Средняя стандартная ошибка прогноза это

Вариант 1

Задание 1. Модель парной линейной регрессии.

Имеются данные о размере среднемесячных доходов в разных группах семей

Номер группы

Среднедушевой денежный доход в месяц, руб., X

Доля оплаты труда в структуре доходов семьи, %, Y

1

79,8

64,2

2

152,1

66,1

3

199,3

69,0

4

240,8

70,6

5

282,4

72,4

6

301,8

74,3

7

385,3

76,0

8

457,8

77,1

9

577,4

78,4

Задания:

1. Рассчитать линейный коэффициент парной корреляции, оценить его статистическую значимость и построить для него доверительный интервал с уровнем значимости a =0,05. Сделать выводы

2. Построить линейное уравнение парной регрессии Y на X и оценить статистическую значимость параметров регрессии. Сделать рисунок.

3. Оценить качество уравнения регрессии при помощи коэффициента детерминации. Сделать выводы. Проверить качество уравнения регрессии при помощи F-критерия Фишера.

4. Выполнить прогноз доли оплаты труда структуре доходов семьи Y при прогнозном значении среднедушевого денежного дохода X, составляющем 111% от среднего уровня. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал для уровня значимости a =0,05. Сделать выводы.

Решение: Построим поле корреляции зависимости доли оплаты труда в структуре доходов семьи от среднедушевого денежного дохода в месяц.

Точки на построенном графике размещаются вблизи кривой, напоминающей по форме Прямую, поэтому можно предположить, что между указанными величинами существует Линейная зависимость вида .

Для расчета линейного коэффициента парной корреляции и параметров линейной регрессии составим вспомогательную таблицу.

№ п/п

X

Y

X×Y

X2

Y2

1

79,8

64,2

5123,16

6368,04

4121,64

2

152,1

66,1

10053,81

23134,41

4369,21

3

199,3

69,0

13751,70

39720,49

4761,00

4

240,8

70,6

17000,48

57984,64

4984,36

5

282,4

72,4

20445,76

79749,76

5241,76

6

301,8

74,3

22423,74

91083,24

5520,49

7

385,3

76,0

29282,80

148456,09

5776,00

8

457,8

77,1

35296,38

209580,84

5944,41

9

577,4

78,4

45268,16

333390,76

6146,56

S

2676,7

648,1

198645,99

989468,27

46865,43

Среднее

297,41

72,01

22071,78

109940,92

5207,27

Вычислим коэффициент корреляции. Используем следующую формулу:

= 0,9568.

Можно сказать, что между рассматриваемыми признаками существует Прямая тесная Корреляционная связь.

Среднюю ошибку коэффициента корреляции определим по формуле:

= 0,032.

Найдем табличное значение TТабл по таблице распределения Стьюдента для
a = 0,05 и числе степеней свободы K = NM – 1 = 9 – 1 – 1 = 7.

TТабл(0,05; 7) = 2,36.

Запишем доверительный интервал для коэффициента корреляции.

Доверительный интервал не включает число 0, поэтому при заданном уровне значимости коэффициент корреляции является статистически значимым.

Вычислим параметры уравнения регрессии.

= 0,03.

= 72,01 – 0,03×297,41 = 63,09.

Получим следующее уравнение: .

Для проверки статистической значимости (существенности) линейного коэффициента парной корреляции рассчитаем T-критерий Стьюдента по формуле:

= 23,04.

Фактическое значение по абсолютной величине больше табличного, что свидетельствует о значимости линейного коэффициента корреляции и существенности связи между рассматриваемыми признаками.

Проверим значимость оценок теоретических коэффициентов регрессии с помощью t-статистики Стьюдента и сделаем соответствующие выводы о значимости этих оценок.

Для определения статистической значимости коэффициентов A и B найдем T-статистики Стьюдента:

Рассчитаем по полученному уравнению теоретические значения. Составим вспомогательную таблицу.

№ п/п

X

Y

1

79,8

64,2

65,48

1,6384

47354,1

2

152,1

66,1

67,65

2,4025

21115,0

3

199,3

69,0

69,07

0,0049

9625,6

4

240,8

70,6

70,31

0,0841

3204,7

5

282,4

72,4

71,56

0,7056

225,3

6

301,8

74,3

72,14

4,6656

19,3

7

385,3

76,0

74,65

1,8225

7724,7

8

457,8

77,1

76,82

0,0784

25725,0

9

577,4

78,4

80,41

4,0401

78394,4

S

2676,7

648,1

648,09

15,4421

193388,1

Вычислим стандартные ошибки коэффициентов уравнения.

= 1,2.

= 0,003.

Вычислим T-статистики.

Сравнение расчетных и табличных величин критерия Стьюдента показывает, что и , т. е. оценки A и B теоретических коэффициентов регрессии статистически значимы.

Сделаем рисунок.

Рассчитаем коэффициент детерминации: = 0,95682= 0,915 = 91,5%.

Таким образом, вариация результата Y на 91,5% объясняется вариацией фактора X.

Оценку значимости уравнения регрессии проведем с помощью F-критерия Фишера:

= 75,81.

Найдем табличное значение Fтабл по таблице критических точек Фишера для
a = 0,05; K1 = M = 1 (число факторов), K2 = NM – 1 = 9 – 1 – 1 = 7.

Fтабл(0,05; 1; 7) = 5,59.

Поскольку F > FТабл, уравнение регрессии с вероятностью 0,95 в целом Является статистически значимым.

Выполним прогноз доли оплаты труда структуре доходов семьи y при прогнозном значении среднедушевого денежного дохода x, составляющем 111% от среднего уровня.

XP = 297,41 × 1,11 = 330,1.

Вычислим прогнозное значение Yp с помощью уравнения регрессии.

» 73%.

Доверительный интервал прогноза имеет вид

(УPTкр×My, УP + Tкр×My),

Где , M = 2 – число параметров уравнения.

= 1,695 » 1,7.

Запишем доверительный интервал прогноза:

Þ

Данный прогноз является надежным, поскольку доверительный интервал не включает число 0, точность прогноза составляет 4.

Задание 2. Модель парной нелинейной регрессии.

По территориям Центрального района известны данные за 1995 г.

Район

Прожиточный минимум в среднем на одного пенсионера в месяц, тыс. руб., X

Средний размер назначенных ежемесячных пенсий, тыс. руб., Y

Брянская обл.

178

240

Владимирская обл.

202

226

Ивановская обл.

197

221

Калужская обл.

201

226

Костромская обл.

189

220

Орловская обл.

166

232

Рязанская обл.

199

215

Смоленская обл.

180

220

Тверская обл.

181

222

Тульская обл.

186

231

Ярославская обл.

250

229

Задания:

1. Построить поле корреляции и сформулируйте гипотезу о форме связи. Рассчитать параметры уравнений полулогарифмической () и степенной () парной регрессии. Сделать рисунки.

2. Дать с помощью среднего коэффициента эластичности сравнительную оценку силы связи фактора с результатом для каждой модели. Сделать выводы. Оценить качество уравнений регрессии с помощью средней ошибки аппроксимации и коэффициента детерминации. Сделать выводы.

3. По значениям рассчитанных характеристик выбрать лучшее уравнение регрессии. Дать экономический смысл коэффициентов выбранного уравнения регрессии

4. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости a =0,05. Сделать выводы.

Решение: Решение: Для предварительного определения вида связи между указанными признаками построим поле корреляции. Для этого построим в системе координат точки, у которых первая координата X, а вторая – Y.

Получим следующий рисунок.

По внешнему виду диаграммы рассеяния трудно предположить, какая зависимость существует между указанными показателями.

Построение полулогарифмической модели регрессии.

Уравнение логарифмической кривой: .

Обозначим:

Получим линейное уравнение регрессии:

Y = A + B×X.

Произведем линеаризацию модели путем замены . В результате получим линейное уравнение .

Рассчитаем его параметры, используя данные таблицы.

№ п/п

X

Y

X = ln(X)

Xy

X2

Y2

Ai

1

178

240

5,1818

1243,63

26,85

57600

226,40

206,314

184,904

6,006

2

202

226

5,3083

1199,67

28,18

51076

225,17

0,132

0,694

0,370

3

197

221

5,2832

1167,59

27,91

48841

225,41

21,496

19,464

1,957

4

201

226

5,3033

1198,55

28,13

51076

225,22

0,132

0,615

0,348

5

189

220

5,2417

1153,18

27,48

48400

225,82

31,769

33,833

2,576

6

166

232

5,1120

1185,98

26,13

53824

227,08

40,496

24,172

2,165

7

199

215

5,2933

1138,06

28,02

46225

225,31

113,132

106,362

4,577

8

180

220

5,1930

1142,45

26,97

48400

226,29

31,769

39,601

2,781

9

181

222

5,1985

1154,07

27,02

49284

226,24

13,223

17,968

1,874

10

186

231

5,2257

1207,15

27,31

53361

225,97

28,769

25,273

2,225

11

250

229

5,5215

1264,41

30,49

52441

223,09

11,314

34,980

2,651

Итого

2129

2482

57,862

13054,74

304,48

560528

2482,00

498,545

487,867

27,530

Среднее

193,5

225,6

5,260

1186,79

27,68

50957,091

225,636

45,322

44,352

2,503

= -9,76.

= 225,6 – (-9,76)×5,26 = 276,99.

Уравнение модели имеет вид:

Определим индекс корреляции

Используя данные таблицы, получим:

.

Рассчитаем коэффициент детерминации: = 0,14642= 0,021 = 2,1%.

Вариация результата Y всего на 2,1% объясняется вариацией фактора X.

Сделаем рисунок.

Рассчитаем средний коэффициент эластичности по формуле:

= -0,04%.

Коэффициент эластичности показывает, что при среднем росте признака X на 1% признак Y снижается на 0,04%.

Вычислим среднюю ошибку аппроксимации. Используя данные расчетной таблицы, получаем:

= 2,5%.

Построение степенной модели парной регрессии.

Уравнение степенной модели имеет вид: .

Для построения этой модели необходимо произвести линеаризацию переменных. Для этого произведем логарифмирование обеих частей уравнения:

.

Произведем линеаризацию модели путем замены и . В результате получим линейное уравнение .

Рассчитаем его параметры, используя данные таблицы.

№ п/п

X

Y

X = ln(X)

Y = ln(Y)

XY

X2

Y2

Ai

1

178

240

5,1818

5,4806

28,3995

26,851

30,037

226,3

206,3

188,391

241,661

6,07

2

202

226

5,3083

5,4205

28,7737

28,178

29,382

225,1

0,132

0,835

71,479

0,406

3

197

221

5,2832

5,3982

28,5196

27,912

29,140

225,3

21,496

18,671

11,934

1,918

4

201

226

5,3033

5,4205

28,7467

28,125

29,382

225,1

0,132

0,753

55,570

0,385

5

189

220

5,2417

5,3936

28,2720

27,476

29,091

225,7

31,769

32,607

20,661

2,530

6

166

232

5,1120

5,4467

27,8437

26,132

29,667

226,9

40,496

25,675

758,752

2,233

7

199

215

5,2933

5,3706

28,4284

28,019

28,844

225,2

113,132

104,576

29,752

4,540

8

180

220

5,1930

5,3936

28,0089

26,967

29,091

226,2

31,769

38,059

183,479

2,728

9

181

222

5,1985

5,4027

28,0858

27,024

29,189

226,1

13,223

16,950

157,388

1,821

10

186

231

5,2257

5,4424

28,4407

27,308

29,620

225,9

28,769

26,413

56,934

2,275

11

250

229

5,5215

5,4337

30,0021

30,487

29,525

223,1

11,314

34,846

3187,116

2,646

Итого

2129

2482

57,862

59,603

313,521

304,479

322,969

2480,927

498,545

487,777

4774,727

27,548

Среднее

193,5

225,6

5,260

5,418

28,502

27,680

29,361

225,539

45,322

44,343

434,066

2,504

С учетом введенных обозначений уравнение примет вид: Y = A + BX – линейное уравнение регрессии. Рассчитаем его параметры, используя данные таблицы.

= -0,042.

= 5,418 – 0,959×5,26 = 5,637.

Перейдем к исходным переменным X и Y, выполнив потенцирование данного уравнения.

A = eA = e5,637 = 280,76

Получим уравнение степенной модели регрессии: .

Определим индекс корреляции

Используя данные таблицы, получим:

.

Рассчитаем коэффициент детерминации: = 0,1472= 0,021 = 2,1%.

Вариация результата Y всего на 2,1% объясняется вариацией фактора X.

Сделаем рисунок.

Для степенной модели средний коэффициент эластичности равен коэффициенту B.

= -0,042%.

Коэффициент эластичности показывает, что при среднем росте признака X на 1% признак Y снижается на 0,042%.

Вычислим среднюю ошибку аппроксимации. Используя данные расчетной таблицы, получаем:

= 2,5%.

Сводная таблица вычислений

Параметры

Модель

Полулогарифмическая

Степенная

Уравнение связи

Индекс корреляции

0,1464

0,147

Коэффициент детерминации

0,021

0,021

Средняя ошибка аппроксимации, %

2,5

2,5

Для выявления формы связи между указанными признаками были построены полулогарифмическая и степенная модели регрессии. Анализ показателей корреляции, а также оценка качества моделей с использованием средней ошибки аппроксимации позволил предположить, что из перечисленных моделей более адекватной является степенная модель, поскольку для нее индекс корреляции принимает наибольшее значение R = 0,147, свидетельствующий о том, что между рассматриваемыми признаками наблюдается Слабая корреляционная связь.

Рассчитаем прогнозное значение результата по степенной модели регрессии, если прогнозируется увеличение значения фактора на 10% от среднего уровня.

Прогнозное значение составит:

= 193,5 × 1,1 = 212,9 тыс. р., тогда прогнозное значение Y составит:

= 224,6 тыс. р.

Определим доверительный интервал прогноза для уровня значимости a = 0,05.

Вычислим Среднюю стандартную ошибку прогноза По следующей формуле:

, где

Получаем: = 7,55.

Найдем предельную ошибку прогноза , где для доверительной вероятности 0,95 значение T составляет 1,96.

= 14,8.

Запишем доверительный интервал прогноза.

= 224,6 – 14,8 = 209,8 тыс. р.

= 224,6 + 14,8 = 239,4 тыс. р.

Таким образом, с вероятностью 0,95 можно утверждать, что прогнозное значение среднего размера назначенных ежемесячных пенсий будет находиться в пределах от 209,8 тыс. р. до 239,4 тыс. р.

Задание 3. Моделирование временных рядов

Имеются поквартальные данные по розничному товарообороту России в 1995-1999 гг.

Номер квартала

Товарооборот % к предыдущему периоду

Номер квартала

Товарооборот % к предыдущему периоду

1

100

11

98,8

2

93,9

12

101,9

3

96,5

13

113,1

4

101,8

14

98,4

5

107,8

15

97,3

6

96,3

16

112,1

7

95,7

17

97,6

8

98,2

18

93,7

9

104

19

114,3

10

99

20

108,4

Задания:

1. Построить график данного временного ряда. Охарактеризовать структуру этого ряда.

2. Рассчитать сезонную компоненты временного ряда и построить его Мультипликативную Модель.

3. Рассчитать трендовую компоненту временного ряда и построить его график

4. Оценить качество модели через показатели средней абсолютной ошибки и среднего относительного отклонения.

Решение: Пронумеруем указанные месяцы от 1 до 24 и построим график временного ряда.

Полученный график показывает, что а данном временном ряду присутствуют сезонные колебания.

Построим мультипликативную модель временного ряда.

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (T), сезонной (S) и случайной (E) компонент.

Построение мультипликативной моделей сведем к расчету значений T, S и E для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1)  Выравнивание исходного ряда методом скользящей средней.

2)  Расчет значений сезонной компоненты S.

3)  Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных T×E.

4)  Аналитическое выравнивание уровней T×E и расчет значений T с использованием полученного уравнения тренда.

5)  Расчет полученных по модели значений T×E.

6)  Расчет абсолютных и/или относительных ошибок.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

1.1. Просуммируем уровни ряда последовательно за каждые четыре месяца со сдвигом на один момент времени и определим условные годовые уровни объема продаж (гр. 3 табл. 2.1).

1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 2.1). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 2.1).

Таблица 2.1

№ месяца, T

Товарооборот, Yi

Итого за четыре месяца

Скользящая средняя за четыре месяца

Центрированная скользящая средняя

Оценка сезонной компоненты

1

2

3

4

5

6

1

100,0

2

93,9

392

98

3

96,5

400

100

99

0,975

4

101,8

402

100,5

100,25

1,015

5

107,8

402

100,5

100,5

1,073

6

96,3

398

99,5

100

0,963

7

95,7

394

98,5

99

0,967

8

98,2

397

99,25

98,875

0,993

9

104,0

400

100

99,625

1,044

10

99,0

404

101

100,5

0,985

11

98,8

413

103,25

102,125

0,967

12

101,9

412

103

103,125

0,988

13

113,1

411

102,75

102,875

1,099

14

98,4

309

77,25

90

1,093

15

97,3

196

49

63,125

1,541

16

112,1

303

75,75

62,375

1,797

17

97,6

418

104,5

90,125

1,083

18

93,7

414

103,5

104

0,901

19

114,3

20

108,4

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 6 табл. 2.1). Эти оценки используются для расчета сезонной компоненты S (табл. 2.2). Для этого найдем средние за каждый месяц оценки сезонной компоненты Si. Так же как и в аддитивной модели считается, что сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем месяцам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.

Таблица 2.2

Показатели

Год

№ квартала, I

I

II

III

IV

1

– 

0,975

1,015

2

1,073

0,963

0,967

0,993

3

1,044

0,985

0,967

0,988

4

1,099

1,093

1,541

1,797

5

1,083

0,901

Всего за I-й квартал

4,299

3,942

4,45

4,793

Средняя оценка сезонной компоненты для I-го квартала,

0,860

0,788

0,890

0,959

Скорректированная сезонная компонента,

0,984

0,901

1,018

1,097

Имеем: 0,860 + 0,788 + 0,890 + 0,959 = 3,497.

Определяем корректирующий коэффициент: K = 4 : 3,497 = 1,144.

Скорректированные значения сезонной компоненты получаются при умножении ее средней оценки на корректирующий коэффициент K.

Проверяем условие: равенство 4 суммы значений сезонной компоненты:

0,984 + 0,901 + 1,018 + 1,097 = 4.

Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины (гр. 4 табл. 2.3), которые содержат только тенденцию и случайную компоненту.

Таблица 2.3

T

Yt

St

T

T×S

1

2

3

4

5

6

7

1

100,0

0,984

101,6

100,02

98,42

1,016

2

93,9

0,901

104,2

100,19

90,27

1,040

3

96,5

1,018

94,8

100,36

102,17

0,945

4

101,8

1,097

92,8

100,53

110,28

0,923

5

107,8

0,984

109,6

100,7

99,09

1,088

6

96,3

0,901

106,9

100,87

90,88

1,060

7

95,7

1,018

94,0

101,04

102,86

0,930

8

98,2

1,097

89,5

101,21

111,03

0,884

9

104,0

0,984

105,7

101,38

99,76

1,043

10

99,0

0,901

109,9

101,55

91,50

1,082

11

98,8

1,018

97,1

101,72

103,55

0,954

12

101,9

1,097

92,9

101,89

111,77

0,912

13

113,1

0,984

114,9

102,06

100,43

1,126

14

98,4

0,901

109,2

102,23

92,11

1,068

15

97,3

1,018

95,6

102,4

104,24

0,933

16

112,1

1,097

102,2

102,57

112,52

0,996

17

97,6

0,984

99,2

102,74

101,10

0,965

18

93,7

0,901

104,0

102,91

92,72

1,011

19

114,3

1,018

112,3

103,08

104,94

1,089

20

108,4

1,097

98,8

103,25

113,27

0,957

Среднее

101,4

1,0011

Шаг 4. Определим компоненту T в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни T×E. Составим вспомогательную таблицу.

Таблица 2.4

T

T2

1

2

3

4

5

6

7

1

101,6

1

101,6

2,5

1,58

2,0

2

104,2

4

208,4

13,2

3,87

56,3

3

94,8

9

284,4

32,1

5,88

24,0

4

92,8

16

371,2

71,9

8,33

0,2

5

109,6

25

548

75,9

8,08

41,0

6

106,9

36

641,4

29,4

5,63

26,0

7

94,0

49

658

51,3

7,48

32,5

8

89,5

64

716

164,6

13,07

10,2

9

105,7

81

951,3

18,0

4,08

6,8

10

109,9

100

1099

56,3

7,58

5,8

11

97,1

121

1068,1

22,6

4,81

6,8

12

92,9

144

1114,8

97,4

9,69

0,3

13

114,9

169

1493,7

160,5

11,20

136,9

14

109,2

196

1528,8

39,6

6,39

9,0

15

95,6

225

1434

48,2

7,13

16,8

20

102,2

400

2044

0,2

0,37

114,5

21

99,2

441

2083,2

12,3

3,59

14,4

22

104,0

484

2288

1,0

1,05

59,3

23

112,3

529

2582,9

87,6

8,19

166,4

24

98,8

576

2371,2

23,7

4,49

49,0

Сумма

230

2035,2

3670

23588

1008,3

122,49

778,2

Среднее

11,5

101,8

183,5

1179,4

50,4

6,12

38,91

Вычислим параметры уравнения тренда.

= 0,17.

= 99,85.

В результате получим уравнение тренда:

T = 99,85 + 0,17×T.

Подставляя в это уравнение значения T = 1,2,…,16, найдем уровни T для каждого момента времени (гр. 5 табл. 2.3).

Шаг 5. Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл. 2.3). На одном графике откладываем фактические значения уровней временного ряда и теоретические, полученные по мультипликативной модели.

Расчет ошибки в мультипликативной модели произведем по формуле:

Средняя абсолютная ошибка составила 1,0011 (см. гр. 7 табл. 2.3).

Рассчитаем сумму квадратов абсолютных ошибок .

Используя 5-й столбец таблицы 2.4, получим:

= 7,099.

Рассчитаем среднюю относительную ошибку: .

Используя 6-й столбец таблицы 2.4, получим, что средняя относительная ошибка составила 6,12%, т. е. построенная модель достаточно точно описывает динамику данного явления.

< Предыдущая   Следующая >

Ошибка прогнозирования: виды, формулы, примеры

Ошибка прогнозирования — это такая величина, которая показывает, как сильно прогнозное значение отклонилось от фактического. Она используется для расчета точности прогнозирования, что в свою очередь помогает нам оценивать как точно и корректно мы сформировали прогноз. В данной статье я расскажу про основные процентные «ошибки прогнозирования» с кратким описанием и формулой для расчета. А в конце статьи я приведу общий пример расчётов в Excel. Напомню, что в своих расчетах я в основном использую ошибку WAPE или MAD-Mean Ratio, о которой подробно я рассказал в статье про точность прогнозирования, здесь она также будет упомянута.

В каждой формуле буквой Ф обозначено фактическое значение, а буквой П — прогнозное. Каждая ошибка прогнозирования (кроме последней!), может использоваться для нахождения общей точности прогнозирования некоторого списка позиций, по типу того, что изображен ниже (либо для любого другого подобной детализации):

Алгоритм для нахождения любой из ошибок прогнозирования для такого списка примерно одинаковый: сначала находим ошибку прогнозирования по одной позиции, а затем рассчитываем общую. Итак, основные ошибки прогнозирования!


MPE — Mean Percent Error

MPE — средняя процентная ошибка прогнозирования. Основная проблема данной ошибки заключается в том, что в нестабильном числовом ряду с большими выбросами любое незначительное колебание факта или прогноза может значительно поменять показатель ошибки и, как следствие, точности прогнозирования. Помимо этого, ошибка является несимметричной: одинаковые отклонения в плюс и в минус по-разному влияют на показатель ошибки.

Ошибка прогнозирования MPE

  1. Для каждой позиции рассчитывается ошибка прогноза (из факта вычитается прогноз) — Error
  2. Для каждой позиции рассчитывается процентная ошибка прогноза (ошибка прогноза делится на фактический показатель) — Percent Error
  3. Находится среднее арифметическое всех процентных ошибок прогноза (процентные ошибки суммируются и делятся на количество) — Mean Percent Error

MAPE — Mean Absolute Percent Error

MAPE — средняя абсолютная процентная ошибка прогнозирования. Основная проблема данной ошибки такая же, как и у MPE — нестабильность.

Ошибка прогнозирования MAPE

  1. Для каждой позиции рассчитывается абсолютная ошибка прогноза (прогноз вычитается из факта по модулю) — Absolute Error
  2. Для каждой позиции рассчитывается абсолютная процентная ошибка прогноза (абсолютная ошибка прогноза делится на фактический показатель) — Absolute Percent Error
  3. Находится среднее арифметическое всех абсолютных процентных ошибок прогноза (абсолютные процентные ошибки суммируются и делятся на количество) — Mean Absolute Percent Error

Вместо среднего арифметического всех абсолютных процентных ошибок прогноза можно использовать медиану числового ряда (MdAPE — Median Absolute Percent Error), она наиболее устойчива к выбросам.


WMAPE / MAD-Mean Ratio / WAPE — Weighted Absolute Percent Error

WAPE — взвешенная абсолютная процентная ошибка прогнозирования. Одна из «лучших ошибок» для расчета точности прогнозирования. Часто называется как MAD-Mean Ratio, то есть отношение MAD (Mean Absolute Deviation — среднее абсолютное отклонение/ошибка) к Mean (среднее арифметическое). После упрощения дроби получается искомая формула WAPE, которая очень проста в понимании:

Ошибка прогнозирования WAPE MAD-Mean Ratio

  1. Для каждой позиции рассчитывается абсолютная ошибка прогноза (прогноз вычитается из факта, по модулю) — Absolute Error
  2. Находится сумма всех фактов по всем позициям  (общий фактический объем)
  3. Сумма всех абсолютных ошибок делится на сумму всех фактов — WAPE

Данная ошибка прогнозирования является симметричной и наименее чувствительна к искажениям числового ряда.

Рекомендуется к использованию при расчете точности прогнозирования. Более подробно читать здесь.


RMSE (as %) / nRMSE — Root Mean Square Error

RMSE — среднеквадратичная ошибка прогнозирования. Примерно такая же проблема, как и в MPE и MAPE: так как каждое отклонение возводится в квадрат, любое небольшое отклонение может значительно повлиять на показатель ошибки. Стоит отметить, что существует также ошибка MSE, из которой RMSE как раз и получается путем извлечения корня. Но так как MSE дает расчетные единицы измерения в квадрате, то использовать данную ошибку будет немного неправильно.

Ошибка прогнозирования RMSE

  1. Для каждой позиции рассчитывается квадрат отклонений (разница между фактом и прогнозом, возведенная в квадрат) — Square Error
  2. Затем рассчитывается среднее арифметическое (сумма квадратов отклонений, деленное на количество) — MSE — Mean Square Error
  3. Извлекаем корень из полученного результат — RMSE
  4. Для перевода в процентную или в «нормализованную» среднеквадратичную ошибку необходимо:
    1. Разделить на разницу между максимальным и минимальным значением показателей
    2. Разделить на разницу между третьим и первым квартилем значений показателей
    3. Разделить на среднее арифметическое значений показателей (наиболее часто встречающийся вариант)

MASE — Mean Absolute Scaled Error

MASE — средняя абсолютная масштабированная ошибка прогнозирования. Согласно Википедии, является очень хорошим вариантом для расчета точности, так как сама ошибка не зависит от масштабов данных и является симметричной: то есть положительные и отрицательные отклонения от факта рассматриваются в равной степени.

Важно! Если предыдущие ошибки прогнозирования мы могли использовать для нахождения точности прогнозирования некого списка номенклатур, где каждой из которых соответствует фактическое и прогнозное значение (как было в примере в начале статьи), то данная ошибка для этого не предназначена: MASE используется для расчета точности прогнозирования одной единственной позиции, основываясь на предыдущих показателях факта и прогноза, и чем больше этих показателей, тем более точно мы сможем рассчитать показатель точности. Вероятно, из-за этого ошибка не получила широкого распространения.

Здесь данная формула представлена исключительно для ознакомления и не рекомендуется к использованию.

Суть формулы заключается в нахождении среднего арифметического всех масштабированных ошибок, что при упрощении даст нам следующую конечную формулу:

Ошибка прогнозирования MASE

Также, хочу отметить, что существует ошибка RMMSE (Root Mean Square Scaled Error — Среднеквадратичная масштабированная ошибка), которая примерно похожа на MASE, с теми же преимуществами и недостатками.


Это основные ошибки прогнозирования, которые могут использоваться для расчета точности прогнозирования. Но не все! Их очень много и, возможно, чуть позже я добавлю еще немного информации о некоторых из них. А примеры расчетов уже описанных ошибок прогнозирования будут выложены через некоторое время, пока что я подготавливаю пример, ожидайте.

Об авторе

HeinzBr

Автор статей и создатель сайта SHTEM.RU

Имея
прямую регрессии, необходимо оценить
насколько сильно точки исходных данных
отклоняются от прямой регрессии. Можно
выполнить оценку разброса, аналогичную
стандартному отклонению выборки. Этот
показатель, называемый стандартной
ошибкой оценки, демонстрирует величину
отклонения точек исходных данных от
прямой регрессии в направлении оси Y.
Стандартная ошибка оценки ()
вычисляется по следующей формуле.

Стандартная
ошибка оценки измеряет степень отличия
реальных значений Y от оцененной величины.
Для сравнительно больших выборок следует
ожидать, что около 67% разностей по модулю
не будет превышать

и около 95% модулей разностей будет не
больше 2.

Стандартная
ошибка оценки подобна стандартному
отклонению. Ее можно использовать для
оценки стандартного отклонения
совокупности. Фактически

оценивает стандартное отклонение

слагаемого ошибки

в статистической модели простой линейной
регрессии. Другими словами,

оценивает общее стандартное отклонение

нормального распределения значений Y,
имеющих математические ожидания

для каждого X.

Малая
стандартная ошибка оценки, полученная
при регрессионном анализе, свидетельствует,
что все точки данных находятся очень
близко к прямой регрессии. Если стандартная
ошибка оценки велика, точки данных могут
значительно удаляться от прямой.

2.3 Прогнозирование величины y

Регрессионную
прямую можно использовать для оценки
величины переменной Y
при данных значениях переменной X. Чтобы
получить точечный прогноз, или предсказание
для данного значения X, просто вычисляется
значение найденной функции регрессии
в точке X.

Конечно
реальные значения величины Y,
соответствующие рассматриваемым
значениям величины X, к сожалению, не
лежат в точности на регрессионной
прямой. Фактически они разбросаны
относительно прямой в соответствии с
величиной
.
Более того, выборочная регрессионная
прямая является оценкой регрессионной
прямой генеральной совокупности,
основанной на выборке из определенных
пар данных. Другая случайная выборка
даст иную выборочную прямую регрессии;
это аналогично ситуации, когда различные
выборки из одной и той же генеральной
совокупности дают различные значения
выборочного среднего.

Есть
два источника неопределенности в
точечном прогнозе, использующем уравнение
регрессии.

  1. Неопределенность,
    обусловленная отклонением точек данных
    от выборочной прямой регрессии.

  2. Неопределенность,
    обусловленная отклонением выборочной
    прямой регрессии от регрессионной
    прямой генеральной совокупности.

Интервальный
прогноз значений переменной Y
можно построить так, что при этом будут
учтены оба источника неопределенности.

Стандартная
ошибка прогноза

дает меру вариативности предсказанного
значения Y
около истинной величины Y
для данного значения X.
Стандартная ошибка прогноза равна:

Стандартная
ошибка прогноза зависит от значения X,
для которого прогнозируется величина
Y.

минимально, когда
,
поскольку тогда числитель в третьем
слагаемом под корнем в уравнении будет
0. При прочих неизменных величинах
большему отличию соответствует большее
значение стандартной ошибки прогноза.

Если
статистическая модель простой линейной
регрессии соответствует действительности,
границы интервала прогноза величины Y
равны:

где

— квантиль распределения Стьюдента с
n-2 степенями свободы ().
Если выборка велика (),
этот квантиль можно заменить соответствующим
квантилем нормального распределения.
Например, для большой выборки 95%-ный
интервал прогноза задается следующими
значениями:

Завершим
раздел обзором предположений, положенных
в основу статистической модели линейной
регрессии.

  1. Для
    заданного значения X генеральная
    совокупность значений Y имеет нормальное
    распределение относительно регрессионной
    прямой совокупности. На практике
    приемлемые результаты получаются
    и
    тогда, когда значения Y имеют
    нормальное распределение лишь
    приблизительно.

  2. Разброс
    генеральной совокупности точек данных
    относительно регрессионной прямой
    совокупности остается постоянным всюду
    вдоль этой прямой. Иными словами, при
    возрастании значений X в точках данных
    дисперсия генеральной совокупности
    не увеличивается и не уменьшается.
    Нарушение этого предположения называется
    гетероскедастичностью.

  3. Слагаемые
    ошибок

    независимы между собой. Это предположение
    определяет случайность выборки точек
    Х-Y.
    Если точки данных X-Y
    записывались в течение некоторого
    времени, данное предположение часто
    нарушается. Вместо независимых данных,
    такие последовательные наблюдения
    будут давать серийно коррелированные
    значения.

  4. В
    генеральной совокупности существует
    линейная зависимость между X и Y.
    По аналогии с простой линейной регрессией
    может рассматриваться и нелинейная
    зависимость между X и У. Некоторые такие
    случаи будут обсуждаться ниже.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Очень наивный способ оценки модели — рассматривать значение R-Squared. Предположим, что если я получу 95% R-Squared, этого будет достаточно? В этом блоге давайте попробуем понять способы оценки вашей регрессионной модели.

Метрики оценки;

  1. Среднее / Медиана прогноза
  2. Стандартное отклонение прогноза
  3. Диапазон предсказания
  4. Коэффициент детерминации (R2)
  5. Относительное стандартное отклонение / коэффициент вариации (RSD)
  6. Относительная квадратная ошибка (RSE)
  7. Средняя абсолютная ошибка (MAE)
  8. Относительная абсолютная ошибка (RAE)
  9. Среднеквадратичная ошибка (MSE)
  10. Среднеквадратичная ошибка прогноза (RMSE / RMSEP)
  11. Нормализованная среднеквадратическая ошибка (Норма RMSEP)
  12. Относительная среднеквадратическая ошибка (RRMSEP)

Давайте рассмотрим пример прогнозирования концентрации активных фармацевтических ингредиентов (API) в таблетке. Используя единицы поглощения из NIR-спектроскопии, мы прогнозируем уровень API в таблетке. Концентрация API в таблетке может составлять 0,0, 0,1, 0,3, 0,5, 1,0, 1,5, 2,0, 2,5, 3,0. Мы применяем PLS (частичный наименьший квадрат) и SVR (регрессор вектора поддержки) для прогнозирования уровня API.

ПРИМЕЧАНИЕ: метрики можно использовать для сравнения нескольких моделей или одной модели с разными моделями.

Среднее / Медиана прогноза

Мы можем понять смещение прогнозов между двумя моделями, используя среднее арифметическое предсказанных значений.

Например, среднее значение прогнозируемых значений 0,5 API рассчитывается путем деления суммы прогнозируемых значений для 0,5 API на общее количество выборок, имеющих 0,5 API.

np.mean(predictedArray)

На рисунке 1 мы можем понять, как PLS и SVR работали относительно среднего. SVR предсказал API 0.0 намного лучше, чем PLS, тогда как PLS предсказал API 3.0 лучше, чем SVR. Мы можем выбирать модели исходя из интересов уровня API.

Недостаток: на среднее значение влияют выбросы. Используйте «Медиана», если у вас есть выбросы в прогнозируемых значениях

Стандартное отклонение прогноза

Стандартное отклонение (SD) — это мера степени вариации или разброса набора значений. Низкое стандартное отклонение указывает на то, что значения имеют тенденцию быть близкими к среднему (также называемому ожидаемым значением) набора. Напротив, высокое стандартное отклонение указывает на то, что значения разбросаны в более широком диапазоне. Стандартное отклонение предсказанных значений помогает понять разброс значений в различных моделях.

np.std(predictedArray)

На рисунке 2 разброс предсказанных значений меньше в SVR по сравнению с PLS. Таким образом, SVR работает лучше, если мы учитываем показатели SD.

Диапазон предсказания

Диапазон прогноза — это максимальное и минимальное значение в прогнозируемых значениях. Равный диапазон помогает нам понять разницу между моделями.

Коэффициент детерминации (R2)

R-квадрат (R2) — это статистическая мера, которая представляет собой долю дисперсии для зависимой переменной, которая объясняется независимой переменной или переменными в регрессионной модели. В то время как корреляция объясняет силу взаимосвязи между независимой и зависимой переменной, R-квадрат объясняет, в какой степени дисперсия одной переменной объясняет дисперсию второй переменной. Таким образом, если R2 модели составляет 0,50, то примерно половина наблюдаемой вариации может быть объяснена входными данными модели.

from sklearn.metrics import r2_score
r2_score(Actual, Predicted)

Недостаток: R2 не учитывает переоснащение. Подробнее.

Относительное стандартное отклонение (RSD) / коэффициент вариации (CV)

Есть пословица, что яблоки не следует сравнивать с апельсинами или, другими словами, не сравнивать два предмета или группу предметов, которые практически не сравниваются. Но недостаток сопоставимости можно преодолеть, если эти два предмета или группы каким-то образом стандартизировать или привести к одной и той же шкале. Например, при сравнении дисперсий двух групп, которые в целом сильно различаются, таких как дисперсия в размере синего тунца и синего кита, коэффициент вариации (CV) является методом выбора: CV просто представляет собой дисперсию каждая группа стандартизирована по среднему значению группы

Коэффициент вариации (CV), также известный как относительное стандартное отклонение (RSD), является стандартизированной мерой дисперсии распределения вероятностей или частотного распределения. Это помогает нам понять, как распределяются данные в двух разных тестах.

Стандартное отклонение — наиболее распространенная мера изменчивости для одного набора данных. Но зачем нам еще один показатель, например коэффициент вариации? Что ж, сравнивать стандартные отклонения двух разных наборов данных бессмысленно, а сравнивать коэффициенты вариации — нет.

from scipy.stats import variation
variation(data)

Например, если мы рассмотрим два разных данных;

Данные 1: Среднее1 = 120000: SD1 = 2000

Данные 2: Среднее2 = 900000: SD2 = 10000

Давайте рассчитаем CV для обоих наборов данных

CV1 = SD1 / Среднее1 = 1,6%

CV2 = SD2 / Среднее2 = 1,1%

Мы можем заключить, что данные 1 более распространены, чем данные 2.

Относительная квадратная ошибка (RSE)

Относительная квадратная ошибка (RSE) относится к тому, что было бы, если бы использовался простой предиктор. В частности, этот простой предсказатель представляет собой просто среднее значение фактических значений. Таким образом, относительная ошибка в квадрате берет общую ошибку в квадрате и нормализует ее путем деления на общую ошибку в квадрате простого предсказателя. Его можно сравнивать между моделями, ошибки которых измеряются в разных единицах.

Математически относительная квадратная ошибка Ei отдельной модели i вычисляется по формуле:

где P (ij) — это значение, предсказанное отдельной моделью i для записи j (из n записей); Tj — это целевое значение для записи j, а Tbar задается формулой:

Для идеального соответствия числитель равен 0 и Ei = 0. Таким образом, индекс Ei находится в диапазоне от 0 до бесконечности, где 0 соответствует идеалу.

Средняя абсолютная ошибка (MAE)

В статистике средняя абсолютная ошибка (MAE) — это мера ошибок между парными наблюдениями, выражающими одно и то же явление. Примеры Y по сравнению с X включают сравнения прогнозируемого и наблюдаемого, последующего времени и начального времени, а также один метод измерения по сравнению с альтернативным методом измерения. Он имеет ту же единицу, что и исходные данные, и его можно сравнивать только между моделями, ошибки которых измеряются в тех же единицах. Обычно он по величине похож на RMSE, но немного меньше. MAE рассчитывается как:

from sklearn.metrics import mean_absolute_error
mean_absolute_error(actual, predicted)

Таким образом, это среднее арифметическое абсолютных ошибок, где yi — прогноз, а xi — фактическое значение. Обратите внимание, что альтернативные составы могут включать относительные частоты в качестве весовых коэффициентов. Средняя абсолютная ошибка использует ту же шкалу, что и измеряемые данные. Это известно как мера точности, зависящая от масштаба, и поэтому не может использоваться для сравнения серий с использованием разных шкал.

Примечание. Как видите, все статистические данные сравнивают истинные значения со своими оценками, но делают это немного по-другому. Все они говорят вам, насколько далеко ваши оценочные значения от истинного значения. Иногда используются квадратные корни, а иногда и абсолютные значения — это связано с тем, что при использовании квадратных корней экстремальные значения имеют большее влияние на результат (см. Зачем возводить разницу в квадрат вместо того, чтобы брать абсолютное значение в стандартном отклонении? Или в Mathoverflow. »).

В MAE и RMSE вы просто смотрите на «среднюю разницу» между этими двумя значениями. Таким образом, вы интерпретируете их в сравнении со шкалой вашей переменной (т.е. MSE в 1 балл представляет собой разницу в 1 балл между прогнозируемым и фактическим).

В RAE и Relative RSE эти различия делятся на изменение фактических значений, поэтому они имеют шкалу от 0 до 1, и если вы умножите это значение на 100, вы получите сходство по шкале от 0 до 100 (т. е. в процентах). .

Значения ∑ (MeanofActual — фактический) ² или ∑ | MeanofActual — фактический | сказать вам, насколько фактическое значение отличается от своего среднего значения — чтобы вы могли понять, насколько фактическое значение отличается от самого себя (сравните с дисперсией). Из-за этого меры названы относительными — они дают вам результаты, относящиеся к фактическому масштабу.

Относительная абсолютная ошибка (RAE)

Относительная абсолютная ошибка (RAE) — это способ измерения производительности прогнозной модели. RAE не следует путать с относительной погрешностью, которая является общей мерой точности или точности для таких инструментов, как часы, линейки или весы. Он выражается в виде отношения, сравнивающего среднюю ошибку (невязку) с ошибками, произведенными тривиальной или наивной моделью. Хорошая модель прогнозирования даст коэффициент, близкий к нулю; Плохая модель (хуже, чем наивная модель) даст отношение больше единицы.

Он очень похож на относительную квадратичную ошибку в том смысле, что он также относится к простому предиктору, который представляет собой просто среднее значение фактических значений. Однако в этом случае ошибка — это просто полная абсолютная ошибка, а не общая ошибка в квадрате. Таким образом, относительная абсолютная ошибка берет полную абсолютную ошибку и нормализует ее путем деления на полную абсолютную ошибку простого предсказателя.

Математически относительная абсолютная ошибка Ei отдельной модели i оценивается по уравнению:

где P (ij) — это значение, предсказанное отдельной моделью i для записи j (из n записей); Tj — это целевое значение для записи j, а Tbar задается формулой:

Для идеального соответствия числитель равен 0 и Ei = 0. Таким образом, индекс Ei находится в диапазоне от 0 до бесконечности, где 0 соответствует идеалу.

Среднеквадратичная ошибка (MSE)

Среднеквадратичная ошибка (MSE) или среднеквадратическое отклонение (MSD) оценщика (процедуры оценки ненаблюдаемой величины) измеряет среднее квадратов ошибок, то есть среднеквадратичную разницу между оцененными значениями и фактическими значениями. ценить. MSE — это функция риска, соответствующая ожидаемому значению квадрата потери ошибок. Тот факт, что MSE почти всегда строго положительна (а не равна нулю), объясняется случайностью или тем, что оценщик не учитывает информацию, которая могла бы дать более точную оценку.

MSE оценивает качество предсказателя (т. Е. Функция, отображающая произвольные входные данные в выборку значений некоторой случайной переменной) или оценщика (т. Е. Математическая функция, отображающая выборку данных в оценку параметра совокупности из которого берутся данные). Определение MSE различается в зависимости от того, описывается ли предсказатель или оценщик.

MSE — это мера качества оценки — она ​​всегда неотрицательна, а значения, близкие к нулю, лучше.

from sklearn.metrics import mean_squared_error
mean_squared_error(actual, predicted)

Давайте проанализируем, что на самом деле означает это уравнение.

  • В математике символ, который выглядит как странный E, называется суммированием (греческая сигма). Это сумма последовательности чисел от i = 1 до n. Представим это как массив точек, в котором мы перебираем все точки, от первой (i = 1) до последней (i = n).
  • Для каждой точки мы берем координату y точки и координату y’. Мы вычитаем значение координаты y из значения координаты y и вычисляем квадрат результата.
  • Третья часть — взять сумму всех значений (y-y ’) ² и разделить ее на n, что даст среднее значение.

Наша цель — минимизировать это среднее, чтобы получить лучшую линию, проходящую через все точки. «Для дополнительной информации».

Среднеквадратичная ошибка прогноза (RMSE / RMSEP)

В статистическом моделировании и, в частности, регрессионном анализе, обычным способом измерения качества соответствия модели является RMSE (также называемое среднеквадратичным отклонением), определяемое выражением

from sklearn.metrics import mean_squared_error
mse = mean_squared_error(actual, predicted)
rmse = sqrt(mse)

где yi — i-е наблюдение y, а ŷ — прогнозируемое значение y для данной модели. Если предсказанные ответы очень близки к истинным ответам, RMSE будет небольшим. Если предсказанные и истинные ответы существенно различаются — по крайней мере, для некоторых наблюдений — RMSE будет большим. Нулевое значение указывает на полное соответствие данным. Поскольку RMSE измеряется в той же шкале, с теми же единицами измерения, что и y, можно ожидать, что 68% значений y будут в пределах 1 RMSE — при условии, что данные распределены нормально.

ПРИМЕЧАНИЕ: RMSE касается отклонений от истинного значения, тогда как S касается отклонений от среднего.

Таким образом, вычисление MSE помогает сравнивать разные модели, основанные на одних и тех же наблюдениях y. Но что, если

  1. кто-то хочет сравнить соответствие модели для разных переменных отклика?
  2. переменная ответа y изменяется в некоторых моделях, например стандартизированный или преобразованный в sqrt или логарифм?
  3. И влияет ли разделение данных на обучающий и тестовый набор данных (после модификации) и вычисление RMSE на основе тестовых данных на точки 1. и 2.?

Первые два пункта являются типичными проблемами при сравнении эффективности экологических индикаторов, а последний, так называемый подход с использованием набора проверки, довольно распространен в статистике и машинном обучении. Одним из способов преодоления этих препятствий является вычисление нормализованного RMSE.

Нормализованная среднеквадратическая ошибка (Норма RMSEP)

Нормализация RMSE облегчает сравнение наборов данных или моделей с разными масштабами. Однако в литературе вы найдете различные методы нормализации RMSE:

Вы можете нормализовать

Если переменные отклика имеют несколько экстремальных значений, выбор межквартильного диапазона является хорошим вариантом, поскольку он менее чувствителен к выбросам.

RMSEP / стандартное отклонение называется относительной среднеквадратичной ошибкой (RRMSEP).

1 / RRMSEP также является показателем. Значение больше 2 считается хорошим.

Существуют также такие термины, как стандартная ошибка прогноза (SEP) и отношение стандартной ошибки прогноза к стандартному отклонению (RPD), которые в основном используются в хемометрике.

Я надеюсь, что этот блог помог вам понять различные метрики для оценки вашей регрессионной модели. Я использовал несколько источников, чтобы понять и написать эту статью. Спасибо за уделенное время.

Использованная литература:

Https://www.gepsoft.com/
https://www.investopedia.com/
https://en.wikipedia.org/wiki
https://scikit-learn.org/
https://www.saedsayad.com/
https://www.marinedatascience.co/blog/2019/01/07/ normalizing-the-rmse /

Пример нахождения статистической значимости коэффициентов регрессии

Числитель в этой формуле может быть рассчитан через коэффициент детерминации и общую дисперсию признака-результата: .
Для параметра a критерий проверки гипотезы о незначимом отличии его от нуля имеет вид:
,
где — оценка параметра регрессии, полученная по наблюдаемым данным;
μa – стандартная ошибка параметра a.
Для линейного парного уравнения регрессии:
.
Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции в генеральной совокупности используют следующий критерий:
, где ryx — оценка коэффициента корреляции, полученная по наблюдаемым данным; mr – стандартная ошибка коэффициента корреляции ryx.
Для линейного парного уравнения регрессии:
.
В парной линейной регрессии между наблюдаемыми значениями критериев существует взаимосвязь: t ( b =0) = t (r=0).

Пример №1 . Уравнение имеет вид y=ax+b
1. Параметры уравнения регрессии.
Средние значения

Связь между признаком Y фактором X сильная и прямая
Уравнение регрессии

Коэффициент детерминации
R 2 = 0.73 2 = 0.54, т.е. в 54% случаев изменения х приводят к изменению y . Другими словами — точность подбора уравнения регрессии — средняя.

x y x 2 y 2 x ∙ y y(x) (y-y cp ) 2 (y-y(x)) 2 (x-x p ) 2
69 124 4761 15376 8556 128.48 491.36 20.11 367.36
83 133 6889 17689 11039 141.4 173.36 70.56 26.69
92 146 8464 21316 13432 149.7 0.03 13.71 14.69
97 153 9409 23409 14841 154.32 46.69 1.73 78.03
88 138 7744 19044 12144 146.01 66.69 64.21 0.03
93 159 8649 25281 14787 150.63 164.69 70.13 23.36
74 145 5476 21025 10730 133.1 1.36 141.68 200.69
79 152 6241 23104 12008 137.71 34.03 204.21 84.03
105 168 11025 28224 17640 161.7 476.69 39.74 283.36
99 154 9801 23716 15246 156.16 61.36 4.67 117.36
85 127 7225 16129 10795 143.25 367.36 263.91 10.03
94 155 8836 24025 14570 151.55 78.03 11.91 34.03
1058 1754 94520 258338 155788 1754 1961.67 906.57 1239.67

2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;a) = (10;0.05) = 1.812
Поскольку Tнабл > Tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически — значим.

Анализ точности определения оценок коэффициентов регрессии

S a = 0.2704
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 88,16
(128.06;163.97)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика

Статистическая значимость коэффициента регрессии a подтверждается (3.41>1.812).

Статистическая значимость коэффициента регрессии b подтверждается (2.7>1.812).
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими (tтабл=1.812):
(a — tтабл·S a; a + tтабл·Sa)
(0.4325;1.4126)
(b — tтабл·S b; b + tтабл·Sb)
(21.3389;108.3164)
2) F-статистики

Fkp = 4.96
Поскольку F > Fkp, то коэффициент детерминации статистически значим.

Пример №2 . По территориям региона приводятся данные за 199Х г.;

Среднедневная заработная плата, руб., у
1 78 133
2 82 148
3 87 134
4 79 154
5 89 162
6 106 195
7 67 139
8 88 158
9 73 152
10 87 162
11 76 159
12 115 173

Требуется:
1. Построить линейное уравнение парной регрессии у от х.
2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.
3. Оценить статистическую значимость параметров регрессии и корреляции.
4. Выполнить прогноз заработной платы у при прогнозном значении среднедушевого прожиточного минимума х , составляющем 107% от среднего уровня.
5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

Решение находим с помощью калькулятора.
Использование графического метода .
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс — индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε — случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения εi для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β — используют МНК (метод наименьших квадратов).
Система нормальных уравнений.
Для наших данных система уравнений имеет вид
12a+1027b=1869
1027a+89907b=161808
Из первого уравнения выражаем а и подставим во второе уравнение. Получаем b = 0.92, a = 76.98
Уравнение регрессии: y = 0.92 x + 76.98
1. Параметры уравнения регрессии.
Выборочные средние.

Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 0 – прямая связь, иначе — обратная). В нашем примере связь прямая.
Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета — коэффициенты. Коэффициент эластичности находится по формуле:

Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
Коэффициент эластичности меньше 1. Следовательно, при изменении среднедушевого прожиточного минимума в день на 1%, среднедневная заработная плата изменится менее чем на 1%. Другими словами — влияние среднедушевого прожиточного минимума Х на среднедневную заработную плату Y не существенно.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению средней среднедневной заработной платы Y на 0.721 среднеквадратичного отклонения этого показателя.
1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.

Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.
Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R 2 = 0.72 2 = 0.5199, т.е. в 51.99 % случаев изменения среднедушевого прожиточного минимума х приводят к изменению среднедневной заработной платы y. Другими словами — точность подбора уравнения регрессии — средняя. Остальные 48.01% изменения среднедневной заработной платы Y объясняются факторами, не учтенными в модели.

y 2 x·y y(x) (y i — y ) 2 (y-y(x)) 2 (x i — x ) 2 |y-y x |:y
78 133 6084 17689 10374 148,77 517,56 248,7 57,51 0,1186
82 148 6724 21904 12136 152,45 60,06 19,82 12,84 0,0301
87 134 7569 17956 11658 157,05 473,06 531,48 2,01 0,172
79 154 6241 23716 12166 149,69 3,06 18,57 43,34 0,028
89 162 7921 26244 14418 158,89 39,06 9,64 11,67 0,0192
106 195 11236 38025 20670 174,54 1540,56 418,52 416,84 0,1049
67 139 4489 19321 9313 138,65 280,56 0,1258 345,34 0,0026
88 158 7744 24964 13904 157,97 5,06 0,0007 5,84 0,0002
73 152 5329 23104 11096 144,17 14,06 61,34 158,34 0,0515
87 162 7569 26244 14094 157,05 39,06 24,46 2,01 0,0305
76 159 5776 25281 12084 146,93 10,56 145,7 91,84 0,0759
115 173 13225 29929 19895 182,83 297,56 96,55 865,34 0,0568
1027 1869 89907 294377 161808 1869 3280,25 1574,92 2012,92 0,6902

2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=10 находим tкрит:
tкрит = (10;0.05) = 1.812
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим.
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:

S 2 y = 157.4922 — необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).

12.5496 — стандартная ошибка оценки (стандартная ошибка регрессии).
S a — стандартное отклонение случайной величины a.

Sb — стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
(a + bxp ± ε)
где
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 94

(76.98 + 0.92*94 ± 7.8288)
(155.67;171.33)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости α=0.05.
tкрит = (10;0.05) = 1.812

Поскольку 3.2906 > 1.812, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).

Поскольку 3.1793 > 1.812, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b — tкрит Sb; b + tкрит Sb)
(0.9204 — 1.812·0.2797; 0.9204 + 1.812·0.2797)
(0.4136;1.4273)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a-ta)
(76.9765 — 1.812·24.2116; 76.9765 + 1.812·24.2116)
(33.1051;120.8478)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:

где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=10, Fkp = 4.96
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).

Проверка на статистическую значимость коэффициентов уравнения регрессии и корреляции.

Качество подбора функции регрессии можно оценить с помощью стандартных ошибок или оценок параметров регрессии. Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитывается t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной стандартного отклонения, т.е.:

Стандартные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:

где — мера разброса зависимой переменной вокруг линии регрессии (необъясненная дисперсия) или — стандартная ошибка регрессии.

Сравнивая фактическое (расчетное) и критическое (табличное) значения t-статистики, т.е. tфакт и tкрит = t n-1;α — отвергаем или не отвергаем гипотезу Н0:

если tкрит tфакт,то Н0 не отклоняется и признается случайная природа формирования a, b и R..

Фактическое значение t-критерия Стьюдента определяется как

Данная формула свидетельствует, что в парной регрессии . Кроме того . Следовательно,

Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Формулы для расчета доверительных интервалов a, b имеют следующий вид:

Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, т.к. он не может одновременно принимать и положительное, и отрицательное значения.

8.Проверка общего качества уравнения регрессии. Для оценки качества построенной модели используют коэффициент (индекс) детерминации — R 2 , а также среднюю ошибку аппроксимации — А.

F-тест — оценивание качества уравнения регрессии – состоит в проверке гипотезы H0 о статистической не значимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fтабл определяется из соотношения значения объясненной и остаточной дисперсии, рассчитанных на одну степень свободы:

где n — объем выборки (объем статистической информации).

Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a — вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.

Если Fтабл Fфакт, то гипотеза H0 не отклоняется и признаётся статистическая незначимость, ненадёжность уравнения регрессии.

9.Интервалы прогноза по линейному уравнению регрессии.В прогнозных расчетах по уравнению регрессии определяется предсказываемое (расчетное) упрог значение как точечный прогноз при хпрогк, т.е. путем подстановки в уравнение регрессии соответствующего прогнозного значения xпрог. Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки и соответственно интервальной оценкой прогнозного значения gпрогноз. Фактические значения у варьируют около среднего значения . Индивидуальные значения у могут отклоняться от на величину случайной ошибки e, дисперсия которой оценивается какостаточная дисперсии на одну степень свободы S 2 . Поэтому ошибка предсказываемого индивидуального значения у должна включать не только стандартную ошибку

S , но и случайную ошибку Se.

Средняя стандартная ошибка прогноза Sпрогноз вычисляется по формуле:

,

а доверительный интервал прогноза строится по формуле:

прогноз — tкрит Sпрогнозgпрогноз прогноз + tкрит Sпрогноз

При прогнозировании на основе уравнения регрессии следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения у, но и от точности прогноза значения фактора х. Его величина может задаваться на основе анализа других моделей исходя из конкретной ситуации, а также из анализа динамики данного фактора.

10.Таблица дисперсионного анализа. Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:å = å ( ) 2 + å ( ) 2 ,

где — общая сумма квадратов отклонений;

сумма квадратов отклонений, обусловленная регрессией («объясненная», «факторная»);

— остаточная сумма квадратов отклонений (“необъясненная”).

Компоненты дисперсии Сумма квадратов Число степеней свободы Дисперсия на одну степень свободы
Общая n-1
Факторная m
Остаточная n-m-1

Нелинейная регрессия

Нелинейная регрессия -частный случай регрессионного анализа, в котором рассматриваемая регрессионная модель есть функция, зависящая от параметров и от одной или нескольких свободных переменных. Во многих практических случаях моделирование экономических зависимостей линейными уравнениями дает вполне удовлетворительный результат и может использоваться для анализа и прогнозирования. Однако в силу однообразия и сложности экономических процессов ограничиться рассмотрением лишь линейных регрессионных моделей невозможно. Многие экономические зависимости не являются линейными по своей сути, и поэтому их моделирование линейными уравнениями регрессии, безусловно, не даст положительного результата. Например, при рассмотрении спроса Y на некоторый товар от цены X данного товара в ряде случаев можно ограничиться линейным уравнением регрессии: Y=β01X . Здесь β1 характеризует абсолютное изменение Y (в среднем) при единичном изменении X. Если же мы хотим проанализировать эластичность спроса по цене, то приведенное уравнение не позволит это осуществить. В этом случае целесообразно рассмотреть так называемую логарифмическую модель

При анализе издержек Y от объема выпуска X наиболее обоснованной является полиноминальная (точнее, кубическая) модель При рассмотрении производственных функций линейная модель является нереалистичной. В этом случае обычно используются степенные модели. Например, широкую известность имеет производственная функция Кобба-Дугласа Y=AK α L β (здесь Y – объем выпуска; K и L – затраты капитала и труда соответственно; A, α и β – параметры модели).

Достаточно широко применяются в современном эконометрическом анализе и многие другие модели, в частности обратная и экспоненциальная модели.

Построение и анализ нелинейных моделей имеют свою специфику. Приведенные выше примеры и рассуждения дают основания более детально рассмотреть возможные нелинейные модели.

Оценка существенности нелинейной регрессии

Если нелинейное по факторным переменным уравнение регрессии с помощью метода замен можно свести к парному линейному уравнению регрессии, то на это уравнение будут распространяться все методы проверки гипотез для парной линейной зависимости.

Проверка гипотезы о значимости нелинейной регрессионной модели в целом осуществляется через F-критерий. Выдвигается основная гипотеза Но о незначимости коэффициента детерминации для нелинейных форм связи, т.е. о незначимости полученного уравнения регрессии:

Альтернативной является обратная гипотеза Н1 о значимости построенного уравнения регрессии:

Наблюдаемое значение F-критерия вычисляется по формуле

где п — объем выборочной совокупности; l — число оцениваемых параметров по выборочной совокупности.

Критическое значение рассматриваемого критерия Fкрит вычисляется по таблице распределения Фишера в зависимости от уровня значимости α и числа степеней свободы k1 = l-1 и k2 = п-l. Если наблюдаемое значение F-критерия больше критического Fнабл > Fкрит , то основная гипотеза отклоняется, следовательно уравнение нелинейной регрессии является значимым. Если наблюдаемое значение F-критерия меньше критического (Fнабл 2 и индекса детерминации для нелинейных форм связи R 2 .

Выдвигается основная гипотеза Но о линейной зависимости между переменными. Альтернативной является гипотеза о их нелинейной связи. Проверка этих гипотез осуществляется с помощью t-критерия Стьюдента. Наблюдаемое значение t-критерия

где — величина ошибки разности (R 2r 2 ), вычисляемая по формуле

Критическое значение рассматриваемого критерия tкрит определяется по таблице распределения Стьюдента в зависимости от уровня значимости α и числа степеней свободы (п – l – 1), где l — число оцениваемых параметров βi в регрессионной модели. Если наблюдаемое значение t-критерия больше критического (tнабл > tкрит ), то основная гипотеза отклоняется и между изучаемыми переменными существует нелинейная взаимосвязь. Если наблюдаемое значение t-критерия меньше критического (tнабл

Дата добавления: 2015-10-05 ; просмотров: 1268 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

источники:

http://poisk-ru.ru/s51764t1.html

http://helpiks.org/5-52727.html

Понравилась статья? Поделить с друзьями:
  • Средняя ошибка прогноза временного ряда
  • Средняя стандартная ошибка прогноза формула
  • Средняя ошибка первой средней арифметической это
  • Средняя стандартная ошибка выборки это
  • Средняя ошибка первой средней арифметической как найти