Средняя ошибка аппроксимации обозначение

2.6.1
Коэффициент детерминации.

Для оценки качества построенной модели
регрессии можно использовать коэффициент
детерминации
.
Коэффициент детерминации может быть
вычислен по формуле:

.

С другой стороны,
для парной линейной регрессии верно
равенство:

.

При
близости значения коэффициента
детерминации к 1 говорят, что уравнение
регрессии статистически значимо и
фактор
оказывает сильное воздействие на
результирующий признак.

При анализе модели
парной линейной регрессии по значению
коэффициента детерминации можно сделать
следующие предварительные выводы о
качестве модели:

  • Если
    ,
    то будем считать, что использование
    регрессионной модели для аппроксимации
    зависимости между переменнымиистатистически необоснованно.

  • Если
    ,
    то использование регрессионной модели
    возможно, но после оценивания параметров
    модель подлежит дальнейшему многостороннему
    статистическому анализу.

  • Если
    ,
    то будем. считать, что у нас есть основания
    для использования регрессионной модели
    при анализе поведения переменной.

2.6.2 Средняя ошибка аппроксимации.

Другой
показатель качества построенной модели
–– среднее относительное отклонение
расчетных значений от фактических или
средняя
ошибка аппроксимации
:

.

Построенное
уравнение регрессии считается
удовлетворительным, если значение
не превышает 10% – 12% .

3. Пример.

По
21 региону страны изучается зависимость
розничной продажи телевизоров ()
от среднедушевого денежного дохода в
месяц ().

Номер региона

Среднедушевой
денежный доход в месяц, тыс. руб.,

Объем
розничной продажи телевизоров, тыс.
шт.,

1

2

28

2

2,4

21,3

3

2,1

21

4

2,6

23,3

5

1,7

15,8

6

2,5

21,9

7

2,4

20

8

2,6

22

9

2,8

23,9

10

2,6

26

11

2,6

24,6

12

2,5

21

13

2,9

27

14

2,6

21

15

2,2

24

16

2,6

24

17

3,3

31,9

18

3,9

33

19

4

35,4

20

3,7

34

21

3,4

31

Необходимо
найти зависимость, наилучшим образом
отражающую связь между переменными

и
.

Рассмотрим вопрос
применения модели линейной регрессии
в этой задаче.

Построим
поле корреляции, т.е. нанесем исходные
данные на координатную плоскость. Для
этого воспользуемся, например,
возможностями MS
Excel
2003.

Подготовим таблицу
исходных данных.

Нанесем на
координатную плоскость исходные данные:

Характер
расположения точек на графике дает нам
основание предположить, что искомая
функция регрессии линейная:
.
Для оценки коэффициентов уравнения
регрессии необходимо составить и решить
систему нормальных уравнений ( ).

По исходным данным
рассчитываем необходимые суммы:

Номер региона

1

2

28

56

4

784

2

2,4

21,3

51,12

5,76

453,69

3

2,1

21

44,1

4,41

441

4

2,6

23,3

60,58

6,76

542,89

5

1,7

15,8

26,86

2,89

249,64

6

2,5

21,9

54,75

6,25

479,61

7

2,4

20

48

5,76

400

8

2,6

22

57,2

6,76

484

9

2,8

23,9

66,92

7,84

571,21

10

2,6

26

67,6

6,76

676

11

2,6

24,6

63,96

6,76

605,16

12

2,5

21

52,5

6,25

441

13

2,9

27

78,3

8,41

729

14

2,6

21

54,6

6,76

441

15

2,2

24

52,8

4,84

576

16

2,6

24

62,4

6,76

576

17

3,3

31,9

105,27

10,89

1017,61

18

3,9

33

128,7

15,21

1089

19

4

35,4

141,6

16

1253,16

20

3,7

34

125,8

13,69

1156

21

3,4

31

105,4

11,56

961

Сумма

57,4

530,1

1504,46

164,32

13926,97

Составляем систему
уравнений:

Имеем систему
линейных алгебраических уравнений,
которая может быть решена, например, по
формулам Крамера. Для этого вычислим
следующие определители:

Тогда, согласно
теореме Крамера,

Получаем уравнение
регрессии:

Величина
коэффициента регрессии
означает, что увеличение среднедушевого
месячного дохода на 1 тыс. руб. приведет
к увеличение объема розничной продажи
в среднем на 7 540 телевизоров. Коэффициентв данном случае не имеет содержательной
интерпретации.

Оценим тесноту
линейной связи между переменными и
качество построенной модели в целом.

Для оценки тесноты
линейной зависимости рассчитаем
коэффициент детерминации. Для этого
необходимо провести ряд дополнительных
вычислений.

Прежде
всего, найдем выборочное
среднее

по формуле:

.

Для рассматриваемого
примера имеем:

Теперь произведем
расчет остальных вспомогательных
величин:

Номер региона

1

2

28

19,76

8,24

67,89

2,76

7,60

2

2,4

21,3

22,75

-1,45

2,11

-3,94

15,55

3

2,1

21

20,51

0,49

0,24

-4,24

18,00

4

2,6

23,3

24,25

-0,95

0,90

-1,94

3,77

5

1,7

15,8

17,52

-1,72

2,95

-9,44

89,17

6

2,5

21,9

23,50

-1,60

2,56

-3,34

11,17

7

2,4

20

22,75

-2,75

7,57

-5,24

27,49

8

2,6

22

24,25

-2,25

5,04

-3,24

10,52

9

2,8

23,9

25,74

-1,84

3,39

-1,34

1,80

10

2,6

26

24,25

1,75

3,08

0,76

0,57

11

2,6

24,6

24,25

0,35

0,13

-0,64

0,41

12

2,5

21

23,50

-2,50

6,24

-4,24

18,00

13

2,9

27

26,49

0,51

0,26

1,76

3,09

14

2,6

21

24,25

-3,25

10,54

-4,24

18,00

15

2,2

24

21,26

2,74

7,53

-1,24

1,54

16

2,6

24

24,25

-0,25

0,06

-1,24

1,54

17

3,3

31,9

29,48

2,42

5,86

6,66

44,32

18

3,9

33

33,96

-0,96

0,93

7,76

60,17

19

4

35,4

34,71

0,69

0,47

10,16

103,17

20

3,7

34

32,47

1,53

2,34

8,76

76,69

21

3,4

31

30,23

0,77

0,60

5,76

33,14

Сумма

57,4

530,1

130,68

545,73

Здесь
столбец «»
– это значения,рассчитанные с помощью построенного
уравнения регрессии, столбцы «»
и– это столбцы, так называемых, «остатков»:
разностей между исходными значениями,и рассчитанными с помощью уравнения
регрессии,
а также их квадратов, а в последних двух
столбцах – разности между исходными
значениями,
выборочным средним,
а также их квадраты.

Для
вычисления коэффициента детерминации
воспользуемся формулой ( ):

Значение
коэффициента детерминации позволяет
сделать предварительный вывод о том,
что у нас имеются основания использовать
модель линейной регрессии в данной
задаче, поскольку
.

Построим
линию регрессии на корреляционном поле,
для чего добавим на координатной
плоскости точки, соответствующие
уравнению регрессии ().

Нанесем
теперь уравнение регрессии на диаграмму,
используя специальные средства Excel.
Для этого необходимо выделить правой
кнопкой мыши исходные точки и выбрать
опцию Добавить
линию тренда.

В
открывшемся меню Параметры
линии тренда

выбрать Линейную
аппроксимацию.
Далее поставить флажок напротив полей
Показывать
уравнение на диаграмме

и Поместить
на диаграмму величину достоверности
аппроксимации
.

Нажав
на ОК, получаем еще одну прямую на
диаграмме, которая совпадает с построенными
ранее точками линии регрессии:

Сплошная
черная линия на диаграмме – это линия
регрессии, рассчитанная средствами
Excel.
Линия регрессии, построенная нами ранее,
совпала с данной линией регрессии.
Нетрудно убедиться, что уравнение
регрессии и коэффициент детерминации
тоже совпадают с полученными ранее
вручную.

Найдем
теперь среднюю ошибку аппроксимации
для оценки погрешности модели. Для этого
нам потребуется вычислить еще ряд
промежуточных величин:

Номер региона

1

2

28

19,76

8,24

0,29

2

2,4

21,3

22,75

-1,45

0,07

3

2,1

21

20,51

0,49

0,02

4

2,6

23,3

24,25

-0,95

0,04

5

1,7

15,8

17,52

-1,72

0,11

6

2,5

21,9

23,50

-1,60

0,07

7

2,4

20

22,75

-2,75

0,14

8

2,6

22

24,25

-2,25

0,10

9

2,8

23,9

25,74

-1,84

0,08

10

2,6

26

24,25

1,75

0,07

11

2,6

24,6

24,25

0,35

0,01

12

2,5

21

23,50

-2,50

0,12

13

2,9

27

26,49

0,51

0,02

14

2,6

21

24,25

-3,25

0,15

15

2,2

24

21,26

2,74

0,11

16

2,6

24

24,25

-0,25

0,01

17

3,3

31,9

29,48

2,42

0,08

18

3,9

33

33,96

-0,97

0,03

19

4

35,4

34,71

0,69

0,02

20

3,7

34

32,47

1,53

0,05

21

3,4

31

30,23

0,77

0,02

Здесь
столбец «»
– это значения,рассчитанные с помощью построенного
уравнения регрессии, столбец «»
– это столбец так называемых «остатков»:
разностей между исходными значениями,
и рассчитанными с помощью уравнения
регрессии,и, наконец, последний столбец «»
– это вспомогательный столбец для
вычисления элементов суммы по формуле
( ). Просуммируем теперь элементы
последнего столбца и разделим полученную
сумму на 21 – общее количество исходных
данных:

.

Переведем это
число в проценты и запишем окончательное
выражение для средней ошибки аппроксимации:

.

Итак,
средняя ошибка аппроксимации оказалась
около 8%, что говорит о небольшой
погрешности построенной модели. Данную
модель, с учетом неплохих характеристик
ее качества, вполне можно использовать
для прогноза – одной из основных целей
эконометрического анализа. Предположим,
что среднедушевой месячный доход в
одном из регионов составит 4,1 тыс. руб.
Оценим, каков будет уровень продаж
телевизоров в этом регионе согласно
построенной модели? Для этого необходимо
выбранное значение фактора
подставить в уравнение регрессии (
):

(тыс.
руб.),

т.е. при таком
уровне дохода, розничная продажа
телевизоров составит, в среднем, 35 480
телевизоров.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Коэффициент корреляции

Тесноту (силу) связи изучаемых показателей в предмете эконометрика оценивают с помощью коэффициента корреляции Rxy, который может принимать значения от -1 до +1.

Если Rxy > 0,7 — связь между изучаемыми показателями сильная, можно проводить анализ линейной модели

Если 0,3 < Rxy < 0,7 — связь между показателями умеренная, можно использовать нелинейную модель при отсутствии Rxy > 0,7

Если Rxy < 0,3 — связь слабая, модель строить нельзя

коэффициент корреляции

Для нелинейной регрессии используют индекс корреляции (0 < Рху < 1):

индекс корреляции

Средняя ошибка аппроксимации

Для оценки качества однофакторной модели в эконометрике используют коэффициент детерминации и среднюю ошибку аппроксимации.

Средняя ошибка аппроксимации определяется как среднее отклонение полученных значений от фактических

Средняя ошибка аппроксимации

Допустимая ошибка аппроксимации не должна превышать 10%.

В эконометрике существует понятие среднего коэффициента эластичности Э – который говорит о том, на сколько процентов в среднем изменится показатель у от своего среднего значения при изменении фактора х на 1% от своей средней величины.

Пример нахождения коэффициента корреляции

Исходные данные:

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

81

124

2

77

131

3

85

146

4

79

139

5

93

143

6

100

159

7

72

135

8

90

152

9

71

127

10

89

154

11

82

127

12

111

162

Рассчитаем параметры парной линейной регрессии, составив таблицу

x

x2

y

xy

y2

1

81

6561

124

10044

15376

2

77

5929

131

10087

17161

3

85

7225

146

12410

21316

4

79

6241

139

10981

19321

5

93

8649

143

13299

20449

6

100

10000

159

15900

25281

7

72

5184

135

9720

18225

8

90

8100

152

13680

23104

9

71

5041

127

9017

16129

10

89

7921

154

13706

23716

11

82

6724

127

10414

16129

12

111

12321

162

17982

26244

Среднее

85,8

7491

141,6

12270,0

20204,3

Сумма

1030,0

89896

1699

147240

242451

σ

11,13

12,59

 σ2

123,97

158,41

формула расчета дисперсии σ2 приведена здесь.

Коэффициенты уравнения y = a + bx определяются по формуле

расчет коэффициентов линейного уравнения регрессии

Получаем уравнение регрессии: y = 0,947x + 60,279.

Коэффициент уравнения b = 0,947 показывает, что при увеличении среднедушевого прожиточного минимума в день одного трудоспособного на 1 руб. среднедневная заработная плата увеличивается на 0,947 руб.
Коэффициент корреляции рассчитывается по формуле:

расчет коэффициента корреляции в эконометрике

Значение коэффициента корреляции более — 0,7, это означает, что связь между среднедушевым прожиточным минимумом в день одного трудоспособного и среднедневной заработной платой сильная.

Коэффициент детерминации равен R2 = 0.838^2 = 0.702
т.е. 70,2% результата объясняется вариацией объясняющей переменной x.

Регрессионная сумма квадратов

Рисунок 4 Результат вычисления функции ЛИНЕЙН

Получили уровнение регрессии:

Делаем вывод: С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб.

Означает, что 52% вариации заработной платы (у) объясняется вариацией фактора х — среднедушевого прожиточного минимума, а 48% — действием других факторов, не включённых в модель.

По вычисленному коэффициенту детерминации можно рассчитать коэффициент корреляции: .

Связь оценивается как тесная.

4. С помощью среднего (общего) коэффициента эластичности определим силу влияния фактора на результат.

Для уравнения прямой средний (общий) коэффициент эластичности определим по формуле:

Средние значения найдём, выделив область ячеек со значениями х, и выберем Формулы / Автосумма / Среднее , и то же самое произведём со значениями у.

Рисунок 5 Расчёт средних значений функции и аргумент

Таким образом, при изменении среднедушевого прожиточного минимума на 1% от своего среднего значения среднедневная заработная плата изменится в среднем на 0,51%.

С помощью инструмента анализа данных Регрессия можно получить:
— результаты регрессионной статистики,
— результаты дисперсионного анализа,
— результаты доверительных интервалов,
— остатки и графики подбора линии регрессии,
— остатки и нормальную вероятность.

Порядок действий следующий:

1) проверьте доступ к Пакету анализа . В главном меню последовательно выберите: Файл/Параметры/Надстройки .

2) В раскрывающемся списке Управление выберите пункт Надстройки Excel и нажмите кнопку Перейти.

3) В окне Надстройки установите флажок Пакет анализа , а затем нажмите кнопку ОК .

Если Пакет анализа отсутствует в списке поля Доступные надстройки , нажмите кнопку Обзор , чтобы выполнить поиск.

Если выводится сообщение о том, что пакет анализа не установлен на компьютере, нажмите кнопку Да , чтобы установить его.

4) В главном меню последовательно выберите: Данные / Анализ данных / Инструменты анализа / Регрессия , а затем нажмите кнопку ОК .

5) Заполните диалоговое окно ввода данных и параметров вывода:

Входной интервал Y — диапазон, содержащий данные результативного признака;

Входной интервал X — диапазон, содержащий данные факторного признака;

Метки — флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Константа — ноль — флажок, указывающий на наличие или отсутствие свободного члена в уравнении;

Выходной интервал — достаточно указать левую верхнюю ячейку будущего диапазона;

6) Новый рабочий лист — можно задать произвольное имя нового листа.

Затем нажмите кнопку ОК .

Рисунок 6 Диалоговое окно ввода параметров инструмента Регрессия

Результаты регрессионного анализа для данных задачи представлены на рисунке 7.

Рисунок 7 Результат применения инструмента регрессия

5. Оценим с помощью средней ошибки аппроксимации качество уравнений. Воспользуемся результатами регрессионного анализа представленного на Рисунке 8.

Рисунок 8 Результат применения инструмента регрессия «Вывод остатка»

Составим новую таблицу как показано на рисунке 9. В графе С рассчитаем относительную ошибку аппроксимации по формуле:

Рисунок 9 Расчёт средней ошибки аппроксимации

Средняя ошибка аппроксимации рассчитывается по формуле:

Качество построенной модели оценивается как хорошее, так как не превышает 8 — 10%.

6. Из таблицы с регрессионной статистикой (Рисунок 4) выпишем фактическое значение F-критерия Фишера:

Поскольку при 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана).

8. Оценку статистической значимости параметров регрессии проведём с помощью t-статистики Стьюдента и путём расчёта доверительного интервала каждого из показателей.

Выдвигаем гипотезу Н 0 о статистически незначимом отличии показателей от нуля:

.

для числа степеней свободы

На рисунке 7 имеются фактические значения t-статистики:

t-критерий для коэффициента корреляции можно рассчитать двумя способами:

где — случайная ошибка коэффициента корреляции.

Данные для расчёта возьмём из таблицы на Рисунке 7.

Фактические значения t-статистики превосходят табличные значения:

Поэтому гипотеза Н 0 отклоняется, то есть параметры регрессии и коэффициент корреляции не случайно отличаются от нуля, а статистически значимы.

Доверительный интервал для параметра a определяется как

Для параметра a 95%-ные границы как показано на рисунке 7 составили:

Доверительный интервал для коэффициента регрессии определяется как

Для коэффициента регрессии b 95%-ные границы как показано на рисунке 7 составили:

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры a и b, находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

7. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:

Тогда прогнозное значение прожиточного минимума составит:

Ошибку прогноза рассчитаем по формуле:

где

Дисперсию посчитаем также с помощью ППП Excel. Для этого:

1) Активизируйте Мастер функций : в главном меню выберете Формулы / Вставить функцию .

3) Заполните диапазон, содержащий числовые данные факторного признака. Нажмите ОК .

Рисунок 10 Расчёт дисперсии

Получили значение дисперсии

Для подсчёта остаточной дисперсии на одну степень свободы воспользуемся результатами дисперсионного анализа как показано на Рисунке 7.

Доверительные интервалы прогноза индивидуальных значений у при с вероятностью 0,95 определяются выражением:

Интервал достаточно широк, прежде всего, за счёт малого объёма наблюдений. В целом выполненный прогноз среднемесячной заработной платы оказался надёжным.

Условие задачи взято из: Практикум по эконометрике: Учеб. пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др.; Под ред. И.И. Елисеевой. — М.: Финансы и статистика, 2003. — 192 с.: ил.

Для общей оценки качества построенной эконометрической определяются такие характеристики как коэффициент детерминации, индекс корреляции, средняя относительная ошибка аппроксимации, а также проверяется значимость уравнения регрессии с помощью F -критерия Фишера. Перечисленные характеристики являются достаточно универсальными и могут применяться как для линейных, так и для нелинейных моделей, а также моделей с двумя и более факторными переменными. Определяющее значение при вычислении всех перечисленных характеристик качества играет ряд остатков ε i , который вычисляется путем вычитания из фактических (полученных по наблюдениям) значений исследуемого признака y i значений, рассчитанных по уравнению модели y рi .

показывает, какая доля изменения исследуемого признака учтена в модели. Другими словами коэффициент детерминации показывает, какая часть изменения исследуемой переменной может быть вычислена, исходя из изменений включённых в модель факторных переменных с помощью выбранного типа функции, связывающей факторные переменные и исследуемый признак в уравнении модели.

Коэффициент детерминации R 2 может принимать значения от 0 до 1. Чем ближе коэффициент детерминации R 2 к единице, тем лучше качество модели.

Индекс корреляции можно легко вычислить, зная коэффициент детерминации:

Индекс корреляции R характеризует тесноту выбранного при построении модели типа связи между учтёнными в модели факторами и исследуемой переменной. В случае линейной парной регрессии его значение по абсолютной величине совпадает с коэффициентом парной корреляции r (x, y) , который мы рассмотрели ранее, и характеризует тесноту линейной связи между x и y . Значения индекса корреляции, очевидно, также лежат в интервале от 0 до 1. Чем ближе величина R к единице, тем теснее выбранный вид функции связывает между собой факторные переменные и исследуемый признак, тем лучше качество модели.

(2.11)

выражается в процентах и характеризует точность модели. Приемлимая точность модели при решении практических задач может определяться, исходя из соображений экономической целесообразности с учётом конкретной ситуации. Широко применяется критерий, в соответствии с которым точность считается удовлетворительной, если средняя относительная погрешность меньше 15%. Если E отн.ср. меньше 5%, то говорят, что модель имеет высокую точность. Не рекомендуется применять для анализа и прогноза модели с неудовлетворительной точностью, то есть, когда E отн.ср. больше 15%.

F-критерий Фишера используется для оценки значимости уравнения регрессии. Расчётное значение F-критерия определяется из соотношения:

. (2.12)

Критическое значение F -критерия определяется по таблицам при заданном уровне значимости α и степенях свободы (можно использовать функцию FРАСПОБР в Excel). Здесь, по-прежнему, m – число факторов, учтённых в модели, n – количество наблюдений. Если расчётное значение больше критического, то уравнение модели признаётся значимым. Чем больше расчётное значение F -критерия, тем лучше качество модели.

Определим характеристики качества построенной нами линейной модели для Примера 1 . Воспользуемся данными Таблицы 2. Коэффициент детерминации :

Следовательно, в рамках линейной модели изменение объёма продаж на 90,1% объясняется изменением температуры воздуха.

.

Значение индекса корреляции в случае парной линейной модели как мы видим, действительно по модулю равно коэффициенту корреляции между соответствующими переменными (объём продаж и температура). Поскольку полученное значение достаточно близко к единице, то можно сделать вывод о наличии тесной линейной связи между исследуемой переменной (объём продаж) и факторной переменноё (температура).

Критическое значение F кр при α = 0,1; ν 1 =1; ν 2 =7-1-1=5 равно 4,06. Расчётное значение F -критерия больше табличного, следовательно, уравнение модели является значимым.

Средняя относительная ошибка аппроксимации

Построенная линейная модель парной регрессии имеет неудовлетворительную точность (>15%), и её не рекомендуется использовать для анализа и прогнозирования.

В итоге, несмотря на то, что большинство статистических характеристик удовлетворяют предъявляемым к ним критериям, линейная модель парной регрессии непригодна для прогнозирования объёма продаж в зависимости от температуры воздуха. Нелинейный характер зависимости между указанными переменными по данным наблюдений достаточно хорошо виден на Рис.1. Проведённый анализ это подтвердил.

Среди различных методов прогнозирования нельзя не выделить аппроксимацию. С её помощью можно производить приблизительные подсчеты и вычислять планируемые показатели, путем замены исходных объектов на более простые. В Экселе тоже существует возможность использования данного метода для прогнозирования и анализа. Давайте рассмотрим, как этот метод можно применить в указанной программе встроенными инструментами.

Наименование данного метода происходит от латинского слова proxima – «ближайшая» Именно приближение путем упрощения и сглаживания известных показателей, выстраивание их в тенденцию и является его основой. Но данный метод можно использовать не только для прогнозирования, но и для исследования уже имеющихся результатов. Ведь аппроксимация является, по сути, упрощением исходных данных, а упрощенный вариант исследовать легче.

Главный инструмент, с помощью которого проводится сглаживания в Excel – это построение линии тренда. Суть состоит в том, что на основе уже имеющихся показателей достраивается график функции на будущие периоды. Основное предназначение линии тренда, как не трудно догадаться, это составление прогнозов или выявление общей тенденции.

Но она может быть построена с применением одного из пяти видов аппроксимации:

  • Линейной;
  • Экспоненциальной;
  • Логарифмической;
  • Полиномиальной;
  • Степенной.

Рассмотрим каждый из вариантов более подробно в отдельности.

Способ 1: линейное сглаживание

Прежде всего, давайте рассмотрим самый простой вариант аппроксимации, а именно с помощью линейной функции. На нем мы остановимся подробнее всего, так как изложим общие моменты характерные и для других способов, а именно построение графика и некоторые другие нюансы, на которых при рассмотрении последующих вариантов уже останавливаться не будем.

Прежде всего, построим график, на основании которого будем проводить процедуру сглаживания. Для построения графика возьмем таблицу, в которой помесячно указана себестоимость единицы продукции, производимой предприятием, и соответствующая прибыль в данном периоде. Графическая функция, которую мы построим, будет отображать зависимость увеличения прибыли от уменьшения себестоимости продукции.

Сглаживание, которое используется в данном случае, описывается следующей формулой:

В конкретно нашем случае формула принимает такой вид:

Величина достоверности аппроксимации у нас равна 0,9418 , что является довольно приемлемым итогом, характеризующим сглаживание, как достоверное.

Способ 2: экспоненциальная аппроксимация

Теперь давайте рассмотрим экспоненциальный тип аппроксимации в Эксель.

Общий вид функции сглаживания при этом такой:

где e – это основание натурального логарифма.

В конкретно нашем случае формула приняла следующую форму:

Способ 3: логарифмическое сглаживание

Теперь настала очередь рассмотреть метод логарифмической аппроксимации.

В общем виде формула сглаживания выглядит так:

где ln – это величина натурального логарифма. Отсюда и наименование метода.

В нашем случае формула принимает следующий вид:

Способ 4: полиномиальное сглаживание

Настал черед рассмотреть метод полиномиального сглаживания.

Формула, которая описывает данный тип сглаживания, приняла следующий вид:

Способ 5: степенное сглаживание

В завершении рассмотрим метод степенной аппроксимации в Excel.

Данный способ эффективно используется в случаях интенсивного изменения данных функции. Важно учесть, что этот вариант применим только при условии, что функция и аргумент не принимают отрицательных или нулевых значений.

Общая формула, описывающая данный метод имеет такой вид:

В конкретно нашем случае она выглядит так:

Как видим, при использовании конкретных данных, которые мы применяли для примера, наибольший уровень достоверности показал метод полиномиальной аппроксимации с полиномом в шестой степени (0,9844 ), наименьший уровень достоверности у линейного метода (0,9418 ). Но это совсем не значит, что такая же тенденция будет при использовании других примеров. Нет, уровень эффективности у приведенных выше методов может значительно отличаться, в зависимости от конкретного вида функции, для которой будет строиться линия тренда. Поэтому, если для этой функции выбранный метод наиболее эффективен, то это совсем не означает, что он также будет оптимальным и в другой ситуации.

Если вы пока не можете сразу определить, основываясь на вышеприведенных рекомендациях, какой вид аппроксимации подойдет конкретно в вашем случае, то есть смысл попробовать все методы. После построения линии тренда и просмотра её уровня достоверности можно будет выбрать оптимальный вариант.

Контрольная работа: Парная регрессия

Смысл регрессионного анализа – построение функциональных зависимостей между двумя группами переменных величин Х1 , Х2 , … Хр и Y. При этом речь идет о влиянии переменных Х (это будут аргументы функций) на значения переменной Y (значение функции). Переменные Х мы будем называть факторами, а Y – откликом.

Наиболее простой случай – установление зависимости одного отклика y от одного фактора х. Такой случай называется парной (простой) регрессией.

Парная регрессия – уравнение связи двух переменных у иx :

,

где у – зависимая переменная (результативный признак);

х – независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Линейная регрессия:.

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Регрессии, нелинейные по объясняющим переменным:

• полиномы разных степеней

•равносторонняя гипербола

Регрессии, нелинейные по оцениваемым параметрам:

• степенная ;

• показательная

• экспоненциальная

Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических минимальна, т.е.

Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно а и b :

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции для линейной регрессии

и индекс корреляции — для нелинейной регрессии ():

Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации.

Средняя ошибка аппроксимации – среднее отклонение расчетных значений от фактических:

Допустимый предел значений – не более 8 – 10%.

Средний коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения:

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:

где – общая сумма квадратов отклонений;

– сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);

–остаточная сумма квадратов отклонений.

Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R 2 :

Коэффициент детерминации – квадрат коэффициента или индекса корреляции.

F -тест – оценивание качества уравнения регрессии – состоит в проверке гипотезы Но о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F -критерия Фишера. F факт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

п – число единиц совокупности;

т – число параметров при переменных х.

Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости а. Уровень значимости а – вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно а принимается равной 0,05 или 0,01.

Если Fтабл Fфакт , то гипотеза Н0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t -критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:

Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:

Сравнивая фактическое и критическое (табличное) значения t-статистики – tтабл и tфакт – принимаем или отвергаем гипотезу Hо .

Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством

Если tтабл tфакт , то гипотеза Но не отклоняется и признается случайная природа формирования a , b или .

Для расчета доверительного интервала определяем предельную ошибку ∆ для каждого показателя:

Формулы для расчета доверительных интервалов имеют следующий вид:

Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.

Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения . Вычисляется средняя стандартная ошибка прогноза :

где

и строится доверительный интервал прогноза:

где

По 22 регионам страны изучается зависимость розничной продажи телевизоров, y от среднедушевых денежных доходов в месяц, x (табл. 1):

Название: Парная регрессия
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 13:41:57 15 апреля 2011 Похожие работы
Просмотров: 3780 Комментариев: 22 Оценило: 4 человек Средний балл: 4.5 Оценка: неизвестно Скачать
№ региона X Y
1,000 2,800 28,000
2,000 2,400 21,300
3,000 2,100 21,000
4,000 2,600 23,300
5,000 1,700 15,800
6,000 2,500 21,900
7,000 2,400 20,000
8,000 2,600 22,000
9,000 2,800 23,900
10,000 2,600 26,000
11,000 2,600 24,600
12,000 2,500 21,000
13,000 2,900 27,000
14,000 2,600 21,000
15,000 2,200 24,000
16,000 2,600 34,000
17,000 3,300 31,900
19,000 3,900 33,000
20,000 4,600 35,400
21,000 3,700 34,000
22,000 3,400 31,000

1. Постройте поле корреляции и сформулируйте гипотезу о форме связи.

2. Рассчитайте параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессий.

3. Оцените тесноту связи с помощью показателей корреляции и детерминации.

4. С помощью среднего (общего) коэффициента эластичности дайте сравнительную оценку силы связи фактора с результатом.

5. Качество уравнений оцените с помощью средней ошибки аппроксимации.

6. С помощью F-критерия Фишера определите статистическую надежность результатов регрессионного моделирования. Выберите лучшее уравнение регрессии и дайте его обоснование.

7. Рассчитайте прогнозное значение результата по линейному уравнению регрессии, если прогнозное значение фактора увеличится на 7% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости α=0,05.

8. Оцените полученные результаты, выводы оформите в аналитической записке.

1. Поле корреляции для:

· Линейной регрессии y=a+b*x:

Гипотеза о форме связи: чем больше размер среднедушевого денежного дохода в месяц (факторный признак), тем больше при прочих равных условиях розничная продажа телевизоров (результативный признак). В данной модели параметр b называется коэффициентом регрессии и показывает, насколько в среднем отклоняется величина результативного признака у при отклонении величины факторного признаках на одну единицу.

· Степенной регрессии :

Гипотеза о форме связи : степенная функция имеет вид Y=ax b .

Параметр b степенного уравнения называется показателем эластичности и указывает, на сколько процентов изменится у при возрастании х на 1%. При х = 1 a = Y.

· Экспоненциальная регрессия :

· Равносторонняя гипербола :

Гипотеза о форме связи: В ряде случаев обратная связь между факторным и результативным признаками может быть выражена уравнением гиперболы: Y=a+b/x.

· Обратная гипербола :

· Полулогарифмическая регрессия :

2. Рассчитайте параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессий.

· Рассчитаем параметры уравнений линейной парной регрессии. Для расчета параметров a и b линейной регрессии y=a+b*x решаем систему нормальных уравнений относительно a и b:

По исходным данным рассчитываем ∑y, ∑x, ∑yx, ∑x 2 , ∑y 2 (табл. 2):

№ региона X Y XY X^2 Y^2 Y^cp Y-Y^cp Ai
1 2,800 28,000 78,400 7,840 784,000 25,719 2,281 0,081
2 2,400 21,300 51,120 5,760 453,690 22,870 -1,570 0,074
3 2,100 21,000 44,100 4,410 441,000 20,734 0,266 0,013
4 2,600 23,300 60,580 6,760 542,890 24,295 -0,995 0,043
5 1,700 15,800 26,860 2,890 249,640 17,885 -2,085 0,132
6 2,500 21,900 54,750 6,250 479,610 23,582 -1,682 0,077
7 2,400 20,000 48,000 5,760 400,000 22,870 -2,870 0,144
8 2,600 22,000 57,200 6,760 484,000 24,295 -2,295 0,104
9 2,800 23,900 66,920 7,840 571,210 25,719 -1,819 0,076
10 2,600 26,000 67,600 6,760 676,000 24,295 1,705 0,066
11 2,600 24,600 63,960 6,760 605,160 24,295 0,305 0,012
12 2,500 21,000 52,500 6,250 441,000 23,582 -2,582 0,123
13 2,900 27,000 78,300 8,410 729,000 26,431 0,569 0,021
14 2,600 21,000 54,600 6,760 441,000 24,295 -3,295 0,157
15 2,200 24,000 52,800 4,840 576,000 21,446 2,554 0,106
16 2,600 34,000 88,400 6,760 1156,000 24,295 9,705 0,285
17 3,300 31,900 105,270 10,890 1017,610 29,280 2,620 0,082
19 3,900 33,000 128,700 15,210 1089,000 33,553 -0,553 0,017
20 4,600 35,400 162,840 21,160 1253,160 38,539 -3,139 0,089
21 3,700 34,000 125,800 13,690 1156,000 32,129 1,871 0,055
22 3,400 31,000 105,400 11,560 961,000 29,992 1,008 0,033
Итого 58,800 540,100 1574,100 173,320 14506,970 540,100 0,000
сред значение 2,800 25,719 74,957 8,253 690,808 0,085
станд. откл 0,643 5,417

Система нормальных уравнений составит:

Ур-ие регрессии: = 5,777+7,122∙x. Данное уравнение показывает, что с увеличением среднедушевого денежного дохода в месяц на 1 тыс. руб. доля розничных продаж телевизоров повышается в среднем на 7,12%.

· Рассчитаем параметры уравнений степенной парной регрессии. Построению степенной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:

где

Для расчетов используем данные табл. 3:

№ рег X Y XY X^2 Y^2 Yp^cp y^cp
1 1,030 3,332 3,431 1,060 11,104 3,245 25,67072
2 0,875 3,059 2,678 0,766 9,356 3,116 22,56102
3 0,742 3,045 2,259 0,550 9,269 3,004 20,17348
4 0,956 3,148 3,008 0,913 9,913 3,183 24,12559
5 0,531 2,760 1,465 0,282 7,618 2,827 16,90081
6 0,916 3,086 2,828 0,840 9,526 3,150 23,34585
7 0,875 2,996 2,623 0,766 8,974 3,116 22,56102
8 0,956 3,091 2,954 0,913 9,555 3,183 24,12559
9 1,030 3,174 3,268 1,060 10,074 3,245 25,67072
10 0,956 3,258 3,113 0,913 10,615 3,183 24,12559
11 0,956 3,203 3,060 0,913 10,258 3,183 24,12559
12 0,916 3,045 2,790 0,840 9,269 3,150 23,34585
13 1,065 3,296 3,509 1,134 10,863 3,275 26,4365
14 0,956 3,045 2,909 0,913 9,269 3,183 24,12559
15 0,788 3,178 2,506 0,622 10,100 3,043 20,97512
16 0,956 3,526 3,369 0,913 12,435 3,183 24,12559
17 1,194 3,463 4,134 1,425 11,990 3,383 29,4585
19 1,361 3,497 4,759 1,852 12,226 3,523 33,88317
20 1,526 3,567 5,443 2,329 12,721 3,661 38,90802
21 1,308 3,526 4,614 1,712 12,435 3,479 32,42145
22 1,224 3,434 4,202 1,498 11,792 3,408 30,20445
итого 21,115 67,727 68,921 22,214 219,361 67,727 537,270
сред зн 1,005 3,225 3,282 1,058 10,446 3,225
стан откл 0,216 0,211

Рассчитаем С и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата y .

· Рассчитаем параметры уравнений экспоненциальной парной регрессии. Построению экспоненциальной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:

где

Для расчетов используем данные табл. 4:

№ региона X Y XY X^2 Y^2 Yp y^cp
1 2,800 3,332 9,330 7,840 11,104 3,225 25,156
2 2,400 3,059 7,341 5,760 9,356 3,116 22,552
3 2,100 3,045 6,393 4,410 9,269 3,034 20,777
4 2,600 3,148 8,186 6,760 9,913 3,170 23,818
5 1,700 2,760 4,692 2,890 7,618 2,925 18,625
6 2,500 3,086 7,716 6,250 9,526 3,143 23,176
7 2,400 2,996 7,190 5,760 8,974 3,116 22,552
8 2,600 3,091 8,037 6,760 9,555 3,170 23,818
9 2,800 3,174 8,887 7,840 10,074 3,225 25,156
10 2,600 3,258 8,471 6,760 10,615 3,170 23,818
11 2,600 3,203 8,327 6,760 10,258 3,170 23,818
12 2,500 3,045 7,611 6,250 9,269 3,143 23,176
13 2,900 3,296 9,558 8,410 10,863 3,252 25,853
14 2,600 3,045 7,916 6,760 9,269 3,170 23,818
15 2,200 3,178 6,992 4,840 10,100 3,061 21,352
16 2,600 3,526 9,169 6,760 12,435 3,170 23,818
17 3,300 3,463 11,427 10,890 11,990 3,362 28,839
19 3,900 3,497 13,636 15,210 12,226 3,526 33,978
20 4,600 3,567 16,407 21,160 12,721 3,717 41,140
21 3,700 3,526 13,048 13,690 12,435 3,471 32,170
22 3,400 3,434 11,676 11,560 11,792 3,389 29,638
Итого 58,800 67,727 192,008 173,320 219,361 67,727 537,053
сред зн 2,800 3,225 9,143 8,253 10,446
стан откл 0,643 0,211

Рассчитаем С и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Для расчета теоретических значений y подставим в уравнение значения x .

· Рассчитаем параметры уравнений полулогарифмической парной регрессии. Построению полулогарифмической модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем замены:

где

Для расчетов используем данные табл. 5:

№ региона X Y XY X^2 Y^2 y^cp
1 1,030 28,000 28,829 1,060 784,000 26,238
2 0,875 21,300 18,647 0,766 453,690 22,928
3 0,742 21,000 15,581 0,550 441,000 20,062
4 0,956 23,300 22,263 0,913 542,890 24,647
5 0,531 15,800 8,384 0,282 249,640 15,525
6 0,916 21,900 20,067 0,840 479,610 23,805
7 0,875 20,000 17,509 0,766 400,000 22,928
8 0,956 22,000 21,021 0,913 484,000 24,647
9 1,030 23,900 24,608 1,060 571,210 26,238
10 0,956 26,000 24,843 0,913 676,000 24,647
11 0,956 24,600 23,506 0,913 605,160 24,647
12 0,916 21,000 19,242 0,840 441,000 23,805
13 1,065 27,000 28,747 1,134 729,000 26,991
14 0,956 21,000 20,066 0,913 441,000 24,647
15 0,788 24,000 18,923 0,622 576,000 21,060
16 0,956 34,000 32,487 0,913 1156,000 24,647
17 1,194 31,900 38,086 1,425 1017,610 29,765
19 1,361 33,000 44,912 1,852 1089,000 33,351
20 1,526 35,400 54,022 2,329 1253,160 36,895
21 1,308 34,000 44,483 1,712 1156,000 32,221
22 1,224 31,000 37,937 1,498 961,000 30,406
Итого 21,115 540,100 564,166 22,214 14506,970 540,100
сред зн 1,005 25,719 26,865 1,058 690,808
стан откл 0,216 5,417

Рассчитаем a и b:

Получим линейное уравнение: .

· Рассчитаем параметры уравнений обратной парной регрессии. Для оценки параметров приведем обратную модель к линейному виду, заменив , тогда

Для расчетов используем данные табл. 6:

№ региона X Y XY X^2 Y^2 Y^cp
1 2,800 0,036 0,100 7,840 0,001 24,605
2 2,400 0,047 0,113 5,760 0,002 22,230
3 2,100 0,048 0,100 4,410 0,002 20,729
4 2,600 0,043 0,112 6,760 0,002 23,357
5 1,700 0,063 0,108 2,890 0,004 19,017
6 2,500 0,046 0,114 6,250 0,002 22,780
7 2,400 0,050 0,120 5,760 0,003 22,230
8 2,600 0,045 0,118 6,760 0,002 23,357
9 2,800 0,042 0,117 7,840 0,002 24,605
10 2,600 0,038 0,100 6,760 0,001 23,357
11 2,600 0,041 0,106 6,760 0,002 23,357
12 2,500 0,048 0,119 6,250 0,002 22,780
13 2,900 0,037 0,107 8,410 0,001 25,280
14 2,600 0,048 0,124 6,760 0,002 23,357
15 2,200 0,042 0,092 4,840 0,002 21,206
16 2,600 0,029 0,076 6,760 0,001 23,357
17 3,300 0,031 0,103 10,890 0,001 28,398
19 3,900 0,030 0,118 15,210 0,001 34,844
20 4,600 0,028 0,130 21,160 0,001 47,393
21 3,700 0,029 0,109 13,690 0,001 32,393
22 3,400 0,032 0,110 11,560 0,001 29,301
Итого 58,800 0,853 2,296 173,320 0,036 537,933
сред знач 2,800 0,041 0,109 8,253 0,002
стан отклон 0,643 0,009

Рассчитаем a и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Для расчета теоретических значений y подставим в уравнение значения x .

· Рассчитаем параметры уравнений равносторонней гиперболы парной регрессии. Для оценки параметров приведем модель равносторонней гиперболы к линейному виду, заменив , тогда

Для расчетов используем данные табл. 7:

№ региона X=1/z Y XY X^2 Y^2 Y^cp
1 0,357 28,000 10,000 0,128 784,000 26,715
2 0,417 21,300 8,875 0,174 453,690 23,259
3 0,476 21,000 10,000 0,227 441,000 19,804
4 0,385 23,300 8,962 0,148 542,890 25,120
5 0,588 15,800 9,294 0,346 249,640 13,298
6 0,400 21,900 8,760 0,160 479,610 24,227
7 0,417 20,000 8,333 0,174 400,000 23,259
8 0,385 22,000 8,462 0,148 484,000 25,120
9 0,357 23,900 8,536 0,128 571,210 26,715
10 0,385 26,000 10,000 0,148 676,000 25,120
11 0,385 24,600 9,462 0,148 605,160 25,120
12 0,400 21,000 8,400 0,160 441,000 24,227
13 0,345 27,000 9,310 0,119 729,000 27,430
14 0,385 21,000 8,077 0,148 441,000 25,120
15 0,455 24,000 10,909 0,207 576,000 21,060
16 0,385 34,000 13,077 0,148 1156,000 25,120
17 0,303 31,900 9,667 0,092 1017,610 29,857
19 0,256 33,000 8,462 0,066 1089,000 32,564
20 0,217 35,400 7,696 0,047 1253,160 34,829
21 0,270 34,000 9,189 0,073 1156,000 31,759
22 0,294 31,000 9,118 0,087 961,000 30,374
Итого 7,860 540,100 194,587 3,073 14506,970 540,100
сред знач 0,374 25,719 9,266 0,146 1318,815
стан отклон 0,079 25,639

Рассчитаем a и b:

Получим линейное уравнение: . Получим уравнение регрессии: .

3. Оценка тесноты связи с помощью показателей корреляции и детерминации :

· Линейная модель. Тесноту линейной связи оценит коэффициент корреляции. Был получен следующий коэффициент корреляции rxy =b=7,122*, что говорит о прямой сильной связи фактора и результата. Коэффициент детерминации r²xy =(0,845)²=0,715. Это означает, что 71,5% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Степенная модель. Тесноту нелинейной связи оценит индекс корреляции. Был получен следующий индекс корреляции =, что говорит о очень сильной тесной связи, но немного больше чем в линейной модели. Коэффициент детерминации r²xy =0,7175. Это означает, что 71,75% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Экспоненциальная модель. Был получен следующий индекс корреляции ρxy =0,8124, что говорит о том, что связь прямая и очень сильная, но немного слабее, чем в линейной и степенной моделях. Коэффициент детерминации r²xy =0,66. Это означает, что 66% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Полулогарифмическая модель. Был получен следующий индекс корреляции ρxy =0,8578, что говорит о том, что связь прямая и очень сильная, но немного больше чем в предыдущих моделях. Коэффициент детерминации r²xy =0,7358. Это означает, что 73,58% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Гиперболическая модель. Был получен следующий индекс корреляции ρxy =0,8448 и коэффициент корреляции rxy =-0,1784 что говорит о том, что связь обратная очень сильная. Коэффициент детерминации r²xy =0,7358. Это означает, что 73,5% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Обратная модель. Был получен следующий индекс корреляции ρxy =0,8114 и коэффициент корреляции rxy =-0,8120, что говорит о том, что связь обратная очень сильная. Коэффициент детерминации r²xy =0,6584. Это означает, что 65,84% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

Вывод: по полулогарифмическому уравнению получена наибольшая оценка тесноты связи: ρxy =0,8578 (по сравнению с линейной, степенной, экспоненциальной, гиперболической, обратной регрессиями).

4. С помощью среднего (общего) коэффициента эластичности дайте сравнительную оценку силы связи фактора с результатом.

Рассчитаем коэффициент эластичности для линейной модели:

· Для уравнения прямой:y = 5,777+7,122∙x

· Для уравнениястепенноймодели :

· Для уравненияэкспоненциальноймодели :

Для уравненияполулогарифмическоймодели :

· Для уравнения обратной гиперболической модели :

· Для уравнения равносторонней гиперболической модели :

Сравнивая значения , характеризуем оценку силы связи фактора с результатом:

·

·

·

·

·

·

Известно, что коэффициент эластичности показывает связь между фактором и результатом, т.е. на сколько% изменится результат y от своей средней величины при изменении фактора х на 1% от своего среднего значения. В данном примере получилось, что самая большая сила связи между фактором и результатом в полулогарифмической модели, слабая сила связи в обратной гиперболической модели.

5. Оценка качества уравнений с помощью средней ошибки аппроксимации.

Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения . Найдем величину средней ошибки аппроксимации :

В среднем расчетные значения отклоняются от фактических на:

· Линейная регрессия. =*100%= 8,5%, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Степенная регрессия. =*100%= 8,2%, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Экспоненциальная регрессия. =*100%= 9%, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Полулогарифмическая регрессия. =*100%= 7,9 что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Гиперболическая регрессия. =*100%= 9,3 что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Обратная регрессия. =*100%= 9,9 3 что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

6. Рассчитаем F-критерий:

· Линейная регрессия. = *19= 47,579

источники:

http://welom.ru/srednyaya-oshibka-approksimacii-v-excel-ocenka-kachestva-uravneniya/

http://www.bestreferat.ru/referat-268496.html

Понравилась статья? Поделить с друзьями:
  • Стиральная машина gorenje ошибка е7 что значит
  • Стиральная машина gorenje ошибка е3 что делать
  • Стиральная машина gorenje ошибка е10
  • Стиральная машина gorenje ошибка f27
  • Стиральная машина candy выдает ошибку е16