Средняя относительная ошибка прогноза формула

Вариант 1

Задание 1. Модель парной линейной регрессии.

Имеются данные о размере среднемесячных доходов в разных группах семей

Номер группы

Среднедушевой денежный доход в месяц, руб., X

Доля оплаты труда в структуре доходов семьи, %, Y

1

79,8

64,2

2

152,1

66,1

3

199,3

69,0

4

240,8

70,6

5

282,4

72,4

6

301,8

74,3

7

385,3

76,0

8

457,8

77,1

9

577,4

78,4

Задания:

1. Рассчитать линейный коэффициент парной корреляции, оценить его статистическую значимость и построить для него доверительный интервал с уровнем значимости a =0,05. Сделать выводы

2. Построить линейное уравнение парной регрессии Y на X и оценить статистическую значимость параметров регрессии. Сделать рисунок.

3. Оценить качество уравнения регрессии при помощи коэффициента детерминации. Сделать выводы. Проверить качество уравнения регрессии при помощи F-критерия Фишера.

4. Выполнить прогноз доли оплаты труда структуре доходов семьи Y при прогнозном значении среднедушевого денежного дохода X, составляющем 111% от среднего уровня. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал для уровня значимости a =0,05. Сделать выводы.

Решение: Построим поле корреляции зависимости доли оплаты труда в структуре доходов семьи от среднедушевого денежного дохода в месяц.

Точки на построенном графике размещаются вблизи кривой, напоминающей по форме Прямую, поэтому можно предположить, что между указанными величинами существует Линейная зависимость вида .

Для расчета линейного коэффициента парной корреляции и параметров линейной регрессии составим вспомогательную таблицу.

№ п/п

X

Y

X×Y

X2

Y2

1

79,8

64,2

5123,16

6368,04

4121,64

2

152,1

66,1

10053,81

23134,41

4369,21

3

199,3

69,0

13751,70

39720,49

4761,00

4

240,8

70,6

17000,48

57984,64

4984,36

5

282,4

72,4

20445,76

79749,76

5241,76

6

301,8

74,3

22423,74

91083,24

5520,49

7

385,3

76,0

29282,80

148456,09

5776,00

8

457,8

77,1

35296,38

209580,84

5944,41

9

577,4

78,4

45268,16

333390,76

6146,56

S

2676,7

648,1

198645,99

989468,27

46865,43

Среднее

297,41

72,01

22071,78

109940,92

5207,27

Вычислим коэффициент корреляции. Используем следующую формулу:

= 0,9568.

Можно сказать, что между рассматриваемыми признаками существует Прямая тесная Корреляционная связь.

Среднюю ошибку коэффициента корреляции определим по формуле:

= 0,032.

Найдем табличное значение TТабл по таблице распределения Стьюдента для
a = 0,05 и числе степеней свободы K = NM – 1 = 9 – 1 – 1 = 7.

TТабл(0,05; 7) = 2,36.

Запишем доверительный интервал для коэффициента корреляции.

Доверительный интервал не включает число 0, поэтому при заданном уровне значимости коэффициент корреляции является статистически значимым.

Вычислим параметры уравнения регрессии.

= 0,03.

= 72,01 – 0,03×297,41 = 63,09.

Получим следующее уравнение: .

Для проверки статистической значимости (существенности) линейного коэффициента парной корреляции рассчитаем T-критерий Стьюдента по формуле:

= 23,04.

Фактическое значение по абсолютной величине больше табличного, что свидетельствует о значимости линейного коэффициента корреляции и существенности связи между рассматриваемыми признаками.

Проверим значимость оценок теоретических коэффициентов регрессии с помощью t-статистики Стьюдента и сделаем соответствующие выводы о значимости этих оценок.

Для определения статистической значимости коэффициентов A и B найдем T-статистики Стьюдента:

Рассчитаем по полученному уравнению теоретические значения. Составим вспомогательную таблицу.

№ п/п

X

Y

1

79,8

64,2

65,48

1,6384

47354,1

2

152,1

66,1

67,65

2,4025

21115,0

3

199,3

69,0

69,07

0,0049

9625,6

4

240,8

70,6

70,31

0,0841

3204,7

5

282,4

72,4

71,56

0,7056

225,3

6

301,8

74,3

72,14

4,6656

19,3

7

385,3

76,0

74,65

1,8225

7724,7

8

457,8

77,1

76,82

0,0784

25725,0

9

577,4

78,4

80,41

4,0401

78394,4

S

2676,7

648,1

648,09

15,4421

193388,1

Вычислим стандартные ошибки коэффициентов уравнения.

= 1,2.

= 0,003.

Вычислим T-статистики.

Сравнение расчетных и табличных величин критерия Стьюдента показывает, что и , т. е. оценки A и B теоретических коэффициентов регрессии статистически значимы.

Сделаем рисунок.

Рассчитаем коэффициент детерминации: = 0,95682= 0,915 = 91,5%.

Таким образом, вариация результата Y на 91,5% объясняется вариацией фактора X.

Оценку значимости уравнения регрессии проведем с помощью F-критерия Фишера:

= 75,81.

Найдем табличное значение Fтабл по таблице критических точек Фишера для
a = 0,05; K1 = M = 1 (число факторов), K2 = NM – 1 = 9 – 1 – 1 = 7.

Fтабл(0,05; 1; 7) = 5,59.

Поскольку F > FТабл, уравнение регрессии с вероятностью 0,95 в целом Является статистически значимым.

Выполним прогноз доли оплаты труда структуре доходов семьи y при прогнозном значении среднедушевого денежного дохода x, составляющем 111% от среднего уровня.

XP = 297,41 × 1,11 = 330,1.

Вычислим прогнозное значение Yp с помощью уравнения регрессии.

» 73%.

Доверительный интервал прогноза имеет вид

(УPTкр×My, УP + Tкр×My),

Где , M = 2 – число параметров уравнения.

= 1,695 » 1,7.

Запишем доверительный интервал прогноза:

Þ

Данный прогноз является надежным, поскольку доверительный интервал не включает число 0, точность прогноза составляет 4.

Задание 2. Модель парной нелинейной регрессии.

По территориям Центрального района известны данные за 1995 г.

Район

Прожиточный минимум в среднем на одного пенсионера в месяц, тыс. руб., X

Средний размер назначенных ежемесячных пенсий, тыс. руб., Y

Брянская обл.

178

240

Владимирская обл.

202

226

Ивановская обл.

197

221

Калужская обл.

201

226

Костромская обл.

189

220

Орловская обл.

166

232

Рязанская обл.

199

215

Смоленская обл.

180

220

Тверская обл.

181

222

Тульская обл.

186

231

Ярославская обл.

250

229

Задания:

1. Построить поле корреляции и сформулируйте гипотезу о форме связи. Рассчитать параметры уравнений полулогарифмической () и степенной () парной регрессии. Сделать рисунки.

2. Дать с помощью среднего коэффициента эластичности сравнительную оценку силы связи фактора с результатом для каждой модели. Сделать выводы. Оценить качество уравнений регрессии с помощью средней ошибки аппроксимации и коэффициента детерминации. Сделать выводы.

3. По значениям рассчитанных характеристик выбрать лучшее уравнение регрессии. Дать экономический смысл коэффициентов выбранного уравнения регрессии

4. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости a =0,05. Сделать выводы.

Решение: Решение: Для предварительного определения вида связи между указанными признаками построим поле корреляции. Для этого построим в системе координат точки, у которых первая координата X, а вторая – Y.

Получим следующий рисунок.

По внешнему виду диаграммы рассеяния трудно предположить, какая зависимость существует между указанными показателями.

Построение полулогарифмической модели регрессии.

Уравнение логарифмической кривой: .

Обозначим:

Получим линейное уравнение регрессии:

Y = A + B×X.

Произведем линеаризацию модели путем замены . В результате получим линейное уравнение .

Рассчитаем его параметры, используя данные таблицы.

№ п/п

X

Y

X = ln(X)

Xy

X2

Y2

Ai

1

178

240

5,1818

1243,63

26,85

57600

226,40

206,314

184,904

6,006

2

202

226

5,3083

1199,67

28,18

51076

225,17

0,132

0,694

0,370

3

197

221

5,2832

1167,59

27,91

48841

225,41

21,496

19,464

1,957

4

201

226

5,3033

1198,55

28,13

51076

225,22

0,132

0,615

0,348

5

189

220

5,2417

1153,18

27,48

48400

225,82

31,769

33,833

2,576

6

166

232

5,1120

1185,98

26,13

53824

227,08

40,496

24,172

2,165

7

199

215

5,2933

1138,06

28,02

46225

225,31

113,132

106,362

4,577

8

180

220

5,1930

1142,45

26,97

48400

226,29

31,769

39,601

2,781

9

181

222

5,1985

1154,07

27,02

49284

226,24

13,223

17,968

1,874

10

186

231

5,2257

1207,15

27,31

53361

225,97

28,769

25,273

2,225

11

250

229

5,5215

1264,41

30,49

52441

223,09

11,314

34,980

2,651

Итого

2129

2482

57,862

13054,74

304,48

560528

2482,00

498,545

487,867

27,530

Среднее

193,5

225,6

5,260

1186,79

27,68

50957,091

225,636

45,322

44,352

2,503

= -9,76.

= 225,6 – (-9,76)×5,26 = 276,99.

Уравнение модели имеет вид:

Определим индекс корреляции

Используя данные таблицы, получим:

.

Рассчитаем коэффициент детерминации: = 0,14642= 0,021 = 2,1%.

Вариация результата Y всего на 2,1% объясняется вариацией фактора X.

Сделаем рисунок.

Рассчитаем средний коэффициент эластичности по формуле:

= -0,04%.

Коэффициент эластичности показывает, что при среднем росте признака X на 1% признак Y снижается на 0,04%.

Вычислим среднюю ошибку аппроксимации. Используя данные расчетной таблицы, получаем:

= 2,5%.

Построение степенной модели парной регрессии.

Уравнение степенной модели имеет вид: .

Для построения этой модели необходимо произвести линеаризацию переменных. Для этого произведем логарифмирование обеих частей уравнения:

.

Произведем линеаризацию модели путем замены и . В результате получим линейное уравнение .

Рассчитаем его параметры, используя данные таблицы.

№ п/п

X

Y

X = ln(X)

Y = ln(Y)

XY

X2

Y2

Ai

1

178

240

5,1818

5,4806

28,3995

26,851

30,037

226,3

206,3

188,391

241,661

6,07

2

202

226

5,3083

5,4205

28,7737

28,178

29,382

225,1

0,132

0,835

71,479

0,406

3

197

221

5,2832

5,3982

28,5196

27,912

29,140

225,3

21,496

18,671

11,934

1,918

4

201

226

5,3033

5,4205

28,7467

28,125

29,382

225,1

0,132

0,753

55,570

0,385

5

189

220

5,2417

5,3936

28,2720

27,476

29,091

225,7

31,769

32,607

20,661

2,530

6

166

232

5,1120

5,4467

27,8437

26,132

29,667

226,9

40,496

25,675

758,752

2,233

7

199

215

5,2933

5,3706

28,4284

28,019

28,844

225,2

113,132

104,576

29,752

4,540

8

180

220

5,1930

5,3936

28,0089

26,967

29,091

226,2

31,769

38,059

183,479

2,728

9

181

222

5,1985

5,4027

28,0858

27,024

29,189

226,1

13,223

16,950

157,388

1,821

10

186

231

5,2257

5,4424

28,4407

27,308

29,620

225,9

28,769

26,413

56,934

2,275

11

250

229

5,5215

5,4337

30,0021

30,487

29,525

223,1

11,314

34,846

3187,116

2,646

Итого

2129

2482

57,862

59,603

313,521

304,479

322,969

2480,927

498,545

487,777

4774,727

27,548

Среднее

193,5

225,6

5,260

5,418

28,502

27,680

29,361

225,539

45,322

44,343

434,066

2,504

С учетом введенных обозначений уравнение примет вид: Y = A + BX – линейное уравнение регрессии. Рассчитаем его параметры, используя данные таблицы.

= -0,042.

= 5,418 – 0,959×5,26 = 5,637.

Перейдем к исходным переменным X и Y, выполнив потенцирование данного уравнения.

A = eA = e5,637 = 280,76

Получим уравнение степенной модели регрессии: .

Определим индекс корреляции

Используя данные таблицы, получим:

.

Рассчитаем коэффициент детерминации: = 0,1472= 0,021 = 2,1%.

Вариация результата Y всего на 2,1% объясняется вариацией фактора X.

Сделаем рисунок.

Для степенной модели средний коэффициент эластичности равен коэффициенту B.

= -0,042%.

Коэффициент эластичности показывает, что при среднем росте признака X на 1% признак Y снижается на 0,042%.

Вычислим среднюю ошибку аппроксимации. Используя данные расчетной таблицы, получаем:

= 2,5%.

Сводная таблица вычислений

Параметры

Модель

Полулогарифмическая

Степенная

Уравнение связи

Индекс корреляции

0,1464

0,147

Коэффициент детерминации

0,021

0,021

Средняя ошибка аппроксимации, %

2,5

2,5

Для выявления формы связи между указанными признаками были построены полулогарифмическая и степенная модели регрессии. Анализ показателей корреляции, а также оценка качества моделей с использованием средней ошибки аппроксимации позволил предположить, что из перечисленных моделей более адекватной является степенная модель, поскольку для нее индекс корреляции принимает наибольшее значение R = 0,147, свидетельствующий о том, что между рассматриваемыми признаками наблюдается Слабая корреляционная связь.

Рассчитаем прогнозное значение результата по степенной модели регрессии, если прогнозируется увеличение значения фактора на 10% от среднего уровня.

Прогнозное значение составит:

= 193,5 × 1,1 = 212,9 тыс. р., тогда прогнозное значение Y составит:

= 224,6 тыс. р.

Определим доверительный интервал прогноза для уровня значимости a = 0,05.

Вычислим Среднюю стандартную ошибку прогноза По следующей формуле:

, где

Получаем: = 7,55.

Найдем предельную ошибку прогноза , где для доверительной вероятности 0,95 значение T составляет 1,96.

= 14,8.

Запишем доверительный интервал прогноза.

= 224,6 – 14,8 = 209,8 тыс. р.

= 224,6 + 14,8 = 239,4 тыс. р.

Таким образом, с вероятностью 0,95 можно утверждать, что прогнозное значение среднего размера назначенных ежемесячных пенсий будет находиться в пределах от 209,8 тыс. р. до 239,4 тыс. р.

Задание 3. Моделирование временных рядов

Имеются поквартальные данные по розничному товарообороту России в 1995-1999 гг.

Номер квартала

Товарооборот % к предыдущему периоду

Номер квартала

Товарооборот % к предыдущему периоду

1

100

11

98,8

2

93,9

12

101,9

3

96,5

13

113,1

4

101,8

14

98,4

5

107,8

15

97,3

6

96,3

16

112,1

7

95,7

17

97,6

8

98,2

18

93,7

9

104

19

114,3

10

99

20

108,4

Задания:

1. Построить график данного временного ряда. Охарактеризовать структуру этого ряда.

2. Рассчитать сезонную компоненты временного ряда и построить его Мультипликативную Модель.

3. Рассчитать трендовую компоненту временного ряда и построить его график

4. Оценить качество модели через показатели средней абсолютной ошибки и среднего относительного отклонения.

Решение: Пронумеруем указанные месяцы от 1 до 24 и построим график временного ряда.

Полученный график показывает, что а данном временном ряду присутствуют сезонные колебания.

Построим мультипликативную модель временного ряда.

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (T), сезонной (S) и случайной (E) компонент.

Построение мультипликативной моделей сведем к расчету значений T, S и E для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1)  Выравнивание исходного ряда методом скользящей средней.

2)  Расчет значений сезонной компоненты S.

3)  Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных T×E.

4)  Аналитическое выравнивание уровней T×E и расчет значений T с использованием полученного уравнения тренда.

5)  Расчет полученных по модели значений T×E.

6)  Расчет абсолютных и/или относительных ошибок.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

1.1. Просуммируем уровни ряда последовательно за каждые четыре месяца со сдвигом на один момент времени и определим условные годовые уровни объема продаж (гр. 3 табл. 2.1).

1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 2.1). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 2.1).

Таблица 2.1

№ месяца, T

Товарооборот, Yi

Итого за четыре месяца

Скользящая средняя за четыре месяца

Центрированная скользящая средняя

Оценка сезонной компоненты

1

2

3

4

5

6

1

100,0

2

93,9

392

98

3

96,5

400

100

99

0,975

4

101,8

402

100,5

100,25

1,015

5

107,8

402

100,5

100,5

1,073

6

96,3

398

99,5

100

0,963

7

95,7

394

98,5

99

0,967

8

98,2

397

99,25

98,875

0,993

9

104,0

400

100

99,625

1,044

10

99,0

404

101

100,5

0,985

11

98,8

413

103,25

102,125

0,967

12

101,9

412

103

103,125

0,988

13

113,1

411

102,75

102,875

1,099

14

98,4

309

77,25

90

1,093

15

97,3

196

49

63,125

1,541

16

112,1

303

75,75

62,375

1,797

17

97,6

418

104,5

90,125

1,083

18

93,7

414

103,5

104

0,901

19

114,3

20

108,4

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 6 табл. 2.1). Эти оценки используются для расчета сезонной компоненты S (табл. 2.2). Для этого найдем средние за каждый месяц оценки сезонной компоненты Si. Так же как и в аддитивной модели считается, что сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем месяцам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.

Таблица 2.2

Показатели

Год

№ квартала, I

I

II

III

IV

1

– 

0,975

1,015

2

1,073

0,963

0,967

0,993

3

1,044

0,985

0,967

0,988

4

1,099

1,093

1,541

1,797

5

1,083

0,901

Всего за I-й квартал

4,299

3,942

4,45

4,793

Средняя оценка сезонной компоненты для I-го квартала,

0,860

0,788

0,890

0,959

Скорректированная сезонная компонента,

0,984

0,901

1,018

1,097

Имеем: 0,860 + 0,788 + 0,890 + 0,959 = 3,497.

Определяем корректирующий коэффициент: K = 4 : 3,497 = 1,144.

Скорректированные значения сезонной компоненты получаются при умножении ее средней оценки на корректирующий коэффициент K.

Проверяем условие: равенство 4 суммы значений сезонной компоненты:

0,984 + 0,901 + 1,018 + 1,097 = 4.

Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины (гр. 4 табл. 2.3), которые содержат только тенденцию и случайную компоненту.

Таблица 2.3

T

Yt

St

T

T×S

1

2

3

4

5

6

7

1

100,0

0,984

101,6

100,02

98,42

1,016

2

93,9

0,901

104,2

100,19

90,27

1,040

3

96,5

1,018

94,8

100,36

102,17

0,945

4

101,8

1,097

92,8

100,53

110,28

0,923

5

107,8

0,984

109,6

100,7

99,09

1,088

6

96,3

0,901

106,9

100,87

90,88

1,060

7

95,7

1,018

94,0

101,04

102,86

0,930

8

98,2

1,097

89,5

101,21

111,03

0,884

9

104,0

0,984

105,7

101,38

99,76

1,043

10

99,0

0,901

109,9

101,55

91,50

1,082

11

98,8

1,018

97,1

101,72

103,55

0,954

12

101,9

1,097

92,9

101,89

111,77

0,912

13

113,1

0,984

114,9

102,06

100,43

1,126

14

98,4

0,901

109,2

102,23

92,11

1,068

15

97,3

1,018

95,6

102,4

104,24

0,933

16

112,1

1,097

102,2

102,57

112,52

0,996

17

97,6

0,984

99,2

102,74

101,10

0,965

18

93,7

0,901

104,0

102,91

92,72

1,011

19

114,3

1,018

112,3

103,08

104,94

1,089

20

108,4

1,097

98,8

103,25

113,27

0,957

Среднее

101,4

1,0011

Шаг 4. Определим компоненту T в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни T×E. Составим вспомогательную таблицу.

Таблица 2.4

T

T2

1

2

3

4

5

6

7

1

101,6

1

101,6

2,5

1,58

2,0

2

104,2

4

208,4

13,2

3,87

56,3

3

94,8

9

284,4

32,1

5,88

24,0

4

92,8

16

371,2

71,9

8,33

0,2

5

109,6

25

548

75,9

8,08

41,0

6

106,9

36

641,4

29,4

5,63

26,0

7

94,0

49

658

51,3

7,48

32,5

8

89,5

64

716

164,6

13,07

10,2

9

105,7

81

951,3

18,0

4,08

6,8

10

109,9

100

1099

56,3

7,58

5,8

11

97,1

121

1068,1

22,6

4,81

6,8

12

92,9

144

1114,8

97,4

9,69

0,3

13

114,9

169

1493,7

160,5

11,20

136,9

14

109,2

196

1528,8

39,6

6,39

9,0

15

95,6

225

1434

48,2

7,13

16,8

20

102,2

400

2044

0,2

0,37

114,5

21

99,2

441

2083,2

12,3

3,59

14,4

22

104,0

484

2288

1,0

1,05

59,3

23

112,3

529

2582,9

87,6

8,19

166,4

24

98,8

576

2371,2

23,7

4,49

49,0

Сумма

230

2035,2

3670

23588

1008,3

122,49

778,2

Среднее

11,5

101,8

183,5

1179,4

50,4

6,12

38,91

Вычислим параметры уравнения тренда.

= 0,17.

= 99,85.

В результате получим уравнение тренда:

T = 99,85 + 0,17×T.

Подставляя в это уравнение значения T = 1,2,…,16, найдем уровни T для каждого момента времени (гр. 5 табл. 2.3).

Шаг 5. Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл. 2.3). На одном графике откладываем фактические значения уровней временного ряда и теоретические, полученные по мультипликативной модели.

Расчет ошибки в мультипликативной модели произведем по формуле:

Средняя абсолютная ошибка составила 1,0011 (см. гр. 7 табл. 2.3).

Рассчитаем сумму квадратов абсолютных ошибок .

Используя 5-й столбец таблицы 2.4, получим:

= 7,099.

Рассчитаем среднюю относительную ошибку: .

Используя 6-й столбец таблицы 2.4, получим, что средняя относительная ошибка составила 6,12%, т. е. построенная модель достаточно точно описывает динамику данного явления.

< Предыдущая   Следующая >

Ошибка прогнозирования: виды, формулы, примеры

Ошибка прогнозирования — это такая величина, которая показывает, как сильно прогнозное значение отклонилось от фактического. Она используется для расчета точности прогнозирования, что в свою очередь помогает нам оценивать как точно и корректно мы сформировали прогноз. В данной статье я расскажу про основные процентные «ошибки прогнозирования» с кратким описанием и формулой для расчета. А в конце статьи я приведу общий пример расчётов в Excel. Напомню, что в своих расчетах я в основном использую ошибку WAPE или MAD-Mean Ratio, о которой подробно я рассказал в статье про точность прогнозирования, здесь она также будет упомянута.

В каждой формуле буквой Ф обозначено фактическое значение, а буквой П — прогнозное. Каждая ошибка прогнозирования (кроме последней!), может использоваться для нахождения общей точности прогнозирования некоторого списка позиций, по типу того, что изображен ниже (либо для любого другого подобной детализации):

Алгоритм для нахождения любой из ошибок прогнозирования для такого списка примерно одинаковый: сначала находим ошибку прогнозирования по одной позиции, а затем рассчитываем общую. Итак, основные ошибки прогнозирования!


MPE — Mean Percent Error

MPE — средняя процентная ошибка прогнозирования. Основная проблема данной ошибки заключается в том, что в нестабильном числовом ряду с большими выбросами любое незначительное колебание факта или прогноза может значительно поменять показатель ошибки и, как следствие, точности прогнозирования. Помимо этого, ошибка является несимметричной: одинаковые отклонения в плюс и в минус по-разному влияют на показатель ошибки.

Ошибка прогнозирования MPE

  1. Для каждой позиции рассчитывается ошибка прогноза (из факта вычитается прогноз) — Error
  2. Для каждой позиции рассчитывается процентная ошибка прогноза (ошибка прогноза делится на фактический показатель) — Percent Error
  3. Находится среднее арифметическое всех процентных ошибок прогноза (процентные ошибки суммируются и делятся на количество) — Mean Percent Error

MAPE — Mean Absolute Percent Error

MAPE — средняя абсолютная процентная ошибка прогнозирования. Основная проблема данной ошибки такая же, как и у MPE — нестабильность.

Ошибка прогнозирования MAPE

  1. Для каждой позиции рассчитывается абсолютная ошибка прогноза (прогноз вычитается из факта по модулю) — Absolute Error
  2. Для каждой позиции рассчитывается абсолютная процентная ошибка прогноза (абсолютная ошибка прогноза делится на фактический показатель) — Absolute Percent Error
  3. Находится среднее арифметическое всех абсолютных процентных ошибок прогноза (абсолютные процентные ошибки суммируются и делятся на количество) — Mean Absolute Percent Error

Вместо среднего арифметического всех абсолютных процентных ошибок прогноза можно использовать медиану числового ряда (MdAPE — Median Absolute Percent Error), она наиболее устойчива к выбросам.


WMAPE / MAD-Mean Ratio / WAPE — Weighted Absolute Percent Error

WAPE — взвешенная абсолютная процентная ошибка прогнозирования. Одна из «лучших ошибок» для расчета точности прогнозирования. Часто называется как MAD-Mean Ratio, то есть отношение MAD (Mean Absolute Deviation — среднее абсолютное отклонение/ошибка) к Mean (среднее арифметическое). После упрощения дроби получается искомая формула WAPE, которая очень проста в понимании:

Ошибка прогнозирования WAPE MAD-Mean Ratio

  1. Для каждой позиции рассчитывается абсолютная ошибка прогноза (прогноз вычитается из факта, по модулю) — Absolute Error
  2. Находится сумма всех фактов по всем позициям  (общий фактический объем)
  3. Сумма всех абсолютных ошибок делится на сумму всех фактов — WAPE

Данная ошибка прогнозирования является симметричной и наименее чувствительна к искажениям числового ряда.

Рекомендуется к использованию при расчете точности прогнозирования. Более подробно читать здесь.


RMSE (as %) / nRMSE — Root Mean Square Error

RMSE — среднеквадратичная ошибка прогнозирования. Примерно такая же проблема, как и в MPE и MAPE: так как каждое отклонение возводится в квадрат, любое небольшое отклонение может значительно повлиять на показатель ошибки. Стоит отметить, что существует также ошибка MSE, из которой RMSE как раз и получается путем извлечения корня. Но так как MSE дает расчетные единицы измерения в квадрате, то использовать данную ошибку будет немного неправильно.

Ошибка прогнозирования RMSE

  1. Для каждой позиции рассчитывается квадрат отклонений (разница между фактом и прогнозом, возведенная в квадрат) — Square Error
  2. Затем рассчитывается среднее арифметическое (сумма квадратов отклонений, деленное на количество) — MSE — Mean Square Error
  3. Извлекаем корень из полученного результат — RMSE
  4. Для перевода в процентную или в «нормализованную» среднеквадратичную ошибку необходимо:
    1. Разделить на разницу между максимальным и минимальным значением показателей
    2. Разделить на разницу между третьим и первым квартилем значений показателей
    3. Разделить на среднее арифметическое значений показателей (наиболее часто встречающийся вариант)

MASE — Mean Absolute Scaled Error

MASE — средняя абсолютная масштабированная ошибка прогнозирования. Согласно Википедии, является очень хорошим вариантом для расчета точности, так как сама ошибка не зависит от масштабов данных и является симметричной: то есть положительные и отрицательные отклонения от факта рассматриваются в равной степени.

Важно! Если предыдущие ошибки прогнозирования мы могли использовать для нахождения точности прогнозирования некого списка номенклатур, где каждой из которых соответствует фактическое и прогнозное значение (как было в примере в начале статьи), то данная ошибка для этого не предназначена: MASE используется для расчета точности прогнозирования одной единственной позиции, основываясь на предыдущих показателях факта и прогноза, и чем больше этих показателей, тем более точно мы сможем рассчитать показатель точности. Вероятно, из-за этого ошибка не получила широкого распространения.

Здесь данная формула представлена исключительно для ознакомления и не рекомендуется к использованию.

Суть формулы заключается в нахождении среднего арифметического всех масштабированных ошибок, что при упрощении даст нам следующую конечную формулу:

Ошибка прогнозирования MASE

Также, хочу отметить, что существует ошибка RMMSE (Root Mean Square Scaled Error — Среднеквадратичная масштабированная ошибка), которая примерно похожа на MASE, с теми же преимуществами и недостатками.


Это основные ошибки прогнозирования, которые могут использоваться для расчета точности прогнозирования. Но не все! Их очень много и, возможно, чуть позже я добавлю еще немного информации о некоторых из них. А примеры расчетов уже описанных ошибок прогнозирования будут выложены через некоторое время, пока что я подготавливаю пример, ожидайте.

Об авторе

HeinzBr

Автор статей и создатель сайта SHTEM.RU

Область применения

При работе над прогнозированием временных рядов, обычно производится разработка нескольких возможных статистических моделей исследуемого процесса и из них необходимо выбрать наиболее обоснованную и соответствующую ситуации.

Описание

Характеристики качества информационной пригодности моделей прогнозирования описывают, на сколько достоверно, выбранная в качестве генератора прогноза, модель описывает ретроспективу исследуемого явления. Чем точнее построенная модель объясняла прошлое, тем больше вероятность того, что она будет удачно предсказывать будущее. Надежность моделей прогнозирования оценивается путем сравнения фактических и предсказанных значений. Эта разница позволяет проверить, применима ли к конкретным данным рассматриваемая модель и те предположения, на которых она основана. Основными оценочными характеристиками качества прогнозной модели являются нижеследующие показатели.

  1. Модельная погрешность (модельный остаток):

    $e_t=y_t-y_t^{sim}$, (1)

    где

    $y_t$ — фактическое значение показателя на момент времени; $t$-й момент времени,

    $y_t^{sim}$ — значение показателя, полученное с помощью модели, на $t$-й момент времени.

  2. Абсолютная ошибка прогноза:

    $Delta _t=left | y_t — y_t ^{sim} right |$, (2)

  3. Средняя абсолютная ошибка прогноза $MAE$ (the mean absolute error):

    $MAE=frac{1}{n} sum limits_{t=1}^{n} left | varepsilon_t right |$, (3)

    где

    $n$ — число ретроспективных наблюдений..

  4. Среднеквадратичное отклонение $RMSE$ (the root mean squared error):

    $sqrt{frac{sum limits_{t=1}^{n} e_t^2}{n-1}}$, (4)

    Однако у этого способа есть несколько особенностей, например, большая чувствительность к большим отклонениям прогнозируемого значения от реального. Пусть построенная модель в целом довольно хорошо повторяет реальные данные о продажах, но имеются несколько точек, где отклонение от реальных данных большое. Рассчитывая для модели среднеквадратическую ошибку, в таком случае оценка качества модели может быть неудовлетворительной, и в результате принимается неправильное решение при выборе модели. Для устранения этого недостатка необходимо компенсировать величину ошибки значимостью этой ошибки. В таком случае возможность перевеса множества мелких ошибок одной крупной удастся избежать.

  5. $MPE$ – mean percentage error, средний процент ошибки:

    $MPE = frac{1}{n} sum limits_{t=1}^{n}frac{e_t}{y_t}times 100%$, (5)

    $MPE$ характеризует относительную степень смещенности прогноза. При условии, что потери при прогнозировании, связанные с завышением фактического будущего значения, уравновешиваются занижением, идеальный прогноз должен быть несмещенным, и обе меры должны стремиться к нулю. Средняя процентная ошибка не определена при нулевых данных и не должна превышать 5%.

  6. Относительная ошибка прогноза:

    $varepsilon_t=frac{left | varepsilon_t right |}{y_t} times 100%$, (6)

  7. $MAPE$ – the mean absolute percentage error, средний абсолютный процент ошибки (средняя относительная ошибка прогноза):

    $MAPE=frac{1}{n}sum limits_{t=1}^{n}varepsilon _t$, (7)

    Отрицательные и положительные ошибки подавляют друг друга, поэтому для оценки качества построенной модели необходимо использовать среднюю абсолютную относительную ошибку.

  8. Абсолютное отклонение от средней:

    $AD=sum limits_{t=1}^{n}left | y_t — bar {y_t} right |$, (8)

  9. Среднее абсолютное отклонение $MAD$ (mean absolute deviation):

    $MAD=frac{1}{n}sum limits_{t=1}^{n}left | y_t — bar {y_t} right |$, (9)

  10. $R^2$ — коэффициент детерминации. Характеризует степень сходства исходных данных и предсказанных. Не зависит от единиц измерения данных, поэтому поддается сравнению. Рассчитывается коэффициент по следующей формуле:

    $R^2=frac{{sum limits_{t=1}^{n}(y_t^{sim} — bar {y})}^2}{sum limits_{t=1}^{n}(y_t — bar {y})^2}= 1 — frac{{sum limits_{t=1}^{n}(y_t — y_t^{sim})}^2}{sum limits_{t=1}^{n}(y_t — bar {y})^2}$, (10)

    Если ${R^2}=0$, это означает, что регрессия ничего не дает, т.е. знание $x$ не улучшает предсказания для $y$ по сравнению с тривиальным {{y_t}^sim}=overline{y}. Другой крайний случай ${R^2}=1$ означает точную подгонку: все точки наблюдений лежат на регрессионной прямой. Чем ближе к $1$ значение $R^2$, тем лучше качество подгонки.

  11. Коэффициент несоответствия Тейла:

    $v=sqrt{frac{{sum limits_{t=1}^{n} (y_t — y_t^{sim})}^2}{{sum limits_{t=1}^{n} y_t^2 + sum limits_{t=1}^{n} y_t^{sim}}^2}}$, (11)

    Индекс Тейла показывает степень схожести временных рядов $y_t$ и $y_t^{sim}$, и чем ближе он к нулю, тем ближе сравниваемые ряды.

Алгоритм

  1. Вычислить модельную погрешность $e_t$ по формуле (1).
  2. Вычислить абсолютную ошибку прогноза по формуле (2).
  3. Вычислить среднюю абсолютную ошибку прогноза $MAE$ по формуле (3).
  4. Вычислить среднеквадратичное отклонение $RMSE$ по формуле (4).
  5. Вычислить относительную ошибку прогноза по формуле (6).
  6. Вычислить среднюю относительную ошибку прогноза $MAPE$ по формуле (7). Показатель $MAPE$, как правило, используется для сравнения точности прогнозов разнородных объектов прогнозирования, поскольку он характеризует относительную точность прогноза. Для прогнозов высокой точности $MAPE<10%$, хорошей – $10%<mbox {MAPE}<20%$, удовлетворительной – $mbox {MAPE}>50%$. Целесообразно пропускать значения ряда, для которых $y_t=0$.
  7. Вычислить абсолютное отклонение от средней по формуле (8).
  8. Вычислить коэффициент детерминации по формуле (10).
  9. Вычислить коэффициент несоответствия Тейла по формуле (11).
  10. По полученным значениям определить лучшую модель прогнозирования.

Рисунок 1 – Сценарий сравнения моделей прогнозирования

Рисунок 2 – Таблица с результатами расчета показателей

Требования к данным

Имя поля Метка поля Тип данных Вид данных
Date Дата Дата/Время Непрерывный
Quantity Количество Вещественный Непрерывный
Prediction_model_1 Значение модели 1 Вещественный Непрерывный
Prediction_model_2 Значение модели 2 Вещественный Непрерывный

Сценарий

Для анализа результатов расчета прогноза, в продолжение ряда вы можете рассчитать следующие ошибки:

  • MAPE – средняя абсолютная ошибка в % . Ошибка оценивает на сколько велики ошибки в сравнении со значением ряда и с ошибками в соседних рядах.
    Подробнее читайте в статье на нашем сайте: http://4analytics.ru/metodi-analiza/mape-%E2%80%93-srednyaya-absolyutnaya-oshibka-praktika-primeneniya.html
  • MRPE – средняя относительная ошибка в %, оценивает на сколько велика дельта между фактом и прогнозом. Чем ближе к 100%, тем больше ошибка, чем ближе к нулю, тем ошибка меньше.
  • MSE – средняя квадратическая ошибка, подчеркивает большие ошибки за счет возведения каждой ошибки в квадрат.
    Подробнее читайте в статье на нашем сайте:
    http://4analytics.ru/metodi-analiza/mse-%E2%80%93-srednekvadraticheskaya-oshibka-v-excel.html
  • MPE – средняя процентная ошибка – показывает завышен или занижен прогноз относительно факта. Если ошибка меньше нулю, то прогноз последовательно завышен, если ошибка больше нуля, то прогноз последовательно занижен.
    Подробнее читайте в статье на нашем сайте:
    http://4analytics.ru/metodi-analiza/mpe-%E2%80%93-srednyaya-procentnaya-oshibka-v-excel.html
  • MAD – среднее абсолютное отклонение. Используется, когда важно измерить ошибку в тех же единицах, что и исходный ряд.
    Подробнее читайте в статье на нашем сайте:
    http://4analytics.ru/planirovanie-i-prognozirovanie-praktika/dopolnitelnie-oborotnie-sredstva-za-schet-povisheniya-tochnosti-prognoza.html
  • A MAPE – ошибка, которая показывает отклонение средних значений ряда к средним значениям модели прогноза. Имеет значение при неравномерном перераспределении значений ряда по периодам.
  • S MAPE – ошибка, которая показывает отклонение суммы значения ряда к сумме значений модели прогноза. Имеет значение при неравномерном перераспределении значений ряда по периодам.

А также 2 показателя «Точность прогноза»:

  • Точность прогноза = 1 – МАРЕ
  • Точность прогноза 2 = 1 – MRPE

Для расчета ошибок одновременно с прогнозом, нажимаем кнопку «Расчет ошибок» в меню «FORECAST»

rasch osh 1

В открывшемся окне выбираем нужные для расчета ошибки:

Теперь при расчете прогноза, в продолжение ряда, программа автоматически сделает расчет отмеченных Вами ошибок:

Ошибки прогноза MAPE

Наряду с
характеристиками адекватности модели
при оценивании качества модели необходимо
учитывать ее точность.

Как
правило, о точности модели и прогноза
судят по величине погрешности (ошибки).
Ошибка прогноза
это расхождение между
фактическим
и прогнозируемым значением исследуемого
показателя. Использование данного
подхода к оценке точности возможно
только в том случае, когда период
упреждения закончился, и исследователи
имеют фактические значения на период
упреждения или когда разрабатывается
ретропрогноз.

Ретроспективное
прогнозирование разрабатывается для
некоторого момента времени в прошлом,
для которого имеются фактические данные.
В этом случае имеющаяся информация
делится на две части. Первая часть,
включающая более ранние данные,
используется для подбора математической
модели. По построенной математической
модели дается прогноз на последующий
оставшийся период времени. Прогнозные
качества модели оцениваются по более
поздним данным второй части ряда.
Полученные ошибки прогноза в какой-то
мере харак­теризуют точность подобранных
моделей и могут использоваться при
сопоставлении различных моделей
прогнозирования. В то же время при
использовании ошибки ретроспективного
прогноза в качестве меры точности
необходимо учитывать, что она получена
при использовании только части имеющихся
данных. При использовании полного объема
имеющихся данных трансформируется вид
подобранной модели, и изменяются значения
критериев точности и качества.

Отметим,
что если ретроспективное прогнозирование
осуществляется по модели, содержащей
одну или несколько экзогенных пере­менных,
точность прогноза будет определяться
точностью определения значения этих
переменных на пе­риод упреждения. В
этом случае возможны два способа
определения значений экзогенных
переменных: либо воспользоваться
фактическими известными значениями
экзогенных переменных либо ожидаемыми
их значениями. Естественно, что точность
прогноза в первом случае будет выше.

Наличие данных о
реализации прогнозов дает возможность
оценить качество прогнозов величиной:

,

где
р – число
прогнозов, подтвержденных фактическими
данными (фактическая реализация охвачена
интервальным прогнозом);

q
– число прогнозов, не подтвержденных
фактическими данными.

Использование
коэффициентов

для разных моделей имеет смысл в том
случае, если доверительные вероятности
прогнозов приняты одинаковыми.

В том случае, если
прогноз дается в виде точечной оценки,
в качестве показателей точности прогноза
могут использоваться такие статистические
характеристики как средняя абсолютная
и среднеквадратическая ошибка прогноза.

Г.
Тейлом предложен в качестве меры качества
прогноза коэффициент расхождения (или
коэффициент несоответствия):

,

где


— соответственно предсказанное и
фактическое значение переменной.
Коэффициент
,
когда
(случай совершенного
прогнозирования). Коэффициент
,
когда экстраполяция строится исходя
из неизменности приростов. Коэффициент

,
прогноз дает худшие результаты, чем
прогноз методом
простой экстраполяции.

Рассмотренные
выше показатели точности прогноза можно
использовать только
в случае наличия истинных значений
величин, оцениваемых при разработке
прогноза. Согласно этому различают
апостериорную
точность моделей,
которая
может быть определена только после
практического использова­ния модели,
и априорную
точность моделей. Априорную или
предполагаемую точность оценива­ют
в условиях отсутствия информации о
результатах эксплуа­тации модели.
Исследуя априорную точность модели, мы
охарактеризуем только точность
аппроксимации.

Чаще
всего в качестве показателей точности
применяются следующие показатели:
абсолютная ошибка
,
средняя абсолютная ошибка
,
средняя квадратическая ошибка
,
относительная ошибка
,
средняя относительная ошибка
,
коэффициент сходимости, коэффициент
детерминации

Абсолютная
ошибка прогноза определяется как
раз­ность между фактическим значением
и его оценкой, полученной расчетным
путем по модели:

,

среднее
абсолютное значение ошибки:

.

Средняя
квадратическая ошибка прогноза
рассчитывается по формуле:

,

где
п
период
упреждения,

k
– число оцениваемых параметров модели.

Недостатком
рассмотренных характеристик является
их зависимость от масштаба измерения
значений исследуемого показателя.

В
связи с этим более удобными являются
относительные значения этих величин.
Относительная ошибка рассчитывается
следующим образом:

,

а средняя
относительная ошибка определяется
следующим образом:

.

Последний
показатель чаще других используется
при сравнении точности прогнозов,
осуществляемых по различным методикам.
Обычно лучшим признается тот прогноз,
который имеет меньшее значение этого
показателя. Принято считать, что если
значение средней относительной ошибки
менее 3-5%, то точность хорошая; если
значение средней относительной ошибки
не превышает 10%, то точность хорошая; от
10% до 15% точность удовлетворительная.

Коэффициент
сходимости определяется по следующей
формуле:

,

чем меньше значение
коэффициента сходимости, чем лучше
точность модели.

Коэффициент
детерминации определяется по формуле:

,

и поэтому чем
больше значение коэффициента детерминации,
тем лучше точность модели.

Для
выбора лучшей модели можно использовать
один из рассмотренных показателей либо
воспользоваться обобщенным критерием.

Пример.
Оценить адекватность и точность модели
Хольта, построенной в параграфе 5.3.

Решение. В таблице
5.2 приведены ошибки аппроксимации
,
на основе которых будет оцениваться
адекватность модели. Проверку
случайности колебаний уровней остаточной
компоненты проведем, используя критерий
поворотных точек. На рис. 6.2 представлен
ряд остатков, количество поворотных
точек равно 15.

Рис. 6.2. Оценка
адекватности модели. Ряд остатков.

При
n=36:
.
Неравенства 15>17 не выполняется,
следовательно, ряд остатков не является
случайным.

Анализ
соответствия ряда остатков нормальному
закону распределения проведем по RS
– критерию:

.

Расчетное
значение RS
– критерия сравним с табличными
значениями RS
– критерия (таб. 6.1) . Расчетное RS
– критерия попадает в интервал,
ограниченный табличными значениями
(3,6; 5,06), и с уровнем значимости α=0,05
гипотеза о
нормальности распределения остаточной
компоненты принимается.

Так
как остаточная компонента распределена
по нормальному закону, то осуществим
проверку равенства математического
ожидания остаточной компоненты нулю
с помощью t-критерия
Стьюдента:

Расчетное
значениеt-критерия
больше табличного
значения tα
статистики
Стьюдента
,
следовательно,гипотеза
о равенстве нулю математического
ожидания уровней ряда остатков не
принимается.

Независимость уровней в ряде остатков
проверим по критерию Дарбина–Уотсона
(таб. 6.3).

Таблица 6.3

Расчет dзначенияДарбина–Уотсона

t

1

-23.500

552.25

2

-415.390

-391.890

153577.772

172548.852

3

2553.781

2969.171

8815978.8

6521799.44

4

4108.015

1554.234

2415642.82

16875789.2

5

1357.017

-2750.998

7567992.09

1841494.74

6

3047.488

1690.471

2857692.36

9287182.51

7

4611.776

1564.288

2446997.23

21268477.8

8

2226.788

-2384.988

5688168.37

4958584.19

9

-2442.290

-4669.078

21800286

5964779.36

10

2620.809

5063.099

25634971.3

6868640.89

11

7156.526

4535.717

20572724.5

51215860.7

12

-255.774

-7412.299

54942183.2

65420.1907

13

-1964.630

-1708.857

2920190.74

3859772.09

14

-3692.014

-1727.384

2983855.54

13630969.5

15

-5152.421

-1460.407

2132789.2

26547447.2

16

-2101.028

3051.394

9311004.57

4414317.05

17

3571.246

5672.274

32174688.1

12753798.1

18

7739.490

4168.244

17374260.7

59899710.6

19

4171.509

-3567.981

12730490.5

17401487.7

20

-1955.050

-6126.559

37534730.7

3822222.1

21

-3465.610

-1510.560

2281790.33

12010452.8

22

-2395.256

1070.354

1145657.1

5737252.69

23

-445.847

1949.410

3800197.94

198779.235

24

1050.970

1496.817

2240461.18

1104538.71

25

694.152

-356.818

127319.3

481847.09

26

2752.621

2058.469

4237296.08

7576924.68

27

7090.334

4337.713

18815752.4

50272839.5

28

7485.321

394.987

156014.473

56030029

29

3824.177

-3661.144

13403973.2

14624331.3

30

2773.655

-1050.522

1103597.19

7693161.27

31

3953.251

1179.597

1391448.08

15628196.9

32

3253.170

-700.082

490114.569

10583112.5

33

3170.670

-82.500

6806.172

10053148.7

34

-134.635

-3305.305

10925041.8

18126.5898

35

-2869.411

-2734.776

7478999.31

8233519.15

36

-1039.034

1830.377

3350281.25

1079590.8

сумма

341012975

468696705

Расчетное
dзначение
равно:

.

Расчетное
значение
dкритерия
сравним с двумя табличными значениями
Дарбина—Уотсона
(1,41; 1,52). Так как расчетное d-значение
меньше нижнего табличного значения
d1=1,41,
то гипотеза о
независимости ряда остатков отвергается
и модель неадекватна.

Результаты оценки
модели на адекватность приведены в
таблице 6.4.

Таблица 6.4

Результаты
оценки модели на адекватность

Проверяемое
свойство

вывод

Случайность

неадекватна

Нормальность

адекватна

Среднее

неадекватна

Независимость

неадекватна

Вывод:
модель статистически неадекватна

Средняя
относительная ошибка равна (таб. 5.2):

.

Оцениваемая модель
не является адекватной, и несмотря на
хорошую точность не может использоваться
для прогнозирования.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Средняя относительная ошибка аппроксимации это
  • Средняя относительная ошибка аппроксимации оценивает
  • Средняя квадратичная ошибка это
  • Средняя квадратичная ошибка теодолита
  • Срочно исправить ошибки