Системные ошибки выборки

Поскольку
выборка охватывает , как правило,
весьма незначительную часть генеральной
совокупности, то следует предполагать,
что будут иметь место различия между
оценкой и характеристикой генеральной
совокупности, которую эта оценка
отображает. Эти различия получили
название ошибок отображения или ошибок
репрезентативности. Ошибки
репрезентативности подразделяются
на два типа : систематические и случайные.

Систематические
ошибки

это постоянное завышение или занижение
значения оценки по сравнению с
характеристикой генеральной совокупности
. Причиной появления систематической
ошибки является несоблюдение принципа
равновероятности попадания каждой
единицы генеральной совокупности в
выборку , то есть выборка формируется
из преимущественно «худших» ( или «
лучших») представителей генеральной
совокупности. Соблюдение принципа
равновозможности попадания каждой
единицы в выборку позволяет полностью
исключить этот тип ошибок .

Случайные
ошибки

это меняющиеся
от выборки к выборке по знаку и величине
различия между оценкой и оцениваемой
характеристикой генеральной совокупности
. Причина возникновения случайных
ошибок- игра случая при формировании
выборки, составляющей лишь часть
генеральной совокупности. Этот тип
ошибок органически присущ выборочному
методу. Исключить их полностью нельзя,
задача состоит в том , чтобы предсказать
их возможную величину и свести их к
минимуму. Порядок связанных в связи
с этим действий вытекает из рассмотрения
трех видов случайных ошибок : конкретной
, средней и предельной.

2.2 Конкретная, средняя и предельная ошибки выборки

2.2.1
Конкретная

ошибка – это ошибка одной проведенной
выборки. Если средняя по этой выборке
(
) является оценкой для генеральной
средней (0
) и, если
предположить, что эта генеральная
средняя нам известна , то разница
=0
и будет
конкретной ошибкой этой выборки. Если
из этой генеральной совокупности
выборку повторим многократно, то каждый
раз получим новую величину конкретной
ошибки :
…,
и так далее.
Относительно этих конкретных ошибок
можно сказать следующее: некоторые из
них будут совпадать между собой по
величине и знаку, то есть имеет место
распределение ошибок, часть из них
будет равна 0, наблюдается совпадение
оценки и параметра генеральной
совокупности;

2.2.2
Средняя ошибка

– это средняя квадратическая из всех
возможных по воле случая конкретных
ошибок оценки :
,
где— величина меняющихся конкретных
ошибок;частота
( вероятность ) встречаемости той или
иной конкретной ошибки. Средняя
ошибка выборки показывает насколько
в среднем можно ошибиться , если на
основе оценки делается суждение о
параметре генеральной совокупности.
Приведенная формула раскрывает
содержание средней ошибки, но она не
может быть использована для практических
расчетов, хотя бы потому, что предполагает
знание параметра генеральной совокупности
, что само по себе исключает необходимость
выборки.

Практические
расчеты средней ошибки оценки
основываются на той предпосылке, что
она ( средняя ошибка ) по сути является
средним квадратическим отклонением
всех возможных значений оценки. Эта
предпосылка позволяет получить алгоритмы
расчета средней ошибки, опирающиеся
на данные одной единственной выборки.
В частности средняя ошибка выборочной
средней может быть установлена на
основе следующих рассуждений. Имеется
выборка (
,) состоящая изединиц. По выборке в качестве оценки
генеральной средней определена
выборочная средняя. Каждое значение(,) , стоящее под знаком суммы, следует
рассматривать как независимую случайную
величину, поскольку при бесконечном
повторении выборки первая, вторая и
т.д. единицы могут принимать любые
значения из присутствующих в генеральной
совокупности. СледовательноПоскольку , как известно, дисперсия
суммы независимых случайных величин
равна сумме дисперсий , то.
Отсюда следует, что средняя ошибка для
выборочной средней будет равнаяи находится она в обратной зависимости
от численности выборки ( через корень
квадратный из нее ) и в прямой от среднего
квадратического отклонения признака
в генеральной совокупности. Это логично,
поскольку выборочная средняя является
состоятельной оценкой для генеральной
средней и по мере увеличения численности
выборки приближается по своему значению
к оцениваемому параметру генеральной
совокупности. Прямая зависимость
средней ошибки от колеблемости признака
обусловлена тем, что чем больше
изменчивость признака в генеральной
совокупности, тем сложнее на основе
выборки построить адекватную модель
генеральной совокупности. На практике
среднее квадратическое отклонение
признака по генеральной совокупности
заменяется его оценкой по выборке, и
тогда формула для расчета средней
ошибки выборочной средней приобретает
вид:,
при этом учитывая смещенность
выборочной дисперсии,
выборочное среднее квадратическое
отклонение рассчитывается по формуле=. Так как символомn
обозначена численность выборки. ,то
в знаменателе при расчете среднего
квадратического отклонения должна
использоваться не численность выборки
( n
), а так называемое число степеней
свободы (n-1).
Под числом степеней свободы понимается
число единиц в совокупности, которые
могут свободно варьировать ( изменяться
), если по совокупности определена
какая-либо характеристика. В нашем
случае , поскольку по выборке определена
ее средняя, свободно варьировать могут

единицы.

В
таблице 2.2 приведены формулы для
расчета средних ошибок различных
выборочных оценок . Как видно из этой
таблицы, величина средней ошибки по
всем оценкам находится в обратной связи
с численностью выборки и в прямой с
колеблемостью. Это можно сказать и
относительно средней ошибки выборочной
доли ( частости ). Под корнем стоит
дисперсия альтернативного признака,
установленная по выборке (
)

Приведенные
в таблице 2.2 формулы относятся к так
называемому случайному , повторному
отбору единиц в выборку. При других
способах отбора , о которых речь пойдет
ниже, формулы будут несколько
видоизменяться.

Таблица
2.2

Формулы для
расчета средних ошибок выборочных
оценок

Выборочные
оценки

Формулы
для расчета средней ошибки выборочной
оценки

Выборочная
средняя (
)

Выборочная
дисперсия
(
)

Выборочное
среднее квадратическое отклонение
( s
)

Выборочная
доля (w
)

2.2.3
Предельная ошибка выборки

Знание оценки и ее средней ошибки в
ряде случаев совершенно недостаточно
. Например , при использовании гормонов
при кормлении животных знать только
средний размер неразложившихся их
вредных остатков и среднюю ошибку,
значит подвергать потребителей продукции
серьезной опасности. Здесь настоятельно
напрашивается необходимость определения
максимальной ( предельной
ошибки
).
При использовании выборочного метода
предельная ошибка устанавливается не
в виде конкретной величины , а виде
равных границ

(
интервалов) в ту и другую сторону от
значения оценки.

Определение
границ предельной ошибки основывается
на особенностях распределения конкретных
ошибок . Для так называемых больших
выборок, численность которых более 30
единиц (
)
, конкретные ошибки распределяются в
соответствии с нормальным законом
распределения; при малых выборках () конкретные ошибки распределяются
в соответствии с законом распределения
Госсета

(
Стьюдента ). Применительно к конкретным
ошибкам выборочной средней функция
нормального распределения имеет
вид:
,
где— плотность вероятности появления тех
или иных значений,
при условии, что,
гдевыборочные средние;
генеральная средняя,— средняя ошибка для выборочной
средней. Поскольку средняя ошибка
()
является величиной постоянной, то в
соответствии с нормальным законом
распределяются конкретные ошибки,
выраженные в долях средней ошибки, или
так называемых нормированных отклонениях
.

Взяв
интеграл функции нормального
распределения, можно установить
вероятность того , что ошибка будет
заключена в некотором интервале
изменения t
и вероятность того, что ошибка выйдет
за пределы этого интервала ( обратное
событие ). Например , вероятность того,
что ошибка не превысит половину средней
ошибки ( в ту и другую сторону от
генеральной средней ) составляет
0,3829, что ошибка будет заключена в
пределах одной средней ошибки — 0,6827,
2-х средних ошибок -0,9545 и так далее.

Взаимосвязь
между уровнем вероятности и интервалом
изменения t
( а в конечном счете интервалом
изменения ошибки ) позволяет подойти
к определению интервала ( или границ )
предельной ошибки, увязав его величину
с вероятностью осуществления..
Вероятность осуществления -это
вероятность того, что ошибка будет
находится в некотором интервале.
Вероятность осуществления будет
«доверительной» в том случае, если
противоположное событие ( ошибка будет
находится вне интервала ) имеет такую
вероятность появления, которой можно
пренебречь. Поэтому доверительный
уровень вероятности устанавливают,
как правило, не ниже 0,90 (вероятность
противоположного события равна 0,10 ).
Чем больше негативных последствий
имеет появление ошибок вне установленного
интервала, тем выше должен быть
доверительный уровень вероятности (
0,95; 0,99 ; 0,999 и так далее ).

Выбрав
доверительный уровень вероятности
по таблице интеграла вероятности
нормального распределения, следует
найти соответствующее значение t,
а затем используя выражение
=определить интервал предельной ошибки.
Смысл полученной величины в следующем
– с принятым доверительным уровнем
вероятности предельная ошибка выборочной
средней не превысит величину.

Для
установления границ предельной ошибки
на основе больших выборок для других
оценок ( дисперсии, среднего квадратического
отклонения, доли и так далее ) используется
выше рассмотренный подход, с учетом
того, что для определения средней
ошибки для каждой оценки используется
свой алгоритм.

Что
касается малых выборок () то, как уже говорилось, распределение
ошибок оценок соответствует в этом
случае распределениюt
— Стьюдента. Особенность этого
распределения состоит в том, что в
качестве параметра в нем , наряду с
ошибкой, присутствует численность
выборки ,вернее не численность выборки,
а число степеней свободы
При увеличении численности выборки
распределениеt-Стьюдента
приближается к нормальному, а при
эти распределения практически совпадают.
Сопоставляя значения величиныt-Стьюдента
и t
— нормального распределения при одной
и той же доверительной вероятности
можно сказать , что величина t-Стьюдента
всегда больше t
— нормального распределения, причем,
различия возрастают с уменьшением
численности выборки и с повышением
доверительного уровня вероятности.
Следовательно, при использовании малых
выборок имеют место по сравнению с
выборками большими , более широкие
границы предельной ошибки, причем , эти
границы расширяются с уменьшением
численности выборки и повышением
доверительного уровня вероятности.

Вопросы для
повторения

6-1.Какова
природа конкретной, средней и предельной
ошибок ?

6-2.Как
соблюсти принцип равновероятности
каждой единицы попасть в выборку при
выборочном устном опросе студентов ?

6-3 Каков источник
систематической ошибки ?

6-4.Какова
вероятность появления ошибки в 2.5 раза
превышающей среднюю?

6-5.Какие
различия в знаках ( + , — ) имеют
систематические и случайные ошибки?

6-6.Каковы основные
пути уменьшения средней и предельной
ошибки ?

6-7.При какой
выборочной доле имеет место ее наибольшая
ошибка ?

6-8.При какой доле
признака имеет место ее наименьшая
ошибка 7

6-9.При
каких выборках ( больших или малых )
при прочих равных условиях имеет место
большая предельная ошибка ?

Резюме по
модульной единице 2

Использование
выборочного метода неизбежно сопряжено
с появлением ошибок. Случайный характер
этих ошибок, нормальный или t
— Стьюдента закон их распределения
позволяет определить их средний и
предельный размер и видеть пути их
снижения

Модульная
единица 3 Типовые задачи решаемые на
основе выборочного метода

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Систематическая ошибка отбора — статистическое понятие, показывающее, что выводы, сделанные применительно к какой-либо группе, могут оказаться неточными вследствие неправильного отбора в эту группу.

Содержание

  • 1 Ошибки отбора результатов
  • 2 Типы систематических ошибок
    • 2.1 Пространство
    • 2.2 Данные
    • 2.3 Участники
  • 3 Устранение систематической ошибки
  • 4 См. также

Ошибки отбора результатов

Могут включать предварительный или последующий отбор с превалированием или исключением некоторых видов. Это может быть, конечно, разновидностью научного мошенничества, манипуляцией данными, но гораздо чаще является добровольным заблуждением, например, вследствие использования неподходящего инструмента.

Например, в эпоху использования плёнки для фотографирования неба независимый наблюдатель определённо пришёл бы к выводу, что количество голубых галактик явно больше, чем количество красных. Не потому, что голубые галактики более распространены, но лишь вследствие того, что большинство плёнок более чувствительны к голубой части спектра. Тот же независимый наблюдатель сделал бы прямо противоположный вывод сейчас, в эпоху цифровой фотографии, потому что матрицы цифровых фотоаппаратов более чувствительны к красной части спектра.

Типы систематических ошибок

Существует большое количество возможных систематических ошибок, основные типы:

Пространство

  • Выбор первой и последней точки в серии. К примеру, для того, чтобы максимизировать заявленный тренд, можно начать серию с года с необычно низкими показателями и закончить годом с самыми высокими показателями.
  • «Своевременное» окончание, то есть тогда, когда результаты укладываются в желаемую теорию.
  • Отделение части данных на основе знаний обо всей выборке и затем применение математического аппарата к этой части как к слепой (случайной) выборке. См. Районированная выборка, en:cluster sampling, Ошибка меткого стрелка.
  • Изучение процесса на интервале (во времени или пространстве) длиной заведомо меньшей, чем требуется для полного представления о явлении.

Данные

  • Вычёркивание неких «плохих» данных в соответствии с правилами, хотя бы эти правила и шли вразрез с предварительно объявленными правилами для этой выборки.

Участники

  • Предварительный отбор участников, или, к примеру, размещение объявления о наборе добровольцев для участия в испытаниях среди определённой группы людей. К примеру, для доказательства, что курение никак не вредит результатам фитнеса, можно разместить в местном фитнесцентре объявление для набора добровольцев, но курящих набирать в мастерклассе, а некурящих среди начинающих или в секции желающих сбросить вес.
  • Выбрасывание из выборки участников, не дошедших до конца теста. В программе похудения мы рассматриваем подробные графики сброса веса как доказательство правильности методики, но в эти графики не включены не дошедшие до конца участники, посчитавшие, что на них эта методика не работает (так называемая систематическая ошибка выжившего).
  • Систематическая ошибка самоотбора. То есть группа людей для изучения формируется частично по собственной воле, так как не все опрошенные пожелают участвовать в тесте.

Устранение систематической ошибки

В общем случае невозможно выделить систематическую ошибку выборки только на основе статистических методов, хотя, как показано в работе нобелевского лауреата Джеймса Хекмана (англ. James Heckman), в некоторых специальных случаях существуют работающие стратегии.

Известной является фраза — рассказы об уме и доброте дельфинов основаны на рассказах уставших пловцов, которых они толкали к берегу, но мы лишены возможности услышать рассказ тех, кого они толкали в другую сторону.

См. также

  • Парадокс Берксона
  • Проверка статистических гипотез
  • Систематическая ошибка выжившего

Ошибка выборки — определение, типы, контроль и уменьшение ошибок

Опубликовано 2023-02-11 19:54 пользователем

Ошибки выборки

Что такое ошибка выборки?

Ошибка выборки возникает, когда выборка, используемая в исследовании, не является репрезентативной для всей популяции. Ошибки выборки случаются часто, поэтому исследователи всегда рассчитывают предел ошибки при получении окончательных результатов в качестве статистической практики. Предел погрешности — это величина погрешности, допустимая при неправильном расчете, представляющая собой разницу между выборкой и реальной популяцией.

Выберите своих респондентов

Каковы наиболее распространенные ошибки выборки в маркетинговых исследованиях?

Вот четыре основные ошибки маркетинговых исследований при составлении выборки:

  • Ошибка спецификации популяции: Ошибка спецификации популяции возникает, когда исследователи не знают, кого именно нужно опросить. Например, представьте себе исследование, посвященное детской одежде. Кого нужно опросить? Это могут быть оба родителя, только мать или ребенок. Родители принимают решение о покупке, но дети могут повлиять на их выбор.
  • Ошибка выборочной совокупности: Ошибки выборочной совокупности возникают, когда исследователи неправильно ориентируются на субпопуляцию при отборе выборки. Например, выборка из телефонного справочника может иметь ошибочные включения, поскольку люди меняют свои города. Ошибочные исключения происходят, когда люди предпочитают не указывать свои номера. Богатые домохозяйства могут иметь более одного подключения, что приводит к многократным включениям.
  • Ошибка отбора: Ошибка отбора происходит, когда респонденты сами выбирают себя для участия в исследовании. Отвечают только те, кто заинтересован. Ошибки отбора можно контролировать, если сделать дополнительный шаг и запросить ответы у всей выборки. Планирование перед опросом, последующие действия и аккуратный и чистый дизайн опроса повысят процент участия респондентов. Кроме того, попробуйте такие методы, как CATI-опросы и личные интервью, чтобы максимизировать количество ответов.
  • Ошибки выборки: Ошибки выборки возникают из-за неравномерной репрезентативности респондентов. В основном это происходит, когда исследователь не планирует тщательно свою выборку. Эти ошибки выборки можно контролировать и устранять, создавая тщательный план выборки, имея достаточно большую выборку, отражающую все население, или используя для сбора ответов онлайн-выборку или аудиторию опроса.

Контроль ошибки выборки

Статистические теории помогают исследователям измерить вероятность ошибки выборки в зависимости от размера выборки и населения. Размер выборки, рассматриваемой из совокупности, в первую очередь определяет размер ошибки выборки. При больших размерах выборки вероятность ошибки ниже. Для понимания и оценки погрешности исследователи используют метрику, известную как предел погрешности. Обычно желаемым уровнем достоверности считается уровень достоверности в 95%.

Про совет: Если вам нужна помощь в расчете собственного предела погрешности, вы можете воспользоваться нашим калькулятором предела погрешности.

Каковы шаги по сокращению ошибок выборки?

Ошибки выборки легко выявить. Вот несколько простых шагов по уменьшению ошибки выборки:

  1. Увеличение размера выборки: Больший размер выборки дает более точный результат, поскольку исследование приближается к реальному размеру популяции.
  2. Разделение популяции на группы: Тестируйте группы в соответствии с их размером в популяции вместо случайной выборки. Например, если люди определенной демографической группы составляют 20% населения, убедитесь, что ваше исследование состоит из этой переменной, чтобы уменьшить смещение выборки.
  3. Знать свое население: Изучите свое население и поймите его демографический состав. Знайте, какие демографические группы используют ваш продукт и услугу, и убедитесь, что вы нацелены только на ту выборку, которая имеет значение.

Мы также создали инструмент, который поможет вам легко определить вашу выборку: Калькулятор размера выборки.

Ошибка выборки поддается измерению, и исследователи могут использовать ее в своих интересах, чтобы оценить точность своих выводов и оценить дисперсию.

Рубрика: 

  • Бизнес

Ключевые слова: 

  • аудитория

Автор: 

  • Dan Fleetwood

Источник: 

  • questionpro

Перевод: 

  • Дмитрий Л

Когда исследователи рассматривают вопросы, представляющие интерес для аналитиков или портфельных менеджеров, они могут исключить из анализа определенные акции, облигации, портфели, или периоды времени, по разным причинам — возможно, из-за недоступности данных.

Когда недоступность данных приводит к исключению из анализа определенных активов, мы называем эту проблему систематической ошибкой или смещением выборки (англ. ‘sample selection bias’ или ‘sampling bias’).

Например, вы можете сделать выборку из базы данных, которая отслеживает только компании, существующие в настоящее время. Например, многие базы данных взаимных фондов предоставляют историческую информацию только о тех фондах, которые существуют в настоящее время.

Базы данных, в которых хранятся балансовые отчеты и отчеты о прибылях и убытках страдают от той же систематической ошибки, что и базы данных фондов: в них нет фондов или компаний, которые прекратили деятельность.

Исследование, которое использует подобные базы данных, подвержено разновидности систематической ошибки выборки, известной как систематическая ошибка выжившего (англ. ‘survivorship bias’).

Исследователи Димсон, Марш и Стонтон (Dimson, Marsh, and Staunton, 2002) подняли вопрос о систематической ошибке выжившего в международных финансовых индексах:

Известной проблемой является влияние выживания рынков на долгосрочную оценку доходности. Рынки могут испытывать не только разочаровывающие результаты, но и полную потерю стоимости за счет конфискации, гиперинфляции, национализации и кризисов.

При оценке результатов рынков, которые выживают в течение длительных интервалов времени, мы сделали выводы о том, чем обусловлено выживание. Тем не менее, как отметили в исследовании Браун, Готцман и Росс (Brown, Goetzmann, и Ross) в 1995 г. и Готцман и Джорион (Goetzmann and Jorion) в 1999 г., человек не способен заранее определить, какие рынки выживут, а какие нет. (стр. 41)

Систематическая ошибка выжившего иногда появляется, когда мы используем совместно цены акций и данные бухгалтерского учета.

Например, многие исследования в области финансов использовали соотношение рыночной стоимости компании к бухгалтерской стоимости компании на одну акцию (т.е. коэффициент котировки акций, англ. P/B, от ‘price-to-book ratio’ или ‘market-to-book ratio’) и обнаружили, что коэффициент P/B обратно пропорционален доходности компании (см. Fama and French 1992, 1993).

Коэффициент P/B также используется для многих популярных индексов стоимости и роста.

Если база данных, которую мы используем для сбора данных бухгалтерского учета, исключает обанкротившиеся компании, это может привести к систематической ошибке выжившего.


Котхари, Шанкен и Слоун (Kothari, Shanken, and Sloan) в 1995 г. исследовали именно этот вопрос, и оспорили то, что акциям обанкротившихся компаний свойственна самая низкая доходность и коэффициент P/B.

Если мы исключаем из выборки акции обанкротившихся компаний, то акции с низким P/B, которые включены в выборку, будут иметь в среднем более высокую доходность, по сравнению со средней доходностью при включении в выборку всех акций с низким P/B. Котхари, Шанкен и Слоун предположили, что эта систематическая ошибка привела к выводу об обратной связи между средней доходностью и P/B.

См. Fama and French (1996, стр. 80) о интеллектуальном анализе данных и систематической ошибке выжившего в их тестах.

Единственный совет, который мы можем предложить в этой ситуации, — это быть в курсе каких-либо смещений, потенциально присущих в выборке. Очевидно, что смещения выборки могут затуманить результаты любого исследования.

Выборка также может быть смещена из-за удаления (или делистинга) акций компании.

Делистинг (англ. ‘delisting’), т.е. исключение акций компании из котировального списка биржи, может происходить по разным причинам: слияние, банкротство, ликвидация, или переход на другую биржу.

Например, Центр исследований котировок ценных бумаг (CRSP, от англ. Center for Research in Security Prices) в Университете Чикаго является основным поставщиком данных о доходности, используемых в научных исследованиях. Когда происходит делистинг, CRSP пытается собрать данные о доходности исключенной компании, но во многих случаях он не может сделать этого из-за связанных с делистингом трудностях. CRSP вынужден просто указать значение доходности исключенной компании как отсутствующее.


Исследование, опубликованное в Финансовом журнале (см. The Journal of Finance) Шумвеем и Вортером (Shumway and Warther) в 1999 году, задокументировало смещение данных доходности NASDAQ в CRSP, вызванное делистингом.

Авторы показали, что делистинг, связанный с плохой работой компании (например, банкротством) исключается из данных чаще, чем делистинг, связанный с хорошей или нейтральной эффективностью компании (например, слиянием или перемещением на другой рынок). Кроме того, делистинг чаще происходит с небольшими компаниями.

Систематическая ошибка выборки встречается даже на рынках, где качество и согласованность данных весьма высоки. Новые классы активов, такие как хедж-фонды могут представлять еще большие проблемы смещения выборки.


Хедж-фонды (англ. ‘hedge funds’) представляют собой гетерогенную группу инвестиционных инструментов, как правило, организованных таким образом, чтобы быть свободными от регулирующего контроля. В целом, хедж-фонды не обязаны публично раскрывать свою эффективность (в отличие, скажем, от взаимных фондов). Хедж-фонды сами решают, нужно ли им включаться в какую-либо базу данных хедж-фондов.

Хедж фонды с плохой репутацией явно не желают, чтобы их результаты публиковались в базе данных, создавая проблему смещения самовыборки (англ. ‘self-selection bias’) в базах данных хедж-фондов.

Кроме того, как отметили Фанг и Хсие (Fung and Hsieh) в исследовании 2002 г., поскольку только хедж-фонды с хорошими показателями добровольно попадают в базу данных, в целом, историческая эффективность отрасли хедж-фондов имеет тенденцию казаться лучше, чем она есть на самом деле.

Кроме того, многие базы данных хедж-фондов исключают фонды, которые выходят из бизнеса, создавая в базе данных систематическую ошибку выжившего. Даже если база данных не удаляет несуществующие хедж-фонды, в попытке устранить ошибку выжившего, остается проблема хедж-фондов, которые перестают отчитываться об эффективности из-за плохих результатов.

См. Fung and Hsieh (2002) и Horst and Verbeek (2007) для более подробной информации о проблемах интерпретации эффективности хедж-фондов.

Обратите внимание, что систематическая ошибка также возможна, когда успешные фонды перестают отчитываться об эффективности, поскольку они больше не нуждаются в новых потоках денежных средств.

Систематическая ошибка опережения.

Процесс тестирования также подвержен систематической ошибке опережения (англ. ‘look-ahead bias’), если он использует информацию, которая не была доступна на момент тестирования.

Например, тесты правил биржевой торговли, которые используют ставки доходности фондового рынка и данные бухгалтерских балансов должны учитывать систематическую ошибку опережения.

В таких тестах, балансовая стоимость компании на акцию обычно используются для расчета коэффициента P/B.

Хотя рыночная цена акции доступна для всех участников рынка на заданный момент времени, балансовая стоимость на акцию на конец финансового года может стать общедоступной только в будущем — когда-то в следующем квартале.

Систематическая ошибка временного периода.

Тесты также подвержены систематической ошибке или смещению временного периода (англ. ‘time-period bias’), если они основаны на временном периоде, для которого результаты тестирования будут специфичными (т.е., характерными только для данного периода).

Ряды коротких временных периодов, скорее всего, дадут результаты, специфичные для определенного периода, которые могут не отражать более длительный период.

Ряды длительных временных периодов могут дать более точную картину истинной эффективности инвестиций. Недостаток длительных периодов заключается в потенциальных структурных изменениях, происходящих в течение периода, что приведет к двум различным распределениям доходности.

В этой ситуации, распределение, отражающее условия до изменений, будет отличаться от распределения, которые описывают условия после изменений.

Пример (7) систематических ошибок в инвестиционных исследованиях.

Финансовый аналитик рассматривает эмпирические данные об исторической доходности акций США.

Она выясняет, что недооцененные акции (то есть, акции с низким P/B) превзошли по эффективности растущие акции (то есть, акции с высоким P/B) в некоторых последних периодах времени.

После изучения американского рынка, аналитик задается вопросом, могут ли недооцененные акции быть привлекательными в Великобритании. Она исследует эффективность недооцененных и растущих акций на британском рынке за 14-летний период с января 2000 года по декабрь 2013 года.

Для проведения этого исследования, аналитик делает следующее:

  • Получает текущий состав компаний Индекса всех акций FTSE (Financial Times Stock Exchange All Share Index), который является взвешенным индексом рыночной капитализации;
  • Исключает несколько компаний, у которых финансовый год не заканчивается в декабре;
  • Использует балансовую и рыночную стоимость компаний на конец года, чтобы ранжировать остальные пространство компаний по коэффициенту P/B на конец года;
  • На основе этих рейтингов, она делит пространство ценных бумаг на 10 портфелей, каждый из которых содержит одинаковое количество акций;
  • Вычисляет равновзвешенную доходность каждого портфеля и доходность FTSE All Share Index за 12 месяцев после даты расчета каждого рейтинга; а также
  • Вычитает доходность FTSE из доходности каждого портфеля, чтобы получить избыточную доходность для каждого портфеля.

Опишите и обсудите каждую из следующих систематических ошибок, которым подвержен план исследований аналитика:

  • систематическую ошибку выжившего;
  • систематическую ошибку опережения; а также
  • систематическую ошибку временного периода.

Систематическая ошибка выжившего.

План тестирования подвержен систематической ошибке выжившего, если он не принимает в расчет обанкротившиеся компании, слившиеся компании, а также компании, иным образом покинувшие базу.

В этом примере, аналитик использовала текущий список акций FTSE, а не фактический список акций на начало каждого года. В той степени, в которой расчет доходности не учитывает компании, исключенные из индекса, эффективность портфелей с наименьшим P/B подвершена систематической ошибке выжившего и, соответственно, может быть завышена.

В какой-то момент периода тестирования, эти ныне не существующие компании, были исключены из тестирования. У них, вероятно, были низкие цены на акции (и низкий P/ B) и плохая доходность.

Систематическая ошибка опережения.

План тестирования подвержен систематической ошибке опережения, если он использует информацию, недоступную на момент тестирования.

В этом примере, аналитик провела тест, сделав допущение о том, что необходимая бухгалтерская информация была доступна в конце финансового года.

Например, аналитик предположила, что балансовая стоимость на акцию за 2 000 финансовый года был известна на 31 декабря 2000 года. Поскольку эта информация, как правило, не публикуется в течение нескольких месяцев после завершения финансового года, тест, возможно, содержал систематическую ошибку опережения.

Эта ошибка может привести к стратегии, которая окажется успешной, но при этом потребуется идеальная способность прогнозировать бухгалтерские результаты.

Систематическая ошибка временного периода.

План тестирования подвержен систематической ошибке временного периода, если он основан на периоде, для которого результаты будут специфичны.

Хотя тестирование охватывает период более 10 лет, этот период может оказаться слишком коротким для тестирования аномалии.

В идеале, аналитик должна протестировать рыночные аномалии в течение нескольких бизнес-циклов, чтобы гарантировать, что результаты не являются специфичными для рассматриваемого периода.

Эта систематическая ошибка может способствовать предлагаемой стратегии, если выбрать временной период, благоприятный для стратегии.

Понравилась статья? Поделить с друзьями:
  • Системная ошибка е68 на xbox 360
  • Сервис ubisoft обнаружил неустранимую ошибку и вынужден отключиться
  • Системная ошибка 53 не найден сетевой путь
  • Системная ошибка 1219 множественное подключение
  • Систематическая ошибка штангенциркуля и микрометра