Расчет индикаторных погрешностей кислотно-основного титрования
Согласно ионно-хромофорной теории индикаторов, интервал перехода окраски индикатора (табл. 12). Середина области перехода окраски (при этом pH близко к
) называется показателем титрования с данным индикатором или рТ индикатора. Индикаторные погрешности отсутствуют, когда рТ индикатора практически совпадает с pH в ТЭ. Основой для выбора индикатора является расчет и построение кривой титрования, определение области скачка и pH в ТЭ.
Таблица 8.12
Важнейшие кислотно-основные индикаторы
При правильно выбранном индикаторе индикаторная ПТ не должна превышать заданную погрешность измерения объема раствора в титриметрии. Типы (виды) индикаторных ПТ кислотно-осиовиого титрования и названия, встречающиеся в разных учебниках и сборниках задач, происхождение погрешностей и формулы для расчета приведены в табл. 8.13. Формулы легко выводятся из определения погрешности титрования как отношения недотитро-ванного или перетитрованного количества кислоты или основания к первоначально взятому для титрования (то есть к произведению . Погрешность выражают в %, а вид и знак устанавливают по ходу процесса (кривой) титрования и составу раствора в КТТ (табл. 8.13, примеры 8.28 и 8.29).
Таблица 8.13
Индикаторные погрешности кислотно-основного титрования
Пример 8.28.
Выберите подходящие индикаторы, определите тип индикаторных погрешностей и рассчитайте ПТ при титровании а) и б)
рабочим раствором
в условиях примера 8.21, если считать относительную погрешность измерения объема 0,4 %.
Решение:
а). Как следует из табл. 8.4 и рис. 8.1(1), для случая титрования при погрешности определения объема 0,4 % область скачка на кривой титрования соответствует изменению pH от 3,4 до 10,9, а
равен 7,0. Следовательно, для титрования можно выбрать индикаторы от №2 до №10 (табл. 8.12), т. к. их рТ и интервалы перехода окраски находятся в области скачка кривой.
Однако используемые для расчета ПТ формулы показывают, что чем ближе рТ и , тем меньше ПТ. «Идеально» подходит бромтимоловый синий, поскольку его рТ 7 практически совпадает с
.
Рассчитаем величину ПТ с двумя индикаторами: с рТ < и с р Г >
и проверим их пригодность для титрования в заданных условиях.
С индикатором метиловым красным (рТ 5,5 < ) в растворе остается неоттитрованная сильная кислота, следовательно, возникает протонная ошибка со знаком «-» (см. формулы в табл. 8.13):
С индикатором фенолфталеином (рТ 9,0 > ) в растворе -избыток сильного основания, в результате чего ПТ представляет собой
— ошибку (гидроксидную) со знаком «+»:
В данном случае оба индикатора пригодны, поскольку вычисленные значения ПТ не превышают заданную погрешность титрования (0,4%), но с метиловым красным систематическая индикаторная погрешность меньше.
б). При титровании (табл. 8.5, рис. 8.1(2)) для той же точности титрования (99,6%) величина скачка меньше и составляет 7,2 — 10,9, а
— 8,9. Круг пригодных индикаторов сужается до №7 — №9. Для индикаторов с рТ >
, как и в случае (а), ПТ соответствует
— ошибке (гидроксидной) со знаком «+».
Например, при выборе фенолфталеина (рТ = 9,0):
а при выборе тимолфталеина (рТ = 10,0) погрешность возрастает в 10 раз:
Выбор фенолфталеина приводит к меньшей индикаторной погрешности титрования , но могут использоваться оба индикатора.
При титровании с индикаторами, для которых рТ < рНтэ, в растворе остается неоттитрованная слабая кислота, т. е. присутствует НА-ошибка (кислотная) со знаком «-» (см. табл. 8.13). Если использовать индикатор бромтимоловый синий (рТ 7,0), то вычисленная ПТ не удовлетворяет заданной точности, индикатор не пригоден:
или при проведении расчета по приближенной формуле:
Пример 8.29.
Какой индикатор позволяет оттитровать 0,1000 М гидразин 0,1000 М раствором
с меньшей погрешностью: бромкрезоловый пурпурный (рТ 6,0) или метиловый красный (рТ 5,5)?
Решение:
Реакция титрования:
приводит к образованию слабой сопряженной кислоты . Тогда
и вычисляется с учетом того, что
:
Сравнивая рТ индикаторов и , видим, что в обоих случаях остается неоттитрованный гидразин, поэтому для оценки ПТ рассчитываем
ошибку (основную) со знаком «-». С бромкрезоловым пурпурным (рТ 6):
и с метиловым красным (рТ 5,5):
Из предложенных индикаторов метиловый красный позволяет провести титрование гидразина с меньшей погрешностью.
Расчет индикаторных погрешностей окислительно-восстановительного титрования
При использовании окислительно-восстановительных (редокс) индикаторов потенциал в ТЭ может не совпадать с потенциалом
, который связан с
. (табл. 8.14) и интервалом перехода его окраски
.
Таблица 8.14
Примеры распространенных окислительно-восстановительных индикаторов
Полуреакция восстановления и интервал перехода индикатора:
Наиболее часто в полуреакции восстановления (окисления) индикатора участвуют 2 электрона. Для индикаторов №1 — №6 слабо зависит от pH. При расчете ПТ необходимо:
- сравнить
для выбора редокс-пары участников реакции титрования и уравнения Нернста для расчета ПТ.
Например, если при титровании восстановителя (пример 8.30-а), то реакция не завершена; из уравнения Нернста для полуреакции титруемого компонента находят (объемы раствора в числителе и знаменателе одинаковы):
Сумма числителя и знаменателя здесь составляет 100 % титруемого вещества. Индикатор считается пригодным, если ПТ не превышает 0,1 -0,2%.
Пример 8.30.
Выберите подходящие индикаторы, определите тип индикаторных погрешностей и рассчитайте ПТ при титровании раствора соли раствором соли
.
Решение:
Как следует из табл. 8.8 и рис. 8.3 (кривая 1, пример 8.25), область скачка (при относительной погрешности измерения объема 0,1 %) на кривой титрования 0,95 — 1,26 В, а . Следовательно, для титрования можно выбрать индикаторы от №3 до №5 (табл. 8.14).
Выберем для рассмотрения порядка расчета два индикатора:
а) с -дипиридил, для которого
б) с , например нитрофенантролин
.
В случае а) интервал перехода индикатора:
Изменение окраски заканчивается при = 1,0 В. В растворе остаются неоттитрованными ионы
(оттитрованные ионы -ионы
). Для расчета ПТ используем уравнение Нернста для ре-докс- пары титруемого компонента (
/
):
Тогда: ПТ =
В случае б) интервал перехода индикатора нитрофенантролина в виде комплекса с составляет:
Изменение окраски заканчивается при = 1,28 В и раствор перетитровывается. В этом случае ПТ имеет положительный знак и рассчитывается по уравнению Нернста для редокс-пары, образуемой титрантом
.
Тогда количество (после ТЭ образования
не происходит) соответствует количеству взятых для титрования ионов
, а количество
— их перетитрованному количеству.
Таким образом, оба выбранных индикатора оказались приемлемыми.
Расчет индикаторных погрешностей комплексонометрического титрования
В конечной точке титрования общие концентрации определяемого иона с(М) и титранта c(Y) можно представить выражениями {для упрощения записи в общем виде упустим заряды ионов):
где — концентрация всех форм определяемого иона, кроме входящего в комплекс
— концентрация всех форм титранта, кроме входящего в комплекс MY.
Условные константы устойчивости (см. выражение 8.16) связывают
Отсюда относительная погрешность титрования (ПТ) определяется выражением (с учетом (8.18) и (8.19)):
Подставляем в это уравнение выражение для (8.20):
Вблизи ТЭ очень мала, поэтому
,
следовательно:
Выражение (8.21) тождественно выражению: . Если конечная точка титрования находится после точки эквивалентности (степень оттитрованности
), то относительная погрешность будет положительной. В случае недотитровывания, т. е. когда конечная точка титрования будет зафиксирована с помощью индикатора до точки эквивалентности
, ПТ будет со знаком «-».
Конечная точка титрования определяется интервалом перехода окраски индикатора (интервалом рМ, в котором индикатор меняет свою окраску):
, где
Интервал перехода окраски индикатора эриохром черный Т
, образующего комплексы с ионами металлов при pH 10, составляет для ионов:
Пример 8.31.
Рассчитайте погрешность титрования 0,1 ОМ раствора 0,10 М раствором ЭДТА в присутствии индикатора эриохром черный Т в аммиачном буферном растворе при pH 10 и
= 0,2 моль/л (см. условия в примере 8.27).
Решение:
В данных условиях ,
(пример 8.23). Интервал перехода окраски индикатора:
или в интервале концентраций магния от
. Точка эквивалентности попадает в указанный интервал, индикатор считается пригодным для титрования
, КТТ наступает после ТЭ, когда
моль/л.
Погрешность титрования с «эриохром черным Т»:
Пример 8.32.
Докажите возможность использования индикатора эриохром черный Т для титрования 0,010 М раствора 0,010 М раствором ЭДТА при pH = 10 и
= 0,10 моль/л. Рассчитайте погрешность титрования при использовании этого индикатора.
Решение:
1. Рассчитаем условную константу .
Общие константы устойчивости для аммиачных комплексов (табл. 4 приложения):
. Для свободных ионов
по формуле (2.8) предварительно рассчитаем
:
По табл. 7 и табл. 4 приложения находим ,
. Константа устойчивости комплекса
с ЭДТА при заданных условиях с учетом выражения (8.16):
В точке эквивалентности:
Интервал перехода окраски индикатора эриохром черный Т в случае титрования ионов цинка при pH 10: , т.е. от 9,8 до 11,8 или от
моль/л. Точка эквивалентности попадает в интервал концентраций, при которых индикатор меняет свою окраску. Следовательно, эриохром черный Т пригоден для титрования
при заданных условиях.
2. Конечная точка титрования наступает при [], равной
моль/л, отсюда концентрация всех форм
, за исключением связанных в комплекс с ЭДТА, составляет:
Эти примеры взяты со страницы примеров решения задач по аналитической химии:
Решение задач по аналитической химии
Возможны вам будут полезны эти страницы:
Выбор индикатора. Индикаторная погрешность.
Около
ТЭ не удается правильно подсчитать рН
буферных смесей, поэтому по данным
формулам невозможно засчитать величину
скачка. Поэтому учитываются значения
рН, когда раствор недотитрован на 10% и
перетитрован на 10%.
Довольно резкий
скачек наблюдается при титровании
кислоты с Ка10-7.
Этому критерию удовлетворяет только
К1,
а значит, титрование возможно только
по первой ступени (во второй ТЭ скачка
не будет).
Индикатор – это
вещество, которое проявляет видимое
изменение в точке эквивалентности или
вблизи её. Его используют для обнаружения
точки эквивалентности в титриметрическом
анализе.
Индикаторы
кислотно-основного титрования должны
отвечать, по крайней мере, следующим
основным требованиям.
1) Окраска индикатора
должна быть интенсивной и различаться
в кислой и щелочной среде.
2) Изменение окраски
должно быть быстрым, чётким и обратимым.
3) Окраска индикатора
должна меняться в узком интервале
изменения рН раствора.
4) Индикатор должен
быть чувствительным и менять свою
окраску в присутствии минимального
избытка кислоты или щёлочи.
5) Индикатор должен
быть стабильным, не разлагаться в водном
растворе и на воздухе.
6) Индикатор должен
обладать высоким светопоглощением так,
чтобы окраска даже его небольшого
количества была заметна для глаза.
Большая концентрация индикатора может
привести к расходу на него титранта.
Кислотно-основные
индикаторы изменяют свою окраску в
области интервала перехода независимо
от того, достигнута или не достигнута
точка эквивалентности. Правильно
выбранный индикатор изменяет окраску
в области скачка титрования. У неправильно
выбранного индикатора изменение окраски
может происходить задолго до наступления
точки эквивалентности (в недотитрованных
растворах) или после неё (в перетитрованных).
Выбирают индикатор
с помощью кривой титрования. Для этого
на график кривой титрования наносят
интервал перехода индикатора. У правильно
выбранного индикатора интервал перехода
полностью или частично перекрывается
скачком титрования. Если такого
перекрывания нет, индикатор для данного
титрования не подходит. Величину рН,
при которой заканчивается титрование
с данным индикатором, называют показателем
титрования и обозначают символом рТ.
Показатель титрования находится обычно
в середине интервала перехода индикатора.
Правило выбора индикатора можно также
сформулировать, пользуясь понятием рТ.
Индикатор пригоден для данного титрования,
если его рТ лежит в пределах скачка
титрования.
Реакции диссоциации
или ассоциации индикаторов сопровождаются
внутренними структурными перегруппировками,
приводящими к изменениям окраски. При
каждом изменении рН раствора изменяется
окраска индикатора, но человеческий
глаз способен зафиксировать изменение
окраски, если окраска одной формы
становится в 10 раз меньше другой формы.
К систематическим
ошибкам кислотно-основного титрования
относятся индикаторные ошибки. Они
обусловлены несовпадением значений рН
титруемого раствора в ТЭ и рТ индикатора
в КТТ. Практически невозможно подобрать
такой индикатор кислотно-основного
титрования, значение рТ которого точно
совпадало бы со значением рН в ТЭ. Поэтому
индикатор меняет свою окраску в КТТ
либо до ТЭ, либо после неё. Если изменение
окраски индикатора происходит до ТЭ,
то раствор недотитрован, в КТТ остаётся
некоторое количество неоттитрованного
определяемого вещества. Если же окраска
индикатора изменяется после ТЭ, то
раствор перетитрован, в КТТ имеется
некоторое избыточное количество
титранта. В связи с этим измеренный
объём израсходованного титранта может
быть либо меньше, либо больше его
стехиометрического объёма в ТЭ. Величина
индикаторной ошибки кислотно-основного
титрования, очевидно, тем заметнее, чем
больше разность между значениями рТ
индикатора и рН титруемого раствора в
ТЭ. Обычно стремятся свести индикаторные
ошибки к минимуму так, чтобы они, во
всяком случае, не превышали бы 0,2%. Это
достигается в основном путём выбора
соответствующего индикатора.
Иногда индикаторную
ошибку титрования рекомендуют называть
просто ошибкой титрования и формулируют
её следующим образом: это разница в
количествах титранта или соответствующая
разница в количествах титруемого
вещества: величина, найденная в конечной
точке, минус величина, отвечающая точке
эквивалентности.
Такое определение
ошибки титрования универсально, т.е.
справедливо для всех титриметрических
методов, а не только для кислотно-основного
титрования.
Индикаторные
ошибки кислотно-основного титрования
подразделяют на водородную (протонную),
гидроксидную, кислотную и основную.
Гидроксидная
ошибка возникает при наличии избытка
гидроксид-ионов в КТТ вследствие либо
недотитровывания раствора сильного
основания кислотой (отрицательная
ошибка), либо перетитровывания раствора
кислоты раствором сильного основания
(положительная ошибка).
Кислотная ошибка
вызвана присутствием некоторого
количества недотитрованной слабой
кислоты в КТТ.
рН=рКинд-lg[HInd]/[Ind],
отсюда рН=рКинд1.
Это выражение показывает интервал
перехода окраски индикатора. В нашем
случае ТЭ(8.35) попадает в интервал перехода
окраски фенолфталеина, который имеет
бесцветную кислую форму и щелочную
форму, окрашенную в малиновый цвет.
рКинд=9,рН=8-10.
Вследствие того,
что ТЭрКинд,
возникнет индикаторная погрешность.
Из-за того, что в растворе слабой кислоты
остается недиссоциированная кислота
возникает кислотная погрешность. Так
как [Н2СО3]C(Н2СО3)
и [СО32-]=C(соли),
то константа кислотности будет выглядеть
так:
Кa/[H+]
=C(соли)/C(Н2СО3),
отсюда [H+] =10-рТ,
Кa=10-рК.
Хкисл%=
; Хкисл%=0,066
А вследствие того,
что в растворе будет избыток сильного
основания, возникает гидроксильная
погрешность.
[OH—]=10-14/[H+],[OH—]=10-14/10—pT=10pT-14.
Отсюда,
Хгидр%=Xгидр%=+0.02%.
Знак «+» вводится из-за того, что раствор
перетитрован.
Соседние файлы в папке Расчетно графические задания по АХ
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
17.05.201517.92 Кб53Книга1.xls
Индикаторная ошибка — титрование
Cтраница 1
Индикаторная ошибка титрования вычисляется аналогично ошибке в осадительном титровании. Для этого нужно знать концентрацию взятого для титрования [ Me ], [ Me ] в точке эквивалентности, которая вычисляется на основании константы устойчивости комплекса с ЭДТА при данном рН и [ Me ] в момент, когда индикатор меняет окраску. Эта величина вычисляется с использованием константы устойчивости комплекса металла с индикатором.
[1]
Индикаторной ошибкой титрования называют погрешность, которая вызывается несовпадением показателя титрования, используемого индикатора с41 величиной рН в точке эквивалентности.
[3]
Индикаторной ошибкой титрования называют погрешность, которая вызывается несовпадением показателя титрования используемого индикатора с величиной рН в точке эквивалентности.
[4]
При вычислении индикаторной ошибки титрования используют эти же формулы, но неизвестной величиной будет являться концентрация соответствующей кислоты ( основания) или соли.
[5]
Эту погрешность называют индикаторной ошибкой титрования.
[6]
Таким образом, возможны четыре индикаторные ошибки титрования в методе нейтрализации: водородная, гидроксильная, кислотная и щелочная.
[7]
Имеется полная аналогия в вычислении индикаторных ошибок титрования в кислотно-основном и осацительном титровании.
[8]
Как уже было указано, индикаторной ошибкой титрования является погрешность, которая обусловлена несовпадением показателя титрования применяемого индикатора с величиной рН в точке эквивалентности. При этом различают четыре основных типа индикаторных ошибок.
[9]
Выше было показано, как путем вычисления индикаторной ошибки титрования решать вопрос о пригодности какого-либо заранее заданного индикатора. Если же индикатор не указан, то выбирают такой, показатель титрования которого возможно ближе подходит к величине рН в точке эквивалентности ( находимой по известным формулам), и вычисляют для него индикаторную ошибку титрования.
[10]
Выше было показано, как путем вычисления индикаторной ошибки титрования решается вопрос о пригодности какого-либо заранее заданного индикатора.
[11]
Выше было показано, как путем вычисления индикаторной ошибки титрования решается вопрос о пригодности какого-либо заранее заданного индикатора.
[12]
Таким образом, по Бьерруму, возможны четыре индикаторные ошибки титрования в методе нейтрализации: водородная, гидро-ксильная, кислотная и щелочная.
[13]
Чтобы окраска окислительно-восстановительного индикатора изменялась при титровании резко и индикаторная ошибка титрования была незначительной, необходимо, чтобы область перехода индикатора находилась в пределах скачка потенциалов на кривой титрования.
[14]
Страницы:
1
2
3