Здравствуйте на этой странице я собрала теорию и практику с примерами решения задач по предмету эконометрика с решением по каждой теме, чтобы вы смогли освежить знания!
Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!
Эконометрика
Эконометрика — это наука, изучающая конкретные количественные и качественные взаимосвязи экономических объектов и процессов с помощью математических и статистических методов и моделей.
Эконометрика — эффективный инструмент научного анализа и моделирования в профессиональной деятельности экономиста, менеджера и инженера
Парная регрессия и корреляция
Парная регрессия — уравнение связи двух переменных и :
где — зависимая переменная (результативный признак);
— независимая, объясняющая переменная (признак-фактор).
Различают линейные и нелинейные регрессии.
Линейная регрессия :
Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.
Возможно эта страница вам будет полезна:
Регрессии, нелинейные по объясняющим переменным:
• полиномы разных степеней
• равносторонняя гипербола
Регрессии, нелинейные по оцениваемым параметрам’.
• степенная
• показательная
• экспоненциальная
Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака от теоретических минимальна, т.е.
Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно и :
Можно воспользоваться готовыми формулами, которые вытекают из этой системы:
Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции для линейной регрессии :
и индекс корреляции — для нелинейной регрессии :
Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации.
Средняя ошибка аппроксимации — среднее отклонение расчетных значений от фактических:
Допустимый предел значений — не более 8 — 10%.
Средний коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора на 1% от своего среднего значения:
Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
где — общая сумма квадратов отклонений;
— сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
— остаточная сумма квадратов отклонений.
Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации :
Коэффициент детерминации — квадрат коэффициента или индекса корреляции.
-тест — оценивание качества уравнения регрессии — состоит в проверке гипотезы о статистической незначимости уравнения регрессии и показателя тесноты связи. Дня этого выполняется сравнение фактического и критического (табличного) значений -критерия Фишера. определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
где — число единиц совокупности;
— число параметров при переменных .
— это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости . Уровень значимости — вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно принимается равной 0,05 или 0,01.
Если , то — гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если , то гипотеза не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются -критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью -критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:
Сравнивая фактическое и критическое (табличное) значения -статистики — и — принимаем или отвергаем гипотезу .
Связь между -критерием Фишера и -статистикой Стьюдента выражается равенством
Если то отклоняется, т.е. и не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора . Если , то гипотеза не отклоняется и признается случайная природа формирования или .
Для расчета доверительного интервала определяем предельную ошибку для каждого показателя:
Формулы для расчета доверительных интервалов имеют следующий вид:
Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.
Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения . Вычисляется средняя стандартная ошибка прогноза и строится доверительный интервал прогноза :
где
Пример задачи №1
По семи территориям Уральского района за 199Х г. известны значения двух признаков (табл. 1.1).
Требуется:
а)линейной;
б) степенной;
в) показательной;
г) равносторонней гиперболы.
Оценить каждую модель через среднюю ошибку аппроксимации и -критерий Фишера.
Решение:
1а. Для расчета параметров и линейной регрессии
решаем систему нормальных уравнений относительно и :
По исходным данным рассчитываем
Уравнение регрессии:
С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта. Рассчитаем линейный коэффициент парной корреляции:
Связь умеренная, обратная.
Определим коэффициент детерминации:
Вариация результата на 12,7% объясняется вариацией фактора . Подставляя в уравнение регрессии фактические значения , определим теоретические (расчетные) значения . Найдем величину средней ошибки аппроксимации :
В среднем расчетные значения отклоняются от фактических на 8,1%.
Рассчитаем -критерий:
поскольку , следует рассмотреть
Полученное значение указывает на необходимость принять гипотезу о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.
- Построению степенной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:
Для расчетов используем данные табл. 1.3.
Рассчитаем и :
Получим линейное уравнение:
Выполнив его потенцирование, получим:
Подставляя в данное уравнение фактические значения , получаем теоретические значения результата . По ним рассчитаем показатели: тесноты связи — индекс корреляции и среднюю ошибку аппроксимации :
Характеристики степенной модели указывают, что она несколько лучше линейной функции описывает взаимосвязь.
1в. Построению уравнения показательной кривой предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:
где
Для расчетов используем данные табл. 1.4.
Значения параметров регрессии и составили:
Получено линейное уравнение:
Произведем потенцирование полученного уравнения и запишем его в обычной форме:
Тесноту связи оценим через индекс корреляции :
Связь умеренная.
, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах. Показательная функция чуть хуже, чем степенная, она описывает изучаемую зависимость.
1г. Уравнение равносторонней гиперболы линеаризуется при замене:. Тогда .
Для расчетов используем данные табл. 1.5.
Значения параметров регрессии и составили:
Получено уравнение:
Индекс корреляции:
. По уравнению равносторонней гиперболы полумена наибольшая оценка тесноты связи: =0,3944 (по сравнению с линейной, степенной и показательной регрессиями). остается на допустимом уровне:
где
Следовательно, принимается гипотеза о статистически незначимых параметрах этого уравнения. Этот результат можно объяснить сравнительно невысокой теснотой выявленной зависимости и небольшим числом наблюдений.
Пример задачи №2
По территориям региона приводятся данные за 199Х г. (табл. 1.6).
Требуется:
- Построить линейное уравнение парной регрессии у от х.
- Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
- Оценить статистическую значимость параметров регрессии и корреляции.
- Выполнить прогноз заработной платы у при прогнозном значении среднедушевого прожиточного минимумах, составляющем 107% от среднего уровня.
- Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.
Решение:
- Для расчета параметров уравнения линейной регрессии строим расчетную таблицу (табл. 1.7).
Получено уравнение регрессии:
С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб.
- Тесноту линейной связи оценит коэффициент корреляции:
Это означает, что 52% вариации заработной платы () объясняется вариацией фактора — среднедушевого прожиточного минимума. Качество модели определяет средняя ошибка аппроксимации:
Качество построенной модели оценивается как хорошее, так как не превышает 8 — 10%.
- Оценку статистической значимости параметров регрессии проведем с помощью -статистики Стьюдента и путем расчета доверительного интервала каждого из показателей.
Выдвигаем гипотезу о статистически незначимом отличии показателей от нуля:
для числа степеней свободы
составит 2,23.
Определим случайные ошибки :
Тогда
Фактические значения -статистики превосходят табличные значения:
поэтому гипотеза отклоняется, т.е. и не случайно отличаются от нуля, а статистически значимы.
Рассчитаем доверительный интервал для и . Для этого определим предельную ошибку для каждого показателя:
Доверительные интервалы:
Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью
параметры и , находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.
Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:
тогда прогнозное значение прожиточного минимума составит:
5. Ошибка прогноза составит:
Предельная ошибка прогноза, которая в 95% случаев не будет превышена, составит:
Доверительный интервал прогноза:
Выполненный прогноз среднемесячной заработной платы оказался надежным
но неточным, так как диапазон верхней и нижней границ доверительного интервала составляет 1,95 раза:
Пример задачи №3
По группе предприятий, производящих однородную продукцию, известно, как зависит себестоимость единицы продукции у от факторов, приведенных в табл. 1.8.
Требуется:
- Определить с помощью коэффициентов эластичности силу влияния каждого фактора на результат.
- Ранжировать факторы по силе влияния.
Решение:
- Для уравнения равносторонней гиперболы
Для уравнения прямой
Для уравнения степенной зависимости
Для уравнения показательной зависимости
Сравнивая значения , ранжируем по силе их влияния на себестоимость единицы продукции:
Для формирования уровня себестоимости продукции фуппы предприятий первоочередное значение имеют цены на энергоносители; в гораздо меньшей степени влияют трудоемкость продукции и отчисляемая часть прибыли. Фактором снижения себестоимости выступает размер производства: с ростом его на 1% себестоимость единицы продукции снижается на -0,97%.
Пример задачи №4
Зависимость потребления продукта А от среднедушевого дохода по данным 20 семей характеризуется следующим образом:
уравнение регрессии
индекс корреляции
остаточная дисперсия
Требуется:
Провести дисперсионный анализ полученных результатов.
Решение:
Результаты дисперсионного анализа приведены в табл. 1.9.
В силу того что
гипотеза о случайности различий факторной и остаточной дисперсий отклоняется. Эти различия существенны, статистически значимы, уравнение надежно, значимо, показатель тесноты связи надежен и отражает устойчивую зависимость потребления продукта от среднедушевого дохода.
Реализация типовых задач в Excel
Решение с помощью ППП Excel
- Встроенная статистическая функция ЛИНЕЙН определяет параметры линейной регрессии . Порядок вычисления следующий:
1) введите исходные данные или откройте существующий файл, содержащий анализируемые данные;
2) выделите область пустых ячеек 5×2 (5 строк, 2 столбца) для вывода результатов регрессионной статистики или область 1×2 — для получения только оценок коэффициентов регрессии;
3) активизируйте Мастер функций любым нз способов:
а) в главном меню выберите Вставка/Функция;
б) на панели инструментов Стандартная щелкните по кнопке Вставка функции;
4) в окне Категория (рис. 1.1) выберите Статистические, в окне Функция — ЛИНЕЙН. Щелкните по кнопке ОК;
5) заполните аргументы функции (рис. 1.2):
Известные значенияу — диапазон, содержащий данные результативного признака;
Известные значения_х — диапазон, содержащий данные факторов независимого признака;
Константа — логическое значение, которое указывает на наличие или на отсутствие свободного члена в уравнении; если Константа = 1, то свободный член рассчитывается обычным образом, если Константа = 0, то свободный член равен 0; Статистика — логическое значение, которое указывает, выводить дополнительную информацию по регрессионному анализу или нет. Если Статистика = 1, то дополнительная информация выводится, если Статистика — 0, то выводятся только оценки параметров уравнения. Щелкните по кнопке ОК;
6) в левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Чтобы раскрыть всю таблицу, нажмите на клавишу , а затем — на комбинацию клавиш
Дополнительная регрессионная статистика будет выводиться в порядке, указанном в следующей схеме:
Для вычисления параметров экспоненциальной кривой в MS Excel применяется встроенная статистическая функция ЛГРФПРИБЛ. Порядок вычисления аналогичен применению функции ЛИНЕЙН.
Для данных из примера 2 результат вычисления функции ЛИНЕЙН представлен на рис. 1.3, функции ЛГРФПРИБЛ — на рис. 1.4.
- С помощью инструмента анализа данных Регрессия, помимо результатов регрессионной статистики, дисперсионного анализа и доверительных интервалов, можно получить остатки и графики подбора линии регрессии, остатков и нормальной вероятности. Порядок действий следующий:
1) проверьте доступ к пакету анализа. В главном меню последовательно выберите Сервис /Надстройки. Установите флажок Пакет анализа (рис. 1.5);
2) в главном меню выберите Сервис/Анализ данных/Регрессия. Щелкните по кнопке ОК;
3) заполните диалоговое окно ввода данных и параметров вывода (рис. 1.6):
Входной интервал — диапазон, содержащий данные результативного признака;
Входной интервал — диапазон, содержащий данные факторов независимого признака;
Метки — флажок, который указывает, содержит ли первая строка названия столбцов или нет;
Константа — ноль — флажок, указывающий на наличие или отсутствие свободного члена в уравнении;
Выходной интервал — достаточно указать левую верхнюю ячейку будущего диапазона;
Новый рабочий лист — можно задать произвольное имя нового листа.
Если необходимо получить информацию и графики остатков, установите соответствующие флажки в диалоговом окне. Щелкните по кнопке ОК.
Результаты регрессионного анализа для данных из примера 2 представлены на рис. 1.7.
Решение с помощью ППП Statgraphics
Порядок вычислений при использовании функции Simple Regression следующий:
1) введите исходные данные (рис. 1.8) или откройте существующий файл, содержащий исходные данные;
2) в главном меню последовательно выберите Relate/Simple Regression;
3) заполните диалоговое окно ввода данных. В поле «» введите название столбца, содержащего зависимую переменную, в поле «» -название столбца, содержащего значения факторного признака. Щелкните по кнопке ОК;
4) в окне табличных настроек поставьте флажок напротив Analysis Summary.
Результаты вычислений появятся в отдельном окне. Для данных из примера 2 результат применения функции Simple Regression представлен на рис. 1.9.
Как видим, результаты вычислений вручную и с помощью компьютера совпадают.
Возможно эта страница вам будет полезна:
Множественная регрессия и корреляция
Множественная регрессия — уравнение связи с несколькими независимыми переменными:
где — зависимая переменная (результативный признак);
— независимые переменные (факторы).
Для построения уравнения множественной регрессии чаще используются следующие функции:
• линейная —
• степенная —
• экспонента —
• гипербола —
Можно использовать и другие функции, приводимые к линейному виду.
Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов (МНК). Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии:
Для ее решения может быть применен метод определителей:
где
определитель системы.
— частные определители; которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.
Другой вид Уравнения множественной регрессии — уравнение регрессии в стандартизованном масштабе:
у-у
где — стандартизованные переменные;
— стандартизованные коэффициенты регрессии.
К уравнению множественной регрессии в стандартизованном масштабе применим МНК. Стандартизованные коэффициенты регрессии (-коэффициенты) определяются из следующей системы уравнений:
Связь коэффициентов множественной регрессии со стандартизованными коэффициентами описывается соотношением
Параметр определяется как
Средние коэффициенты эластичности для линейной регрессии рассчитываются по формуле
Для расчета частных коэффициентов эластичности применяется следующая формула:
Тесноту совместного влияния факторов на результат оценивает индекс множественной корреляции:
Значение индекса множественной корреляции лежит в пределах от 0 до 1 и должно быть больше или ранно максимальному парному индексу корреляции:
Индекс множественной корреляции для уравнения в стандартизованном масштабе можно записать и виде
При линейной зависимости коэффициент множественной корреляции можно определить через матрицу парных коэффициентов корреляции:
где
определитель матрицы парных коэффициентов корреляии;
определитель матрицы межфакторной корреляции.
Частные коэффициенты (или индексы) корреляции, измеряющие влияние на у фактора при неизменном уровне других факторов, можно определить по формуле
или по рекуррентной формуле:
Частные коэффициенты корреляции изменяются в пределах от —1 до 1.
Качество построенной модели в целом оценивает коэффициент (индекс) детерминации. Коэффициент множественной детерминации рассчитывается как квадрат индекса множественной корреляции:
Скорректированный индекс множественной детерминации содержит поправку на число степеней свободы и рассчитывается по формуле
где — число наблюдений; — число факторов.
Значимость уравнения множественной регрессии в целом оценивается с помощью -критерия Фишера:
Частный -критерий оценивает статистическую значимость присутствия каждого из факторов в уравнении. В общем виде для фактора частный -критерий определится как
Оценка значимости коэффициентов чистой регрессии с помощью -критерия Стьюдента сводится к вычислению значения
где — средняя квадратичсская ошибка коэффициента регрессии она может быть определена по следующей формуле:
При построении уравнения множественной регрессии может возникнуть проблема мупьтиколлинеарности факторов, их тесной линейной связанности.
Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если .
По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов. Чем сильнее мультикол-линеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов.
Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.
Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей, поскольку все недиагональные элементы были бы равны нулю. Так, для включающего три объясняющих переменных уравнения
матрица коэффициентов корреляции между факторами имела бы определитель, равный 1:
так как
Если же наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны 1, то определитель такой матрицы равен 0:
Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.
Проверка мультиколлинеарности факторов может быть проведена методом испытания гипотезы о независимости переменных
Доказано, что величина
имеет приближенное распределение
степенями свободы. Если фактическое значение превосходит табличное (критическое) то гипотеза отклоняется. Это означает, что , недиагональные ненулевые коэффициенты корреляции указывают на коллинеарность факторов. Мультиколлинеарность считается доказанной.
Для применения МНК требуется, чтобы дисперсия остатков была гомоскедастичной. Это значит, что для каждого значения фактора остатки имеют одинаковую дисперсию. Если это условие не соблюдается, то имеет место гетероскедастичность.
При нарушении гомоскедастичности мы имеем неравенства
При малом объеме выборки для оценки гетероскедастичности может использоваться метод Гольдфельда Кнандта. Основная идея теста Гольдфельда — Квандта состоит в следующем:
1) упорядочение и наблюдений по мере возрастания переменной ;
2) исключение из рассмотрения центральных наблюдений; при этом , где — число оцениваемых параметров;
3) разделение совокупности из наблюдений на две группы (соответственно с малыми и с большими значениями фактора ) и определение по каждой из групп ураннсний регрессии;
4) определение остаточной суммы киндратов для первой и второй групп и нахождение их отношения:
При выполнении нулевой гипотезы о гомоскедастичности отношение будет удовлетворять -критерию со степенями свободы для каждой остаточной суммы квадратов. Чем больше величина превышает табличное значение -критерия, тем более нарушена предпосылка о равенстве дисперсий остаточных величин.
Уравнения множественной регрессии могут включать в качестве независимых переменных качественные признаки (например, профессия, пол, образование, климатические условия, отдельные регионы и т.д.). Чтобы ввести такие переменные в регрессионную модель, их необходимо упорядочить и присвоить им те или иные значения, т.е. качественные переменные преобразовать в количественные.
Такого вида сконструированные переменные принято в эконометрике называть фиктивными переменными. Например, включать в модель фактор «пол» в виде фиктивной переменной можно в следующем виде:
Коэффициент регрессии при фиктивной переменной интерпретируется как среднее изменение зависимой переменной при переходе от одной категории (женский пол) к другой (мужской пол) при неизменных значениях остальных параметров. На основе -критерия Стьюдента делается вывод о значимости влияния фиктивной переменной, существенности расхождения между категориями.
Пример задачи №5
По 30 территориям России имеются данные, представленные в табл. 2.1.
Требуется:
- Построить уравнение множественной регрессии в стандартизованной и естественной форме; рассчитать частные коэффициенты эластичности, сравнить их с и пояснить различия между ними.
- Рассчитать линейные коэффициенты частной корреляции и коэффициент множественной корреляции, сравнить их с линейными коэффициентами парной корреляции, пояснить различия между ними.
- Рассчитать общий и частные -критерии Фишера.
Решение:
Линейное уравнение множественной регрессии от и имеет вид:
Для расчета его параметров применим метод стандартизации переменных и построим искомое уравнение в стандартизованном масштабе:
Расчет -коэффициентов выполним по формулам
Получим уравнение
Для построения уравнения в естественной форме рассчитаем и , используя формулы для перехода от к ;
Значение а определим из соотношения
Для характеристики относительной силы влияния и на рассчитаем средние коэффициенты эластичности:
С увеличением средней заработной платы на 1% от ее среднего уровня средний душевой доход у возрастает на 1,02% от своего среднего уровня; при повышении среднего возраста безработного на 1% среднедушевой доход у снижается на 0,87% от своего среднего уровня. Очевидно, что сила влияния средней заработной платы на средний душевой доход у оказалась большей, чем сила влияния среднего возраста безработного . К аналогичным выводам о силе связи приходим при сравнении модулей значений и :
Различия в силе влияния фактора на результат, полученные при сравнении и объясняются тем, что коэффициент эластичности исходит из соотношения средних:
-коэффициент — из соотношения средних квадратических отклонений:
- Линейные коэффициенты частной корреляции здесь рассчитываются по рекуррентной формуле:
Если сравнить значения коэффициентов парной и частной корреляции, то приходим к выводу, что из-за слабой межфакторной связи коэффициенты парной и частной корреляции отличаются незначительно: выводы о тесноте и направлении связи на основе коэффициентов парной и частной корреляции совпадают:
Расчет линейного коэффициента множественной корреляции выполним с использованием коэффициентов и :
Зависимость от и характеризуется как тесная, в которой 72% вариации среднего душевого дохода определяются вариацией учтенных в модели факторов: средней заработной платы и среднего возраста безработного. Прочие факторы, не включенные в модель, составляют соответственно 28% от общей вариации .
Сравнивая приходим к выводу о необходимости отклонить гипотезу , так как
С вероятностью делаем заключение о статистической значимости уравнения в целом и показателя тесноты связи которые сформировались под неслучайным воздействием факторов и .
Частные -критерии — и оценивают статистическую значимость присутствия факторов и в уравнении множественной регрессии, оценивают целесообразность включения в уравнение одного фактора после другого фактора, т.е. оценивает целесообразность включения в уравнение фактора после того, как в него был включен фактор . Соответственно указывает на целесообразность включения в модель фактора после фактора :
Сравнивая приходим к выводу о целесообразности включения в модель фактора после’ фактора , так как
Гипотезу о несущественности прироста за счет включения дополнительного фактора отклоняем и приходим к выводу о статистически подтвержденной целесообразности включения фактора после фактора .
Целесообразность включения в модель фактора после фактора проверяет :
Низкое значение (немногим больше 1) свидетельствует о статистической незначимости прироста за счет включения в модель фактора после фактора . Следовательно, подтверждается нулевая гипотеза нецелесообразности включения в модель фактора (средний возраст безработного). Это означает, что парная регрессионная модель зависимости среднего дохода от средней заработной платы является достаточно статистически значимой, надежной и что нет необходимости улучшать ее, включая дополнительный фактор (средний возраст безработного).
Пример задачи №6
По 20 территориям России изучаются следующие данные (табл. 2.2): зависимость среднегодового душевого дохода у (тыс. руб.) от доли занятых тяжелым физическим трудом в общей численности занятых (%) и от доли экономически активного населения в численности всего населения (%).
Требуется:
- Составить таблицу дисперсионного анализа для проверки при уровне значимости статистической значимости уравнения множественной регрессии и его показателя тесноты связи.
- С помощью частных -критериев Фишера оценить, насколько целесообразно включение в уравнение множественной регрессии фактора после фактора и насколько целесообразно включение после .
- Оценить с помощью -критерия Стыодента статистическую значимость коэффициентов при переменных и множественного уравнения регрессии.
Решение:
- Задача дисперсионного анализа состоит в проверке нулевой гипотезы о статистической незначимости уравнения регрессии в целом и показателя тесноты связи.
Анализ выполняется при сравнении фактического и табличного (критического) значений -критерия Фишера
определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
где — число единиц совокупности;
— число факторов в уравнении линейной регрессии; — фактическое значение результативного признака; — расчетное значение результативного признака.
Результаты дисперсионного анализа представлены в табл. 2.3.
Сравнивая приходим к выводу о необходимости отклонить гипотезу и сделать вывод о статистической значимости уравнения регрессии в целом и значения , так как они статистически надежны и сформировались под систематическим действием неслучайных причин. Вероятность того, что допускаются ошибки при отклонении нулевой гипотезы, не превышает 5%, и это является достаточно малой величиной.
Возможно эта страница вам будет полезна:
Результаты дисперсионного анализа представлены в табл. 2.4.
Включение фактора после фактора оказалось статистически значимым и оправданным: прирост факторной дисперсии (в расчете на одну степень свободы) оказался существенным, т.е. следствием дополнительного включения в модель систематически действующего фактора так как
Аналогично проверим целесообразность включения в модель дополнительного фактора после включенного ранее фактора . Расчет выполним с использованием показателей тесноты связи
В силу того что
приходим к выводу, что включение после оказалось бесполезным: прирост факторной дисперсии в расчете на одну степень свободы был несуществен, статистически незначим, т.е. влияние не является устойчивым, систематическим. Вполне возможно было ограничиться построением линейного уравнения парной регрессии у от .
Табличные (критические) значения -критерия Стьюдента зависят от принятого уровня значимости (обычно это 0,1; 0,05 или 0,01) и от числа степеней свободы , где — число единиц совокупности, — число факторов в уравнении.
В нашем примере при
Сравнивая , приходим к выводу, что так как коэффициент регрессии является статистически значимым, надежным, на него можно опираться в анализе и в прогнозе. Так как
приходим к заключению, что величина является статистически незначимой, ненадежной в силу того, что она формируется преимущественно под воздействием случайных факторов. Еще раз подтверждается статистическая значимость влияния (доли занятых тяжелым физическим трудом) на у (среднедушевой доход) и ненадежность, незначимость влияния (доли экономически активного населения в численности всего населения).
Возможно эта страница вам будет полезна:
Пример задачи №7
Зависимость спроса на свинину от цены на нее и от цены на говядину представлена уравнением
Требуется:
- Представить данное уравнение в естественной форме (не в логарифмах).
- Оценить значимость параметров данного уравнения, если известно, что -критерий для параметра при составил 0,827, а для параметра при — 1,015.
Решение:
- Представленное степенное уравнение множественной регрессии приводим к естественной форме путём потенцирования обеих частей уравнения:
Значения коэффициентов регрессии и в степенной функции равны коэффициентам эластичности результата от и .
Спрос на свинину сильнее связан с ценой на говядину — он увеличивается в среднем на 2,83% при росте цен на 1%. С ценой на свинину спрос на нее связан обратной зависимостью: с ростом цен на 1% потребление снижается в среднем на 0,21%.
- Это весьма небольшие значения -критерия, которые свидетельствуют о случайной природе взаимосвязи, о статистической ненадежности всего уравнения, поэтому применять полученное уравнение для прогноза не рекомендуется.
Возможно эта страница вам будет полезна:
Пример задачи №8
По 20 предприятиям региона (табл. 2.5) изучается зависимость выработки продукции на одного работника у (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%).
Требуется:
- Оценить показатели вариации каждого признака и сделать вывод о возможностях применения МНК для их изучения.
- Проанализировать линейные коэффициенты парной и частной корреляции.
- Написать уравнение множественной регрессии, оценить значимость его параметров, пояснить их экономический смысл.
- С помощью -критерия Фишера оценить статистическую надежность уравнения регрессии и . Сравнить значения скорректированного и нескорректированного линейных коэффициентов множественной детерминации.
- С помощью частных -критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора после и фактора после .
- Рассчитать средние частные коэффициенты эластичности и дать на их основе сравнительную оценку силы влияния факторов на результат.
Возможно эта страница вам будет полезна:
Реализация типовых задач в Excel
- Решение примера проведем с использованием ППП MS Excel и Statgraphics.
Решение с помощью ППП Excel
Сводную таблицу основных статистических характеристик для одного или нескольких массивов данных можно получить с помощью инструмента анализа данных Описательная статистика. Для этого выполните следующие шаги:
1) введите исходные данные или откройте существующий файл, содержащий анализируемые данные;
2) в главном меню выберите последовательно пункты Сервис / Анализ данных / Описательная статистика, после чего щелкните по кнопке ОК;
3) заполните диалоговое окно ввода данных и параметров вывода (рис. 2.1):
Входной интервал — диапазон, содержащий анализируемые данные, это может быть одна или несколько строк (столбцов); Группирование — по столбцам или по строкам — необходимо указать дополнительно;
Метки — флажок, который указывает, содержит ли первая строка названия столбцов или нет;
Выходной интервал — достаточно указать левую верхнюю ячейку будущего диапазона;
Новый рабочий лист — можно задать произвольное имя нового листа.
Если необходимо получить дополнительную информацию Итоговой статистики, Уровня надежности, k-го наибольшего и наименьшего значений, установите соответствующие флажки в диалоговом окне. Щелкните по кнопке ОК.
Результаты вычисления соответствующих показателей для каждого признака представлены на рис. 2.2.
Решение с помощью ППП Statgraphics
Для проведения многофакторного анализа в ППП Statgraphics используется пункт меню Multiple Variable Analysis. Для получения показателей описательной статистики необходимо проделать следующие операции:
1) ввести исходные данные или открыть существующий файл, содержащий анализируемые данные;
2) в главном меню выбрать Describe/Numeric Data/Multiple Variable Analysis;
3) заполнить диалоговое окно ввода данных (рис. 2.3). Ввести названия всех столбцов, значения которых вы хотите включить в анализ; щелкнуть по кнопке ОК;
4) в окне табличных настроек поставить флажок напротив Summary Statistics (рис. 2.4). Итоговая статистика — показатели вариации -появится в отдельном окне.
Для данных примера 4 результат применения функции Multiple Variable Analysis представлен на рис. 2.5.
Сравнивая значения средних квадратических отклонений и средних величин и определяя коэффициенты вариации:
приходим к выводу о повышенном уровне варьирования признаков, хотя и в допустимых пределах, не превышающих 35%. Совокупность предприятий однородна, и для ее изучения могут использоваться метод наименьших квадратов и вероятностные методы оценки статистических гипотез.
- Значения линейных коэффициентов парной корреляции определяют тесноту попарно связанных переменных, использованных в данном уравнении множественной регрессии. Линейные коэффициенты частной корреляции оценивают тесноту связи значений двух переменных, исключая влияние всех других переменных, представленных в уравнении множественной регрессии.
Решение с помощью ППП Excel
К сожалению, в ППП MS Excel нет специального инструмента для расчета линейных коэффициентов частной корреляции. Матрицу парных коэффициентов корреляции переменных можно рассчитать, используя инструмент анализа данных Корреляция. Для этого:
1) в главном меню последовательно выберите пункты Сервис / Анализ данных / Корреляция. Щелкните по кнопке ОК;
2) заполните диалоговое окно ввода данных и параметров вывода (см. рис. 2.1);
3) результаты вычислений — матрица коэффициентов парной корреляции — представлены на рис. 2.6.
Решение с помощью ППП Stat graphics
При проведении многофакторного анализа — Multiple Variable Analysis — вычисляются линейные коэффициенты парной корреляции и линейные коэффициенты частной корреляции. Последовательность операций описана в п.1 этого примера. Для отображения результатов вычисления на экране необходимо установить флажки напротив Correlations и Partial Correlations в окне табличных настроек (рис. 2.7).
В результате получим матрицы коэффициентов парной и частной корреляции (рис. 2.8).
Значения коэффициентов парной корреляции указывают на весьма тесную связь выработки у как с коэффициентом обновления основных фондов — , так и с долей рабочих высокой квалификации
Но в то же время межфакторная связь весьма тесная и превышает тесноту связи с . В связи с этим для улучшения данной модели можно исключить из нее фактор как малоинформативный, недостаточно статистически надежный.
Коэффициенты частной корреляции дают более точную характеристику тесноты связи двух признаков, чем коэффициенты парной корреляции, так как очищают парную зависимость от взаимодействия данной пары признаков с другими признаками, представленными в модели. Наиболее тесно связаны и :
связь и гораздо слабее:
а межфакторная зависимость и выше, чем парная и :
Все это приводит к выводу о необходимости исключить фактор — доля высококвалифицированных рабочих — из правой части уравнения множественной регрессии.
Если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи:
Именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи.
- Вычисление параметров линейного уравнения множественной регрессии.
Решение с помощью ППП Excel
Эта операция проводится с помощью инструмента анализа данных Регрессия. Она аналогична расчету параметров парной линейной регрессии, описанной в 1-м разделе практикума, только в отличие от парной регрессии в диалоговом окне при заполнении параметра входной интервал и следует указать не один столбец, а все столбцы, содержащие значения факторных признаков. Результаты анализа представлены на рис. 2.9.
Для вычисления параметров множестнсшшП регрессии можно использовать процедуру Multiple Regression. Дни »нно:
1) введите исходные данные или откройте сущее i иун>щи11 файл;
2) в главном меню последовательно выберите Heinle / Multiple Regression;
3) заполните диалоговое окно ввода данных. II ноне Depended Variable введите название столбца, содержащею шичпш» зависимой переменной, в поле Independed Variable — нашими* i ишбцов, содержащих значения факторов. Щелкните по кнопке ОК
Результаты вычисления функции Multiple КсЦ1 гм1«ш появятся в отдельном окне (рис. 2.10).
По результатам вычислений составим урцниемн* множественной регрессии вида
Значения случайных ошибок параметров с учетом округления:
Они показывают, какое значение данной характеристики сформировалось под влиянием случайных факторов. Эти значения используются для расчета -критерия С п.юдснта:
Если значения -критерия больше 2-3, можно сделать вывод о существенности данного параметра, который формируется под воздействием неслучайных причин. Здесь статистически значимыми являются и , а величина сформировалась под воздействием случайных причин, поэтому фактор силу влияния которого оценивает , можно исключить как несущественно влияющий, неинформативный.
На это же указывает показатель вероятности случайных значений параметров регрессии: если а меньше принятого нами уровня (обычно 0,1; 0,05 или 0,01; это соответствует 10%; 5% или 1% вероятности), делают вывод о неслучайной природе данного значения параметра, т.е. о том, что он статистически значим и надежен. В противном случае принимается гипотеза о случайной природе значения коэффициентов уравнения. Здесь
что позволяет рассматривать как неинформативный фактор и удалить его для улучшения данного уравнения.
Величина оценивает агрегированное влияние прочих (кроме учтенных в модели факторов и ) факторов на результату.
Величины и указывают, что с увеличением и на единицу их значений результат увеличивается соответственно на 0,9459 и на 0,0856 млн руб. Сравнивать эти значения не следует, так как они зависят от единиц измерения каждого признака и потому несопоставимы между собой.
Оценку надежности уравнения регрессии в целом и показателя тесноты связи дает -критерий Фишера:
По данным таблиц дисперсионного анализа, представленным на рис. 2.9 и 2.10, . Вероятность случайно получить такое значение -критерия составляет 0,0000, что не превышает допустимый уровень значимости 5%; об этом свидетельствует величина — значения из этих же таблиц. Следовательно, полученное значение не случайно, оно сформировалось под алюминием существенных факторов, т.е. подтверждается статистически значимость всего уравнения и показателя тесноты связи .
Значения скорректированного и нескорремирпианпого линейных коэффициентов множественной детерминации приведены на рис. 2.9 и 2.10 в рамках регрессионной статистики.
Нескорректированный коэффициент множественной детерминации
оценивает долю вариации результата за счет представленных в уравнении фактором в общей вариации результата. Здесь эта доля составляет 94,7% и указывает на весьма высокую степень обусловленности вариации вариацией факторов, иными словами — на весьма теси> i факторов с результатом.
Скорректированный коэффициент множественной детерминации
определяет тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов и потому может сравниваться по разным моделям с разным что ном факторов. Оба коэффициента указывают на весьма высокую (Ооиес 90%) детерминированность результата в модели факторами.
1) введите исходные данные или откройте существующий файл;
2) в главном меню последовательно выберите пункты Relate / Multiple Regression;
3) заполните диалоговое окно ввода данных. В поле Depended Variable введите название столбца, содержащего значения зависимой переменной, в поле Independed Variable — названия столбцов, содержащих значения факторов, в том порядке, в котором будет проводиться анализ целесообразности включения факторов в модель. Чтобы оценить статистическую значимость включения в модель фактора после фактора , сначала введите фактор затем . Для оценки обратного порядка включения факторов в модель после введите , затем . Щелкните по кнопке ОК;
4) в окне табличных настроек поставьте флажок напротив поля Conditional Sums of Squares.
Результаты вычисления показаны на рис. 2.11.
Частный -критерий — показывает статистическую значимость включения фактора в модель после того, как в нее включен фактор .
= 2 . Вероятность случайной природы его значения (-значение = 0,1750) составляет 17,5% против принятого уровня значимости (5%). Следовательно, включение в модель фактора — доля высококвалифицированных рабочих — после того, как в уравнение включен фактор — коэффициент обновления основных фондов — статистически нецелесообразно: прирост факторной дисперсии за счет дополнительного признака оказывается незначимым, несущественным; фактор включать в уравнение после фактора не следует.
Если поменять первоначальный порядок включения факторов в модель и рассмотреть вариант включения после , то результат расчета частного -критерия для будет иным.
Вероятность его случайного формирования составила 0,04%, это значительно меньше принятого стандарта (5%). Следовательно, значение частного -критерия для дополнительно включенного фактора не случайно, является статистически значимым, надежным, достоверным: прирост факторной дисперсии за счет дополнительного фактора является существенным. Фактор должен присутствовать в уравнении, в том числе в варианте, когда он дополнительно включается после фактора .
Общий вывод состоит в том, что множественная модель с факторами и с
содержит неинформативный фактор . Если исключить фактор , то можно (ограничиться уравнением парной регрессии:
более простым, хорошо детерминированным, ириголным для анализа и для прогноза.
- Средние частные коэффициенты эластичности показывают, на сколько процентов от значения своей средней изменяется результат при изменении фактора на 1% от своей средней и
при фиксированном воздействии на у всех прочих факторов, включенных в уравнение регрессии. Для линейной зависимости
где — коэффициент регрессии при в уравнении множественной регрессии. Здесь
По значениям частных коэффициентов эластичности можно сделать вывод о более сильном влиянии на результат у признака фактора , чем признака фактора :0,6% против 0,2%.
Возможно эта страница вам будет полезна:
Система эконометрических уравнений
Сложные экономические процессы описывают с помощью системы взаимосвязанных (одновременных) уравнений.
Различают несколько видов систем уравнений: • система независимых уравнений — когда каждая зависимая переменная рассматривается как функция одного и того же набора факторов :
Для решения этой системы и нахождения ее параметров используется метод наименьших квадратов;
• система рекурсивных уравнений — когда зависимая переменная одного уравнения выступает в виде фактора в другом уравнении:
Для решения этой системы и нахождения ее параметров используется метод наименьших квадратов;
• система взаимосвязанных (совместных) уравнений — когда одни и те же зависимые переменные в одних уравнениях входят в левую часть, а в других — в правую:
Такая система уравнений называется структурной формой модели.
Эндогенные переменные — взаимозависимые переменные, которые определяются внутри модели (системы) .
Экзогенные переменные — независимые переменные, которые определяются вне системы .
Предопределенные переменные — экзогенные и лаговые (за предыдущие моменты времени) эндогенные переменные системы.
Коэффициенты и при переменных — структурные коэффициенты модели.
Система линейных функций эндогенных переменных от всех предопределенных переменных системы — приведенная форма модели.
где — коэффициенты приведенной формы модели.
Необходимое условие идентификации — выполнение счетного правила:
— уравнение идентифицируемо;
— уравнение неидентифицируемо;
— уравнение сверхидентифицируемо,
где — число эндогенных переменных в уравнении,
— число предопределенных переменных, отсутствующих в уравнении, но присутствующих в системе.
Достаточное условие идентификации — определитель матрицы, составленной из коэффициентов при переменных, отсутствующих в исследуемом уравнении, не равен нулю, и ранг этой матрицы не менее числа эндогенных переменных системы без единицы.
Для решения идентифицируемого уравнения применяется косвенный метод наименьших квадратов, для решения сверхидентифицированных — двухшаговый метод наименьших квадратов.
Косвенный МНК состоит в следующем:
• составляют приведенную форму модели и определяют численные значения параметров каждого ее уравнения обычным МНК;
• путем алгебраических преобразований переходят от приведенной формы к уравнениям структурной формы модели, получая тем самым численные оценки структурных параметров.
Двухшаговый МНК заключается в следующем:
• составляют приведенную форму модели и определяют численные значения параметров каждого ее уравнения обычным МНК;
• выявляют эндогенные переменные, находящиеся в правой части структурного уравнения, параметры которого определяют двухша-говым МНК, и находят расчетные значения по соответствующим уравнениям приведенной формы модели;
• обычным МНК определяют параметры структурного уравнения, используя в качестве исходных данных фактические значения предопределенных переменных и расчетные значения эндогенных переменных, стоящих в правой части данного структурного уравнения.
Пример задачи №9
Требуется:
- Оценить следующую структурную модель на идентификацию:
- Исходя из приведенной формы модели уравнений
найти структурные коэффициенты модели.
Решение:
Проверим каждое уравнение системы на необходимое (Н) и достаточное (Д) условия идентификации.
Первое уравнение. Н: эндогенных переменных — , отсутствующих экзогенных — . Выполняется необходимое равенство: 2 = 1 + 1, следовательно, уравнение точно идентифицируемо.
Д: в первом уравнений отсутствуют и . Построим матрицу из коэффициентов при них в других уравнениях системы:
Определитель матрицы не равен 0, ранг матрицы равен 2; следовательно, выполняется достаточное условие идентификации, и первое уравнение точно идентифицируемо.
Второе уравнение.
Н: эндогенных переменных — , отсутствующих экзогенных —
Выполняется необходимое равенство: 3 = 2+ 1, следовательно, уравнение точно идентифицируемо.
Д: во втором уравнении отсутствуют и . Построим матрицу из коэффициентов при них в других уравнениях системы:
Определитель матрицы не равен 0, ранг матрицы равен 2, следовательно, выполняется достаточное условие идентификации, и второе уравнение точно идентифицируемо.
Третье уравнение.
Н: эндогенных переменных — , отсутствующих экзогенных — .
Выполняется необходимое равенство: 2=1 + 1, следовательно, уравнение точно идентифицируемо.
Д: в третьем уравнении отсутствуют и . Построим матрицу из коэффициентов при них в других уравнениях системы:
Определитель матрицы не равен 0, ранг матрицы равен 2, следовательно, выполняется достаточное условие идентификации, и третье уравнение точно идентифицируемо.
Следовательно, исследуемая система точно идентифицируема и может быть решена косвенным методом наименьших квадратов.
- Вычислим структурные коэффициенты модели:
1)из третьего уравнения приведенной формы выразим (так как его нет в первом уравнении структурной формы):
Данное выражение содержит переменные которые нужны для первого уравнения структурной формы модели (СФМ). Подставим полученное выражение в первое уравнение приведенной формы модели (ПФМ):
2) во втором уравнении СФМ нет переменных и . Структурные параметры второго уравнения СФМ можно будет определить в два этапа:
Первый этап: выразим в данном случае из первого или третьего уравнения ПФМ. Например, из первого уравнения:
Подстановка данного выражения во второе уравнение ПФМ не решило бы задачу до конца, так как в выражении присутствует , которого нет в СФМ.
Выразим из третьего уравнения ПФМ:
Подставим его в выражение :
Второй этап: аналогично, чтобы выразить через искомые и и , заменим в выражении значение на полученное из первого уравнения ПФМ:
Следовательно,
Подставим полученные и во второе уравнение ПФМ:
Это уравнение можно получить из ПФМ иным путем. Суммируя все уравнения, получим
Далее из первого и второго уравнений ПФМ исключим домножив первое уравнение на 3, а второе — на (-2) и просуммировав их:
Затем аналогичным путем из полученных уравнений исключаем , а именно:
3) из второго уравнения ПФМ выразим , так как его нет в третьем уравнении СФМ:
Подставим полученное выражение в третье уравнение ПФМ:
Таким образом, СФМ примет вид
Пример задачи №10
Изучается модель вида
где — валовой национальный доход;
— валовой национальный доход предшествующего года;
— личное потребление;
— конечный спрос (помимо личного потребления);
— случайные составляющие.
Информация за девять лет о приростах всех показателей дана в табл. 3.1*.
Для данной модели была получена система приведенных уравнений:
Требуется:
- Провести идентификацию модели.
- Рассчитать параметры первого уравнения структурной модели.
Решение:
В данной модели две эндогенные переменные ( и ) и две экзогенные переменные ( и ). Второе уравнение точно идентифицировано, так как содержит две эндогенные переменные и не содержит одну экзогенную переменную из системы. Иными словами, для второго уравнения имеем по счетному правилу идентификации равенство: 2=1 + 1.
Первое уравнение сверхидентифицировано, так как в нем на параметры при и наложено ограничение: они должны бьггь равны. В этом уравнении содержится одна эндогенная переменная . Переменная в данном уравнении не рассматривается как эндогенная, так как она участвует в уравнении не самостоятельно, а вместе с переменной . В данном уравнении отсутствует одна экзогенная переменная, имеющаяся в системе. По счетному правилу идентификации получаем: 1 + 1 = 2: + 1 > Н. Это больше, чем число эндогенных переменных в данном уравнении, следовательно, система сверх-идентифицирована.
- Для определения параметров сверхидентифицированной модели используется двухшаговый метод наименьших квадратов.
Шаг 1. На основе системы приведенных уравнений по точно идентифицированному второму уравнению определим теоретические значения эндогенной переменной . Для этого в приведенное уравнение
подставим значения и , имеющиеся в условии задачи. Получим:
Шаг 2. По сверхидентифицированному уравнению структурной формы модели заменяем фактические значения на теоретические и рассчитываем новую переменную + (табл. 3.2).
Далее к сверхидентифицированному уравнению применяется метод наименьших квадратов. Обозначим новую переменную + через . Решаем уравнение
Система нормальных уравнений составит:
Итак, первое уравнение структурной модели будет таким:
Пример задачи №11
Имеются данные за 1990-1994 гг. (табл. 3.3).
Требуется: Построить модель вида
рассчитав соответствующие структурные коэффициенты.
Решение:
Система одновременных уравнений с двумя эндогенными и двумя экзогенными переменными имеет вид
В каждом уравнении две эндогенные и одна отсутствующая экзогенная переменная из имеющихся в системе. Для каждого уравнения данной системы действует счетное правило 2=1 + 1. Это означает, что каждое уравнение и система в целом идентифицированы.
Для определения параметров такой системы применяется косвенный метод наименьших квадратов.
С этой целью структурная форма модели преобразуется в приведенную форму:
в которой коэффициенты при определяются методом наименьших квадратов.
Для нахождения значений и запишем систему нормальных уравнений:
При ее решении предполагается, что и выражены через отклонения от средних уровней, т. е. матрица исходных данных составит:
Применительно к ней необходимые суммы оказываются следующими:
Система нормальных уравнений составит:
Решая ее, получим:
Итак, имеем
Аналогично строим систему нормальных уравнений для определения коэффициентов и :
Следовательно,
тогда второе уравнение примет вид
Приведенная форма модели имеет вид
Из приведенной формы модели определяем коэффициенты структурной модели:
Итак, структурная форма модели имеет вид
Пример задачи №12
Рассматривается следующая модель:
где
Требуется:
- В предположении, что имеются временные ряды данных по всем переменным модели, предложите способ оценки ее параметров.
- Как изменится ваш ответ на вопрос п. 1, если из модели исключить тождество дохода?
Решение:
- Модель представляет собой систему одновременных уравнений. Для ответа на вопрос о способе оценки параметров модели проверим каждое ее уравнение на идентификацию.
Модель включает четыре эндогенные переменные и четыре предопределенные переменные (две экзогенные переменные — и и две лаговые эндогенные переменные — и ).
Проверим необходимое условие идентификации для уравнений модели уравнение.
Это уравнение включает две эндогенные переменные и одну предопределенную переменную . Следовательно, число предопределенных переменных, не входящих в это уравнение, плюс 1, больше числа эндогенных переменных, входящих в уравнение: 3 + 1 > 2. Уравнение сверх идентифицировано.
II уравнение.
Уравнение II включает две эндогенные переменные, и не включает три предопределенные переменные. Как и I уравнение, оно сверхидентифицировано.
III уравнение.
Уравнение III тоже включает две эндогенные переменные и не включает три предопределенные переменные. Это уравнение сверхидентифицировано.
IV уравнение.
Уравнение IV представляет собой тождество, параметры которого известны. Необходимости в его идентификации нет.
Проверим для каждого из уравнений достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели:
В соответствии с достаточным условием идентификации определитель матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, не должен быть равен нулю, а ранг матрицы должен быть равен числу эндогенных переменных модели минус 1, т.е. 4-1=3.
I уравнение.
Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
Ее ранг равен 3, так как определитель квадратной подматрицы 3×3 этой матрицы не равен нулю:
Достаточное условие идентификации для I уравнения выполняется.
II уравнение.
Выпишем матрицу коэффициентов при переменных, не входящих в уравнение:
Ее ранг равен трем, так как определитель квадратной подматрицы 3 х 3 этой матрицы не равен нулю:
Достаточное условие идентификации для II уравнения выполняется.
Ill уравнение.
Выпишем матрицу коэффициентов при переменных, не входящих в уравнение:
Ее ранг равен трем, так как определитель квадратной подматрицы 3 х 3 этой матрицы не равен нулю:
Достаточное условие идентификации для III уравнения выполняется.
Таким образом, все уравнения модели сверхидентифицированы. Для оценки параметров каждого из уравнений будем применять двухшаговый МНК.
Шаг 1. Запишем приведенную форму модели в общем виде:
где — случайные ошибки.
Определим параметры каждого из приведенных выше уравнений в отдельности обычным МНК. Затем найдем расчетные значения
эндогенных переменных , используемых в правой части структурной модели, подставляя в каждое уравнение приведенной формы соответствующее значение предопределенных переменных.
Шаг 2. В исходных структурных уравнениях заменим эндогенные переменные, выступающие в качестве факторных признаков, их расчетными значениями:
Применяя к каждому из полученных уравнений в отдельности обычный МНК, определим структурные параметры
Если из модели исключить тождество дохода, число предопределенных переменных модели уменьшится на 1 (из модели будет исключена переменная ). Число эндогенных переменных модели также снизится на единицу — переменная станет экзогенной. В правых частях функции потребления и функции денежного рынка будут находиться только предопределенные переменные. Функция инвестиций постулирует зависимость эндогенной переменной от эндогенной переменной (которая зависит только от предопределенных переменных) и предопределенной переменной . Таким образом, мы получим рекурсивную систему. Ее параметры можно оценивать обычным МНК, и нет необходимости исследования системы уравнения на идентификацию.
Временные ряды в эконометрических исследованиях
Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов.
Временной ряд — это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.
Каждый уровень временного ряда формируется из трендовой , циклической и случайной компонент.
Модели, в которых временной ряд представлен как сумма перечисленных компонент, — аддитивные модели, как произведение -мультипликативные модели временного ряда. Аддитивная модель имеет вид:
мультипликативная модель:
Построение аддитивной и мультипликативной моделей сводится к расчету значений для каждого уровня ряда. Построение модели включает следующие шаги:
1) выравнивание исходного ряда методом скользящей средней;
2) расчет значений сезонной компоненты ;
3) устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной или в мультипликативной модели;
4) аналитическое выравнивание уровней или и расчет значений Т с использованием полученного уравнения тренда;
5) расчет полученных по модели значений или ;
6) расчет абсолютных и/или относительных ошибок.
Автокорреляция уровней ряда — это корреляционная зависимость между последовательными уровнями временного ряда:
где
коэффициент автокорреляции уровней ряда первого порядка;
где
коэффициент автокорреляции уровней ряда второго порядка.
Формулы для расчета коэффициентов автокорреляции старших порядков легко получить из формулы линейного коэффициента корреляции.
Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда, а график зависимости ее значений от величины лага (порядка коэффициента автокорреляции) — коррело-граммой.
Построение аналитической функции для моделирования тенденции (тренда) временного ряда называют аналитическим выравниванием временного ряда. Для этого чаще всего применяются следующие функции:
• линейная
• гипербола
• экспонента
• степенная функция
• парабола второго и более высоких порядков
Параметры трендов определяются обычным МНК, в качестве независимой переменной выступает время , а в качестве зависимой переменной — фактические уровни временного ряда . Критерием отбора наилучшей формы тренда является наибольшее значение скорректированного коэффициента детерминации .
При построении моделей регрессии по временным рядам для устранения тенденции используются следующие методы.
Метод отклонений от тренда предполагает вычисление трендовых значений для каждого временного ряда модели, например и расчет отклонений от трендов:
Для дальнейшего анализа используют не исходные данные, а отклонения от тренда.
Метод последовательных разностей заключается в следующем: если ряд содержит линейный тренд, тогда исходные данные заменяются первыми разностями:
если параболический тренд — вторыми разностями:
В случае экспоненциального и степенного тренда метод последовательных разностей применяется к логарифмам исходных данных.
Модель, включающая фактор времени, имеет вид
Параметры а и b этой модели определяются обычным МНК.
Автокорреляция в остатках — корреляционная зависимость между значениями остатков за текущий и предыдущие моменты времени.
Для определения автокорреляции остатков используют критерий Дарвина — Уотсона и расчет величины:
Коэффициент автокорреляции остатков первого порядка определяется по формуле
Критерий Дарбина — Уотсона и коэффициент автокорреляции остатков первого порядка связаны соотношением
Эконометрические модели, содержащие не только текущие, но и лаговые значения факторных переменных, называются моделями с распределенным лагом.
Модель с распределенным лагом в предположении, что максимальная величина лага конечна, имеет вид
Коэффициент регрессии при переменной характеризует среднее абсолютное изменение при изменении на 1 ед. своего измерения в некоторый фиксированный момент времени , без учета воздействия лаговых значений фактора . Этот коэффициент называют краткосрочным мультипликатором.
В момент воздействие факторной переменной на результат составит условных единиц; в момент времени воздействие можно охарактеризовать суммой и т.д. Эти суммы называют промежуточными мультипликаторами. Для максимального лага воздействие фактора на результат описывается суммой которая называется долгосрочным мультипликатором.
Величины
называются относительными коэффициентами модели с распределенным лагом. Если все коэффициенты имеют одинаковые знаки, то для любого
Величина среднего лага модели множественной регрессии определяется по формуле средней арифметической взвешенной:
и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора в момент .
Медианный лаг — это период, в течение которого с момента времени будет реализована половина общего воздействия фактора на результат:
где — медианный лаг.
Оценку параметров моделей с распределенными лагами можно проводить согласно одному из двух методов: методу Койка или методу Алмон.
В распределении Койка делается предположение, что коэффициенты при лаговых значениях объясняющей переменной убывают в геометрической прогрессии:
Уравнение регрессии преобразуется к виду
После несложных преобразований получаем уравнение, оценки параметров которого приводят к оценкам параметров исходного уравнения.
В методе Алмон предполагается, что веса текущих и лаговых значений объясняющих переменных подчиняются полиномиальному распределению:
Уравнение регрессии примет вид
Расчет параметров модели с распределенным лагом методом Алмон проводится по следующей схеме:
1) устанавливается максимальная величина лага ;
2) определяется степень полинома , описывающего структуру лага;
3) рассчитываются значения переменных ;
4) определяются параметры уравнения линейной регрессии от ;
5) рассчитываются параметры исходной модели с распределенным лагом.
Модели, содержащие в качестве факторов лаговые значения зависимой переменной, называются моделями авторегрессии, например:
Как и в модели с распределенным лагом, в этой модели характеризует краткосрочное изменение под воздействием изменения на 1 ед. Долгосрочный мультипликатор в модели авторегрессии рассчитывается как сумма краткосрочного и промежуточных мультипликаторов:
Отметим, что такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основаны на предпосылке о наличии бесконечного лага в воздействии текущего значения зависимой переменной на ее будущие значения.
Пример задачи №13
По данным за 18 месяцев построено уравнение регрессии зависимости прибыли предприятия (млн руб.) от цен на сырье (тыс. руб. за 1 т) и производительности труда (ед. продукции на 1 работника):
При анализе остаточных величин были использованы значения, приведенные в табл. 4.1.
Требуется:
- По трем позициям рассчитать
- Рассчитать критерий Дарбина — Уотсона.
- Оценить полученный результат при 5%-ном уровне значимости.
- Указать, пригодно ли уравнение для прогноза.
Решение:
- определяется путем подстановки фактических значений и в уравнение регрессии:
Остатки рассчитываются по формуле
Следовательно,
— те же значения, что и , но со сдвигом на один месяц. Результаты вычислений оформим в виде табл. 4.2.
- Критерий Дарбина — Уотсона рассчитывается по формуле
4-4 = 4-3,81 =0,19,
что значительно меньше, чем . Это означает наличие в остатках автокорреляции.
- Уравнение регрессии не может быть использовано для прогноза, так как в нем не устранена автокорреляция в остатках, которая может иметь разные причины. Автокорреляция в остатках может означать, что в уравнение не включен какой-либо существенный фактор. Возможно также, что форма связи неточна, а может быть, в рядах динамики имеется общая тенденция.
Пример задачи №14
Имеются следующие данные о величине дохода на одного члена семьи и расхода на товар (табл. 4.3).
Требуется:
- Определить ежегодные абсолютные приросты доходов и расходов и сделать выводы о тенденции развития каждого ряда.
- Перечислить основные пути устранения тенденции для построения модели спроса на товар в зависимости от дохода.
- Построить линейную модель спроса, используя первые разности уровней исходных динамических рядов.
- Пояснить экономический смысл коэффициента регрессии.
- Построить линейную модель спроса на товар , включив в нее фактор времен». Интерпретировать полученные параметры.
Решение:
Обозначим расходы на товар через , а доходы одного члена семьи — через . Ежегодные абсолютные приросты определяются по формулам
Расчеты можно оформить в виде таблицы (табл. 4.4).
Значения не имеют четко выраженной тенденции, они варьируют вокруг среднего уровня, что означает наличие в ряде динамики линейного тренда (линейной тенденции). Аналогичный вывод можно сделать и по ряду : абсолютные приросты не имеют систематической направленности, они примерно стабильны, а следовательно, ряд характеризуется линейной тенденцией.
Так как ряды динамики имеют общую тенденцию к росту, то для построения регрессионной модели спроса на товар в зависимости от дохода необходимо устранить тенденцию. С этой целью модель может строиться по первым разностям, т.е. , если ряды динамики характеризуются линейной тенденцией.
Другой возможный путь учета тенденции при построении моделей — найти по каждому ряду уравнение тренда:
и отклонения от него:
Далее модель строится по отклонениям от тренда:
При построении эконометрических моделей чаще используется другой путь учета тенденции — включение в модель фактора времени. Иными словами, модель строится по исходным данным, но в нее в качестве самостоятельного фактора включается время, т.е. .
Модель имеет вид
Для определения параметров и применяется МНК. Система нормальных уравнений следующая:
Применительно к нашим данным имеем
Решая эту систему, получим:
откуда модель имеет вид
Коэффициент регрессии
Он означает, что с ростом прироста душевого дохода на 1%-ный пункт расходы на товар увеличиваются со средним ускорением, равным 0,565 руб.
Модель имеет вид
Применяя МНК, получим систему нормальных уравнений:
Расчеты оформим в виде табл. 4.5.
Система уравнений примет вид
Решая ее, получим
Уравнение регрессии имеет вид
Параметр фиксирует силу связи и . Его величина означает, что с ростом дохода на одного члена семьи на 1%-ный пункт при условии неизменной тенденции расходы на товар А возрастают в среднем на 0,322 руб. Параметр характеризует среднегодовой абсолютный прирост расходов на товар под воздействием прочих факторов при условии неизменного дохода.
Пример задачи №15
По данным за 30 месяцев некоторого временного ряда были получены значения коэффициентов автокорреляции уровней;
Требуется:
- Охарактеризовать структуру этого ряда, используя графическое изображение.
- Для прогнозирования значений в будущие периоды предполагается построить уравнение авторегрессии. Выбрать наилучшее уравнение, обосновать выбор. Указать общий вид этого уравнения.
Решение:
- Так как значения всех коэффициентов автокорреляции достаточно высокие, ряд содержит тенденцию. Поскольку наибольшее абсолютное значение имеет коэффициент автокорреляции 4-го порядка , ряд содержит периодические колебания, цикл этих колебаний равен 4.
Наиболее целесообразно построение уравнения авторегрессии:
так как значение = 0,97 свидетельствует о наличии очень тесной связи между уровнями ряда с лагом в 4 месяца.
Кроме того, возможно построение и множественного уравнения авторегрессии от и , так как = 0,72:
Сравнить полученные уравнения и выбрать наилучшее решение можно с помощью скорректированного коэффициента детерминации.
Пример задачи №16
На основе помесячных данных о числе браков (тыс.) в регионе за последние три года была построена аддитивная модель временного ряда. Скорректированные значения сезонной компоненты за соответствующие месяцы приводятся в табл. 4.6.
Уравнение тренда выглядит следующим образом:
при расчете параметров тренда использовались фактические моменты времени .
Требуется:
- Определить значение сезонной компоненты за декабрь.
- На основе построенной модели дать прогноз общего числа браков, заключенных в течение первого квартала следующего года.
Решение:
- Сумма значений сезонной компоненты внутри одного цикла должна быть равна нулю (в соответствии с методикой построения аддитивной модели временного ряда). Следовательно, значение сезонной компоненты за декабрь составит:
Число браков, заключенных в первом квартале следующего года, есть сумма числа браков, заключенных в январе в феврале и в марте .
Для расчета трендовых значений воспользуемся уравнением тренда, указанным в условии задачи:
Соответствующие значения сезонных компонент составят:
Таким образом,
Количество браков, заключенных в первом квартале следующего года, составит: 2,61 + 5,64 + 3,17 = 11,42 тыс., или 11420.
Пример задачи №17
Динамика выпуска продукции Финляндии характеризуется данными (млн долл.), представленными в табл. 4.7.
Требуется:
- Провести расчет параметров линейного и экспоненциального трендов.
- Построить графики ряда динамики и трендов.
- Выбрать наилучший вид тренда на основании графического изображения и значения коэффициента детерминации.
Реализация типовых задач в Excel
Решение с использованием ППП MS Excel
- Для определения параметров линейного тренда по методу наименьших квадратов используется статистическая функция ЛИНЕЙН, для определения экспоненциального тренда -ЛГРФПРИБЛ. Порядок вычисления был рассмотрен в 1-м разделе практикума. В качестве зависимой переменной в данном примере выступает время . Приведем результаты вычисления функций ЛИНЕЙН и ЛГРФПРИБЛ (рис. 4.2 и 4.3).
Запишем уравнения линейного и экспоненциального тренда, используя данные рис. 4.2 и 4.3:
- Построение графиков осуществляется с помощью Мастера диаграмм.
Порядок построения следующий:
1) введите исходные данные или откройте существующий файл, содержащий анализируемые данные;
2) активизируйте Мастер диаграмм любым из следующих способов:
а) в главном меню выберите Вставка/Диаграмма;
б) на панели инструментов Стандартная щелкните по кнопке Мастер диаграмм;
3) в окне Тип выберите График (рис. 4.4); вид графика выберите в поле рядом со списком типов. Щелкните по кнопке Далее;
4) заполните диапазон данных, как показано на рис. 4.5. Установите флажок размещения данных в столбцах (строках). Щелкните по кнопке Далее;
5) заполните параметры диаграммы на разных закладках (рис. 4.6): названия диаграммы и осей, значения осей, линии сетки, параметры легенды, таблица и подписи данных. Щелкните по кнопке Далее;
6) укажите место размещения диаграммы на отдельном или на имеющемся листе (рис. 4.7). Щелкните по кнопке Далее. Готовая диаграмма, отражающая динамику уровней изучаемого ряда, представлена на рис. 4.8.
В ППП MS Excel линия тренда может быть добавлена в диаграмму с областями гистограммы или в график. Для этого:
1) выделите область построения диаграммы; в главном меню выберите Диаграмма/Добавить линию тренда;
2) в появившемся диалоговом окне (рис. 4.9) выберите вид линии тренда и задайте соответствующие параметры. Для полиномиального тренда необходимо задать степень аппроксимирующего полинома, для скользящего среднего — количество точек усреднения.
В качестве дополнительной информации на диаграмме можно отобразить уравнение регрессии и значение среднеквадратического отклонения, установив соответствующие флажки на закладке Параметры (рис. 4.10). Щелкните по кнопке ОК.
На рис. 4.11 — 4.15 представлены различные виды трендов, описывающие исходные данные задачи.
Сравним значения по разным уравнениям трендов: полиномиальный 6-й степени — = 0,9728; экспоненциальный — = 0,9647; линейный — = 0,8841; степенной — = 0,8470; логарифмический — = 0,5886.
Исходные данные лучше всего описывает полином 6-й степени. Следовательно, в рассматриваемом примере для расчета прогнозных значений следует использовать полиномиальное уравнение.
Кстати готовые на продажу задачи тут, и там же теория из учебников может быть вам поможет она.
Пример задачи №18
Имеются данные о динамике товарооборота и доходов населения России за 1997 — 1999 гг. (табл. 4.8).
Требуется:
- Оценить параметры модели с распределенными лагами методом Алмон.
- Постройте таблицу результатов дисперсионного анализа. Оцените значимость построенной модели.
Решение:
Решение с использованием ППП Statistica
- Для построения регрессионной модели с распределенными лагами необходимо априори задать длину максимального лага, для этой задачи выберем длину 3. Тогда уравнение регрессии будет выглядеть следующим образом:
Для оценки параметров этой модели согласно методу Алмон необходимо задать степень аппроксимирующего полинома. Для решения используем соответствующую процедуру ППП Statistica. Порядок расчетов следующий:
1) введите исходные данные или откройте существующий файл другого формата, содержащий анализируемые данные, в опции Data Management в окне переключения модулей (рис. 4.16). Если создаете новый файл данных, в соответствующих ячейках укажите количество строк и столбцов. В нашем случае — 2 столбца, 36 строк;
2) из модуля управления данными перейдите в модуль анализа временных рядов, выбрав в меню пункт Time Series / Forecasting;
3) откройте файл, содержащий данные — Open Data (рис. 4.17);
4) выделите все переменные, используемые для анализа, — Variables. Щелкните по кнопке ОК (рис. 4.18).
5) щелкните по кнопке Distributed lags analysis (см. рис. 4.17);
6) в окне Distributed Lags Analysis (рис. 4.19) выделите название зависимой переменной, в появляющемся окне Independent variable -название независимой переменной. В ячейке Lag length укажите значение максимального лага, в ячейке Almon polynomial lags — степень аппроксимирующего полинома. Степень полинома не должна превышать значение максимального лага. Щелкните по кнопке ОК (Begin analysis);
7) результаты расчетов — оценки регрессионных коэффициентов и значимость уравнения — приведены на рис. 4.20 и 4.21.
Согласно данным таблицы дисперсионного анализа (см. рис. 4.21), полученные значения -критерия Фишера и коэффициента детерминации показывают высокий уровень аппроксимации исходных данных.
Задачи с решением по всем темам эконометрики
Эконометрика – это раздел экономики, занимающийся разработкой и применением статистических методов для измерений взаимосвязей между экономическими переменными.
Эконометрика – это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей.
Парный регрессионный анализ. Функциональная, статистическая и корреляционная зависимости
Из математики известно понятие функциональной зависимости (связи), когда каждому значению одной переменной соответствует вполне определенное значение другой (например, площадь круга в зависимости от радиуса и т.д.).
В экономике в большинстве случаев между переменными величинами существуют зависимости, когда каждому значению одной переменной соответствует не какое-то определенное, а множества возможных значений другой переменной Иначе говоря, каждому значению одной переменной соответствует определенное (условное) распределение другой переменной. Такая зависимость получила название статистической (или стохастической, вероятностной).
Возникновение понятия статистической связи обуславливается тем, что зависимая переменная подвержена влиянию множества неконтролируемых или неучтенных факторов, а таюке тем, что измерение значений переменных сопровождается случайными ошибками. Примером статистической связи является зависимость урожайности от количества внесенных удобрений, производительности труда на предприятии от его энерговооруженности и т.п.
В силу неоднозначности статистической зависимости между и представляет интерес усредненная по схема зависимости, т. е. закономерность в измерении условного математического ожидания (математического ожидания случайной переменной , вычисленного в предположении, что переменная приняла значение ) в зависимости от .
Корреляционной зависимостью между двумя переменными называется функциональная зависимость между значениями одной из них и условным математическим ожиданием другой.
Корреляционная зависимость может быть представлена в виде
где
В регрессионном анализе рассматривается односторонняя зависимость случайной переменной от одной (или нескольких) неслучайной независимой переменной . Такая зависимость от (иногда ее называют регрессионной) может быть представлена в виде модельного уравнения регрессии по (1.1). При этом -зависимую переменную называют также функцией отклика объясняемой, выходной. результирухпцей. эндогенной переменной, результативным признаком, а независимую переменную — объясняющей, входной. предскашлаюгцей, предикторной, экзогенной переменной, фактором, регрессором, факторным признаком.
Уравнение (1.1) называется модельным уравнением регрессии (или просто уравнением регрессии), а функция — модельной функцией регрессии (или просто функцией регрессии), а ее график — модельной линией регрессии (или просто линией регрессии).
Для точного описания уравнения регрессии необходимо знать условный закон распределения зависимой переменной при условии, что переменная примет значение , т.е. . На практике такую информацию получить, как правило, не удается, так как обычно исследователь располагает лишь выборкой пар значений ограниченного объема . В этом случае речь может идти об оценке {приближенном выражении, аппроксимации) по выборке функции регрессии. Такой оценкой является выборочная линия (кривая) регрессии
где —условная (групповая) средняя переменной при фиксированном значении переменной ;
— параметры кривой.
Уравнение (1.2) называется выборочным уравнением регрессии
При правильно определенной аппроксимирующей функции с увеличением объема выборки она будет сходиться по вероятности к функции регрессии
Линейная парная регрессия
Рассмотрим в качестве примера зависимость между сменной добычей угля на одного рабочего (в тоннал) и мощностью пласта (в метрах) по следующим (условным) данным, характеризующим процесс добычи угля в = 10 шахтах.
Изобразим полученную зависимость графически точками координатной плоскости (рис. 1.1). Такое изображение статистической зависимости называется полем корреляции.
По расположению эмпирических точек можно предполагать наличие линейной корреляционной (регрессионной) зависимости между переменными и . Поэтому уравнение регрессии (1.2) будем искать в виде линейного уравнения
Найдем формулы расчета неизвестных параметров уравнения линейной регрессии. Согласно методу наименьших квадратов неизвестные параметры и выбираются таким образом, чтобы сумма квадратов отклонений эмпирических значений от значений найденных по уравнению регрессии (3.3), была минимальной:
На основании необходимого условия экстремума функции двух переменных приравниваем к нулю ее частные производные, т. е.
откуда после преобразований получим систему нормальных уравнений для определения параметров линейной регрессии
Разделив обе части уравнений (1.5) на , получим систему нормальных уравнении в виде:
где соответствующие средние определяются по формулам:
Решая систему (1.6), найдем
Коэффициент называется выборочным коэффициентом регрессии (или просто коэффициентом регрессии) по
Коэффициент регрессии по показывает, на сколько единиц в среднем изменяется переменная при увеличении переменной на одну единицу.
выборочная дисперсия переменной .
выборочная ковариация.
Уравнение регрессии примет вид:
Задача №1.1.
По данным табл. 1.1 найти уравнение регрессии по .
Решение:
Вычислим все необходимые суммы:
Затем находим параметры уравнения регрессии:
Уравнение регрессии по имеет вид:
Из полученного уравнения регрессии (см. рис. I 1) следует, что при увеличении мощности пласта на 1 м добыча угля на одного рабочего увеличивается в среднем на 1,12т .
Коэффициент корреляции
Оценим тесноту корреляционной зависимости. Рассмотрим случай линейной зависимости вида (1.10):
На первый взгляд, подходящим измерителем тесноты связи от является коэффициент регрессии , так как он показывает, на сколько единиц в среднем изменяется , когда увеличивается на одну единицу. Однако зависит от единиц измерения переменных Например, в полученной ранее зависимости он увеличится в 100 раз, если мощность пласта выразить не в метрах, а в сантиметрах. Поэтому для выбора показателя тесноты связи нужна такая система единиц измерения, в которой данные по различным характеристикам оказались бы сравнимы между собой. Представим уравнение (1.10) в эквивалентном виде:
В этом выражении величина показывает на сколько величин изменится в среднем , когда увеличится на одно .
Величина является показателем тесноты связи и называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Две корреляционные зависимости переменной от приведены на рис. 1.2. Очевидно, что в случае а) зависимость между переменными менее тесная и коэффициент корреляции должен быть меньше, чем в случае б), так как точки корреляционного поля а) дальше отстоят от линии регрессии, чем точки поля б).
Если то корреляционная связь между переменными называется прямой, если — обратной. При прямой (обратной) связи увеличение одной из переменных ведет к увеличению (уменьшению) условной (групповой) средней другой. Учитывая (1.9), формулу для представим в виде:
Отметим другие модификации формулы :
Выборочный коэффициент корреляции (при достаточно большом объеме выборки ) обладает следующими свойствами.
- Коэффициент корреляции принимает значения на отрезке [-1;1], т.е. . Чем ближе к единице, тем теснее связь.
- При корреляционная связь представляет линейную функциональную зависимость. При этом все наблюдаемые значения располагаются на прямой линии (рис. 1.3 а, 6).
- При линейная корреляционная связь отсутствует. При этом линия регрессии параллельна оси (рис. 1.3 в).
Следует отметить, что является непосредственно оценкой генерального коэффициента корреляции между и лишь в случае двумерного нормального закона распределения случайных величин и . В других случаях (когда распределения и отклоняются от нормального, одна из исследуемых величин, например , не является случайной и т.п.) выборочный коэффициент корреляции не следует рассматривать как строгую меру взаимосвязи переменных.
Возможно эта страница вам будет полезна:
Задача №1.2.
По данным табл. 1.1 вычислить коэффициент корреляции между переменными и
Решение:
В примере 1.1 были вычислены суммы
Вычислим сумму:
Вычислим коэффициент корреляции:
т. е. связь между переменными достаточно тесная
Основные положения регрессионного анализа. Оценка параметров парной регрессионной модели
Рассматриваемая в регрессионном анализе зависимость от может быть представлена в виде молельного уравнения регрессии (1.1), но из-за воздействия неучтенных случайных факторов и причин отдельные наблюдения переменной будут в большей или меньшей мере отклоняться от функции регрессии . В этом случае уравнение взаимосвязи двух переменных может быть представлено в виде:
где — случайная переменная (случайный член), характеризующая отклонение от функции регрессии. Эту переменную будем называть возмущающей или просто возмущением (либо ошибкой). Таким образом, в регрессионной модели зависимая переменная есть некоторая функция с точностью до случайного возмущения .
Рассмотрим линейный регрессионный анализ, для которого функция линейна относительно оцениваемых параметров:
Предположим, что для оценки параметров линейной функции регрессии (1.16) взята выборка, содержащая пар значений переменных , где . В этом случае линейная парная регрессионная модель имеет вид:
Отметим основные предпосылки регрессионного анализа.
(или математическое ожидание зависимой переменной — равно линейной функции регрессии:
или
условие гомоскедастичности или равноизменчивости возмущения (зависимой переменной)).
В этом случае модель (1.17) называется классической нормальной линейной регрессионной моделью.
Для получения уравнения регрессии достаточно предпосылок 1-4. Требование выполнения предпосылки 5 (т. е. рассмотрение «нормальной регрессии») необходимо для оценки точности уравнения регрессии и его параметров.
Оценкой модели (1.17) по выборке является уравнение регрессии
Параметры этого уравнения и определяются на основе метода наименьших квадратов.
Воздействие неучтенных случайных факторов и ошибок наблюдений в модели (1.17) определяется с помощью дисперсии возмущений (ошибок) или остаточной дисперсии . Несмещенной оценкой этой дисперсии является выборочная остаточная дисперсия
где — групповая средняя, найденная по уравнению регрессии; — выборочная оценка возмущения или остаток репрессии.
В знаменателе выражения (1.18) стоит число степеней свободы , так как две степени свободы теряются при определении двух параметров прямой из системы нормальных уравнений (1.5).
Ответ на вопрос, являются ли оценки параметров «наилучшими», дает следующая теорема.
Теорема Гаусса—Маркова. Если регрессионная модель (1.17) удовлетворяет предпосылкам 1 -4 , то оценки и имеют наименьшую дисперсию в классе всех линейных несмещенных оценок. Таким образом, оценки и в определенном смысле являются наиболее эффективными линейными оценками параметров и .
Интервальная оценка функции регрессии и ее параметров
Построим доверительный интервал для функции регрессии, т.е. для условного математического ожидания , который с заданной надежностью (доверительной вероятностью) накрывает неизвестное значение .
Найдем дисперсию групповой средней представляющей выборочную оценку . С этой целью уравнение регрессии (1.10) представим в виде:
На рис. 1.4 линия регрессии (1.19) изображена графически. Для произвольного наблюдаемого значения выделены его составляющие: средняя , приращение , образующие расчетное значение и остаток .
Дисперсия групповой средней равна сумме дисперсий двух независимых слагаемых выражения (1.19):
Здесь учтено, что — неслучайная величина, при вынесении которой за знак дисперсии ее необходимо возвести в квадрат.
Дисперсии выборочной средней и параметра находятся по формулам
Оценка дисперсии групповых средних вычисляется по формуле:
Основываясь на предпосылках 1 — 5 регрессионного анализа можно показать, что статистика имеет — распределение Стьюдента с степенями свободы и построить доверительный интервал для условного математического ожидания :
где — стандартная ошибка групповой средней . Из формул (1.22) и (1.23) видно, что величина (длина) доверительного интервала зависит от значения объясняющей переменной : три она минимальна, а по мере удаления от величина доверительного интервала увеличивается (рис. 1.5). Таким образом, прогноз значений (определение неизвестных значений) зависимой переменной по уравнению регрессии оправдан, если значение объясняющей переменной не выходит за диапазон ее значений по выборке (причем тем более точный, чем ближе к ). Другими словами, экстраполяция кривой регрессии, т.е. ее использование вне пределов обследованного диапазона значений объясняющей переменной (даже если она оправдана для рассматриваемой переменной исходя из смысла решаемой задачи) может привести к значительным погрешностям
Определим доверительный интервал для индивидуальных значений зависимой переменной. Построенная доверительная область для (см. рис. 1.5) определяет местоположение модельной линии регрессии (т.е. условного математического ожидания), но не отдельных возможных значений зависимой переменной, которые отклоняются от средней. Поэтому при определении доверительного интервала для индивидуальных значений зависимой переменной необходимо учитывать еще один источник вариации рассеяние вокруг линии регрессии, т.е. в оценку суммарной дисперсии следует включить величину . В результате оценка дисперсии индивидуальных значений при равна
а соответствующий доверительный интервал для прогнозов индивидуальных значений будет определятся по формуле:
Построим доверительный интервал для параметров регрессионной модели, в частности для параметров регрессионной модели и .
При выполнении предпосылки 5 регрессионного анализа статистика имеет нормальный закон распределения, а статистика
имеет -распределение Стьюдента с степенями свободы.
Поэтому интервальная опенка параметра на уровне значимости а имеет вид:
При построении доверительного интервала для параметра снисходят из того, что статистика имеет -распределение с степенями свободы. Поэтому интервальная оценка для на уровне значимости имеет вид :
доверительный интервал выбирается таким образом, чтобы
Задача №1.3.
По данным табл. 1.1 требуется:
1) оценить сменную среднюю добычу угля на одного рабочего для шахт с мощностью пласта 8 м;
2) найти 95% — ные доверительные интервалы для индивидуального и среднего значений сменной добычи угля на 1 рабочего для таких же шахт;
3) найти с надежностью 0,95 интервальные оценки коэффициента рецессии и дисперсии .
Решение:
Уравнение регрессии по было получено в примере ранее , т.е. при увеличении мощности пласта на 1м добыча угля на одного рабочего увеличивается в среднем на 1,12 т.
Для построения доверительного интервала для необходимо знать дисперсию его оценки, т.е. . Составим вспомогательную таблицу подставив значение в полученное уравнению регрессии.
Подставим из таблицы найденные значения в формулы
Следовательно
По таблице значений -критерия Стьюдента находим . Искомый доверительный интервал имеет вид
Средняя сменная добыча угля на одного рабочего для шахт с мощностью пласта 8м с надежностью 0,95 находится в пределах от 2,77 до 6,03 т. 2. Чтобы построить доверительный интервал для индивидуального значения найдем дисперсию его оценки по формуле:
Искомый доверительный интервал примет вид:
Таким образом, индивидуальная сменная добыча угля на одного рабочего для шахт с мощностью пласта 8м с надежностью 0,95 находится в пределах от 0,57 до 8,23 т.
- Найдем 95% -ный доверительный интервал для параметра по формуле (1.27)
т. е. с надежностью 0,95 при изменении мощности пласта на 1м суточная выработка будет изменяться на величину, заключенную в интервале от 0,332 до 1,907 (т).
Найдем 95%-ный доверительный интервал для параметра
Учитывая, что , найдем по таблице значений -критерия Пирсона
Подставим найденные значения в формулу для оценки интервала получим:
Таким образом, с надежностью 0,95 дисперсия возмущений заключена в пределах от 1,29 до 10,36, а их стандартное отклонение — от 1,13 до 3,22 (т).
Оценка значимости уравнения регрессии. Коэффициент детерминации
Проверить значимость уравнения регрессии — значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной.
Проверка значимости уравнения регрессии производится на основе дисперсионного анализа.
Согласно основной идее дисперсионного анализа
или
где — общая сумма квадратов отклонений зависимой переменной от средней; — сумма квадратов, обусловленная регрессией; — остаточная сумма квадратов, характеризующая влияние неучтенных факторов
Нетрудно убедиться, что третье слагаемое
Представим полученные соотношения в виде таблицы 1.3
Средние квадраты и представляют собой несмещенные оценки дисперсий зависимой переменной, обусловленных соответственно регрессий или объясняющей переменной и воздействием неучтенных случайных факторов и ошибок; — число оцениваемых параметров уравнения регрессии; — число наблюдений.
Уравнение регрессии значимо на уровне , если фактически наблюдаемое значение статистики
Задача №1.4.
По данным табл. 1.1 оценить на уровне значимость уравнения регрессии по .
Решение:
Ранее, были
Вычислим суммы квадратов для определения компонент дисперсии:
Находим значение — распределения
По таблице значений -распределения Фишера определяем табличное значение
Так как
то уравнение регрессии значимо.
Одной из наиболее эффективных оценок адекватности регрессионной модели, мерой качества уравнения регрессии, (или, как говорят, мерой качества подгонки регрессионной модели к найденным значениям ), характеристикой прогностической анализируемой регрессионной модели является коэффициент детерминации, определяемый по формуле
Величина показывает, какая часть (доля) вариации зависимой переменной обусловлена вариацией объясняющей переменной.
Так как , то Чем ближе к единице, тем лучше регрессия аппроксимирует эмпирические данные, тем теснее наблюдения примыкают к линии регрессии. Если , то эмпирические точки лежат на линии регрессии (см. рис. 1.3 а.б) и между переменными и существует линейная функциональная зависимость. Если то (вариация зависимой переменной полностью обусловлена воздействием неучтенных в модели переменных, и линия регрессии параллельна оси абсцисс (рис. 1.3 в).
Заметим, что коэффициент имеет смысл рассматривать только при наличии свободного члена в уравнении регрессии, так как лишь в этом случае, как уже отмечалось, верно, равенство (1.29), а следовательно, и соотношение (1.32).
Если известен коэффициент детерминации , то критерий значимости (1.30) уравнения регрессии или самого коэффициента детерминация может быть записан в виде
В случае парной линейной регрессионной модели коэффициент детерминации равен квадрату коэффициента корреляции, т. е. .
Задача №1.5.
По данным табл. 1.1 найти коэффициент детерминации и пояснить его смысл.
Решение:
В примере 1.4 было получено . Находим
Коэффициент детерминации можно было вычислить и иначе, если учесть, что в примере 1.2 был вычислен коэффициент корреляции . Так как для парной линейной регрессионной модели , то .
Это означает, что вариация зависимой переменной — сменной добычи угля на одного рабочего — на 62% объясняется изменчивостью объясняющей переменной — мощностью пласта.
Множественный регрессионный анализ. Классическая нормальная линейная модель множественной регрессии
Экономические явления, как правило, определяются большим числом одновременно и совокупно действующих факторов. В связи с этим часто возникает задача исследования зависимости одной зависимой переменной от нескольких объясняющих переменных . Эта задача решается с помощью множественного регрессионного анализа.
Обозначим -е наблюдение зависимой переменной а объясняющих переменных — . Тогда модель множественной линейной регрессии можно представить в виде:
где
— удовлетворяет приведенным выше (см. Главу 1) предпосылкам 1-5.
Включение в регрессионную модель новых объясняющих переменных приводит к целесообразности использования матричных обозначений. Магричное описание регрессии облегчает как теоретические концепции анализа, так и необходимые расчетные процедуры.
Введем обозначения:
— матрица-столбец, или вектор значений зависимой переменной размерности ;
матрица значений объясняющих переменных, или матрица плана размерности (в матрицу дополнительно введен столбец, все элементы которого равны 1, т.е. условно полагается, что в модели свободный член умножается на фиктивную переменную принимающую значение 1 дня всех ;
— матрица-столбец, или вектор параметров размерности ,
— матрица-столбец, или вектор, возмущений (случайных ошибок, остатков) размера .
Тогда в матричной форме модель примет вид:
Оценкой этой модели по выборке является уравнение
где
Оценка параметров классической регрессионной модели методом наименьших квадратов
Для оценки вектора неизвестных параметров применим метод наименьших квадратов.
Условие минимизации остаточной суммы квадратов запишется в виде:
На основании необходимого условия экстремума функции нескольких переменных необходимо приравнять нулю частные производные по этим переменным или в матричной форме— вектор частных производных
После вычисления вектора частных производных приравняем его 0 — , откуда получаем систему нормальных уравнений в матричной форме для определения вектора :
Для решения этого матричного уравнения относительно вектора оценок параметров введём еще одну предпосылку о том, что матрица является неособенной, т. е. ее определитель не равен нулю. Следовательно, ранг матрицы равен ее порядку, т.е. но , значит, (ранг матрицы плана равен числу ее столбцов). В соответствии с этим сформулируем упомянутую выше предпосылку множественного регрессионного анализа в следующем виде:
Кроме того, полагают, что число имеющихся наблюдений (значений) каждой из объясняющих и зависимой переменных превосходит ранг-матрицы , т. е. или , ибо в противном случае в принципе невозможно получение сколько-нибудь надежных статистических выводов.
В новых терминах приведенные ранее предпосылки для множественного регрессионного анализа могут быть записаны следующим образом:
Модель (2.2), удовлетворяющая приведенным предпосылкам 1-6, называется классической нормальной линейной моделью множественной регрессии, если же среди приведенных не выполняется лишь предпосылка о нормальном законе распределения вектора возмущений с , то модель называется просто классической линейной моделью множественной рефессии.
Решением уравнения (2.4) является вектор
где — матрица, обратная матрице , — матрица-столбец, или вектор ее свободных членов.
Рассмотренная выше для парной регрессионной модели теорема Гаусса — Маркова оказывается верной для модели (2.2) множественной регрессии и может быть сформулирована в следующем виде
При выполнении предпосылок множественного регрессионного анализа оценка метода наименьших квадратов является наиболее эффективной, т е обладает наименьшей дисперсией в классе линейных несмещенных оценок.
Зная вектор , выборочное уравнение множественной регрессии представим в виде:
где групповая (условная) средняя переменной при заданном векторе значений объясняющей переменной
Задача №2.1.
Имеются следующие данные о сменной добыче угля на одного рабочего (т), мощности пласта (м) и уровне механизации работ (%), характеризующие процесс добычи угля в 10 шахтах. Предполагая, что между переменными , и существует линейная корреляционная зависимость, найти ее аналитическое выражение (уравнение регрессии по и ).
Решение:
Обозначим
(в матрицу вводится дополнительный столбец чисел, состоящий из единиц).
Для удобства вычислений составляем вспомогательную таблицу.
Вычислим матрицы:
Умножим матрицу на вектор и получим
Уравнение множественной регрессии имеет вид:
Оно показывает, что при увеличении только мощности пласта (при неизменном ) на 1м добыча угля на одного рабочего увеличивается в среднем на 0,660 т, а при увеличении только уровня механизации работ (при неизменной ) — в среднем на 0,90 т.
Добавление в регрессионную модель новой объясняющей переменной изменило коэффициент регрессии ( по ) с 1,12 для парной регрессии (см. пример 1.1) до 0,66 — для множественной регрессии. В случае парной регрессии учитывает воздействие на не только переменной но и косвенно корреляционно связанной с ней переменной .
Ковариационная матрица и ее выборочная оценка
Вариации оценок параметров определяют точность уравнения множественной регрессии. Для их измерения в многомерном регрессионном анализе рассматривают так называемую ковариационную матрицу вектора оценок параметров , являющуюся матричным аналогом дисперсии одной переменной
где элементы — ковариации (или корреляционные моменты) оценок параметров и . Ковариация двух переменных определяется как математическое ожидание произведения отклонений этих переменных от их математических ожиданий:
Учитывая, что оценки , полученные методом наименьших квадратов, являются несмещенными оценками параметров , т. е. выражение примет вид
Ковариация характеризует как степень рассеяния значений двух переменных относительно их математических ожиданий, так и взаимосвязь этих переменных.
Определение доверительных интервалов для коэффициентов и функции регрессии
Доверительный интервал для параметров регрессионной модели
Оценка дисперсии коэффициента регрессии определяется по формуле:
где — несмещенная оценка параметра ;
— диагональный элемент матрицы Среднее квадратическое отклонение (стандартная ошибка) коэффициента регрессии вычисляется по формуле:
Учитывая, что статистика имеет -распределение Стьюдента с степенями свободы, можно проверить значимость коэффициента регрессии . Гипотеза о равенстве параметра нулю отвергается, если , где табличное значение -критерия Стьюдента, определенное на уровне значимости при числе степеней свободы , т. е. отличается от нуля на уровне значимости .
В обшей постановке гипотеза о равенстве параметра заданному числу отвергается, если
Доверительный интервал для параметра имеет вид.
- Доверительный интервал для функции репрессии или для условного математического ожидания зависимой переменной
где — групповая средняя, определяемая по уравнению регрессии;
— ее стандартная ошибка, определяемая по формуле:
- Доверительный интервал для индивидуальных значений зависимой переменной
где
- Доверительный интервал для параметра .
В множественной регрессии он строится аналогично парной модели с соответствующим изменением числа степеней свободы с критерия
Задача №2.2
По данным примера 2.1 оценить сменную добычу угля на одного рабочего для шахт с мощностью пласта 8 м и уровнем механизации работ 6%; наши 95%-ные доверительные интервалы для индивидуального и среднего значений сменной добычи угля на одного рабочего для таких же шахт. Проверить значимость коэффициентов регрессии и построить для них 95%-ные доверительные интервалы. Найти интервачьную оценку для дисперсии .
Решение:
В примере 2.1 уравнение регрессии получено в виде
По условию надо оценить , где . Выборочной оценкой является групповая средняя, которую найдем по уравнению регрессии:
Для построения доверительного инггерала для воспользуемся формулой (2.11). Вначале найдем дисперсию . При ей вычислении используем две последних строки табл. 2.2 (групповые средние в них определяются по полученному уравнению регрессии).
Находим
Вычисляем
По таблице значений — критерия Стьюдента при числе степеней свободы
находим . Следовательно, доверительный интервал для равен
Итак, с надежностью 0,95 средняя сменная добыча угля на одного рабочего для шахт с мощностью пласта 8 м и уровнем механизации работ 6% находится в пределах от 4,27 до 7,29 т.
Сравнивая новый доверительный интервал для функции регрессии , полученный с учетом двух объясняющих переменных, с аналогичным интервалом с учетом одной объясняющей переменной (см пример 1.3), можно заметить некоторое уменьшение его величины.
Это связано с тем, что включение в модель новой объясняющей переменной позволяет несколько повысить точность модели за счет увеличения взаимосвязи зависимой и объясняющей переменных.
Найдем доверительный интервал для индивидуального значения при
Вычислим
Итак, с надежностью 0,95 индивидуальное значение сменной добычи угля в шахтах с мощностью пласта 8 м и уровнем механизации работ 6% находится в пределах от 2,80 до 8,76 (т).
Проверим значимость коэффициентов регрессии и . Для стандартная ошибка равна
Так как
тo коэффициент значим.
Аналогично для стандартная ошибка, равна
т. е. коэффициент значим.
Доверительный интервал коэффициента регрессии имеет вид;
Доверительный интервал коэффициента регрессии имеет вид:
Итак, с надежностью 0,95 за счет изменения на 1 м мощности пласта (при неизменном ) сменная добыча угля на одного рабочего будет изменяться в пределах от 0,15 до 1,17 (т), а за счёт изменения на 1% механизации работ (при неизменном ) значения будут изменяться в пределах от 0,27 до 1,53 (т).
Найдем 95%-ный доверительный интервал для параметра . Учитывая, что
степени свободы найдем по таблице значений критерия Пирсона
С помощью формулы (2.14) находим интервал
Таким образом, с надежностью 0,95 дисперсия возмущений заключена в пределах от 0,738 до 6,99, а их стандартное отклонение — от 0,859 до 2,64(т).
Оценка значимости множественной регрессии. Коэффициенты детерминации R²
В модели множественной регрессии, как и в случае парной регрессионной модели, общая вариация — сумма квадратов отклонений зависимой переменной от средней может быть разложена на две составляющие:
где — соответственно сумма квадратов отклонений, обусловленная регрессией, и остаточная сумма квадратов, характеризующая влияние неучтенных факторов. Они вычисляются по следующим формулам:
Уравнение множественной регрессии значимо (иначе — гипотеза о равенстве нулю параметров регрессионной модели, т. е.
отвергается), если
где — табличное значение -критерия Фишера — Снелекора.
Коэффициент детерминации является оценкой адекватности модели, мерой качества уравнения регрессии, характеристикой его прогностической силы Множественный коэффициент детерминации определяется по формулам;
Величина характеризует долю вариации зависимой переменной, обусловленной регрессией или изменчивостью объясняющих переменных; чем ближе к единице, тем лучше регрессия описывает зависимость между объясняющими и зависимой переменными.
Вместе с тем использование только одного коэффициента детерминации для выбора наилучшего уравнения регрессии может оказаться недостаточным. Недостатком коэффициента детерминации является то, что он, вообще говоря, увеличивается при добавлении новых объясняющих переменных, хотя это и не обязательно означает улучшение качества регрессионной модели. На практике встречаются случаи, когда плохо определенная модель регрессии может дать сравнительно высокий коэффициент .
Поэтому предпочтительнее использовать скорректированный (адаптированный, поправленный) коэффициент детерминации определяемый по формулам:
Из формул следует, что чем больше число объясняющих переменных , тем меньше по сравнению с . В отличие от скорректированный коэффициент может уменьшаться при введении в модель новых объясняющих переменных, не оказывающих существенного влияния на зависимую переменную. Однако даже увеличение скоррекгированного коэффициента детерминации при введении в модель новой объясняющей переменной не всегда получается, что ее коэффициент регрессии значим (это происходит, как можно показать, только в случае, если соответствующее значение -статистики больше единицы (по абсолютной величине), т. е. . Другими словами, увеличение еще не означает улучшения качества регрессионной модели.
Если известен коэффициент детерминации , то критерий значимости уравнения регрессии может быть записан в виде:
где , т. к. в уравнении множественной регрессии вместе со свободным членом оценивается параметров
Возможно эта страница вам будет полезна:
Задача №2.3.
По данным примера 2.1 определить множественный коэффициент детерминации и проверить значимость полученного уравнения регрессии по и на уровне .
Решение:
Вычислим произведения векторов (см. пример 2.1):
По формуле (2 18) определим множественный коэффициент детерминации
Коэффициент детерминации свидетельствует о том, что вариация исследуемой зависимой переменной У — сменной добычи угля на одного рабочего на 69,1% объясняется изменчивостью включенных в модель объясняющих переменных— мощности пласта и уровня механизации работ .
Зная , проверим значимость уравнения регрессии. Вычислим фактическое значение критерия:
Оно больше табличного , определенного на уровне значимости при степенях свободы, т. е. уравнение регрессии значимо, следовательно, исследуемая зависимая переменная достаточно хорошо описывается включенными в регрессионную модель переменными и .
Временные ряды и прогнозирование. Общие сведения о временных рядах и задачах их анализа
Под временным рядом (динамическим рядом, или рядом динамики) в экономике подразумевается последовательность наблюдений некоторого признака (случайной величины) в последовательные моменты времени. Отдельные наблюдения называются уровнями ряда, которые будем обозначать , где — число уровней.
В табл. 3.1 приведены данные, отражающие спрос на некоторый товар за восьмилетний период (усл. ед.), т. е. временной ряд спроса .
На рис. 3.1 временной ряд изображен графически ломаной линией.
Методы исследования моделей, основанных на данных пространственных выборок и временных рядов, вообще говоря, отличаются Объясняется это Tev что в отличие от пространственных выборок наблюдения во временных ряда как правило, нельзя считать независимыми.
При анализе точности этих моделей и определении интервальных ошибок прогноза на их основе, будем полагать, что рассматриваемые в главе регрессионные модели временных рядов удовлетворяют условиям классической модели.
В общем виде при исследовании экономического временного ряда выделяются несколько составляющих:
где — тренд, плавно меняющаяся компонента, описывающая чистое влияние долговременных факторов, т. е. длительную тенденцию изменения признака (например, показатели экономического развития, рост населения, и т. п.);
— сезонная компонента, отражающая повторяемость экономических процессов в течение не очень длительного периода (года, месяца, недели и т. д., например, объем продаж туристических путевок или перевозок авиапассажиров в различные времена года);
— циклическая компонента, отражающая повторяемость экономических процессов в течение длительных периодов (например, влияние волн экономической активности Кондратьева, демографических «ям», циклов солнечной активности и т. п.);
— случайная компонента, отражающая влияние не поддающихся учету и регистрации случайных факторов.
Первые три составляющие (компоненты) и , в отличие от , являются закономерными, неслучайными.
Важнейшей классической задачей при исследовании экономических временных рядов является выявление и статистическая оценка основной тенденции развития изучаемого процесса и отклонений от нее.
Основные этапы анализа временных рядов:
графическое представление и описание поведения временного ряда; выделение и удаление закономерных (неслучайных) составляющих временного ряда (тренда, сезонных и циклических сост авляющих);
сглаживание и фильтрация (удаление низко — или высокочастотных составляющих временного ряда);
исследование случайной составляющей временного ряда, построение и проверка адекватности математической модели для ее описания;
прогнозирование развития изучаемого процесса на основе имеющегося временного ряда;
исследование взаимосвязи между различными временными рядами. Наиболее распространенными методами анализа временных рядов являются корреляционный и спектральный анализ, модели авторегрессии и скользящей средней
Временной ряд рассматривается как одна из реализаций (траекторий) случайного процесса . Вместе с тем следует иметь в виду принципиальные отличия временного ряда от последовательности наблюдений образующих случайную выборку. Во-первых, в отличие от элементов случайной выборки члены временного ряда, как правило, не являются статистически независимыми. Во-вторых, члены временного ряда не являются одинаково распределенными. Выборка рассматривается как одна из реализаций случайной величины .
Стационарные временные ряды и их характеристики. Автокорреляционная функция
Важное значение в анализе временных рядов имеют стационарные временные ряды, вероятностные свойства которых не изменяются во времени.
Временной ряд называется строго стационарным (или стационарным в узком смысле), если совместное распределение вероятностей наблюдений такое же, как и наблюдений при любых и . Другими словами, свойства строю стационарных рядов не зависят от момента , т е закон распределения и его числовые характеристики не зависят от . Следовательно, математическое ожидание среднее квадратическое отклонение могут быть оценены по наблюдениям по формулам:
Степень тесноты связи между последовательностями наблюдений временного ряда
(сдвинутых относительно друг друга на единиц, или, как говорят, с лагом ) может быть определена с помощью коэффициента корреляции
Коэффициент измеряет корреляцию между членами одного и того же ряда, поэтому его называют коэффициентом автокорреляции, а зависимость — автокор реляционной функцией. В силу стационарности временного ряда автокорреляционная функция зависит только от лага , причем , т. е. при изучении можно ограничиться рассмотрением только положительных значений .
Статистической оценкой является выборочный коэффициент автокорреляции , определяемый по формуле:
Функция называется выборочной автокорреляционной функцией, а ее график — коррелограимой.
При расчете необходимо учитывать, что с увеличением число пар наблюдений уменьшается, поэтому лаг должен быть таким, чтобы число было достаточным для определения . Обычно принимается .
Для стационарного временного ряда с увеличением лага г взаимосвязь членов временного ряда и ослабевает , и автокорреляционная функция должна убывать по абсолютной величине, а для ее выборочного (эмпирического) аналога , особенно при небольшом числе пар наблюдений , свойство монотонного убывания (по абсолютной величине) при возрастании может нарушаться.
Наряду с автокорреляционной функцией при исследовании стационарных временных рядов рассматриваем частная автокорреляционная функция , где есть частный коэффициент корреляции между членами временного ряда и , т. е. коэффициент корреляции между и при устранении влияния промежуточных (между и ) членов.
Статистической оценкой является выборочная частная автокорреляционная функция , где — выборочный частный коэффициент корреляции Например, выборочный частный коэффициент автокорреляции 1-го порядка между членами временного, ряда и при устранении влияния может быть вычислен по формуле:
где — выборочные коэффициенты автокорреляции между соответственно.
Задача №3.1
По данным табл. 1 для временного ряда у, найти среднее чначение, среднее квадратическое отклонение, коэффициенты автокорреляции (для лагов г=1;2) и частный коэффициент автокорреляции I-го порядка.
Решение:
Среднее значение временного ряда находим по формуле (3.1):
Дисперсию и среднее квадратическое отклонение вычислим, воспользовавшись соотношением:
Найдем коэффициент автокорреляции временного ряда (для лага ), т. е. коэффициент корреляции между последовательностями семи пар наблюдений , представленных в табл. 3.2.
Сначала вычисляем необходимые суммы:
Затем подставим их в формулу:
при
получим:
Коэффициенты автокорреляции для лага между членами ряда и по шести парам наблюдений и между членами ряда и вычисляются аналогично:
Для определения частного коэффициента корреляции 1-го порядка между членами ряда и при исключении влияния найденные значения подставим в формулу:
Знание автокорреляционных функций и может оказать существенную помощь при подборе и идентификации модели анализируемого временного ряда и статистической оценке его параметров.
Аналитическое выравнивание (сглаживание) временного ряда
Одной из важнейших задач исследования экономического временного ряда является выявление основной тенденции изучаемого процесса, выраженной неслучайной составляющей (тренда либо тренда с циклической или (и) сезонной компонентой).
Для решения этой задачи вначале необходимо выбрать вид функции Часто используются следующие функции:
При выборе соответствующей функции используют содержательный анализ (который может установить характер динамики процесса), а также визуальные наблюдения (на основе графического изображения временного ряда). Из двух функций предпочтение обычно отдается той, при которой меньше сумма квадратов отклонений фактических данных от расчетных на основе этих функций. Следует заметить, что для любого ряда из точек можно подобрать полином (-1)-й степени, проходящий через все точки, и соответственно с минимальной ( нулевой ) суммой квадратов отклонений, однако в этом случае не следует говорить о выделении основной тенденции, учитывая случайный характер этих точек. Поэтому при прочих равных условиях предпочтение следует отдавать более простым функциям.
При использовании метола наименьших квадратов для выявления основной тенденции значения временного ряда рассматриваются как зависимая переменная, а время — как объясняющая:
где — возмущения, удовлетворяющие основным предпосылкам регрессионного анализа, т. е. представляющие независимые и одинаково распределенные случайные величины, распределение которых предполагаем нормальным.
Для линейной функции согласно методу наименьших квадратов параметры прямой находятся из системы нормальных уравнений
Задача №3.2.
По данным табл. 3.1 найти уравнение неслучайной составляющей (тренда) для временного ряда у, полагая тренд линейным.
Решение:
Вначале вычислим необходимые суммы:
Система нормальных уравнений имеет вид:
Решая эту систему, находим уравнение тренда:
Это значит, что спрос (см. рис 3.1) ежегодно увеличивается в среднем на 26,5 ед.
Уравнение регрессии с учётом зависимостей (1.7) — (1.10) и (3.7) можно представить в виде:
Проверим значимость полученного уравнения тренда по -критерию на 5%-ном уровне значимости. Вначале подставим в формулу (1.29) соотношения из (3.8) и вычислим:
а) сумму квадратов, обусловленную регрессией
б) общую сумму квадратов отклонений зависимой переменной от средней
в) остаточную сумму квадратов, характеризующую влияние неучтённых факторов
Затем найдем по формуле (1.30) при значение статистики:
По таблице значений критерия Фишера-Снсдекора определяем .
Так как , то условие неравенства (1.31) выполняется и уравнение тренда значимо.
Другим методом выравнивания (сглаживания) временного ряда является метод скользящих средних. Он основан на переходе от начальных значений членов ряда к их средним значениям на интервале времени, длина которого определена заранее. При что и сам выбранный интервал времени «скользит» вдоль ряда.
Получаемый таким образом ряд скользящих средних ведет себя более гладко, чем исходный ряд, из-за усреднения отклонений ряда.
Действительно, если разброс значений члена временного ряда , около своего среднего значения характеризуется дисперсией , то разброс-средней из членов временного ряда около того же значения а будет характеризоваться существенно меньшей величиной дисперсии, равной . Для усреднения могут быть использованы средняя арифметическая (простая и с некоторыми весами), медиана и др
Задача №3.3.
Провести сглаживание временного ряда по данным табл 3.1 методом скользящих средних, используя простую среднюю арифметическую с интервалом сглаживания года.
Решение:
Скользящие средние вычисляем по формуле:
При получим .
Для находим
Для находим
В результате получим сглаженный ряд, представленный в табл. 3.3.
На рис. 3.1 этот ряд изображен графически в виде пунктирной линии
Прогнозирование на основе моделей временных рядов
Одна из нажнейших задач (этапов) анализа временного (динамического) ряда состоит в прогнозировании на его основе развития изучаемого процесса. При этом исходят из того, что тенденция развития, установленная в прошлом, может быть распространена (экстраполирована) на будущий период.
Задача ставится так: имеется временной ряд и требуется дать прогноз уровня этого ряда на момент . Выше, в § 1.5, 2.2, 2.4, мы рассматривали точечный и интервальный прогноз значений зависимой переменной , т. е определение точечных и интервальных оценок , полученных для парной и множественной регрессий для значений объясняющих переменных , расположенных вне пределов обследованного диапазона значений .
Если рассматривать временной ряд как регрессионную модель изучаемого признака по переменной «время», то к нему могут быть применены рассмотренные выше методы анализа. Следует, однако, вспомнить, что одна из основных предпосылок регрессионного анализа состоит в том, что возмущения представляют собой независимые случайные величины с математическим ожиданием (средним значением), равным нулю. А при работе с временными рядами такое допущение оказывается во многих случаях неверным. В данной главе мы полагаем, что возмущения удовлетворяют предпосылкам регрессионного анализа, т. е. условиям нормальной классической регрессионной модели.
Задача №3.4.
По данным табл. 3.1 дать точечную и с надежностью 0,95 интервальную оценки прогноза среднего и индивидуального значений спроса на некоторый товар на момент (девятый год). (Полагаем, что тренд линейный, а возмущения удовлетворяют требованиям классической модели).
Решение:
Выше, в примере 3.2, получено уравнение регрессии т. е. ежегодно спрос на товар увеличивался в среднем на 26,5 ед. Надо оценить условное математическое ожидание .
Оценкой является групповая средняя
Найдем оценку дисперсии
Находим табличное значение . Подставив найденные значения в (1.23) определим интервальную оценку прогноза среднего значения спроса
или
Для нахождения интервальной оценки прогноза индивидуального значения по формуле (1.24) вычислим дисперсию его оценки:
Интервальная оценка для :
или
Итак, с надежностью 0,95 среднее значение спроса на товар на девятый год будет заключено от 345,9 до 468,9 (ед ), а ею индивидуальное значение -от 307,3 до 507,5 (ед ).
Как правило, прогноз развития изучаемого процесса на основе экстраполяции временных рядов оказывается эффективным, r рамка, краткосрочного или среднесрочного периода прогнозирования.
Автокорреляция остатков временного ряда
При моделировании реальных экономических процессов част возникают ситуации, в которых условия классической линейной модели регрессии оказываются нарушенными В частности, могут не выполняться предпосылки 3 и 4 регрессионного анализа (см. § 1.4) о том, что случайные возмущения (ошибки) модели имеют постоянную дисперсию и не коррелированны между собой. Так, например, при рассмотрении зависимости расходов на потребление от уровня доходов семей можно ожидать, что в более обеспеченных семьях вариация расходов выше, чем в малообеспеченных, т. е. дисперсии возмущений не одинаковы.
При анализе временных рядов мы часто сталкиваемся с ситуацией, когда наблюдаемые в данный момент значения зависимой переменной коррелированны с их значениями в предыдущие моменты времени, т. е. имеется корреляция между возмущениями в разные моменты времени.
Рассмотрим регрессионную модель временного (динамического) ряда. Упорядоченность наблюдений оказывается существенной в том случае, если прослеживается механизм влияния результатов предыдущих наблюдений на результаты последующих. Математически это выражается в том, что случайные величины в регрессионной модели не оказываются независимыми, в частности, условие не выполняется Такие модели называются моделями с наличием автокорреляции (сериальной корреляции). Рассмотрим в качестве примера /6 / временной ряд — ряд последовательных значений курса ценной бумаги , наблюдаемых в моменты времени 1,…. 100. Результаты наблюдений графически изображены на рис. 3.2. Из рисунка видно, что курс ценной бумаги имеет тенденцию к росту.
Оценивая методом наименьших квадратов зависимость курса от времени (номера наблюдений), получим следующие результаты:
Естественно предположить, что результаты предыдущих торгов оказывают влияние на результаты последующих: если в какой-то момент курс окажется завышенным по сравнению с реальным, то скорее всего он будет завышен на следующих торгах, т. е. имеет место положительная автокорреляция. Графически (см. рис 3.2) положительная автокорреляция выражается в чередовании тех зон, где наблюдаемые значения оказываются выше объясненных (лежащих на прямой ), с зонами, где наблюдаемые значения ниже.
Отрицательная автокорреляция встречается в тех случаях, когда завышенные значения в предыдущих наблюдениях приводят к занижению их в наблюдениях последующих (наблюдения действуют друг на друга по принципу «маятника»). Графически это выражается в том, что результаты наблюдений и оказываются по разные стороны относительно прямой .
Метод наименьших квадратов при наличии коррелированности ошибок регрессии даст несмещенные и состоятельные (разумеется, неэффективные) оценки коэффициентов регрессии, однако, оценки их дисперсий несостоятельные и смешенные (как правило, в сторону занижения), т. е. результаты тестирования гипотез оказываются недостоверными.
Как правило, если автокорреляция присутствует, то наибольшее влияние на последующее наблюдение оказывает результат предыдущего наблюдения Так, например, если рассматривается ряд значений курса какой-либо ценной бумаги, то, очевидно, именно результат последних торгов служит основой для формирования курса на следующих торгах. Ситуация, когда на значение наблюдения у, оказывает основное влияние не результат , а более ранние значения, является достаточно редкой Чаще всего при этом влияние носит циклический характер, например, если наблюдения осуществляются ежедневно и имеют недельный цикл (например, сбор кинотеатра). В этом случае можно составить ряды наблюдений отдельно по субботам, воскресеньям и так далее, после чего наиболее сильная корреляция будет наблюдаться между соседними членами.
Таким образом, отсутствие корреляции между соседними членами позволяет считать, что корреляция отсутствует в целом, и обычный метод наименьших квадратов дает адекватные и эффективные результаты.
Наличие автокорреляции между соседними членами можно определить с помощью теста Дарбина- Уотсона. Этот критерий (тест) Дарбина- Уотсона основан на простой идее: если корреляция ошибок регрессии не равна нулю, то она присутствует и в остатках регрессии получающихся в результате применения обычного метода наименьших квадратов. В тесте Дарбина -Уотсона для оценки корреляции используется статистика вида
В случае отсутствия автокорреляции выборочный коэффициент будет близким к нулю, а значение статистики — близко к двум, близость наблюдаемого значения к нулю должна означать наличие положительной автокорреляции, к четырем — отрицательной..
Тест Дарбина-Уотсона имеет один существенный недостаток -распределение статистики зависит не только от числа наблюдений, но и от значений регрессоров Это означает, что тест Дарбина -Уотсона, вообще говоря, не представляет собой статистический критерий, в том смысле, что нельзя указать критическую область, которая позволяла бы отвергнуть гипотезу об отсутствии корреляции, если бы оказалось, что в эту область попало наблюдаемое значение статистики .
Однако существуют два пороговых значения и зависящие только от числа наблюдений, числа регрессоров и уровня значимости, такие, что выполняются следующие условия.
Если фактически наблюдаемое значение :
а) то гипотеза об отсутствии автокорреляции не отвергается (принимается);
б) , то вопрос об отвержении или принятии гипотезы остается открытым (область неопределенности критерия);
в) , то принимается альтернативная гипотеза о положительной автокорреляции;
г) , то принимается альтернативная гипотеза об отрицательной автокорреляции
Графическая иллюстрация теста Дарбина-Уотсона приведена на рис. 3.3:
Для -статистики найдены верхняя и нижняя границы на уровнях значимости
Недостатками критерия Дарбина -Уотсона является наличие области неопределенности критерия и то, что критические значения -статистики определены для объемов выборки не менее 15. Тем не менее, тест Дарбина -Уотсона является наиболее употребляемым.
Задача №3.5.
Выявить на уровне значимости 0,05 наличие втокорреляции возмущений для временного ряда_у, по данным табл. 3.1.
Решение:
В примере 3.2 получено уравнение тренда
В табл. 3.4 приведен расчет данных, необходимых для вычисления ^-статистики.
Находим суммы
подставляем в формулу (3.9) и вычисляем значение статистики
По таблице значений критерия Дарбина — Уотсона при определим критические значения: . Фактически найденное находится в пределах от до . При критических значений -статистики в таблице нет, но судя по тенденции их изменений с уменьшением , можно предполагать, что найденное значение останется в игтервале .
Для рассматриваемого временного ряда спроса на уровне значимости 0,05 гипотеза об отсутствии автокорреляции возмущений принимается.
Готовые задачи по эконометрике
Эконометрика – это самостоятельная научная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, предназначенных для того, чтобы на базе экономической теории, экономической статистики и экономических измерений, математико-статистического инструментария придавать конкретное количественное выражение общим (качественным) закономерностям, обусловленным экономической теорией.
Эконометрика – одна из базовых дисциплин экономического образования во всем мире.
Эконометрические модели парной регрессии
Эконометрика является одной из важнейших составляющих современного экономического образования. Применение эконометрических методов является необходимым условием проведения качественных экономических исследований.
Современную эконометрику можно разделить на два направления: теоретическую и прикладную.
Теоретическая эконометрика занимается изучением специальных вероятностных (т.н. регрессионных) моделей, используя при этом аппарат теории вероятностей и математической статистики.
В основе прикладной эконометрики лежит применение вероятностных моделей для количественного описания и анализа экономических явлений и процессов.
Между этими направления существует глубокая двусторонняя взаимосвязь. Основные результаты теоретической эконометрики в виде статистических тестов и новых классов вероятностных моделей находят свое применение при решении прикладных задач. С другой стороны, в прикладной эконометрике в процессе исследования экономических явлений возникают ситуации или наблюдаются эффекты, которые не описываются существующими моделями. Это является предпосылкой для дальнейшего развития теоретического аппарата.
Термин «эконометрика» дословно читается как «измерения в экономике». Однако не каждое измерение в экономике относится к эконометрике, поэтому дадим точное определение.
Эконометрика (или эконометрия) изучает методы оценивания параметров моделей, характеризующих количественную взаимосвязь между экономическими показателями, а также рассматривает основные направления применения этих моделей в экономических исследованиях.
Предметом изучения эконометрики являются социально-экономические системы, процессы или явления, описываемые моделями. Методы исследования — математические методы, базирующиеся на теории вероятностей и математической статистике (далее ТВиМС), и других разделах математики. Структурно эконометрические исследования приведены на рис. 1.1.
Построение эконометрической модели условно делят на четыре этапа:
- спецификация модели, т.е. её запись в математической форме;
- сбор и подготовка экономической информации;
- оценивание параметров модели;
- проверка модели на достоверность.
Этапы 1) и 2) взаимозаменяемы. Полученную модель применяют для прогнозирования, планирования и с другими целями.
Термин «эконометрика» был введен в научный оборот в начале 20-го века. В 1928 г. была опубликована работа Ч. Кобба и П. Дугласа, посвященная исследованию производственной функции, связывающей объём выпуска продукции в отрасли, затраты труда и затраты капитала. Модель производственной функции Кобба-Дугласа является, пожалуй, первым примером использования эконометрики и отражает классический подход к эконометрическому анализу.
Окончательное становление эконометрики относят к 1930 году, когда европейскими и американскими учёными было основано «Эконометриче-ское сообщество». С 1933 г. выходит журнал «Эконометрия», издающийся этим сообществом.
Основателями эконометрии считаются Р. Фриш, Я. Тинберген, И. Шумпетер, Л. Клейн, Р. Стоун и другие учёные. Их целью было объединение экономической теории с математическими и статистическими методами. Модели, предложенные этими учеными, способствовали развитию математического и статистического аппарата и расширению области применения эконометрики.
После Второй мировой войны были построены комплексные эконо-метрические модели на макроуровне, в которых основное внимание уделялось спросу, финансовому состоянию, налогам, прибылям, ценам и другим важнейшим экономическим показателям.
Наиболее используемыми в эконометрии являются: производственные функции; функции потребления различных групп населения; функции предпочтения потребителей; межотраслевые модели производства, распределения и потребления продукции; модели экономического равновесия.
Помимо экономических исследований, эконометрические методы успешно применяются в биологии, истории, социологии и некоторых других общественных и естественных науках, где необходимо оценивать взаимосвязи между большим количеством переменных.
Важность данной науки подчеркивает тот факт, что за эконометрические исследования многократно присуждалась Нобелевская премия в области экономики.
В настоящее время эконометрия продолжает динамично развиваться и охватывает всё новые сферы экономических знаний.
Особенности эконометрических моделей
Математическая модель социально-экономической системы, процесса или явления представляет собой абстрактную запись основных его закономерностей с помощью математических формул и соотношений. Эконометрические модели относятся к функциональным стохастическим моделям. Они количественно описывают корреляционно-регрессионную связь между исследуемыми показателями.
Эконометрическая модель содержит три группы элементов: вектор — неизвестные характеристики объекта, которые необходимо определить; вектор — характеристики внешних по отношению к объекту условий, которые, изменяясь, влияют на изучаемые параметры; матрица — совокупность внутренних параметров объекта.
В данном случае и являются экзогенными параметрами (т.е., параметрами, которые определяются вне модели), a — эндогенный параметр, значения которого определяются из модели.
В общем виде эконометрическую модель можно записать в виде:
Здесь — входные экономические показатели, — случайная (стохастическая) составляющая, которые посредством функции регрессии влияют на .
Для построения эконометрической модели необходимо выполнение следующих условий:
наличие достаточно большой совокупности наблюдений;
- однородность совокупности наблюдений;
- точность входных данных.
В отношении оценивания степени однородности совокупности наблюдений существует много различных подходов. Впрочем, все исследователи согласны с тем, что экономические наблюдения, как правило, неоднородны. Поэтому речь может идти лишь о достижении определенной степени однородности, которая обеспечит достоверность экономических выводов.
Различают качественную и количественную однородность. Под первой подразумевается однотипность экономических объектов, их одинаковое качество и определенное назначение. Под второй — однородность группы единиц совокупности, которая определяется на основе количественных показателей.
В математической статистике есть ряд критериев, которые позволяют сделать вывод, являются ли рассматриваемые случайные выборки однородными и можно ли их объединять в одну совокупность для проведения эконометрических исследований.
Точность выходных данных существенно влияет на выводы, которые могут быть сделаны на основе эконометрического моделирования. Погрешности могут возникать при формировании алгоритма расчёта показателей, при округлении, повторном учёте тех или иных показателей и др. Все ошибки делят на систематические, т.е. такие, которые имеют постоянную величину, либо изменяются, подчиняясь определенной функциональной зависимости, и случайные, которые обусловлены влиянием случайных факторов при формировании показателей.
При формировании совокупности наблюдений необходимо обращать внимание и на наличие ошибок во входных данных. Если нет возможности избежать этих ошибок, то необходимо применять специальные методы оценивания параметров эконометрической модели.
Наиболее часто используемым методом для количественной оценки взаимосвязей в эконометрии является корреляционно-регрессионный анализ. Суть метода заключается в определении оценок количественного влияния показателей на исследуемую величину и построении на этой основе строгой зависимости между ними, которая в общем виде записывается в виде некоторой функции:
где — исследуемая величина, — показатели, влияющие на исследуемую величину.
Чаще всего с этой целью используется линейная функция. Однако возможны и другие формы зависимостей: экспоненциальная, степенная, гиперболическая и другие.
Каждая из рассматриваемых функций может быть сведена к линейной с помощью алгебраических преобразований или путем замены. По этой причине именно исследованию линейной зависимости уделяется значительное внимание.
В реальной ситуации наблюдаемые величины отклоняются от данной функциональной формы связи, поэтому в регрессионную модель включается стохастическая составляющая , которую еще называют отклонением или остатком.
В классической линейной эконометрической модели переменная s интерпретируется как случайная переменная, которая имеет нормальный закон распределения с математическим ожиданием, равным нулю, и постоянной дисперсией.
Парная регрессия. Однофакторные линейные эконометрические модели
Простейшими эконометрическими моделями являются модели парной регрессии. Парная регрессия представляет собой зависимость между двумя переменными — и , т.е. модель вида:
Здесь — зависимая переменная (результативный признак); -независимая, или объясняющая, переменная (признак-фактор). Знак означает, что между переменными и нет строгой функциональной зависимости, поэтому величина у складывается из двух составляющих:
Таким образом, — фактическое значение результативного признака; — теоретическое значение результативного признака, найденное по уравнению регрессии; — случайная величина, характеризующая отклонения между и . Случайная величина s включает влияние не учтённых в модели факторов, случайных ошибок и особенностей измерения.
В парной регрессии выбор вида математической функции (спецификация) может быть осуществлён тремя способами:
1) графическим;
2) аналитическим, т.е. исходя из теории изучаемой взаимосвязи;
3) экспериментальным.
Чаще всего эти способы применяют комплексно.
Графический способ основан на внешнем виде корреляционного поля. Напомним, что корреляционным полем называют множество точек в декартовой системе координат. Здесь — номер наблюдения, — количество наблюдений (объём статистической выборки).
Если точки корреляционного поля выстраиваются как бы вдоль гипотетической прямой, то в качестве модели парной регрессии следует брать линейную модель:
В противном случае нужно выбирать нелинейную модель.
Аналитический способ выбора типа уравнения регрессии основан на изучении материальной природы связи исследуемых признаков. Здесь важную роль играет опыт экономиста, который знаком с наработанными схемами зависимостей между социально-экономическими показателями.
При использовании экспериментального способа сравнивают величины остаточной дисперсии, рассчитанной для разных моделей:
Чем меньше величина остаточной дисперсии , тем меньше влияние не учтённых в уравнении регрессии факторов и тем лучше уравнение регрессии подходит к исходным данным.
В эконометрическом моделировании следует придерживаться принципа — чем сложнее модель, тем большее количество наблюдений требуется для её построения.
Сложность модели можно определить показателем — количеством неизвестных параметров, которые являются множителями при переменной или при функциях от переменной .
Например, для следующих моделей:
Соответственно для моделей:
При построении эконометрической модели необходимо придерживаться статистического правила:
Таким образом, если , то . Следовательно, модель можно строить, имея не менее семи наблюдений. При соответственно имеем .
Простейшими эконометрическими моделями являются однофакторные линейные модели парной регрессии. В этом случае предполагается, что между двумя исследуемыми показателями существует линейная корреляционная зависимость. В общем виде однофакторная линейная эконометрическая модель имеет вид:
где — зависимая переменная, — независимая переменная, -оцениваемые параметры, — отклонение линии регрессии от фактических наблюдений.
Чтобы найти уравнение регрессии, необходимо найти неизвестные параметры и . Их оценка осуществляется на основании статистических данных (совокупности наблюдений).
При нахождении оценок параметров уравнения регрессии возникает вопрос, каким критерием следует воспользоваться, чтобы найденная прямая наиболее точно отражала зависимость между показателями. В любом случае расчетные значения зависимой переменной, найденные с помощью уравнения регрессии, будут отклоняться истинных наблюдений.
В качестве критерия можно было бы рассматривать сумму этих отклонений. Однако, поскольку одни имеют разные знаки, то при суммировании будут взаимно «погашаться». Чтобы избежать этого, в качестве критерия предлагается рассматривать сумму квадратов этих отклонений. Этот принцип и лежит в основе метода наименьших квадратов (МНК).
Постановка задачи следующая. Уравнение регрессии будем искать в виде:
где — оценки величин и . Необходимо подобрать такие значения , которые минимизируют сумму квадратов отклонении расчетного значения от наблюдаемого , т.е. .
Заметим, что применение МНК возможно при выполнении следующих условий:
- Математическое ожидание остатков (ошибок) равно нулю.
- Случайные величины имеют одинаковую дисперсию.
- Остатки распределены по нормальному закону с математическим ожиданием, равным нулю и постоянной дисперсией.
Рассмотрим сумму квадратов отклонений как функцию двух переменных :
Для того чтобы найти минимум этой функции, вычислим ее частные производные первого порядка по переменным и приравняем их к нулю:
После преобразований получаем систему нормальных уравнений:
Решаем её относительно и , и получаем формулы, для вычисления параметров уравнения регрессии:
Отметим следующее свойство оценок МНК: линия регрессии всегда проходит через среднюю точку то есть: . С учётом этого оценку параметра можно найти, воспользовавшись соотношением:
Преобразовав формулу, имеем:
Умножив числитель и знаменатель на , получаем ещё одну формулу оценки коэффициента регрессии:
Рассмотрим экономический смысл этого коэффициента. Если в уравнении регрессии в качестве аргумента взять , то получим:
Таким образом, коэффициент регрессии в линейной модели показывает, на сколько единиц в среднем изменится зависимая переменная, если независимую переменную увеличить на единицу при прочих неизменных условиях. Значению свободного члена объяснений не дают.
Задача №1.1.
В таблице 1.1 приведены данные за восемь лет об объёме прямых иностранных инвестициях (далее ПИИ) в экономику страны и объёме валового внутреннего продукта (далее ВВП).
Необходимо найти уравнение линейной регрессии, отражающее зависимость ВВП от ПИИ.
Решение:
Введём в MS Excel данные. С помощью «Мастера диаграмм» построим точечную диаграмму — корреляционное поле (рис. 1.2).
Для упрощения расчётов составим таблицу 1.2.
Найдём оценки параметров уравнения регрессии, используя формулы:
Уравнение регрессии имеет вид:
Коэффициент регрессии показывает, что при увеличении ПИИ на 1 млрд. долларов, ВВП увеличится в среднем на 23,5982 млрд. долл.
Проверка адекватности однофакторной линейной эконометрической модели, значимости её параметров и построение прогнозов
Следующий этап эконометрического моделирования заключается в оценке качества полученного уравнения и его параметров.
Для оценки тесноты и направления связи между двумя показателями используется коэффициент парной корреляции. Его можно вычислить по формуле:
где — ковариация, а — дисперсия и соответственно.
Для вычисления коэффициента парной корреляции можно также использовать преобразованную формулу:
В отличие от коэффициента регрессии, коэффициент корреляции является показателем относительной меры связи между двумя показателями. Значения коэффициента корреляции всегда находятся в пределах:
Положительное значение коэффициента свидетельствует о прямой связи, т.е. с увеличением независимой переменной , увеличивается в среднем и значение . Если коэффициент корреляции отрицательный, то связь обратная.
Если модуль коэффициента парной корреляции близок к 1 , то линейная связь между показателями тесная. Если же коэффициент близок к 0 , то связь практически отсутствует.
Если , то между случайными величинами и существует линейная функциональная зависимость. Коэффициент корреляции равен нулю, когда случайные величины и независимы
В случае, когда и , то между случайными величинами и существует корреляционная зависимость. Причём, чем ближе значение коэффициента по модулю к единице, тем теснее линейная связь между показателями.
Таким образом, коэффициент парной корреляции характеризует тесноту и направление линейной связи между показателями. Следует отметить, что знак коэффициента корреляции всегда совпадает со знаком коэффициента регрессии.
Связь между коэффициентом парной корреляции и коэффициентом регрессии выражается следующей формулой:
Ещё одним показателем адекватности линейной модели является коэффициент детерминации . Он определяется по формуле:
где — общая дисперсия, а — дисперсия, объясняемая регрессией.
Эти показатели вычисляются по формулам:
Таким образом, коэффициент детерминации — это часть дисперсии, которая объясняет регрессию. Величина коэффициента детерминации изменяется в пределах от нуля до единицы:
Если значение близко к единице, то модель адекватна, если близко к нулю, то неадекватна.
Кроме того, коэффициент детерминации показывают, какая часть вариации (изменения) зависимой переменной объясняется вариацией независимой переменной . Для определения доли вариации за счет неучтенных в модели факторов рассчитывается т.н. коэффициент остаточной детерминации:
Рассмотренные выше коэффициенты парной корреляции и детерминации, как показатели адекватности модели, имеют между собой связь, которая выражается формулой:
т.е. коэффициент детерминации равен квадрату коэффициента корреляции.
Осуществляется также проверка значимости коэффициента корреляции, которая подразумевает проверку статистической гипотезы против альтернативной гипотезы , т.е. проверяется гипотеза, заключающаяся в том, что случайные величины и не коррелируют друг с другом.
Для проверки гипотезы рассчитывается -статистика Стьюдента:
где — число степеней свободы.
Для заданного уровня значимости (допустимой вероятности ошибки) и числа степеней свободы находится табличное значение критерия. Если , то гипотеза об отсутствии корреляционной связи между переменными отвергается, в противном случае — принимает.
Для проверки значимости параметров уравнения парной регрессии и также используется -статистика Стьюдента. Расчётные значения критерия можно найти по формулам:
В знаменателях этих дробей стоят случайные ошибки параметров эконометрической модели:
где — несмещенная оценка дисперсии остатков.
Найденные расчётные значения берут по модулю и сравнивают с табличным , которое определено по уровню значимости и числу степеней свободы . Если модуль расчётного значения больше табличного, то соответствующий параметр является значимым. В противном случае он не значим.
Замечание 1.1. Требование значимости коэффициента регрессии является обязательным. Свободный член носит вспомогательный характер. Его незначимость по критерию Стьюдента не является критичным для эконометрической модели.
Для проверки адекватности эконометрической модели используют -критерий Фишера. Расчётное значение критерия находится по формуле:
Данное число сравнивается с табличным значением распределения Фишера, найденного по заданному уровню значимости и числам степеней свободы . Если расчётное значение -критерия превышает табличное, то нулевая гипотеза о равенстве нулю коэффициента регрессии отвергается, и модель признаётся адекватной. В противном случае — гипотеза принимается.
Возможно эта страница вам будет полезна:
Задача №1.2.
По данным примера 1.1 найти значение коэффициентов парной корреляции и детерминации. Проверить значимость коэффициента корреляции, параметров регрессии и значимость модели в целом при уровне значимости = 0,05.
Согласно таблице 1.1, объём ПИИ в последнем временном периоде составлял млрд. долл. Предполагается, что прогнозное значение ПИИ в следующем году составит 120% от , т.е. млрд. долл. Требуется построить точечный и интервальный прогнозы для объёма ВВП на следующий год.
Решение:
Рассчитаем линейный коэффициент корреляции:
Близость коэффициента корреляции к единице указывает на тесную линейную связь между признаками. Коэффициент детерминации
показывает, что уравнением регрессии объясняется 98,41% дисперсии результативного признака, а на долю прочих факторов приходится 1,59%.
Проверим значимость коэффициента парной корреляции по критерию Стьюдента. Расчётное значение критерия равно:
По уровню значимости и количеству степеней свободы определим табличное значение критерия .
Расчётное значение, взятое по модулю, больше табличного. Следовательно, коэффициент корреляции является значимым с надёжностью не менее 95% .
Для оценки статистической значимости параметров регрессии рассчитаем -критерий Стьюдента. Вычислим случайные ошибки параметров и фактические значения -статистик:
Табличное значение -критерия Стьюдента при и числе степеней свободы определено выше и составляет .
Модули обоих расчётных значения больше табличного, поэтому признаём статистическую значимость параметров регрессии с надёжностью не менее 95%.
Оценим качество уравнения регрессии в целом с помощью -критерия Фишера. Рассчитаем фактическое значение -критерия:
Количество степеней свободы для критерия Фишера , . При уровне значимости табличное значение критерия равно:
Так как , то найденная эконометрическая модель является статистически значимой с надёжностью не менее 95%.
Для вычисления точечного прогноза объёма ВВП достаточно в уравнение регрессии подставить предполагаемый объём ПИИ, т.е. 30,72 млрд. долл. Точечный прогноз для ВВП будет следующим:
Ошибка прогноза составляет:
Интервальный прогноз для оценивают по формуле .
Поэтому доверительный интервал будет следующим:
Замечание 1.2. Эконометрическую модель можно считать достоверной, если построенные с помощью неё прогнозы отклоняются от фактических данных не более, чем на 10%. Модель из Задача 1.1 была построена по статистическим данным 2007-2014 гг. Фактические данные за 2015 г. составили млрд. долл. и млрд. долл. Подставив в найденное уравнение регрессии , мы оценим теоретическое (прогнозное) значение у, т.е.
Абсолютное отклонение составит:
Относительное отклонение:
Так как , то построенную модель парной регрессии можно считать адекватной и пригодной для краткосрочных прогнозов.
Оценивание параметров в однофакторных нелинейных эконометрических моделях
Необходимость построения нелинейных моделей парной регрессии приводит к некоторому усложнению преобразований данных и вычислений. Однако при современном развитии информационных технологий эти трудности вполне преодолимы.
Задача №1.3.
В таблице 1.3 приведены данные по десяти однотипным заводам, специализирующихся на ремонте шахтного оборудования в Донецком регионе. Годовой объём выпуска продукции (млн. руб.) зависит от фонда оплаты труда (млн. руб.).
Требуется:
1) средствами MS Excel построить нелинейные уравнения парной регрессии от ;
2) выбрать лучшую модель.
Решение:
Принято различать два класса уравнений нелинейных регрессий. Первый из них включает нелинейные уравнения относительно объясняющих переменных, но линейные по оцениваемым параметрам.
К ним, например, относятся: многочлены (полиномы) различных степеней
и т.д.; равносторонняя гипербола
полулогарифмическая функция
Регрессии первого класса приводятся к линейному виду заменой переменных. Дальнейшая оценка параметров производится с помощью МНК.
Например, парабола второй степени
приводится к линейному виду с помощью замены:
В результате приходим к двухфакторному уравнению
оценка параметров которого осуществляется при помощи МНК.
Равносторонняя гипербола
может быть использована для характеристики связи удельных расходов сырья, материалов, топлива от объёма выпускаемой продукции, времени обращения товаров от величины товарооборота, процента прироста заработной платы от уровня безработицы (кривая Филипса), расходов на непродовольственные товары от доходов или общей суммы расходов (кривые Энгеля) и в других случаях. Гипербола приводится к линейному уравнению заменой: . Аналогичным образом приводятся к линейному виду зависимости , и др.
Второй класс нелинейных уравнений — регрессии, нелинейные по оцениваемым параметрам. К ним, например, относятся: степенная ; показательная ; экспоненциальная . Эти модели приводятся к линейному виду логарифмированием и заменой переменных.
Покажем, как это делается на примере степенной функции :
где
Таким образом, мы применяем МНК к преобразованным данным, а затем потенцированием (обратная замена) находим искомое уравнение.
Широкое использование степенной функции связано с тем, что параметр в ней имеет чёткое экономическое истолкование — он является коэффициентом эластичности.
Такие задачи удобно решать в MS Excel. Для этого нужно выполнить следующую последовательность действий:
• ввести экспериментальные данные в столбцы (или построчно);
• на основании введённых данных построить точечную диаграмму;
• активизировать данные диаграммы, щелкнув по точкам левой кнопкой «мыши»;
• в пункте меню «Диаграмма» выбрать опцию «Добавить линию тренда…»;
• в пункте меню «Тип» выбрать «Полиномиальная (степень 2-я)» или «Логарифмическая», или «Степенная», или «Экспоненциальная»;
• в пункте «Параметры» — «Показывать уравнение на диаграмме» и «Поместить на диаграмму величину достоверности аппроксимации (R1)».
Для величины достоверности аппроксимации выполняется неравенство: . Формула расчёта (см. справку MS Excel) содержит сумму квадратов отклонений. Чем ближе к единице, тем лучше модель описывает фактические данные.
На рис. 1.3-1.6 поместим корреляционное поле, соответствующую линию регрессии, уравнение регрессии и величину достоверности аппроксимации .
Наибольшую величину достоверности аппроксимации имеет полиномиальная модель второй степени (рис. 1.4). Поэтому, на первый взгляд, эту модель можно признать лучшей.
Однако ранее было приведено статистическое правило:
Полиномиальная модель второй степени
имеет два неизвестных параметра и , которые являются множителями при переменной или при функциях от переменной . Поэтому и должно выполняться условие .
Т.к. в Задаче 1.3 имеем , то признать данную модель лучшей было бы некорректно. Отвергаем полиномиальную модель второй степени и рассматриваем остальные.
Среди оставшихся моделей наибольшую величину достоверности аппроксимации имеет экспоненциальная модель (рис. 1.6):
Введём замену и запишем модель в виде, который используется в MS Excel:
Логарифмируя обе части уравнения, получим
Следовательно, экспоненциальная модель имеет один неизвестный параметр , который является множителем при переменной . Поэтому и условие выполняется,т.к. .
Значит, лучшей моделью является экспоненциальная модель (рис. 1.6),
Задача 1.3 выполнена.
Заканчивая эту главу, заметим, что, эконометрические модели парной регрессии описаны во многих учебниках и учебных пособиях. Несмотря на свою простоту, эти модели весьма востребованы в практических задачах экономики.
Множественная регрессия в эконометрических задачах. Производственная функция Кобба-Ду гласа в эконометрическом моделировании
Американский экономист Пол Дуглас в 30-е годы XX в. наблюдал за данными перерабатывающей промышленности США на протяжении двадцати лет и заметил зависимость между экономическими показателями. Он не сумел определить функцию, описывающую эту зависимость, и обратился в 1927 г. к математику Чарльзу Коббу, который предложил следующую функцию:
где — объём выпущенной продукции; — затраты труда; — затраты производственных фондов; и — неизвестные параметры модели, определяемые с помощью МНК на основе эмпирических данных.
Так появилась производственная функция Кобба-Дугласа, принадлежащая к наиболее известным производственным функциям, широко применяемым в экономических исследованиях.
С точки зрения эконометрии эта функция — не что иное, как двух-факторная нелинейная регрессионная модель. С точки зрения математики — мультипликативная степенная функция.
Для определения неизвестных параметров этой модели прологарифмируем левую и правую части функции:
Введём замены
и получим линейную модель
С помощью МНК будем искать параметры и Система нормальных уравнений имеет вид:
Продемонстрируем на конкретных данных этапы построения производственной функции Кобба-Дугласа.
Задача №2.1.
Финансово-промышленная группа «Росслад» владеет шестнадцатью заводами по производству сахара. Имеются данные (табл. 9.3) прошлого года о выпуске продукции у (млн. руб.), затратах труда (млн. руб.) и затратах производственных фондов (ПФ) (млн. руб.).
Требуется:
A) Построить производственную функцию Кобба-Дугласа. Б) Рассчитать характеристики:
1) среднюю производительность труда;
2) среднюю фондоотдачу;
3) предельную производительность труда;
4) предельную фондоотдачу;
5) эластичность выпуска продукции по затратам труда;
6) эластичность выпуска продукции по ПФ;
7) потребность в ресурсах труда;
потребность в ПФ;
9) фондовооружённость труда;
10) предельную норму замещения затрат труда производственными фондами;
11) эластичность замещения ресурсов.
B) Найти прогноз выпуска для заданных значений . руб. и . руб.
Решение:
А) Составим расчётную таблицу 2.2.
Для наших данных система нормальных уравнений будет следующей:
Введём в рассмотрение матрицы
Запишем систему в матричном виде
Согласно методу обратной матрицы
Обратную матрицу находим с помощью Microsoft Excel. Напомним, что операции с матрицами желательно завершать нажатием клавиши «F2» и «Ctrl+Shift+Enter». Итак, имеем:
Так как
Значения неизвестных параметров:
Производственная функция Кобба-Дугласа имеет вид:
Б) Рассчитаем основные характеристики производственной функции: 1) средняя производительность труда равна:
Следовательно, с увеличением затрат труда (при неизменных затратах ПФ ) средняя производительность труда снижается. И, наоборот, увеличение затрат ПФ (при неизменных затратах труда) ведёт к росту средней производительности труда;
2) средняя фондоотдача равна:
Таким образом, с увеличением затрат ПФ (при неизменных затратах труда) средняя фондоотдача снижается. Увеличение же затрат труда (при неизменных затратах ПФ) ведёт к росту средней фондоотдачи; 3) предельная производительность труда:
Следовательно, с увеличением затрат труда (при неизменных затратах ПФ) предельная производительность труда снижается. Наоборот, увеличение затрат ПФ (при неизменных затратах труда) ведёт к росту предельной производительности труда;
4) предельная фондоотдача:
Таким образом, с увеличением затрат ПФ (при неизменных затратах труда) предельная фондоотдача снижается. Увеличение же затрат труда (при неизменных затратах ПФ) ведёт к росту предельной фондоотдачи; 5) эластичность выпуска продукции по затратам труда:
Данный показатель указывает на то, что при увеличении затрат труда на 1% выпуск продукции у предельно увеличивается на 0,2743%; 6) эластичность выпуска продукции по ПФ:
При увеличении ПФ на 1% выпуск продукции может предельно увеличиться на 0,6892%;
7) производственная функция позволяет рассчитать потребность в одном из ресурсов при заданном объеме выпуска продукции и заданной величине другого ресурса.
Потребность в ресурсах труда:
потребность в ПФ:
9) производственная функция позволяет исследовать вопросы соотношения, замещения, взаимодействия ресурсов. В частности, определяется важный экономический показатель — фондовооружённость труда:
10) взаимодействующие в рамках производственной функции ресурсы могут замещать друг друга. Предельная норма замещения затрат труда производственными фондами равна:
Предельная норма замещения зависит не только от параметров и производственной функции Кобба-Дугласа, но и от соотношения объёмов ресурсов. Знак «минус» означает, что при фиксированном объёме выпуска продукции необходимо при уменьшении одного ресурса увеличивать другой.
11) влияние соотношения объемов ресурсов на предельную норму замещения находит свое выражение в эластичности замещения ресурсов. Этот показатель определяется как отношение относительных приращений фондовооружённости труда и предельной нормы замещения ресурсов:
Эластичность замещения ресурсов для производственной функции Кобба-Дугласа всегда равна единице. Т.е. изменению фондовооружённости труда на 1% соответствует изменение предельной нормы замещения также на 1%.
В) Найдём точечный прогноз выпуска продукции для заданных значений
Задача 2.1 решена полностью.
Многофакторные линейные эконометрические модели
Ввиду чёткой интерпретации результатов наиболее широко в множественной регрессии используется линейная функция.
Рассмотрим многофакторную линейную эконометрическую модель:
Ей соответствует линейное уравнение множественной регрессии
Параметры, являющиеся множителями при независимых переменных, называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов.
Классический подход к оцениванию параметров линейной модели множественной регрессии основан на МНК:
Задача №2.2.
Открытое акционерное общество «РосСельхозХолдинг» более десяти лет производит пшеницу в своих тридцати агроцехах, расположенных в разных областях Российской Федерации. Имеются данные прошлого года (табл. 9.5) о прибыли предприятия (млн. руб.), среднегодовом
удельном весе сельскохозяйственных рабочих в составе агроцеха , среднегодовой численности персонала (тыс. чел.), среднесуточном времени простоя техники в рабочее время (часы), среднемесячных выплатах за вредность труда на одного работника (руб.), среднегодовой текучести кадров (%).
Предполагая, что между переменной и независимыми переменными существует линейная зависимость, требуется:
- Найти линейное уравнение множественной регрессии;
- С помощью алгоритма пошаговой регрессии построить эконометрическую модель с максимальным числом значимых коэффициентов при уровне значимости 0,05.
- Построить точечный и интервальный прогнозы для при допущении, что средние показатели по независимым переменным будут превышены на 5%.
Решение:
В Microsoft Excel имеется пункт меню «Сервис», который содержит надстройку «Анализ данных». В нём выбираем инструмент анализа «Регрессия». Вводим входной интервал для у и входной интервал для . Т.к. в условии задан уровень значимости , то выбираем уровень надёжности 95% . В параметрах вывода отмечаем «Новый рабочий лист» и жмём «ОК». Результаты вычислений, округлённые до четвёртого знака приведены на рис. 2.1.
- Столбец «Коэффициенты» (рис. 2.1) содержит найденные параметры уравнения регрессии. Т.о. линейная пятифакторная регрессионная модель имеет вид:
По коэффициентам регрессии можно давать объяснения. Например, если текучесть кадров увеличится на 1%, то прибыль предприятия снизится в среднем на 0,1714 млн. руб. При этом значения переменных должны оставаться неизменными. Значение свободного члена не объясняют.
- Прокомментируем данные отчета на рис. 9.8.
Множественный коэффициент корреляции характеризует тесноту линейной связи рассматриваемого набора факторов с исследуемым признаком . Границы изменения коэффициента множественной корреляции от 0 до 1. Чем ближе его значение к 1 (в нашем примере ), тем теснее линейная связь результативного признака со всем набором исследуемых факторов.
Множественный коэффициент детерминации , то дисперсия (т.е. разброс) прибыли у на 99,48% объясняется регрессией, т.е. зависимостью от показателей . Величина (т.е. 0,52%) характеризует долю дисперсии , вызванную влиянием не учтённых в модели факторов.
В разделе «Дисперсионный анализ» (рис. 9.8) на пересечении строки «Остаток» и столбца «MS» находится несмещённая оценка дисперсии остатков . Извлекая квадратный корень, получим среднее квадратическое отклонение — стандартную ошибку . В следующей строке располагается число наблюдений .
Раздел «Дисперсионный анализ» называют ANOVA-таблицей (analysis of variance). Она содержит обозначение (degree of freedom) — число степеней свободы. В уравнение регрессии входит независимых переменных (строка «Регрессия»), в строке «Остаток» содержится , что в сумме (строка «Итого») составляет .
Значимость уравнения множественной регрессии в целом определяется с помощью статистического -критерия Фишера. Вероятность того, что будет меньше фактического значения , можно оценить по формуле
Для нашей задаче:
Эту вероятность сравниваем с заданным уровнем значимости . Так как , т.е. вероятность ошибки не превысила 5%, то пятифак-торное уравнение регрессии значимо с надёжностью не менее 95%.
Последний раздел отчёта на рис. 9.8 содержит коэффициенты регрессии
В столбце «Стандартная ошибка» расположены
Для проверки значимости коэффициентов регрессии применяют статистический -критерий Стьюдента. Пусть — случайная величина, имеющая распределение Стьюдента с числом степеней свободы . Вычисляются фактические значения -критерия Стьюдента:
Они помещены в столбце «-статистика»:
Заметим, что свободный член обычно не проверяется на статистическую значимость. Вероятность того, что будет меньше фактического значения , можно оценить по формуле
Для нашей задачи (столбец «-Значение») имеем:
Эти вероятности сравниваем с заданным уровнем значимости . Так как
то оценки коэффициентов регрессии
не являются значимыми. Т.к.
то оценки коэффициентов регрессии
значимы с надёжностью не менее 95%.
Среди незначимых оценок наибольшая вероятность ошибки
поэтому переменная должна быть исключена из модели. Эта процедура повторяется до тех пор, пока все оценки коэффициентов регрессии не будут статистически значимыми.
Такой подход называют алгоритмом пошагового регрессионного анализа. После завершения алгоритма мы получим уравнение регрессии с максимальным числом значимых коэффициентов.
На рис. 9.8 в столбцах «Нижние 95%» и «Верхние 95%» содержит интервальные оценки коэффициентов регрессии. Т.к. среди этих параметров оказались незначимые, то нет смысла давать объяснения их интервальным оценкам. Это будет сделано после построения окончательной модели.
Повторяем те же действия, что и в начале решения задачи. В Microsoft Excel в пункте меню «Сервис» выбираем пакет прикладных программ «Анализ данных». Пользуемся инструментом анализа «Регрессия». Вводим входной интервал для у и входной интервал для при уровне надёжности 95%. Результаты вычислений округляем до четвёртого знака и приводим отчет на рис. 2.2.
Получена линейная четырёхфакторная эконометрическая модель:
Т.к. множественный коэффициент корреляции близок к 1, то наблюдается высокая теснота линейной связи факторов с исследуемым признаком . Т.к. множественный коэффициент детерминации , то дисперсия прибыли на 99,47% объясняется найденной регрессией. Величина (т.е. 0,53%) характеризует долю дисперсии у, вызванную влиянием не учтённых в модели факторов.
Фактическое значение критерия Фишера составляет . Оценена вероятность . Эту вероятность сравниваем с заданным уровнем значимости . Т.к. , то четырёхфакторное уравнение регрессии значимо с надёжностью не менее 95%.
Найденная вероятность больше уровня значимости . Оценка коэффициента регрессии не является значимой, поэтому переменная должна быть исключена из модели.
Вводим входной интервал для и входной интервал для при уровне надёжности 95%. Округляем данные до четвёртого знака и приводим отчёт на рис. 2.3.
Линейная трёхфакторная эконометрическая модель имеет вид:
Отчет на рис. 9.10 содержит следующую информацию. Множественный коэффициент корреляции близок к 1. Следовательно, наблюдается высокая теснота линейной связи факторов с признаком . Множественный коэффициент детерминации . Значит, дисперсия у на 99,46% объясняется найденной регрессией. Величина (т.е. 0,54%) характеризует долю дисперсии у, вызванную влиянием не учтённых в модели факторов.
Фактическое значение критерия Фишера . Получена вероятность . Т.к. , то трёхфакторное уравнение регрессии значимо с надёжностью не менее 95%.
Столбец « -Значение» содержит вероятности для коэффициентов регрессии
(свободный член не анализируется). Все вероятности оказалась меньше уровня значимости . Следовательно, все оценки коэффициентов регрессии значимы.
Алгоритм пошагового регрессионного анализа завершён. Построенная трёхфакторная модель — это уравнение регрессии с максимальным числом значимых коэффициентов.
В столбцах «Нижние 95%» и «Верхние 95%» содержит интервальные оценки параметров уравнения регрессии. Они вычислены по данным столбцов «Коэффициенты» и «Стандартная ошибка»:
Численные значения доверительных интервалов объясняют следующим образом. Например, точеная оценка с надёжностью не менее 95% может колебаться от 5,7325 до 8,8249.
- Построим точечный и интервальный прогнозы для прибыли предприятия v при допущении, что средние показатели по будут превышены на 5%.
Так как
то предполагаемые значения:
Вектор предполагаемых значений:
Точечный прогноз для среднего значения прибыли агроцеха:
Вычислим дисперсию прогноза:
Извлекая квадратный корень, найдём среднеквадратическую ошибку прогноза .
Доверительный интервал для среднего значения (математического ожидания) прогноза зависимой переменной находим по формуле:
Рассчитаем дисперсию и среднее квадратическое отклонение индивидуального прогноза:
Доверительный интервал для индивидуального значения прогноза:
Задачи 2.2 выполнено полностью.
Возможно эта страница вам будет полезна:
Границы применимости классического метода наименьших квадратов в эконометрнческом моделировании
Рассмотрим многофакторную линейную эконометрическую модель:
При построении такой модели предполагают, что выполняются следующие гипотезы.
- Спецификация модели:
где — номер наблюдения.
- Числовые значения независимых переменных являются детерминированными (не случайными) величинами. Векторы
являются линейно независимыми в пространстве . 3. Случайные величины удовлетворяют условиям. Их математические ожидания равны нулю:
Дисперсии:
Причём значения математических ожиданий и дисперсий ошибок не зависят от номера наблюдений .
- При ковариации ошибок равны нулю:
Т.е. для разных наблюдений имеет место статистическая независимость (некоррелированность) ошибок.
При выполнении гипотез 1 — 5 эконометрическая модель называется нормальной линейной регрессионной моделью.
Важнейшую роль в эконометрическом анализе играет следующая теорема, формулировка которой приводится без доказательства.
Теорема Гаусса-Маркова. Предположим, что для линейной модели множественной регрессии выполняются гипотезы 1 — 4. Тогда оценки коэффициентов регрессии , найденные с помощью МНК, являются наиболее эффективными (в смысле наименьшей дисперсии) среди всех линейных несмещённых оценок.
Заметим, что при невыполнении отдельных гипотез теорема Гаусса-Маркова становится неприменимой. Следовательно, и классический МНК не будет давать достоверных результатов.
Нарушение условия линейной независимости векторов (гипотеза
2) приводит к нежелательному явлению, называемому мультиколлинеар-ностью. Условие независимости дисперсии ошибок от номера наблюдения (гипотеза 3) называется гомоскедастичностью. Нарушение данного условия называют гетероскедастичностью. Невыполнение гипотезы 4 называется автокорреляцией остатков.
В эконометрическом моделировании надо уметь выявлять эти нежелательные явления и устранять их. При невозможности устранения — научиться моделировать в условиях невозможности применения классического МНК.
Мультиколлинеарность в массиве независимых переменных эконометрической модели
Мультиколлинеарность означает существование тесной линейной зависимости, или сильной корреляции, между двумя или более объясняющими переменными.
Она негативно влияет на количественные характеристики эконометриче-ской модели, или делает её построение вообще невозможным.
Задача №2.3.
На производительность труда однотипных малых предприятий влияет ряд факторов, среди которых: удельный вес рабочих на предприятии ; премии и другие вознаграждения на одного работника (ден. ед.); оборачиваемость нормируемых оборотных средств (дни). Исследовать на мультиколлинеарность переменные . При наличии мультиколлинеарности предложить меры по её устранению. Статистические данные по десяти предприятиям приведены в табл. 2.4. Уровень значимости .
Решение:
Исследуем мультпколлинеарность в массиве независимых переменных при помощи алгоритма Фаррара-Глобера. Расчёты проведём в Microsoft Excel, округляя числа до четвёртого знака после запятой.
- Нахождение корреляционной матрицы выполним с помощью встроенной функции «Корреляция» (Сервиз—>Анализ данных —> Корреляция), которая позволяет находить коэффициенты корреляции более чем двух факторов:
Её определитель: Он вычислен с помощью функции МОПРЕД().
При имеется полная мультиколлинеарность, а если , то мультиколлинеарность отсутствует. В нашем случае , поэтому продолжим исследование на наличие мультиколлинеарности.
- Определим фактическое значение критерия «хи»-квадрат Пирсона:
Фактическое значение критерия сравнивается с табличным значением при степенях свободы и уровне значимости : Т.к. то в массиве объясняющих переменных существует мультиколлинеарность.
- С помощью функции МОБР() определим обратную матрицу:
- Вычисление -критериев Фишера осуществляем по формуле
где — диагональные элементы матрицы . Имеем
Фактические значения критериев сравниваются с табличным при степенях свободы и уровне значимости :
Т.к. , то независимые переменные и мультиколлинеарны с другими.
- Находим частные коэффициенты корреляции по формуле
где — элемент матрицы , содержащийся в -ой строке и -ом столбце; и — диагональные элементы матрицы . Получаем:
Вычисление -критериев Стьюдента осуществляем по формуле
Имеем
Фактические значения критериев сравниваются с табличным при степенях свободы и уровне значимости .
Т.к. , то между независимыми переменными и существует мультиколлинеарность.
Для того, чтобы избавиться от мультиколлинеарности, можно исключить одну из переменных мультиколлинеарной пары и . Удалить следует переменную , т.к. у неё больше значение -критерия. Следовательно, она больше влияет на общую мультиколлинеарность модели. Однако этот шаг не должен противоречить экономическому смыслу задачи.
Гетсроскедастичность в эконометрическом моделировании
Условие независимости дисперсии ошибок от номера наблюдения называется гомоскедастичностью. Нарушение данного условия вызывает нежелательное явление, называемое гетероскедастичиостью.
Гетероскедастичность возникает, когда значения переменных в уравнении регрессии сильно отличаются в разных наблюдениях, т.е. если анализируемые объекты неоднородны. Неоднородность объектов может отражаться в несопоставимости их «размеров».
Например, в одну выборку объединены крупные и мелкие банки, у которых анализируется зависимость прибыли от величины активов . В этом случае можно ожидать, что для крупных банков колебание прибыли будет выше, чем для мелких. Величина колебаний повлияет на дисперсию ошибок.
Неоднородность может также проявляться, когда в одну выборку объединяются предприятия разного профиля деятельности.
Часто при исследовании совокупности данных на гетероскедастичность предполагается, что дисперсия остатков пропорциональна квадрату значений одной из независимых переменных .
В этом случае наиболее эффективен параметрический тест Гольд-фельда-Квандта. Опишем его алгоритм.
Задача №2.4.
В таблице 2.5 приведены данные по зависимой переменной и независимым переменным . Требуется проверить наличие гетероскедастичности с помощью параметрического теста Гольд-фельда-Квандта при уровне значимости .
Решение:
Применим параметрический тест Гольдфельда-Квандта.
Предположим, что дисперсия остатков пропорциональна квадрату значений одной из независимых переменных . Графически определим эту переменную. Построим поля парной корреляции (рис. 2.4 — 2.6).
Как видно из рис. 2.4 — 2.6 источником гетероскедастичности является, скорее всего, переменная .
Данные примут вид (табл. 2.6).
В MS Excel в пункте меню «Сервис» выбираем надстройку «Анализ данных». Пользуемся инструментом анализа «Регрессия». Вводим входной интервал для и входной интервал для при уровне надёжности 95%. Имеем следующие модели:
Рассмотрим
простейшую модель парной регрессии –
линейную регрессию. Линейная регрессия
находит широкое применение в эконометрике
ввиду четкой экономической интерпретации
ее параметров.
Линейная
регрессия сводится к нахождению уравнения
вида
или . |
(4) |
Уравнение
вида позволяет
по заданным значениям факторанаходить
теоретические значения результативного
признака, подставляя в него фактические
значения фактора.
Построение
линейной регрессии сводится к оценке
ее параметров – и.
Классический подход к оцениванию
параметров линейной регрессии основан
на методе наименьших квадратов (МНК).
МНК позволяет получить такие оценки
параметрови,
при которых сумма квадратов отклонений
фактических значений результативного
признакаот
теоретическихминимальна:
. |
(5) |
Т. е. из всего
множества линий линия регрессии на
графике выбирается так, чтобы сумма
квадратов расстояний по вертикали между
точками и этой линией была бы минимальной
в соответствии с рис.
2.
Рис. 2. Линия
регрессии с минимальной дисперсией
остатков
Как известно
из курса математического анализа, чтобы
найти минимум функции (5), надо вычислить
частные производные по каждому из
параметров ии
приравнять их к нулю. Обозначимчерез,
тогда
|
(6) |
После
несложных преобразований получим
следующую систему линейных уравнений
для оценки параметров и:
(7) |
Решая систему
уравнений (7), найдем искомые оценки
параметров и.
Можно воспользоваться следующими
готовыми формулами, которые следуют
непосредственно из решения системы
(7):
, , |
(8) |
где –
ковариация признакови,
–
дисперсия признака и
, ,,.
Ковариация
– числовая характеристика совместного
распределения двух случайных величин,
равная математическому ожиданию
произведения отклонений этих случайных
величин от их математических ожиданий.
Дисперсия – характеристика случайной
величины, определяемая как математическое
ожидание квадрата отклонения случайной
величины от ее математического ожидания.
Математическое ожидание – сумма
произведений значений случайной величины
на соответствующие вероятности.
Параметр называется
коэффициентом регрессии. Его величина
показывает среднее изменение результата
с изменением фактора на одну единицу.
Возможность
четкой экономической интерпретации
коэффициента регрессии сделала линейное
уравнение регрессии достаточно
распространенным в эконометрических
исследованиях.
Формально –
значениепри.
Если признак-факторне
может иметь нулевого значения, то
вышеуказанная трактовка свободного
членане
имеет смысла, т. е. параметрможет
не иметь экономического содержания.
Уравнение
регрессии всегда дополняется показателем
тесноты связи. При использовании линейной
регрессии в качестве такого показателя
выступает линейный коэффициент
корреляции ,
который можно рассчитать по следующим
формулам:
. |
(9) |
Линейный
коэффициент корреляции находится в
пределах .
Чем ближе абсолютное значениек
единице, тем сильнее линейная связь
между факторами (приимеем
строгую функциональную зависимость).
Но следует иметь в виду, что близость
абсолютной величины линейного коэффициента
корреляции к нулю еще не означает
отсутствия связи между признаками. При
другой (нелинейной) спецификации модели
связь между признаками может оказаться
достаточно тесной.
Для оценки
качества подбора линейной функции
рассчитывается квадрат линейного
коэффициента корреляции ,
называемый коэффициентом детерминации.
Коэффициент детерминации характеризует
долю дисперсии результативного
признака,
объясняемую регрессией, в общей дисперсии
результативного признака
, |
(10) |
где ,.
Соответственно
величина характеризует
долю дисперсии,
вызванную влиянием остальных не учтенных
в модели факторов.
После того
как найдено уравнение линейной регрессии,
проводится оценка значимости как
уравнения в целом, так и отдельных его
параметров.
Проверить
значимость уравнения регрессии – значит
установить, соответствует ли математическая
модель, выражающая зависимость между
переменными, экспериментальным данным
и достаточно ли включенных в уравнение
объясняющих переменных (одной или
нескольких) для описания зависимой
переменной. Чтобы иметь общее суждение
о качестве модели из относительных
отклонений по каждому наблюдению,
определяют среднюю ошибку аппроксимации:
. |
(11) |
Средняя
ошибка аппроксимации не должна превышать
8–10 %.
Оценка
значимости уравнения регрессии в целом
производится на основе -критерия
Фишера, которому предшествует дисперсионный
анализ. В математической статистике
дисперсионный анализ рассматривается
как самостоятельный инструмент
статистического анализа. В эконометрике
он применяется как вспомогательное
средство для изучения качества
регрессионной модели.
Согласно
основной идее дисперсионного анализа
общая сумма квадратов отклонений
переменной от
среднего значенияраскладывается
на две части – «объясненную» и
«необъясненную»:
, |
(12) |
где –
общая сумма квадратов отклонений;
–
сумма квадратов отклонений,
объясненная регрессией (или факторная
сумма квадратов отклонений);
–
остаточная сумма квадратов
отклонений, характеризующая влияние
неучтенных в модели факторов.
Схема
дисперсионного анализа имеет вид,
представленный в табл. 2 (–
число наблюдений,–
число параметров при переменной).
Т а б л и ц а
2.Схема дисперсионного анализа
Компонент |
Сумма |
Число |
Дисперсия |
Общая |
|||
Факторная |
|||
Остаточная |
Определение
дисперсии на одну степень свободы
приводит дисперсии к сравнимому виду.
Сопоставляя факторную и остаточную
дисперсии в расчете на одну степень
свободы, получим величину -критерия
Фишера:
. |
(13) |
Фактическое
значение -критерия
Фишера (2.10) сравнивается с табличным
значениемпри
уровне значимостии
степенях свободыи.
При этом, если фактическое значение-критерия
больше табличного, то признается
статистическая значимость уравнения
в целом.
Для парной
линейной регрессии ,
поэтому
. |
(14) |
Величина -критерия
связана с коэффициентом детерминации,
и ее можно рассчитать по формуле
. |
(15) |
В парной
линейной регрессии оценивается значимость
не только уравнения в целом, но и отдельных
его параметров. С этой целью по каждому
из параметров определяется его стандартная
ошибка: и.
Стандартная
ошибка коэффициента регрессии определяется
по формуле
, |
(16) |
где –
остаточная дисперсия на одну степень
свободы.
Величина
стандартной ошибки совместно с —
распределением Стьюдента пристепенях
свободы применяется для проверки
существенности коэффициента регрессии
и для расчета его доверительного
интервала.
Для
оценки существенности коэффициента
регрессии его величина сравнивается с
его стандартной ошибкой, т. е. определяется
фактическое значение —
критерия Стьюдента:,
которое затем сравнивается с табличным
значением при определенном уровне
значимостии
числе степеней свободы.
Доверительный интервал для коэффициента
регрессии определяется как.
Поскольку знак коэффициента регрессии
указывает на рост результативного
признакапри
увеличении признака-фактора(),
уменьшение результативного признака
при увеличении признака-фактора ()
или его независимость от независимой
переменной ()(рис.
3),
то границы доверительного интервала
для коэффициента регрессии не должны
содержать противоречивых результатов,
например, .
Такого рода запись указывает, что
истинное значение коэффициента регрессии
одновременно содержит положительные
и отрицательные величины и даже ноль,
чего не может быть.
Рис. 3. Наклон
линии регрессии в зависимости от значения
параметра
Стадартная
ошибка параметра определяется
по формуле:
. |
(17) |
Процедура
оценивания существенности данного
параметра не отличается от рассмотренной
выше для коэффициента регрессии.
Вычисляется -критерий:,
его величина сравнивается с табличным
значением пристепенях
свободы.
Значимость
линейного коэффициента корреляции
проверяется на основе величины ошибки
коэффициента корреляции
. |
(18) |
Фактическое
значение -критерия
Стьюдента определяется как.
Существует
связь между -критерием
Стьюдента и-критерием
Фишера:
. |
(19) |
В прогнозных
расчетах по уравнению регрессии
определяется предсказываемое значение
как точечный прогнозпри,
т. е. путем подстановки в уравнение
регрессии y = a + bx соответствующего
значения.
Однако точечный прогноз явно не реален.
Поэтому он дополняется расчетом
стандартной ошибки,
т. е.,
и соответственно интервальной оценкой
прогнозного значения:
,
где ,
а–
средняя ошибка прогнозируемого
индивидуального значения
. |
(20) |
Рассмотрим пример.
По данным проведенного опроса восьми
групп семей (табл. 3) известны данные
связи расходов населения на продукты
питания с уровнем доходов семьи за месяц
на семью из четырех человек.
Т а б л и ц а
3.Исходные данные
Показатель |
Значения |
|||||||
Расходы |
||||||||
Доходы |
Предположим,
что связь между доходами семьи и расходами
на продукты питания линейная. Для
подтверждения нашего предположения
построим поле корреляции в масштабе
(у/10; x/10).
Рис. 4. Исходные
данные
По графику
видно, что точки выстраиваются в некоторую
прямую линию.
Для удобства
дальнейших вычислений составим таблицу
в масштабе (x/10; y/10).
Т а б л и ц а
4.Пример расчета
Число |
, |
||||||||
1,2 |
0,9 |
1,08 |
1,44 |
0,81 |
1,038 |
–0,138 |
0,0190 |
15,33 |
|
3,1 |
1,2 |
3,72 |
9,61 |
1,44 |
1,357 |
–0,157 |
0,0246 |
13,08 |
|
5,3 |
1,8 |
9,54 |
28,09 |
3,24 |
1,726 |
0,074 |
0,0055 |
4,11 |
|
7,4 |
2,2 |
16,28 |
54,76 |
4,84 |
2,079 |
0,121 |
0,0146 |
5,50 |
|
9,6 |
2,6 |
24,96 |
92,16 |
6,76 |
2,449 |
0,151 |
0,0228 |
5,81 |
|
11,8 |
2,9 |
34,22 |
139,24 |
8,41 |
2,818 |
0,082 |
0,0067 |
2,83 |
|
14,5 |
3,3 |
47,85 |
210,25 |
10,89 |
3,272 |
0,028 |
0,0008 |
0,85 |
|
18,7 |
3,8 |
71,06 |
349,69 |
14,44 |
3,978 |
–0,178 |
0,0317 |
4,68 |
|
Итого |
71,6 |
18,7 |
208,71 |
885,24 |
50,83 |
18,717 |
–0,017 |
0,1257 |
52,19 |
Среднее |
8,95 |
2,34 |
26,09 |
110,66 |
6,35 |
2,34 |
– |
0,0157 |
6,52 |
5,53 |
0,935 |
– |
– |
– |
– |
– |
– |
– |
|
30,56 |
0,874 |
– |
– |
– |
– |
– |
– |
– |
Рассчитаем
параметры линейного уравнения парной
регрессии .
Для этого воспользуемся формулами (8):
;
.
Получили
уравнение: =
0,836 + 0,168·x. Т. е. с увеличением дохода
семьи на 1000 р. расходы на питание
увеличиваются на 168 р.
Как было
указано выше, уравнение линейной
регрессии всегда дополняется показателем
тесноты связи – линейным коэффициентом
корреляции .
Для этого воспользуемся формулой (9)
.
Близость
коэффициента корреляции к 1 указывает
на тесную линейную связь между признаками.
Коэффициент
детерминации (примерно
тот же результат получим, если воспользуемся
формулой (10)) показывает, что уравнением
регрессии объясняется 98,7 % дисперсии
результативного признака, а на долю
прочих факторов приходится лишь 1,3 %.
Оценим
качество уравнения регрессии в целом
с помощью -критерия
Фишера. Сосчитаем фактическое
значение-критерия,
воспользовавшись формулой (15)
.
Табличное
значение (,,):.
Так как,
то признается статистическая значимость
уравнения в целом.
Для оценки
статистической значимости коэффициентов
регрессии и корреляции рассчитаем -критерий
Стьюдента и доверительные интервалы
каждого из показателей. Рассчитаем
случайные ошибки параметров линейной
регрессии и коэффициента корреляции
:
,
,
.
Фактические
значения -статистик:
, ,.
Табличное
значение -критерия
Стьюдента прии
числе степеней свободыесть.
Так как,и,
то признаем статистическую значимость
параметров регрессии и показателя
тесноты связи. Рассчитаем доверительные
интервалы для параметров регрессиии:и.
Получим, чтои.
Cреднюю
ошибку аппроксимации находим по
формуле ,говорит
о хорошем качестве уравнения регрессии,
т. е. свидетельствует о хорошем подборе
модели к исходным данным.
И, наконец,
найдем прогнозное значение результативного
фактора при
значении признака-фактора, составляющем
110 % от среднего уровня,
т. е. найдем расходы на питание, если
доходы семьи составят 9,85 тыс. р.
(тыс.
р.).
Значит, если
доходы семьи составят 9,845 тыс. р., то
расходы на питание будут 2,490 тыс. р.
Найдем
доверительный интервал прогноза. Ошибка
прогноза
,
а доверительный
интервал ():
.
Т. е. прогноз
является статистически надежным. Теперь
на одном графике изобразим исходные
данные и линию регрессии.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Регрессия позволяет прогнозировать зависимую переменную на основании значений фактора. В
MS
EXCEL
имеется множество функций, которые возвращают не только наклон и сдвиг линии регрессии, характеризующей линейную взаимосвязь между факторами, но и регрессионную статистику. Здесь рассмотрим простую линейную регрессию, т.е. прогнозирование на основе одного фактора.
Disclaimer
: Данную статью не стоит рассматривать, как пересказ главы из учебника по статистике. Статья не обладает ни полнотой, ни строгостью изложения положений статистической науки. Эта статья – о применении MS EXCEL для целей
Регрессионного анализа.
Теоретические отступления приведены лишь из соображения логики изложения. Использование данной статьи для изучения
Регрессии
– плохая идея.
Статья про
Регрессионный анализ
получилась большая, поэтому ниже для удобства приведены ее разделы:
- Немного теории и основные понятия
- Предположения линейной регрессионной модели
- Задачи регрессионного анализа
- Оценка неизвестных параметров линейной модели (используя функции MS EXCEL)
- Оценка неизвестных параметров линейной модели (через статистики выборок)
- Оценка неизвестных параметров линейной модели (матричная форма)
- Построение линии регрессии
- Коэффициент детерминации
- Стандартная ошибка регрессии
- Стандартные ошибки и доверительные интервалы для наклона и сдвига
- Проверка значимости взаимосвязи переменных
- Доверительные интервалы для нового наблюдения Y и среднего значения
- Проверка адекватности линейной регрессионной модели
Примечание
: Если прогнозирование переменной осуществляется на основе нескольких факторов, то имеет место
множественная регрессия
.
Чтобы разобраться, чем может помочь MS EXCEL при проведении регрессионного анализа, напомним вкратце теорию, введем термины и обозначения, которые могут отличаться в зависимости от различных источников.
Примечание
: Для тех, кому некогда, незачем или просто не хочется разбираться в теоретических выкладках предлагается сразу перейти к вычислительной части —
оценке неизвестных параметров линейной модели
.
Немного теории и основные понятия
Пусть у нас есть массив данных, представляющий собой значения двух переменных Х и Y. Причем значения переменной Х мы можем произвольно задавать (контролировать) и использовать эту переменную для предсказания значений зависимой переменной Y. Таким образом, случайной величиной является только переменная Y.
Примером такой задачи может быть производственный процесс изготовления некого волокна, причем
прочность этого волокна
(Y) зависит только от
рабочей температуры процесса
в реакторе (Х), которая задается оператором.
Построим
диаграмму рассеяния
(см.
файл примера лист Линейный
), созданию которой
посвящена отдельная статья
. Вообще, построение
диаграммы рассеяния
для целей
регрессионного анализа
де-факто является стандартом.
СОВЕТ
: Подробнее о построении различных типов диаграмм см. статьи
Основы построения диаграмм
и
Основные типы диаграмм
.
Приведенная выше
диаграмма рассеяния
свидетельствует о возможной
линейной взаимосвязи
между Y от Х: очевидно, что точки данных в основном располагаются вдоль прямой линии.
Примечание
: Наличие даже такой очевидной
линейной взаимосвязи
не может являться доказательством о наличии причинной взаимосвязи переменных. Наличие
причинной
взаимосвязи не может быть доказано на основании только анализа имеющихся измерений, а должно быть обосновано с помощью других исследований, например теоретических выкладок.
Примечание
: Как известно, уравнение прямой линии имеет вид
Y
=
m
*
X
+
k
, где коэффициент
m
отвечает за наклон линии (
slope
),
k
– за сдвиг линии по вертикали (
intercept
),
k
равно значению Y при Х=0.
Предположим, что мы можем зафиксировать переменную Х (
рабочую температуру процесса
) при некотором значении Х
i
и произвести несколько наблюдений переменной Y (
прочность нити
). Очевидно, что при одном и том же значении Хi мы получим различные значения Y. Это обусловлено влиянием других факторов на Y. Например, локальные колебания давления в реакторе, концентрации раствора, наличие ошибок измерения и др. Предполагается, что воздействие этих факторов имеет случайную природу и для каждого измерения имеются одинаковые условия проведения эксперимента (т.е. другие факторы не изменяются).
Полученные значения Y, при заданном Хi, будут колебаться вокруг некого
значения
. При увеличении количества измерений, среднее этих измерений, будет стремиться к
математическому ожиданию
случайной величины Y (при Х
i
) равному μy(i)=Е(Y
i
).
Подобные рассуждения можно привести для любого значения Хi.
Чтобы двинуться дальше, воспользуемся материалом из раздела
Проверка статистических гипотез
. В статье о
проверке гипотезы о среднем значении генеральной совокупности
в качестве
нулевой
гипотезы
предполагалось равенство неизвестного значения μ заданному μ0.
В нашем случае
простой линейной регрессии
в качестве
нулевой
гипотезы
предположим, что между переменными μy(i) и Хi существует линейная взаимосвязь μ
y(i)
=α* Х
i
+β. Уравнение μ
y(i)
=α* Х
i
+β можно переписать в обобщенном виде (для всех Х и μ
y
) как μ
y
=α* Х +β.
Для наглядности проведем прямую линию соединяющую все μy(i).
Данная линия называется
регрессионной линией генеральной совокупности
(population regression line), параметры которой (
наклон
a и
сдвиг β
) нам не известны (по аналогии с
гипотезой о среднем значении генеральной совокупности
, где нам было неизвестно истинное значение μ).
Теперь сделаем переход от нашего предположения, что μy=a* Х +
β
, к предсказанию значения случайной переменной Y в зависимости от значения контролируемой переменной Х. Для этого уравнение связи двух переменных запишем в виде Y=a*X+β+ε, где ε — случайная ошибка, которая отражает суммарный эффект влияния других факторов на Y (эти «другие» факторы не участвуют в нашей модели). Напомним, что т.к. переменная Х фиксирована, то ошибка ε определяется только свойствами переменной Y.
Уравнение Y=a*X+b+ε называют
линейной регрессионной моделью
. Часто Х еще называют
независимой переменной
(еще
предиктором
и
регрессором
, английский термин
predictor
,
regressor
), а Y –
зависимой
(или
объясняемой
,
response
variable
). Так как
регрессор
у нас один, то такая модель называется
простой линейной регрессионной моделью
(
simple
linear
regression
model
). α часто называют
коэффициентом регрессии.
Предположения линейной регрессионной модели перечислены в следующем разделе.
Предположения линейной регрессионной модели
Чтобы модель линейной регрессии Yi=a*Xi+β+ε
i
была адекватной — требуется:
- Ошибки ε
i
должны быть независимыми переменными; - При каждом значении Xi ошибки ε
i
должны быть иметь нормальное распределение (также предполагается равенство нулю математического ожидания, т.е. Е[ε
i
]=0); - При каждом значении Xi ошибки ε
i
должны иметь равные дисперсии (обозначим ее σ
2
).
Примечание
: Последнее условие называется
гомоскедастичность
— стабильность, гомогенность дисперсии случайной ошибки e. Т.е.
дисперсия
ошибки σ
2
не должна зависеть от значения Xi.
Используя предположение о равенстве математического ожидания Е[ε
i
]=0 покажем, что μy(i)=Е[Yi]:
Е[Yi]= Е[a*Xi+β+ε
i
]= Е[a*Xi+β]+ Е[ε
i
]= a*Xi+β= μy(i), т.к. a, Xi и β постоянные значения.
Дисперсия
случайной переменной Y равна
дисперсии
ошибки ε, т.е. VAR(Y)= VAR(ε)=σ
2
. Это является следствием, что все значения переменной Х являются const, а VAR(ε)=VAR(ε
i
).
Задачи регрессионного анализа
Для проверки гипотезы о линейной взаимосвязи переменной Y от X делают выборку из генеральной совокупности (этой совокупности соответствует
регрессионная линия генеральной совокупности
, т.е. μy=a* Х +β). Выборка будет состоять из n точек, т.е. из n пар значений {X;Y}.
На основании этой выборки мы можем вычислить оценки наклона a и сдвига β, которые обозначим соответственно
a
и
b
. Также часто используются обозначения â и b̂.
Далее, используя эти оценки, мы также можем проверить гипотезу: имеется ли линейная связь между X и Y статистически значимой?
Таким образом:
Первая задача
регрессионного анализа
– оценка неизвестных параметров (
estimation
of
the
unknown
parameters
). Подробнее см. раздел
Оценки неизвестных параметров модели
.
Вторая задача
регрессионного анализа
–
Проверка адекватности модели
(
model
adequacy
checking
).
Примечание
: Оценки параметров модели обычно вычисляются
методом наименьших квадратов
(МНК),
которому посвящена отдельная статья
.
Оценка неизвестных параметров линейной модели (используя функции MS EXCEL)
Неизвестные параметры
простой линейной регрессионной модели
Y=a*X+β+ε оценим с помощью
метода наименьших квадратов
(в
статье про МНК подробно описано этот метод
).
Для вычисления параметров линейной модели методом МНК получены следующие выражения:
Таким образом, мы получим уравнение прямой линии Y=
a
*X+
b
, которая наилучшим образом аппроксимирует имеющиеся данные.
Примечание
: В статье про
метод наименьших квадратов
рассмотрены случаи аппроксимации
линейной
и
квадратичной функцией
, а также
степенной
,
логарифмической
и
экспоненциальной функцией
.
Оценку параметров в MS EXCEL можно выполнить различными способами:
- с помощью функций
НАКЛОН()
и
ОТРЕЗОК()
; - с помощью функции
ЛИНЕЙН()
; см. статьюФункция MS EXCEL ЛИНЕЙН()
- формулами через статистики выборок
;
- в матричной форме
;
- с помощью
инструмента Регрессия надстройки Пакет Анализа
.
Сначала рассмотрим функции
НАКЛОН()
,
ОТРЕЗОК()
и
ЛИНЕЙН()
.
Пусть значения Х и Y находятся соответственно в диапазонах
C
23:
C
83
и
B
23:
B
83
(см.
файл примера
внизу статьи).
Примечание
: Значения двух переменных Х и Y можно сгенерировать, задав тренд и величину случайного разброса (см. статью
Генерация данных для линейной регрессии в MS EXCEL
).
В MS EXCEL наклон прямой линии
а
(
оценку
коэффициента регрессии
), можно найти по
методу МНК
с помощью функции
НАКЛОН()
, а сдвиг
b
(
оценку
постоянного члена
или
константы регрессии
), с помощью функции
ОТРЕЗОК()
. В английской версии это функции SLOPE и INTERCEPT соответственно.
Аналогичный результат можно получить с помощью функции
ЛИНЕЙН()
, английская версия LINEST (см.
статью об этой функции
).
Формула
=ЛИНЕЙН(C23:C83;B23:B83)
вернет наклон
а
. А формула =
ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83);2)
— сдвиг
b
. Здесь требуются пояснения.
Функция
ЛИНЕЙН()
имеет 4 аргумента и возвращает целый массив значений:
ЛИНЕЙН(известные_значения_y; [известные_значения_x]; [конст]; [статистика])
Если 4-й аргумент
статистика
имеет значение ЛОЖЬ или опущен, то функция
ЛИНЕЙН()
возвращает только оценки параметров модели:
a
и
b
.
Примечание
: Остальные значения, возвращаемые функцией
ЛИНЕЙН()
, нам потребуются при вычислении
стандартных ошибок
и для
проверки значимости регрессии
. В этом случае аргумент
статистика
должен иметь значение ИСТИНА.
Чтобы вывести сразу обе оценки:
- в одной строке необходимо выделить 2 ячейки,
- ввести формулу в
Строке формул
- нажать
CTRL
+
SHIFT
+
ENTER
(см. статью проформулы массива
).
Если в
Строке формул
выделить формулу =
ЛИНЕЙН(C23:C83;B23:B83)
и нажать
клавишу F9
, то мы увидим что-то типа {3,01279389265416;154,240057900613}. Это как раз значения
a
и
b
. Как видно, оба значения разделены точкой с запятой «;», что свидетельствует, что функция вернула значения «в нескольких ячейках одной строки».
Если требуется вывести параметры линии не в одной строке, а одном столбце (ячейки друг под другом), то используйте формулу =
ТРАНСП(ЛИНЕЙН(C23:C83;B23:B83))
. При этом выделять нужно 2 ячейки в одном столбце. Если теперь выделить новую формулу и нажать клавишу F9, то мы увидим что 2 значения разделены двоеточием «:», что означает, что значения выведены в столбец (функция
ТРАНСП()
транспонировала строку в столбец
).
Чтобы разобраться в этом подробнее необходимо ознакомиться с
формулами массива
.
Чтобы не связываться с вводом
формул массива
, можно
использовать функцию ИНДЕКС()
. Формула =
ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83);1)
или просто
ЛИНЕЙН(C23:C83;B23:B83)
вернет параметр, отвечающий за наклон линии, т.е.
а
. Формула
=ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83);2)
вернет параметр
b
.
Оценка неизвестных параметров линейной модели (через статистики выборок)
Наклон линии, т.е. коэффициент
а
, можно также вычислить через
коэффициент корреляции
и
стандартные отклонения выборок
:
=
КОРРЕЛ(B23:B83;C23:C83) *(СТАНДОТКЛОН.В(C23:C83)/ СТАНДОТКЛОН.В(B23:B83))
Вышеуказанная формула математически эквивалентна отношению
ковариации
выборок Х и Y и
дисперсии
выборки Х:
=
КОВАРИАЦИЯ.В(B23:B83;C23:C83)/ДИСП.В(B23:B83)
И, наконец, запишем еще одну формулу для нахождения сдвига
b
. Воспользуемся тем фактом, что
линия регрессии
проходит через точку
средних значений
переменных Х и Y.
Вычислив
средние значения
и подставив в формулу ранее найденный наклон
а
, получим сдвиг
b
.
Оценка неизвестных параметров линейной модели (матричная форма)
Также параметры
линии регрессии
можно найти в матричной форме (см.
файл примера лист Матричная форма
).
В формуле символом β обозначен столбец с искомыми параметрами модели: β0 (сдвиг
b
), β1 (наклон
a
).
Матрица Х равна:
Матрица
Х
называется
регрессионной матрицей
или
матрицей плана
. Она состоит из 2-х столбцов и n строк, где n – количество точек данных. Первый столбец — столбец единиц, второй – значения переменной Х.
Матрица
Х
T
– это
транспонированная матрица
Х
. Она состоит соответственно из n столбцов и 2-х строк.
В формуле символом
Y
обозначен столбец значений переменной Y.
Чтобы
перемножить матрицы
используйте функцию
МУМНОЖ()
. Чтобы
найти обратную матрицу
используйте функцию
МОБР()
.
Пусть дан массив значений переменных Х и Y (n=10, т.е.10 точек).
Слева от него достроим столбец с 1 для матрицы Х.
Записав формулу
=
МУМНОЖ(МОБР(МУМНОЖ(ТРАНСП(B7:C16);(B7:C16))); МУМНОЖ(ТРАНСП(B7:C16);(D7:D16)))
и введя ее как
формулу массива
в 2 ячейки, получим оценку параметров модели.
Красота применения матричной формы полностью раскрывается в случае
множественной регрессии
.
Построение линии регрессии
Для отображения
линии регрессии
построим сначала
диаграмму рассеяния
, на которой отобразим все точки (см.
начало статьи
).
Для построения прямой линии используйте вычисленные выше оценки параметров модели
a
и
b
(т.е. вычислите
у
по формуле
y
=
a
*
x
+
b
) или функцию
ТЕНДЕНЦИЯ()
.
Формула =
ТЕНДЕНЦИЯ($C$23:$C$83;$B$23:$B$83;B23)
возвращает расчетные (прогнозные) значения ŷi для заданного значения Хi из столбца
В2
.
Примечание
:
Линию регрессии
можно также построить с помощью функции
ПРЕДСКАЗ()
. Эта функция возвращает прогнозные значения ŷi, но, в отличие от функции
ТЕНДЕНЦИЯ()
работает только в случае одного регрессора. Функция
ТЕНДЕНЦИЯ()
может быть использована и в случае
множественной регрессии
(в этом случае 3-й аргумент функции должен быть ссылкой на диапазон, содержащий все значения Хi для выбранного наблюдения i).
Как видно из диаграммы выше
линия тренда
и
линия регрессии
не обязательно совпадают: отклонения точек от
линии тренда
случайны, а МНК лишь подбирает линию наиболее точно аппроксимирующую случайные точки данных.
Линию регрессии
можно построить и с помощью встроенных средств диаграммы, т.е. с помощью инструмента
Линия тренда.
Для этого выделите диаграмму, в меню выберите
вкладку Макет
, в
группе Анализ
нажмите
Линия тренда
, затем
Линейное приближение.
В диалоговом окне установите галочку
Показывать уравнение на диаграмме
(подробнее см. в
статье про МНК
).
Построенная таким образом линия, разумеется, должна совпасть с ранее построенной нами
линией регрессии,
а параметры уравнения
a
и
b
должны совпасть с параметрами уравнения отображенными на диаграмме.
Примечание:
Для того, чтобы вычисленные параметры уравнения
a
и
b
совпадали с параметрами уравнения на диаграмме, необходимо, чтобы тип у диаграммы был
Точечная, а не График
, т.к. тип диаграммы
График
не использует значения Х, а вместо значений Х используется последовательность 1; 2; 3; … Именно эти значения и берутся при расчете параметров
линии тренда
. Убедиться в этом можно если построить диаграмму
График
(см.
файл примера
), а значения
Хнач
и
Хшаг
установить равным 1. Только в этом случае параметры уравнения на диаграмме совпадут с
a
и
b
.
Коэффициент детерминации R
2
Коэффициент детерминации
R
2
показывает насколько полезна построенная нами
линейная регрессионная модель
.
Предположим, что у нас есть n значений переменной Y и мы хотим предсказать значение yi, но без использования значений переменной Х (т.е. без построения
регрессионной модели
). Очевидно, что лучшей оценкой для yi будет
среднее значение
ȳ. Соответственно, ошибка предсказания будет равна (yi — ȳ).
Примечание
: Далее будет использована терминология и обозначения
дисперсионного анализа
.
После построения
регрессионной модели
для предсказания значения yi мы будем использовать значение ŷi=a*xi+b. Ошибка предсказания теперь будет равна (yi — ŷi).
Теперь с помощью диаграммы сравним ошибки предсказания полученные без построения модели и с помощью модели.
Очевидно, что используя
регрессионную модель
мы уменьшили первоначальную (полную) ошибку (yi — ȳ) на значение (ŷi — ȳ) до величины (yi — ŷi).
(yi — ŷi) – это оставшаяся, необъясненная ошибка.
Очевидно, что все три ошибки связаны выражением:
(yi — ȳ)= (ŷi — ȳ) + (yi — ŷi)
Можно показать, что в общем виде справедливо следующее выражение:
Доказательство:
или в других, общепринятых в зарубежной литературе, обозначениях:
SST
=
SSR
+
SSE
Что означает:
Total Sum of Squares
=
Regression Sum of Squares
+
Error Sum of Squares
Примечание
: SS — Sum of Squares — Сумма Квадратов.
Как видно из формулы величины SST, SSR, SSE имеют размерность
дисперсии
(вариации) и соответственно описывают разброс (изменчивость):
Общую изменчивость
(Total variation),
Изменчивость объясненную моделью
(Explained variation) и
Необъясненную изменчивость
(Unexplained variation).
По определению
коэффициент детерминации
R
2
равен:
R
2
=
Изменчивость объясненная моделью / Общая изменчивость.
Этот показатель равен квадрату
коэффициента корреляции
и в MS EXCEL его можно вычислить с помощью функции
КВПИРСОН()
или
ЛИНЕЙН()
:
=
ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83;;ИСТИНА);3)
R
2
принимает значения от 0 до 1 (1 соответствует идеальной линейной зависимости Y от Х). Однако, на практике малые значения R2 вовсе не обязательно указывают, что переменную Х нельзя использовать для прогнозирования переменной Y. Малые значения R2 могут указывать на нелинейность связи или на то, что поведение переменной Y объясняется не только Х, но и другими факторами.
Стандартная ошибка регрессии
Стандартная ошибка регрессии
(
Standard Error of a regression
) показывает насколько велика ошибка предсказания значений переменной Y на основании значений Х. Отдельные значения Yi мы можем предсказывать лишь с точностью +/- несколько значений (обычно 2-3, в зависимости от формы распределения ошибки ε).
Теперь вспомним уравнение
линейной регрессионной модели
Y=a*X+β+ε. Ошибка ε имеет случайную природу, т.е. является случайной величиной и поэтому имеет свою функцию распределения со
средним значением
μ и
дисперсией
σ
2
.
Оценив значение
дисперсии
σ
2
и вычислив из нее квадратный корень – получим
Стандартную ошибку регрессии.
Чем точки наблюдений на диаграмме
рассеяния
ближе находятся к прямой линии, тем меньше
Стандартная ошибка.
Примечание
:
Вспомним
, что при построении модели предполагается, что
среднее значение
ошибки ε равно 0, т.е. E[ε]=0.
Оценим
дисперсию σ
2
. Помимо вычисления
Стандартной ошибки регрессии
эта оценка нам потребуется в дальнейшем еще и при построении
доверительных интервалов
для оценки параметров регрессии
a
и
b
.
Для оценки
дисперсии
ошибки ε используем
остатки регрессии
— разности между имеющимися значениями
yi
и значениями, предсказанными регрессионной моделью ŷ. Чем лучше регрессионная модель согласуется с данными (точки располагается близко к прямой линии), тем меньше величина остатков.
Для оценки
дисперсии σ
2
используют следующую формулу:
где SSE – сумма квадратов значений ошибок модели ε
i
=yi — ŷi (
Sum of Squared Errors
).
SSE часто обозначают и как SSres – сумма квадратов остатков (
Sum
of
Squared
residuals
).
Оценка
дисперсии
s
2
также имеет общепринятое обозначение MSE (Mean Square of Errors), т.е. среднее квадратов
ошибок
или MSRES (Mean Square of Residuals), т.е. среднее квадратов
остатков
. Хотя правильнее говорить сумме квадратов остатков, т.к. ошибка чаще ассоциируется с ошибкой модели ε, которая является непрерывной случайной величиной. Но, здесь мы будем использовать термины SSE и MSE, предполагая, что речь идет об остатках.
Примечание
: Напомним, что когда
мы использовали МНК
для нахождения параметров модели, то критерием оптимизации была минимизация именно SSE (SSres). Это выражение представляет собой сумму квадратов расстояний между наблюденными значениями yi и предсказанными моделью значениями ŷi, которые лежат на
линии регрессии.
Математическое ожидание
случайной величины MSE равно
дисперсии ошибки
ε, т.е.
σ
2
.
Чтобы понять почему SSE выбрана в качестве основы для оценки
дисперсии
ошибки ε, вспомним, что
σ
2
является также
дисперсией
случайной величины Y (относительно
среднего значения
μy, при заданном значении Хi). А т.к. оценкой μy является значение ŷi =
a
* Хi +
b
(значение
уравнения регрессии
при Х= Хi), то логично использовать именно SSE в качестве основы для оценки
дисперсии
σ
2
. Затем SSE усредняется на количество точек данных n за вычетом числа 2. Величина n-2 – это количество
степеней свободы
(
df
–
degrees
of
freedom
), т.е. число параметров системы, которые могут изменяться независимо (вспомним, что у нас в этом примере есть n независимых наблюдений переменной Y). В случае
простой линейной регрессии
число степеней свободы
равно n-2, т.к. при построении
линии регрессии
было оценено 2 параметра модели (на это было «потрачено» 2
степени свободы
).
Итак, как сказано было выше, квадратный корень из s
2
имеет специальное название
Стандартная ошибка регрессии
(
Standard Error of a regression
) и обозначается SEy. SEy показывает насколько велика ошибка предсказания. Отдельные значения Y мы можем предсказывать с точностью +/- несколько значений SEy (см.
этот раздел
). Если ошибки предсказания ε имеют
нормальное распределение
, то примерно 2/3 всех предсказанных значений будут на расстоянии не больше SEy от
линии регрессии
. SEy имеет размерность переменной Y и откладывается по вертикали. Часто на
диаграмме рассеяния
строят
границы предсказания
соответствующие +/- 2 SEy (т.е. 95% точек данных будут располагаться в пределах этих границ).
В MS EXCEL
стандартную ошибку
SEy можно вычислить непосредственно по формуле:
=
КОРЕНЬ(СУММКВРАЗН(C23:C83; ТЕНДЕНЦИЯ(C23:C83;B23:B83;B23:B83)) /( СЧЁТ(B23:B83) -2))
или с помощью функции
ЛИНЕЙН()
:
=
ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83;;ИСТИНА);3;2)
Примечание
: Подробнее о функции
ЛИНЕЙН()
см.
эту статью
.
Стандартные ошибки и доверительные интервалы для наклона и сдвига
В разделе
Оценка неизвестных параметров линейной модели
мы получили точечные оценки наклона
а
и сдвига
b
. Так как эти оценки получены на основе случайных величин (значений переменных Х и Y), то эти оценки сами являются случайными величинами и соответственно имеют функцию распределения со
средним значением
и
дисперсией
. Но, чтобы перейти от
точечных оценок
к
интервальным
, необходимо вычислить соответствующие
стандартные ошибки
(т.е.
стандартные отклонения
).
Стандартная ошибка коэффициента регрессии
a
вычисляется на основании
стандартной ошибки регрессии
по следующей формуле:
где Sx – стандартное отклонение величины х, вычисляемое по формуле:
где Sey –
стандартная ошибка регрессии,
т.е. ошибка предсказания значения переменой Y
(
см. выше
).
В MS EXCEL
стандартную ошибку коэффициента регрессии
Se можно вычислить впрямую по вышеуказанной формуле:
=
КОРЕНЬ(СУММКВРАЗН(C23:C83; ТЕНДЕНЦИЯ(C23:C83;B23:B83;B23:B83)) /( СЧЁТ(B23:B83) -2))/ СТАНДОТКЛОН.В(B23:B83) /КОРЕНЬ(СЧЁТ(B23:B83) -1)
или с помощью функции
ЛИНЕЙН()
:
=
ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83;;ИСТИНА);2;1)
Формулы приведены в
файле примера на листе Линейный
в разделе
Регрессионная статистика
.
Примечание
: Подробнее о функции
ЛИНЕЙН()
см.
эту статью
.
При построении
двухстороннего доверительного интервала
для
коэффициента регрессии
его границы определяются следующим образом:
где —
квантиль распределения Стьюдента
с n-2 степенями свободы. Величина
а
с «крышкой» является другим обозначением
наклона
а
.
Например для
уровня значимости
альфа=0,05, можно вычислить с помощью формулы
=СТЬЮДЕНТ.ОБР.2Х(0,05;n-2)
Вышеуказанная формула следует из того факта, что если ошибки регрессии распределены нормально и независимо, то выборочное распределение случайной величины
является
t-распределением Стьюдента
с n-2 степенью свободы (то же справедливо и для наклона
b
).
Примечание
: Подробнее о построении
доверительных интервалов
в MS EXCEL можно прочитать в этой статье
Доверительные интервалы в MS EXCEL
.
В результате получим, что найденный
доверительный интервал
с вероятностью 95% (1-0,05) накроет истинное значение
коэффициента регрессии.
Здесь мы считаем, что
коэффициент регрессии
a
имеет
распределение Стьюдента
с n-2
степенями свободы
(n – количество наблюдений, т.е. пар Х и Y).
Примечание
: Подробнее о построении
доверительных интервалов
с использованием t-распределения см. статью про построение
доверительных интервалов
для среднего
.
Стандартная ошибка сдвига
b
вычисляется по следующей формуле:
В MS EXCEL
стандартную ошибку сдвига
Seb можно вычислить с помощью функции
ЛИНЕЙН()
:
=
ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83;;ИСТИНА);2;2)
При построении
двухстороннего доверительного интервала
для
сдвига
его границы определяются аналогичным образом как для
наклона
:
b
+/- t*Seb.
Проверка значимости взаимосвязи переменных
Когда мы строим модель Y=αX+β+ε мы предполагаем, что между Y и X существует линейная взаимосвязь. Однако, как это иногда бывает в статистике, можно вычислять параметры связи даже тогда, когда в действительности она не существует, и обусловлена лишь случайностью.
Единственный вариант, когда Y не зависит X (в рамках модели Y=αX+β+ε), возможен, когда
коэффициент регрессии
a
равен 0.
Чтобы убедиться, что вычисленная нами оценка
наклона
прямой линии не обусловлена лишь случайностью (не случайно отлична от 0), используют
проверку гипотез
. В качестве
нулевой гипотезы
Н
0
принимают, что связи нет, т.е. a=0. В качестве альтернативной гипотезы
Н
1
принимают, что a <>0.
Ниже на рисунках показаны 2 ситуации, когда
нулевую гипотезу
Н
0
не удается отвергнуть.
На левой картинке отсутствует любая зависимость между переменными, на правой – связь между ними нелинейная, но при этом
коэффициент линейной корреляции
равен 0.
Ниже — 2 ситуации, когда
нулевая гипотеза
Н
0
отвергается.
На левой картинке очевидна линейная зависимость, на правой — зависимость нелинейная, но коэффициент корреляции не равен 0 (метод МНК вычисляет показатели наклона и сдвига просто на основании значений выборки).
Для проверки гипотезы нам потребуется:
- Установить
уровень значимости
, пусть альфа=0,05;
- Рассчитать с помощью функции
ЛИНЕЙН()
стандартное отклонение
Se для
коэффициента регрессии
(см.предыдущий раздел
);
- Рассчитать число степеней свободы: DF=n-2 или по формуле =
ИНДЕКС(ЛИНЕЙН(C24:C84;B24:B84;;ИСТИНА);4;2)
- Вычислить значение тестовой статистики t
0
=a/S
e
, которая имеетраспределение Стьюдента
с
числом степеней свободы
DF=n-2; - Сравнить значение
тестовой статистики
|t0| с пороговым значением t
альфа
,n-2. Если значение
тестовой статистики
больше порогового значения, то
нулевая гипотеза
отвергается (
наклон
не может быть объяснен лишь случайностью при заданном уровне альфа) либо - вычислить
p-значение
и сравнить его с
уровнем значимости
.
В
файле примера
приведен пример проверки гипотезы:
Изменяя
наклон
тренда k (ячейка
В8
) можно убедиться, что при малых углах тренда (например, 0,05) тест часто показывает, что связь между переменными случайна. При больших углах (k>1), тест практически всегда подтверждает значимость линейной связи между переменными.
Примечание
: Проверка значимости взаимосвязи эквивалентна
проверке статистической значимости коэффициента корреляции
. В
файле примера
показана эквивалентность обоих подходов. Также проверку значимости можно провести с помощью
процедуры F-тест
.
Доверительные интервалы для нового наблюдения Y и среднего значения
Вычислив параметры
простой линейной регрессионной модели
Y=aX+β+ε мы получили точечную оценку значения нового наблюдения Y при заданном значении Хi, а именно: Ŷ=
a
* Хi +
b
Ŷ также является точечной оценкой для
среднего значения
Yi при заданном Хi. Но, при построении
доверительных интервалов
используются различные
стандартные ошибки
.
Стандартная ошибка
нового наблюдения Y при заданном Хi учитывает 2 источника неопределенности:
- неопределенность связанную со случайностью оценок параметров модели
a
и
b
; - случайность ошибки модели ε.
Учет этих неопределенностей приводит к
стандартной ошибке
S(Y|Xi), которая рассчитывается с учетом известного значения Xi.
где SS
xx
– сумма квадратов отклонений от
среднего
значений переменной Х:
Примечание
: Se –
стандартная ошибка коэффициента регрессии
(
наклона
а
).
В
MS EXCEL 2010
нет функции, которая бы рассчитывала эту
стандартную ошибку
, поэтому ее необходимо рассчитывать по вышеуказанным формулам.
Доверительный интервал
или
Интервал предсказания для нового наблюдения
(Prediction Interval for a New Observation) построим по схеме показанной в разделе
Проверка значимости взаимосвязи переменных
(см.
файл примера лист Интервалы
). Т.к. границы интервала зависят от значения Хi (точнее от расстояния Хi до среднего значения Х
ср
), то интервал будет постепенно расширяться при удалении от Х
ср
.
Границы
доверительного интервала
для
нового наблюдения
рассчитываются по формуле:
Аналогичным образом построим
доверительный интервал
для
среднего значения
Y при заданном Хi (Confidence Interval for the Mean of Y). В этом случае
доверительный интервал
будет уже, т.к.
средние значения
имеют меньшую изменчивость по сравнению с отдельными наблюдениями (
средние значения,
в рамках нашей линейной модели Y=aX+β+ε, не включают ошибку ε).
Стандартная ошибка
S(Yср|Xi) вычисляется по практически аналогичным формулам как и
стандартная ошибка
для нового наблюдения:
Как видно из формул,
стандартная ошибка
S(Yср|Xi) меньше
стандартной ошибки
S(Y|Xi) для индивидуального значения
.
Границы
доверительного интервала
для
среднего значения
рассчитываются по формуле:
Проверка адекватности линейной регрессионной модели
Модель адекватна, когда все предположения, лежащие в ее основе, выполнены (см. раздел
Предположения линейной регрессионной модели
).
Проверка адекватности модели в основном основана на исследовании остатков модели (model residuals), т.е. значений ei=yi – ŷi для каждого Хi. В рамках
простой линейной модели
n остатков имеют только n-2 связанных с ними
степеней свободы
. Следовательно, хотя, остатки не являются независимыми величинами, но при достаточно большом n это не оказывает какого-либо влияния на проверку адекватности модели.
Чтобы проверить предположение о
нормальности распределения
ошибок строят
график проверки на нормальность
(Normal probability Plot).
В
файле примера на листе Адекватность
построен
график проверки на нормальность
. В случае
нормального распределения
значения остатков должны быть близки к прямой линии.
Так как значения переменной Y мы
генерировали с помощью тренда
, вокруг которого значения имели нормальный разброс, то ожидать сюрпризов не приходится – значения остатков располагаются вблизи прямой.
Также при проверке модели на адекватность часто строят график зависимости остатков от предсказанных значений Y. Если точки не демонстрируют характерных, так называемых «паттернов» (шаблонов) типа вор
о
нок или другого неравномерного распределения, в зависимости от значений Y, то у нас нет очевидных доказательств неадекватности модели.
В нашем случае точки располагаются примерно равномерно.
Часто при проверке адекватности модели вместо остатков используют нормированные остатки. Как показано в разделе
Стандартная ошибка регрессии
оценкой
стандартного отклонения ошибок
является величина SEy равная квадратному корню из величины MSE. Поэтому логично нормирование остатков проводить именно на эту величину.
SEy можно вычислить с помощью функции
ЛИНЕЙН()
:
=
ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83;;ИСТИНА);3;2)
Иногда нормирование остатков производится на величину
стандартного отклонения
остатков (это мы увидим в статье об инструменте
Регрессия
, доступного в
надстройке MS EXCEL Пакет анализа
), т.е. по формуле:
Вышеуказанное равенство приблизительное, т.к. среднее значение остатков близко, но не обязательно точно равно 0.
Содержание:
Регрессионный анализ:
Регрессионным анализом называется раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между случайными величинами по результатам наблюдений над ними. Сюда включаются методы выбора модели изучаемой зависимости и оценки ее параметров, методы проверки статистических гипотез о зависимости.
Пусть между случайными величинами X и Y существует линейная корреляционная зависимость. Это означает, что математическое ожидание Y линейно зависит от значений случайной величины X. График этой зависимости (линия регрессии Y на X) имеет уравнение
Линейная модель пригодна в качестве первого приближения и в случае нелинейной корреляции, если рассматривать небольшие интервалы возможных значений случайных величин.
Пусть параметры линии регрессии неизвестны, неизвестна и величина коэффициента корреляции Над случайными величинами X и Y проделано n независимых наблюдений, в результате которых получены n пар значений: Эти результаты могут служить источником информации о неизвестных значениях надо только уметь эту информацию извлечь оттуда.
Неизвестная нам линия регрессии как и всякая линия регрессии, имеет то отличительное свойство, что средний квадрат отклонений значений Y от нее минимален. Поэтому в качестве оценок для можно принять те их значения, при которых имеет минимум функция
Такие значения , согласно необходимым условиям экстремума, находятся из системы уравнений:
Решения этой системы уравнений дают оценки называемые оценками по методу наименьших квадратов.
и
Известно, что оценки по методу наименьших квадратов являются несмещенными и, более того, среди всех несмещенных оценок обладают наименьшей дисперсией. Для оценки коэффициента корреляции можно воспользоваться тем, что где средние квадратические отклонения случайных величин X и Y соответственно. Обозначим через оценки этих средних квадратических отклонений на основе опытных данных. Оценки можно найти, например, по формуле (3.1.3). Тогда для коэффициента корреляции имеем оценку
По методу наименьших квадратов можно находить оценки параметров линии регрессии и при нелинейной корреляции. Например, для линии регрессии вида оценки параметров находятся из условия минимума функции
Пример:
По данным наблюдений двух случайных величин найти коэффициент корреляции и уравнение линии регрессии Y на X
Решение. Вычислим величины, необходимые для использования формул (3.7.1)–(3.7.3):
По формулам (3.7.1) и (3.7.2) получим
Итак, оценка линии регрессии имеет вид Так как то по формуле (3.1.3)
Аналогично, Поэтому в качестве оценки коэффициента корреляции имеем по формуле (3.7.3) величину
Ответ.
Пример:
Получена выборка значений величин X и Y
Для представления зависимости между величинами предполагается использовать модель Найти оценки параметров
Решение. Рассмотрим сначала задачу оценки параметров этой модели в общем виде. Линия играет роль линии регрессии и поэтому параметры ее можно найти из условия минимума функции (сумма квадратов отклонений значений Y от линии должна быть минимальной по свойству линии регрессии)
Необходимые условия экстремума приводят к системе из двух уравнений:
Откуда
Решения системы уравнений (3.7.4) и (3.7.5) и будут оценками по методу наименьших квадратов для параметров
На основе опытных данных вычисляем:
В итоге получаем систему уравнений (?????) и (?????) в виде
Эта система имеет решения
Ответ.
Если наблюдений много, то результаты их обычно группируют и представляют в виде корреляционной таблицы.
В этой таблице равно числу наблюдений, для которых X находится в интервале а Y – в интервале Через обозначено число наблюдений, при которых а Y произвольно. Число наблюдений, при которых а X произвольно, обозначено через
Если величины дискретны, то вместо интервалов указывают отдельные значения этих величин. Для непрерывных случайных величин представителем каждого интервала считают его середину и полагают, что и наблюдались раз.
При больших значениях X и Y можно для упрощения вычислений перенести начало координат и изменить масштаб по каждой из осей, а после завершения вычислений вернуться к старому масштабу.
Пример:
Проделано 80 наблюдений случайных величин X и Y. Результаты наблюдений представлены в виде таблицы. Найти линию регрессии Y на X. Оценить коэффициент корреляции.
Решение. Представителем каждого интервала будем считать его середину. Перенесем начало координат и изменим масштаб по каждой оси так, чтобы значения X и Y были удобны для вычислений. Для этого перейдем к новым переменным Значения этих новых переменных указаны соответственно в самой верхней строке и самом левом столбце таблицы.
Чтобы иметь представление о виде линии регрессии, вычислим средние значения при фиксированных значениях :
Нанесем эти значения на координатную плоскость, соединив для наглядности их отрезками прямой (рис. 3.7.1).
По виду полученной ломанной линии можно предположить, что линия регрессии Y на X является прямой. Оценим ее параметры. Для этого сначала вычислим с учетом группировки данных в таблице все величины, необходимые для использования формул (3.31–3.33):
Тогда
В новом масштабе оценка линии регрессии имеет вид График этой прямой линии изображен на рис. 3.7.1.
Для оценки по корреляционной таблице можно воспользоваться формулой (3.1.3):
Подобным же образом можно оценить величиной Тогда оценкой коэффициента корреляции может служить величина
Вернемся к старому масштабу:
Коэффициент корреляции пересчитывать не нужно, так как это величина безразмерная и от масштаба не зависит.
Ответ.
Пусть некоторые физические величины X и Y связаны неизвестной нам функциональной зависимостью Для изучения этой зависимости производят измерения Y при разных значениях X. Измерениям сопутствуют ошибки и поэтому результат каждого измерения случаен. Если систематической ошибки при измерениях нет, то играет роль линии регрессии и все свойства линии регрессии приложимы к . В частности, обычно находят по методу наименьших квадратов.
Регрессионный анализ
Основные положения регрессионного анализа:
Основная задача регрессионного анализа — изучение зависимости между результативным признаком Y и наблюдавшимся признаком X, оценка функции регрессий.
Предпосылки регрессионного анализа:
- Y — независимые случайные величины, имеющие постоянную дисперсию;
- X— величины наблюдаемого признака (величины не случайные);
- условное математическое ожидание можно представить в виде
Выражение (2.1), как уже упоминалось в п. 1.2, называется функцией регрессии (или модельным уравнением регрессии) Y на X. Оценке в этом выражении подлежат параметры называемые коэффициентами регрессии, а также — остаточная дисперсия.
Остаточной дисперсией называется та часть рассеивания результативного признака, которую нельзя объяснить действием наблюдаемого признака; Остаточная дисперсия может служить для оценки точности подбора вида функции регрессии (модельного уравнения регрессии), полноты набора признаков, включенных в анализ. Оценки параметров функции регрессии находят, используя метод наименьших квадратов.
В данном вопросе рассмотрен линейный регрессионный анализ. Линейным он называется потому, что изучаем лишь те виды зависимостей которые линейны по оцениваемым параметрам, хотя могут быть нелинейны по переменным X. Например, зависимости
линейны относительно параметров хотя вторая и третья зависимости нелинейны относительно переменных х. Вид зависимости выбирают, исходя из визуальной оценки характера расположения точек на поле корреляции; опыта предыдущих исследований; соображений профессионального характера, основанных и знании физической сущности процесса.
Важное место в линейном регрессионном анализе занимает так называемая «нормальная регрессия». Она имеет место, если сделать предположения относительно закона распределения случайной величины Y. Предпосылки «нормальной регрессии»:
- Y — независимые случайные величины, имеющие постоянную дисперсию и распределенные по нормальному закону;
- X— величины наблюдаемого признака (величины не случайные);
- условное математическое ожидание можно представить в виде (2.1).
В этом случае оценки коэффициентов регрессии — несмещённые с минимальной дисперсией и нормальным законом распределения. Из этого положения следует что при «нормальной регрессии» имеется возможность оценить значимость оценок коэффициентов регрессии, а также построить доверительный интервал для коэффициентов регрессии и условного математического ожидания M(YX=x).
Линейная регрессия
Рассмотрим простейший случай регрессионного анализа — модель вида (2.1), когда зависимость линейна и по оцениваемым параметрам, и
по переменным. Оценки параметров модели (2.1) обозначил Оценку остаточной дисперсии обозначим Подставив в формулу (2.1) вместо параметров их оценки, получим уравнение регрессии коэффициенты которого находят из условия минимума суммы квадратов отклонений измеренных значений результативного признака от вычисленных по уравнению регрессии
Составим систему нормальных уравнений: первое уравнение
откуда
второе уравнение
откуда
Итак,
Оценки, полученные по способу наименьших квадратов, обладают минимальной дисперсией в классе линейных оценок. Решая систему (2.2) относительно найдём оценки параметров
Остаётся получить оценку параметра . Имеем
где т — количество наблюдений.
Еслит велико, то для упрощения расчётов наблюдавшиеся данные принята группировать, т.е. строить корреляционную таблицу. Пример построения такой таблицы приведен в п. 1.5. Формулы для нахождения коэффициентов регрессии по сгруппированным данным те же, что и для расчёта по несгруппированным данным, но суммызаменяют на
где — частоты повторений соответствующих значений переменных. В дальнейшем часто используется этот наглядный приём вычислений.
Нелинейная регрессия
Рассмотрим случай, когда зависимость нелинейна по переменным х, например модель вида
На рис. 2.1 изображено поле корреляции. Очевидно, что зависимость между Y и X нелинейная и её графическим изображением является не прямая, а кривая. Оценкой выражения (2.6) является уравнение регрессии
где —оценки коэффициентов регрессии
Принцип нахождения коэффициентов тот же — метод наименьших квадратов, т.е.
или
Дифференцируя последнее равенство по и приравнивая правые части нулю, получаем так называемую систему нормальных уравнений:
В общем случае нелинейной зависимости между переменными Y и X связь может выражаться многочленом k-й степени от x:
Коэффициенты регрессии определяют по принципу наименьших квадратов. Система нормальных уравнений имеет вид
Вычислив коэффициенты системы, её можно решить любым известным способом.
Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии
Проверить значимость оценок коэффициентов регрессии — значит установить, достаточна ли величина оценки для статистически обоснованного вывода о том, что коэффициент регрессии отличен от нуля. Для этого проверяют гипотезу о равенстве нулю коэффициента регрессии, соблюдая предпосылки «нормальной регрессии». В этом случае вычисляемая для проверки нулевой гипотезы статистика
имеет распределение Стьюдента с к= n-2 степенями свободы (b — оценка коэффициента регрессии, — оценка среднеквадратического отклонения
коэффициента регрессии, иначе стандартная ошибка оценки). По уровню значимости а и числу степеней свободы к находят по таблицам распределения Стьюдента (см. табл. 1 приложений) критическое значение удовлетворяющее условию то нулевую гипотезу о равенстве нулю коэффициента регрессии отвергают, коэффициент считают значимым. Принет оснований отвергать нулевую гипотезу.
Оценки среднеквадратического отклонения коэффициентов регрессии вычисляют по следующим формулам:
где — оценка остаточной дисперсии, вычисляемая по
формуле (2.5).
Доверительный интервал для значимых параметров строят по обычной схеме. Из условия
где а — уровень значимости, находим
Интервальная оценка для условного математического ожидания
Линия регрессии характеризует изменение условного математического ожидания результативного признака от вариации остальных признаков.
Точечной оценкой условного математического ожидания является условное среднее Кроме точечной оценки для можно
построить доверительный интервал в точке
Известно, что имеет распределение
Стьюдента с k=n—2 степенями свободы. Найдя оценку среднеквадратического отклонения для условного среднего, можно построить доверительный интервал для условного математического ожидания
Оценку дисперсии условного среднего вычисляют по формуле
или для интервального ряда
Доверительный интервал находят из условия
где а — уровень значимости. Отсюда
Доверительный интервал для условного математического ожидания можно изобразить графически (рис, 2.2).
Из рис. 2.2 видно, что в точке границы интервала наиболее близки друг другу. Расположение границ доверительного интервала показывает, что прогнозы по уравнению регрессии, хороши только в случае, если значение х не выходит за пределы выборки, по которой вычислено уравнение регрессии; иными словами, экстраполяция по уравнению регрессии может привести к значительным погрешностям.
Проверка значимости уравнения регрессии
Оценить значимость уравнения регрессии — значит установить, соответствует ли математическая, модель, выражающая зависимость между Y и X, экспериментальным данным. Для оценки значимости в предпосылках «нормальной регрессии» проверяют гипотезу Если она отвергается, то считают, что между Y и X нет связи (или связь нелинейная). Для проверки нулевой гипотезы используют основное положение дисперсионного анализа о разбиении суммы квадратов на слагаемые. Воспользуемся разложением — Общая сумма квадратов отклонений результативного признака
разлагается на (сумму, характеризующую влияние признака
X) и (остаточную сумму квадратов, характеризующую влияние неучтённых факторов). Очевидно, чем меньше влияние неучтённых факторов, тем лучше математическая модель соответствует экспериментальным данным, так как вариация У в основном объясняется влиянием признака X.
Для проверки нулевой гипотезы вычисляют статистику которая имеет распределение Фишера-Снедекора с А степенями свободы (в п — число наблюдений). По уровню значимости а и числу степеней свободы находят по таблицам F-распределение для уровня значимости а=0,05 (см. табл. 3 приложений) критическое значение удовлетворяющее условию . Если нулевую гипотезу отвергают, уравнение считают значимым. Если то нет оснований отвергать нулевую гипотезу.
Многомерный регрессионный анализ
В случае, если изменения результативного признака определяются действием совокупности других признаков, имеет место многомерный регрессионный анализ. Пусть результативный признак У, а независимые признаки Для многомерного случая предпосылки регрессионного анализа можно сформулировать следующим образом: У -независимые случайные величины со средним и постоянной дисперсией — линейно независимые векторы . Все положения, изложенные в п.2.1, справедливы для многомерного случая. Рассмотрим модель вида
Оценке подлежат параметры и остаточная дисперсия.
Заменив параметры их оценками, запишем уравнение регрессии
Коэффициенты в этом выражении находят методом наименьших квадратов.
Исходными данными для вычисления коэффициентов является выборка из многомерной совокупности, представляемая обычно в виде матрицы X и вектора Y:
Как и в двумерном случае, составляют систему нормальных уравнений
которую можно решить любым способом, известным из линейной алгебры. Рассмотрим один из них — способ обратной матрицы. Предварительно преобразуем систему уравнений. Выразим из первого уравнения значение через остальные параметры:
Подставим в остальные уравнения системы вместо полученное выражение:
Пусть С — матрица коэффициентов при неизвестных параметрах — матрица, обратная матрице С; — элемент, стоящий на пересечении i-Й строки и i-го столбца матрицы — выражение
. Тогда, используя формулы линейной алгебры,
запишем окончательные выражения для параметров:
Оценкой остаточной дисперсии является
где — измеренное значение результативного признака; значение результативного признака, вычисленное по уравнению регрессий.
Если выборка получена из нормально распределенной генеральной совокупности, то, аналогично изложенному в п. 2.4, можно проверить значимость оценок коэффициентов регрессии, только в данном случае статистику вычисляют для каждого j-го коэффициента регрессии
где —элемент обратной матрицы, стоящий на пересечении i-й строки и j-
го столбца; —диагональный элемент обратной матрицы.
При заданном уровне значимости а и числе степеней свободы к=n— m—1 по табл. 1 приложений находят критическое значение Если то нулевую гипотезу о равенстве нулю коэффициента регрессии отвергают. Оценку коэффициента считают значимой. Такую проверку производят последовательно для каждого коэффициента регрессии. Если то нет оснований отвергать нулевую гипотезу, оценку коэффициента регрессии считают незначимой.
Для значимых коэффициентов регрессии целесообразно построить доверительные интервалы по формуле (2.10). Для оценки значимости уравнения регрессии следует проверить нулевую гипотезу о том, что все коэффициенты регрессии (кроме свободного члена) равны нулю: — вектор коэффициентов регрессии). Нулевую гипотезу проверяют, так же как и в п. 2.6, с помощью статистики , где — сумма квадратов, характеризующая влияние признаков X; — остаточная сумма квадратов, характеризующая влияние неучтённых факторов; Для уровня значимости а и числа степеней свободы по табл. 3 приложений находят критическое значение Если то нулевую гипотезу об одновременном равенстве нулю коэффициентов регрессии отвергают. Уравнение регрессии считают значимым. При нет оснований отвергать нулевую гипотезу, уравнение регрессии считают незначимым.
Факторный анализ
Основные положения. В последнее время всё более широкое распространение находит один из новых разделов многомерного статистического анализа — факторный анализ. Первоначально этот метод
разрабатывался для объяснения многообразия корреляций между исходными параметрами. Действительно, результатом корреляционного анализа является матрица коэффициентов корреляций. При малом числе параметров можно произвести визуальный анализ этой матрицы. С ростом числа параметра (10 и более) визуальный анализ не даёт положительных результатов. Оказалось, что всё многообразие корреляционных связей можно объяснить действием нескольких обобщённых факторов, являющихся функциями исследуемых параметров, причём сами обобщённые факторы при этом могут быть и неизвестны, однако их можно выразить через исследуемые параметры.
Один из основоположников факторного анализа Л. Терстоун приводит такой пример: несколько сотен мальчиков выполняют 20 разнообразных гимнастических упражнений. Каждое упражнение оценивают баллами. Можно рассчитать матрицу корреляций между 20 упражнениями. Это большая матрица размером 20><20. Изучая такую матрицу, трудно уловить закономерность связей между упражнениями. Нельзя ли объяснить скрытую в таблице закономерность действием каких-либо обобщённых факторов, которые в результате эксперимента непосредственно, не оценивались? Оказалось, что обо всех коэффициентах корреляции можно судить по трём обобщённым факторам, которые и определяют успех выполнения всех 20 гимнастических упражнений: чувство равновесия, усилие правого плеча, быстрота движения тела.
Дальнейшие разработки факторного анализа доказали, что этот метод может быть с успехом применён в задачах группировки и классификации объектов. Факторный анализ позволяет группировать объекты со сходными сочетаниями признаков и группировать признаки с общим характером изменения от объекта к объекту. Действительно, выделенные обобщённые факторы можно использовать как критерии при классификации мальчиков по способностям к отдельным группам гимнастических упражнений.
Методы факторного анализа находят применение в психологии и экономике, социологии и экономической географии. Факторы, выраженные через исходные параметры, как правило, легко интерпретировать как некоторые существенные внутренние характеристики объектов.
Факторный анализ может быть использован и как самостоятельный метод исследования, и вместе с другими методами многомерного анализа, например в сочетании с регрессионным анализом. В этом случае для набора зависимых переменных наводят обобщённые факторы, которые потом входят в регрессионный анализ в качестве переменных. Такой подход позволяет сократить число переменных в регрессионном анализе, устранить коррелированность переменных, уменьшить влияние ошибок и в случае ортогональности выделенных факторов значительно упростить оценку значимости переменных.
Представление, информации в факторном анализе
Для проведения факторного анализа информация должна быть представлена в виде двумерной таблицы чисел размерностью аналогичной приведенной в п. 2.7 (матрица исходных данных). Строки этой матрицы должны соответствовать объектам наблюдений столбцы — признакамтаким образом, каждый признак является как бы статистическим рядом, в котором наблюдения варьируют от объекта к объекту. Признаки, характеризующие объект наблюдения, как правило, имеют различную размерность. Чтобы устранить влияние размерности и обеспечить сопоставимость признаков, матрицу исходных данных обычно нормируют, вводя единый масштаб. Самым распространенным видом нормировки является стандартизация. От переменных переходят к переменным В дальнейшем, говоря о матрице исходных переменных, всегда будем иметь в виду стандартизованную матрицу.
Основная модель факторного анализа. Основная модель факторного анализа имеет вид
где -j-й признак (величина случайная); — общие факторы (величины случайные, имеющие нормальный закон распределения); — характерный фактор; — факторные нагрузки, характеризующие существенность влияния каждого фактора (параметры модели, подлежащие определению); — нагрузка характерного фактора.
Модель предполагает, что каждый из j признаков, входящих в исследуемый набор и заданных в стандартной форме, может быть представлен в виде линейной комбинации небольшого числа общих факторов и характерного фактора
Термин «общий фактор» подчёркивает, что каждый такой фактор имеет существенное значение для анализа всех признаков, т.е.
Термин «характерный фактор» показывает, что он относится только к данному j-му признаку. Это специфика признака, которая не может быть, выражена через факторы
Факторные нагрузки . характеризуют величину влияния того или иного общего фактора в вариации данного признака. Основная задача факторного анализа — определение факторных нагрузок. Факторная модель относится к классу аппроксимационных. Параметры модели должны быть выбраны так, чтобы наилучшим образом аппроксимировать корреляции между наблюдаемыми признаками.
Для j-го признака и i-го объекта модель (2.19) можно записать в. виде
где значение k-го фактора для i-го объекта.
Дисперсию признака можно разложить на составляющие: часть, обусловленную действием общих факторов, — общность и часть, обусловленную действием j-го характера фактора, характерность Все переменные представлены в стандартизированном виде, поэтому дисперсий у-го признака Дисперсия признака может быть выражена через факторы и в конечном счёте через факторные нагрузки.
Если общие и характерные факторы не коррелируют между собой, то дисперсию j-го признака можно представить в виде
где —доля дисперсии признака приходящаяся на k-й фактор.
Полный вклад k-го фактора в суммарную дисперсию признаков
Вклад общих факторов в суммарную дисперсию
Факторное отображение
Используя модель (2.19), запишем выражения для каждого из параметров:
Коэффициенты системы (2,21) — факторные нагрузки — можно представить в виде матрицы, каждая строка которой соответствует параметру, а столбец — фактору.
Факторный анализ позволяет получить не только матрицу отображений, но и коэффициенты корреляции между параметрами и
факторами, что является важной характеристикой качества факторной модели. Таблица таких коэффициентов корреляции называется факторной структурой или просто структурой.
Коэффициенты отображения можно выразить через выборочные парные коэффициенты корреляции. На этом основаны методы вычисления факторного отображения.
Рассмотрим связь между элементами структуры и коэффициентами отображения. Для этого, учитывая выражение (2.19) и определение выборочного коэффициента корреляции, умножим уравнения системы (2.21) на соответствующие факторы, произведём суммирование по всем n наблюдениям и, разделив на n, получим следующую систему уравнений:
где — выборочный коэффициент корреляции между j-м параметром и к-
м фактором; — коэффициент корреляции между к-м и р-м факторами.
Если предположить, что общие факторы между собой, не коррелированы, то уравнения (2.22) можно записать в виде
, т.е. коэффициенты отображения равны
элементам структуры.
Введём понятие, остаточного коэффициента корреляции и остаточной корреляционной матрицы. Исходной информацией для построения факторной модели (2.19) служит матрица выборочных парных коэффициентов корреляции. Используя построенную факторную модель, можно снова вычислить коэффициенты корреляции между признаками и сравнись их с исходными Коэффициентами корреляции. Разница между ними и есть остаточный коэффициент корреляции.
В случае независимости факторов имеют место совсем простые выражения для вычисляемых коэффициентов корреляции между параметрами: для их вычисления достаточно взять сумму произведений коэффициентов отображения, соответствующих наблюдавшимся признакам:
где —вычисленный по отображению коэффициент корреляции между j-м
и к-м признаком. Остаточный коэффициент корреляции
Матрица остаточных коэффициентов корреляции называется остаточной матрицей или матрицей остатков
где — матрица остатков; R — матрица выборочных парных коэффициентов корреляции, или полная матрица; R’— матрица вычисленных по отображению коэффициентов корреляции.
Результаты факторного анализа удобно представить в виде табл. 2.10.
Здесь суммы квадратов нагрузок по строкам — общности параметров, а суммы квадратов нагрузок по столбцам — вклады факторов в суммарную дисперсию параметров. Имеет место соотношение
Определение факторных нагрузок
Матрицу факторных нагрузок можно получить различными способами. В настоящее время наибольшее распространение получил метод главных факторов. Этот метод основан на принципе последовательных приближений и позволяет достичь любой точности. Метод главных факторов предполагает использование ЭВМ. Существуют хорошие алгоритмы и программы, реализующие все вычислительные процедуры.
Введём понятие редуцированной корреляционной матрицы или просто редуцированной матрицы. Редуцированной называется матрица выборочных коэффициентов корреляции у которой на главной диагонали стоят значения общностей :
Редуцированная и полная матрицы связаны соотношением
где D — матрица характерностей.
Общности, как правило, неизвестны, и нахождение их в факторном анализе представляет серьезную проблему. Вначале определяют (хотя бы приближённо) число общих факторов, совокупность, которых может с достаточной точностью аппроксимировать все взаимосвязи выборочной корреляционной матрицы. Доказано, что число общих факторов (общностей) равно рангу редуцированной матрицы, а при известном ранге можно по выборочной корреляционной матрице найти оценки общностей. Числа общих факторов можно определить априори, исходя из физической природы эксперимента. Затем рассчитывают матрицу факторных нагрузок. Такая матрица, рассчитанная методом главных факторов, обладает одним интересным свойством: сумма произведений каждой пары её столбцов равна нулю, т.е. факторы попарно ортогональны.
Сама процедура нахождения факторных нагрузок, т.е. матрицы А, состоит из нескольких шагов и заключается в следующем: на первом шаге ищут коэффициенты факторных нагрузок при первом факторе так, чтобы сумма вкладов данного фактора в суммарную общность была максимальной:
Максимум должен быть найден при условии
где —общностьпараметра
Затем рассчитывают матрицу коэффициентов корреляции с учётом только первого фактора Имея эту матрицу, получают первую матрицу остатков:
На втором шаге определяют коэффициенты нагрузок при втором факторе так, чтобы сумма вкладов второго фактора в остаточную общность (т.е. полную общность без учёта той части, которая приходится на долю первого фактора) была максимальной. Сумма квадратов нагрузок при втором факторе
Максимум находят из условия
где — коэффициент корреляции из первой матрицы остатков; — факторные нагрузки с учётом второго фактора. Затем рассчитыва коэффициентов корреляций с учётом второго фактора и вычисляют вторую матрицу остатков:
Факторный анализ учитывает суммарную общность. Исходная суммарная общность Итерационный процесс выделения факторов заканчивают, когда учтённая выделенными факторами суммарная общность отличается от исходной суммарной общности меньше чем на — наперёд заданное малое число).
Адекватность факторной модели оценивается по матрице остатков (если величины её коэффициентов малы, то модель считают адекватной).
Такова последовательность шагов для нахождения факторных нагрузок. Для нахождения максимума функции (2.24) при условии (2.25) используют метод множителей Лагранжа, который приводит к системе т уравнений относительно m неизвестных
Метод главных компонент
Разновидностью метода главных факторов является метод главных компонент или компонентный анализ, который реализует модель вида
где m — количество параметров (признаков).
Каждый из наблюдаемых, параметров линейно зависит от m не коррелированных между собой новых компонент (факторов) По сравнению с моделью факторного анализа (2.19) в модели (2.28) отсутствует характерный фактор, т.е. считается, что вся вариация параметра может быть объяснена только действием общих или главных факторов. В случае компонентного анализа исходной является матрица коэффициентов корреляции, где на главной диагонали стоят единицы. Результатом компонентного анализа, так же как и факторного, является матрица факторных нагрузок. Поиск факторного решения — это ортогональное преобразование матрицы исходных переменных, в результате которого каждый параметр может быть представлен линейной комбинацией найденных m факторов, которые называют главными компонентами. Главные компоненты легко выражаются через наблюдённые параметры.
Если для дальнейшего анализа оставить все найденные т компонент, то тем самым будет использована вся информация, заложенная в корреляционной матрице. Однако это неудобно и нецелесообразно. На практике обычно оставляют небольшое число компонент, причём количество их определяется долей суммарной дисперсии, учитываемой этими компонентами. Существуют различные критерии для оценки числа оставляемых компонент; чаще всего используют следующий простой критерий: оставляют столько компонент, чтобы суммарная дисперсия, учитываемая ими, составляла заранее установленное число процентов. Первая из компонент должна учитывать максимум суммарной дисперсии параметров; вторая — не коррелировать с первой и учитывать максимум оставшейся дисперсии и так до тех пор, пока вся дисперсия не будет учтена. Сумма учтённых всеми компонентами дисперсий равна сумме дисперсий исходных параметров. Математический аппарат компонентного анализа полностью совпадает с аппаратом метода главных факторов. Отличие только в исходной матрице корреляций.
Компонента (или фактор) через исходные переменные выражается следующим образом:
где — элементы факторного решения:— исходные переменные; .— k-е собственное значение; р — количество оставленных главных
компонент.
Для иллюстрации возможностей факторного анализа покажем, как, используя метод главных компонент, можно сократить размерность пространства независимых переменных, перейдя от взаимно коррелированных параметров к независимым факторам, число которых р
Следует особо остановиться на интерпретации результатов, т.е. на смысловой стороне факторного анализа. Собственно факторный анализ состоит из двух важных этапов; аппроксимации корреляционной матрицы и интерпретации результатов. Аппроксимировать корреляционную матрицу, т.е. объяснить корреляцию между параметрами действием каких-либо общих для них факторов, и выделить сильно коррелирующие группы параметров достаточно просто: из корреляционной матрицы одним из методов
факторного анализа непосредственно получают матрицу нагрузок — факторное решение, которое называют прямым факторным решением. Однако часто это решение не удовлетворяет исследователей. Они хотят интерпретировать фактор как скрытый, но существенный параметр, поведение которого определяет поведение некоторой своей группы наблюдаемых параметров, в то время как, поведение других параметров определяется поведением других факторов. Для этого у каждого параметра должна быть наибольшая по модулю факторная нагрузка с одним общим фактором. Прямое решение следует преобразовать, что равносильно повороту осей общих факторов. Такие преобразования называют вращениями, в итоге получают косвенное факторное решение, которое и является результатом факторного анализа.
Приложения
Значение t — распределения Стьюдента
Понятие о регрессионном анализе. Линейная выборочная регрессия. Метод наименьших квадратов (МНК)
Основные задачи регрессионного анализа:
- Вычисление выборочных коэффициентов регрессии
- Проверка значимости коэффициентов регрессии
- Проверка адекватности модели
- Выбор лучшей регрессии
- Вычисление стандартных ошибок, анализ остатков
Построение простой регрессии по экспериментальным данным.
Предположим, что случайные величины связаны линейной корреляционной зависимостью для отыскания которой проведено независимых измерений
Диаграмма рассеяния (разброса, рассеивания)
— координаты экспериментальных точек.
Выборочное уравнение прямой линии регрессии имеет вид
Задача: подобрать таким образом, чтобы экспериментальные точки как можно ближе лежали к прямой
Для того, что бы провести прямую воспользуемся МНК. Потребуем,
чтобы
Постулаты регрессионного анализа, которые должны выполняться при использовании МНК.
- подчинены нормальному закону распределения.
- Дисперсия постоянна и не зависит от номера измерения.
- Результаты наблюдений в разных точках независимы.
- Входные переменные независимы, неслучайны и измеряются без ошибок.
Введем функцию ошибок и найдём её минимальное значение
Решив систему, получим искомые значения
является несмещенными оценками истинных значений коэффициентов
где
несмещенная оценка корреляционного момента (ковариации),
несмещенная оценка дисперсии
выборочная ковариация,
выборочная дисперсия
— выборочный коэффициент корреляции
Коэффициент детерминации
— наблюдаемое экспериментальное значение при
— предсказанное значение удовлетворяющее уравнению регрессии
— средневыборочное значение
— коэффициент детерминации, доля изменчивости объясняемая рассматриваемой регрессионной моделью. Для парной линейной регрессии
Коэффициент детерминации принимает значения от 0 до 1. Чем ближе значение коэффициента к 1, тем сильнее зависимость. При оценке регрессионных моделей это используется для доказательства адекватности модели (качества регрессии). Для приемлемых моделей предполагается, что коэффициент детерминации должен быть хотя бы не меньше 0,5 (в этом случае коэффициент множественной корреляции превышает по модулю 0,7). Модели с коэффициентом детерминации выше 0,8 можно признать достаточно хорошими (коэффициент корреляции превышает 0,9). Подтверждение адекватности модели проводится на основе дисперсионного анализа путем проверки гипотезы о значимости коэффициента детерминации.
регрессия незначима
регрессия значима
— уровень значимости
— статистический критерий
Критическая область — правосторонняя;
Если то нулевая гипотеза отвергается на заданном уровне значимости, следовательно, коэффициент детерминации значим, следовательно, регрессия адекватна.
Мощность статистического критерия. Функция мощности
Определение. Мощностью критерия называют вероятность попадания критерия в критическую область при условии, что справедлива конкурирующая гипотеза.
Задача: построить критическую область таким образом, чтобы мощность критерия была максимальной.
Определение. Наилучшей критической областью (НКО) называют критическую область, которая обеспечивает минимальную ошибку второго рода
Пример:
По паспортным данным автомобиля расход топлива на 100 километров составляет 10 литров. В результате измерения конструкции двигателя ожидается, что расход топлива уменьшится. Для проверки были проведены испытания 25 автомобилей с модернизированным двигателем; выборочная средняя расхода топлива по результатам испытаний составила 9,3 литра. Предполагая, что выборка получена из нормально распределенной генеральной совокупности с математическим ожиданием и дисперсией проверить гипотезу, утверждающую, что изменение конструкции двигателя не повлияло на расход топлива.
3) Уровень значимости
4) Статистический критерий
5) Критическая область — левосторонняя
следовательно отвергается на уровне значимости
Пример:
В условиях примера 1 предположим, что наряду с рассматривается конкурирующая гипотеза а критическая область задана неравенством Найти вероятность ошибок I рода и II рода.
автомобилей имеют меньший расход топлива)
автомобилей, имеющих расход топлива 9л на 100 км, классифицируются как автомобили, имеющие расход 10 литров).
Определение. Пусть проверяется — критическая область критерия с заданным уровнем значимости Функцией мощности критерия называется вероятность отклонения как функция параметра т.е.
— ошибка 1-ого рода
— мощность критерия
Пример:
Построить график функции мощности из примера 2 для
попадает в критическую область.
Пример:
Какой минимальный объем выборки следует взять в условии примера 2 для того, чтобы обеспечить
Лемма Неймана-Пирсона.
При проверке простой гипотезы против простой альтернативной гипотезы наилучшая критическая область (НКО) критерия заданного уровня значимости состоит из точек выборочного пространства (выборок объема для которых справедливо неравенство:
— константа, зависящая от
— элементы выборки;
— функция правдоподобия при условии, что соответствующая гипотеза верна.
Пример:
Случайная величина имеет нормальное распределение с параметрами известно. Найти НКО для проверки против причем
Решение:
Ошибка первого рода:
НКО:
Пример:
Для зависимости заданной корреляционной табл. 13, найти оценки параметров уравнения линейной регрессии остаточную дисперсию; выяснить значимость уравнения регрессии при
Решение. Воспользуемся предыдущими результатами
Согласно формуле (24), уравнение регрессии будет иметь вид тогда
Для выяснения значимости уравнения регрессии вычислим суммы Составим расчетную таблицу:
Из (27) и (28) по данным таблицы получим
по табл. П7 находим
Вычислим статистику
Так как то уравнение регрессии значимо. Остаточная дисперсия равна
- Корреляционный анализ
- Статистические решающие функции
- Случайные процессы
- Выборочный метод
- Проверка гипотезы о равенстве вероятностей
- Доверительный интервал для математического ожидания
- Доверительный интервал для дисперсии
- Проверка статистических гипотез
АКТУАЛЬНОСТЬ ТЕМЫ
Общие положения
Про регрессионный анализ вообще, и его применение в DataScience написано очень много. Есть множество учебников, монографий, справочников и статей по прикладной статистике, огромное количество информации в интернете, примеров расчетов. Можно найти множество кейсов, реализованных с использованием средств Python. Казалось бы — что тут еще можно добавить?
Однако, как всегда, есть нюансы:
1. Регрессионный анализ — это прежде всего процесс, набор действий исследователя по определенному алгоритму: «подготовка исходных данных — построение модели — анализ модели — прогнозирование с помощью модели». Это ключевая особенность. Не представляет особой сложности сформировать DataFrame исходных данных и построить модель, запустить процедуру из библиотеки statsmodels. Однако подготовка исходных данных и последующий анализ модели требуют гораздо больших затрат человеко-часов специалиста и строк программного кода, чем, собственно, построение модели. На этих этапах часто приходится возвращаться назад, корректировать модель или исходные данные. Этому, к сожалению, во многих источниках, не удаляется достойного внимания, а иногда — и совсем не уделяется внимания, что приводит к превратному представлению о регрессионном анализе.
2. Далеко не во всех источниках уделяется должное внимание интерпретации промежуточных и финальных результатов. Специалист должен уметь интерпретировать каждую цифру, полученную в ходе работы над моделью.
3. Далеко не все процедуры на этапах подготовки исходных данных или анализа модели в источниках разобраны подробно. Например, про проверку значимости коэффициента детерминации найти информацию не представляет труда, а вот про проверку адекватности модели, построение доверительных интервалов регрессии или про специфические процедуры (например, тест Уайта на гетероскедастичность) информации гораздо меньше.
4. Своеобразная сложность может возникнуть с проверкой статистических гипотез: для отечественной литературы по прикладной статистике больше характерно проверять гипотезы путем сравнения расчетного значения критерия с табличным, а в иностранных источниках чаще определяется расчетный уровень значимости и сравнивается с заданным (чаще всего 0.05 = 1-0.95). В разных источниках информации реализованы разные подходы. Инструменты python (прежде всего библиотеки scipy и statsmodels) также в основном оперируют с расчетным уровнем значимости.
5. Ну и, наконец, нельзя не отметить, что техническая документация библиотеки statsmodels составлена, на мой взгляд, далеко не идеально: информация излагается путано, изобилует повторами и пропусками, описание классов, функций и свойств выполнено фрагментарно и количество примеров расчетов — явно недостаточно.
Поэтому я решил написать ряд обзоров по регрессионному анализу средствами Python, в которых акцент будет сделан на практических примерах, алгоритме действий исследователя, интерпретации всех полученных результатов, конкретных методических рекомендациях. Буду стараться по возможности избегать теории (хотя совсем без нее получится) — все-таки предполагается, что специалист DataScience должен знать теорию вероятностей и математическую статистику, хотя бы в рамках курса высшей математики для технического или экономического вуза.
В данном статье остановимся на самои простом, классическом, стереотипном случае — простой линейной регрессии (simple linear regression), или как ее еще принято называть — парной линейной регрессионной модели (ПЛРМ) — в ситуации, когда исследователя не подстерегают никакие подводные камни и каверзы — исходные данные подчиняются нормальному закону, в выборке отсутствуют аномальные значения, отсутствует ложная корреляция. Более сложные случаи рассмотрим в дальнейшем.
Для построение регрессионной модели будем пользоваться библиотекой statsmodels.
В данной статье мы рассмотрим по возможности полный набор статистических процедур. Некоторые из них (например, дескриптивная статистика или дисперсионный анализ регрессионной модели) могут показаться избыточными. Все так, но эти процедуры улучшают наше представление о процессе и об исходных данных, поэтому в разбор я их включил, а каждый исследователь сам вправе для себя определить, потребуются ему эти процедуры или нет.
Краткий обзор источников
Источников информации по корреляционному и регрессионному анализу огромное количество, в них можно просто утонуть. Поэтому позволю себе просто порекомендовать ряд источников, на мой взгляд, наиболее полезных:
-
Кобзарь А.И. Прикладная математическая статистика. Для инженеров и научных работников. — М.: ФИЗМАТЛИТ, 2006. — 816 с.
-
Львовский Е.Н. Статистические методы построения эмпирических формул. — М.: Высшая школа, 1988. — 239 с.
-
Фёрстер Э., Рёнц Б. Методы корреляционного и регрессионного анализа / пер с нем. — М.: Финансы и статистика, 1983. — 302 с.
-
Афифи А., Эйзен С. Статистический анализ. Подход с использованием ЭВМ / пер с англ. — М.: Мир, 1982. — 488 с.
-
Дрейпер Н., Смит Г. Прикладной регрессионный анализ. Книга 1 / пер.с англ. — М.: Финансы и статистика, 1986. — 366 с.
-
Айвазян С.А. и др. Прикладная статистика: Исследование зависимостей. — М.: Финансы и статистика, 1985. — 487 с.
-
Прикладная статистика. Основы эконометрики: В 2 т. 2-е изд., испр. — Т.2: Айвазян С.А. Основы эконометрики. — М.: ЮНИТИ-ДАНА, 2001. — 432 с.
-
Магнус Я.Р. и др. Эконометрика. Начальный курс — М.: Дело, 2004. — 576 с.
-
Носко В.П. Эконометрика. Книга 1. — М.: Издательский дом «Дело» РАНХиГС, 2011. — 672 с.
-
Брюс П. Практическая статистика для специалистов Data Science / пер. с англ. — СПб.: БХВ-Петербург, 2018. — 304 с.
-
Уатт Дж. и др. Машинное обучение: основы, алгоритмы и практика применения / пер. с англ. — СПб.: БХВ-Петербург, 2022. — 640 с.
Прежде всего следует упомянуть справочник Кобзаря А.И. [1] — это безусловно выдающийся труд. Ничего подобного даже близко не издавалось. Всем рекомендую иметь под рукой.
Есть очень хорошее практическое пособие [2] — для начинающих и практиков.>
Добротная работа немецких авторов [3]. Все разобрано подробно, обстоятельно, с примерами — очень хорошая книга. Примеры приведены из области экономики.
Еще одна добротная работа — [4], с примерами медико-биологического характера.
Работа [5] считается одним из наиболее полных изложений прикладного регрессионного анализа.
Более сложные работы — [6] (классика жанра), [7], [8], [9] — выдержаны на достаточно высоком математическом уровне, примеры из экономической области.
Свежие работы [10] (с примерами на языке R) и [11] (с примерами на python).
Cтатьи
Статей про регрессионный анализ в DataScience очень много, обращаю внимание на некоторые весьма полезные из них.
Серия статей «Python, корреляция и регрессия», охватывающая весь процесс регрессионного анализа:
-
первичная обработка данных, визуализация и корреляционный анализ;
-
регрессия;
-
теория матриц в регрессионном анализе, проверка адекватности, мультиколлинеарность;
-
прогнозирование с помощью регрессионных моделей.
Очень хороший обзор «Интерпретация summary из statsmodels для линейной регрессии». В этой статье даны очень полезные ссылки:
-
Statistical Models
-
Interpreting Linear Regression Through statsmodels .summary()
Статья «Регрессионные модели в Python».
Основные предпосылки (гипотезы) регрессионного анализа
Очень кратко — об этом написано тысячи страниц в учебниках — но все же вспомним некоторые основы теории.
Проверка исходных предпосылок является очень важным моментом при статистическом анализе регрессионной модели. Если мы рассматриваем классическую линейную регрессионную модель вида:
то основными предпосылками при использовании обычного метода наименьших квадратов (МНК) для оценки ее параметров являются:
-
Среднее значение (математическое ожидание) случайной составляющей равно нулю:
-
Дисперсия случайной составляющей является постоянной:
В случае нарушения данного условия мы сталкиваемся с явлением гетероскедастичности.
-
Значения случайной составляющей статистически независимы (некоррелированы) между собой:
В случае нарушения данного условия мы сталкиваемся с явлением автокорреляции.
-
Условие существования обратной матрицы
что эквивалентно одному из двух следующих условий:
то есть число наблюдений должно превышать число параметров.
-
Значения случайной составляющей некоррелированы со значениями независимых переменных:
-
Случайная составляющая имеет нормальный закон распределения (с математическим ожиданием равным нулю — следует из условия 1):
Более подробно — см.: [3, с.90], [4, с.147], [5, с.122], [6, с.208], [7, с.49], [8, с.68], [9, с.88].
Кроме гетероскедастичности и автокорреляции возможно возникновение и других статистических аномалий — мультиколлинеарности, ложной корреляции и т.д.
Доказано, что оценки параметров, полученные с помощью МНК, обладают наилучшими свойствами (несмещенность, состоятельность, эффективность) при соблюдении ряда условий:
-
выполнение приведенных выше исходных предпосылок регрессионного анализа;
-
число наблюдений на одну независимую переменную должно быть не менее 5-6;
-
должны отсутствовать аномальные значения (выбросы).
Кроме обычного МНК существуют и другие его разновидности (взвешенный МНК, обобщенный МНК), которые применяются при наличии статистических аномалий. Кроме МНК применяются и другие методы оценки параметров моделей. В этом обзоре мы эти вопросы рассматривать не будем.
Алгоритм проведения регрессионного анализа
Алгоритм действий исследователя при построении регрессионной модели (полевые работы мы, по понятным причинам, не рассматриваем — считаем, что исходные данные уже получены):
-
Подготовительный этап — постановка целей и задач исследования.
-
Первичная обработка исходных данных — об этом много написано в учебниках и пособиях по DataScience, сюда могут относится:
-
выявление нерелевантных признаков (признаков, которые не несут полезной информации), нетипичных данных (выбросов), неинформативных признаков (имеющих большое количество одинаковых значений) и работа с ними (удаление/преобразование);
-
выделение категориальных признаков;
-
работа с пропущенными значениями;
-
преобразование признаков-дат в формат datetime и т.д.
-
Визуализация исходных данных — предварительный графический анализ.
-
Дескриптивная (описательная) статистика — расчет выборочных характеристик и предварительные выводы о свойствах исходных данных.
-
Исследование закона распределения исходных данных и, при необходимости, преобразование исходных данных к нормальному закону распределения.
-
Выявление статистически аномальных значений (выбросов), принятие решения об их исключении.
Этапы 4, 5 и 6 могут быть при необходимости объединены.
-
Корреляционный анализ — исследование корреляционных связей между исходными данными; это разведка перед проведением регрессионного анализа.
-
Построение регрессионной модели:
-
выбор моделей;
-
выбор методов;
-
оценка параметров модели.
-
Статистический анализ регрессионной модели:
-
оценка ошибок аппроксимации (error metrics);
-
анализ остатков (проверка нормальности распределения остатков и гипотезы о равенстве нулю среднего значения остатков);
-
проверка адекватности модели;
-
проверка значимости коэффициента детерминации;
-
проверка значимости коэффициентов регрессии;
-
проверка мультиколлинеарности (для множественных регрессионных моделей; вообще мультиколлинеарные переменные выявляются еще на стадии корреляционного анализа);
-
проверка автокорреляции;
-
проверка гетероскедастичности.
Этапы 8 и 9 могут быть при необходимости повторяться несколько раз.
-
Сравнительный анализ нескольких регрессионных моделей, выбор наилучшей (при необходимости).
-
Прогнозирование с помощью регрессионной модели и оценка качества прогноза.
-
Выводы и рекомендации.
Само собой, этот алгоритм не есть истина в последней инстанции — в зависимости от особенностей исходных данных и вида модели могут возникать дополнительные задачи.
Применение пользовательских функций
Далее в обзоре мной будут использованы несколько пользовательских функций для решения разнообразных задач. Все эти функции созданы для облегчения работы и уменьшения размера программного кода. Данные функции загружается из пользовательского модуля my_module__stat.py, который доступен в моем репозитории на GitHub. Лично мне так удобнее работать, хотя каждый исследователь сам формирует себе инструменты по душе — особенно в части визуализации. Желающие могут пользоваться этими функциями, либо создать свои.
Итак, вот перечень данных функций:
-
graph_scatterplot_sns — функция позволяет построить точечную диаграмму средствами seaborn и сохранить график в виде png-файла;
-
graph_hist_boxplot_probplot_XY_sns — функция позволяет визуализировать исходные данные для простой линейной регрессии путем одновременного построения гистограммы, коробчатой диаграммы и вероятностного графика (для переменных X и Y) средствами seaborn и сохранить график в виде png-файла; имеется возможность выбирать, какие графики строить (h — hist, b — boxplot, p — probplot);
-
descriptive_characteristics — функция возвращает в виде DataFrame набор статистических характеристики выборки, их ошибок и доверительных интервалов;
-
detecting_outliers_mad_test — функция выполняет проверку наличия аномальных значений (выбросов) по критерию наибольшего абсолютного отклонения (более подробно — см.[1, с.547]);
-
norm_distr_check — проверка нормальности распределения исходных данных с использованием набора из нескольких статистических тестов;
-
corr_coef_check — функция выполняет расчет коэффициента линейной корреляции Пирсона, проверку его значимости и расчет доверительных интервалов; об этой функции я писал в своей статье.
-
graph_regression_plot_sns — — функция позволяет построить график регрессионной модели.
Ряд пользовательских функций мы создаем в процессе данного обзора (они тоже включены в пользовательский модуль my_module__stat.py):
-
regression_error_metrics — расчет ошибок аппроксимации регрессионной модели;
-
ANOVA_table_regression_model — вывод таблицы дисперсионного анализа регрессионной модели;
-
regression_model_adequacy_check — проверка адекватности регрессионной модели по критерию Фишера;
-
determination_coef_check — проверка значимости коэффициента детерминации по критерию Фишера;
-
regression_coef_check — проверка значимости коэффициентов регрессии по критеирю Стьюдента;
-
Goldfeld_Quandt_test, Breush_Pagan_test, White_test — проверка гетероскедастичности с использование тестов Голдфелда-Квандта, Бриша-Пэгана и Уайта соответственно;
-
regression_pair_predict — функция для прогнозирования с помощью парной регрессионной модели: рассчитывает прогнозируемое значение переменной Y по заданной модели, а также доверительные интервалы среднего и индивидуального значения для полученного прогнозируемого значения Y;
-
graph_regression_pair_predict_plot_sns — прогнозирование: построение графика регрессионной модели (с доверительными интервалами) и вывод расчетной таблицы с данными для заданной области значений X.
ПОСТАНОВКА ЗАДАЧИ
В качестве примера рассмотрим практическую задачу из области экспертизы промышленной безопасности — калибровку ультразвукового прибора для определения прочности бетона.
Итак, суть задачи: при обследовании несущих конструкций зданий и сооружений эксперт определяет прочность бетона с использованием ультразвукового прибора «ПУЛЬСАР-2.1», для которого необходимо предварительно построить градуировочную зависимость. Заключается это в следующем — производятся замеры с фиксацией следующих показателей:
-
X — показания ультразвукового прибора «ПУЛЬСАР-2.1» (м/с)
-
Y — результаты замера прочности бетона (методом отрыва со скалыванием) склерометром ИПС-МГ4.03.
Предполагается, что между показателями X и Y имеется линейная регрессионная зависимость, которая позволит прогнозировать прочность бетона на основании измерений, проведенных прибором «ПУЛЬСАР-2.1».
Были выполнены замеры фактической прочности бетона конструкций для бетонов одного вида с одним типом крупного заполнителя, с единой технологией производства. Для построения были выбраны 14 участков (не менее 12), включая участки, в которых значение косвенного показателя максимальное, минимальное и имеет промежуточные значения.
Настройка заголовков отчета:
# Общий заголовок проекта
Task_Project = 'Калибровка ультразвукового прибора "ПУЛЬСАР-2.1" nдля определения прочности бетона'
# Заголовок, фиксирующий момент времени
AsOfTheDate = ""
# Заголовок раздела проекта
Task_Theme = ""
# Общий заголовок проекта для графиков
Title_String = f"{Task_Project}n{AsOfTheDate}"
# Наименования переменных
Variable_Name_X = "Скорость УЗК (м/с)"
Variable_Name_Y = "Прочность бетона (МПа)"
# Константы
INCH = 25.4 # мм/дюйм
DecPlace = 5 # number of decimal places - число знаков после запятой
# Доверительная вероятность и уровень значимости:
p_level = 0.95
a_level = 1 - p_level
Подключение модулей и библиотек:
# Стандартные модули и библиотеки
import os # загрузка модуля для работы с операционной системой
import sys
import platform
print('{:<35}{:^0}'.format("Текущая версия Python: ", platform.python_version()), 'n')
import math
from math import * # подключаем все содержимое модуля math, используем без псевдонимов
import numpy as np
#print ("Текущая версия модуля numpy: ", np.__version__)
print('{:<35}{:^0}'.format("Текущая версия модуля numpy: ", np.__version__))
from numpy import nan
import scipy as sci
print('{:<35}{:^0}'.format("Текущая версия модуля scipy: ", sci.__version__))
import scipy.stats as sps
import pandas as pd
print('{:<35}{:^0}'.format("Текущая версия модуля pandas: ", pd.__version__))
import matplotlib as mpl
print('{:<35}{:^0}'.format("Текущая версия модуля matplotlib: ", mpl.__version__))
import matplotlib.pyplot as plt
import seaborn as sns
print('{:<35}{:^0}'.format("Текущая версия модуля seaborn: ", sns.__version__))
import statsmodels.api as sm
import statsmodels.formula.api as smf
import statsmodels.graphics.api as smg
import statsmodels.stats.api as sms
from statsmodels.compat import lzip
print('{:<35}{:^0}'.format("Текущая версия модуля statsmodels: ", sm.__version__))
import statistics as stat # module 'statistics' has no attribute '__version__'
import sympy as sym
print('{:<35}{:^0}'.format("Текущая версия модуля sympy: ", sym.__version__))
# Настройки numpy
np.set_printoptions(precision = 4, floatmode='fixed')
# Настройки Pandas
pd.set_option('display.max_colwidth', None) # текст в ячейке отражался полностью вне зависимости от длины
pd.set_option('display.float_format', lambda x: '%.4f' % x)
# Настройки seaborn
sns.set_style("darkgrid")
sns.set_context(context='paper', font_scale=1, rc=None) # 'paper', 'notebook', 'talk', 'poster', None
# Настройки Mathplotlib
f_size = 8 # пользовательская переменная для задания базового размера шрифта
plt.rcParams['figure.titlesize'] = f_size + 12 # шрифт заголовка
plt.rcParams['axes.titlesize'] = f_size + 10 # шрифт заголовка
plt.rcParams['axes.labelsize'] = f_size + 6 # шрифт подписей осей
plt.rcParams['xtick.labelsize'] = f_size + 4 # шрифт подписей меток
plt.rcParams['ytick.labelsize'] = f_size + 4
plt.rcParams['legend.fontsize'] = f_size + 6 # шрифт легенды
# Пользовательские модули и библиотеки
Text1 = os.getcwd() # вывод пути к текущему каталогу
#print(f"Текущий каталог: {Text1}")
sys.path.insert(1, "D:REPOSITORYMyModulePython")
from my_module__stat import *
ФОРМИРОВАНИЕ ИСХОДНЫХ ДАННЫХ
Показания ультразвукового прибора «ПУЛЬСАР-2.1» (м/с):
X = np.array([
4416, 4211, 4113, 4110, 4122,
4427, 4535, 4311, 4511, 4475,
3980, 4490, 4007, 4426
])
Результаты замера прочности бетона (методом отрыва со скалыванием) прибором ИПС-МГ4.03:
Y = np.array([
34.2, 35.1, 31.5, 30.8, 30.0,
34.0, 35.4, 35.8, 38.0, 37.7,
30.0, 37.8, 31.0, 35.2
])
Запишем данные в DataFrame:
calibrarion_df = pd.DataFrame({
'X': X,
'Y': Y})
display(calibrarion_df)
calibrarion_df.info()
Сохраняем данные в csv-файл:
calibrarion_df.to_csv(
path_or_buf='data/calibrarion_df.csv',
mode='w+',
sep=';')
Cоздаем копию исходной таблицы для работы:
dataset_df = calibrarion_df.copy()
ВИЗУАЛИЗАЦИЯ ДАННЫХ
Границы значений переменных (при построении графиков):
(Xmin_graph, Xmax_graph) = (3800, 4800)
(Ymin_graph, Ymax_graph) = (25, 45)
# Пользовательская функция
graph_scatterplot_sns(
X, Y,
Xmin=Xmin_graph, Xmax=Xmax_graph,
Ymin=Ymin_graph, Ymax=Ymax_graph,
color='orange',
title_figure=Task_Project,
x_label=Variable_Name_X,
y_label=Variable_Name_Y,
s=100,
file_name='graph/scatterplot_XY_sns.png')
Существует универсальный набор графиков — гистограмма, коробчатая диаграмма, вероятностный график — которые позволяют исследователю сделать предварительные выводы о свойствах исходных данных.
Так как объем выборки невелик (n=14), строить гистограммы распределения переменных X и Y не имеет смысла, поэтому ограничимся построением коробчатых диаграмм и вероятностных графиков:
# Пользовательская функция
graph_hist_boxplot_probplot_XY_sns(
data_X=X, data_Y=Y,
data_X_min=Xmin_graph, data_X_max=Xmax_graph,
data_Y_min=Ymin_graph, data_Y_max=Ymax_graph,
graph_inclusion='bp', # выбираем для построения виды графиков: b - boxplot, p - probplot)
data_X_label=Variable_Name_X,
data_Y_label=Variable_Name_Y,
title_figure=Task_Project,
file_name='graph/hist_boxplot_probplot_XY_sns.png')
Для сравнения характера распределений переменных X и Y возможно также построить совмещенную коробчатую диаграмму по стандартизованным данным:
# стандартизуем исходные данные
standardize_df = lambda X: ((X - np.mean(X))/np.std(X))
dataset_df_standardize = dataset_df.copy()
dataset_df_standardize = dataset_df_standardize.apply(standardize_df)
display(dataset_df_standardize)
# построим график
fig, axes = plt.subplots(figsize=(210/INCH, 297/INCH/2))
axes.set_title("Распределение стандартизованных переменных X и Y", fontsize = 16)
sns.boxplot(
data=dataset_df_standardize,
orient='h',
width=0.5,
ax=axes)
plt.show()
Графический анализ позволяет сделать следующие выводы:
-
Отсутствие выбросов на коробчатых диаграммах свидетельствует об однородности распределения переменных.
-
Смещение медианы вправо на коробчатых диаграммах свидетельствует о левосторонней асимметрии распределения.
ДЕСКРИПТИВНАЯ (ОПИСАТЕЛЬНАЯ СТАТИСТИКА)
Собственно говоря, данный этап требуется проводить далеко не всегда, однако с помощью статистических характеристик выборки мы тоже можем сделать полезные выводы.
Описательная статистика исходных данных средствами библиотеки Pandas — самый простой вариант:
dataset_df.describe()
Описательная статистика исходных данных средствами библиотеки statsmodels — более развернутый вариант, с большим количеством показателей:
from statsmodels.stats.descriptivestats import Description
result = Description(
dataset_df,
stats=["nobs", "missing", "mean", "std_err", "ci", "ci", "std", "iqr", "mad", "coef_var", "range", "max", "min", "skew", "kurtosis", "mode",
"median", "percentiles", "distinct", "top", "freq"],
alpha=a_level,
use_t=True)
display(result.summary())
Описательная статистика исходных данных с помощью пользовательской функции descriptive_characteristics:
# Пользовательская функция
descriptive_characteristics(X)
Выводы:
-
Сравнение показателей среднего арифметического (mean) и медианы (median) свидетельствует о левосторонней асимметрии (т.к.mean < median).
-
Значение коэффициента вариации CV = 0.0445 и доверительный интервал для него 0.0336 ≤ CV ≤ 0.0657 свидетельствует об однородности исходных данных (т.к. CV ≤ 0.33).
-
Значение показателя асимметрии skew (As) = -0.3101 свидетельствует об умеренной левосторонней асимметрии распределении (т.к. |As| ≤ 0.5, As < 0).
-
Значение показателя эксцесса kurtosis (Es) = -1.4551 свидетельствует о плосковершинном распределении (platykurtic distribution) (т.к. Es < 0).
# Пользовательская функция
descriptive_characteristics(Y)
Выводы:
-
Сравнение показателей среднего арифметического (mean) и медианы (median) свидетельствует о левосторонней асимметрии (т.к.mean < median).
-
Значение коэффициента вариации CV = 0.0822 и доверительный интервал для него 0.06202 ≤ CV ≤ 0.1217 свидетельствует об однородности исходных данных (т.к. CV ≤ 0.33).
-
Значение показателя асимметрии skew (As) = -0.1109 свидетельствует о приблизительно симметричном распределении (т.к. |As| ≤ 0.25).
-
Значение показателя эксцесса kurtosis (Es) = -1.3526 свидетельствует о плосковершинном распределении (platykurtic distribution) (т.к. Es < 0).
ПРОВЕРКА НОРМАЛЬНОСТИ РАСПРЕДЕЛЕНИЯ
Для проверки нормальности распределения использована пользовательская функция norm_distr_check, которая объединяет в себе набор стандартных статистических тестов проверки нормальности. Все тесты относятся к стандартному инструментарию Pyton (библиотека scipy, модуль stats), за исключением теста Эппса-Палли (Epps-Pulley test); о том, как реализовать этот тест средствами Pyton я писал в своей статье https://habr.com/ru/post/685582/.
Примечание: для использования функции norm_distr_check в каталог с ipynb-файлом необходимо поместить папку table c файлом Tep_table.csv, который содержит табличные значения статистики критерия Эппса-Палли.
# пользовательская функция
norm_distr_check(X)
# Пользовательская функция
norm_distr_check (Y)
Вывод: большинство статистических тестов позволяют принять гипотезу о нормальности распределения переменных X и Y.
ПРОВЕРКА АНОМАЛЬНЫХ ЗНАЧЕНИЙ (ВЫБРОСОВ)
Статистическую проверку аномальных значений (выбросов) не стоит путать с проверкой выбросов, которая проводится на этапе первичной обработки результатов наблюдений. Последняя проводится с целью отсеять явные ошибочные данные (например, в результате неправильно поставленной запятой величина показателя может увеличиться/уменьшиться на порядок); здесь же мы говорим о статистической проверке данных, которые уже прошли этап первичной обработки.
Имеется довольно много критериев для проверки аномальных значений (подробнее см.[1]); вообще данная процедура довольно неоднозначная:
-
критерии зависят от вида распределения;
-
мало данных о сравнительной мощности этих критериев;
-
даже в случае принятии гипотезы о нормальном распределении в выборке могут быть обнаружены аномальные значения и пр.
Кроме существует дилемма: если какие-то значения в выборке признаны выбросами — стоит или не стоит исследователю исключать их? Ведь каждое значение несет в себе информацию, причем иногда весьма ценную, а сильно отклоняющиеся от основного массива данные (которые не являются выбросами в смысле первичной обработки, но являются статистическим значимыми аномальными значениями) могут кардинально изменить статистический вывод.
В общем, о задаче выявления аномальных значений (выбросов) можно написать отдельно, а пока, в данном разборе, ограничимся проверкой аномальных значений по критерию наибольшего максимального отклонения (см.[1, с.547]) с помощью пользовательской функции detecting_outliers_mad_test. Данные функция возвращает DataFrame, которые включает список аномальных значений со следующими признаками:
-
value — проверяемое значение из выборки;
-
mad_calc и mad_table — расчетное и табличное значение статистики критерия;
-
outlier_conclusion — вывод (выброс или нет).
Обращаю внимание, что критерий наибольшего максимального отклонения можно использовать только для нормально распределенных данных.
# пользовательская функция
print("Проверка наличия выбросов переменной X:n")
result = detecting_outliers_mad_test(X)
mask = (result['outlier_conclusion'] == 'outlier')
display(result[mask])
# пользовательская функция
print("Проверка наличия выбросов переменной Y:n")
result = detecting_outliers_mad_test(Y)
mask = (result['outlier_conclusion'] == 'outlier')
display(result[mask])
Вывод: в случае обеих переменных X и Y список пуст, следовательно, аномальных значений (выбросов) не выявлено.
КОРРЕЛЯЦИОННЫЙ АНАЛИЗ
Корреляционный анализ — это разведка перед построением регрессионной модели.
Выполним расчет коэффициента линейной корреляции Пирсона, проверку его значимости и построение доверительных интервалов с помощью пользовательской функции corr_coef_check (про эту функцию более подробно написано в моей статье https://habr.com/ru/post/683442/):
# пользовательская функция
display(corr_coef_check(X, Y, scale='Evans'))
Выводы:
-
Значение коэффициента корреляции coef_value = 0.8900 свидетельствует о весьма сильной корреляционной связи (по шкале Эванса).
-
Коэффициент корреляции значим по критерию Стьюдента: t_calc ≥ t_table, a_calc ≤ a_level.
-
Доверительный интервал для коэффициента корреляции: 0.6621 ≤ coef_value ≤ 0.9625.
РЕГРЕССИОННЫЙ АНАЛИЗ
Предварительная визуализация
python позволяет выполнить предварительную визуализацию, например, с помощью функции jointplot библиотеки seaborn:
fig = plt.figure(figsize=(297/INCH, 210/INCH))
axes = sns.jointplot(
x=X, y=Y,
kind='reg',
ci=95)
plt.show()
Построение модели
Выполним оценку параметров и анализ простой линейной регрессии (simple linear regression), используя библиотеку statsmodels (https://www.statsmodels.org/) и входящий в нее модуль линейной регрессии Linear Regression (https://www.statsmodels.org/stable/regression.html).
Данный модуль включает в себя классы, реализующие различные методы оценки параметров моделей линейной регрессии, в том числе:
-
класс OLS (https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.OLS.html#statsmodels.regression.linear_model.OLS) — Ordinary Least Squares (обычный метод наименьших квадратов).
-
класс WLS (https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.WLS.html#statsmodels.regression.linear_model.WLS) — Weighted Least Squares (метод взвешенных наименьших квадратов) (https://en.wikipedia.org/wiki/Weighted_least_squares), применяется, если имеет место гетероскедастичность данных (https://ru.wikipedia.org/wiki/Гетероскедастичность).
-
класс GLS (https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.GLS.html#statsmodels.regression.linear_model.GLS) — Generalized Least Squares (обобщенный метод наименьших квадратов) (https://en.wikipedia.org/wiki/Generalized_least_squares), применяется, если существует определенная степень корреляции между остатками в модели регрессии.
-
класс GLSAR (https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.GLSAR.html#statsmodels.regression.linear_model.GLSAR) — Generalized Least Squares with AR covariance structure (обобщенный метод наименьших квадратов, ковариационная структура с автокорреляцией — экспериментальный метод)
-
класс RecurciveLS (https://www.statsmodels.org/stable/examples/notebooks/generated/recursive_ls.html) — Recursive least squares (рекурсивный метод наименьших квадратов) (https://en.wikipedia.org/wiki/Recursive_least_squares_filter)
-
классы RollingOLS (https://www.statsmodels.org/stable/generated/statsmodels.regression.rolling.RollingOLS.html#statsmodels.regression.rolling.RollingOLS) и RollingWLS (https://www.statsmodels.org/stable/generated/statsmodels.regression.rolling.RollingWLS.html#statsmodels.regression.rolling.RollingWLS) — скользящая регрессия (https://www.statsmodels.org/stable/examples/notebooks/generated/rolling_ls.html, https://help.fsight.ru/ru/mergedProjects/lib/01_regression_models/rolling_regression.htm)
и т.д.
Так как исходные данные подчиняются нормальному закону распределения и аномальные значения (выбросы) отсутствуют, воспользуемся для оценки параметров обычным методом наименьших квадратов (класс OLS):
model_linear_ols = smf.ols(formula='Y ~ X', data=dataset_df)
result_linear_ols = model_linear_ols.fit()
print(result_linear_ols.summary())
Альтернативная форма выдачи результатов:
print(result_linear_ols.summary2())
Результаты построения модели мы получаем как класс statsmodels.regression.linear_model.RegressionResults (https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.RegressionResults.html#statsmodels.regression.linear_model.RegressionResults).
Экспресс-выводы, которые мы можем сразу сделать из результатов построения модели:
-
Коэффициенты регрессии модели Y = b0 + b1∙X:
-
Intercept = b0 = -21.3741
-
b1 = 0.0129
-
-
Коэффициент детерминации R-squared = 0.776, его скорректированная оценка Adj. R-squared = 0.757 — это означает, что регрессионная модуль объясняет 75.75% вариации переменной Y.
-
Проверка значимости коэффициента детерминации:
-
расчетное значение статистики критерия Фишера: F-statistic = 41.61
-
расчетный уровень значимости Prob (F-statistic) = 3.16e-05
-
так как значение Prob (F-statistic) < 0.05, то нулевая гипотеза R-squared = 0 НЕ ПРИНИМАЕТСЯ, т.е. коэффициент детерминации ЗНАЧИМ
-
-
Проверка значимости коэффициентов регрессии:
-
расчетный уровень значимости P>|t| не превышает 0.05 — это означает, что оба коэффициента регрессии значимы
-
об этом же свидетельствует то, что доверительный интервал для обоих коэффициентов регрессии ([0.025; 0.975]) не включает в себя точку 0
Также в таблице результатов содержится прочая информация по коэффициентам регрессии: стандартная ошибка Std.Err. расчетное значение статистики критерия Стьюдента t для проверки гипотезы о значимости.
-
-
Анализ остатков модели:
-
Тест Omnibus — про этот тест подробно написано в https://en.wikipedia.org/wiki/Omnibus_test, https://medium.com/swlh/interpreting-linear-regression-through-statsmodels-summary-4796d359035a, http://work.thaslwanter.at/Stats/html/statsModels.html.
Расчетное значение статистики критерия Omnibus = 3.466 — по сути расчетное значение F-критерия (см. https://en.wikipedia.org/wiki/Omnibus_test).
Prob(Omnibus) = 0.177 — показывает вероятность нормального распределения остатков (значение 1 указывает на совершенно нормальное распределение).
Учитывая, что в дальнейшем мы проверим нормальность распределения остатков по совокупности различных тестов, в том числе с достаточно высокой мощностью, и все тесты позволят принять гипотезу о нормальном распределении — в данном случае к тесту Omnibus возникают вопросы. С этим тестом нужно разбираться отдельно.
-
Skew = 0.014 и Kurtosis = 1.587 — показатели асимметрии и эксцесса остатков свидетельствуют, что распределение остатков практически симметричное, островершинное.
-
проверка нормальности распределения остатков по критерию Харке-Бера: расчетное значение статистики критерия Jarque-Bera (JB) = 1.164 и расчетный уровень значимости Prob(JB) = 0.559. К данным результатам также возникают вопросы, особенно, если учесть, что критерий Харке-Бера является асимптотическим, расчетное значение имеет распределение хи-квадрат, поэтому данный критерий рекомендуют применять только для больших выборок (см. https://en.wikipedia.org/wiki/Jarque–Bera_test). Проверку нормальности распределения остатков модели лучше проводить с использованием набора стандартных статистических тестов python (см. далее).
-
-
Проверка автокорреляции по критерию Дарбина-Уотсона: Durbin-Watson = 1.443.
Мы не будем здесь разбирать данный критерий, так как явление автокорреляции больше характерно для данных, выражаемых в виде временных рядов. Однако, для грубой оценки считается, что при расчетном значении статистики криетрия Дарбина=Уотсона а интервале [1; 2] автокорреляция отсутствует (см.https://en.wikipedia.org/wiki/Durbin–Watson_statistic).
Более подробно про критерий Дарбина-Уотсона — см. [1, с.659].
Прочая информация, которую можно извлечь из результатов построения модели:
-
Covariance Type — тип ковариации, подробнее см. https://habr.com/ru/post/681218/, https://towardsdatascience.com/simple-explanation-of-statsmodel-linear-regression-model-summary-35961919868b#:~:text=Covariance type is typically nonrobust,with respect to each other.
-
Scale — масштабный коэффициент для ковариационной матрицы (https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.RegressionResults.scale.html#statsmodels.regression.linear_model.RegressionResults.scale), равен величине Mean squared error (MSE) (cреднеквадратической ошибке), об подробнее см. далее, в разделе про ошибки аппроксимации моделей.
-
Показатели сравнения качества различных моделей:
-
Log-Likelihood — логарифмическая функция правдоподобия, подробнее см. https://en.wikipedia.org/wiki/Likelihood_function#Log-likelihood, https://habr.com/ru/post/433804/
-
AIC — информационный критерий Акаике (Akaike information criterion), подробнее см. https://en.wikipedia.org/wiki/Akaike_information_criterion
-
BIC — информационный критерий Байеса (Bayesian information criterion), подробнее см. https://en.wikipedia.org/wiki/Bayesian_information_criterion
В данной статье мы эти показатели рассматривать не будем, так как задача выбора одной модели из нескольких перед нами не стоит.
-
-
Число обусловленности Cond. No = 96792 используется для проверки мультиколлинеарности (считается, что мультиколлинеарность есть, если значение Cond. No > 30) (см. http://work.thaslwanter.at/Stats/html/statsModels.html). В нашем случае парной регрессионной модели о мультиколлинеарности речь не идет.
Далее будем извлекать данные из стандартного набора выдачи результатов и анализировать их более подробно. Последующие этапы вовсе не обязательно проводить в полном объеме при решении задач, но здесь мы рассмотрим их подробно.
Параметры и уравнение регрессионной модели
Извлечем параметры полученной модели — как свойство params модели:
print('Параметры модели: n', result_linear_ols.params, type(result_linear_ols.params))
Имея параметры модели, можем формализовать уравнение модели Y = b0 + b1*X:
b0 = result_linear_ols.params['Intercept']
b1 = result_linear_ols.params['X']
Y_calc = lambda x: b0 + b1*x
График регрессионной модели
Для построения графиков регрессионных моделей можно воспользоваться стандартными возможностями библиотек statsmodels, seaborn, либо создать пользовательскую функцию — на усмотрение исследователя:
1. Построение графиков регрессионных моделей с использованием библиотеки statsmodels
С помощью функции statsmodels.graphics.plot_fit (https://www.statsmodels.org/stable/generated/statsmodels.graphics.regressionplots.plot_fit.html#statsmodels.graphics.regressionplots.plot_fit) — отображается график Y and Fitted vs.X (фактические и расчетные значения Y с доверительным интервалом для каждого значения Y):
fig, ax = plt.subplots(figsize=(297/INCH, 210/INCH))
fig = sm.graphics.plot_fit(
result_linear_ols, 'X',
vlines=True, # это параметр отвечает за отображение доверительных интервалов для Y
ax=ax)
ax.set_ylabel(Variable_Name_Y)
ax.set_xlabel(Variable_Name_X)
ax.set_title(Task_Project)
plt.show()
С помощью функции statsmodels.graphics.plot_regress_exog (https://www.statsmodels.org/stable/generated/statsmodels.graphics.regressionplots.plot_regress_exog.html#statsmodels.graphics.regressionplots.plot_regress_exog) — отображается область 2х2, которая содержит:
-
предыдущий график Y and Fitted vs.X;
-
график остатков Residuals versus X;
-
график Partial regression plot — график частичной регрессии, пытается показать эффект добавления другой переменной в модель, которая уже имеет одну или несколько независимых переменных (более подробно см. https://en.wikipedia.org/wiki/Partial_regression_plot);
-
график CCPR Plot (Component-Component plus Residual Plot) — еще один способ оценить влияние одной независимой переменной на переменную отклика, принимая во внимание влияние других независимых переменных (более подробно — см. https://towardsdatascience.com/calculating-price-elasticity-of-demand-statistical-modeling-with-python-6adb2fa7824d, https://www.kirenz.com/post/2021-11-14-linear-regression-diagnostics-in-python/linear-regression-diagnostics-in-python/).
fig = plt.figure(figsize=(297/INCH, 210/INCH))
sm.graphics.plot_regress_exog(result_linear_ols, 'X', fig=fig)
plt.show()
2. Построение графиков регрессионных моделей с использованием библиотеки seaborn
Воспользуемся модулем regplot библиотеки seaborn (https://seaborn.pydata.org/generated/seaborn.regplot.html). Данный модуль позволяет визуализировать различные виды регрессии:
-
линейную
-
полиномиальную
-
логистическую
-
взвешенную локальную регрессию (LOWESS — Locally Weighted Scatterplot Smoothing) (см. http://www.machinelearning.ru/wiki/index.php?title=Алгоритм_LOWESS, https://www.statsmodels.org/stable/generated/statsmodels.nonparametric.smoothers_lowess.lowess.html)
Более подробно про модуль regplot можно прочитать в статье: https://pyprog.pro/sns/sns_8_regression_models.html.
Есть более совершенный модуль lmplot (https://seaborn.pydata.org/generated/seaborn.lmplot.html), который объединяет в себе regplot и FacetGrid, но мы его здесь рассматривать не будем.
# создание рисунка (Figure) и области рисования (Axes)
fig = plt.figure(figsize=(297/INCH, 420/INCH/1.5))
ax1 = plt.subplot(2,1,1)
ax2 = plt.subplot(2,1,2)
# заголовок рисунка (Figure)
title_figure = Task_Project
fig.suptitle(title_figure, fontsize = 18)
# заголовок области рисования (Axes)
title_axes_1 = 'Линейная регрессионная модель'
ax1.set_title(title_axes_1, fontsize = 16)
# график регрессионной модели
order_mod = 1 # порядок модели
#label_legend_regr_model = 'фактические данные'
sns.regplot(
#data=dataset_df,
x=X, y=Y,
#x_estimator=np.mean,
order=order_mod,
logistic=False,
lowess=False,
robust=False,
logx=False,
ci=95,
scatter_kws={'s': 30, 'color': 'red'},
line_kws={'color': 'blue'},
#label=label_legend_regr_model,
ax=ax1)
ax1.set_ylabel(Variable_Name_Y)
ax1.legend()
# график остатков
title_axes_2 = 'График остатков'
ax2.set_title(title_axes_2, fontsize = 16)
sns.residplot(
#data=dataset_df,
x=X, y=Y,
order=order_mod,
lowess=False,
robust=False,
scatter_kws={'s': 30, 'color': 'darkorange'},
ax=ax2)
ax2.set_xlabel(Variable_Name_X)
plt.show()
3. Построение графиков регрессионных моделей с помощью пользовательской функции
# Пользовательская функция
graph_regression_plot_sns(
X, Y,
regression_model=Y_calc,
Xmin=Xmin_graph, Xmax=Xmax_graph,
Ymin=Ymin_graph, Ymax=Ymax_graph,
title_figure=Task_Project,
x_label=Variable_Name_X,
y_label=Variable_Name_Y,
label_legend_regr_model=f'линейная регрессия Y = {b0:.3f} + {b1:.4f}*X',
s=80,
file_name='graph/regression_plot_lin.png')
Статистический анализ регрессионной модели
1. Расчет ошибки аппроксимации (Error Metrics)
Ошибки аппроксимации (Error Metrics) позволяют получить общее представление о качестве модели, а также позволяют сравнивать между собой различные модели.
Создадим пользовательскую функцию, которая рассчитывает основные ошибки аппроксимации для заданной модели:
-
Mean squared error (MSE) или Mean squared deviation (MSD) — среднеквадратическая ошибка (https://en.wikipedia.org/wiki/Mean_squared_error):
-
Root mean square error (RMSE) или Root mean square deviation (RMSD) — квадратный корень из MSE (https://en.wikipedia.org/wiki/Root-mean-square_deviation):
-
Mean absolute error (MAE) — средняя абсолютная ошибка (https://en.wikipedia.org/wiki/Mean_absolute_error):
-
Mean squared prediction error (MSPE) — среднеквадратическая ошибка прогноза (среднеквадратическая ошибка в процентах) (https://en.wikipedia.org/wiki/Mean_squared_prediction_error):
-
Mean absolute percentage error (MAPE) — средняя абсолютная ошибка в процентах (https://en.wikipedia.org/wiki/Mean_absolute_percentage_error):
Про выбор метрики см. также https://machinelearningmastery.ru/how-to-select-the-right-evaluation-metric-for-machine-learning-models-part-2-regression-metrics-d4a1a9ba3d74/.
# Пользовательская функция
def regression_error_metrics(model, model_name=''):
model_fit = model.fit()
Ycalc = model_fit.predict()
n_fit = model_fit.nobs
Y = model.endog
MSE = (1/n_fit) * np.sum((Y-Ycalc)**2)
RMSE = sqrt(MSE)
MAE = (1/n_fit) * np.sum(abs(Y-Ycalc))
MSPE = (1/n_fit) * np.sum(((Y-Ycalc)/Y)**2)
MAPE = (1/n_fit) * np.sum(abs((Y-Ycalc)/Y))
model_error_metrics = {
'MSE': MSE,
'RMSE': RMSE,
'MAE': MAE,
'MSPE': MSPE,
'MAPE': MAPE}
result = pd.DataFrame({
'MSE': MSE,
'RMSE': RMSE,
'MAE': MAE,
'MSPE': "{:.3%}".format(MSPE),
'MAPE': "{:.3%}".format(MAPE)},
index=[model_name])
return model_error_metrics, result
(model_error_metrics, result) = regression_error_metrics(model_linear_ols, model_name='linear_ols')
display(result)
В литературе по прикладной статистике нет единого мнения о допустимом размере относительных ошибок аппроксимации: в одних источниках допустимой считается ошибка 5-7%, в других она может быть увеличена до 8-10%, и даже до 15%.
Вывод: модель хорошо аппроксимирует фактические данные (относительная ошибка аппроксимации MAPE = 3.405% < 10%).
2. Дисперсионный анализ регрессионной модели (ДАРМ)
ДАРМ не входит в стандартную форму выдачи результатов Regression Results, однако я решил написать здесь о нем по двум причинам:
-
Именно анализ дисперсии регрессионной модели, разложение этой дисперсии на составляющие дает фундаментальное представление о сути регрессии, а термины, используемые при ДАРМ, применяются на последующих этапах анализа.
-
С терминами ДАРМ в литературе по прикладной статистике имеется некоторая путаница, в разных источниках они могут именоваться по-разному (см., например, [8, с.52]), поэтому, чтобы двигаться дальше, необходимо определиться с понятиями.
При ДАРМ общую вариацию результативного признака (Y) принято разделять на две составляющие — вариация, обусловленная регрессией и вариация, обусловленная отклонениями от регрессии (остаток), при этом в разных источниках эти термины могут именоваться и обозначаться по-разному, например:
-
Вариация, обусловленная регрессией — может называться Explained sum of squares (ESS), Sum of Squared Regression (SSR) (https://en.wikipedia.org/wiki/Explained_sum_of_squares, https://towardsdatascience.com/anova-for-regression-fdb49cf5d684), Sum of squared deviations (SSD).
-
Вариация, обусловленная отклонениями от регрессии (остаток) — может называться Residual sum of squares (RSS), Sum of squared residuals (SSR), Squared estimate of errors, Sum of Squared Error (SSE) (https://en.wikipedia.org/wiki/Residual_sum_of_squares, https://towardsdatascience.com/anova-for-regression-fdb49cf5d684); в отчественной практике также применяется термин остаточная дисперсия.
-
Общая (полная) вариация — может называться Total sum of squares (TSS), Sum of Squared Total (SST) (https://en.wikipedia.org/wiki/Partition_of_sums_of_squares, https://towardsdatascience.com/anova-for-regression-fdb49cf5d684).
Как видим, путаница знатная:
-
в разных источниках под SSR могут подразумеваться различные показатели;
-
легко перепутать показатели ESS и SSE;
-
в библиотеке statsmodel также есть смешение терминов: для показателя Explained sum of squares используется свойство ess, а для показателя Sum of squared (whitened) residuals — свойство ssr.
Мы будем пользоваться системой обозначений, принятой в большинстве источников — SSR (Sum of Squared Regression), SSE (Sum of Squared Error), SST (Sum of Squared Total). Стандартная таблица ДАРМ в этом случае имеет вид:
Примечания:
-
Здесь приведена таблица ДАРМ для множественной линейной регрессионной модели (МЛРМ), в нашем случае при ПЛРМ мы имеем частный случай p=1.
-
Показатели Fcalc-ad и Fcalc-det — расчетные значения статистики критерия Фишера при проверке адекватности модели и значимости коэффициента детерминации (об этом — см.далее).
Более подробно про дисперсионный анализ регрессионной модели — см.[4, глава 3].
Класс statsmodels.regression.linear_model.RegressionResults позволяет нам получить данные для ANOVA (см. https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.RegressionResults.html#statsmodels.regression.linear_model.RegressionResults) как свойства класса:
-
Сумма квадратов, обусловленная регрессией / SSR (Sum of Squared Regression) — свойство ess.
-
Сумма квадратов, обусловленная отклонением от регрессии / SSE (Sum of Squared Error) — свойство ssr.
-
Общая (полная) сумма квадратов / SST (Sum of Squared Total) — свойство centered_tss.
-
Кол-во наблюдений / Number of observations — свойство nobs.
-
Число степеней свободы модели / Model degrees of freedom — равно числу переменных модели (за исключением константы, если она присутствует — свойство df_model.
-
Среднеквадратичная ошибка модели / Mean squared error the model — сумма квадратов, объясненная регрессией, деленная на число степеней свободы регрессии — свойство mse_model.
-
Среднеквадратичная ошибка остатков / Mean squared error of the residuals — сумма квадратов остатков, деленная на остаточные степени свободы — свойство mse_resid.
-
Общая среднеквадратичная ошибка / Total mean squared error — общая сумма квадратов, деленная на количество наблюдений — свойство mse_total.
Также имеется модуль statsmodels.stats.anova.anova_lm, который позволяет получить результаты ДАРМ (нескольких типов — 1, 2, 3):
# тип 1
print('The type of Anova test: 1')
display(sm.stats.anova_lm(result_linear_ols, typ=1))
# тип 2
print('The type of Anova test: 2')
display(sm.stats.anova_lm(result_linear_ols, typ=2))
# тип 3
print('The type of Anova test: 3')
display(sm.stats.anova_lm(result_linear_ols, typ=3))
На мой взгляд, форма таблица результатов statsmodels.stats.anova.anova_lm не вполне удобна, поэтому сформируем ее самостоятельно, для чего создадим пользовательскую функцию ANOVA_table_regression_model:
# Пользовательская функция
def ANOVA_table_regression_model(model_fit):
n = int(model_fit.nobs)
p = int(model_fit.df_model)
SSR = model_fit.ess
SSE = model_fit.ssr
SST = model_fit.centered_tss
result = pd.DataFrame({
'sources_of_variation': ('regression (SSR)', 'deviation from regression (SSE)', 'total (SST)'),
'sum_of_squares': (SSR, SSE, SST),
'degrees_of_freedom': (p, n-p-1, n-1)})
result['squared_error'] = result['sum_of_squares'] / result['degrees_of_freedom']
R2 = 1 - result.loc[1, 'sum_of_squares'] / result.loc[2, 'sum_of_squares']
F_calc_adequacy = result.loc[2, 'squared_error'] / result.loc[1, 'squared_error']
F_calc_determ_check = result.loc[0, 'squared_error'] / result.loc[1, 'squared_error']
result['F-ratio'] = (F_calc_determ_check, F_calc_adequacy, '')
return result
result = ANOVA_table_regression_model(result_linear_ols)
display(result)
print(f"R2 = 1 - SSE/SST = {1 - result.loc[1, 'sum_of_squares'] / result.loc[2, 'sum_of_squares']}")
print(f"F_calc_adequacy = MST / MSE = {result.loc[2, 'squared_error'] / result.loc[1, 'squared_error']}")
print(f"F_calc_determ_check = MSR / MSE = {result.loc[0, 'squared_error'] / result.loc[1, 'squared_error']}")
ДАРМ позволяет визуализировать вариацию:
fig, axes = plt.subplots(figsize=(210/INCH, 297/INCH/1.5))
axes.pie(
(result.loc[0, 'sum_of_squares'], result.loc[1, 'sum_of_squares']),
labels=(result.loc[0, 'sources_of_variation'], result.loc[1, 'sources_of_variation']),
autopct='%.1f%%',
startangle=60)
plt.show()
На основании данных ДАРМ мы рассчитали ряд показателей (R2, Fcalc-ad и Fcalc-det), которые будут использоваться в дальнейшем.
3. Анализ остатков (проверка нормальности распределения остатков и гипотезы о равенстве нулю среднего значения остатков)
Проверка нормальности распределения остатков — один их важнейших этапов анализа регрессионной модели. Требование нормальности распределения остатков не требуется для отыскания параметров модели, но необходимо в дальнейшем для проверки статистических гипотез с использованием критериев Фишера и Стьюдента (проверка адекватности модели, значимости коэффициента детерминации, значимости коэффициентов регрессии) и построения доверительных интервалов [5, с.122].
Остатки регрессионной модели:
print('Остатки регрессионной модели:n', result_linear_ols.resid, type(result_linear_ols.resid))
res_Y = np.array(result_linear_ols.resid)
statsmodels может выдавать различные преобразованные виды остатков (см. https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.RegressionResults.resid_pearson.html, https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.RegressionResults.wresid.html).
График остатков:
# Пользовательская функция
graph_scatterplot_sns(
X, res_Y,
Xmin=Xmin_graph, Xmax=Xmax_graph,
Ymin=-3.0, Ymax=3.0,
color='red',
#title_figure=Task_Project,
title_axes='Остатки линейной регрессионной модели', title_axes_fontsize=18,
x_label=Variable_Name_X,
y_label='ΔY = Y - Ycalc',
s=75,
file_name='graph/residuals_plot_sns.png')
Проверка нормальности распределения остатков:
# Пользовательская функция
graph_hist_boxplot_probplot_sns(
data=res_Y,
data_min=-2.5, data_max=2.5,
graph_inclusion='bp',
data_label='ΔY = Y - Ycalc',
#title_figure=Task_Project,
title_axes='Остатки линейной регрессионной модели', title_axes_fontsize=16,
file_name='graph/residuals_hist_boxplot_probplot_sns.png')
norm_distr_check(res_Y)
Вывод: большинство статистических тестов позволяют принять гипотезу о нормальности распределения остатков.
Проверка гипотезы о равенстве нулю среднего значения остатков — так как остатки имеют нормальное распределение, воспользуемся критерием Стьюдента (функция scipy.stats.ttest_1samp, https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html):
sps.ttest_1samp(res_Y, popmean=0)
Вывод: так как расчетный уровень значимости превышает заданный (0.05), то нулевая гипотеза о равенстве нулю остатков ПРИНИМАЕТСЯ.
4. Проверка адекватности модели
Суть проверки адекватности регрессионной модели заключается в сравнении полной дисперсии MST и остаточной дисперсии MSE — проверяется гипотеза о равенстве этих дисперсий по критерию Фишера. Если дисперсии различаются значимо, то модель считается адекватной. Более подробно про проверку адекватности регрессионной — см.[1, с.658], [2, с.49], [4, с.154].
Для проверки адекватности регрессионной модели создадим пользовательскую функцию regression_model_adequacy_check:
def regression_model_adequacy_check(
model_fit,
p_level: float=0.95,
model_name=''):
n = int(model_fit.nobs)
p = int(model_fit.df_model) # Число степеней свободы регрессии, равно числу переменных модели (за исключением константы, если она присутствует)
SST = model_fit.centered_tss # SST (Sum of Squared Total)
dfT = n-1
MST = SST / dfT
SSE = model_fit.ssr # SSE (Sum of Squared Error)
dfE = n - p - 1
MSE = SSE / dfE
F_calc = MST / MSE
F_table = sci.stats.f.ppf(p_level, dfT, dfE, loc=0, scale=1)
a_calc = 1 - sci.stats.f.cdf(F_calc, dfT, dfE, loc=0, scale=1)
conclusion_model_adequacy_check = 'adequacy' if F_calc >= F_table else 'adequacy'
# формируем результат
result = pd.DataFrame({
'SST': (SST),
'SSE': (SSE),
'dfT': (dfT),
'dfE': (dfE),
'MST': (MST),
'MSE': (MSE),
'p_level': (p_level),
'a_level': (a_level),
'F_calc': (F_calc),
'F_table': (F_table),
'F_calc >= F_table': (F_calc >= F_table),
'a_calc': (a_calc),
'a_calc <= a_level': (a_calc <= a_level),
'adequacy_check': (conclusion_model_adequacy_check),
},
index=[model_name]
)
return result
regression_model_adequacy_check(result_linear_ols, p_level=0.95, model_name='linear_ols')
Вывод: модель является АДЕКВАТНОЙ.
5. Коэффициент детерминации и проверка его значимости
Различают несколько видов коэффициента детерминации:
-
Собственно обычный коэффициент детерминации:
Его значение может быть получено как свойство rsquared модели.
-
Скорректированный (adjusted) коэффициент детерминации — используется для того, чтобы была возможность сравнивать модели с разным числом признаков так, чтобы число регрессоров (признаков) не влияло на статистику R2, при его расчете используются несмещённые оценки дисперсий:
Его значение может быть получено как свойство rsquared_adj модели.
-
Обобщённый (extended) коэффициент детерминации — используется для сравнения моделей регрессии со свободным членом и без него, а также для сравнения между собой регрессий, построенных с помощью различных методов: МНК, обобщённого метода наименьших квадратов (ОМНК), условного метода наименьших квадратов (УМНК), обобщённо-условного метода наименьших квадратов (ОУМНК). В данном разборе ПЛРМ рассматривать этот коэффициент мы не будем.
Более подробно с теорией вопроса можно ознакомиться, например: http://www.machinelearning.ru/wiki/index.php?title=Коэффициент_детерминации), а также в [7].
Значения коэффициента детерминации и скорректированного коэффициента детерминации, извлеченные с помощью свойств rsquared и rsquared_adj модели.
print('R2 =', result_linear_ols.rsquared)
print('R2_adj =', result_linear_ols.rsquared_adj)
Значимость коэффициента детерминации можно проверить по критерию Фишера [3, с.201-203; 8, с.83].
Расчетное значение статистики критерия Фишера может быть получено с помощью свойства fvalue модели:
print(f"result_linear_ols.fvalue = {result_linear_ols.fvalue}")
Расчетный уровень значимости при проверке гипотезы по критерию Фишера может быть получено с помощью свойства f_pvalue модели:
print(f"result_linear_ols.f_pvalue = {result_linear_ols.f_pvalue}")
Можно рассчитать уровень значимости самостоятельно (так сказать, для лучшего понимания и общей демонстрации возможностей) — для этого воспользуемся библиотекой scipy, модулем распределения Фишера scipy.stats.f, свойством cdf (функция распределения):
df1 = int(result_linear_ols.df_model)
df2 = int(result_linear_ols.nobs - result_linear_ols.df_model - 1)
F_calc = result_linear_ols.fvalue
a_calc = 1 - sci.stats.f.cdf(F_calc, df1, df2, loc=0, scale=1)
print(a_calc)
Как видим, результаты совпадают.
Табличное значение статистики критерия Фишера получить с помощью Regression Results нельзя. Рассчитаем его самостоятельно — для этого воспользуемся библиотекой scipy, модулем распределения Стьюдента scipy.stats.f, свойством ppf (процентные точки):
F_table = sci.stats.f.ppf(p_level, df1, df2, loc=0, scale=1)
print(F_table)
Для удобства создадим пользовательскую функцию determination_coef_check для проверки значимости коэффициента детерминации, которая объединяет все вышеперечисленные расчеты:
# Пользовательская функция
def determination_coef_check(
model_fit,
p_level: float=0.95):
a_level = 1 - p_level
R2 = model_fit.rsquared
R2_adj = model_fit.rsquared_adj
n = model_fit.nobs # объем выборки
p = model_fit.df_model # Model degrees of freedom. The number of regressors p. Does not include the constant if one is present.
F_calc = R2 / (1 - R2) * (n-p-1)/p
df1 = int(p)
df2 = int(n-p-1)
F_table = sci.stats.f.ppf(p_level, df1, df2, loc=0, scale=1)
a_calc = 1 - sci.stats.f.cdf(F_calc, df1, df2, loc=0, scale=1)
conclusion_determ_coef_sign = 'significance' if F_calc >= F_table else 'not significance'
# формируем результат
result = pd.DataFrame({
'notation': ('R2'),
'coef_value (R)': (sqrt(R2)),
'coef_value_squared (R2)': (R2),
'p_level': (p_level),
'a_level': (a_level),
'F_calc': (F_calc),
'df1': (df1),
'df2': (df2),
'F_table': (F_table),
'F_calc >= F_table': (F_calc >= F_table),
'a_calc': (a_calc),
'a_calc <= a_level': (a_calc <= a_level),
'significance_check': (conclusion_determ_coef_sign),
'conf_int_low': (''),
'conf_int_high': ('')
},
index=['Coef. of determination'])
return result
determination_coef_check(
result_linear_ols,
p_level=0.95)
Вывод: коэффициент детерминации ЗНАЧИМ.
6. Коэффициенты регрессии и проверка их значимости
Ранее мы уже извлекли коэффициенты регрессии как параметры модели b0 и b1 (как свойство params модели). Также можно получить их значения, как свойство bse модели:
print(b0, b1)
print(result_linear_ols.bse, type(result_linear_ols.bse))
Значимость коэффициентов регрессии можно проверить по критерию Стьюдента [3, с.203-212; 8, с.78].
Расчетные значения статистики критерия Стьюдента могут быть получены с помощью свойства tvalues модели:
print(f"result_linear_ols.tvalues = n{result_linear_ols.tvalues}")
Расчетные значения уровня значимости при проверке гипотезы по критерию Стьюдента могут быть получены с помощью свойства pvalues модели:
print(f"result_linear_ols.pvalues = n{result_linear_ols.pvalues}")
Доверительные интервалы для коэффициентов регрессии могут быть получены с помощью свойства conf_int модели:
print(result_linear_ols.conf_int(), 'n')
Можно рассчитать уровень значимости самостоятельно (как ранее для критерия Фишера — для лучшего понимания и общей демонстрации возможностей) — для этого воспользуемся библиотекой scipy, модулем распределения Стьюдента scipy.stats.t, свойством cdf (функция распределения):
t_calc = result_linear_ols.tvalues
df = int(result_linear_ols.nobs - result_linear_ols.df_model - 1)
a_calc = 2*(1-sci.stats.t.cdf(abs(t_calc), df, loc=0, scale=1))
print(a_calc)
Как видим, результаты совпадают.
Табличные значения статистики критерия Стьюдента получить с помощью Regression Results нельзя. Рассчитаем их самостоятельно — для этого воспользуемся библиотекой scipy, модулем распределения Стьюдента scipy.stats.t, свойством ppf (процентные точки):
t_table = sci.stats.t.ppf((1 + p_level)/2 , df)
print(t_table)
Для удобства создадим пользовательскую функцию regression_coef_check для проверки значимости коэффициентов регрессии, которая объединяет все вышеперечисленные расчеты:
def regression_coef_check(
model_fit,
notation_coef: list='',
p_level: float=0.95):
a_level = 1 - p_level
# параметры модели (коэффициенты регрессии)
model_params = model_fit.params
# стандартные ошибки коэффициентов регрессии
model_bse = model_fit.bse
# проверка гипотезы о значимости регрессии
t_calc = abs(model_params) / model_bse
n = model_fit.nobs # объем выборки
p = model_fit.df_model # Model degrees of freedom. The number of regressors p. Does not include the constant if one is present.
df = int(n - p - 1)
t_table = sci.stats.t.ppf((1 + p_level)/2 , df)
a_calc = 2*(1-sci.stats.t.cdf(t_calc, df, loc=0, scale=1))
conclusion_ = ['significance' if elem else 'not significance' for elem in (t_calc >= t_table).values]
# доверительный интервал коэффициента регрессии
conf_int_low = model_params - t_table*model_bse
conf_int_high = model_params + t_table*model_bse
# формируем результат
result = pd.DataFrame({
'notation': (notation_coef),
'coef_value': (model_params),
'std_err': (model_bse),
'p_level': (p_level),
'a_level': (a_level),
't_calc': (t_calc),
'df': (df),
't_table': (t_table),
't_calc >= t_table': (t_calc >= t_table),
'a_calc': (a_calc),
'a_calc <= a_level': (a_calc <= a_level),
'significance_check': (conclusion_),
'conf_int_low': (conf_int_low),
'conf_int_high': (conf_int_high),
})
return result
regression_coef_check(
result_linear_ols,
notation_coef=['b0', 'b1'],
p_level=0.95)
Вывод: коэффициенты регрессии b0 и b1 ЗНАЧИМЫ.
7. Проверка гетероскедастичности
Для проверка гетероскедастичности statsmodels предлагает нам следующие инструменты:
-
тест Голдфелда-Квандта (https://www.statsmodels.org/stable/generated/statsmodels.stats.diagnostic.het_goldfeldquandt.html#statsmodels.stats.diagnostic.het_goldfeldquandt) — теорию см. [8, с.178], также https://ru.wikipedia.org/wiki/Тест_Голдфелда_—_Куандта.
-
тест Бриша-Пэгана (Breush-Pagan test) (https://www.statsmodels.org/stable/generated/statsmodels.stats.diagnostic.het_breuschpagan.html#statsmodels.stats.diagnostic.het_breuschpagan) — теорию см.[8, с.179], также https://en.wikipedia.org/wiki/Breusch–Pagan_test.
-
тест Уайта (White test) (https://www.statsmodels.org/stable/generated/statsmodels.stats.diagnostic.het_white.html#statsmodels.stats.diagnostic.het_white) — теорию см.[8, с.177], а также https://ru.wikipedia.org/wiki/Тест_Уайта.
Тест Голдфелда-Квандта (Goldfeld–Quandt test)
# тест Голдфелда-Квандта (Goldfeld–Quandt test)
test = sms.het_goldfeldquandt(result_linear_ols.resid, result_linear_ols.model.exog)
test_result = lzip(['F_calc', 'p_calc'], test) # распаковка результатов теста
# расчетное значение статистики F-критерия
F_calc_tuple = test_result[0]
F_calc = F_calc_tuple[1]
print(f"Расчетное значение статистики F-критерия: F_calc = {round(F_calc, DecPlace)}")
# расчетный уровень значимости
p_calc_tuple = test_result[1]
p_calc = p_calc_tuple[1]
print(f"Расчетное значение доверительной вероятности: p_calc = {round(p_calc, DecPlace)}")
#a_calc = 1 - p_value
#print(f"Расчетное значение уровня значимости: a_calc = 1 - p_value = {round(a_calc, DecPlace)}")
# вывод
if p_calc < a_level:
conclusion_GQ_test = f"Так как p_calc = {round(p_calc, DecPlace)} < a_level = {round(a_level, DecPlace)}" +
", то дисперсии в подвыборках отличаются значимо, т.е. гипотеза о наличии гетероскедастичности ПРИНИМАЕТСЯ"
else:
conclusion_GQ_test = f"Так как p_calc = {round(p_calc, DecPlace)} >= a_level = {round(a_level, DecPlace)}" +
", то дисперсии в подвыборках отличаются незначимо, т.е. гипотеза о наличии гетероскедастичности ОТВЕРГАЕТСЯ"
print(conclusion_GQ_test)
Для удобства создадим пользовательскую функцию Goldfeld_Quandt_test:
def Goldfeld_Quandt_test(
model_fit,
p_level: float=0.95,
model_name=''):
a_level = 1 - p_level
# реализация теста
test = sms.het_goldfeldquandt(model_fit.resid, model_fit.model.exog)
test_result = lzip(['F_statistic', 'p_calc'], test) # распаковка результатов теста
# расчетное значение статистики F-критерия
F_calc_tuple = test_result[0]
F_statistic = F_calc_tuple[1]
# расчетный уровень значимости
p_calc_tuple = test_result[1]
p_calc = p_calc_tuple[1]
# вывод
conclusion_test = 'heteroscedasticity' if p_calc < a_level else 'not heteroscedasticity'
result = pd.DataFrame({
'test': ('Goldfeld–Quandt test'),
'p_level': (p_level),
'a_level': (a_level),
'F_statistic': (F_statistic),
'p_calc': (p_calc),
'p_calc < a_level': (p_calc < a_level),
'heteroscedasticity_check': (conclusion_test)
},
index=[model_name])
return result
Goldfeld_Quandt_test(result_linear_ols, p_level=0.95, model_name='linear_ols')
Тест Бриша-Пэгана (Breush-Pagan test)
# тест Бриша-Пэгана (Breush-Pagan test)
name = ["Lagrange multiplier statistic", "p-value", "f-value", "f p-value"]
test = sms.het_breuschpagan(result_linear_ols.resid, result_linear_ols.model.exog)
lzip(name, test)
Для удобства создадим пользовательскую функцию Breush_Pagan_test:
def Breush_Pagan_test(
model_fit,
p_level: float=0.95,
model_name=''):
a_level = 1 - p_level
# реализация теста
test = sms.het_breuschpagan(model_fit.resid, model_fit.model.exog)
name = ['Lagrange_multiplier_statistic', 'p_calc_LM', 'F_statistic', 'p_calc']
test_result = lzip(name, test) # распаковка результатов теста
# расчетное значение статистики теста множителей Лагранжа
LM_calc_tuple = test_result[0]
Lagrange_multiplier_statistic = LM_calc_tuple[1]
# расчетный уровень значимости статистики теста множителей Лагранжа
p_calc_LM_tuple = test_result[1]
p_calc_LM = p_calc_LM_tuple[1]
# расчетное значение F-статистики гипотезы о том, что дисперсия ошибки не зависит от x
F_calc_tuple = test_result[2]
F_statistic = F_calc_tuple[1]
# расчетный уровень значимости F-статистики
p_calc_tuple = test_result[3]
p_calc = p_calc_tuple[1]
# вывод
conclusion_test = 'heteroscedasticity' if p_calc < a_level else 'not heteroscedasticity'
# вывод
conclusion_test = 'heteroscedasticity' if p_calc < a_level else 'not heteroscedasticity'
result = pd.DataFrame({
'test': ('Breush-Pagan test'),
'p_level': (p_level),
'a_level': (a_level),
'Lagrange_multiplier_statistic': (Lagrange_multiplier_statistic),
'p_calc_LM': (p_calc_LM),
'p_calc_LM < a_level': (p_calc_LM < a_level),
'F_statistic': (F_statistic),
'p_calc': (p_calc),
'p_calc < a_level': (p_calc < a_level),
'heteroscedasticity_check': (conclusion_test)
},
index=[model_name])
return result
Breush_Pagan_test(result_linear_ols, p_level=0.95, model_name='linear_ols')
Тест Уайта (White test)
# тест Уайта (White test)
name = ["Lagrange multiplier statistic", "p-value", "f-value", "f p-value"]
test = sms.het_white(result_linear_ols.resid, result_linear_ols.model.exog)
lzip(name, test)
Для удобства создадим пользовательскую функцию White_test:
def White_test(
model_fit,
p_level: float=0.95,
model_name=''):
a_level = 1 - p_level
# реализация теста
test = sms.het_white(model_fit.resid, model_fit.model.exog)
name = ['Lagrange_multiplier_statistic', 'p_calc_LM', 'F_statistic', 'p_calc']
test_result = lzip(name, test) # распаковка результатов теста
# расчетное значение статистики теста множителей Лагранжа
LM_calc_tuple = test_result[0]
Lagrange_multiplier_statistic = LM_calc_tuple[1]
# расчетный уровень значимости статистики теста множителей Лагранжа
p_calc_LM_tuple = test_result[1]
p_calc_LM = p_calc_LM_tuple[1]
# расчетное значение F-статистики гипотезы о том, что дисперсия ошибки не зависит от x
F_calc_tuple = test_result[2]
F_statistic = F_calc_tuple[1]
# расчетный уровень значимости F-статистики
p_calc_tuple = test_result[3]
p_calc = p_calc_tuple[1]
# вывод
conclusion_test = 'heteroscedasticity' if p_calc < a_level else 'not heteroscedasticity'
# вывод
conclusion_test = 'heteroscedasticity' if p_calc < a_level else 'not heteroscedasticity'
result = pd.DataFrame({
'test': ('White test'),
'p_level': (p_level),
'a_level': (a_level),
'Lagrange_multiplier_statistic': (Lagrange_multiplier_statistic),
'p_calc_LM': (p_calc_LM),
'p_calc_LM < a_level': (p_calc_LM < a_level),
'F_statistic': (F_statistic),
'p_calc': (p_calc),
'p_calc < a_level': (p_calc < a_level),
'heteroscedasticity_check': (conclusion_test)
},
index=[model_name])
return result
White_test(result_linear_ols, p_level=0.95, model_name='linear_ols')
Объединим результаты всех тестов гетероскедастичность в один DataFrame:
Goldfeld_Quandt_test_df = Goldfeld_Quandt_test(result_linear_ols, p_level=0.95, model_name='linear_ols')
Breush_Pagan_test_df = Breush_Pagan_test(result_linear_ols, p_level=0.95, model_name='linear_ols')
White_test_df = White_test(result_linear_ols, p_level=0.95, model_name='linear_ols')
heteroscedasticity_tests_df = pd.concat([Breush_Pagan_test_df, White_test_df, Goldfeld_Quandt_test_df])
display(heteroscedasticity_tests_df)
Выводы
Итак, мы провели статистический анализ регрессионной модели и установили:
-
исходные данные имеют нормальное распределение;
-
между переменными имеется весьма сильная корреляционная связь;
-
регрессионная модель хорошо аппроксимирует фактические данные;
-
остатки модели имеют нормальное распределение;
-
регрессионная модель адекватна по критерию Фишера;
-
коэффициент детерминации значим по критеию Фишера;
-
коэффициенты регрессии значимы по критерию Стьюдента;
-
гетероскедастичность отсутствует.
Применительно к рассматриваемой задаче выполнять проверку автокорреляции не имеет особого смысла из-за особенностей исходных данных (результаты замеров прочности бетона на разных участках здания).
Про статистический анализ регрессионных моделей с помощью statsmodels— см. еще https://www.statsmodels.org/stable/examples/notebooks/generated/regression_diagnostics.html.
Доверительные интервалы регрессионной модели
Для регрессионных моделей определяют доверительные интервалы двух видов [3, с.184-192; 4, с.172; 8, с.205-209]:
-
Доверительный интервал средних значений переменной Y.
-
Доверительный интервал индивидуальных значений переменной Y.
При этом размер доверительного интервала для индивидуальных значений больше, чем для средних значений.
Доверительные интервалы регрессионных моделей (ДИРМ) могут быть найдены разными способами:
-
непосредственно путем расчетов по формулам (см., например, https://habr.com/ru/post/558158/);
-
с использованием инструментария библиотеки statsmodels (см., например, https://www.stackfinder.ru/questions/17559408/confidence-and-prediction-intervals-with-statsmodels).
Разбререм более подробно способ с использованием библиотеки statsmodels. Прежде всего, с помощью свойства summary_table класса statsmodels.stats.outliers_influence.OLSInfluence (https://www.statsmodels.org/stable/generated/statsmodels.stats.outliers_influence.OLSInfluence.html?highlight=olsinfluence) мы можем получить таблицу данных, содержащую необходимую нам информацию:
-
Dep Var Population — фактические значения переменной Y;
-
Predicted Value — предсказанные значения переменной Y по по регрессионной модели;
-
Std Error Mean Predict — среднеквадратическая ошибка предсказанного среднего;
-
Mean ci 95% low и Mean ci 95% upp — границы доверительного интервала средних значений переменной Y;
-
Predict ci 95% low и Predict ci 95% upp — границы доверительного интервала индивидуальных значений переменной Y;
-
Residual — остатки регрессионной модели;
-
Std Error Residual — среднеквадратическая ошибка остатков;
-
Student Residual — стьюдентизированные остатки (подробнее см. http://statistica.ru/glossary/general/studentizirovannie-ostatki/);
-
Cook’s D — Расстояние Кука (Cook’s distance) — оценивает эффект от удаления одного (рассматриваемого) наблюдения; наблюдение считается выбросом, если Di > 4/n (более подробно — см.https://translated.turbopages.org/proxy_u/en-ru.ru.f584ceb5-63296427-aded8f31-74722d776562/https/en.wikipedia.org/wiki/Cook’s_distance, http://www.machinelearning.ru/wiki/index.php?title=Расстояние_Кука).
from statsmodels.stats.outliers_influence import summary_table
st, data, ss2 = summary_table(result_linear_ols, alpha=0.05)
print(st, 'n', type(st))
В нашем случае критическое значение расстояния Кука равно:
print(f'D_crit = 4/n = {4/result_linear_ols.nobs}')
то есть выбросов, смещающих оценки коэффициентов регрессии, не наблюдается.
Мы получили данные как класс statsmodels.iolib.table.SimpleTable. Свойство data преобразует данные в список. Далее для удобства работы преобразуем данные в DataFrame:
st_data_df = pd.DataFrame(st.data)
Будем использовать данный DataFrame в дальнейшем, несколько преобразуем его:
-
изменим наименование столбцов (с цифр на названия показателей из таблицы summary_table)
-
удалим строки с текстовыми значениями
-
изменим индекс
-
добавим новый столбец — значения переменной X
-
отсортируем по возрастанию значений переменной X (это необходимо, чтобы графики границ доверительных интервалов выглядели как линии)
st_df = st_data_df.copy()
# изменим наименования столбцов
str = st_df.iloc[0,0:] + ' ' + st_df.iloc[1,0:]
st_df = st_df.rename(str, axis='columns')
# удалим строки 0, 1
st_df = st_df.drop([0,1])
# изменим индекс
st_df = st_df.set_index(np.arange(0, result_linear_ols.nobs))
# добавим новый столбец - значения переменной X
st_df.insert(1, 'X', X)
# отсортируем по возрастанию значений переменной X
st_df = st_df.sort_values(by='X')
display(st_df)
С помощью полученных данных мы можем построить график регрессионной модели с доверительными интервалами:
# создание рисунка (Figure) и области рисования (Axes)
fig, axes = plt.subplots(figsize=(297/INCH, 210/INCH))
# заголовок рисунка (Figure)
title_figure = Task_Project
fig.suptitle(title_figure, fontsize = 16)
# заголовок области рисования (Axes)
title_axes = 'Линейная регрессионная модель'
axes.set_title(title_axes, fontsize = 14)
# фактические данные
sns.scatterplot(
x=st_df['X'], y=st_df['Dep Var Population'],
label='фактические данные',
s=50,
color='red',
ax=axes)
# график регрессионной модели
label_legend_regr_model=f'линейная регрессия Y = {b0:.3f} + {b1:.4f}*X'
sns.lineplot(
x=st_df['X'], y=st_df['Predicted Value'],
label=label_legend_regr_model,
color='blue',
ax=axes)
# доверительный интервал средних значений переменной Y
Mean_ci_low = st_df['Mean ci 95% low']
plt.plot(
st_df['X'], Mean_ci_low,
color='magenta', linestyle='--', linewidth=1,
label='доверительный интервал средних значений Y')
Mean_ci_upp = st_df['Mean ci 95% upp']
plt.plot(
st_df['X'], Mean_ci_upp,
color='magenta', linestyle='--', linewidth=1)
# доверительный интервал индивидуальных значений переменной Y
Predict_ci_low = st_df['Predict ci 95% low']
plt.plot(
st_df['X'], Predict_ci_low,
color='orange', linestyle='-.', linewidth=2,
label='доверительный интервал индивидуальных значений Y')
Predict_ci_upp = st_df['Predict ci 95% upp']
plt.plot(
st_df['X'], Predict_ci_upp,
color='orange', linestyle='-.', linewidth=2)
axes.set_xlabel(Variable_Name_X)
axes.set_ylabel(Variable_Name_Y)
axes.legend(prop={'size': 12})
plt.show()
Однако, мы получили данные о границах доверительных интервалов регрессионной модели только в пределах области фактических значений переменной X. Как быть, если мы хотим распространить прогноз за пределы этой области?
Прогнозирование
Под прогнозированием мы в данном случае будем понимать определение значений переменной Y и доверительных интервалов для ее средних и индивидуальных значений при заданном X. По сути, нам предстоит построить аналог рассмотренной выше таблицы summary_table, только с другими значениями X, причем эти значения могут выходить за пределы тех значений, которые использовались нами для построения регрессии.
Методика расчета доверительных интервалов регрессионных моделей разобрана в статье «Python, корреляция и регрессия: часть 4» (https://habr.com/ru/post/558158/), всем рекомендую ознакомиться.
Найти прогнозные значения Y не представляет труда, так как ранее мы уже формализовали модель в виде лямбда-функции, а вот для построения доверительных интервалов придется выполнить расчеты по формулам. Для этого создадим пользовательскую функцию regression_pair_predict, которая в случае парной регрессии (pair regression) для заданного значения X возвращает:
-
прогнозируемое по регрессионной модели значение y_calc
-
доверительный интервал [y_calc_mean_ci_low, y_calc_mean_ci_upp] средних значений переменной Y
-
доверительный интервал [y_calc_predict_ci_low, y_calc_predict_ci_upp] индивидуальных значений переменной Y
Алгоритм расчета доверительных интервалов для множественной регрессии (multiple regression) отличается и в данном обзоре не рассматривается (рассмотрим в дальнейшем).
Про прогнозирование с помощью регрессионных моделей — см.также:
-
https://www.statsmodels.org/stable/generated/statsmodels.regression.linear_model.RegressionResults.predict.html?highlight=predict#statsmodels.regression.linear_model.RegressionResults.predict
-
How to Make Predictions Using Regression Model in Statsmodels
-
https://www.statsmodels.org/stable/examples/notebooks/generated/predict.html
def regression_pair_predict(
x_in,
model_fit,
regression_model,
p_level: float=0.95):
a_level = 1 - p_level
X = pd.DataFrame(model_fit.model.exog)[1].values # найти лучшее решение
Y = model_fit.model.endog
# вспомогательные величины
n = int(result_linear_ols.nobs)
SSE = model_fit.ssr # SSE (Sum of Squared Error)
dfE = n - p - 1
MSE = SSE / dfE # остаточная дисперсия
Xmean = np.mean(X)
SST_X = np.sum([(X[i] - Xmean)**2 for i in range(0, n)])
t_table = sci.stats.t.ppf((1 + p_level)/2 , dfE)
S2_y_calc_mean = MSE * (1/n + (x_in - Xmean)**2 / SST_X)
S2_y_calc_predict = MSE * (1 + 1/n + (x_in - Xmean)**2 / SST_X)
# прогнозируемое значение переменной Y
y_calc=regression_model(x_in)
# доверительный интервал средних значений переменной Y
y_calc_mean_ci_low = y_calc - t_table*sqrt(S2_y_calc_mean)
y_calc_mean_ci_upp = y_calc + t_table*sqrt(S2_y_calc_mean)
# доверительный интервал индивидуальных значений переменной Y
y_calc_predict_ci_low = y_calc - t_table*sqrt(S2_y_calc_predict)
y_calc_predict_ci_upp = y_calc + t_table*sqrt(S2_y_calc_predict)
result = y_calc, y_calc_mean_ci_low, y_calc_mean_ci_upp, y_calc_predict_ci_low, y_calc_predict_ci_upp
return result
Сравним результаты расчета доверительных интервалов разными способами — с использованием функции regression_pair_predict и средствами statsmodels, для этого сформируем DaraFrame с новыми данными:
regression_pair_predict_df = pd.DataFrame(
[regression_pair_predict(elem, result_linear_ols, regression_model=Y_calc) for elem in st_df['X'].values],
columns=['y_calc', 'y_calc_mean_ci_low', 'y_calc_mean_ci_upp', 'y_calc_predict_ci_low', 'y_calc_predict_ci_upp'])
regression_pair_predict_df.insert(0, 'X', st_df['X'].values)
display(regression_pair_predict_df)
Видим, что результаты расчетов идентичны, следовательно мы можем использовать функцию regression_pair_predict для прогнозирования.
def graph_regression_pair_predict_plot_sns(
model_fit,
regression_model_in,
Xmin=None, Xmax=None, Nx=10,
Ymin_graph=None, Ymax_graph=None,
title_figure=None, title_figure_fontsize=18,
title_axes=None, title_axes_fontsize=16,
x_label=None,
y_label=None,
label_fontsize=14, tick_fontsize=12,
label_legend_regr_model='', label_legend_fontsize=12,
s=50, linewidth_regr_model=2,
graph_size=(297/INCH, 210/INCH),
result_output=True,
file_name=None):
# фактические данные
X = pd.DataFrame(model_fit.model.exog)[1].values # найти лучшее решение
Y = model_fit.model.endog
X = np.array(X)
Y = np.array(Y)
# границы
if not(Xmin) and not(Xmax):
Xmin=min(X)
Xmax=max(X)
Xmin_graph=min(X)*0.99
Xmax_graph=max(X)*1.01
else:
Xmin_graph=Xmin
Xmax_graph=Xmax
if not(Ymin_graph) and not(Ymax_graph):
Ymin_graph=min(Y)*0.99
Ymax_graph=max(Y)*1.01
# формируем DataFrame данных
Xcalc = np.linspace(Xmin, Xmax, num=Nx)
Ycalc = regression_model_in(Xcalc)
result_df = pd.DataFrame(
[regression_pair_predict(elem, model_fit, regression_model=regression_model_in) for elem in Xcalc],
columns=['y_calc', 'y_calc_mean_ci_low', 'y_calc_mean_ci_upp', 'y_calc_predict_ci_low', 'y_calc_predict_ci_upp'])
result_df.insert(0, 'x_calc', Xcalc)
# заголовки графика
fig, axes = plt.subplots(figsize=graph_size)
fig.suptitle(title_figure, fontsize = title_figure_fontsize)
axes.set_title(title_axes, fontsize = title_axes_fontsize)
# фактические данные
sns.scatterplot(
x=X, y=Y,
label='фактические данные',
s=s,
color='red',
ax=axes)
# график регрессионной модели
sns.lineplot(
x=Xcalc, y=Ycalc,
color='blue',
linewidth=linewidth_regr_model,
legend=True,
label=label_legend_regr_model,
ax=axes)
# доверительный интервал средних значений переменной Y
Mean_ci_low = result_df['y_calc_mean_ci_low']
plt.plot(
result_df['x_calc'], Mean_ci_low,
color='magenta', linestyle='--', linewidth=1,
label='доверительный интервал средних значений Y')
Mean_ci_upp = result_df['y_calc_mean_ci_upp']
plt.plot(
result_df['x_calc'], Mean_ci_upp,
color='magenta', linestyle='--', linewidth=1)
# доверительный интервал индивидуальных значений переменной Y
Predict_ci_low = result_df['y_calc_predict_ci_low']
plt.plot(
result_df['x_calc'], Predict_ci_low,
color='orange', linestyle='-.', linewidth=2,
label='доверительный интервал индивидуальных значений Y')
Predict_ci_upp = result_df['y_calc_predict_ci_upp']
plt.plot(
result_df['x_calc'], Predict_ci_upp,
color='orange', linestyle='-.', linewidth=2)
axes.set_xlim(Xmin_graph, Xmax_graph)
axes.set_ylim(Ymin_graph, Ymax_graph)
axes.set_xlabel(x_label, fontsize = label_fontsize)
axes.set_ylabel(y_label, fontsize = label_fontsize)
axes.tick_params(labelsize = tick_fontsize)
#axes.tick_params(labelsize = tick_fontsize)
axes.legend(prop={'size': label_legend_fontsize})
plt.show()
if file_name:
fig.savefig(file_name, orientation = "portrait", dpi = 300)
if result_output:
return result_df
else:
return
graph_regression_pair_predict_plot_sns(
model_fit=result_linear_ols,
regression_model_in=Y_calc,
Xmin=Xmin_graph-300, Xmax=Xmax_graph+200, Nx=25,
Ymin_graph=Ymin_graph-5, Ymax_graph=Ymax_graph+5,
title_figure=Task_Project, title_figure_fontsize=16,
title_axes='Линейная регрессионная модель', title_axes_fontsize=14,
x_label=Variable_Name_X,
y_label=Variable_Name_Y,
label_legend_regr_model=f'линейная регрессия Y = {b0:.3f} + {b1:.4f}*X',
s=50,
result_output=True,
file_name='graph/regression_plot_lin.png')
Выводы и рекомендации
Исследована зависимость показаний ультразвукового прибора «ПУЛЬСАР-2.1» (X) и результатов замера прочности бетона (методом отрыва со скалыванием) склерометром ИПС-МГ4.03 (Y).
Между переменными имеется весьма сильная линейная корреляционная связь. Получена регрессионная модель:
Y = b0 + b1∙X = -21.3741 + 0.0129∙X
Модель хорошо аппроксимирует фактические данные, является адекватной, значимой и может использоваться для предсказания прочности бетона.
Также построен график прогноза с доверительными интервалами.
ИТОГИ
Итак, мы рассмотрели все этапы регрессионного анализа в случае простой линейной регрессии (simple linear regression) с использованием библиотеки statsmodels на конкретном практическом примере; подробно остановились на статистическом анализа модели с проверкой гипотез; также предложен ряд пользовательских функций, облегчающих работу исследователя и уменьшающих размер программного кода.
Конечно, мы разобрали далеко не все вопросы анализа регрессионных моделей и возможности библиотеки statsmodels применительно к simple linear regression, в частности статистики влияния (Influence Statistics), инструмент Leverage, анализ стьюдентизированных остатков и пр. — это темы для отдельных обзоров.
Исходный код находится в моем репозитории на GitHub.
Надеюсь, данный обзор поможет специалистам DataScience в работе.