Грейс Хоппер, который объявил причину неисправности в одном из первых электромеханических компьютеров. Типичная версия этой истории такова:

В 1946 году, когда Хоппер освободили от действительной службы, она поступила на Гарвардский факультет в вычислительную лабораторию, где продолжила свою работу над Mark II и Марк III. Операторы связали ошибку в Mark II с мотыльком, застрявшим в реле, придумав термин «ошибка». Этот баг был аккуратно удален и записан в журнал. Исходя из первой ошибки, сегодня мы называем ошибки или сбои в программе ошибкой.

Хоппер не нашла ошибку, что она с готовностью признала. В бортовом журнале была дата 9 сентября 1947 года. Операторы, которые его нашли, включая Уильяма «Билла» Берка, позже работавшего в Лаборатории военно-морского оружия, Дальгрен, Вирджиния, были знакомы с техническим термином и забавно сохранил насекомое с пометкой «Первый реальный случай обнаружения ошибки». Хоппер любил пересказывать эту историю. Этот журнал, вместе с прикрепленным к нему мотыльком, является частью коллекции Смитсоновского Национального музея американской истории.

Связанный термин «отладка » также появился раньше, чем его использовали в вычислительной технике: Оксфордский словарь английского языка этимология этого слова содержит свидетельство 1945 года в контексте авиационных двигателей.

Идея, что программное обеспечение может содержать ошибки, восходит к 1843 году Ады Лавлейс. примечания к аналитической машине, в которых она говорит о возможности того, что программные «карты» для аналитической машины Чарльза Бэббиджа ошибочны:

… процесс анализа также должен быть выполнен, чтобы предоставить Аналитической машине необходимые оперативные данные; и в этом также может заключаться возможный источник ошибки. При условии, что реальный механизм работает без ошибок, карты могут давать ему неправильные команды.

Отчет «Ошибки в системе»

Институт открытых технологий, управляемый группой New America, выпустил доклад «Ошибки в системе» в августе 2016 года, в котором говорится, что политики США должны провести реформы, чтобы помочь исследователям выявлять и устранять ошибки программного обеспечения. В отчете «подчеркивается необходимость реформы в области обнаружения и раскрытия уязвимостей программного обеспечения». Один из авторов отчета сказал, что Конгресс сделал недостаточно для устранения уязвимости киберпрограмм, хотя Конгресс принял ряд законопроектов по борьбе с более серьезной проблемой кибербезопасности.

Государственные исследователи, компании и кибербезопасность эксперты — это люди, которые обычно обнаруживают недостатки программного обеспечения. В докладе содержится призыв к реформированию законов о компьютерных преступлениях и авторских правах.

Закон о компьютерном мошенничестве и злоупотреблениях, Закон об авторском праве в цифровую эпоху и Закон о конфиденциальности электронных коммуникаций криминализируют и вводят гражданские санкции за действия, которые исследователи в области безопасности обычно совершают при проведении законных исследований в области безопасности. — говорится в отчете.

Терминология

Хотя использование термина «ошибка» для описания ошибок программного обеспечения является обычным явлением, многие предложили отказаться от него. Один из аргументов состоит в том, что слово «ошибка» не связано с тем, что проблема была вызвана человеком, и вместо этого подразумевает, что дефект возник сам по себе, что привело к необходимости отказаться от термина «ошибка» в пользу таких терминов, как «дефект» с ограниченным успехом. Начиная с 1970-х годов Гэри Килдалл несколько юмористически предложил использовать термин «грубая ошибка».

В разработке программного обеспечения термин «метаморфизм ошибки» (от греческого meta = «изменение», morph = «форма») означает эволюции дефекта на заключительном этапе развертывания программного обеспечения. Преобразование «ошибки», совершенной аналитиком на ранних этапах жизненного цикла разработки программного обеспечения, которая приводит к «дефекту» на заключительной стадии цикла, было названо «метаморфизмом ошибки».

Различные этапы «ошибки» во всем цикле могут быть описаны как «ошибки», «аномалии», «сбои», «сбои», «ошибки», «исключения», «сбои», «сбои», «ошибки», » дефекты »,« инциденты »или« побочные эффекты ».

Предотвращение

Отрасль программного обеспечения приложила много усилий для сокращения количества ошибок. К ним относятся:

Типографические ошибки

Ошибки обычно появляются, когда программист делает логическую ошибку. Различные нововведения в стиле программирования и защитном программировании призваны сделать эти ошибки менее вероятными или более простыми для обнаружения. Некоторые опечатки, особенно в символах или логических / математических операторах, позволяют программе работать некорректно, в то время как другие, такие как отсутствие символа или неправильное имя, могут препятствовать работе программы. Скомпилированные языки могут обнаруживать некоторые опечатки при компиляции исходного кода.

Методологии разработки

Несколько схем помогают управлять деятельностью программиста, чтобы генерировать меньше ошибок. Программная инженерия (которая также решает проблемы проектирования программного обеспечения) применяет множество методов для предотвращения дефектов. Например, формальные спецификации программ устанавливают точное поведение программ, так что ошибки проектирования могут быть устранены. К сожалению, формальные спецификации нецелесообразны ни для чего, кроме самых коротких программ, из-за проблем комбинаторного взрыва и неопределенности.

Модульное тестирование включает в себя написание теста для каждой функции (модуля), которая программа для исполнения.

В разработке, управляемой тестированием, модульные тесты пишутся до кода, и код не считается завершенным, пока все тесты не завершатся успешно.

Гибкая разработка программного обеспечения включает частые выпуски программного обеспечения с относительно небольшими изменениями. Дефекты выявляются по отзывам пользователей.

Разработка с открытым исходным кодом позволяет любому исследовать исходный код. Школа мысли, популяризированная Эриком С. Реймондом как закон Линуса, гласит, что популярное программное обеспечение с открытым исходным кодом имеет больше шансов иметь мало ошибок или совсем не иметь ошибок, чем другое программное обеспечение., потому что «при достаточном внимании к нему все ошибки мелкие». Однако это утверждение оспаривается: специалист по компьютерной безопасности Элиас Леви писал, что «легко скрыть уязвимости в сложном, малоизученном и недокументированном исходном коде», потому что «даже если люди просматривают код, это не означает, что они обладают достаточной квалификацией для этого «. Примером того, что это произошло случайно, была уязвимость 2008 OpenSSL в Debian.

Поддержка языков программирования

Языки программирования включают функции, помогающие предотвратить ошибки, такие как системы статических типов , ограниченное пространства имен и модульное программирование. Например, когда программист записывает (псевдокод) LET REAL_VALUE PI = "THREE AND A BIT", хотя это может быть синтаксически правильным, код не проходит проверку типа . Скомпилированные языки улавливают это без необходимости запускать программу. Интерпретируемые языки выявляют такие ошибки во время выполнения. Некоторые языки намеренно исключают функции, которые легко приводят к ошибкам, за счет более низкой производительности: общий принцип заключается в том, что почти всегда лучше писать более простой и медленный код, чем непостижимый код, который выполняется немного быстрее, особенно с учетом того, что обслуживание стоимость существенная. Например, язык программирования Java не поддерживает арифметику с указателем ; реализации некоторых языков, таких как Pascal и языков сценариев, часто имеют границы среды выполнения , проверяющие массивов, по крайней мере, в отладочной сборке.

Анализ кода

Инструменты для анализа кода помогают разработчикам, проверяя текст программы за пределами возможностей компилятора, чтобы выявить потенциальные проблемы. Хотя в целом проблема поиска всех программных ошибок в данной спецификации не разрешима (см. проблема остановки ), эти инструменты используют тот факт, что люди-программисты часто допускают определенные виды простых ошибок при написании программного обеспечения.

Инструментарий

Инструменты для мониторинга производительности программного обеспечения во время его работы, специально для поиска таких проблем, как узкие места, или для обеспечения уверенности в правильной работе, могут быть встроенными в код явным образом (возможно, так просто, как выражение PRINT «I AM HERE») или предоставлено в виде инструментов. Часто бывает неожиданностью обнаружить, где большую часть времени занимает фрагмент кода, и это удаление предположений может привести к переписыванию кода.

Тестирование

Тестировщики программного обеспечения — это люди, основной задачей которых является обнаружение ошибок или написание кода для поддержки тестирования. В некоторых проектах на тестирование может быть потрачено больше ресурсов, чем на разработку программы.

Измерения во время тестирования могут дать оценку количества оставшихся вероятных ошибок; это становится более надежным, чем дольше тестируется и разрабатывается продукт.

Отладка

Типичная история ошибок (GNU Classpath данные проекта). Новая ошибка, отправленная пользователем, не подтверждена. Как только он был воспроизведен разработчиком, это подтвержденная ошибка. Подтвержденные ошибки позже исправлены. Ошибки, относящиеся к другим категориям (невоспроизводимые, не будут исправлены и т. Д.), Обычно составляют меньшинство.

Поиск и исправление ошибок или отладка — основная часть компьютерного программирования. Морис Уилкс, один из первых пионеров вычислительной техники, описал свое осознание в конце 1940-х годов, что большую часть оставшейся жизни он потратит на поиск ошибок в собственных программах.

Обычно самые сложные Часть отладки — это поиск ошибки. Как только она обнаружена, исправить ее обычно относительно легко. Программы, известные как отладчики, помогают программистам обнаруживать ошибки, выполняя код построчно, наблюдая за значениями переменных и другими функциями для наблюдения за поведением программы. Без отладчика код может быть добавлен так, что сообщения или значения могут быть записаны в консоль или в окно или файл журнала для отслеживания выполнения программы или отображения значений.

Однако даже с помощью отладчика обнаружение ошибок — это своего рода искусство. Нередко ошибка в одном разделе программы вызывает сбои в совершенно другом разделе, что особенно затрудняет отслеживание (например, ошибка в подпрограмме рендеринга графики , вызывающая файл I / O ошибка подпрограммы) в явно несвязанной части системы.

Иногда ошибка не является изолированным недостатком, а представляет собой ошибку мышления или планирования со стороны программиста. Такие логические ошибки требуют капитального ремонта или перезаписи части программы. Как часть обзора кода, пошаговое выполнение кода и воображение или расшифровка процесса выполнения часто может обнаруживать ошибки без воспроизведения ошибки как таковой.

Как правило, первым шагом при обнаружении ошибки является ее надежное воспроизведение. Как только ошибка будет воспроизведена, программист может использовать отладчик или другой инструмент при воспроизведении ошибки, чтобы найти точку, в которой программа сбилась с пути.

Некоторые ошибки обнаруживаются при вводе данных, которые программисту может быть трудно воссоздать. Одной из причин смерти радиационной машины Therac-25 была ошибка (в частности, состояние гонки ), которая возникала только тогда, когда оператор машины очень быстро вводил план лечения; На то, чтобы это сделать, потребовались дни практики, поэтому ошибка не проявлялась ни при тестировании, ни при попытке производителя воспроизвести ее. Другие ошибки могут перестать возникать всякий раз, когда установка расширяется, чтобы помочь найти ошибку, например, запуск программы с отладчиком; они называются хайзенбагами (шутливо названы в честь принципа неопределенности Гейзенберга ).

С 1990-х годов, особенно после катастрофы Ariane 5 Flight 501, возрос интерес к автоматизированным средствам отладки, таким как статический анализ кода посредством абстрактной интерпретации.

Некоторые классы ошибок не имеют ничего общего с кодом. Неправильная документация или оборудование могут привести к проблемам при использовании системы, даже если код соответствует документации. В некоторых случаях изменения в коде устраняют проблему, даже если код больше не соответствует документации. Встроенные системы часто обходят аппаратные ошибки, поскольку создание новой версии ПЗУ намного дешевле, чем восстановление оборудования, особенно если они товарные позиции.

Тест ошибок

Чтобы облегчить воспроизводимые исследования по тестированию и отладке, исследователи используют специально подобранные тесты тестов:

  • тест Siemens
  • ManyBugs — тест на 185 ошибок C. в девяти программах с открытым исходным кодом.
  • Defects4J — это тест на 341 ошибку Java из 5 проектов с открытым исходным кодом. Он содержит соответствующие исправления, которые охватывают множество типов исправлений.
  • BEARS — это эталонный тест на ошибки сборки с непрерывной интеграцией с упором на ошибки тестирования. Он был создан путем мониторинга сборок из проектов с открытым исходным кодом на Travis CI.

Управление ошибками

Управление ошибками включает в себя процесс документирования, категоризации, назначения, воспроизведения, исправления и выпуска исправленного кода. Предлагаемые изменения в программном обеспечении — ошибки, запросы на улучшения и даже целые выпуски — обычно отслеживаются и управляются с помощью систем отслеживания ошибок или систем отслеживания проблем. Добавленные элементы могут называться дефектами, заявками, проблемами или, следуя парадигме гибкой разработки, рассказами и эпосами. Категории могут быть объективными, субъективными или комбинированными, например номер версии, область программного обеспечения, серьезность и приоритет, а также тип проблемы, такой как запрос функции или ошибка.

Уровень серьезности

Уровень серьезности — это влияние ошибки на работу системы. Это может быть потеря данных, финансовая потеря, потеря репутации и потраченные впустую усилия. Уровни серьезности не стандартизированы. Воздействие различается в зависимости от отрасли. Сбой в видеоигре оказывает совершенно иное влияние, чем сбой в веб-браузере или системе мониторинга в реальном времени. Например, уровни серьезности ошибки могут быть такими: «сбой или зависание», «нет обходного пути» (что означает, что клиент не может выполнить данную задачу), «имеет обходной путь» (что означает, что пользователь все еще может выполнить задачу), «визуальный дефект »(например, отсутствующее изображение или смещенная кнопка или элемент формы) или« ошибка документации ». Некоторые издатели программного обеспечения используют более квалифицированные уровни серьезности, такие как «критический», «высокий», «низкий», «блокирующий» или «простой». Серьезность ошибки может быть отдельной категорией по отношению к ее приоритету для исправления, и эти две категории могут быть количественно определены и обработаны отдельно.

Priority

Приоритет определяет, где ошибка попадает в список запланированных изменений. Приоритет определяется каждым производителем программного обеспечения. Приоритеты могут быть числовыми, например от 1 до 5, или именованными, например, «критические», «высокие», «низкие» или «отложенные». Эти рейтинговые шкалы могут быть похожи или даже идентичны рейтингам серьезности, но оцениваются как комбинация серьезности ошибки с предполагаемыми усилиями по исправлению; ошибка с низким уровнем серьезности, которую легко исправить, может получить более высокий приоритет, чем ошибка средней степени серьезности, для исправления которой требуются чрезмерные усилия. Рейтинги приоритета могут быть согласованы с выпусками продукта, например «критический» приоритет, указывающий на все ошибки, которые необходимо исправить до следующего выпуска программного обеспечения.

Выпуски программного обеспечения

Распространенной практикой является выпуск программного обеспечения с известными низкоприоритетными ошибками. Большинство крупных программных проектов поддерживают два списка «известных ошибок» — тех, которые известны команде разработчиков программного обеспечения, и тех, о которых нужно сообщить пользователям. Второй список информирует пользователей об ошибках, которые не исправлены в конкретном выпуске, и могут быть предложены обходные пути. Релизы бывают разных видов. Ошибки с достаточно высоким приоритетом могут потребовать специального выпуска части кода, содержащей только модули с этими исправлениями. Они известны как патчи. Большинство выпусков включают в себя как изменение поведения, так и несколько исправлений ошибок. Релизы, в которых упор делается на исправления ошибок, называются отладочными. Релизы, в которых особое внимание уделяется добавлению / изменению функций, известны как основные релизы и часто имеют названия, позволяющие отличать новые функции от старых.

Причины, по которым издатель программного обеспечения предпочитает не исправлять или даже не исправлять конкретную ошибку, включают:

  • Срок должен быть соблюден, а ресурсов недостаточно для исправления всех ошибок к указанному сроку.
  • ошибка уже исправлена ​​в следующем выпуске, и она не имеет высокого приоритета.
  • Изменения, необходимые для исправления ошибки, слишком дороги или затрагивают слишком много других компонентов, что требует серьезного тестирования.
  • Можно подозревать или знать, что некоторые пользователи полагаются на существующее поведение с ошибками; предлагаемое исправление может ввести критическое изменение.
  • Проблема находится в области, которая будет устаревшей в следующем выпуске; исправлять это не нужно.
  • Это «не ошибка». Возникло недопонимание между ожидаемым и предполагаемым поведением, когда такое недопонимание не связано с путаницей, возникшей из-за недостатков дизайна или ошибочной документации.

Типы

В проектах разработки программного обеспечения — «ошибка» или «сбой» может быть введен на любом этапе. Ошибки возникают из-за упущений или недоразумений, допущенных командой разработчиков программного обеспечения во время спецификации, проектирования, кодирования, ввода данных или документации. Например, относительно простая программа для построения списка слов по алфавиту может не учитывать, что должно произойти, если слово содержит дефис. Или при преобразовании абстрактного дизайна в код кодировщик может непреднамеренно создать единичную ошибку и не отсортировать последнее слово в списке. Ошибки могут быть такими же простыми, как опечатка: имелось в виду «<» where a «>».

Другая категория ошибок называется состоянием состязания, которое может возникнуть, когда в программах одновременно выполняется несколько компонентов. Если компоненты взаимодействуют в порядке, отличном от предполагаемого разработчиком, они могут мешать друг другу и мешать программе выполнять свои задачи. Эти ошибки может быть трудно обнаружить или предвидеть, поскольку они могут не возникать при каждом выполнении программы.

Концептуальные ошибки — это неправильное понимание разработчиком того, что должно делать программное обеспечение. Полученное программное обеспечение может работать в соответствии с пониманием разработчика, но не в соответствии с тем, что действительно необходимо. Другие типы:

Арифметика

  • Деление на ноль.
  • Арифметическое переполнение или потеря значимости.
  • Потеря арифметической точности из-за округления или численно нестабильные алгоритмы.

Логика

  • Бесконечные циклы и бесконечная рекурсия.
  • Поочередная ошибка, считая слишком много или слишком мало при зацикливании.

Синтаксис

  • Использование неправильного оператора, например выполнение присваивания вместо проверки равенства. Например, в некоторых языках x = 5 установит значение x равным 5, а x == 5 будет проверять, является ли x в настоящее время 5 или каким-либо другим числом. Интерпретируемые языки допускают сбой такого кода. Скомпилированные языки могут обнаруживать такие ошибки до начала тестирования.

Ресурс

  • Нулевой указатель разыменование.
  • Использование неинициализированной переменной.
  • Использование в противном случае действительной инструкции для неправильного тип данных (см. упакованный десятичный / двоичный десятичный код ).
  • Нарушения доступа.
  • Утечка ресурсов, когда конечный системный ресурс (например, память или дескрипторы файлов ) исчерпываются из-за повторного выделения без освобождения.
  • Переполнение буфера, при котором программа пытается сохранить данные за пределами выделенного хранилища. Это может привести или не привести к доступу нарушение или нарушение хранилища. Они известны как ошибки безопасности.
  • Чрезмерная рекурсия, которая, хотя и логически допустима, вызывает переполнение стека.
  • Ошибка использования после освобождения, где указатель используется после того, как система освободила память, на которую он ссылается.
  • Ошибка двойного освобождения.

Многопоточность

  • Тупик, когда задача A не может продолжаться до выполнения задачи B. заканчивается, но в в то же время задача B не может продолжаться до завершения задачи A.
  • Состояние гонки, когда компьютер не выполняет задачи в порядке, заданном программистом.
  • Ошибки параллелизма в критических секциях, взаимные исключения и другие особенности параллельной обработки. Время проверки — время использования (TOCTOU) — это форма незащищенной критической секции.

Взаимодействие

  • Неправильное использование API.
  • Неправильная реализация протокола.
  • Неправильная обработка оборудования.
  • Неправильные предположения о конкретной платформе.
  • Несовместимые системы. Новый API или протокол связи может показаться работоспособным, когда две системы используют разные версии, но могут возникать ошибки, когда функция или функция, реализованная в одной версии, изменяется или отсутствует в другой. В производственных системах, которые должны работать постоянно, отключение всей системы для крупного обновления может оказаться невозможным, например, в телекоммуникационной отрасли или в Интернете. В этом случае меньшие сегменты большой системы обновляются индивидуально, чтобы свести к минимуму перебои в работе большой сети. Однако некоторые разделы могут быть пропущены и не обновлены, что может вызвать ошибки совместимости, которые трудно найти и исправить.
  • Неправильные аннотации кода

Коллективная работа

  • Нераспространяемые обновления; например программист изменяет myAdd, но забывает изменить mySubtract, который использует тот же алгоритм. Эти ошибки смягчаются философией Не повторяйся.
  • Комментарии устарели или неверны: многие программисты считают, что комментарии точно описывают код.
  • Различия между документации и продукта.

Последствия

Объем и тип ущерба, который может вызвать программная ошибка, естественным образом влияют на принятие решений, процессы и политику в отношении качества программного обеспечения. В таких приложениях, как пилотируемые космические путешествия или автомобильная безопасность, поскольку недостатки программного обеспечения могут привести к травмам или даже смерти людей, такое программное обеспечение будет подвергаться гораздо более тщательной проверке и контролю качества, чем для Например, веб-сайт интернет-магазина. В таких приложениях, как банковское дело, где недостатки программного обеспечения могут нанести серьезный финансовый ущерб банку или его клиентам, контроль качества также более важен, чем, скажем, приложение для редактирования фотографий. Технологическому центру Software Assurance НАСА удалось снизить количество ошибок до менее 0,1 на 1000 строк кода (SLOC ), но это не было сочтено возможным для проектов в мире бизнеса..

Помимо ущерба, причиненного ошибками, часть их стоимости связана с усилиями, вложенными в их исправление. В 1978 году Линц и др. показал, что в среднем по проектам 17% усилий по разработке вкладывается в исправление ошибок. Исследование, проведенное в 2020 году в репозиториях GitHub, показало, что медиана составляет 20 процентов.

Хорошо известные ошибки

Ряд программных ошибок стал широко известным, обычно из-за по степени серьезности: примеры включают крушения различных космических и военных самолетов. Возможно, самая известная ошибка — это проблема 2000 года, также известная как ошибка 2000 года, в которой опасались, что мировой экономический коллапс произойдет в начале 2000 года в результате того, что компьютеры думали, что это был 1900. (В конце концов, серьезных проблем не возникло.) Срыв в 2012 году на бирже был связан с одной такой несовместимостью между старым API и новым API.

В массовой культуре

  • В романе 1968 года 2001: Космическая одиссея и соответствующем фильме 1968 года 2001: Космическая одиссея, бортовой компьютер космического корабля, HAL 9000, пытается убить всех членов экипажа. В последующем романе 1982 года 2010: Одиссея 2 и сопутствующем фильме 1984 года 2010 выясняется, что это действие было вызвано тем, что компьютер был запрограммирован двумя конфликтующими цели: полностью раскрыть всю свою информацию и сохранить в секрете истинную цель полета от экипажа; этот конфликт привел к тому, что HAL стал параноиком и, в конечном итоге, стал смертоносным.
  • В американской комедии 1999 года Офисное пространство трое сотрудников пытаются использовать озабоченность своей компании исправлением компьютерной ошибки Y2K, заразив компьютер компании система с вирусом, который отправляет округленные пенни на отдельный банковский счет. Этот план имеет неприятные последствия, поскольку у самого вируса есть собственная ошибка, которая преждевременно отправляет большие суммы денег на счет.
  • Роман 2004 года «Ошибка» Эллен Ульман описывает попытку программиста найти неуловимую ошибку в приложении базы данных.
  • Канадский фильм 2008 года Control Alt Delete рассказывает о программисте в конце 1999 года, который пытается исправить ошибки в своей компании, связанные с годом Проблема 2000.

См. Также

  • Анти-шаблон
  • Программа вознаграждения за ошибку
  • Удаление сбоя
  • ISO / IEC 9126, которая классифицирует ошибку как дефект или несоответствие
  • Классификация ортогональных дефектов
  • Проблема с ипподромом
  • Обзор РИСКОВ
  • Индикатор программного дефекта
  • Программная регрессия
  • Программная гниль
  • Автоматическое исправление ошибок

Ссылки

Внешние ссылки

  • «Перечисление общих слабых мест »- экспертная веб-страница, посвященная ошибкам, на NIST.gov
  • тип ОШИБКИ Джима Грея — другое er Тип ошибки
  • Изображение «первой компьютерной ошибки» на Wayback Machine (архивировано 12 января 2015 г.)
  • «Первая компьютерная ошибка! »- письмо от 1981 об ошибке Адмирала Хоппера
  • «на пути к пониманию ошибок компилятора в GCC и LLVM «. Исследование ошибок в компиляторах 2016 г.

Содержание:

Введение

Программное обеспечение, согласно ГОСТ 19781-90, – совокупность программ системы обработки информации и программных документов, необходимых для их эксплуатации.

Существует и другое, более простое определение, согласно которому программное обеспечение представляет собой совокупность компьютерных инструкций. Оно охватывает программы, подпрограммы (разделы программы) и данные. Таким образом, программное обеспечение указывает компьютеру, что делать, как, когда, в какой последовательности и как часто. Нередко программное обеспечение называют просто программой.

Проблема надежности программного обеспечения относится, похоже, к категории «вечных». В посвященной ей монографии Г.Майерса, выпущенной в 1980 году (американское издание — в 1976), отмечается, что, хотя этот вопрос рассматривался еще на заре применения вычислительных машин, в 1952 году, он не потерял актуальности до настоящего времени. Отношение к проблеме довольно выразительно сформулировано в книге Р.Гласса: «Надежность программного обеспечения — беспризорное дитя вычислительной техники». Следует далее отметить, что сама проблема надежности программного обеспечения имеет, по крайней мере, два аспекта: обеспечение и оценка (измерение) надежности. Практически вся имеющаяся литература на эту тему, включая упомянутые выше монографии, посвящена первому аспекту, а вопрос оценки надежности компьютерных программ оказывается еще более «беспризорным». Вместе с тем очевидно, что надежность программы гораздо важнее таких традиционных ее характеристик, как время исполнения или требуемый объем оперативной памяти, однако никакой общепринятой количественной меры надежности программ до сих пор не существует.

Для обеспечения надежности программ предложено множество подходов, включая организационные методы разработки, различные технологии и технологические программные средства, что требует, очевидно, привлечения значительных ресурсов. Однако отсутствие общепризнанных критериев надежности не позволяет ответить на вопрос, насколько надежнее становится программное обеспечение при соблюдении данных процедур и технологий и в какой степени оправданы расходы. Получается, что таким образом, приоритет задачи оценки надежности должен быть выше приоритета задачи ее обеспечения, чего на самом деле не наблюдается.

Цель данной работы – рассмотреть классификацию ошибок программного обеспечения для обеспечения его надежности.

Надежность программного обеспечения

Показатели качества программного обеспечения

Оценка качества программного обеспечения могут проводиться с двух позиций: с позиции положительной эффективности и непосредственной адекватности их характеристик назначению, целям создания и применения, а также с негативной позиции, возможного при этом ущерба – риска от пользования ПС или системы. Показатели качества преимущественно отражают положительный эффект от применения программного обеспечения и основная задача разработчиков проекта состоит в обеспечении высоких значений качества. Риски характеризуют возможные негативные последствия проявившихся в ходе эксплуатации ошибок или ущерб для пользователя при применении и функционировании программного обеспечения.

Согласно ГОСТ 9126[2], качество программного обеспечения – это весь объем признаков и характеристик программного обеспечения, который относится к ее способности удовлетворять установленным или предполагаемым потребностям.

Качество программного обеспечения оценивается следующими характеристиками:

  • Функциональные возможности (Functionality). Набор атрибутов, относящихся к сути набора функций и их конкретным свойствам. Функциями являются те, которые реализуют установленные или предполагаемые потребности.
  • Надежность (Reliability). Набор атрибутов относящихся к способности программного обеспечения сохранять свой уровень качества функционирования при установленных условиях за установленный период времени.
  • Практичность (Usability). Набор атрибутов, относящихся к объему работ, требуемых для использования и индивидуальной оценки такого использования определенным и предполагаемым кругом пользователей.
  • Эффективность (Efficiencies). Набор атрибутов, относящихся к соотношению между уровнем качества функционирования программного обеспечения и объемом используемых ресурсов при установленных условиях.
  • Сопровождаемость (Maintainability). Набор атрибутов, относящихся к объему работ, требуемых для проведения конкретных изменений (модификаций).
  • Мобильность (Portability). Набор атрибутов, относящихся к способности программного обеспечения быть перенесенным из одного окружения в другое.

В общем случае под ошибкой подразумевается неправильность, погрешность или неумышленное искажение объекта или процесса, что может быть причиной ущерба – риска при функционировании или применении программы. При этом предполагается, что известно правильное, эталонное состояние объекта или процесса по отношению к которому может быть определено наличие отклонения. Исходным эталоном для любого программного обеспечения являются спецификации требований заказчика или потенциального пользователя, предъявляемых к программам и ожидаемый пользователем или заказчиком эффект от использования программного обеспечения. Важной особенностью при этом является отсутствие полностью определенной программы – эталона, которой должны соответствовать текст и результаты функционирования разрабатываемой программы. Поэтому определить качество программного обеспечения и наличие ошибок в нем путем сравнения разрабатываемой программы с эталонной программой невозможно.

Риски проявляются как негативные последствия проявления ошибок в программном обеспечении в ходе его пользования и функционирования, которые могут нанести ущерб системе, в которой используется это программное обеспечение, внешней среде или пользователям этой системы в результате отклонения характеристик программного обеспечения заданных или ожидаемых пользователем или заказчиком.

Исходя из определения ошибки в программном обеспечении, приведенном выше, можно сделать вывод, что ошибки, возникающие в ходе использования программного обеспечения, могут изменять некоторые или все показатели качества. В работе рассматриваются ошибки, изменения которых влияют на надежность использования программного обеспечения.

По правилу, установленному в [2], надежность – свойство объекта осуществлять заданные функции, храня во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующим заданным режимам и условиям использования, ремонта, технического обслуживания, хранения, транспортирования.

Рис. 1. Надежность по ГОСТ 27.002 – 89

При этом надежность является комплексным свойством, которое в зависимости от функции объекта и условий его использования может включать безотказность, ремонтопригодность, долговечность, сохраняемость или некоторые сочетания данных свойств (рис. 1). Так как программное обеспечение в процессе эксплуатации не изнашивается, его поломка и ремонт в общепринятом смысле не делается, то надежность программного обеспечения имеет смысл характеризовать только с точки зрения безотказности его функционирования и возможности исправления функционирования после отказов по вызванных проявлениями ошибок.

В [3] надежность программного обеспечения предлагается характеризовать с помощью следующих характеристик (рис. 2): стабильность, устойчивость и восстанавливаемость.

Рис. 2. Надежность программного обеспечения

В этом случае стабильность и устойчивость характеризуют безотказность программного обеспечения, а восстанавливаемость – возможность восстановления функционирования программного обеспечения после его отказа. Для количественной оценки надежности программного обеспечения необходимо определить показатели надежности для каждого свойства и методику их определения (оценки).

Для оценки стабильности программного обеспечения возможно использование показателей характеризующих безотказность технических устройств [2] (рис. 3).

Рис. 3. Показатели безотказности

В большинстве случаев поток программных ошибок может быть описан негомогенным процессом Пуассона [4]. Это означает, что программные ошибки происходят в статистически независимые моменты времени, наработки подчиняются экспоненциальному распределению, а интенсивность проявления ошибок изменяется во времени. Обычно используют убывающую интенсивность проявления ошибок. Это означает, что ошибки, как только они выявлены, эффективно устраняются без введения новых ошибок. Главная цель анализа надежности программного обеспечения заключается в том, чтобы определить форму функции интенсивности проявления ошибок и оценить ее параметры по наблюдаемым данным. Как только функция интенсивности проявления ошибок определена, могут быть найдены такие показатели надежности как:

  • общее количество ошибок;
  • количество остающихся ошибок;
  • время до проявления следующей ошибки;
  • вероятность безошибочной работы;
  • интенсивность проявления ошибок;
  • остаточное время испытаний (до принятия решения);
  • максимальное количество ошибок (относительно срока службы).

При этом следует различать понятия ошибка и отказ. Применительно к надежности программного обеспечения ошибка это погрешность или искажение кода программы, неумышленно внесенные в нее в процессе разработки, которые в ходе функционирования этой программы могут вызвать отказ или снижение эффективности функционирования. Под отказом в общем случае понимают событие, заключающееся в нарушении работоспособности объекта [2]. Состояние объекта, при котором значения всех параметров характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно – технической и (или) конструкторской (проектной) документации – называется работоспособным. При этом критерии отказов, как признаки или совокупность признаков нарушения работоспособного состояния программного обеспечения, должны определяться исходя из его предназначения в нормативно – технической и (или) конструкторской (проектной) документации.

В общем случае отказ программного обеспечения можно определить как:

  • прекращение функционирования программы (искажения нормального хода ее выполнения, зацикливание) на время превышающее заданный порог;
  • прекращение функционирования программы (искажения нормального хода ее выполнения, зацикливание) на время не превышающее заданный порог, но с потерей всех или части обрабатываемых данных;
  • прекращение функционирования программы (искажения нормального хода ее выполнения, зацикливание) потребовавшее перезагрузки ЭВМ, на которой функционирует программное обеспечение.

При этом исходя из [2], все отказы в программном обеспечении следует трактовать как сбои (самоустраняющиеся отказы или однократные отказы, устраняемые незначительным вмешательством оператора), поскольку восстановление работоспособного состояния программного обеспечения может произойти без вмешательства оператора (перезагрузка ЭВМ не требуется), либо при участии оператора или эксплуатирующего персонала (перезагрузка ЭВМ необходима).

Приведенные выше критерии отказов приводят к необходимости анализа временных характеристик функционирования программы и динамических характеристик потребителей данных, полученных в ходе функционирования программного обеспечения. Временная зона перерыва нормальной выдачи информации и потери работоспособности, которую следует рассматривать как зону сбоя (отказа), тем шире, чем более инертный объект находится под воздействием данных, полученным в ходе работы программы. Пороговое время восстановления работоспособного состояния системы, при превышении которого следует соответствующему потребителю (абоненту).

Для любого потребителя данных существует допустимое время отсутствия данных от программы, при котором его характеристики находятся в допустимых пределах. Исходя из этого времени, можно установить границы временной зоны, которая разделяет работоспособное и неработоспособное состояние программного обеспечения и позволяет использовать данные критерии отказов.

Из приведенного выше определения программной ошибки с точки зрения надежности, можно сделать вывод о том, что ошибки, при их проявлении, не всегда вызывают отказ программного обеспечения и каждую ошибку можно характеризовать условной вероятностью возникновения отказа при проявлении этой ошибки. Следует также отметить, что само по себе наличие ошибки в исходном коде не определяет надежность программы до тех пор, пока не произойдет проявления этой ошибки, поэтому пользоваться для оценки надежности программного обеспечения только показателями характеризующие общее количество ошибок в программе, количество оставшихся ошибок и максимального количества ошибок нельзя.

В [5] стабильность предлагается оценивать вероятностью безотказной работы, которая оценивается исходя из модели относительной частоты, при этом применение ее ограничено периодом эксплуатации программного обеспечения, что не всегда приемлемо, поскольку надежность объекта, как правило, необходимо оценивать не только в процессе его эксплуатации, но и до начала эксплуатации этого объекта. Ограничение модели относительной частоты вызвано тем, что в этой модели не учитываются процессы тестирования и отладки, а конкретно то, что при возникновении отказа программного обеспечения, ошибка, вызвавшая этот отказ, исправляется.

Наиболее приемлемыми показателями характеризующими стабильность (безотказность) программного обеспечения представляются показатели сходные с показателями безотказности технических систем: вероятность безотказной работы, интенсивность отказов, и среднее время наработки на отказ. Эти показатели взаимосвязаны и, зная один из них, можно определить другие [2]. При определении этих показателей в большинстве случаев можно исходить из модели надежности, предполагающей, что интенсивность проявления ошибок убывает по мере исправления этих ошибок, время между проявлениями ошибок распределено экспоненциально, а интенсивность проявления ошибок постоянна между двумя соседними проявлениями ошибок. Применение такой модели надежности программного обеспечения позволит оценить надежность программного обеспечения во время тестирования и отладки.

Устойчивость, как свойство или совокупность свойств программного обеспечения, характеризующие его возможность поддерживать приемлемый уровень функционирования при проявлениях ошибок в нем, можно оценивать условной вероятностью безотказной работы при проявлении ошибки. Согласно [5] устойчивость оценивается с помощью трех метрик, включающих двадцать оценочных элементов (рис. 4). Результаты оценки каждой метрики определяются результатами оценки определяющих ее оценочных элементов, а результат оценки устойчивости определяются результатами соответствующих ему метрик. Программное обеспечение по каждому из оценочных элементов оценивается группой экспертов – специалистов, компетентных в решении данной задачи, на базе их опыта и интуиции. Для оценочных элементов принимается единая шкала оценки от 0 до 1.

Недостатком такого подхода является одинаковая оценка устойчивости для всех возможных ошибок. Поскольку вероятность возникновения отказа при проявлении разных ошибок может быть разной, возникает необходимость разделения ошибок на несколько категорий. Признаком, по которому в этом случае можно относить ошибки к той или иной категории, можно считать тяжесть ошибки. Под тяжестью ошибки в этом случае следует понимать количественную или качественную оценку вероятного ущерба при проявлении этой ошибки [6], а если говорить о надежности, то оценку вероятности возникновения отказа при проявлении ошибки. При этом категорией тяжести последствий ошибки будет являться классификационная группа ошибок по тяжести их последствий, характеризуемая определенным сочетанием качественных и/или количественных учитываемых составляющих ожидаемого (вероятного) отказа или нанесенного отказом ущерба.

Рис. 4. Метрики и оценочные элементы устойчивости программного обеспечения по ГОСТ 28195 – 89

В качестве показателя степени тяжести ошибки, позволяющего дать количественную оценку тяжести проявления последствий ошибки целесообразно использовать условную вероятность отказа и его возможных последствий при проявлении ошибок разных категорий. Для программного обеспечения, создаваемого для систем управления, потеря работоспособности которых может повлечь за собой катастрофические последствия, возможные категории тяжести ошибок приведены в таблице 1.

Таблица 1. Категории тяжести ошибки в программном обеспечении, нарушение работоспособности которого могут привести к катастрофическим последствиям

Для программного обеспечения общего применения или программного обеспечения систем, нарушение работоспособности которых не представляет угрозы жизни людей и не приводит к разрушению самой системы, возможные категории тяжести приведены в таблице 2.

Таблица 2. Категории тяжести ошибки в программном обеспечении, нарушение работоспособности которого не приводят к катастрофическим последствиям

Оценку степени тяжести ошибки как условной вероятности возникновения отказа (последствий этого отказа), можно производить согласно [5], используя метрики и оценочные элементы, характеризующие устойчивость программного обеспечения. При этом оценка производится для каждой ошибки в отдельности, а не для всего программного обеспечения. Далее исходя из проведенных оценок возможно определение устойчивости программного обеспечения к проявлениям ошибок каждой из категорий.

Восстанавливаемость программного обеспечения, как свойство или совокупность свойств характеризующих способность программного обеспечения восстановления своего уровня пригодности и восстановления данных, непосредственно поврежденных вследствии проявлении ошибки (отказа), характеризуется полнотой и длительностью восстановления функционирования программ в процессе перезапуска или перезагрузки ЭВМ. В [5] восстанавливаемость предлагается оценивать по среднему времени восстановления. При этом следует учитывать, что время восстановления функционирования программного обеспечения складывается не только из времени потребного для перезагрузки ЭВМ и загрузки самого программного обеспечения, но и из времени необходимого для восстановления данных и это время в ряде случаев может значительно превышать время перезагрузки.

Показатели надежности программного обеспечения в значительной степени адекватны аналогичным характеристикам, принятых для других технических систем. Наиболее широко используется показатель наработки на отказ. Наработка на отказ – это отношение суммарной наработки объекта к математическому ожиданию числа его отказов в течении этой наработки. Для программного обеспечения использование данного показателя затруднено, в силу особенностей тестирования и отладки программного обеспечения (ошибка вызвавшая отказ, как правило, исправляется и больше не повторяется). Поэтому целесообразно использовать показатель средней наработки до отказа – математического ожидания времени функционирования программного обеспечения до отказа. При использовании модели надежности программного обеспечения предполагающей экспоненциальное распределение времени между отказами, среднее время наработки до отказа равно величине обратной интенсивности отказов. Интенсивность отказов можно оценить исходя из оценок стабильности и устойчивости программного обеспечения. Обобщение характеристик отказов и восстановлений производится в показателе коэффициент готовности [2]. Коэффициент готовности программного обеспечения это вероятность того, что программное обеспечение окажется в работоспособном состоянии в произвольный момент времени. Значение коэффициента готовности соответствует доле времени полезной работы программного обеспечения на достаточно большом интервале времени, содержащем отказы и восстановления.

Источники ошибок программного обеспечения

Источниками ошибок в программном обеспечении являются специалисты – конкретные люди с их индивидуальными особенностями, квалификацией, талантом и опытом. Вследствие этого плотность потоков ошибок и размеры необходимых корректировок в модулях и компонентах при разработке и сопровождении программного обеспечения могут различаться в десятки раз. Однако в крупных комплексах программ статистика и распределение ошибок и типов выполняемых изменений, необходимых для их исправления, для коллективов разных специалистов нивелируются и проявляются общие закономерности, которые могут использоваться как ориентиры при выявлении ошибок и их систематизации. Этому могут помогать оценки типовых ошибок, модификаций и корректировок путем их накопления и обобщения по опыту создания определенных классов программного обеспечения.

Основными причинами ошибок программного обеспечения являются:

  • Большая сложность программного обеспечения, например, по сравнению с аппаратурой ЭВМ.
  • Неправильный перевод информации из одного представления в другое на макро и микро уровнях. На макро уровне, уровне проекта, осуществляется передача и преобразование различных видов информации между организациями, подразделениями и конкретными исполнителями на всех этапах жизненного цикла ПО. На микро уровне, уровне исполнителя, производится преобразование информации по схеме: получить информацию, запомнить, выбрать из памяти, воспроизвести информацию.

Источниками ошибок программного обеспечения являются:

Внутренние: ошибки проектирования, ошибки алгоритмизации, ошибки программирования, недостаточное качество средств защиты, ошибки в документации.

Внешние: ошибки пользователей, сбои и отказы аппаратуры ЭВМ, искажение информации в каналах связи, изменения конфигурации системы.

  • Признаками выявления ошибок являются:
  • Преждевременное окончание программы.
  • Увеличение времени выполнения программы.
  • Нарушение последовательности вызова отдельных подпрограмм.

Ошибки выхода информации, поступающей от внешних источников, между входной информацией возникает не соответствие из-за: искажение данных на первичных носителях, сбои и отказы в аппаратуре, шумы и сбои в каналах связи, ошибки в документации.

Ошибки, скрытые в самой программе: ошибка вычислений, ошибка ввода-вывода, логические ошибки, ошибка манипулирования данными, ошибка совместимости, ошибка сопряжения.

Искажения входной информации, подлежащей обработке: искажения данных на первичных носителях информации; сбои и отказы в аппаратуре ввода данных с первичных носителей информации; шумы и сбои в каналах связи при передачи сообщений по линиям связи; сбои и отказы в аппаратуре передачи или приема информации; потери или искажения сообщений в буферных накопителях вычислительных систем; ошибки в документировании; используемой для подготовки ввода данных; ошибки пользователей при подготовки исходной информации.

Неверные действия пользователя:

  • Неправильная интерпретация сообщений.
  • Неправильные действия пользователя в процессе диалога с программным обеспечением.
  • Неверные действия пользователя или по-другому, их можно назвать ошибками пользователя, которые возникают вследствие некачественной программной документации: неверные описания возможности программ; неверные описания режимов работы; неверные описания форматов входной и выходной информации; неверные описания диагностических сообщений.

Неисправности аппаратуры установки: приводят к нарушениям нормального хода вычислительного процесса; приводят к искажениям данных и текстов программ в основной и внешней памяти.

Итак, при рассмотрении основных причин возникновения отказа и сбоев программного обеспечения можно сказать, что эти знания позволяют своевременно принимать необходимые меры по недопущению отказов и сбоев программного обеспечения.

Виды ошибок программного обеспечения

Характеристика основных видов ошибок программного обеспечения

Рассмотрим классификацию ошибок по месту их возникновения, которая рассмотрена в книге С. Канера «Тестирование программного обеспечения». Фундаментальные концепции менеджмента бизнес-приложений. Главным критерием программы должно быть ее качество, которое трактуется как отсутствие в ней недостатков, а также сбоев и явных ошибок. Недостатки программы зависят от субъективной оценкой ее качества потенциальным пользователем. При этом авторы скептически относятся к спецификации и утверждают, что даже при ее наличии, выявленные на конечном этапе недостатки говорят о ее низком качестве. При таком подходе преодоление недостатков программы, особенно на заключительном этапе проектирования, может приводить к снижению надежности. Очевидно, что для разработки ответственного и безопасного программного обеспечения (ПО) такой подход не годится, однако проблемы наличия ошибок в спецификациях, субъективного оценивания пользователем качества программы существуют и не могут быть проигнорированы. Должна быть разработана система некоторых ограничений, которая бы учитывала эти факторы при разработке и сертификации такого рода ПО. Для обычных программ все проблемы, связанные с субъективным оцениванием их качества и наличием ошибок, скорее всего неизбежны.

В краткой классификации выделяются следующие ошибки.

  • ошибки пользовательского интерфейса.
  • ошибки вычислений.
  • ошибки управления потоком.
  • ошибки передачи или интерпретации данных.
  • перегрузки.
  • контроль версий.
  • ошибка выявлена и забыта.
  • ошибки тестирования.

1. Ошибки пользовательского интерфейса.

Многие из них субъективны, т.к. часто они являются скорее неудобствами, чем «чистыми» логическими ошибками. Однако они могут провоцировать ошибки пользователя программы или же замедлять время его работы до неприемлемой величины. В результате чего мы будем иметь ошибки информационной системы (ИС) в целом. Основным источником таких ошибок является сложный компромисс между функциональностью программы и простотой обучения и работы пользователя с этой программой. Проблему надо начинать решать при проектировании системы на уровне ее декомпозиции на отдельные модули, исходя из того, что вряд ли удастся спроектировать простой и удобный пользовательский интерфейс для модуля, перегруженного различными функциями. Кроме того, необходимо учитывать рекомендации по проектированию пользовательских интерфейсов. На этапе тестирования ПО полезно предусмотреть встроенные средства тестирования, которые бы запоминали последовательности действий пользователя, время совершения отдельных операций, расстояния перемещения курсора мыши. Кроме этого возможно применение гораздо более сложных средств психо-физического тестирования на этапе тестирования интерфейса пользователя, которые позволят оценить скорость реакции пользователя, частоту этих реакций, утомляемость и т.п. Необходимо отметить, что такие ошибки очень критичны с точки зрения коммерческого успеха разрабатываемого ПО, т.к. они будут в первую очередь оцениваться потенциальным заказчиком.

2.Ошибки вычислений.

Выделяют следующие причины возникновения таких ошибок:

  • неверная логика (может быть следствием, как ошибок проектирования, так и кодирования);
  • неправильно выполняются арифметические операции (как правило — это ошибки кодирования);
  • неточные вычисления (могут быть следствием, как ошибок проектирования, так и кодирования). Очень сложная тема, надо выработать свое отношение к ней с точки зрения разработки безопасного ПО.

Выделяются подпункты: устаревшие константы; ошибки вычислений; неверно расставленные скобки; неправильный порядок операторов; неверно работает базовая функция; переполнение и потеря значащих разрядов; ошибки отсечения и округления; путаница с представлением данных; неправильное преобразование данных из одного формата в другой; неверная формула; неправильное приближение.

3.Ошибки управления потоком.

В этот раздел относится все то, что связано с последовательностью и обстоятельствами выполнения операторов программы.

Выделяются подпункты:

  • очевидно неверное поведение программы;
  • переход по GOTO;
  • логика, основанная на определении вызывающей подпрограммы;
  • использование таблиц переходов;
  • выполнение данных (вместо команд). Ситуация возможна из-за ошибок работы с указателями, отсутствия проверок границ массивов, ошибок перехода, вызванных, например, ошибкой в таблице адресов перехода, ошибок сегментирования памяти.

4.Ошибки обработки или интерпретации данных.

Выделяются подпункты:

  • проблемы при передаче данных между подпрограммами (сюда включены несколько видов ошибок: параметры указаны не в том порядке или пропущены, несоответствие типов данных, псевдонимы и различная интерпретация содержимого одной и той же области памяти, неправильная интерпретация данных, неадекватная информация об ошибке, перед аварийным выходом из подпрограммы не восстановлено правильное состояние данных, устаревшие копии данных, связанные переменные не синхронизированы, локальная установка глобальных данных (имеется в виду путаница локальных и глобальных переменных), глобальное использование локальных переменных, неверная маска битового поля, неверное значение из таблицы);
  • границы расположения данных (сюда включены несколько видов ошибок: не обозначен конец нуль-терминированной строки, неожиданный конец строки, запись/чтение за границами структуры данных или ее элемента, чтение за пределами буфера сообщения, чтение за пределами буфера сообщения, дополнение переменных до полного слова, переполнение и выход за нижнюю границу стека данных, затирание кода или данных другого процесса);
  • проблемы с обменом сообщений (сюда включены несколько видов ошибок: отправка сообщения не тому процессу или не в тот порт, ошибка распознавания полученного сообщения, недостающие или несинхронизированные сообщения, сообщение передано только N процессам из N+1, порча данных, хранящихся на внешнем устройстве, потеря изменений, не сохранены введенные данные, объем данных слишком велик для процесса-получателя, неудачная попытка отмены записи данных).

5.Повышенные нагрузки.

При повышенных нагрузках или нехватке ресурсов могут возникнуть дополнительные ошибки. Выделяются подпункты: требуемый ресурс недоступен; не освобожден ресурс; нет сигнала об освобождении устройства; старый файл не удален с накопителя; системе не возвращена неиспользуемая память; лишние затраты компьютерного времени; нет свободного блока памяти достаточного размера; недостаточный размер буфера ввода или очереди; не очищен элемент очереди, буфера или стека; потерянные сообщения; снижение производительности; повышение вероятности ситуационных гонок; при повышенной нагрузке объем необязательных данных не сокращается; не распознается сокращенный вывод другого процесса при повышенной загрузке; не приостанавливаются задания с низким приоритетом.

7.Ошибки тестирования.

Являются ошибками сотрудников группы тестирования, а не программы. Выделяются подпункты:

  • пропущенные ошибки в программе;
  • не замечена проблема (отмечаются следующие причины этого: тестировщик не знает, каким должен быть правильный результат, ошибка затерялась в большом объеме выходных данных, тестировщик не ожидал такого результата теста, тестировщик устал и невнимателен, ему скучно, механизм выполнения теста настолько сложен, что тестировщик уделяет ему больше внимания, чем результатам);
  • пропуск ошибок на экране;
  • не документирована проблема (отмечаются следующие причины этого: тестировщик неаккуратно ведет записи, тестировщик не уверен в том, что данные действия программы являются ошибочными, ошибка показалась слишком незначительной, тестировщик считает, что ошибку не будет исправлена, тестировщика просили не документировать больше подобные ошибки).

8.Ошибка выявлена и забыта.

Описываются ошибки использования результатов тестирования. По-моему, раздел следует объединить с предыдущим. Выделяются подпункты: не составлен итоговый отчет; серьезная проблема не документирована повторно; не проверено исправление; перед выпуском продукта не проанализирован список нерешенных проблем.

Необходимо заметить, что изложенные в 2-х последних разделах ошибки тестирования требуют для устранения средств автоматизации тестирования и составления отчетов. В идеальном случае, эти средства должны быть проинтегрированы со средствами и технологиями проектирования ПО. Они должны стать важными инструментальными средствами создания высококачественного ПО. При разработке средств автоматизированного тестирования следует избегать ошибок, которые присущи любому ПО, поэтому нужно потребовать, чтобы такие средства обладали более высокими характеристиками надежности, чем проверяемое с их помощью ПО.

Меры по повышению надежности программного обеспечения

Лучшим и самым оптимальным способом (если не брать во внимание научно-технический прогресс и постоянное развитие IT-технологий, которые способствуют повышению качества характеристик программ) повышения надёжности программного обеспечения является строжайший контроль продукции на выходе с предприятия.

В последние годы сформировалась комплексная система управления качеством продукции TQM (Totaly Quality Management), которая концептуально близка к предшествующей более общей системе на основе стандартов ИСО серии 9000. Система ориентирована на удовлетворение требований потребителя, на постоянное улучшение процессов производства или проектирования, на управление процессами со стороны руководства предприятия на основе фактического состояния проекта. Основные достижения TQM состоят в углублении и дифференциации требований потребителей по реализации процессов, их взаимодействию и обеспечению качества продукции. Системный подход поддержан рядом специализированных инструментальных средств, ориентированных на управление производством продукции. Поэтому эта система пока не находит применения в области обеспечения качества жизненного цикла программных средств.

Применение этого комплекса может служить основой для систем обеспечения качества программных средств, однако требуется корректировка, адаптация или исключение некоторых положений стандартов применительно к принципиальным особенностям технологий и характеристик этого вида продукции. Кроме того, при реализации систем качества необходимо привлечение ряда стандартов, формально не относящихся к этой серии и регламентирующих показатели качества, жизненный цикл, верификацию и тестирование, испытания, документирование и другие особенности комплексов программ.

Активные методы повышения надежности ПС совершенствуются за счет развития средств автоматизации тестирования программ. Сложность ПС и высокие требования по их надежности требуют выработки принципов структурного построения сложных программных средств, обеспечивающих гибкость модификации ПС и эффективность их отладки. К таким принципам в работе относят:

  • модульность и строгую иерархию в структурном построении программ;
  • унификацию правил проектирования, структурного построения и взаимодействия компонент ПС;
  • унификацию правил организации межмодульного интерфейса;
  • поэтапный контроль полноты и качества решения функциональных задач.

Заключение

Несмотря на очевидную актуальность, вопрос надежности программного обеспечения не привлекает должного внимания. Вместе с тем, даже поверхностный анализ проблемы с теоретико-вероятностной точки зрения позволяет выявить некоторые закономерности.

В заключение можно подвести итог:

  • В программном обеспечении имеется ошибка, если оно не выполняет того, что пользователю разумно от него ожидать;
  • Отказ программного обеспечения — это появление в нем ошибки;
  • Надежность программного обеспечения — есть вероятность его работы без отказов в течении определенного периода времени, рассчитанного с учетом стоимости для пользователя каждого отказа.

Из данных определений можно сделать важные выводы:

  • Надежность программного обеспечения является не только внутренним свойством программы;
  • Надежность программного обеспечения — это функция как самого ПО, так и ожиданий (действий) его пользователей.

Основными причинами ошибок программного обеспечения являются:

  • большая сложность ПО, например, по сравнению с аппаратурой ЭВМ;
  • неправильный перевод информации из одного представления в другое.

Список использованной литературы

  1. ГОСТ 27.002 – 89. Надежность в технике. Основные понятия. Термины и определения. // М.: Издательство стандартов, 1990.
  2. ГОСТ Р ИСО/МЭК 9126 – 93. Информационная технология. Оценка программной продукции. Характеристики качества и руководства по их применению. // М.: Издательство стандартов, 1994.
  3. ГОСТ 51901.5 – 2005. Менеджмент риска. Руководство по применению методов анализа надежности. // М.: Издательство стандартов, 2007.
  4. ГОСТ 28195 – 89. Оценка качества программных средств. Общие положения. // М.: Издательство стандартов, 1989.
  5. ГОСТ 27.310 – 95. Надежность в технике. Анализ видов, последствий и критичности отказов. // М.: Издательство стандартов, 1995.
  6. ГОСТ 51901.12 – 2007. Менеджмент риска. Метод анализа видов и последствий отказов. // М.: Издательство стандартов, 2007.
  7. Братчиков И.Л. «Синтаксис языков программирования» Наука, М.:Инси, 2005. — 344 с.
  8. Дейкстра Э. Заметки по структурному программированию.- М.:Дрофа, 2006, — 455 с.
  9. Ершов А.П. Введение в теоретическое программирование.- М.:РОСТО, 2008, — 288 с.
  10. Кнут Д. Искусство программирования для ЭВМ, т.1. М.: 2006, 735 с.
  11. Коган Д.И., Бабкина Т.С. «Основы теории конечных автоматов и регулярных языков. Учебное пособие» Издательство ННГУ, 2002. — 97 с.
  12. Липаев В. В. / Программная инженерия. Методологические основы. // М.: ТЕИС, 2006.
  13. Майерс Г. Надежность программного обеспечения.- М.:Дрофа, 2008, — 360 с.
  14. Рудаков А. В. Технология разработки программных продуктов. М.:Издательский центр «Академия», 2006. — 306 с.
  15. Тыугу, Э.Х. Концептуальное программирование. — М.: Наука, 2001, — 256 с.
  16. Хьюз Дж., Мичтом Дж. Структурный подход к программированию.-М.:Мир, 2000, — 278 с.

СПИСОК ДЛЯ ТРЕНИРОВКИ ССЫЛОК

  • Разработка клиент-серверного приложения по работе с базой данных «Локомотивное депо «
  • Анализ особенности управления мотивацией сотрудников на предприятиях гостиничного и ресторанного бизнеса на примере АО ТГК «Вега»
  • СУЩНОСТЬ И СОДЕРЖАНИЕ БАНКОВСКОГО МАРКЕТИНГА
  • Оформление и ведение учета операций с сомнительными, неплатежеспособными и имеющими признаки подделки денежными знаками
  • Виды, понятия, задачи оплаты труда на предприятии
  • ценообразование на услуги фитнес-клубов (Российский рынок фитнес-услуг)
  • Место и роль спортивной индустрии в экономике России (Теоретические аспекты индустрии спорта)
  • Влияние кадровой стратегии на работу службы персонала. (СОДЕРЖАНИЕ И СУЩНОСТЬ КАДРОВОЙ СТРАТЕГИИ)
  • Эффективный лидер и его команда (Виды лидерства)
  • Межфирменная научно-техническая кооперация
  • Прогнозирование эффективности реальных инвестиций коммерческого банка. Анализ инвестиционной деятельности ПАО «Сбербанк»
  • Страхование и его государственное регулирование в РФ

Ошибки в программировании – дело обычное, хоть и неприятное. В данной статье будет рассказано о том, какими бывают ошибки (баги), а также что собой представляют исключения.

Определение

Ошибка в программировании (или так называемый баг) – это ситуация у разработчиков, при которой определенный код вследствие обработки выдает неверный результат. Причин данному явлению множество: неисправность компилятора, сбои интерфейса, неточности и нарушения в программном коде.

Баги обнаруживаются чаще всего в момент отладки или бета-тестирования. Реже – после итогового релиза готовой программы. Вот несколько вариантов багов:

  1. Появляется сообщение об ошибке, но приложение продолжает функционировать.
  2. ПО вылетает или зависает. Никаких предупреждений или предпосылок этому не было. Процедура осуществляется неожиданно для пользователя. Возможен вариант, при котором контент перезапускается самостоятельно и непредсказуемо.
  3. Одно из событий, описанных ранее, сопровождается отправкой отчетов разработчикам.

Ошибки в программах могут привести соответствующее приложение в негодность, а также к непредсказуемым алгоритмам функционирования. Желательно обнаруживать баги на этапе ранней разработки или тестирования. Лишь в этом случае программист сможет оперативно и относительно недорого внести необходимые изменения в код для отладки ПО.

История происхождения термина

Баг – слово, которое используется разработчиками в качестве сленга. Оно произошло от слова «bug» – «жук». Точно неизвестно, откуда в программировании и IT возник соответствующий термин. Существуют две теории:

  1. 9 сентября 1945 года ученые из Гарварда тестировали очередную вычислительную машину. Она называлась Mark II Aiken Relay Calculator. Устройство начало работать с ошибками. Когда его разобрали, то ученые заметили мотылька, застрявшего между реле. Тогда некая Грейс Хоппер назвала произошедший сбой упомянутым термином.
  2. Слово «баг» появилось задолго до появления Mark II. Термин использовался Томасом Эдисоном и указывал на мелкие недочеты и трудности. Во время Второй Мировой войны «bugs» называли проблемы с радарной электроникой.

Второй вариант кажется более реалистичным. Это факт, который подтвержден документально. Со временем научились различать различные типы багов в IT. Далее они будут рассмотрены более подробно.

Как классифицируют

Ошибки работы программ разделяются по разным факторам. Классификация у рядовых пользователей и разработчиков различается. То, что для первых – «просто программа вылетела» или «глючит», для вторых – огромная головная боль. Но существует и общепринятая классификация ошибок. Пример – по критичности:

  1. Серьезные неполадки. Это нарушения работоспособности приложения, которые могут приводить к непредвиденным крупным изменениям.
  2. Незначительные ошибки в программах. Чаще всего не оказывают серьезного воздействия на функциональность ПО.
  3. Showstopper. Критические проблемы в приложении или аппаратном обеспечении. Приводят к выходу программы из строя почти всегда. Для примера можно взять любое клиент-серверное приложение, в котором не получается авторизоваться через логин и пароль.

Последний вариант требует особого внимания со стороны программистов. Их стараются обнаружить и устранить в первую очередь. Критические ошибки могут отложить релиз исходной программы на неопределенный срок.

Также существуют различные виды сбоев в плане частоты проявления: постоянные и «разовые». Вторые встречаются редко, чаще – при определенных настройках и действиях со стороны пользователя. Первые появляются независимо от используемой платформы и выполненных клиентом манипуляций.

Иногда может получиться так, что ошибка возникает только на устройстве конкретного пользователя. В данном случае устранение неполадки требует индивидуального подхода. Иногда – полной замены компьютера. Связано это с тем, что никто не будет редактировать исходный код, когда он «глючит» только у одного пользователя.

Виды

Существуют различные типы ошибок в программах в зависимости от типовых условий использования приложений. Пример – сбои, которые возникают при возрастании нагрузки на оперативную память или центральный процессор устройства. Есть баги граничных условий, сбоя идентификаторов, несовместимости с архитектурой процессора (наиболее распространенная проблема на мобильных устройствах).

Разработчики выделяют следующие типы ошибок по уровню сложности:

  1. «Борбаг» – «стабильная» неполадка. Она легко обнаруживается на этапе разработки и компилирования. Иногда – во время тестирования наработкой исходной программы.
  2. «Гейзенбаг» – баги с поддержкой изменения свойств, включая зависимость от среды, в которой было запущено приложение. Сюда относят периодические неполадки в программах. Они могут исчезать на некоторое время, но через какой-то промежуток вновь дают о себе знать.
  3. «Мандельбаг» – непредвиденные ошибки. Обладают энтропийным поведением. Предсказать, к чему они приведут, практически невозможно.
  4. «Шрединбаг» – критические неполадки. Приводят к тому, что злоумышленники могут взломать программу. Данный тип ошибок обнаружить достаточно трудно, потому что они никак себя не проявляют.

Также есть классификация «по критичности». Тут всего два варианта – warning («варнинги») и критические весомые сбои. Первые сопровождаются характерными сообщениями и отчетами для разработчиков. Они не представляют серьезной опасности для работоспособности приложения. При компилировании такие сбои легко исправляются. В отдельных случаях компилятор справляется с этой задачей самостоятельно. А вот критические весомые сбои говорят сами за себя. Они приводят к серьезным нарушениям ПО. Исправляются обычно путем проработки логики и значительных изменений программного кода.

Типы багов

Ошибки в программах бывают:

  • логическими;
  • синтаксическими;
  • взаимодействия;
  • компиляционные;
  • ресурсные;
  • арифметические;
  • среды выполнения.

Это – основная классификация сбоев в приложениях и операционных системах. Логические, синтаксические и «среды выполнения» встречаются в разработке чаще остальных. На них будет сделан основной акцент.

Ошибки синтаксиса

Синтаксические баги распространены среди новичков. Они относятся к категории «самых безобидных». С данной категорией ошибок способны справиться компиляторы тех или иных языков. Соответствующие инструменты показывают, где допущена неточность. Остается лишь понять, как исправить ее.

Синтаксические ошибки – ошибки синтаксиса, правил языка. Вот пример в Паскале:

Код написан неверно. Согласно действующим синтаксическим нормам, в Pascal в первой строчке нужно в конце поставить точку с запятой.

Логические

Тут стоит выделить обычные и арифметические типы. Вторые возникают, когда программе при работе необходимо вычислить много переменных, но на каком-то этапе расчетов возникают неполадки или нечто непредвиденное. Пример – получение в результатах «бесконечности».

Логические сбои обычного типа – самые сложные и неприятные. Их тяжелее всего обнаружить и исправить. С точки зрения языка программа может быть написана идеально, но работать неправильно. Подобное явление – следствие логической ошибки. Компиляторы их не обнаруживают.

Выше – пример логической ошибки в программе. Тут:

  1. Происходит сравнение значения i с 15.
  2. На экран выводится сообщение, если I = 15.
  3. В заданном цикле i не будет равно 15. Связано это с диапазоном значений – от 1 до 10.

Может показаться, что ошибка безобидная. В приведенном примере так и есть, но в более крупных программах такое явление приводит к серьезным последствиям.

Время выполнения

Run-time сбои – это ошибка времени выполнения программы. Встречается даже когда исходный код лишен логических и синтаксических ошибок. Связаны такие неполадки с ходом выполнения программного продукта. Пример – в процессе функционирования ПО был удален файл, считываемый программой. Если игнорировать подобные неполадки, можно столкнуться с аварийным завершением работы контента.

Самый распространенный пример в данной категории – это неожиданное деление на ноль. Предложенный фрагмент кода с точки зрения синтаксиса и логики написан грамотно. Но, если клиент наберет 0, произойдет сбой системы.

Компиляционный тип

Встречается при разработке на языках высокого уровня. Во время преобразований в машинный тип «что-то идет не так». Причиной служат синтаксические ошибки или сбои непосредственно в компиляторе.

Наличие подобных неполадок делает бета-тестирование невозможным. Компиляционные ошибки устраняются при разработке-отладке.

Ресурсные

Ресурсный тип ошибок – это сбои вроде «переполнение буфера» или «нехватка памяти». Тесно связаны с «железом» устройства. Могут быть вызваны действиями пользователя. Пример – запуск «свежих» игр на стареньких компьютерах.

Исправить ситуацию помогают основательные работы над исходным кодом. А именно – полное переписывание программы или «проблемного» фрагмента.

Взаимодействие

Подразумевается взаимодействие с аппаратным или программным окружением. Пример – ошибка при использовании веб-протоколов. Это приведет к тому, что облачный сервис не будет нормально функционировать. При постоянном возникновении соответствующей неполадки остается один путь – полностью переписывать «проблемный» участок кода, ответственный за соответствующий баг.

Исключения и как избежать багов

Исключение – событие, при возникновении которых начинается «неправильное» поведение программы. Механизм, необходимый для стабилизации обработки неполадок независимо от типа ПО, платформ и иных условий. Помогают разрабатывать единые концепции ответа на баги со стороны операционной системы или контента.

Исключения бывают:

  1. Программными. Они генерируются приложением или ОС.
  2. Аппаратными. Создаются процессором. Пример – обращение к невыделенной памяти.

Исключения нужны для охвата критических багов. Избежать неполадок помогут отладчики на этапе разработки. А еще – своевременное поэтапное тестирование программы.

P. S. Большой выбор курсов по тестированию есть и в Otus. Присутствуют варианты как для продвинутых, так и для начинающих пользователей.

10.1. Общие
особенности дефектов, ошибок и рисков
в сложных программных средствах

10.2. Причины
и свойства дефектов, ошибок и модификаций
в сложных программных средствах

10.3. Риски
в жизненном цикле сложных программных
средств

10.4. Риски
при формировании требований к
характеристикам сложных программных
средств

Статистика
ошибок и дефектов в комплексах программ
и их ха
рактеристики
в
конкретных типах проектов ПС могут
служить ориентирами
для
разработчиков при распределении ресурсов
в жизненном цикле ПС
и предохранять их от излишнего оптимизма
при оценке достигнутого качества
программных продуктов. Источниками
ошибок в ПС являются специалисты
— конкретные люди с их индивидуальными
особенностями, квалификацией, талантом
и опытом. При этом можно выделить
предсказуемые
модификации, расширения и совершенствования
ПС
и
изменения,
обусловленные
выявлением случайных, непредсказуемых
дефектов и оши
бок.
Вследствие
этого плотность потоков и размеры
необходимых корректировок
в модулях и компонентах при разработке
и сопровождении ПС могут
различаться в десяток раз. Однако в
крупных комплексах программ статистика
и распределение типов выполняемых
изменений для коллективов разных
специалистов нивелируются и проявляются
достаточно общие закономерности, которые
могут использоваться как ориентиры при
их выявлении и систематизации. Этому
могут помогать оценки типовых дефектов,
модификаций и корректировок путем их
накопления и обобщения по опыту создания
определенных классов ПС в конкретных
предприятиях.

К
понятию
«риски»
относятся
негативные события и их величины,
отражающие потери, убытки или ущерб от
процессов или продуктов, вызванные
дефектами
при
проектировании требований, недостатками
обоснования проектов ПС, а также при
последующих этапах разработки, реализации
и всего жизненного цикла комплексов
программ. В ЖЦ ПС не всегда
удается достигнуть требуемого
положительного эффекта и может проявляться
некоторый ущерб — риск в создаваемых
проектах, программных
продуктах и их характеристиках. Риски
проявляются, как негатив-ные
последствия дефектов функционирования
и применения ПС,
которые
способны нанести ущерб системе, внешней
среде или пользователю в результате
отклонения характеристик объектов или
процессов от заданных требованиями
заказчика, согласованными с разработчиками.

Оценки
качества программных средств могут
проводиться с двух позиций: с позиции
положительной
эффективности
и непосредственной адекватности
их характеристик назначению, целям
создания и применения,
а также с негативной
позиции
возможного
при этом ущерба — риска от
использования ПС или системы. Показатели
качества преимущественно
отражают положительный эффект от
применения системы или ПС и основная
задача разработчиков проекта состоит
в обеспечении высоких значений
качества. Риски характеризуют возможные
негативные
последствия дефектов
или
ущерб пользователей при применении и
функционировании ПС и системы, и задача
разработчиков сводится к сокращению
дефектов и ликвидации рисков. Поэтому
методы и системы управления качеством
в жизненном цикле ПС близки к методам
анализа и управления рисками
проектов комплексов программ, они должны
их дополнять и совместно
способствовать совершенствованию
программных продуктов и систем на их
основе.

Характеристики
дефектов и рисков непосредственно
связаны с достигаемой
корректностью, безопасностью и надежностью
функционирования
программ и помогают:

  • оценивать
    реальное состояние проекта и планировать
    необходимую трудоемкость и длительность
    для его положительного завершения;

  • выбирать
    методы и средства автоматизации
    тестирования и отладки программ,
    адекватные текущему состоянию разработки
    и сопровождения
    ПС, наиболее эффективные для устранения
    определенных видов дефектов и рисков;

  • рассчитывать
    необходимую эффективность контрмер и
    дополнительных
    средств оперативной защиты от
    потенциальных дефектов и невыявленных
    ошибок;

— оценивать
требующиеся ресурсы ЭВМ по расширению
памяти и производительности, с учетом
затрат на реализацию контрмер при
модификации и устранении ошибок и
рисков.

Понятие
ошибки в программе

в
общем случае под ошибкой подразумевается
неправильность,
погрешность или неумышленное искажение
объекта или процесса, что может быть
причиной
ущерба
риска
при
функционировании
и применении программы. При этом
предполагается, что
известно
правильное, эталонное состояние объекта
или процесса,
по
отношению к которому может быть определено
наличие отклонения — ошибки
или дефекта. Исходным эталоном для
любого ПС являются спецификация
требований заказчика или потенциального
пользователя, предъявляемых
к программам. Подобные документы
устанавливают состав, содержание
и значения результатов, которые должен
получать пользователь при
определенных условиях и исходных данных.
Любое отклонение результатов
функционирования программы от
предъявляемых к ней требований и
сформированных по ним эталонов-тестов,
следует квалифицировать как ошибку

дефект
в
программе,
наносящий
некоторый ущерб. Различия между ожидаемыми
и полученными результатами функционирования
программ могут быть следствием ошибок
не только в созданных программах, но и
ошибок в первичных требованиях
спецификаций, явившихся
базой при создании эталонов-тестов. Тем
самым проявляется объективная
реальность, заключающаяся в невозможности
абсолютной корректности и полноты
исходных спецификаций и эталонов для
сложных проектов
ПС.

На
практике в процессе ЖЦ ПС исходные
требования поэтапно уточняются,
модифицируются, расширяются и
детализируются по согласованию
между заказчиком и разработчиком. Базой
таких уточнений являются неформализованные
представления и знания
специалистов-заказчиков
и
разработчиков, а также результаты
промежуточных этапов проектирования.
Однако установить некорректность таких
эталонов еще труднее, чем обнаружить
дефекты в сопровождаемых программах,
так как принципиально отсутствуют
формализованные данные, которые можно
использовать как исходные. В процессе
декомпозиции и верификации исходной
спецификации
требований на ПС возможно появление
ошибок в спецификациях
на группы программ и на отдельные модули.
Это способствует расширению спектра
возможных дефектов и вызывает необходимость
со-

здания
гаммы методов и средств тестирования
для выявления некорректностей в
спецификациях на компоненты разных
уровней.

Важной
особенностью процесса выявления ошибок
в программах является отсутствие
полностью определенной программы-эталона,
которой
должны соответствовать текст и результаты
функционирования разрабатываемой
программы. Поэтому установить наличие
и локализовать дефект непосредственным
сравнением с программой без ошибок в
большинстве
случаев невозможно. При отладке и
тестировании обычно сначала обнаруживаются
вторичные
ошибки
ириски,
т.е.
последствия и результаты
проявления некоторых внутренних дефектов
или некорректностей программ
(рис. 10.1). Эти внутренние дефекты
следует
квалифицировать как первичные
ошибки
или причины обнаруженных аномалий
результатов. Последующая
локализация и корректировка таких
первичных ошибок должна
приводить к устранению ошибок,
первоначально обнаруживаемых в
результатах функционирования программ.

Потери
эффективности и риски программ за счет
неполной корректности в первом приближении
можно считать прямо пропорциональными

коэффициентом) вторичным ошибкам в
выходных результатах. Типичным является
случай, когда одинаковые по величине и
виду вторичные ошибки
в различных результирующих данных
существенно различаются по своему
воздействию на общую эффективность и
риски применения комплекса программ.
Это влияние вторичных ошибок, в лучшем
случае, можно
оценить методами экспертного анализа
при условии предварительной, четкой
классификации видов возможных первичных
ошибок в программах
и выходных величин. Таким образом, оценка
последствий, отражающихся
на вторичных ошибках и функционировании
программ, может, в
принципе,
производиться по
значениям ущерба

риска
вследствие неустраненных их причин

первичных
ошибок в программе.
Вторичные
ошибки являются определяющими для
эффективности функционирования
программ, однако не каждая первичная
ошибка вносит заметный вклад в выходные
результаты. Вследствие этого ряд
первичных ошибок может
оставаться необнаруженным и, по существу,
не влияет на функциональные
характеристики ПС.

Появление
ошибок в программах, естественно,
предшествует их обнаружению и устранению
на основе вторичных проявлений. Наибольшее
число
первичных ошибок вносится на этапах
системного анализа и разработки
модификаций программ. При этом на долю
системного анализа приходятся наиболее
сложные для обнаружения и устранения
дефекты. На последующих этапах разработки
изменений ПС ошибки вносятся и устраняются
в программах в процессе их корректировки
по результатам тестирования. Общие
тенденции состоят в быстром росте затрат
на выполнение каждого изменения на
последовательных этапах процессов
модификации
программ.

При
системном анализе модификаций
интенсивность обнаружения ошибок
относительно невелика, и ее трудно
выделить из процесса проектирования
ПС. Интенсивность проявления и обнаружения
вторичных ошибок
наиболее велика на этапе активного
тестирования и автономной отладки
программных компонентов. Затем она
снижается приблизительно экспоненциально.
Различия интенсивностей устранения
первичных ошибок, на основе их вторичных
проявлений,
и
внесения первичных ошибок

при
корректировках программ определяют
скорость достижения заданного качества
версий ПС. Уровень серьезности последствий
ошибок варьирует
от классов проектов и от предприятия,
но, в общем, можно разделить ошибки
на три уровня.

Небольшими
ошибками
называют
такие, на которые средний пользователь
не обратит внимания при применении ПС
вследствие отсутствия их проявления
и последствия которых обычно так и не
обнаруживаются. Небольшие ошибки могут
включать орфографические ошибки на
экране, пропущенные разделы в справочнике
и другие мелкие проблемы. Такие ошибки
никогда не помешают выпуску и применению
версии системы и программного
продукта. По десятибалльной шкале рисков
небольшие ошибки находятся в пределах
от 1 до 3-го приоритета (см. ниже).

Умеренными
ошибками
называют
те, которые влияют на конечного
пользователя, но имеются слабые
последствия или обходные пути, позволяющие
сохранить достаточную функциональность
ПС. Это такие дефекты,
как неверные ссылки на страницах,
ошибочный текст на экране и даже сбои,
если эти сбои трудно воспроизвести и
они не оказывают влияния на существенное
число пользователей. Некоторые умеренные
ошибки, возможно,
проникают в конечный программный
продукт. Ошибки, которые можно
исправить на этом уровне, следует
исправлять, если на это есть время
и возможность. По десятибалльной шкале
умеренные ошибки находятся
в диапазоне от 4 до 7-го приоритета.

Критические
ошибки
останавливают
выпуск версии программного продукта.
Это могут быть ошибки
с высоким влиянием,
которые
вызывают сбой
в системе или потерю данных, отражаются
на надежности и безопасности
применения ПС, с которыми никогда не
передается комплекс программ
пользователю. По десятибалльной шкале
— от 8 до 10-го приоритета.

Совокупность
ошибок, дефектов и последствий модификаций
проектов
крупномасштабных комплексов программ
можно упорядочить и условно представить
в виде перевернутой пирамиды в зависимости
от потенциальной
опасности и возможной величины
корректировок их последствий — рис.
10.2. В верхней части перечня расположены
модификации, дефекты
и ошибки, последствия которых обычно
требуют наибольших затрат
ресурсов для реализации изменений, и
они постепенно сокращаются
при снижении по перечню. Такое представление
величины типов корректировок программ
и данных полезно использовать как
ориентир
для
учета
необходимых ресурсов при разработке и
сопровождении ПС, однако оно может
содержать значительные отклонения при
упорядочении статистических данных
реальных проектов. Каждому типу
корректировок соответствует
более или менее определенная категория
специалистов, являющихся источником
изменений данного типа (таблица 10.1).
Такую корреляцию
целесообразно рассматривать и учитывать
как общую качественную тенденцию
при анализе и поиске их причин.

Таблица
10.1

Специалисты—
источники дефектов и ошибок

Типы
первичных дефектов и ошибок
программного
средства и документации

Заказчики
проекта

Дефекты
организации проекта и исходных
требований
заказчика

Менеджер
проекта

Дефекты,
обусловленные реальной сложностью
проекта

Менеджер-архитектор
комплекса программ

Ошибки
планирования и системного проектирования
программного средства

Проблемно-ориентированные
аналитики и системные
архитекторы

Системные
и алгоритмические дефекты и ошибки
проекта

Спецификаторы
компонентов проекта

Алгоритмические
ошибки компонентов и документов
программного средства

Разработчики
программных компонентов — программисты

Программные
дефекты и ошибки компонентов и
документов программного средства

Системные
интеграторы

Системные
ошибки и дефекты реализации версий
программного средства и документации

Тестировщики

Программные
и алгоритмические ошибки программного
средства и документации

Управляющие
сопровождением и конфигурацией,
инструкторы интерфейсов

Ошибки
проектирования и реализации версий
программного продукта

Документаторы

Дефекты
и ошибки обобщающих документов

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Вот что говорит Википедия на момент написания этой статьи:

    Ошибка программного обеспечения — это ошибка, ошибка, сбой или ошибка в компьютерной программе или системе, которая вызывает неправильный или неожиданный результат или ведет себя непреднамеренно.

Я думаю, что это неполно. Это определение полностью исключает «непоследовательные» дефекты, связанные, например, с ремонтопригодностью и возможностью повторного использования.

Как вы знаете, каждый программный продукт имеет функциональные и нефункциональные требования. Функциональные требования говорят нам, что программное обеспечение должно делать, и нефункциональные требования документируют, как это нужно делать. Например, здесь есть функциональное требование:

Пользователь может создать отчет в формате PDF.

Если наше программное обеспечение не создает отчет в формате PDF и приводит к сбоям, это функциональная ошибка. Если вместо отчета в формате PDF создается пустая страница или текстовый документ, это функциональная ошибка. Если вообще нет кнопки «генерировать PDF-отчет», и пользователь просто не может запустить процесс создания PDF-файла, это функциональная ошибка.

Вот пример нефункционального требования:

Генерация отчета в формате PDF должна занимать менее 100 мс.

Если наше программное обеспечение генерирует совершенно правильный отчет в формате PDF, но это занимает минуту, это нефункциональная ошибка.

Пока все хорошо, так как определение ошибки, данное Википедии, прекрасно охватывает оба из них — если они произойдут, они заставят наше программное обеспечение «произвести неправильный или неожиданный результат или вести себя непреднамеренно». Акцент здесь делается на словах «производить» и «вести себя». Они предполагают, что программное обеспечение что-то делает, и мы наблюдаем его поведение.

Однако, это еще не все.

Что относительно ремонтопригодности? У меня может быть такое нефункциональное требование:

Исходный код генератора PDF должен быть
Легко поддерживать и продлевать средний
программист Java.

Это довольно неопределенное требование, но вы поняли.

Ремонтопригодность и возможность повторного использования являются очень важными нефункциональными компонентами любой современной программной программы, особенно с учетом очень высокой стоимости рабочей силы на рынке. Очень часто важно убедиться, что программное обеспечение можно поддерживать быстро и легко. 

Если это можно поддерживать только медленно, мы можем найти новых программистов для улучшения кода. Если это быстро, но недостижимо, мы не сможем сделать что-либо с этим позже, и нам придется переписать его с нуля, если потребуется какая-то новая функция.

Определение ошибки в программном обеспечении, данное Википедии, не охватывает вообще ремонтопригодность и ошибки повторного использования. Это создает общий источник недоразумений — непоследовательный стиль кода не является ошибкой.

Это не правильно.

Несогласованный стиль кода — это ошибка программного обеспечения, так как это неполная документация, отсутствие документации, слишком сложный код, отсутствие руководства по стилю кодирования и т.д.

Я бы переписал абзац определения ошибки в Википедии следующим образом:

Ошибка программного обеспечения — это поломка, сбой или ошибка в компьютерной программе/системе, которая вызывает нарушение хотя бы одного из его функциональных или нефункциональных требований.

Это определение выглядит более точным для меня.

Понравилась статья? Поделить с друзьями:
  • Системные ошибки примеры
  • Системные ошибки номера
  • Системные ошибки мышления
  • Системные ошибки iphone
  • Системные ошибки ios