Стандартная ошибка равна нулю

What Is the Standard Error?

The standard error (SE) of a statistic is the approximate standard deviation of a statistical sample population.

The standard error is a statistical term that measures the accuracy with which a sample distribution represents a population by using standard deviation. In statistics, a sample mean deviates from the actual mean of a population; this deviation is the standard error of the mean.

Key Takeaways

  • The standard error (SE) is the approximate standard deviation of a statistical sample population.
  • The standard error describes the variation between the calculated mean of the population and one which is considered known, or accepted as accurate.
  • The more data points involved in the calculations of the mean, the smaller the standard error tends to be.

Standard Error

Understanding Standard Error

The term «standard error» is used to refer to the standard deviation of various sample statistics, such as the mean or median. For example, the «standard error of the mean» refers to the standard deviation of the distribution of sample means taken from a population. The smaller the standard error, the more representative the sample will be of the overall population.

The relationship between the standard error and the standard deviation is such that, for a given sample size, the standard error equals the standard deviation divided by the square root of the sample size. The standard error is also inversely proportional to the sample size; the larger the sample size, the smaller the standard error because the statistic will approach the actual value.

The standard error is considered part of inferential statistics. It represents the standard deviation of the mean within a dataset. This serves as a measure of variation for random variables, providing a measurement for the spread. The smaller the spread, the more accurate the dataset.

Standard error and standard deviation are measures of variability, while central tendency measures include mean, median, etc.

Formula and Calculation of Standard Error

The standard error of an estimate can be calculated as the standard deviation divided by the square root of the sample size:

SE = σ / √n

where

  • σ = the population standard deviation
  • n = the square root of the sample size

If the population standard deviation is not known, you can substitute the sample standard deviation, s, in the numerator to approximate the standard error.

Requirements for Standard Error 

When a population is sampled, the mean, or average, is generally calculated. The standard error can include the variation between the calculated mean of the population and one which is considered known, or accepted as accurate. This helps compensate for any incidental inaccuracies related to the gathering of the sample.

In cases where multiple samples are collected, the mean of each sample may vary slightly from the others, creating a spread among the variables. This spread is most often measured as the standard error, accounting for the differences between the means across the datasets.

The more data points involved in the calculations of the mean, the smaller the standard error tends to be. When the standard error is small, the data is said to be more representative of the true mean. In cases where the standard error is large, the data may have some notable irregularities.

The standard deviation is a representation of the spread of each of the data points. The standard deviation is used to help determine the validity of the data based on the number of data points displayed at each level of standard deviation. Standard errors function more as a way to determine the accuracy of the sample or the accuracy of multiple samples by analyzing deviation within the means.

Standard Error vs. Standard Deviation

The standard error normalizes the standard deviation relative to the sample size used in an analysis. Standard deviation measures the amount of variance or dispersion of the data spread around the mean. The standard error can be thought of as the dispersion of the sample mean estimations around the true population mean. As the sample size becomes larger, the standard error will become smaller, indicating that the estimated sample mean value better approximates the population mean.

Example of Standard Error

Say that an analyst has looked at a random sample of 50 companies in the S&P 500 to understand the association between a stock’s P/E ratio and subsequent 12-month performance in the market. Assume that the resulting estimate is -0.20, indicating that for every 1.0 point in the P/E ratio, stocks return 0.2% poorer relative performance. In the sample of 50, the standard deviation was found to be 1.0.

The standard error is thus:

SE = 1.0/50 = 1/7.07 = 0.141

Therefore, we would report the estimate as -0.20% ± 0.14, giving us a confidence interval of (-0.34 — -0.06). The true mean value of the association of the P/E on returns of the S&P 500 would therefore fall within that range with a high degree of probability.

Say now that we increase the sample of stocks to 100 and find that the estimate changes slightly from -0.20 to -0.25, and the standard deviation falls to 0.90. The new standard error would thus be:

SE = 0.90/100 = 0.90/10 = 0.09.

The resulting confidence interval becomes -0.25 ± 0.09 = (-0.34 — -0.16), which is a tighter range of values.

What Is Meant by Standard Error?

Standard error is intuitively the standard deviation of the sampling distribution. In other words, it depicts how much disparity there is likely to be in a point estimate obtained from a sample relative to the true population mean.

What Is a Good Standard Error?

Standard error measures the amount of discrepancy that can be expected in a sample estimate compared to the true value in the population. Therefore, the smaller the standard error the better. In fact, a standard error of zero (or close to it) would indicate that the estimated value is exactly the true value.

How Do You Find the Standard Error?

The standard error takes the standard deviation and divides it by the square root of the sample size. Many statistical software packages automatically compute standard errors.

The Bottom Line

The standard error (SE) measures the dispersion of estimated values obtained from a sample around the true value to be found in the population. Statistical analysis and inference often involves drawing samples and running statistical tests to determine associations and correlations between variables. The standard error thus tells us with what degree of confidence we can expect the estimated value to approximate the population value.

Стандартное отклонение и стандартная ошибка: в чем разница?

  • Редакция Кодкампа

17 авг. 2022 г.
читать 2 мин


В статистике студенты часто путают два термина: стандартное отклонение и стандартная ошибка .

Стандартное отклонение измеряет, насколько разбросаны значения в наборе данных.

Стандартная ошибка — это стандартное отклонение среднего значения в повторных выборках из совокупности.

Давайте рассмотрим пример, чтобы ясно проиллюстрировать эту идею.

Пример: стандартное отклонение против стандартной ошибки

Предположим, мы измеряем вес 10 разных черепах.

Для этой выборки из 10 черепах мы можем вычислить среднее значение выборки и стандартное отклонение выборки:

Предположим, что стандартное отклонение оказалось равным 8,68. Это дает нам представление о том, насколько распределен вес этих черепах.

Но предположим, что мы собираем еще одну простую случайную выборку из 10 черепах и также проводим их измерения. Более чем вероятно, что эта выборка из 10 черепах будет иметь немного другое среднее значение и стандартное отклонение, даже если они взяты из одной и той же популяции:

Теперь, если мы представим, что мы берем повторные выборки из одной и той же совокупности и записываем выборочное среднее и выборочное стандартное отклонение для каждой выборки:

Теперь представьте, что мы наносим каждое среднее значение выборки на одну и ту же строку:

Стандартное отклонение этих средних значений известно как стандартная ошибка.

Формула для фактического расчета стандартной ошибки:

Стандартная ошибка = s/ √n

куда:

  • s: стандартное отклонение выборки
  • n: размер выборки

Какой смысл использовать стандартную ошибку?

Когда мы вычисляем среднее значение данной выборки, нас на самом деле интересует не среднее значение этой конкретной выборки, а скорее среднее значение большей совокупности, из которой взята выборка.

Однако мы используем выборки, потому что для них гораздо проще собирать данные, чем для всего населения. И, конечно же, среднее значение выборки будет варьироваться от выборки к выборке, поэтому мы используем стандартную ошибку среднего значения как способ измерить, насколько точна наша оценка среднего значения.

Вы заметите из формулы для расчета стандартной ошибки, что по мере увеличения размера выборки (n) стандартная ошибка уменьшается:

Стандартная ошибка = s/ √n

Это должно иметь смысл, поскольку большие размеры выборки уменьшают изменчивость и увеличивают вероятность того, что среднее значение нашей выборки ближе к фактическому среднему значению генеральной совокупности.

Когда использовать стандартное отклонение против стандартной ошибки

Если мы просто заинтересованы в измерении того, насколько разбросаны значения в наборе данных, мы можем использовать стандартное отклонение .

Однако, если мы заинтересованы в количественной оценке неопределенности оценки среднего значения, мы можем использовать стандартную ошибку среднего значения .

В зависимости от вашего конкретного сценария и того, чего вы пытаетесь достичь, вы можете использовать либо стандартное отклонение, либо стандартную ошибку.


Загрузить PDF


Загрузить PDF

Стандартной ошибкой называется величина, которая характеризует стандартное (среднеквадратическое) отклонение выборочного среднего. Другими словами, эту величину можно использовать для оценки точности выборочного среднего. Множество областей применения стандартной ошибки по умолчанию предполагают нормальное распределение. Если вам нужно рассчитать стандартную ошибку, перейдите к шагу 1.

  1. Изображение с названием Calculate Standard Error Step 1

    1

    Запомните определение среднеквадратического отклонения. Среднеквадратическое отклонение выборки – это мера рассеянности значения. Среднеквадратическое отклонение выборки обычно обозначается буквой s. Математическая формула среднеквадратического отклонения приведена выше.

  2. Изображение с названием Calculate Standard Error Step 2

    2

    Узнайте, что такое истинное среднее значение. Истинное среднее является средним группы чисел, включающим все числа всей группы – другими словами, это среднее всей группы чисел, а не выборки.

  3. Изображение с названием Calculate Standard Error Step 3

    3

    Научитесь рассчитывать среднеарифметическое значение. Среднеаримфетическое означает попросту среднее: сумму значений собранных данных, разделенную на количество значений этих данных.

  4. Изображение с названием Calculate Standard Error Step 4

    4

    Узнайте, что такое выборочное среднее. Когда среднеарифметическое значение основано на серии наблюдений, полученных в результате выборок из статистической совокупности, оно называется “выборочным средним”. Это среднее выборки чисел, которое описывает среднее значение лишь части чисел из всей группы. Его обозначают как:

  5. Изображение с названием Calculate Standard Error Step 5

    5

    Усвойте понятие нормального распределения. Нормальные распределения, которые используются чаще других распределений, являются симметричными, с единичным максимумом в центре – на среднем значении данных. Форма кривой подобна очертаниям колокола, при этом график равномерно опускается по обе стороны от среднего. Пятьдесят процентов распределения лежит слева от среднего, а другие пятьдесят процентов – справа от него. Рассеянность значений нормального распределения описывается стандартным отклонением.

  6. Изображение с названием Calculate Standard Error Step 6

    6

    Запомните основную формулу. Формула для вычисления стандартной ошибки приведена выше.

    Реклама

  1. Изображение с названием Calculate Standard Error Step 7

    1

    Рассчитайте выборочное среднее. Чтобы найти стандартную ошибку, сначала нужно определить среднеквадратическое отклонение (поскольку среднеквадратическое отклонение s входит в формулу для вычисления стандартной ошибки). Начните с нахождения средних значений. Выборочное среднее выражается как среднее арифметическое измерений x1, x2, . . . , xn. Его рассчитывают по формуле, приведенной выше.

    • Допустим, например, что вам нужно рассчитать стандартную ошибку выборочного среднего результатов измерения массы пяти монет, указанных в таблице:
      Вы сможете рассчитать выборочное среднее, подставив значения массы в формулу:
  2. Изображение с названием Calculate Standard Error Step 8

    2

    Вычтите выборочное среднее из каждого измерения и возведите полученное значение в квадрат. Как только вы получите выборочное среднее, вы можете расширить вашу таблицу, вычтя его из каждого измерения и возведя результат в квадрат.

    • Для нашего примера расширенная таблица будет иметь следующий вид:
  3. Изображение с названием Calculate Standard Error Step 9

    3

    Найдите суммарное отклонение ваших измерений от выборочного среднего. Общее отклонение – это сумма возведенных в квадрат разностей от выборочного среднего. Чтобы определить его, сложите ваши новые значения.

    • В нашем примере нужно будет выполнить следующий расчет:
      Это уравнение дает сумму квадратов отклонений измерений от выборочного среднего.
  4. Изображение с названием Calculate Standard Error Step 10

    4

    Рассчитайте среднеквадратическое отклонение ваших измерений от выборочного среднего. Как только вы будете знать суммарное отклонение, вы сможете найти среднее отклонение, разделив ответ на n -1. Обратите внимание, что n равно числу измерений.

    • В нашем примере было сделано 5 измерений, следовательно n – 1 будет равно 4. Расчет нужно вести следующим образом:
  5. Изображение с названием Calculate Standard Error Step 11

    5

    Найдите среднеквадратичное отклонение. Сейчас у вас есть все необходимые значения для того, чтобы воспользоваться формулой для нахождения среднеквадратичного отклонения s.

    • В нашем примере вы будете рассчитывать среднеквадратичное отклонение следующим образом:
      Следовательно, среднеквадратичное отклонение равно 0,0071624.

    Реклама

  1. Изображение с названием Calculate Standard Error Step 12

    1

    Чтобы вычислить стандартную ошибку, воспользуйтесь базовой формулой со среднеквадратическим отклонением.

    • В нашем примере вы сможете рассчитать стандартную ошибку следующим образом:
      Таким образом в нашем примере стандартная ошибка (среднеквадратическое отклонение выборочного среднего) составляет 0,0032031 грамма.

Советы

  • Стандартную ошибку и среднеквадратическое отклонение часто путают. Обратите внимание, что стандартная ошибка описывает среднеквадратическое отклонение выборочного распределения статистических данных, а не распределения отдельных значений
  • В научных журналах понятия стандартной ошибки и среднеквадратического отклонения несколько размыты. Для объединения двух величин используется знак ±.

Реклама

Об этой статье

Эту страницу просматривали 48 054 раза.

Была ли эта статья полезной?

Среднее арифметическое, как известно, используется для получения обобщающей характеристики некоторого набора данных. Если данные более-менее однородны и в них нет аномальных наблюдений (выбросов), то среднее хорошо обобщает данные, сведя к минимуму влияние случайных факторов (они взаимопогашаются при сложении).

Когда анализируемые данные представляют собой выборку (которая состоит из случайных значений), то среднее арифметическое часто (но не всегда) выступает в роли приближенной оценки математического ожидания. Почему приближенной? Потому что среднее арифметическое – это величина, которая зависит от набора случайных чисел, и, следовательно, сама является случайной величиной. При повторных экспериментах (даже в одних и тех же условиях) средние будут отличаться друг от друга.

Для того, чтобы на основе статистического анализа данных делать корректные выводы, необходимо оценить возможный разброс полученного результата. Для этого рассчитываются различные показатели вариации. Но то исходные данные. И как мы только что установили, среднее арифметическое также обладает разбросом, который необходимо оценить и учитывать в дальнейшем (в выводах, в выборе метода анализа и т.д.).

Интуитивно понятно, что разброс средней должен быть как-то связан с разбросом исходных данных. Основной характеристикой разброса средней выступает та же дисперсия.

Дисперсия выборочных данных – это средний квадрат отклонения от средней, и рассчитать ее по исходным данным не составляет труда, например, в Excel предусмотрены специальные функции. Однако, как же рассчитать дисперсию средней, если в распоряжении есть только одна выборка и одно среднее арифметическое?

Расчет дисперсии и стандартной ошибки средней арифметической

Чтобы получить дисперсию средней арифметической нет необходимости проводить множество экспериментов, достаточно иметь только одну выборку. Это легко доказать. Для начала вспомним, что средняя арифметическая (простая) рассчитывается по формуле:

формула средней арифметической

где xi – значения переменной,
n – количество значений.

Теперь учтем два свойства дисперсии, согласно которым, 1) — постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат и 2) — дисперсия суммы независимых случайных величин равняется сумме соответствующих дисперсий. Предполагается, что каждое случайное значение xi обладает одинаковым разбросом, поэтому несложно вывести формулу дисперсии средней арифметической:

Формула дисперсии средней арифметической

Используя более привычные обозначения, формулу записывают как:

Дисперсия средней арифметической

где σ2 – это дисперсия, случайной величины, причем генеральная.

На практике же, генеральная дисперсия известна далеко не всегда, точнее совсем редко, поэтому в качестве оной используют выборочную дисперсию:

Дисперсия средней арифметической по выборке

Стандартное отклонение средней арифметической называется стандартной ошибкой средней и рассчитывается, как квадратный корень из дисперсии.

Формула стандартной ошибки средней при использовании генеральной дисперсии

Стандартная ошибка средней

Формула стандартной ошибки средней при использовании выборочной дисперсии

Стандартная ошибка средней по выборке

Последняя формула на практике используется чаще всего, т.к. генеральная дисперсия обычно не известна. Чтобы не вводить новые обозначения, стандартную ошибку средней обычно записывают в виде соотношения стандартного отклонения выборки и корня объема выборки.

Назначение и свойство стандартной ошибки средней арифметической

Стандартная ошибка средней много, где используется. И очень полезно понимать ее свойства. Посмотрим еще раз на формулу стандартной ошибки средней:

Стандартная ошибка выборочной средней

Числитель – это стандартное отклонение выборки и здесь все понятно. Чем больше разброс данных, тем больше стандартная ошибка средней – прямо пропорциональная зависимость.

Посмотрим на знаменатель. Здесь находится квадратный корень из объема выборки. Соответственно, чем больше объем выборки, тем меньше стандартная ошибка средней. Для наглядности изобразим на одной диаграмме график нормально распределенной переменной со средней равной 10, сигмой – 3, и второй график – распределение средней арифметической этой же переменной, полученной по 16-ти наблюдениям (которое также будет нормальным).

Зависимость стандартной ошибки средней от объем выборки

Судя по формуле, разброс стандартной ошибки средней должен быть в 4 раза (корень из 16) меньше, чем разброс исходных данных, что и видно на рисунке выше. Чем больше наблюдений, тем меньше разброс средней.

Казалось бы, что для получения наиболее точной средней достаточно использовать максимально большую выборку и тогда стандартная ошибка средней будет стремиться к нулю, а сама средняя, соответственно, к математическому ожиданию. Однако квадратный корень объема выборки в знаменателе говорит о том, что связь между точностью выборочной средней и размером выборки не является линейной. Например, увеличение выборки с 20-ти до 50-ти наблюдений, то есть на 30 значений или в 2,5 раза, уменьшает стандартную ошибку средней только на 36%, а со 100-а до 130-ти наблюдений (на те же 30 значений), снижает разброс данных лишь на 12%.

Лучше всего изобразить эту мысль в виде графика зависимости стандартной ошибки средней от размера выборки. Пусть стандартное отклонение равно 10 (на форму графика это не влияет).

Распределение исходных данных и средней

Видно, что примерно после 50-ти значений, уменьшение стандартной ошибки средней резко замедляется, после 100-а – наклон постепенно становится почти нулевым.

Таким образом, при достижении некоторого размера выборки ее дальнейшее увеличение уже почти не сказывается на точности средней. Этот факт имеет далеко идущие последствия. Например, при проведении выборочного обследования населения (опроса) чрезмерное увеличение выборки ведет к неоправданным затратам, т.к. точность почти не меняется. Именно поэтому количество опрошенных редко превышает 1,5 тысячи человек. Точность при таком размере выборки часто является достаточной, а дальнейшее увеличение выборки – нецелесообразным.

Подведем итог. Расчет дисперсии и стандартной ошибки средней имеет довольно простую формулу и обладает полезным свойством, связанным с тем, что относительно хорошая точность средней достигается уже при 100 наблюдениях (в этом случае стандартная ошибка средней становится в 10 раз меньше, чем стандартное отклонение выборки). Больше, конечно, лучше, но бесконечно увеличивать объем выборки не имеет практического смысла. Хотя, все зависит от поставленных задач и цены ошибки. В некоторых опросах участие принимают десятки тысяч людей.

Дисперсия и стандартная ошибка средней имеют большое практическое значение. Они используются в проверке гипотез и расчете доверительных интервалов.

Поделиться в социальных сетях:

Значение слова «СТАНДАРТНАЯ ОШИБКА» найдено в 13 источниках

СТАНДАРТНАЯ ОШИБКА

СТАНДАРТНАЯ ОШИБКА

(standard error) Показатель надежности расчетного параметра. Стандартная ошибка – это стандартное отклонение оценок, которые будут получены при многократной случайной выборке данного размера из одной и той же совокупности. Стандартная ошибка – это убывающая функция объема выборки: чем меньше стандартная ошибка, тем более достоверной является оценка.

Экономика. Толковый словарь. — М.: «ИНФРА-М», Издательство «Весь Мир»..2000.

величина, характеризующая случайную ошибку выборки стандартное отклонение выборочного распределения статистики; обозначается SE (standard error). Может вычисляться для любых выборочных статистик; используется при построении соответствующих доверительных интервалов и статистической проверке гипотез .
Наиболее часто используется С.О. среднего арифметического . Она вычисляется по формуле SE = s / Vn, где s стандартное отклонение переменной, n объем выборки. Чем меньше стандартное отклонение s и больше объем выборки n, тем меньше С.О. С.О. среднего арифметического применяется при построении доверительного интервала для математического ожидания , интервального оценивания случайной ошибки выборки , нахождения объема репрезентативной выборки при заданных доверительной вероятности и предельно допустимой ошибке выборки.
О.В. Терещенко

показатель отклонения полученного коэффициента регрессии от предполагаемого значения реального (но неизвестного) коэффициента для массива. В (t-тесте стандартная ошибка определенного коэффициента делится на этот коэффициент, показывая t-значение. t-таблица, численная таблица, состоящая из значений f-отношения и частоты их появления в (-распределении, чье среднее значение равняется нулю, t-тест: тест статистической значимости полученных коэффициентов регрессии. Если коэффициент проходит этот тест, то исследователь может быть вполне уверен в том, что значение коэффициента для массива не равняется нулю;

Стандартное отклонение распределения теоретической выборки. Оно обеспечивает оценку вариативности, которая может ожидаться в фактических выборках из основной теоретической популяции и, таким образом, и в популяционном параметре. См. стандартная ошибка среднего, которая является оценкой стандартной ошибки, наиболее часто используемой для оценки репрезентативности выборки.

Стандартное
отклонение статистики, в
частности, выборочного распределения оценки. Как правило, употребляется в
выражениях типа «стандартная ошибка среднего» (которая равна стандартному
отклонению, деленному на корень квадратный из объема выборки).

• kvadratická chyba

• směrodatná odchylka

• standardní odchylka

• střední chyba

1) mean-square error

2) standard error

. см. ВЫБОРКИ ОШИБКА.
Antinazi.Энциклопедия социологии,2009

Что такое Стандартная ошибка?

Стандартная ошибка (SE) статистики – это приблизительное стандартное отклонение статистической выборки. Стандартная ошибка – это статистический термин, который измеряет точность, с которой выборочное распределение представляет генеральную совокупность с помощью стандартного отклонения. В статистике выборочное среднее отклоняется от фактического среднего для генеральной совокупности; это отклонение представляет собой стандартную ошибку среднего.

Ключевые моменты

  • Стандартная ошибка – это приблизительное стандартное отклонение статистической выборки.
  • Стандартная ошибка может включать вариацию между вычисленным средним для генеральной совокупности и тем, которое считается известным или принимаемым как точное.
  • Чем больше точек данных участвует в расчетах среднего, тем меньше стандартная ошибка.

Понимание стандартной ошибки

Термин «стандартная ошибка» используется для обозначения стандартного отклонения различных статистических данных выборки, таких как среднее или медианное значение. Например, «стандартная ошибка среднего» относится к стандартному отклонению распределения выборочных средних, взятых из генеральной совокупности. Чем меньше стандартная ошибка, тем более репрезентативной будет выборка для генеральной совокупности.

Связь между стандартной ошибкой и стандартным отклонением такова, что для данного размера выборки стандартная ошибка равна стандартному отклонению, деленному на квадратный корень из размера выборки. Стандартная ошибка также обратно пропорциональна размеру выборки; Чем больше размер выборки, тем меньше стандартная ошибка, поскольку статистика приближается к фактическому значению.

Стандартная ошибка считается частью выводимой статистики. Он представляет собой стандартное отклонение среднего значения в наборе данных. Это служит мерой вариации случайных величин, обеспечивая измерение спреда. Чем меньше разброс, тем точнее набор данных.

Краткая справка

Стандартная ошибка и стандартное отклонение – это меры изменчивости, в то время как меры центральной тенденции включают среднее значение, медианное значение и т. Д.

Требования к стандартной ошибке 

Когда производится выборка из генеральной совокупности , обычно рассчитывается среднее или среднее значение. Стандартная ошибка может включать разброс между вычисленным средним для генеральной совокупности и тем, которое считается известным или принимаемым как точное. Это помогает компенсировать любые случайные неточности, связанные со сбором пробы.

В случаях, когда собирается несколько образцов, среднее значение каждой выборки может незначительно отличаться от других, создавая разброс между переменными. Этот разброс чаще всего измеряется как стандартная ошибка, учитывающая различия между средними значениями в наборах данных.

Чем больше точек данных участвует в расчетах среднего, тем меньше стандартная ошибка. Когда стандартная ошибка мала, данные считаются более репрезентативными для истинного среднего значения. В случаях, когда стандартная ошибка велика, данные могут иметь некоторые заметные отклонения.

Стандартное отклонение – это представление разброса каждой точки данных. Стандартное отклонение используется для определения достоверности данных на основе количества точек данных, отображаемых на каждом уровне стандартного отклонения. Стандартные ошибки больше служат способом определения точности образца или точности нескольких образцов путем анализа отклонения в пределах средних.

Имея
прямую регрессии, необходимо оценить
насколько сильно точки исходных данных
отклоняются от прямой регрессии. Можно
выполнить оценку разброса, аналогичную
стандартному отклонению выборки. Этот
показатель, называемый стандартной
ошибкой оценки, демонстрирует величину
отклонения точек исходных данных от
прямой регрессии в направлении оси Y.
Стандартная ошибка оценки ()
вычисляется по следующей формуле.

Стандартная
ошибка оценки измеряет степень отличия
реальных значений Y от оцененной величины.
Для сравнительно больших выборок следует
ожидать, что около 67% разностей по модулю
не будет превышать

и около 95% модулей разностей будет не
больше 2.

Стандартная
ошибка оценки подобна стандартному
отклонению. Ее можно использовать для
оценки стандартного отклонения
совокупности. Фактически

оценивает стандартное отклонение

слагаемого ошибки

в статистической модели простой линейной
регрессии. Другими словами,

оценивает общее стандартное отклонение

нормального распределения значений Y,
имеющих математические ожидания

для каждого X.

Малая
стандартная ошибка оценки, полученная
при регрессионном анализе, свидетельствует,
что все точки данных находятся очень
близко к прямой регрессии. Если стандартная
ошибка оценки велика, точки данных могут
значительно удаляться от прямой.

2.3 Прогнозирование величины y

Регрессионную
прямую можно использовать для оценки
величины переменной Y
при данных значениях переменной X. Чтобы
получить точечный прогноз, или предсказание
для данного значения X, просто вычисляется
значение найденной функции регрессии
в точке X.

Конечно
реальные значения величины Y,
соответствующие рассматриваемым
значениям величины X, к сожалению, не
лежат в точности на регрессионной
прямой. Фактически они разбросаны
относительно прямой в соответствии с
величиной
.
Более того, выборочная регрессионная
прямая является оценкой регрессионной
прямой генеральной совокупности,
основанной на выборке из определенных
пар данных. Другая случайная выборка
даст иную выборочную прямую регрессии;
это аналогично ситуации, когда различные
выборки из одной и той же генеральной
совокупности дают различные значения
выборочного среднего.

Есть
два источника неопределенности в
точечном прогнозе, использующем уравнение
регрессии.

  1. Неопределенность,
    обусловленная отклонением точек данных
    от выборочной прямой регрессии.

  2. Неопределенность,
    обусловленная отклонением выборочной
    прямой регрессии от регрессионной
    прямой генеральной совокупности.

Интервальный
прогноз значений переменной Y
можно построить так, что при этом будут
учтены оба источника неопределенности.

Стандартная
ошибка прогноза

дает меру вариативности предсказанного
значения Y
около истинной величины Y
для данного значения X.
Стандартная ошибка прогноза равна:

Стандартная
ошибка прогноза зависит от значения X,
для которого прогнозируется величина
Y.

минимально, когда
,
поскольку тогда числитель в третьем
слагаемом под корнем в уравнении будет
0. При прочих неизменных величинах
большему отличию соответствует большее
значение стандартной ошибки прогноза.

Если
статистическая модель простой линейной
регрессии соответствует действительности,
границы интервала прогноза величины Y
равны:

где

— квантиль распределения Стьюдента с
n-2 степенями свободы ().
Если выборка велика (),
этот квантиль можно заменить соответствующим
квантилем нормального распределения.
Например, для большой выборки 95%-ный
интервал прогноза задается следующими
значениями:

Завершим
раздел обзором предположений, положенных
в основу статистической модели линейной
регрессии.

  1. Для
    заданного значения X генеральная
    совокупность значений Y имеет нормальное
    распределение относительно регрессионной
    прямой совокупности. На практике
    приемлемые результаты получаются
    и
    тогда, когда значения Y имеют
    нормальное распределение лишь
    приблизительно.

  2. Разброс
    генеральной совокупности точек данных
    относительно регрессионной прямой
    совокупности остается постоянным всюду
    вдоль этой прямой. Иными словами, при
    возрастании значений X в точках данных
    дисперсия генеральной совокупности
    не увеличивается и не уменьшается.
    Нарушение этого предположения называется
    гетероскедастичностью.

  3. Слагаемые
    ошибок

    независимы между собой. Это предположение
    определяет случайность выборки точек
    Х-Y.
    Если точки данных X-Y
    записывались в течение некоторого
    времени, данное предположение часто
    нарушается. Вместо независимых данных,
    такие последовательные наблюдения
    будут давать серийно коррелированные
    значения.

  4. В
    генеральной совокупности существует
    линейная зависимость между X и Y.
    По аналогии с простой линейной регрессией
    может рассматриваться и нелинейная
    зависимость между X и У. Некоторые такие
    случаи будут обсуждаться ниже.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Для значения, которое выбирается с несмещенной ошибкой с нормальным распределением, приведенное выше показывает долю выборок, которая будет находиться между 0, 1, 2 и 3 стандартными отклонениями выше и ниже фактического значения.

Стандартная ошибка ( SE ) из статистики (обычно подсчет параметра ) является стандартным отклонением ее выборочного распределения или оценка этого стандартного отклонения. Если статистика является выборочным средним, это называется стандартной ошибкой среднего ( SEM ).

Распределение выборки из среднего генерируется путем повторного отбора образцов из того же населения и записи средств, полученных образцов. Это формирует распределение различных средних, и это распределение имеет собственное среднее значение и дисперсию . Математически дисперсия полученного распределения выборки равна дисперсии генеральной совокупности, деленной на размер выборки. Это связано с тем, что по мере увеличения размера выборки средние значения выборки сгруппируются более близко к среднему значению генеральной совокупности.

Следовательно, соотношение между стандартной ошибкой среднего и стандартным отклонением таково, что для данного размера выборки стандартная ошибка среднего равна стандартному отклонению, деленному на квадратный корень из размера выборки. Другими словами, стандартная ошибка среднего — это мера разброса выборочных средних вокруг среднего по генеральной совокупности.

В регрессионном анализе термин «стандартная ошибка» относится либо к квадратному корню из приведенной статистики хи-квадрат, либо к стандартной ошибке для конкретного коэффициента регрессии (который используется, например, в доверительных интервалах ).

Стандартная ошибка среднего

Точное значение

Если статистически независимые выборки наблюдений берется из статистической совокупности с стандартным отклонением от, то среднее значение, рассчитанное из образца будет иметь ассоциированную стандартную ошибку среднего значения на заданном с помощью:
п{ Displaystyle x_ {1}, x_ {2}, ldots, x_ {n}}сигма{ bar {x}} { displaystyle { sigma} _ { bar {x}}}

{ displaystyle { sigma} _ { bar {x}} = { frac { sigma} { sqrt {n}}}}.

На практике это говорит нам о том, что при попытке оценить значение среднего по совокупности из-за фактора уменьшение ошибки оценки в два раза требует получения в четыре раза большего количества наблюдений в выборке; уменьшение его в десять раз требует в сто раз больше наблюдений.
1 / { sqrt {n}}

Оценивать

Стандартное отклонение отобранной совокупности известно редко. Таким образом, стандартная ошибка среднего обычно оцениваются путем замены с стандартным отклонением выборки вместо:
сигмасигма sigma _ {x}

{ displaystyle { sigma} _ { bar {x}} приблизительно { frac { sigma _ {x}} { sqrt {n}}}}.

Поскольку это только оценка истинной «стандартной ошибки», здесь часто встречаются другие обозначения, такие как:

{ displaystyle { widehat { sigma}} _ { bar {x}} = { frac { sigma _ {x}} { sqrt {n}}}} или поочередно . { displaystyle {s} _ { bar {x}} = { frac {s} { sqrt {n}}}}

Общим источником путаницы возникает при отсутствии четко различать между стандартным отклонением населения ( ), стандартное отклонение выборки ( ), стандартное отклонение среднего само по себе (, который является стандартная ошибка), а оценка из стандартное отклонение среднего ( которое является наиболее часто вычисляемой величиной и также часто в просторечии называется стандартной ошибкой ).
сигмаsigma _ {x}{ displaystyle sigma _ { bar {x}}}{ displaystyle { widehat { sigma}} _ { bar {x}}}

Точность оценщика

Когда размер выборки невелик, использование стандартного отклонения выборки вместо истинного стандартного отклонения генеральной совокупности будет иметь тенденцию к систематическому занижению стандартного отклонения генеральной совокупности, а, следовательно, и стандартной ошибки. При n = 2 занижение составляет около 25%, но для n = 6 занижение составляет всего 5%. Гурланд и Трипати (1971) предлагают поправку и уравнение для этого эффекта. Сокал и Рольф (1981) приводят уравнение поправочного коэффициента для малых выборок n <20. См. Несмещенную оценку стандартного отклонения для дальнейшего обсуждения.

Вывод

Стандартная ошибка среднего может быть получена из дисперсии суммы независимых случайных величин с учетом определения дисперсии и некоторых ее простых свойств . Если это независимые наблюдения от совокупности со средним значением и стандартным отклонением, то мы можем определить общую
{ Displaystyle x_ {1}, x_ {2}, ldots, x_ {n}}п{ bar {x}}сигма

{ Displaystyle T = (x_ {1} + x_ {2} + cdots + x_ {n})}

которые по формуле Биенайме будут иметь дисперсию

{ displaystyle operatorname {Var} (T) = { big (} operatorname {Var} (x_ {1}) + operatorname {Var} (x_ {2}) + cdots + operatorname {Var} ( x_ {n}) { big)} = n sigma ^ {2}.}

Среднее значение этих измерений просто дается выражением
{ bar {x}}

{ displaystyle { bar {x}} = Т / п}.

Тогда дисперсия среднего составляет

{ displaystyle operatorname {Var} ({ bar {x}}) = operatorname {Var} left ({ frac {T} {n}} right) = { frac {1} {n ^ { 2}}} operatorname {Var} (T) = { frac {1} {n ^ {2}}} n sigma ^ {2} = { frac { sigma ^ {2}} {n}} .}

Стандартная ошибка — это, по определению, стандартное отклонение, которое представляет собой квадратный корень из дисперсии:
{ bar {x}}

{ displaystyle sigma _ { bar {x}} = { sqrt { frac { sigma ^ {2}} {n}}} = { frac { sigma} { sqrt {n}}}}.

Для коррелированных случайных величин дисперсия выборки должна быть вычислена в соответствии с центральной предельной теоремой Маркова .

Независимые и одинаково распределенные случайные величины со случайным размером выборки

Бывают случаи, когда образец берут, не зная заранее, сколько наблюдений будет приемлемым по какому-либо критерию. В таких случаях размер выборки является случайной величиной, вариация которой добавляется к вариации, так что,
NИкс

{ Displaystyle OperatorName {Var} (T) = OperatorName {E} (N) OperatorName {Var} (X) + Operatorname {Var} (N) { big (} Operatorname {E} (X) { big)} ^ {2}}

Если имеет распределение Пуассона, то с оценкой . Следовательно, оценка становится, приводя к следующей формуле для стандартной ошибки:
N{ Displaystyle OperatorName {E} (N) = OperatorName {Var} (N)}{ displaystyle N = n}{ displaystyle operatorname {Var} (T)}{ displaystyle nS_ {X} ^ {2} + n { bar {X}} ^ {2}}

{ displaystyle operatorname {Standard ~ Error} ({ bar {X}}) = { sqrt { frac {S_ {X} ^ {2} + { bar {X}} ^ {2}} {n }}}}

(поскольку стандартное отклонение — это квадратный корень из дисперсии)

Приближение Стьюдента при неизвестном значении σ

Во многих практических приложениях истинное значение σ неизвестно. В результате нам нужно использовать распределение, которое учитывает этот разброс возможных σ . Когда известно, что истинное базовое распределение является гауссовым, хотя и с неизвестным σ, тогда полученное оцененное распределение следует t-распределению Стьюдента. Стандартная ошибка — это стандартное отклонение t-распределения Стьюдента. Т-распределения немного отличаются от гауссовых и меняются в зависимости от размера выборки. Небольшие выборки с большей вероятностью недооценивают стандартное отклонение совокупности и имеют среднее значение, которое отличается от истинного среднего значения совокупности, а t-распределение Стьюдента учитывает вероятность этих событий с несколько более тяжелыми хвостами по сравнению с гауссовым. Для оценки стандартной ошибки t-распределения Стьюдента достаточно использовать выборочное стандартное отклонение «s» вместо σ, и мы могли бы использовать это значение для вычисления доверительных интервалов.

Примечание. Распределение вероятностей Стьюдента хорошо аппроксимируется распределением Гаусса, когда размер выборки превышает 100. Для таких выборок можно использовать последнее распределение, которое намного проще.

Предположения и использование

Пример того, как это используется, — это сделать доверительные интервалы для неизвестного среднего значения генеральной совокупности. Если распределение выборки имеет нормальное распределение, среднее значение выборки, стандартная ошибка и квантили нормального распределения могут использоваться для расчета доверительных интервалов для истинного среднего значения генеральной совокупности. Следующие выражения могут быть использованы для расчета верхнего и нижнего 95% доверительных интервалов, где равно среднему значению выборки, равно стандартной ошибке для среднего значения выборки, а 1,96 является приблизительным значением точки процентиля 97,5 нормального распространение :
{ displaystyle operatorname {SE}}{ bar {x}}{ displaystyle operatorname {SE}}

Верхний предел 95% и{ displaystyle = { bar {x}} + ( operatorname {SE} times 1,96),}
Нижний предел 95% { displaystyle = { bar {x}} - ( operatorname {SE} times 1.96).}

В частности, стандартная ошибка выборочной статистики (например, выборочное среднее ) — это фактическое или расчетное стандартное отклонение выборочного среднего в процессе, в котором оно было создано. Другими словами, это фактическое или оценочное стандартное отклонение выборочного распределения статистической выборки. Обозначение для стандартной ошибки может быть любым из SE, SEM (для стандартной ошибки измерения или среднего ), или S E .

Стандартные ошибки обеспечивают простые меры неопределенности значения и часто используются, потому что:

  • во многих случаях, если известна стандартная ошибка нескольких отдельных величин, то стандартную ошибку некоторой функции величин можно легко вычислить;
  • когда распределение вероятностей значения известно, его можно использовать для вычисления точного доверительного интервала ;
  • когда распределение вероятностей неизвестно, для расчета консервативного доверительного интервала можно использовать неравенства Чебышева или Высочанского – Петунина ; а также
  • поскольку размер выборки стремится к бесконечности, центральная предельная теорема гарантирует, что выборочное распределение среднего является асимптотически нормальным .

Стандартная ошибка среднего значения по сравнению со стандартным отклонением

В научно-технической литературе экспериментальные данные часто обобщаются либо с использованием среднего значения и стандартного отклонения выборочных данных, либо среднего значения со стандартной ошибкой. Это часто приводит к путанице в отношении их взаимозаменяемости. Однако среднее значение и стандартное отклонение являются описательной статистикой, тогда как стандартная ошибка среднего описывает процесс случайной выборки. Стандартное отклонение данных выборки — это описание вариации в измерениях, в то время как стандартная ошибка среднего — это вероятностное утверждение о том, как размер выборки обеспечит лучшую границу оценок среднего для генеральной совокупности в свете центрального предела. теорема.

Проще говоря, стандартная ошибка выборочного среднего — это оценка того, насколько далеко среднее значение выборки может быть от среднего значения по совокупности, тогда как стандартное отклонение выборки — это степень, в которой отдельные лица в выборке отличаются от выборочного среднего. Если стандартное отклонение генеральной совокупности конечно, стандартная ошибка среднего значения выборки будет стремиться к нулю с увеличением размера выборки, потому что оценка генерального среднего будет улучшаться, в то время как стандартное отклонение выборки будет иметь тенденцию приближаться к стандарту генеральной совокупности. отклонение по мере увеличения размера выборки.

Расширения

Поправка на конечную популяцию (FPC)

Приведенная выше формула для стандартной ошибки предполагает, что размер выборки намного меньше, чем размер генеральной совокупности, так что совокупность может считаться фактически бесконечной по размеру. Обычно это имеет место даже в случае конечных популяций, потому что большую часть времени люди в первую очередь заинтересованы в управлении процессами, которые создали существующую конечную популяцию; это называется аналитическим исследованием вслед за У. Эдвардсом Демингом . Если люди заинтересованы в управлении существующей конечной совокупностью, которая не будет меняться с течением времени, то необходимо сделать поправку на размер популяции; это называется перечислительным исследованием .

Когда доля выборки (часто называемая f ) велика (примерно 5% или более) в переписном исследовании, оценка стандартной ошибки должна быть скорректирована путем умножения на «поправку на конечную совокупность» (также известную как fpc ):

{ displaystyle operatorname {FPC} = { sqrt { frac {Nn} {N-1}}}}

что для больших N :

{ displaystyle operatorname {FPC} приблизительно { sqrt {1 - { frac {n} {N}}}} = { sqrt {1-f}}}

чтобы учесть дополнительную точность, полученную за счет выборки, близкой к большему проценту населения. Эффект FPC является то, что ошибка становится равной нулю, когда размер выборки п равен размеру популяции N .

Это происходит в методологии обследования при выборке без замены . Если выборка с заменой, то FPC не играет роли.

Поправка на корреляцию в выборке

Ожидаемая ошибка среднего значения A для выборки из n точек данных с коэффициентом смещения выборки  ρ . Несмещенная стандартная ошибка строится как  диагональная линия ρ = 0 с логарифмическим наклоном −½.

Если значения измеренной величины A не являются статистически независимыми, но были получены из известных мест в пространстве параметров  x, несмещенная оценка истинной стандартной ошибки среднего (фактически поправка на часть стандартного отклонения) может быть получена путем умножения рассчитанная стандартная ошибка выборки по коэффициенту  f :

f = { sqrt { frac {1+ rho} {1- rho}}},

где коэффициент смещения выборки ρ представляет собой широко используемую оценку Прайса – Винстена коэффициента автокорреляции (величина от -1 до +1) для всех пар точек выборки. Эта приблизительная формула предназначена для выборки среднего и большого размера; Справочник дает точные формулы для любого размера выборки и может применяться к сильно автокоррелированным временным рядам, таким как котировки акций Уолл-стрит. Более того, эта формула работает как для положительного, так и для отрицательного значения ρ. См. Также объективную оценку стандартного отклонения для более подробного обсуждения.

Смотрите также

  • Иллюстрация центральной предельной теоремы
  • Допустимая погрешность
  • Вероятная ошибка
  • Стандартная ошибка средневзвешенного значения
  • Среднее значение выборки и ковариация выборки
  • Стандартная ошибка медианы
  • Дисперсия

использованная литература

Стандартное отклонение и стандартная ошибка: в чем разница?

  • Редакция Кодкампа

17 авг. 2022 г.
читать 2 мин


В статистике студенты часто путают два термина: стандартное отклонение и стандартная ошибка .

Стандартное отклонение измеряет, насколько разбросаны значения в наборе данных.

Стандартная ошибка — это стандартное отклонение среднего значения в повторных выборках из совокупности.

Давайте рассмотрим пример, чтобы ясно проиллюстрировать эту идею.

Пример: стандартное отклонение против стандартной ошибки

Предположим, мы измеряем вес 10 разных черепах.

Для этой выборки из 10 черепах мы можем вычислить среднее значение выборки и стандартное отклонение выборки:

Предположим, что стандартное отклонение оказалось равным 8,68. Это дает нам представление о том, насколько распределен вес этих черепах.

Но предположим, что мы собираем еще одну простую случайную выборку из 10 черепах и также проводим их измерения. Более чем вероятно, что эта выборка из 10 черепах будет иметь немного другое среднее значение и стандартное отклонение, даже если они взяты из одной и той же популяции:

Теперь, если мы представим, что мы берем повторные выборки из одной и той же совокупности и записываем выборочное среднее и выборочное стандартное отклонение для каждой выборки:

Теперь представьте, что мы наносим каждое среднее значение выборки на одну и ту же строку:

Стандартное отклонение этих средних значений известно как стандартная ошибка.

Формула для фактического расчета стандартной ошибки:

Стандартная ошибка = s/ √n

куда:

  • s: стандартное отклонение выборки
  • n: размер выборки

Какой смысл использовать стандартную ошибку?

Когда мы вычисляем среднее значение данной выборки, нас на самом деле интересует не среднее значение этой конкретной выборки, а скорее среднее значение большей совокупности, из которой взята выборка.

Однако мы используем выборки, потому что для них гораздо проще собирать данные, чем для всего населения. И, конечно же, среднее значение выборки будет варьироваться от выборки к выборке, поэтому мы используем стандартную ошибку среднего значения как способ измерить, насколько точна наша оценка среднего значения.

Вы заметите из формулы для расчета стандартной ошибки, что по мере увеличения размера выборки (n) стандартная ошибка уменьшается:

Стандартная ошибка = s/ √n

Это должно иметь смысл, поскольку большие размеры выборки уменьшают изменчивость и увеличивают вероятность того, что среднее значение нашей выборки ближе к фактическому среднему значению генеральной совокупности.

Когда использовать стандартное отклонение против стандартной ошибки

Если мы просто заинтересованы в измерении того, насколько разбросаны значения в наборе данных, мы можем использовать стандартное отклонение .

Однако, если мы заинтересованы в количественной оценке неопределенности оценки среднего значения, мы можем использовать стандартную ошибку среднего значения .

В зависимости от вашего конкретного сценария и того, чего вы пытаетесь достичь, вы можете использовать либо стандартное отклонение, либо стандартную ошибку.

Для значения, которое выбирается с несмещенной ошибкой с нормальным распределением , приведенное выше показывает долю выборок, которая будет находиться между 0, 1, 2 и 3 стандартными отклонениями выше и ниже фактического значения.

Стандартная ошибка ( SE ) из статистики (обычно подсчет параметра ) является стандартным отклонением ее выборочного распределения или оценка этого стандартного отклонения. Если статистика является выборочным средним, это называется стандартной ошибкой среднего ( SEM ).

Распределение выборки из среднего генерируется путем повторного отбора образцов из того же населения и записи средств , полученных образцов. Это формирует распределение различных средних, и это распределение имеет собственное среднее значение и дисперсию . Математически дисперсия полученного распределения выборки равна дисперсии генеральной совокупности, деленной на размер выборки. Это связано с тем, что по мере увеличения размера выборки средние значения выборки сгруппируются более близко к среднему значению генеральной совокупности.

Следовательно, соотношение между стандартной ошибкой среднего и стандартным отклонением таково, что для данного размера выборки стандартная ошибка среднего равна стандартному отклонению, деленному на квадратный корень из размера выборки. Другими словами, стандартная ошибка среднего — это мера разброса выборочных средних вокруг среднего по генеральной совокупности.

В регрессионном анализе термин «стандартная ошибка» относится либо к квадратному корню из приведенной статистики хи-квадрат , либо к стандартной ошибке для конкретного коэффициента регрессии (который используется, например, в доверительных интервалах ).

Стандартная ошибка среднего

Точное значение

Если статистически независимые выборки наблюдений берется из статистической совокупности с стандартным отклонением от , то среднее значение , рассчитанное из образца будет иметь ассоциированную стандартную ошибку среднего значения на заданном с помощью:
п{ Displaystyle x_ {1}, x_ {2},  ldots, x_ {n}}сигма { bar {x}} { displaystyle { sigma} _ { bar {x}}}

{ displaystyle { sigma} _ { bar {x}}  = { frac { sigma} { sqrt {n}}}}.

На практике это говорит нам о том, что при попытке оценить значение среднего по совокупности из-за фактора уменьшение ошибки оценки в два раза требует получения в четыре раза большего количества наблюдений в выборке; уменьшение его в десять раз требует в сто раз больше наблюдений.
1 / { sqrt {n}}

Оценивать

Стандартное отклонение отобранной совокупности известно редко. Таким образом, стандартная ошибка среднего обычно оцениваются путем замены с стандартным отклонением выборки вместо:
сигма сигма  sigma _ {x}

{ displaystyle { sigma} _ { bar {x}}   приблизительно { frac { sigma _ {x}} { sqrt {n}}}}.

Поскольку это только оценка истинной «стандартной ошибки», здесь часто встречаются другие обозначения, такие как:

{ displaystyle { widehat { sigma}} _ { bar {x}} = { frac { sigma _ {x}} { sqrt {n}}}} или поочередно . { displaystyle {s} _ { bar {x}}  = { frac {s} { sqrt {n}}}}

Общим источником путаницы возникает при отсутствии четко различать между стандартным отклонением населения ( ), стандартное отклонение выборки ( ), стандартное отклонение среднего само по себе ( , который является стандартная ошибка), а оценка из стандартное отклонение среднего ( которое является наиболее часто вычисляемой величиной и также часто в просторечии называется стандартной ошибкой ).
сигма  sigma _ {x}{ displaystyle  sigma _ { bar {x}}}{ displaystyle { widehat { sigma}} _ { bar {x}}}

Точность оценщика

Когда размер выборки невелик, использование стандартного отклонения выборки вместо истинного стандартного отклонения генеральной совокупности будет иметь тенденцию к систематическому занижению стандартного отклонения генеральной совокупности, а, следовательно, и стандартной ошибки. При n = 2 занижение составляет около 25%, но для n = 6 занижение составляет всего 5%. Гурланд и Трипати (1971) предлагают поправку и уравнение для этого эффекта. Сокал и Рольф (1981) приводят уравнение поправочного коэффициента для малых выборок n <20. См. Несмещенную оценку стандартного отклонения для дальнейшего обсуждения.

Вывод

Стандартная ошибка среднего может быть получена из дисперсии суммы независимых случайных величин с учетом определения дисперсии и некоторых ее простых свойств . Если это независимые наблюдения от совокупности со средним значением и стандартным отклонением , то мы можем определить общую
{ Displaystyle x_ {1}, x_ {2},  ldots, x_ {n}}п{ bar {x}}сигма

{ Displaystyle T = (x_ {1} + x_ {2} +  cdots + x_ {n})}

которые по формуле Биенайме будут иметь дисперсию

{ displaystyle  operatorname {Var} (T) = { big (}  operatorname {Var} (x_ {1}) +  operatorname {Var} (x_ {2}) +  cdots +  operatorname {Var} ( x_ {n}) { big)} = n  sigma ^ {2}.}

Среднее значение этих измерений просто дается выражением
{ bar {x}}

{ displaystyle { bar {x}} = Т / п}.

Тогда дисперсия среднего составляет

{ displaystyle  operatorname {Var} ({ bar {x}}) =  operatorname {Var}  left ({ frac {T} {n}}  right) = { frac {1} {n ^ { 2}}}  operatorname {Var} (T) = { frac {1} {n ^ {2}}} n  sigma ^ {2} = { frac { sigma ^ {2}} {n}} .}

Стандартная ошибка — это, по определению, стандартное отклонение, которое представляет собой квадратный корень из дисперсии:
{ bar {x}}

{ displaystyle  sigma _ { bar {x}} = { sqrt { frac { sigma ^ {2}} {n}}} = { frac { sigma} { sqrt {n}}}}.

Для коррелированных случайных величин дисперсия выборки должна быть вычислена в соответствии с центральной предельной теоремой Маркова .

Независимые и одинаково распределенные случайные величины со случайным размером выборки

Бывают случаи, когда образец берут, не зная заранее, сколько наблюдений будет приемлемым по какому-либо критерию. В таких случаях размер выборки является случайной величиной, вариация которой добавляется к вариации , так что,
NИкс

{ Displaystyle  OperatorName {Var} (T) =  OperatorName {E} (N)  OperatorName {Var} (X) +  Operatorname {Var} (N) { big (}  Operatorname {E} (X) { big)} ^ {2}}

Если имеет распределение Пуассона , то с оценкой . Следовательно, оценка становится , приводя к следующей формуле для стандартной ошибки:
N{ Displaystyle  OperatorName {E} (N) =  OperatorName {Var} (N)}{ displaystyle N = n}{ displaystyle  operatorname {Var} (T)}{ displaystyle nS_ {X} ^ {2} + n { bar {X}} ^ {2}}

{ displaystyle  operatorname {Standard ~ Error} ({ bar {X}}) = { sqrt { frac {S_ {X} ^ {2} + { bar {X}} ^ {2}} {n }}}}

(поскольку стандартное отклонение — это квадратный корень из дисперсии)

Приближение Стьюдента при неизвестном значении σ

Во многих практических приложениях истинное значение σ неизвестно. В результате нам нужно использовать распределение, которое учитывает этот разброс возможных σ . Когда известно, что истинное базовое распределение является гауссовым, хотя и с неизвестным σ, тогда полученное оцененное распределение следует t-распределению Стьюдента. Стандартная ошибка — это стандартное отклонение t-распределения Стьюдента. Т-распределения немного отличаются от гауссовых и меняются в зависимости от размера выборки. Небольшие выборки с большей вероятностью недооценивают стандартное отклонение совокупности и имеют среднее значение, которое отличается от истинного среднего значения совокупности, а t-распределение Стьюдента учитывает вероятность этих событий с несколько более тяжелыми хвостами по сравнению с гауссовым. Для оценки стандартной ошибки t-распределения Стьюдента достаточно использовать выборочное стандартное отклонение «s» вместо σ , и мы могли бы использовать это значение для вычисления доверительных интервалов.

Примечание. Распределение вероятностей Стьюдента хорошо аппроксимируется распределением Гаусса, когда размер выборки превышает 100. Для таких выборок можно использовать последнее распределение, которое намного проще.

Предположения и использование

Пример того, как это используется, — это сделать доверительные интервалы для неизвестного среднего значения генеральной совокупности. Если распределение выборки имеет нормальное распределение , среднее значение выборки, стандартная ошибка и квантили нормального распределения могут использоваться для расчета доверительных интервалов для истинного среднего значения генеральной совокупности. Следующие выражения могут быть использованы для расчета верхнего и нижнего 95% доверительных интервалов, где равно среднему значению выборки, равно стандартной ошибке для среднего значения выборки, а 1,96 является приблизительным значением точки процентиля 97,5 нормального распространение :
{ displaystyle  operatorname {SE}}{ bar {x}}{ displaystyle  operatorname {SE}}

Верхний предел 95% и{ displaystyle = { bar {x}} + ( operatorname {SE}  times 1,96),}
Нижний предел 95% { displaystyle = { bar {x}} - ( operatorname {SE}  times 1.96).}

В частности, стандартная ошибка выборочной статистики (например, выборочное среднее ) — это фактическое или расчетное стандартное отклонение выборочного среднего в процессе, в котором оно было создано. Другими словами, это фактическое или оценочное стандартное отклонение выборочного распределения статистической выборки. Обозначение для стандартной ошибки может быть любым из SE, SEM (для стандартной ошибки измерения или среднего ), или S E .

Стандартные ошибки обеспечивают простые меры неопределенности значения и часто используются, потому что:

  • во многих случаях, если известна стандартная ошибка нескольких отдельных величин, то стандартную ошибку некоторой функции величин можно легко вычислить;
  • когда распределение вероятностей значения известно, его можно использовать для вычисления точного доверительного интервала ;
  • когда распределение вероятностей неизвестно, для расчета консервативного доверительного интервала можно использовать неравенства Чебышева или Высочанского – Петунина ; а также
  • поскольку размер выборки стремится к бесконечности, центральная предельная теорема гарантирует, что выборочное распределение среднего является асимптотически нормальным .

Стандартная ошибка среднего значения по сравнению со стандартным отклонением

В научно-технической литературе экспериментальные данные часто обобщаются либо с использованием среднего значения и стандартного отклонения выборочных данных, либо среднего значения со стандартной ошибкой. Это часто приводит к путанице в отношении их взаимозаменяемости. Однако среднее значение и стандартное отклонение являются описательной статистикой , тогда как стандартная ошибка среднего описывает процесс случайной выборки. Стандартное отклонение данных выборки — это описание вариации в измерениях, в то время как стандартная ошибка среднего — это вероятностное утверждение о том, как размер выборки обеспечит лучшую границу оценок среднего для генеральной совокупности в свете центрального предела. теорема.

Проще говоря, стандартная ошибка выборочного среднего — это оценка того, насколько далеко среднее значение выборки может быть от среднего значения по совокупности, тогда как стандартное отклонение выборки — это степень, в которой отдельные лица в выборке отличаются от выборочного среднего. Если стандартное отклонение генеральной совокупности конечно, стандартная ошибка среднего значения выборки будет стремиться к нулю с увеличением размера выборки, потому что оценка генерального среднего будет улучшаться, в то время как стандартное отклонение выборки будет иметь тенденцию приближаться к стандарту генеральной совокупности. отклонение по мере увеличения размера выборки.

Расширения

Поправка на конечную популяцию (FPC)

Приведенная выше формула для стандартной ошибки предполагает, что размер выборки намного меньше, чем размер генеральной совокупности, так что совокупность может считаться фактически бесконечной по размеру. Обычно это имеет место даже в случае конечных популяций, потому что большую часть времени люди в первую очередь заинтересованы в управлении процессами, которые создали существующую конечную популяцию; это называется аналитическим исследованием вслед за У. Эдвардсом Демингом . Если люди заинтересованы в управлении существующей конечной совокупностью, которая не будет меняться с течением времени, то необходимо сделать поправку на размер популяции; это называется перечислительным исследованием .

Когда доля выборки (часто называемая f ) велика (примерно 5% или более) в переписном исследовании , оценка стандартной ошибки должна быть скорректирована путем умножения на «поправку на конечную совокупность» (также известную как fpc ):

{ displaystyle  operatorname {FPC} = { sqrt { frac {Nn} {N-1}}}}

что для больших N :

{ displaystyle  operatorname {FPC}  приблизительно { sqrt {1 - { frac {n} {N}}}} = { sqrt {1-f}}}

чтобы учесть дополнительную точность, полученную за счет выборки, близкой к большему проценту населения. Эффект FPC является то , что ошибка становится равной нулю , когда размер выборки п равен размеру популяции N .

Это происходит в методологии обследования при выборке без замены . Если выборка с заменой, то FPC не играет роли.

Поправка на корреляцию в выборке

Ожидаемая ошибка среднего значения A для выборки из n точек данных с коэффициентом смещения выборки  ρ . Несмещенная стандартная ошибка строится как  диагональная линия ρ = 0 с логарифмическим наклоном −½.

Если значения измеренной величины A не являются статистически независимыми, но были получены из известных мест в пространстве параметров  x , несмещенная оценка истинной стандартной ошибки среднего (фактически поправка на часть стандартного отклонения) может быть получена путем умножения рассчитанная стандартная ошибка выборки по коэффициенту  f :

f = { sqrt { frac {1+  rho} {1-  rho}}},

где коэффициент смещения выборки ρ представляет собой широко используемую оценку Прайса – Винстена коэффициента автокорреляции (величина от -1 до +1) для всех пар точек выборки. Эта приблизительная формула предназначена для выборки среднего и большого размера; Справочник дает точные формулы для любого размера выборки и может применяться к сильно автокоррелированным временным рядам, таким как котировки акций Уолл-стрит. Более того, эта формула работает как для положительного, так и для отрицательного значения ρ. См. Также объективную оценку стандартного отклонения для более подробного обсуждения.

Смотрите также

  • Иллюстрация центральной предельной теоремы
  • Допустимая погрешность
  • Вероятная ошибка
  • Стандартная ошибка средневзвешенного значения
  • Среднее значение выборки и ковариация выборки
  • Стандартная ошибка медианы
  • Дисперсия

использованная литература

Среднее арифметическое, как известно, используется для получения обобщающей характеристики некоторого набора данных. Если данные более-менее однородны и в них нет аномальных наблюдений (выбросов), то среднее хорошо обобщает данные, сведя к минимуму влияние случайных факторов (они взаимопогашаются при сложении).

Когда анализируемые данные представляют собой выборку (которая состоит из случайных значений), то среднее арифметическое часто (но не всегда) выступает в роли приближенной оценки математического ожидания. Почему приближенной? Потому что среднее арифметическое – это величина, которая зависит от набора случайных чисел, и, следовательно, сама является случайной величиной. При повторных экспериментах (даже в одних и тех же условиях) средние будут отличаться друг от друга.

Для того, чтобы на основе статистического анализа данных делать корректные выводы, необходимо оценить возможный разброс полученного результата. Для этого рассчитываются различные показатели вариации. Но то исходные данные. И как мы только что установили, среднее арифметическое также обладает разбросом, который необходимо оценить и учитывать в дальнейшем (в выводах, в выборе метода анализа и т.д.).

Интуитивно понятно, что разброс средней должен быть как-то связан с разбросом исходных данных. Основной характеристикой разброса средней выступает та же дисперсия.

Дисперсия выборочных данных – это средний квадрат отклонения от средней, и рассчитать ее по исходным данным не составляет труда, например, в Excel предусмотрены специальные функции. Однако, как же рассчитать дисперсию средней, если в распоряжении есть только одна выборка и одно среднее арифметическое?

Расчет дисперсии и стандартной ошибки средней арифметической

Чтобы получить дисперсию средней арифметической нет необходимости проводить множество экспериментов, достаточно иметь только одну выборку. Это легко доказать. Для начала вспомним, что средняя арифметическая (простая) рассчитывается по формуле:

формула средней арифметической

где xi – значения переменной,
n – количество значений.

Теперь учтем два свойства дисперсии, согласно которым, 1) — постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат и 2) — дисперсия суммы независимых случайных величин равняется сумме соответствующих дисперсий. Предполагается, что каждое случайное значение xi обладает одинаковым разбросом, поэтому несложно вывести формулу дисперсии средней арифметической:

Формула дисперсии средней арифметической

Используя более привычные обозначения, формулу записывают как:

Дисперсия средней арифметической

где σ2 – это дисперсия, случайной величины, причем генеральная.

На практике же, генеральная дисперсия известна далеко не всегда, точнее совсем редко, поэтому в качестве оной используют выборочную дисперсию:

Дисперсия средней арифметической по выборке

Стандартное отклонение средней арифметической называется стандартной ошибкой средней и рассчитывается, как квадратный корень из дисперсии.

Формула стандартной ошибки средней при использовании генеральной дисперсии

Стандартная ошибка средней

Формула стандартной ошибки средней при использовании выборочной дисперсии

Стандартная ошибка средней по выборке

Последняя формула на практике используется чаще всего, т.к. генеральная дисперсия обычно не известна. Чтобы не вводить новые обозначения, стандартную ошибку средней обычно записывают в виде соотношения стандартного отклонения выборки и корня объема выборки.

Назначение и свойство стандартной ошибки средней арифметической

Стандартная ошибка средней много, где используется. И очень полезно понимать ее свойства. Посмотрим еще раз на формулу стандартной ошибки средней:

Стандартная ошибка выборочной средней

Числитель – это стандартное отклонение выборки и здесь все понятно. Чем больше разброс данных, тем больше стандартная ошибка средней – прямо пропорциональная зависимость.

Посмотрим на знаменатель. Здесь находится квадратный корень из объема выборки. Соответственно, чем больше объем выборки, тем меньше стандартная ошибка средней. Для наглядности изобразим на одной диаграмме график нормально распределенной переменной со средней равной 10, сигмой – 3, и второй график – распределение средней арифметической этой же переменной, полученной по 16-ти наблюдениям (которое также будет нормальным).

Зависимость стандартной ошибки средней от объем выборки

Судя по формуле, разброс стандартной ошибки средней должен быть в 4 раза (корень из 16) меньше, чем разброс исходных данных, что и видно на рисунке выше. Чем больше наблюдений, тем меньше разброс средней.

Казалось бы, что для получения наиболее точной средней достаточно использовать максимально большую выборку и тогда стандартная ошибка средней будет стремиться к нулю, а сама средняя, соответственно, к математическому ожиданию. Однако квадратный корень объема выборки в знаменателе говорит о том, что связь между точностью выборочной средней и размером выборки не является линейной. Например, увеличение выборки с 20-ти до 50-ти наблюдений, то есть на 30 значений или в 2,5 раза, уменьшает стандартную ошибку средней только на 36%, а со 100-а до 130-ти наблюдений (на те же 30 значений), снижает разброс данных лишь на 12%.

Лучше всего изобразить эту мысль в виде графика зависимости стандартной ошибки средней от размера выборки. Пусть стандартное отклонение равно 10 (на форму графика это не влияет).

Распределение исходных данных и средней

Видно, что примерно после 50-ти значений, уменьшение стандартной ошибки средней резко замедляется, после 100-а – наклон постепенно становится почти нулевым.

Таким образом, при достижении некоторого размера выборки ее дальнейшее увеличение уже почти не сказывается на точности средней. Этот факт имеет далеко идущие последствия. Например, при проведении выборочного обследования населения (опроса) чрезмерное увеличение выборки ведет к неоправданным затратам, т.к. точность почти не меняется. Именно поэтому количество опрошенных редко превышает 1,5 тысячи человек. Точность при таком размере выборки часто является достаточной, а дальнейшее увеличение выборки – нецелесообразным.

Подведем итог. Расчет дисперсии и стандартной ошибки средней имеет довольно простую формулу и обладает полезным свойством, связанным с тем, что относительно хорошая точность средней достигается уже при 100 наблюдениях (в этом случае стандартная ошибка средней становится в 10 раз меньше, чем стандартное отклонение выборки). Больше, конечно, лучше, но бесконечно увеличивать объем выборки не имеет практического смысла. Хотя, все зависит от поставленных задач и цены ошибки. В некоторых опросах участие принимают десятки тысяч людей.

Дисперсия и стандартная ошибка средней имеют большое практическое значение. Они используются в проверке гипотез и расчете доверительных интервалов.

Поделиться в социальных сетях:

Вступление

стандарт D (SD) а также S tandard Е rror (SE) по-видимому, аналогичные терминологии; однако они концептуально настолько разнообразны, что они используются почти взаимозаменяемо в статистической литературе. Каждому термину обычно предшествует символ плюс-минус (+/-), который указывает на то, что они определяют симметричное значение или представляют диапазон значений. Неизменно оба выражения появляются со средним (средним) набором измеренных значений.

Интересно, что SE не имеет ничего общего со стандартами, с ошибками или с сообщением научных данных.

Подробный взгляд на происхождение и объяснение SD и SE покажет, почему профессиональные статистики и те, кто использует это сдержанно, оба склонны ошибаться.

Стандартное отклонение (SD)

SD является описательный статистика, описывающая распространение распределения. Как метрика, это полезно, когда данные обычно распределяются. Однако это менее полезно, когда данные сильно искажены или бимодальны, потому что они не очень хорошо описывают форму распределения. Как правило, мы используем SD при представлении характеристик образца, поскольку мы намерены описывать насколько данные изменяются по среднему значению. Другая полезная статистика для описания распространения данных — это межквартильный диапазон, 25-й и 75-й процентили и диапазон данных.

Рисунок 1. SD является мерой распространения данных. Когда данные являются образцом из нормально распределенного распределения, тогда ожидается, что две трети данных будут находиться в пределах 1 стандартного отклонения среднего значения.

Разница заключается в описательный статистика также, и она определяется как квадрат стандартного отклонения. Обычно это не сообщается при описании результатов, но это более математически приемлемая формула (a.k.a. сумма квадратов отклонений) и играет роль в вычислении статистики.

Например, если у нас есть две статистики п & Q с известными отклонениями вар (П) & вар (Q) , то дисперсия суммы Р + Q равна сумме дисперсий: вар (P) + вар (Q) , Теперь очевидно, почему статистикам нравится говорить об отклонениях.

Но стандартные отклонения имеют важное значение для распространения, особенно когда данные обычно распределяются: среднее значение интервала +/- 1 SD можно ожидать захвата 2/3 образца, а среднее значение интервала + — 2 SD можно ожидать захвата 95% образца.

SD дает представление о том, насколько индивидуальные ответы на вопрос меняются или «отклоняются» от среднего. SD рассказывает исследователю, насколько распространены ответы: сосредоточены ли они вокруг среднего или разбросаны по всему миру? Все ваши респонденты оценили ваш продукт в середине шкалы, или кто-то одобрил его, а некоторые отклонили его?

Рассмотрим эксперимент, в котором респондентам предлагается оценивать продукт по ряду атрибутов по 5-балльной шкале. Среднее значение для группы из десяти респондентов (обозначаемое «A» через «J» ниже) для «хорошей стоимости за деньги» составляло 3,2 с SD 0,4, а среднее значение для «надежности продукта» составляло 3,4 с SD 2,1.

На первый взгляд (смотря только на средства), казалось бы, надежность была оценена выше стоимости. Но более высокий SD для надежности может указывать (как показано ниже в распределении), что ответы были очень поляризованы, где большинство респондентов не имели проблем с надежностью (с оценкой атрибута «5»), но меньший, но важный сегмент респондентов, проблема надежности и оценили атрибут «1». Однако, глядя на среднее значение, он говорит только часть истории, однако чаще всего это то, на что ориентируются исследователи. Распределение ответов важно учитывать, и SD обеспечивает ценную описательную меру этого.

ответчик Хорошая ценность для денег Надежность продукта
3 1
В 3 1
С 3 1
D 3 1
Е 4 5
F 4 5
г 3 5
ЧАС 3 5
я 3 5
J 3 5
Имею в виду 3.2 3.4
Std. Девиация 0.4 2.1

Первый опрос: респонденты оценивают продукт по пятибалльной шкале

Два очень разных распределения ответов на 5-балльную рейтинговую шкалу могут дать одно и то же значение. Рассмотрим следующий пример, показывающий значения ответа для двух разных оценок.

В первом примере (Рейтинг «A») SD равен нулю, потому что ВСЕ ответы были точно средним значением. Индивидуальные ответы не отклонялись от среднего.

В рейтинге «B», хотя среднее значение группы одинаково (3.0) в качестве первого распределения, стандартное отклонение выше. Стандартное отклонение 1.15 показывает, что индивидуальные ответы в среднем * были чуть более 1 балла от среднего.

ответчик Рейтинг «A» Рейтинг «B»
3 1
В 3 2
С 3 2
D 3 3
Е 3 3
F 3 3
г 3 3
ЧАС 3 4
я 3 4
J 3 5
Имею в виду 3.0 3.0
Std. Девиация 0.00 1.15

Второй опрос: респонденты оценивают продукт по пятибалльной шкале

Другой способ взглянуть на SD — это построить распределение как гистограмму ответов. Распределение с низким SD будет отображаться как высокая узкая форма, в то время как большая SD будет обозначаться более широкой формой.

SD обычно не указывает «правильно или неправильно» или «лучше или хуже» — более низкая SD не обязательно более желательна. Он используется исключительно как описательная статистика. Он описывает распределение по отношению к среднему.

T echnical disclaimer, относящийся к SD

Думая о том, что SD как «отклонение» — это отличный способ концептуально понять его смысл. Тем не менее, он фактически не рассчитывается как среднее (если бы это было так, мы бы назвали это «отклонениями»). Вместо этого он «стандартизирован» — несколько сложный метод вычисления значения с использованием суммы квадратов.

Для практических целей вычисление не имеет значения. Большинство программ табуляции, электронных таблиц или других инструментов управления данными будут вычислять SD для вас. Более важно понять, что передает статистика.

Стандартная ошибка

Стандартная ошибка — это выведенный статистика, которая используется при сравнении выборочных средств (средних) по группам населения. Это мера точность от среднего значения выборки. Среднее значение выборки — это статистическая информация, полученная из данных, имеющих базовое распределение. Мы не можем визуализировать его так же, как и данные, поскольку мы выполнили один эксперимент и имеем только одно значение. Статистическая теория говорит нам о том, что среднее значение выборки (для большого, более выбранного образца и в нескольких условиях регулярности) приблизительно нормально распределено. Стандартное отклонение этого нормального распределения — это то, что мы называем стандартной ошибкой.

Фигура 2. Распределение в нижней части распределяет данные, тогда как распределение сверху — это теоретическое распределение среднего значения выборки. SD 20 является мерой распространения данных, тогда как SE of 5 является мерой неопределенности вокруг среднего значения выборки.

Когда мы хотим сравнить средства исходов от эксперимента с двумя образцами Лечения A против лечения B, нам нужно оценить, насколько точно мы измерили средства.

На самом деле нас интересует, насколько точно мы измерили разницу между этими двумя средствами. Мы называем эту меру стандартной ошибкой разности. Вы не можете быть удивлены, узнав, что стандартная ошибка разницы в средствах выборки является функцией стандартных ошибок средств:

Теперь, когда вы поняли, что стандартная ошибка среднего (SE) и стандартное отклонение распределения (SD) — это два разных зверя, вам может быть интересно, как они запутались в первую очередь. Хотя они принципиально отличаются друг от друга, они имеют математическую форму:


, где n — количество точек данных.

Обратите внимание, что стандартная ошибка зависит от двух компонентов: стандартного отклонения выборки и размера выборки N , Это делает интуитивный смысл: чем больше стандартное отклонение выборки, тем менее точным может быть наша оценка истинного среднего.

Кроме того, большой размер выборки, чем больше информации мы имеем о населении, тем точнее мы можем оценить истинное значение.

SE является показателем надежности среднего значения. Небольшой SE является показателем того, что среднее значение выборки является более точным отражением фактического значения популяции. Более большой размер выборки обычно приводит к меньшему SE (тогда как SD не зависит напрямую от размера выборки).

Большинство исследовательских исследований включает в себя выборку из населения. Затем мы делаем выводы о популяции из результатов, полученных из этого образца. Если был сделан второй образец, результаты, вероятно, были бы точно совпадают с первым образцом. Если среднее значение для атрибута рейтинга составляло 3,2 для одного образца, это может быть 3,4 для второго образца того же размера. Если бы мы собирали бесконечное количество выборок (равного размера) из нашей популяции, мы могли бы отображать наблюдаемые средства как распределение. Затем мы могли бы вычислить среднее значение всех наших образцов. Это означало бы равное истинное значение популяции. Мы также можем рассчитать SD распределения средств выборки. SD этого распределения средств выборки является SE каждого отдельного образца.

Таким образом, мы имеем самое значительное наблюдение: SE является SD среднего значения.

Образец Имею в виду
первый 3.2
второй 3.4
третий 3.3
четвёртая 3.2
пятые 3.1
…. ….
…. ….
…. ….
…. ….
…. ….
Имею в виду 3.3
Std. Девиация 0.13

Таблица, иллюстрирующая взаимосвязь между SD и SE

Теперь ясно, что если SD этого распределения помогает нам понять, насколько далека среднее значение выборки от истинной совокупности, то мы можем использовать это, чтобы понять, насколько точна какая-либо индивидуальная выборка по отношению к истинному среднему значению. В этом суть SE.

На самом деле, мы набрали только один образец из нашего населения, но мы можем использовать этот результат для оценки надежности нашего наблюдаемого образца.

На самом деле, SE говорит нам, что мы можем быть на 95% уверены, что наше наблюдаемое среднее значение выборки плюс или минус примерно 2 (на самом деле 1,96). Стандартные ошибки от населения.

В приведенной ниже таблице показано распределение ответов от нашей первой (и единственной) выборки, используемой для наших исследований. SE 0,13, будучи относительно небольшим, дает нам указание на то, что наше среднее значение относительно близко к истинному среднему для нашей общей популяции. Предел погрешности (с доверием 95%) для нашего среднего значения (примерно) в два раза превышает это значение (+/- 0,26), сообщая нам, что истинное среднее значение, скорее всего, составляет от 2,94 до 3,46.

ответчик Рейтинг
3
В 3
С 3
D 3
Е 4
F 4
г 3
ЧАС 3
я 3
J 3
Имею в виду 3.2
Std. заблуждаться 0.13

Резюме

Многие исследователи не понимают различия между стандартным отклонением и стандартной ошибкой, хотя они обычно включаются в анализ данных. Хотя фактические расчеты для стандартного отклонения и стандартной ошибки выглядят очень схожими, они представляют собой две очень разные, но взаимодополняющие меры. SD рассказывает нам о форме нашего распределения, насколько близки значения отдельных данных от среднего значения. SE рассказывает нам, насколько близка наша выборка к истинному средству общей популяции.Вместе они помогают обеспечить более полную картину, чем может сказать нам только одно значащее.

Что такое Стандартная формула ошибки?

Стандартная ошибка — это ошибка, которая возникает в распределении выборки при выполнении статистического анализа. Это вариант стандартного отклонения, так как оба понятия соответствуют мерам спреда. Высокая стандартная ошибка соответствует более высокому разбросу данных для взятой выборки. Вычисление формулы стандартной ошибки выполняется для выборки. В то же время стандартное отклонение определяет генеральную совокупность.

Оглавление

  • Что такое Стандартная формула ошибки?
    • Объяснение
    • Пример формулы стандартной ошибки
    • Калькулятор стандартной ошибки
    • Актуальность и использование
    • Стандартная формула ошибки в Excel
    • Рекомендуемые статьи

Следовательно, стандартная ошибка среднего значения будет выражаться и определяться в соответствии с соотношением, описанным следующим образом:

σ͞x = σ/√n

Стандартная формула ошибки

Здесь,

  • Стандартная ошибка, выраженная как σ͞x.
  • Стандартное отклонение совокупности выражается как σ.
  • Количество переменных в выборке, выраженное как n.

В статистическом анализе среднее значение, медиана и мода являются центральной тенденцией. Центральная тенденция Центральная тенденция — это статистическая мера, которая отображает центральную точку всего распределения данных, и вы можете найти ее с помощью 3 различных мер, т. е. среднего, медианы и моды.Подробнее меры. Стандартное отклонение, дисперсия и стандартная ошибка среднего классифицируются как меры изменчивости. Стандартная ошибка среднего для выборочных данных напрямую связана со стандартным отклонением большей совокупности и обратно пропорциональна или связана с квадратным корнем. число. Чтобы использовать эту функцию, введите термин =SQRT и нажмите клавишу табуляции, которая вызовет функцию SQRT. Более того, эта функция принимает один аргумент из нескольких переменных, используемых для создания выборки. Следовательно, если размер выборки Размер выборкиФормула размера выборки отображает соответствующий диапазон генеральной совокупности, в которой проводится эксперимент или опрос. Он измеряется с использованием размера генеральной совокупности, критического значения нормального распределения при требуемом доверительном уровне, доли выборки и предела погрешности. Если больше, то может быть равная вероятность того, что стандартная ошибка также будет большой.

Объяснение

Можно объяснить формулу для стандартной ошибки среднего, используя следующие шаги:

  1. Определите и организуйте выборку и определите количество переменных.
  2. Затем среднее значение выборки соответствует количеству переменных, присутствующих в выборке.
  3. Затем определите стандартное отклонение выборки.
  4. Затем определите квадратный корень из числа переменных, включенных в выборку.
  5. Теперь разделите стандартное отклонение, вычисленное на шаге 3, на полученное значение на шаге 4, чтобы получить стандартную ошибку.

Пример формулы стандартной ошибки

Ниже приведены примеры формул для расчета стандартной ошибки.

.free_excel_div{фон:#d9d9d9;размер шрифта:16px;радиус границы:7px;позиция:относительная;margin:30px;padding:25px 25px 25px 45px}.free_excel_div:before{content:»»;фон:url(центр центр без повтора #207245;ширина:70px;высота:70px;позиция:абсолютная;верх:50%;margin-top:-35px;слева:-35px;граница:5px сплошная #fff;граница-радиус:50%} Вы можете скачать этот шаблон стандартной формулы ошибки Excel здесь — Стандартная формула ошибки Шаблон Excel

Пример №1

Возьмем в качестве примера акции ABC. В течение 30 лет акции приносили средний долларовый доход в размере 45 долларов. Кроме того, было замечено, что акции приносят прибыль со стандартным отклонением в 2 доллара. Помогите инвестору рассчитать общую стандартную ошибку средней доходности, предлагаемой акцией ABC.

Решение:

  • Стандартное отклонение (σ) = $2
  • Количество лет (n) = 30
  • Средняя доходность в долларах = 45 долларов.

Расчет стандартной ошибки выглядит следующим образом:

Стандартная формула ошибки — пример 1.2

  • σ͞x = σ/√n
  • = 2 доллара США/√30
  • = 2 доллара США / 5,4773

Стандартная ошибка,

Стандартная формула ошибки — пример 1.3

  • σx = 0,3651 доллара США

Таким образом, инвестиция предлагает инвестору стандартную долларовую ошибку в среднем 0,36515 доллара при удерживании позиции ABC в течение 30 лет. Однако, если бы акции сохранялись для более высокого инвестиционного горизонта, то стандартная ошибка среднего значения в долларах значительно уменьшилась бы.

Пример #2

Возьмем в качестве примера инвестора, который получил следующую доходность акций XYZ:

Год инвестиций Предлагаемая доходность120%225%35%410%

Помогите инвестору рассчитать общую стандартную ошибку средней доходности акций XYZ.

Решение:

Сначала определите среднее значение доходности, как показано ниже: –

Стандартная формула ошибки — пример 2.2

  • ͞X = (x1+x2+x3+x4)/количество лет
  • = (20+25+5+10)/4
  • =15%

Теперь определите стандартное отклонение доходности, как показано ниже: –

Стандартная формула ошибки — пример 2.3

  • σ = √ ((x1-͞X)2 + (x2-͞X)2 + (x3-͞X)2 + (x4-͞X)2) / √ (количество лет -1)
  • = √ ((20-15) 2 + (25-15) 2 + (5-15) 2 + (10-15) 2) / √ (4-1)
  • = (√ (5) 2 + (10) 2 + (-10) 2 + (-5) 2 ) / √ (3)
  • = (√25+100+100+25)/ √ (3)
  • =√250/√3
  • =√83,3333
  • «=» 9,1287%

Теперь вычисление стандартной ошибки выглядит следующим образом:

Стандартная формула ошибки — пример 2.4

  • σ͞x = σ/√n
  • = 9,128709/√4
  • = 9,128709/2

Стандартная ошибка,

Стандартная формула ошибки — пример 2.5

  • σx = 4,56%

Таким образом, инвестиции предлагают инвестору стандартную ошибку в долларах в среднем 4,56% при удержании позиции XYZ в течение 4 лет.

Калькулятор стандартной ошибки

Вы можете использовать следующий калькулятор.

.cal-tbl td{ верхняя граница: 0 !важно; }.cal-tbl tr{ высота строки: 0.5em; } Только экран @media и (минимальная ширина устройства: 320 пикселей) и (максимальная ширина устройства: 480 пикселей) { .cal-tbl tr{ line-height: 1em !important; } } σnСтандартная формула ошибки

Формула стандартной ошибки =σ =√n 0 = 0√0

Актуальность и использование

Стандартная ошибка имеет тенденцию быть высокой, если размер выборки для анализа мал. Следовательно, выборка всегда берется из большей совокупности, которая включает больший размер переменных. Это всегда помогает статистику определить достоверность среднего значения выборки относительно среднего значения генеральной совокупности.

Большая стандартная ошибка говорит статистику, что выборка неоднородна в отношении среднего значения генеральной совокупности. Относительно населения наблюдается большой разброс в выборке. Точно так же небольшая стандартная ошибка говорит статистику, что выборка однородна относительно среднего значения генеральной совокупности. Отсутствуют или незначительные различия в выборке относительно населения.

Не следует смешивать его со стандартным отклонением. Вместо этого следует рассчитать стандартное отклонение для всей совокупности. Стандартная ошибкаСтандартная ошибкаСтандартная ошибка (SE) — это метрика, которая измеряет точность выборочного распределения, обозначающего совокупность, с использованием стандартного отклонения. Другими словами, это мера дисперсии среднего значения выборки, связанная со средним значением генеральной совокупности, а не стандартное отклонение. С другой стороны, оно определяется для среднего значения выборки.

Стандартная формула ошибки в Excel

Теперь давайте возьмем пример Excel, чтобы проиллюстрировать концепцию стандартной формулы ошибки в шаблоне Excel ниже. Предположим, администрация школы хочет определить стандартную ошибку среднего значения роста футболистов.

Выборка состоит из следующих значений: –

Пример 3.1

Помогите администрации оценить стандартную ошибку среднего значения.

Шаг 1: Определите среднее значение, как показано ниже: –

Пример 3.2

Шаг 2: Определите стандартное отклонение, как показано ниже: –

Пример 3.3

Шаг 3: Определите стандартную ошибку среднего значения, как показано ниже: –

Пример 3.4

Следовательно, стандартная ошибка среднего значения для футболистов составляет 1,846 дюйма. Руководство должно заметить, что оно значительно велико. Таким образом, выборочные данные, взятые для анализа, неоднородны и имеют большую дисперсию.

Руководству следует либо исключить более мелких игроков, либо добавить игроков значительно выше, чтобы сбалансировать средний рост футбольной команды, заменив их людьми с меньшим ростом по сравнению с их сверстниками.

Рекомендуемые статьи

Эта статья была руководством по формуле стандартной ошибки. Здесь мы обсуждаем формулу для расчета среднего значения, стандартную ошибку, примеры и загружаемый лист Excel. Вы можете узнать больше из следующих статей: –

  • Формула рентабельности EBITDA
  • Формула валовой прибыли
  • Формула относительного стандартного отклонения
  • Формула погрешности

Понравилась статья? Поделить с друзьями:
  • Станция шк 6000 коды ошибок
  • Стандартные страницы ошибок
  • Стандартная ошибка пропорции
  • Станция управления уэл ошибки
  • Стандартные ошибки параметров линейной регрессии формула